1 
   2 /*
   3  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "gc_implementation/parallelScavenge/parallelScavengeHeap.hpp"
  31 #include "gc_implementation/parallelScavenge/psAdaptiveSizePolicy.hpp"
  32 #include "gc_implementation/parallelScavenge/psMarkSweep.hpp"
  33 #include "gc_implementation/parallelScavenge/psMarkSweepDecorator.hpp"
  34 #include "gc_implementation/parallelScavenge/psOldGen.hpp"
  35 #include "gc_implementation/parallelScavenge/psScavenge.hpp"
  36 #include "gc_implementation/parallelScavenge/psYoungGen.hpp"
  37 #include "gc_implementation/shared/gcHeapSummary.hpp"
  38 #include "gc_implementation/shared/gcTimer.hpp"
  39 #include "gc_implementation/shared/gcTrace.hpp"
  40 #include "gc_implementation/shared/gcTraceTime.hpp"
  41 #include "gc_implementation/shared/isGCActiveMark.hpp"
  42 #include "gc_implementation/shared/markSweep.hpp"
  43 #include "gc_implementation/shared/spaceDecorator.hpp"
  44 #include "gc_interface/gcCause.hpp"
  45 #include "memory/gcLocker.inline.hpp"
  46 #include "memory/referencePolicy.hpp"
  47 #include "memory/referenceProcessor.hpp"
  48 #include "oops/oop.inline.hpp"
  49 #include "runtime/biasedLocking.hpp"
  50 #include "runtime/fprofiler.hpp"
  51 #include "runtime/safepoint.hpp"
  52 #include "runtime/vmThread.hpp"
  53 #include "services/management.hpp"
  54 #include "services/memoryService.hpp"
  55 #include "utilities/events.hpp"
  56 #include "utilities/stack.inline.hpp"
  57 
  58 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  59 
  60 elapsedTimer        PSMarkSweep::_accumulated_time;
  61 jlong               PSMarkSweep::_time_of_last_gc   = 0;
  62 CollectorCounters*  PSMarkSweep::_counters = NULL;
  63 
  64 void PSMarkSweep::initialize() {
  65   MemRegion mr = Universe::heap()->reserved_region();
  66   _ref_processor = new ReferenceProcessor(mr);     // a vanilla ref proc
  67   _counters = new CollectorCounters("PSMarkSweep", 1);
  68 }
  69 
  70 // This method contains all heap specific policy for invoking mark sweep.
  71 // PSMarkSweep::invoke_no_policy() will only attempt to mark-sweep-compact
  72 // the heap. It will do nothing further. If we need to bail out for policy
  73 // reasons, scavenge before full gc, or any other specialized behavior, it
  74 // needs to be added here.
  75 //
  76 // Note that this method should only be called from the vm_thread while
  77 // at a safepoint!
  78 //
  79 // Note that the all_soft_refs_clear flag in the collector policy
  80 // may be true because this method can be called without intervening
  81 // activity.  For example when the heap space is tight and full measure
  82 // are being taken to free space.
  83 
  84 void PSMarkSweep::invoke(bool maximum_heap_compaction) {
  85   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
  86   assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
  87   assert(!Universe::heap()->is_gc_active(), "not reentrant");
  88 
  89   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
  90   GCCause::Cause gc_cause = heap->gc_cause();
  91   PSAdaptiveSizePolicy* policy = heap->size_policy();
  92   IsGCActiveMark mark;
  93 
  94   if (ScavengeBeforeFullGC) {
  95     PSScavenge::invoke_no_policy();
  96   }
  97 
  98   const bool clear_all_soft_refs =
  99     heap->collector_policy()->should_clear_all_soft_refs();
 100 
 101   uint count = maximum_heap_compaction ? 1 : MarkSweepAlwaysCompactCount;
 102   UIntFlagSetting flag_setting(MarkSweepAlwaysCompactCount, count);
 103   PSMarkSweep::invoke_no_policy(clear_all_soft_refs || maximum_heap_compaction);
 104 }
 105 
 106 // This method contains no policy. You should probably
 107 // be calling invoke() instead.
 108 bool PSMarkSweep::invoke_no_policy(bool clear_all_softrefs) {
 109   assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
 110   assert(ref_processor() != NULL, "Sanity");
 111 
 112   if (GC_locker::check_active_before_gc()) {
 113     return false;
 114   }
 115 
 116   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 117   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 118   GCCause::Cause gc_cause = heap->gc_cause();
 119 
 120   _gc_timer->register_gc_start();
 121   _gc_tracer->report_gc_start(gc_cause, _gc_timer->gc_start());
 122 
 123   PSAdaptiveSizePolicy* size_policy = heap->size_policy();
 124 
 125   // The scope of casr should end after code that can change
 126   // CollectorPolicy::_should_clear_all_soft_refs.
 127   ClearedAllSoftRefs casr(clear_all_softrefs, heap->collector_policy());
 128 
 129   PSYoungGen* young_gen = heap->young_gen();
 130   PSOldGen* old_gen = heap->old_gen();
 131 
 132   // Increment the invocation count
 133   heap->increment_total_collections(true /* full */);
 134 
 135   // Save information needed to minimize mangling
 136   heap->record_gen_tops_before_GC();
 137 
 138   // We need to track unique mark sweep invocations as well.
 139   _total_invocations++;
 140 
 141   AdaptiveSizePolicyOutput(size_policy, heap->total_collections());
 142 
 143   heap->print_heap_before_gc();
 144   heap->trace_heap_before_gc(_gc_tracer);
 145 
 146   // Fill in TLABs
 147   heap->accumulate_statistics_all_tlabs();
 148   heap->ensure_parsability(true);  // retire TLABs
 149 
 150   if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
 151     HandleMark hm;  // Discard invalid handles created during verification
 152     Universe::verify(" VerifyBeforeGC:");
 153   }
 154 
 155   // Verify object start arrays
 156   if (VerifyObjectStartArray &&
 157       VerifyBeforeGC) {
 158     old_gen->verify_object_start_array();
 159   }
 160 
 161   heap->pre_full_gc_dump(_gc_timer);
 162 
 163   // Filled in below to track the state of the young gen after the collection.
 164   bool eden_empty;
 165   bool survivors_empty;
 166   bool young_gen_empty;
 167 
 168   {
 169     HandleMark hm;
 170 
 171     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
 172     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
 173     GCTraceTime t1(GCCauseString("Full GC", gc_cause), PrintGC, !PrintGCDetails, NULL, _gc_tracer->gc_id());
 174     TraceCollectorStats tcs(counters());
 175     TraceMemoryManagerStats tms(true /* Full GC */,gc_cause);
 176 
 177     if (TraceOldGenTime) accumulated_time()->start();
 178 
 179     // Let the size policy know we're starting
 180     size_policy->major_collection_begin();
 181 
 182     CodeCache::gc_prologue();
 183     BiasedLocking::preserve_marks();
 184 
 185     // Capture heap size before collection for printing.
 186     size_t prev_used = heap->used();
 187 
 188     // Capture metadata size before collection for sizing.
 189     size_t metadata_prev_used = MetaspaceAux::used_bytes();
 190 
 191     // For PrintGCDetails
 192     size_t old_gen_prev_used = old_gen->used_in_bytes();
 193     size_t young_gen_prev_used = young_gen->used_in_bytes();
 194 
 195     allocate_stacks();
 196 
 197     COMPILER2_PRESENT(DerivedPointerTable::clear());
 198 
 199     ref_processor()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
 200     ref_processor()->setup_policy(clear_all_softrefs);
 201 
 202     mark_sweep_phase1(clear_all_softrefs);
 203 
 204     mark_sweep_phase2();
 205 
 206     // Don't add any more derived pointers during phase3
 207     COMPILER2_PRESENT(assert(DerivedPointerTable::is_active(), "Sanity"));
 208     COMPILER2_PRESENT(DerivedPointerTable::set_active(false));
 209 
 210     mark_sweep_phase3();
 211 
 212     mark_sweep_phase4();
 213 
 214     restore_marks();
 215 
 216     deallocate_stacks();
 217 
 218     if (ZapUnusedHeapArea) {
 219       // Do a complete mangle (top to end) because the usage for
 220       // scratch does not maintain a top pointer.
 221       young_gen->to_space()->mangle_unused_area_complete();
 222     }
 223 
 224     eden_empty = young_gen->eden_space()->is_empty();
 225     if (!eden_empty) {
 226       eden_empty = absorb_live_data_from_eden(size_policy, young_gen, old_gen);
 227     }
 228 
 229     // Update heap occupancy information which is used as
 230     // input to soft ref clearing policy at the next gc.
 231     Universe::update_heap_info_at_gc();
 232 
 233     survivors_empty = young_gen->from_space()->is_empty() &&
 234                       young_gen->to_space()->is_empty();
 235     young_gen_empty = eden_empty && survivors_empty;
 236 
 237     BarrierSet* bs = heap->barrier_set();
 238     if (bs->is_a(BarrierSet::ModRef)) {
 239       ModRefBarrierSet* modBS = (ModRefBarrierSet*)bs;
 240       MemRegion old_mr = heap->old_gen()->reserved();
 241       if (young_gen_empty) {
 242         modBS->clear(MemRegion(old_mr.start(), old_mr.end()));
 243       } else {
 244         modBS->invalidate(MemRegion(old_mr.start(), old_mr.end()));
 245       }
 246     }
 247 
 248     // Delete metaspaces for unloaded class loaders and clean up loader_data graph
 249     ClassLoaderDataGraph::purge();
 250     MetaspaceAux::verify_metrics();
 251 
 252     BiasedLocking::restore_marks();
 253     CodeCache::gc_epilogue();
 254     JvmtiExport::gc_epilogue();
 255 
 256     COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
 257 
 258     ref_processor()->enqueue_discovered_references(NULL);
 259 
 260     // Update time of last GC
 261     reset_millis_since_last_gc();
 262 
 263     // Let the size policy know we're done
 264     size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause);
 265 
 266     if (UseAdaptiveSizePolicy) {
 267 
 268       if (PrintAdaptiveSizePolicy) {
 269         gclog_or_tty->print("AdaptiveSizeStart: ");
 270         gclog_or_tty->stamp();
 271         gclog_or_tty->print_cr(" collection: %d ",
 272                        heap->total_collections());
 273         if (Verbose) {
 274           gclog_or_tty->print("old_gen_capacity: " SIZE_FORMAT
 275             " young_gen_capacity: " SIZE_FORMAT,
 276             old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes());
 277         }
 278       }
 279 
 280       // Don't check if the size_policy is ready here.  Let
 281       // the size_policy check that internally.
 282       if (UseAdaptiveGenerationSizePolicyAtMajorCollection &&
 283           ((gc_cause != GCCause::_java_lang_system_gc) ||
 284             UseAdaptiveSizePolicyWithSystemGC)) {
 285         // Swap the survivor spaces if from_space is empty. The
 286         // resize_young_gen() called below is normally used after
 287         // a successful young GC and swapping of survivor spaces;
 288         // otherwise, it will fail to resize the young gen with
 289         // the current implementation.
 290         if (young_gen->from_space()->is_empty()) {
 291           young_gen->from_space()->clear(SpaceDecorator::Mangle);
 292           young_gen->swap_spaces();
 293         }
 294 
 295         // Calculate optimal free space amounts
 296         assert(young_gen->max_size() >
 297           young_gen->from_space()->capacity_in_bytes() +
 298           young_gen->to_space()->capacity_in_bytes(),
 299           "Sizes of space in young gen are out-of-bounds");
 300 
 301         size_t young_live = young_gen->used_in_bytes();
 302         size_t eden_live = young_gen->eden_space()->used_in_bytes();
 303         size_t old_live = old_gen->used_in_bytes();
 304         size_t cur_eden = young_gen->eden_space()->capacity_in_bytes();
 305         size_t max_old_gen_size = old_gen->max_gen_size();
 306         size_t max_eden_size = young_gen->max_size() -
 307           young_gen->from_space()->capacity_in_bytes() -
 308           young_gen->to_space()->capacity_in_bytes();
 309 
 310         // Used for diagnostics
 311         size_policy->clear_generation_free_space_flags();
 312 
 313         size_policy->compute_generations_free_space(young_live,
 314                                                     eden_live,
 315                                                     old_live,
 316                                                     cur_eden,
 317                                                     max_old_gen_size,
 318                                                     max_eden_size,
 319                                                     true /* full gc*/);
 320 
 321         size_policy->check_gc_overhead_limit(young_live,
 322                                              eden_live,
 323                                              max_old_gen_size,
 324                                              max_eden_size,
 325                                              true /* full gc*/,
 326                                              gc_cause,
 327                                              heap->collector_policy());
 328 
 329         size_policy->decay_supplemental_growth(true /* full gc*/);
 330 
 331         heap->resize_old_gen(size_policy->calculated_old_free_size_in_bytes());
 332 
 333         heap->resize_young_gen(size_policy->calculated_eden_size_in_bytes(),
 334                                size_policy->calculated_survivor_size_in_bytes());
 335       }
 336       if (PrintAdaptiveSizePolicy) {
 337         gclog_or_tty->print_cr("AdaptiveSizeStop: collection: %d ",
 338                        heap->total_collections());
 339       }
 340     }
 341 
 342     if (UsePerfData) {
 343       heap->gc_policy_counters()->update_counters();
 344       heap->gc_policy_counters()->update_old_capacity(
 345         old_gen->capacity_in_bytes());
 346       heap->gc_policy_counters()->update_young_capacity(
 347         young_gen->capacity_in_bytes());
 348     }
 349 
 350     heap->resize_all_tlabs();
 351 
 352     // We collected the heap, recalculate the metaspace capacity
 353     MetaspaceGC::compute_new_size();
 354 
 355     if (TraceOldGenTime) accumulated_time()->stop();
 356 
 357     if (PrintGC) {
 358       if (PrintGCDetails) {
 359         // Don't print a GC timestamp here.  This is after the GC so
 360         // would be confusing.
 361         young_gen->print_used_change(young_gen_prev_used);
 362         old_gen->print_used_change(old_gen_prev_used);
 363       }
 364       heap->print_heap_change(prev_used);
 365       if (PrintGCDetails) {
 366         MetaspaceAux::print_metaspace_change(metadata_prev_used);
 367       }
 368     }
 369 
 370     // Track memory usage and detect low memory
 371     MemoryService::track_memory_usage();
 372     heap->update_counters();
 373   }
 374 
 375   if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
 376     HandleMark hm;  // Discard invalid handles created during verification
 377     Universe::verify(" VerifyAfterGC:");
 378   }
 379 
 380   // Re-verify object start arrays
 381   if (VerifyObjectStartArray &&
 382       VerifyAfterGC) {
 383     old_gen->verify_object_start_array();
 384   }
 385 
 386   if (ZapUnusedHeapArea) {
 387     old_gen->object_space()->check_mangled_unused_area_complete();
 388   }
 389 
 390   NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
 391 
 392   heap->print_heap_after_gc();
 393   heap->trace_heap_after_gc(_gc_tracer);
 394 
 395   heap->post_full_gc_dump(_gc_timer);
 396 
 397 #ifdef TRACESPINNING
 398   ParallelTaskTerminator::print_termination_counts();
 399 #endif
 400 
 401   _gc_timer->register_gc_end();
 402 
 403   _gc_tracer->report_gc_end(_gc_timer->gc_end(), _gc_timer->time_partitions());
 404 
 405   return true;
 406 }
 407 
 408 bool PSMarkSweep::absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
 409                                              PSYoungGen* young_gen,
 410                                              PSOldGen* old_gen) {
 411   MutableSpace* const eden_space = young_gen->eden_space();
 412   assert(!eden_space->is_empty(), "eden must be non-empty");
 413   assert(young_gen->virtual_space()->alignment() ==
 414          old_gen->virtual_space()->alignment(), "alignments do not match");
 415 
 416   if (!(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary)) {
 417     return false;
 418   }
 419 
 420   // Both generations must be completely committed.
 421   if (young_gen->virtual_space()->uncommitted_size() != 0) {
 422     return false;
 423   }
 424   if (old_gen->virtual_space()->uncommitted_size() != 0) {
 425     return false;
 426   }
 427 
 428   // Figure out how much to take from eden.  Include the average amount promoted
 429   // in the total; otherwise the next young gen GC will simply bail out to a
 430   // full GC.
 431   const size_t alignment = old_gen->virtual_space()->alignment();
 432   const size_t eden_used = eden_space->used_in_bytes();
 433   const size_t promoted = (size_t)size_policy->avg_promoted()->padded_average();
 434   const size_t absorb_size = align_size_up(eden_used + promoted, alignment);
 435   const size_t eden_capacity = eden_space->capacity_in_bytes();
 436 
 437   if (absorb_size >= eden_capacity) {
 438     return false; // Must leave some space in eden.
 439   }
 440 
 441   const size_t new_young_size = young_gen->capacity_in_bytes() - absorb_size;
 442   if (new_young_size < young_gen->min_gen_size()) {
 443     return false; // Respect young gen minimum size.
 444   }
 445 
 446   if (TraceAdaptiveGCBoundary && Verbose) {
 447     gclog_or_tty->print(" absorbing " SIZE_FORMAT "K:  "
 448                         "eden " SIZE_FORMAT "K->" SIZE_FORMAT "K "
 449                         "from " SIZE_FORMAT "K, to " SIZE_FORMAT "K "
 450                         "young_gen " SIZE_FORMAT "K->" SIZE_FORMAT "K ",
 451                         absorb_size / K,
 452                         eden_capacity / K, (eden_capacity - absorb_size) / K,
 453                         young_gen->from_space()->used_in_bytes() / K,
 454                         young_gen->to_space()->used_in_bytes() / K,
 455                         young_gen->capacity_in_bytes() / K, new_young_size / K);
 456   }
 457 
 458   // Fill the unused part of the old gen.
 459   MutableSpace* const old_space = old_gen->object_space();
 460   HeapWord* const unused_start = old_space->top();
 461   size_t const unused_words = pointer_delta(old_space->end(), unused_start);
 462 
 463   if (unused_words > 0) {
 464     if (unused_words < CollectedHeap::min_fill_size()) {
 465       return false;  // If the old gen cannot be filled, must give up.
 466     }
 467     CollectedHeap::fill_with_objects(unused_start, unused_words);
 468   }
 469 
 470   // Take the live data from eden and set both top and end in the old gen to
 471   // eden top.  (Need to set end because reset_after_change() mangles the region
 472   // from end to virtual_space->high() in debug builds).
 473   HeapWord* const new_top = eden_space->top();
 474   old_gen->virtual_space()->expand_into(young_gen->virtual_space(),
 475                                         absorb_size);
 476   young_gen->reset_after_change();
 477   old_space->set_top(new_top);
 478   old_space->set_end(new_top);
 479   old_gen->reset_after_change();
 480 
 481   // Update the object start array for the filler object and the data from eden.
 482   ObjectStartArray* const start_array = old_gen->start_array();
 483   for (HeapWord* p = unused_start; p < new_top; p += oop(p)->size()) {
 484     start_array->allocate_block(p);
 485   }
 486 
 487   // Could update the promoted average here, but it is not typically updated at
 488   // full GCs and the value to use is unclear.  Something like
 489   //
 490   // cur_promoted_avg + absorb_size / number_of_scavenges_since_last_full_gc.
 491 
 492   size_policy->set_bytes_absorbed_from_eden(absorb_size);
 493   return true;
 494 }
 495 
 496 void PSMarkSweep::allocate_stacks() {
 497   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 498   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 499 
 500   PSYoungGen* young_gen = heap->young_gen();
 501 
 502   MutableSpace* to_space = young_gen->to_space();
 503   _preserved_marks = (PreservedMark*)to_space->top();
 504   _preserved_count = 0;
 505 
 506   // We want to calculate the size in bytes first.
 507   _preserved_count_max  = pointer_delta(to_space->end(), to_space->top(), sizeof(jbyte));
 508   // Now divide by the size of a PreservedMark
 509   _preserved_count_max /= sizeof(PreservedMark);
 510 }
 511 
 512 
 513 void PSMarkSweep::deallocate_stacks() {
 514   _preserved_mark_stack.clear(true);
 515   _preserved_oop_stack.clear(true);
 516   _marking_stack.clear();
 517   _objarray_stack.clear(true);
 518 }
 519 
 520 void PSMarkSweep::mark_sweep_phase1(bool clear_all_softrefs) {
 521   // Recursively traverse all live objects and mark them
 522   GCTraceTime tm("phase 1", PrintGCDetails && Verbose, true, _gc_timer, _gc_tracer->gc_id());
 523   trace(" 1");
 524 
 525   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 526   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 527 
 528   // Need to clear claim bits before the tracing starts.
 529   ClassLoaderDataGraph::clear_claimed_marks();
 530 
 531   // General strong roots.
 532   {
 533     ParallelScavengeHeap::ParStrongRootsScope psrs;
 534     Universe::oops_do(mark_and_push_closure());
 535     JNIHandles::oops_do(mark_and_push_closure());   // Global (strong) JNI handles
 536     CLDToOopClosure mark_and_push_from_cld(mark_and_push_closure());
 537     MarkingCodeBlobClosure each_active_code_blob(mark_and_push_closure(), !CodeBlobToOopClosure::FixRelocations);
 538     Threads::oops_do(mark_and_push_closure(), &mark_and_push_from_cld, &each_active_code_blob);
 539     ObjectSynchronizer::oops_do(mark_and_push_closure());
 540     FlatProfiler::oops_do(mark_and_push_closure());
 541     Management::oops_do(mark_and_push_closure());
 542     JvmtiExport::oops_do(mark_and_push_closure());
 543     SystemDictionary::always_strong_oops_do(mark_and_push_closure());
 544     ClassLoaderDataGraph::always_strong_cld_do(follow_cld_closure());
 545     // Do not treat nmethods as strong roots for mark/sweep, since we can unload them.
 546     //CodeCache::scavenge_root_nmethods_do(CodeBlobToOopClosure(mark_and_push_closure()));
 547   }
 548 
 549   // Flush marking stack.
 550   follow_stack();
 551 
 552   // Process reference objects found during marking
 553   {
 554     ref_processor()->setup_policy(clear_all_softrefs);
 555     const ReferenceProcessorStats& stats =
 556       ref_processor()->process_discovered_references(
 557         is_alive_closure(), mark_and_push_closure(), follow_stack_closure(), NULL, _gc_timer, _gc_tracer->gc_id());
 558     gc_tracer()->report_gc_reference_stats(stats);
 559   }
 560 
 561   // This is the point where the entire marking should have completed.
 562   assert(_marking_stack.is_empty(), "Marking should have completed");
 563 
 564   // Unload classes and purge the SystemDictionary.
 565   bool purged_class = SystemDictionary::do_unloading(is_alive_closure());
 566 
 567   // Unload nmethods.
 568   CodeCache::do_unloading(is_alive_closure(), purged_class);
 569 
 570   // Prune dead klasses from subklass/sibling/implementor lists.
 571   Klass::clean_weak_klass_links(is_alive_closure());
 572 
 573   // Delete entries for dead interned strings.
 574   StringTable::unlink(is_alive_closure());
 575 
 576   // Clean up unreferenced symbols in symbol table.
 577   SymbolTable::unlink();
 578   _gc_tracer->report_object_count_after_gc(is_alive_closure());
 579 }
 580 
 581 
 582 void PSMarkSweep::mark_sweep_phase2() {
 583   GCTraceTime tm("phase 2", PrintGCDetails && Verbose, true, _gc_timer, _gc_tracer->gc_id());
 584   trace("2");
 585 
 586   // Now all live objects are marked, compute the new object addresses.
 587 
 588   // It is not required that we traverse spaces in the same order in
 589   // phase2, phase3 and phase4, but the ValidateMarkSweep live oops
 590   // tracking expects us to do so. See comment under phase4.
 591 
 592   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 593   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 594 
 595   PSOldGen* old_gen = heap->old_gen();
 596 
 597   // Begin compacting into the old gen
 598   PSMarkSweepDecorator::set_destination_decorator_tenured();
 599 
 600   // This will also compact the young gen spaces.
 601   old_gen->precompact();
 602 }
 603 
 604 // This should be moved to the shared markSweep code!
 605 class PSAlwaysTrueClosure: public BoolObjectClosure {
 606 public:
 607   bool do_object_b(oop p) { return true; }
 608 };
 609 static PSAlwaysTrueClosure always_true;
 610 
 611 void PSMarkSweep::mark_sweep_phase3() {
 612   // Adjust the pointers to reflect the new locations
 613   GCTraceTime tm("phase 3", PrintGCDetails && Verbose, true, _gc_timer, _gc_tracer->gc_id());
 614   trace("3");
 615 
 616   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 617   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 618 
 619   PSYoungGen* young_gen = heap->young_gen();
 620   PSOldGen* old_gen = heap->old_gen();
 621 
 622   // Need to clear claim bits before the tracing starts.
 623   ClassLoaderDataGraph::clear_claimed_marks();
 624 
 625   // General strong roots.
 626   Universe::oops_do(adjust_pointer_closure());
 627   JNIHandles::oops_do(adjust_pointer_closure());   // Global (strong) JNI handles
 628   CLDToOopClosure adjust_from_cld(adjust_pointer_closure());
 629   Threads::oops_do(adjust_pointer_closure(), &adjust_from_cld, NULL);
 630   ObjectSynchronizer::oops_do(adjust_pointer_closure());
 631   FlatProfiler::oops_do(adjust_pointer_closure());
 632   Management::oops_do(adjust_pointer_closure());
 633   JvmtiExport::oops_do(adjust_pointer_closure());
 634   SystemDictionary::oops_do(adjust_pointer_closure());
 635   ClassLoaderDataGraph::cld_do(adjust_cld_closure());
 636 
 637   // Now adjust pointers in remaining weak roots.  (All of which should
 638   // have been cleared if they pointed to non-surviving objects.)
 639   // Global (weak) JNI handles
 640   JNIHandles::weak_oops_do(&always_true, adjust_pointer_closure());
 641 
 642   CodeBlobToOopClosure adjust_from_blobs(adjust_pointer_closure(), CodeBlobToOopClosure::FixRelocations);
 643   CodeCache::blobs_do(&adjust_from_blobs);
 644   StringTable::oops_do(adjust_pointer_closure());
 645   ref_processor()->weak_oops_do(adjust_pointer_closure());
 646   PSScavenge::reference_processor()->weak_oops_do(adjust_pointer_closure());
 647 
 648   adjust_marks();
 649 
 650   young_gen->adjust_pointers();
 651   old_gen->adjust_pointers();
 652 }
 653 
 654 void PSMarkSweep::mark_sweep_phase4() {
 655   EventMark m("4 compact heap");
 656   GCTraceTime tm("phase 4", PrintGCDetails && Verbose, true, _gc_timer, _gc_tracer->gc_id());
 657   trace("4");
 658 
 659   // All pointers are now adjusted, move objects accordingly
 660 
 661   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 662   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 663 
 664   PSYoungGen* young_gen = heap->young_gen();
 665   PSOldGen* old_gen = heap->old_gen();
 666 
 667   old_gen->compact();
 668   young_gen->compact();
 669 }
 670 
 671 jlong PSMarkSweep::millis_since_last_gc() {
 672   // We need a monotonically non-decreasing time in ms but
 673   // os::javaTimeMillis() does not guarantee monotonicity.
 674   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
 675   jlong ret_val = now - _time_of_last_gc;
 676   // XXX See note in genCollectedHeap::millis_since_last_gc().
 677   if (ret_val < 0) {
 678     NOT_PRODUCT(warning("time warp: "INT64_FORMAT, ret_val);)
 679     return 0;
 680   }
 681   return ret_val;
 682 }
 683 
 684 void PSMarkSweep::reset_millis_since_last_gc() {
 685   // We need a monotonically non-decreasing time in ms but
 686   // os::javaTimeMillis() does not guarantee monotonicity.
 687   _time_of_last_gc = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
 688 }