1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/scopeDesc.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "interpreter/linkResolver.hpp"
  34 #include "interpreter/oopMapCache.hpp"
  35 #include "jvmtifiles/jvmtiEnv.hpp"
  36 #include "memory/gcLocker.inline.hpp"
  37 #include "memory/metaspaceShared.hpp"
  38 #include "memory/oopFactory.hpp"
  39 #include "memory/universe.inline.hpp"
  40 #include "oops/instanceKlass.hpp"
  41 #include "oops/objArrayOop.hpp"
  42 #include "oops/oop.inline.hpp"
  43 #include "oops/symbol.hpp"
  44 #include "prims/jvm_misc.hpp"
  45 #include "prims/jvmtiExport.hpp"
  46 #include "prims/jvmtiThreadState.hpp"
  47 #include "prims/privilegedStack.hpp"
  48 #include "runtime/arguments.hpp"
  49 #include "runtime/atomic.inline.hpp"
  50 #include "runtime/biasedLocking.hpp"
  51 #include "runtime/deoptimization.hpp"
  52 #include "runtime/fprofiler.hpp"
  53 #include "runtime/frame.inline.hpp"
  54 #include "runtime/init.hpp"
  55 #include "runtime/interfaceSupport.hpp"
  56 #include "runtime/java.hpp"
  57 #include "runtime/javaCalls.hpp"
  58 #include "runtime/jniPeriodicChecker.hpp"
  59 #include "runtime/memprofiler.hpp"
  60 #include "runtime/mutexLocker.hpp"
  61 #include "runtime/objectMonitor.hpp"
  62 #include "runtime/orderAccess.inline.hpp"
  63 #include "runtime/osThread.hpp"
  64 #include "runtime/safepoint.hpp"
  65 #include "runtime/sharedRuntime.hpp"
  66 #include "runtime/statSampler.hpp"
  67 #include "runtime/stubRoutines.hpp"
  68 #include "runtime/task.hpp"
  69 #include "runtime/thread.inline.hpp"
  70 #include "runtime/threadCritical.hpp"
  71 #include "runtime/threadLocalStorage.hpp"
  72 #include "runtime/vframe.hpp"
  73 #include "runtime/vframeArray.hpp"
  74 #include "runtime/vframe_hp.hpp"
  75 #include "runtime/vmThread.hpp"
  76 #include "runtime/vm_operations.hpp"
  77 #include "services/attachListener.hpp"
  78 #include "services/management.hpp"
  79 #include "services/memTracker.hpp"
  80 #include "services/threadService.hpp"
  81 #include "trace/tracing.hpp"
  82 #include "trace/traceMacros.hpp"
  83 #include "utilities/defaultStream.hpp"
  84 #include "utilities/dtrace.hpp"
  85 #include "utilities/events.hpp"
  86 #include "utilities/preserveException.hpp"
  87 #include "utilities/macros.hpp"
  88 #if INCLUDE_ALL_GCS
  89 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
  90 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  91 #include "gc_implementation/parallelScavenge/pcTasks.hpp"
  92 #endif // INCLUDE_ALL_GCS
  93 #ifdef COMPILER1
  94 #include "c1/c1_Compiler.hpp"
  95 #endif
  96 #ifdef COMPILER2
  97 #include "opto/c2compiler.hpp"
  98 #include "opto/idealGraphPrinter.hpp"
  99 #endif
 100 #if INCLUDE_RTM_OPT
 101 #include "runtime/rtmLocking.hpp"
 102 #endif
 103 
 104 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
 105 
 106 #ifdef DTRACE_ENABLED
 107 
 108 // Only bother with this argument setup if dtrace is available
 109 
 110 #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 111 #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 112 
 113 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
 114   {                                                                        \
 115     ResourceMark rm(this);                                                 \
 116     int len = 0;                                                           \
 117     const char* name = (javathread)->get_thread_name();                    \
 118     len = strlen(name);                                                    \
 119     HOTSPOT_THREAD_PROBE_##probe(  /* probe = start, stop */               \
 120       (char *) name, len,                                                           \
 121       java_lang_Thread::thread_id((javathread)->threadObj()),              \
 122       (uintptr_t) (javathread)->osthread()->thread_id(),                               \
 123       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
 124   }
 125 
 126 #else //  ndef DTRACE_ENABLED
 127 
 128 #define DTRACE_THREAD_PROBE(probe, javathread)
 129 
 130 #endif // ndef DTRACE_ENABLED
 131 
 132 
 133 // Class hierarchy
 134 // - Thread
 135 //   - VMThread
 136 //   - WatcherThread
 137 //   - ConcurrentMarkSweepThread
 138 //   - JavaThread
 139 //     - CompilerThread
 140 
 141 // ======= Thread ========
 142 // Support for forcing alignment of thread objects for biased locking
 143 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 144   if (UseBiasedLocking) {
 145     const int alignment = markOopDesc::biased_lock_alignment;
 146     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 147     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 148                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 149                                               AllocFailStrategy::RETURN_NULL);
 150     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
 151     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 152            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 153            "JavaThread alignment code overflowed allocated storage");
 154     if (TraceBiasedLocking) {
 155       if (aligned_addr != real_malloc_addr)
 156         tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 157                       real_malloc_addr, aligned_addr);
 158     }
 159     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 160     return aligned_addr;
 161   } else {
 162     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 163                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 164   }
 165 }
 166 
 167 void Thread::operator delete(void* p) {
 168   if (UseBiasedLocking) {
 169     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
 170     FreeHeap(real_malloc_addr, mtThread);
 171   } else {
 172     FreeHeap(p, mtThread);
 173   }
 174 }
 175 
 176 
 177 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 178 // JavaThread
 179 
 180 
 181 Thread::Thread() {
 182   // stack and get_thread
 183   set_stack_base(NULL);
 184   set_stack_size(0);
 185   set_self_raw_id(0);
 186   set_lgrp_id(-1);
 187 
 188   // allocated data structures
 189   set_osthread(NULL);
 190   set_resource_area(new (mtThread)ResourceArea());
 191   DEBUG_ONLY(_current_resource_mark = NULL;)
 192   set_handle_area(new (mtThread) HandleArea(NULL));
 193   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 194   set_active_handles(NULL);
 195   set_free_handle_block(NULL);
 196   set_last_handle_mark(NULL);
 197 
 198   // This initial value ==> never claimed.
 199   _oops_do_parity = 0;
 200 
 201   // the handle mark links itself to last_handle_mark
 202   new HandleMark(this);
 203 
 204   // plain initialization
 205   debug_only(_owned_locks = NULL;)
 206   debug_only(_allow_allocation_count = 0;)
 207   NOT_PRODUCT(_allow_safepoint_count = 0;)
 208   NOT_PRODUCT(_skip_gcalot = false;)
 209   _jvmti_env_iteration_count = 0;
 210   set_allocated_bytes(0);
 211   _vm_operation_started_count = 0;
 212   _vm_operation_completed_count = 0;
 213   _current_pending_monitor = NULL;
 214   _current_pending_monitor_is_from_java = true;
 215   _current_waiting_monitor = NULL;
 216   _num_nested_signal = 0;
 217   omFreeList = NULL;
 218   omFreeCount = 0;
 219   omFreeProvision = 32;
 220   omInUseList = NULL;
 221   omInUseCount = 0;
 222 
 223 #ifdef ASSERT
 224   _visited_for_critical_count = false;
 225 #endif
 226 
 227   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
 228   _suspend_flags = 0;
 229 
 230   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 231   _hashStateX = os::random();
 232   _hashStateY = 842502087;
 233   _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
 234   _hashStateW = 273326509;
 235 
 236   _OnTrap   = 0;
 237   _schedctl = NULL;
 238   _Stalled  = 0;
 239   _TypeTag  = 0x2BAD;
 240 
 241   // Many of the following fields are effectively final - immutable
 242   // Note that nascent threads can't use the Native Monitor-Mutex
 243   // construct until the _MutexEvent is initialized ...
 244   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 245   // we might instead use a stack of ParkEvents that we could provision on-demand.
 246   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 247   // and ::Release()
 248   _ParkEvent   = ParkEvent::Allocate(this);
 249   _SleepEvent  = ParkEvent::Allocate(this);
 250   _MutexEvent  = ParkEvent::Allocate(this);
 251   _MuxEvent    = ParkEvent::Allocate(this);
 252 
 253 #ifdef CHECK_UNHANDLED_OOPS
 254   if (CheckUnhandledOops) {
 255     _unhandled_oops = new UnhandledOops(this);
 256   }
 257 #endif // CHECK_UNHANDLED_OOPS
 258 #ifdef ASSERT
 259   if (UseBiasedLocking) {
 260     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 261     assert(this == _real_malloc_address ||
 262            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
 263            "bug in forced alignment of thread objects");
 264   }
 265 #endif /* ASSERT */
 266 }
 267 
 268 void Thread::initialize_thread_local_storage() {
 269   // Note: Make sure this method only calls
 270   // non-blocking operations. Otherwise, it might not work
 271   // with the thread-startup/safepoint interaction.
 272 
 273   // During Java thread startup, safepoint code should allow this
 274   // method to complete because it may need to allocate memory to
 275   // store information for the new thread.
 276 
 277   // initialize structure dependent on thread local storage
 278   ThreadLocalStorage::set_thread(this);
 279 }
 280 
 281 void Thread::record_stack_base_and_size() {
 282   set_stack_base(os::current_stack_base());
 283   set_stack_size(os::current_stack_size());
 284   if (is_Java_thread()) {
 285     ((JavaThread*) this)->set_stack_overflow_limit();
 286   }
 287   // CR 7190089: on Solaris, primordial thread's stack is adjusted
 288   // in initialize_thread(). Without the adjustment, stack size is
 289   // incorrect if stack is set to unlimited (ulimit -s unlimited).
 290   // So far, only Solaris has real implementation of initialize_thread().
 291   //
 292   // set up any platform-specific state.
 293   os::initialize_thread(this);
 294 
 295 #if INCLUDE_NMT
 296   // record thread's native stack, stack grows downward
 297   address stack_low_addr = stack_base() - stack_size();
 298   MemTracker::record_thread_stack(stack_low_addr, stack_size(), this,
 299       CURRENT_PC);
 300 #endif // INCLUDE_NMT
 301 }
 302 
 303 
 304 Thread::~Thread() {
 305   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
 306   ObjectSynchronizer::omFlush(this);
 307 
 308   EVENT_THREAD_DESTRUCT(this);
 309 
 310   // stack_base can be NULL if the thread is never started or exited before
 311   // record_stack_base_and_size called. Although, we would like to ensure
 312   // that all started threads do call record_stack_base_and_size(), there is
 313   // not proper way to enforce that.
 314 #if INCLUDE_NMT
 315   if (_stack_base != NULL) {
 316     address low_stack_addr = stack_base() - stack_size();
 317     MemTracker::release_thread_stack(low_stack_addr, stack_size(), this);
 318 #ifdef ASSERT
 319     set_stack_base(NULL);
 320 #endif
 321   }
 322 #endif // INCLUDE_NMT
 323 
 324   // deallocate data structures
 325   delete resource_area();
 326   // since the handle marks are using the handle area, we have to deallocated the root
 327   // handle mark before deallocating the thread's handle area,
 328   assert(last_handle_mark() != NULL, "check we have an element");
 329   delete last_handle_mark();
 330   assert(last_handle_mark() == NULL, "check we have reached the end");
 331 
 332   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 333   // We NULL out the fields for good hygiene.
 334   ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
 335   ParkEvent::Release(_SleepEvent); _SleepEvent  = NULL;
 336   ParkEvent::Release(_MutexEvent); _MutexEvent  = NULL;
 337   ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
 338 
 339   delete handle_area();
 340   delete metadata_handles();
 341 
 342   // osthread() can be NULL, if creation of thread failed.
 343   if (osthread() != NULL) os::free_thread(osthread());
 344 
 345   delete _SR_lock;
 346 
 347   // clear thread local storage if the Thread is deleting itself
 348   if (this == Thread::current()) {
 349     ThreadLocalStorage::set_thread(NULL);
 350   } else {
 351     // In the case where we're not the current thread, invalidate all the
 352     // caches in case some code tries to get the current thread or the
 353     // thread that was destroyed, and gets stale information.
 354     ThreadLocalStorage::invalidate_all();
 355   }
 356   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 357 }
 358 
 359 // NOTE: dummy function for assertion purpose.
 360 void Thread::run() {
 361   ShouldNotReachHere();
 362 }
 363 
 364 #ifdef ASSERT
 365 // Private method to check for dangling thread pointer
 366 void check_for_dangling_thread_pointer(Thread *thread) {
 367  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
 368          "possibility of dangling Thread pointer");
 369 }
 370 #endif
 371 
 372 
 373 #ifndef PRODUCT
 374 // Tracing method for basic thread operations
 375 void Thread::trace(const char* msg, const Thread* const thread) {
 376   if (!TraceThreadEvents) return;
 377   ResourceMark rm;
 378   ThreadCritical tc;
 379   const char *name = "non-Java thread";
 380   int prio = -1;
 381   if (thread->is_Java_thread()
 382       && !thread->is_Compiler_thread()) {
 383     // The Threads_lock must be held to get information about
 384     // this thread but may not be in some situations when
 385     // tracing  thread events.
 386     bool release_Threads_lock = false;
 387     if (!Threads_lock->owned_by_self()) {
 388       Threads_lock->lock();
 389       release_Threads_lock = true;
 390     }
 391     JavaThread* jt = (JavaThread *)thread;
 392     name = (char *)jt->get_thread_name();
 393     oop thread_oop = jt->threadObj();
 394     if (thread_oop != NULL) {
 395       prio = java_lang_Thread::priority(thread_oop);
 396     }
 397     if (release_Threads_lock) {
 398       Threads_lock->unlock();
 399     }
 400   }
 401   tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
 402 }
 403 #endif
 404 
 405 
 406 ThreadPriority Thread::get_priority(const Thread* const thread) {
 407   trace("get priority", thread);
 408   ThreadPriority priority;
 409   // Can return an error!
 410   (void)os::get_priority(thread, priority);
 411   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 412   return priority;
 413 }
 414 
 415 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 416   trace("set priority", thread);
 417   debug_only(check_for_dangling_thread_pointer(thread);)
 418   // Can return an error!
 419   (void)os::set_priority(thread, priority);
 420 }
 421 
 422 
 423 void Thread::start(Thread* thread) {
 424   trace("start", thread);
 425   // Start is different from resume in that its safety is guaranteed by context or
 426   // being called from a Java method synchronized on the Thread object.
 427   if (!DisableStartThread) {
 428     if (thread->is_Java_thread()) {
 429       // Initialize the thread state to RUNNABLE before starting this thread.
 430       // Can not set it after the thread started because we do not know the
 431       // exact thread state at that time. It could be in MONITOR_WAIT or
 432       // in SLEEPING or some other state.
 433       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 434                                           java_lang_Thread::RUNNABLE);
 435     }
 436     os::start_thread(thread);
 437   }
 438 }
 439 
 440 // Enqueue a VM_Operation to do the job for us - sometime later
 441 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 442   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 443   VMThread::execute(vm_stop);
 444 }
 445 
 446 
 447 //
 448 // Check if an external suspend request has completed (or has been
 449 // cancelled). Returns true if the thread is externally suspended and
 450 // false otherwise.
 451 //
 452 // The bits parameter returns information about the code path through
 453 // the routine. Useful for debugging:
 454 //
 455 // set in is_ext_suspend_completed():
 456 // 0x00000001 - routine was entered
 457 // 0x00000010 - routine return false at end
 458 // 0x00000100 - thread exited (return false)
 459 // 0x00000200 - suspend request cancelled (return false)
 460 // 0x00000400 - thread suspended (return true)
 461 // 0x00001000 - thread is in a suspend equivalent state (return true)
 462 // 0x00002000 - thread is native and walkable (return true)
 463 // 0x00004000 - thread is native_trans and walkable (needed retry)
 464 //
 465 // set in wait_for_ext_suspend_completion():
 466 // 0x00010000 - routine was entered
 467 // 0x00020000 - suspend request cancelled before loop (return false)
 468 // 0x00040000 - thread suspended before loop (return true)
 469 // 0x00080000 - suspend request cancelled in loop (return false)
 470 // 0x00100000 - thread suspended in loop (return true)
 471 // 0x00200000 - suspend not completed during retry loop (return false)
 472 //
 473 
 474 // Helper class for tracing suspend wait debug bits.
 475 //
 476 // 0x00000100 indicates that the target thread exited before it could
 477 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 478 // 0x00080000 each indicate a cancelled suspend request so they don't
 479 // count as wait failures either.
 480 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 481 
 482 class TraceSuspendDebugBits : public StackObj {
 483  private:
 484   JavaThread * jt;
 485   bool         is_wait;
 486   bool         called_by_wait;  // meaningful when !is_wait
 487   uint32_t *   bits;
 488 
 489  public:
 490   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 491                         uint32_t *_bits) {
 492     jt             = _jt;
 493     is_wait        = _is_wait;
 494     called_by_wait = _called_by_wait;
 495     bits           = _bits;
 496   }
 497 
 498   ~TraceSuspendDebugBits() {
 499     if (!is_wait) {
 500 #if 1
 501       // By default, don't trace bits for is_ext_suspend_completed() calls.
 502       // That trace is very chatty.
 503       return;
 504 #else
 505       if (!called_by_wait) {
 506         // If tracing for is_ext_suspend_completed() is enabled, then only
 507         // trace calls to it from wait_for_ext_suspend_completion()
 508         return;
 509       }
 510 #endif
 511     }
 512 
 513     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 514       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 515         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 516         ResourceMark rm;
 517 
 518         tty->print_cr(
 519             "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 520             jt->get_thread_name(), *bits);
 521 
 522         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 523       }
 524     }
 525   }
 526 };
 527 #undef DEBUG_FALSE_BITS
 528 
 529 
 530 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay, uint32_t *bits) {
 531   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 532 
 533   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 534   bool do_trans_retry;           // flag to force the retry
 535 
 536   *bits |= 0x00000001;
 537 
 538   do {
 539     do_trans_retry = false;
 540 
 541     if (is_exiting()) {
 542       // Thread is in the process of exiting. This is always checked
 543       // first to reduce the risk of dereferencing a freed JavaThread.
 544       *bits |= 0x00000100;
 545       return false;
 546     }
 547 
 548     if (!is_external_suspend()) {
 549       // Suspend request is cancelled. This is always checked before
 550       // is_ext_suspended() to reduce the risk of a rogue resume
 551       // confusing the thread that made the suspend request.
 552       *bits |= 0x00000200;
 553       return false;
 554     }
 555 
 556     if (is_ext_suspended()) {
 557       // thread is suspended
 558       *bits |= 0x00000400;
 559       return true;
 560     }
 561 
 562     // Now that we no longer do hard suspends of threads running
 563     // native code, the target thread can be changing thread state
 564     // while we are in this routine:
 565     //
 566     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 567     //
 568     // We save a copy of the thread state as observed at this moment
 569     // and make our decision about suspend completeness based on the
 570     // copy. This closes the race where the thread state is seen as
 571     // _thread_in_native_trans in the if-thread_blocked check, but is
 572     // seen as _thread_blocked in if-thread_in_native_trans check.
 573     JavaThreadState save_state = thread_state();
 574 
 575     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 576       // If the thread's state is _thread_blocked and this blocking
 577       // condition is known to be equivalent to a suspend, then we can
 578       // consider the thread to be externally suspended. This means that
 579       // the code that sets _thread_blocked has been modified to do
 580       // self-suspension if the blocking condition releases. We also
 581       // used to check for CONDVAR_WAIT here, but that is now covered by
 582       // the _thread_blocked with self-suspension check.
 583       //
 584       // Return true since we wouldn't be here unless there was still an
 585       // external suspend request.
 586       *bits |= 0x00001000;
 587       return true;
 588     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 589       // Threads running native code will self-suspend on native==>VM/Java
 590       // transitions. If its stack is walkable (should always be the case
 591       // unless this function is called before the actual java_suspend()
 592       // call), then the wait is done.
 593       *bits |= 0x00002000;
 594       return true;
 595     } else if (!called_by_wait && !did_trans_retry &&
 596                save_state == _thread_in_native_trans &&
 597                frame_anchor()->walkable()) {
 598       // The thread is transitioning from thread_in_native to another
 599       // thread state. check_safepoint_and_suspend_for_native_trans()
 600       // will force the thread to self-suspend. If it hasn't gotten
 601       // there yet we may have caught the thread in-between the native
 602       // code check above and the self-suspend. Lucky us. If we were
 603       // called by wait_for_ext_suspend_completion(), then it
 604       // will be doing the retries so we don't have to.
 605       //
 606       // Since we use the saved thread state in the if-statement above,
 607       // there is a chance that the thread has already transitioned to
 608       // _thread_blocked by the time we get here. In that case, we will
 609       // make a single unnecessary pass through the logic below. This
 610       // doesn't hurt anything since we still do the trans retry.
 611 
 612       *bits |= 0x00004000;
 613 
 614       // Once the thread leaves thread_in_native_trans for another
 615       // thread state, we break out of this retry loop. We shouldn't
 616       // need this flag to prevent us from getting back here, but
 617       // sometimes paranoia is good.
 618       did_trans_retry = true;
 619 
 620       // We wait for the thread to transition to a more usable state.
 621       for (int i = 1; i <= SuspendRetryCount; i++) {
 622         // We used to do an "os::yield_all(i)" call here with the intention
 623         // that yielding would increase on each retry. However, the parameter
 624         // is ignored on Linux which means the yield didn't scale up. Waiting
 625         // on the SR_lock below provides a much more predictable scale up for
 626         // the delay. It also provides a simple/direct point to check for any
 627         // safepoint requests from the VMThread
 628 
 629         // temporarily drops SR_lock while doing wait with safepoint check
 630         // (if we're a JavaThread - the WatcherThread can also call this)
 631         // and increase delay with each retry
 632         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 633 
 634         // check the actual thread state instead of what we saved above
 635         if (thread_state() != _thread_in_native_trans) {
 636           // the thread has transitioned to another thread state so
 637           // try all the checks (except this one) one more time.
 638           do_trans_retry = true;
 639           break;
 640         }
 641       } // end retry loop
 642 
 643 
 644     }
 645   } while (do_trans_retry);
 646 
 647   *bits |= 0x00000010;
 648   return false;
 649 }
 650 
 651 //
 652 // Wait for an external suspend request to complete (or be cancelled).
 653 // Returns true if the thread is externally suspended and false otherwise.
 654 //
 655 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 656        uint32_t *bits) {
 657   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 658                              false /* !called_by_wait */, bits);
 659 
 660   // local flag copies to minimize SR_lock hold time
 661   bool is_suspended;
 662   bool pending;
 663   uint32_t reset_bits;
 664 
 665   // set a marker so is_ext_suspend_completed() knows we are the caller
 666   *bits |= 0x00010000;
 667 
 668   // We use reset_bits to reinitialize the bits value at the top of
 669   // each retry loop. This allows the caller to make use of any
 670   // unused bits for their own marking purposes.
 671   reset_bits = *bits;
 672 
 673   {
 674     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 675     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 676                                             delay, bits);
 677     pending = is_external_suspend();
 678   }
 679   // must release SR_lock to allow suspension to complete
 680 
 681   if (!pending) {
 682     // A cancelled suspend request is the only false return from
 683     // is_ext_suspend_completed() that keeps us from entering the
 684     // retry loop.
 685     *bits |= 0x00020000;
 686     return false;
 687   }
 688 
 689   if (is_suspended) {
 690     *bits |= 0x00040000;
 691     return true;
 692   }
 693 
 694   for (int i = 1; i <= retries; i++) {
 695     *bits = reset_bits;  // reinit to only track last retry
 696 
 697     // We used to do an "os::yield_all(i)" call here with the intention
 698     // that yielding would increase on each retry. However, the parameter
 699     // is ignored on Linux which means the yield didn't scale up. Waiting
 700     // on the SR_lock below provides a much more predictable scale up for
 701     // the delay. It also provides a simple/direct point to check for any
 702     // safepoint requests from the VMThread
 703 
 704     {
 705       MutexLocker ml(SR_lock());
 706       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 707       // can also call this)  and increase delay with each retry
 708       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 709 
 710       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 711                                               delay, bits);
 712 
 713       // It is possible for the external suspend request to be cancelled
 714       // (by a resume) before the actual suspend operation is completed.
 715       // Refresh our local copy to see if we still need to wait.
 716       pending = is_external_suspend();
 717     }
 718 
 719     if (!pending) {
 720       // A cancelled suspend request is the only false return from
 721       // is_ext_suspend_completed() that keeps us from staying in the
 722       // retry loop.
 723       *bits |= 0x00080000;
 724       return false;
 725     }
 726 
 727     if (is_suspended) {
 728       *bits |= 0x00100000;
 729       return true;
 730     }
 731   } // end retry loop
 732 
 733   // thread did not suspend after all our retries
 734   *bits |= 0x00200000;
 735   return false;
 736 }
 737 
 738 #ifndef PRODUCT
 739 void JavaThread::record_jump(address target, address instr, const char* file, int line) {
 740 
 741   // This should not need to be atomic as the only way for simultaneous
 742   // updates is via interrupts. Even then this should be rare or non-existent
 743   // and we don't care that much anyway.
 744 
 745   int index = _jmp_ring_index;
 746   _jmp_ring_index = (index + 1 ) & (jump_ring_buffer_size - 1);
 747   _jmp_ring[index]._target = (intptr_t) target;
 748   _jmp_ring[index]._instruction = (intptr_t) instr;
 749   _jmp_ring[index]._file = file;
 750   _jmp_ring[index]._line = line;
 751 }
 752 #endif /* PRODUCT */
 753 
 754 // Called by flat profiler
 755 // Callers have already called wait_for_ext_suspend_completion
 756 // The assertion for that is currently too complex to put here:
 757 bool JavaThread::profile_last_Java_frame(frame* _fr) {
 758   bool gotframe = false;
 759   // self suspension saves needed state.
 760   if (has_last_Java_frame() && _anchor.walkable()) {
 761      *_fr = pd_last_frame();
 762      gotframe = true;
 763   }
 764   return gotframe;
 765 }
 766 
 767 void Thread::interrupt(Thread* thread) {
 768   trace("interrupt", thread);
 769   debug_only(check_for_dangling_thread_pointer(thread);)
 770   os::interrupt(thread);
 771 }
 772 
 773 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 774   trace("is_interrupted", thread);
 775   debug_only(check_for_dangling_thread_pointer(thread);)
 776   // Note:  If clear_interrupted==false, this simply fetches and
 777   // returns the value of the field osthread()->interrupted().
 778   return os::is_interrupted(thread, clear_interrupted);
 779 }
 780 
 781 
 782 // GC Support
 783 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 784   jint thread_parity = _oops_do_parity;
 785   if (thread_parity != strong_roots_parity) {
 786     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 787     if (res == thread_parity) {
 788       return true;
 789     } else {
 790       guarantee(res == strong_roots_parity, "Or else what?");
 791       assert(SharedHeap::heap()->workers()->active_workers() > 0,
 792          "Should only fail when parallel.");
 793       return false;
 794     }
 795   }
 796   assert(SharedHeap::heap()->workers()->active_workers() > 0,
 797          "Should only fail when parallel.");
 798   return false;
 799 }
 800 
 801 void Thread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
 802   active_handles()->oops_do(f);
 803   // Do oop for ThreadShadow
 804   f->do_oop((oop*)&_pending_exception);
 805   handle_area()->oops_do(f);
 806 }
 807 
 808 void Thread::nmethods_do(CodeBlobClosure* cf) {
 809   // no nmethods in a generic thread...
 810 }
 811 
 812 void Thread::metadata_do(void f(Metadata*)) {
 813   if (metadata_handles() != NULL) {
 814     for (int i = 0; i< metadata_handles()->length(); i++) {
 815       f(metadata_handles()->at(i));
 816     }
 817   }
 818 }
 819 
 820 void Thread::print_on(outputStream* st) const {
 821   // get_priority assumes osthread initialized
 822   if (osthread() != NULL) {
 823     int os_prio;
 824     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 825       st->print("os_prio=%d ", os_prio);
 826     }
 827     st->print("tid=" INTPTR_FORMAT " ", this);
 828     osthread()->print_on(st);
 829   }
 830   debug_only(if (WizardMode) print_owned_locks_on(st);)
 831 }
 832 
 833 // Thread::print_on_error() is called by fatal error handler. Don't use
 834 // any lock or allocate memory.
 835 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 836   if (is_VM_thread())                  st->print("VMThread");
 837   else if (is_Compiler_thread())            st->print("CompilerThread");
 838   else if (is_Java_thread())                st->print("JavaThread");
 839   else if (is_GC_task_thread())             st->print("GCTaskThread");
 840   else if (is_Watcher_thread())             st->print("WatcherThread");
 841   else if (is_ConcurrentGC_thread())        st->print("ConcurrentGCThread");
 842   else st->print("Thread");
 843 
 844   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 845             _stack_base - _stack_size, _stack_base);
 846 
 847   if (osthread()) {
 848     st->print(" [id=%d]", osthread()->thread_id());
 849   }
 850 }
 851 
 852 #ifdef ASSERT
 853 void Thread::print_owned_locks_on(outputStream* st) const {
 854   Monitor *cur = _owned_locks;
 855   if (cur == NULL) {
 856     st->print(" (no locks) ");
 857   } else {
 858     st->print_cr(" Locks owned:");
 859     while (cur) {
 860       cur->print_on(st);
 861       cur = cur->next();
 862     }
 863   }
 864 }
 865 
 866 static int ref_use_count  = 0;
 867 
 868 bool Thread::owns_locks_but_compiled_lock() const {
 869   for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 870     if (cur != Compile_lock) return true;
 871   }
 872   return false;
 873 }
 874 
 875 
 876 #endif
 877 
 878 #ifndef PRODUCT
 879 
 880 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
 881 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
 882 // no threads which allow_vm_block's are held
 883 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 884     // Check if current thread is allowed to block at a safepoint
 885     if (!(_allow_safepoint_count == 0))
 886       fatal("Possible safepoint reached by thread that does not allow it");
 887     if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 888       fatal("LEAF method calling lock?");
 889     }
 890 
 891 #ifdef ASSERT
 892     if (potential_vm_operation && is_Java_thread()
 893         && !Universe::is_bootstrapping()) {
 894       // Make sure we do not hold any locks that the VM thread also uses.
 895       // This could potentially lead to deadlocks
 896       for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 897         // Threads_lock is special, since the safepoint synchronization will not start before this is
 898         // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 899         // since it is used to transfer control between JavaThreads and the VMThread
 900         // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
 901         if ((cur->allow_vm_block() &&
 902               cur != Threads_lock &&
 903               cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
 904               cur != VMOperationRequest_lock &&
 905               cur != VMOperationQueue_lock) ||
 906               cur->rank() == Mutex::special) {
 907           fatal(err_msg("Thread holding lock at safepoint that vm can block on: %s", cur->name()));
 908         }
 909       }
 910     }
 911 
 912     if (GCALotAtAllSafepoints) {
 913       // We could enter a safepoint here and thus have a gc
 914       InterfaceSupport::check_gc_alot();
 915     }
 916 #endif
 917 }
 918 #endif
 919 
 920 bool Thread::is_in_stack(address adr) const {
 921   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
 922   address end = os::current_stack_pointer();
 923   // Allow non Java threads to call this without stack_base
 924   if (_stack_base == NULL) return true;
 925   if (stack_base() >= adr && adr >= end) return true;
 926 
 927   return false;
 928 }
 929 
 930 
 931 bool Thread::is_in_usable_stack(address adr) const {
 932   size_t stack_guard_size = os::uses_stack_guard_pages() ? (StackYellowPages + StackRedPages) * os::vm_page_size() : 0;
 933   size_t usable_stack_size = _stack_size - stack_guard_size;
 934 
 935   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
 936 }
 937 
 938 
 939 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
 940 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
 941 // used for compilation in the future. If that change is made, the need for these methods
 942 // should be revisited, and they should be removed if possible.
 943 
 944 bool Thread::is_lock_owned(address adr) const {
 945   return on_local_stack(adr);
 946 }
 947 
 948 bool Thread::set_as_starting_thread() {
 949  // NOTE: this must be called inside the main thread.
 950   return os::create_main_thread((JavaThread*)this);
 951 }
 952 
 953 static void initialize_class(Symbol* class_name, TRAPS) {
 954   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
 955   InstanceKlass::cast(klass)->initialize(CHECK);
 956 }
 957 
 958 
 959 // Creates the initial ThreadGroup
 960 static Handle create_initial_thread_group(TRAPS) {
 961   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
 962   instanceKlassHandle klass (THREAD, k);
 963 
 964   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
 965   {
 966     JavaValue result(T_VOID);
 967     JavaCalls::call_special(&result,
 968                             system_instance,
 969                             klass,
 970                             vmSymbols::object_initializer_name(),
 971                             vmSymbols::void_method_signature(),
 972                             CHECK_NH);
 973   }
 974   Universe::set_system_thread_group(system_instance());
 975 
 976   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
 977   {
 978     JavaValue result(T_VOID);
 979     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
 980     JavaCalls::call_special(&result,
 981                             main_instance,
 982                             klass,
 983                             vmSymbols::object_initializer_name(),
 984                             vmSymbols::threadgroup_string_void_signature(),
 985                             system_instance,
 986                             string,
 987                             CHECK_NH);
 988   }
 989   return main_instance;
 990 }
 991 
 992 // Creates the initial Thread
 993 static oop create_initial_thread(Handle thread_group, JavaThread* thread, TRAPS) {
 994   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
 995   instanceKlassHandle klass (THREAD, k);
 996   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
 997 
 998   java_lang_Thread::set_thread(thread_oop(), thread);
 999   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1000   thread->set_threadObj(thread_oop());
1001 
1002   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
1003 
1004   JavaValue result(T_VOID);
1005   JavaCalls::call_special(&result, thread_oop,
1006                                    klass,
1007                                    vmSymbols::object_initializer_name(),
1008                                    vmSymbols::threadgroup_string_void_signature(),
1009                                    thread_group,
1010                                    string,
1011                                    CHECK_NULL);
1012   return thread_oop();
1013 }
1014 
1015 static void call_initializeSystemClass(TRAPS) {
1016   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1017   instanceKlassHandle klass (THREAD, k);
1018 
1019   JavaValue result(T_VOID);
1020   JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
1021                                          vmSymbols::void_method_signature(), CHECK);
1022 }
1023 
1024 char java_runtime_name[128] = "";
1025 char java_runtime_version[128] = "";
1026 
1027 // extract the JRE name from sun.misc.Version.java_runtime_name
1028 static const char* get_java_runtime_name(TRAPS) {
1029   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1030                                       Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1031   fieldDescriptor fd;
1032   bool found = k != NULL &&
1033                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1034                                                         vmSymbols::string_signature(), &fd);
1035   if (found) {
1036     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1037     if (name_oop == NULL)
1038       return NULL;
1039     const char* name = java_lang_String::as_utf8_string(name_oop,
1040                                                         java_runtime_name,
1041                                                         sizeof(java_runtime_name));
1042     return name;
1043   } else {
1044     return NULL;
1045   }
1046 }
1047 
1048 // extract the JRE version from sun.misc.Version.java_runtime_version
1049 static const char* get_java_runtime_version(TRAPS) {
1050   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1051                                       Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1052   fieldDescriptor fd;
1053   bool found = k != NULL &&
1054                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1055                                                         vmSymbols::string_signature(), &fd);
1056   if (found) {
1057     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1058     if (name_oop == NULL)
1059       return NULL;
1060     const char* name = java_lang_String::as_utf8_string(name_oop,
1061                                                         java_runtime_version,
1062                                                         sizeof(java_runtime_version));
1063     return name;
1064   } else {
1065     return NULL;
1066   }
1067 }
1068 
1069 // General purpose hook into Java code, run once when the VM is initialized.
1070 // The Java library method itself may be changed independently from the VM.
1071 static void call_postVMInitHook(TRAPS) {
1072   Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_PostVMInitHook(), THREAD);
1073   instanceKlassHandle klass (THREAD, k);
1074   if (klass.not_null()) {
1075     JavaValue result(T_VOID);
1076     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1077                                            vmSymbols::void_method_signature(),
1078                                            CHECK);
1079   }
1080 }
1081 
1082 static void reset_vm_info_property(TRAPS) {
1083   // the vm info string
1084   ResourceMark rm(THREAD);
1085   const char *vm_info = VM_Version::vm_info_string();
1086 
1087   // java.lang.System class
1088   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1089   instanceKlassHandle klass (THREAD, k);
1090 
1091   // setProperty arguments
1092   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1093   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1094 
1095   // return value
1096   JavaValue r(T_OBJECT);
1097 
1098   // public static String setProperty(String key, String value);
1099   JavaCalls::call_static(&r,
1100                          klass,
1101                          vmSymbols::setProperty_name(),
1102                          vmSymbols::string_string_string_signature(),
1103                          key_str,
1104                          value_str,
1105                          CHECK);
1106 }
1107 
1108 
1109 void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name, bool daemon, TRAPS) {
1110   assert(thread_group.not_null(), "thread group should be specified");
1111   assert(threadObj() == NULL, "should only create Java thread object once");
1112 
1113   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1114   instanceKlassHandle klass (THREAD, k);
1115   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1116 
1117   java_lang_Thread::set_thread(thread_oop(), this);
1118   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1119   set_threadObj(thread_oop());
1120 
1121   JavaValue result(T_VOID);
1122   if (thread_name != NULL) {
1123     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1124     // Thread gets assigned specified name and null target
1125     JavaCalls::call_special(&result,
1126                             thread_oop,
1127                             klass,
1128                             vmSymbols::object_initializer_name(),
1129                             vmSymbols::threadgroup_string_void_signature(),
1130                             thread_group, // Argument 1
1131                             name,         // Argument 2
1132                             THREAD);
1133   } else {
1134     // Thread gets assigned name "Thread-nnn" and null target
1135     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1136     JavaCalls::call_special(&result,
1137                             thread_oop,
1138                             klass,
1139                             vmSymbols::object_initializer_name(),
1140                             vmSymbols::threadgroup_runnable_void_signature(),
1141                             thread_group, // Argument 1
1142                             Handle(),     // Argument 2
1143                             THREAD);
1144   }
1145 
1146 
1147   if (daemon) {
1148       java_lang_Thread::set_daemon(thread_oop());
1149   }
1150 
1151   if (HAS_PENDING_EXCEPTION) {
1152     return;
1153   }
1154 
1155   KlassHandle group(this, SystemDictionary::ThreadGroup_klass());
1156   Handle threadObj(this, this->threadObj());
1157 
1158   JavaCalls::call_special(&result,
1159                          thread_group,
1160                          group,
1161                          vmSymbols::add_method_name(),
1162                          vmSymbols::thread_void_signature(),
1163                          threadObj,          // Arg 1
1164                          THREAD);
1165 
1166 
1167 }
1168 
1169 // NamedThread --  non-JavaThread subclasses with multiple
1170 // uniquely named instances should derive from this.
1171 NamedThread::NamedThread() : Thread() {
1172   _name = NULL;
1173   _processed_thread = NULL;
1174 }
1175 
1176 NamedThread::~NamedThread() {
1177   if (_name != NULL) {
1178     FREE_C_HEAP_ARRAY(char, _name, mtThread);
1179     _name = NULL;
1180   }
1181 }
1182 
1183 void NamedThread::set_name(const char* format, ...) {
1184   guarantee(_name == NULL, "Only get to set name once.");
1185   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1186   guarantee(_name != NULL, "alloc failure");
1187   va_list ap;
1188   va_start(ap, format);
1189   jio_vsnprintf(_name, max_name_len, format, ap);
1190   va_end(ap);
1191 }
1192 
1193 void NamedThread::print_on(outputStream* st) const {
1194   st->print("\"%s\" ", name());
1195   Thread::print_on(st);
1196   st->cr();
1197 }
1198 
1199 
1200 // ======= WatcherThread ========
1201 
1202 // The watcher thread exists to simulate timer interrupts.  It should
1203 // be replaced by an abstraction over whatever native support for
1204 // timer interrupts exists on the platform.
1205 
1206 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1207 bool WatcherThread::_startable = false;
1208 volatile bool  WatcherThread::_should_terminate = false;
1209 
1210 WatcherThread::WatcherThread() : Thread(), _crash_protection(NULL) {
1211   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1212   if (os::create_thread(this, os::watcher_thread)) {
1213     _watcher_thread = this;
1214 
1215     // Set the watcher thread to the highest OS priority which should not be
1216     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1217     // is created. The only normal thread using this priority is the reference
1218     // handler thread, which runs for very short intervals only.
1219     // If the VMThread's priority is not lower than the WatcherThread profiling
1220     // will be inaccurate.
1221     os::set_priority(this, MaxPriority);
1222     if (!DisableStartThread) {
1223       os::start_thread(this);
1224     }
1225   }
1226 }
1227 
1228 int WatcherThread::sleep() const {
1229   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1230 
1231   // remaining will be zero if there are no tasks,
1232   // causing the WatcherThread to sleep until a task is
1233   // enrolled
1234   int remaining = PeriodicTask::time_to_wait();
1235   int time_slept = 0;
1236 
1237   // we expect this to timeout - we only ever get unparked when
1238   // we should terminate or when a new task has been enrolled
1239   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1240 
1241   jlong time_before_loop = os::javaTimeNanos();
1242 
1243   for (;;) {
1244     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag, remaining);
1245     jlong now = os::javaTimeNanos();
1246 
1247     if (remaining == 0) {
1248         // if we didn't have any tasks we could have waited for a long time
1249         // consider the time_slept zero and reset time_before_loop
1250         time_slept = 0;
1251         time_before_loop = now;
1252     } else {
1253         // need to recalculate since we might have new tasks in _tasks
1254         time_slept = (int) ((now - time_before_loop) / 1000000);
1255     }
1256 
1257     // Change to task list or spurious wakeup of some kind
1258     if (timedout || _should_terminate) {
1259         break;
1260     }
1261 
1262     remaining = PeriodicTask::time_to_wait();
1263     if (remaining == 0) {
1264         // Last task was just disenrolled so loop around and wait until
1265         // another task gets enrolled
1266         continue;
1267     }
1268 
1269     remaining -= time_slept;
1270     if (remaining <= 0)
1271       break;
1272   }
1273 
1274   return time_slept;
1275 }
1276 
1277 void WatcherThread::run() {
1278   assert(this == watcher_thread(), "just checking");
1279 
1280   this->record_stack_base_and_size();
1281   this->initialize_thread_local_storage();
1282   this->set_active_handles(JNIHandleBlock::allocate_block());
1283   while (!_should_terminate) {
1284     assert(watcher_thread() == Thread::current(), "thread consistency check");
1285     assert(watcher_thread() == this, "thread consistency check");
1286 
1287     // Calculate how long it'll be until the next PeriodicTask work
1288     // should be done, and sleep that amount of time.
1289     int time_waited = sleep();
1290 
1291     if (is_error_reported()) {
1292       // A fatal error has happened, the error handler(VMError::report_and_die)
1293       // should abort JVM after creating an error log file. However in some
1294       // rare cases, the error handler itself might deadlock. Here we try to
1295       // kill JVM if the fatal error handler fails to abort in 2 minutes.
1296       //
1297       // This code is in WatcherThread because WatcherThread wakes up
1298       // periodically so the fatal error handler doesn't need to do anything;
1299       // also because the WatcherThread is less likely to crash than other
1300       // threads.
1301 
1302       for (;;) {
1303         if (!ShowMessageBoxOnError
1304          && (OnError == NULL || OnError[0] == '\0')
1305          && Arguments::abort_hook() == NULL) {
1306              os::sleep(this, 2 * 60 * 1000, false);
1307              fdStream err(defaultStream::output_fd());
1308              err.print_raw_cr("# [ timer expired, abort... ]");
1309              // skip atexit/vm_exit/vm_abort hooks
1310              os::die();
1311         }
1312 
1313         // Wake up 5 seconds later, the fatal handler may reset OnError or
1314         // ShowMessageBoxOnError when it is ready to abort.
1315         os::sleep(this, 5 * 1000, false);
1316       }
1317     }
1318 
1319     PeriodicTask::real_time_tick(time_waited);
1320   }
1321 
1322   // Signal that it is terminated
1323   {
1324     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1325     _watcher_thread = NULL;
1326     Terminator_lock->notify();
1327   }
1328 
1329   // Thread destructor usually does this..
1330   ThreadLocalStorage::set_thread(NULL);
1331 }
1332 
1333 void WatcherThread::start() {
1334   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1335 
1336   if (watcher_thread() == NULL && _startable) {
1337     _should_terminate = false;
1338     // Create the single instance of WatcherThread
1339     new WatcherThread();
1340   }
1341 }
1342 
1343 void WatcherThread::make_startable() {
1344   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1345   _startable = true;
1346 }
1347 
1348 void WatcherThread::stop() {
1349   // Get the PeriodicTask_lock if we can. If we cannot, then the
1350   // WatcherThread is using it and we don't want to block on that lock
1351   // here because that might cause a safepoint deadlock depending on
1352   // what the current WatcherThread tasks are doing.
1353   bool have_lock = PeriodicTask_lock->try_lock();
1354 
1355   _should_terminate = true;
1356   OrderAccess::fence();  // ensure WatcherThread sees update in main loop
1357 
1358   if (have_lock) {
1359     WatcherThread* watcher = watcher_thread();
1360     if (watcher != NULL) {
1361       // If we managed to get the lock, then we should unpark the
1362       // WatcherThread so that it can see we want it to stop.
1363       watcher->unpark();
1364     }
1365 
1366     PeriodicTask_lock->unlock();
1367   }
1368 
1369   // it is ok to take late safepoints here, if needed
1370   MutexLocker mu(Terminator_lock);
1371 
1372   while (watcher_thread() != NULL) {
1373     // This wait should make safepoint checks, wait without a timeout,
1374     // and wait as a suspend-equivalent condition.
1375     //
1376     // Note: If the FlatProfiler is running, then this thread is waiting
1377     // for the WatcherThread to terminate and the WatcherThread, via the
1378     // FlatProfiler task, is waiting for the external suspend request on
1379     // this thread to complete. wait_for_ext_suspend_completion() will
1380     // eventually timeout, but that takes time. Making this wait a
1381     // suspend-equivalent condition solves that timeout problem.
1382     //
1383     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1384                           Mutex::_as_suspend_equivalent_flag);
1385   }
1386 }
1387 
1388 void WatcherThread::unpark() {
1389   MutexLockerEx ml(PeriodicTask_lock->owned_by_self() ? NULL : PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1390   PeriodicTask_lock->notify();
1391 }
1392 
1393 void WatcherThread::print_on(outputStream* st) const {
1394   st->print("\"%s\" ", name());
1395   Thread::print_on(st);
1396   st->cr();
1397 }
1398 
1399 // ======= JavaThread ========
1400 
1401 // A JavaThread is a normal Java thread
1402 
1403 void JavaThread::initialize() {
1404   // Initialize fields
1405 
1406   // Set the claimed par_id to UINT_MAX (ie not claiming any par_ids)
1407   set_claimed_par_id(UINT_MAX);
1408 
1409   set_saved_exception_pc(NULL);
1410   set_threadObj(NULL);
1411   _anchor.clear();
1412   set_entry_point(NULL);
1413   set_jni_functions(jni_functions());
1414   set_callee_target(NULL);
1415   set_vm_result(NULL);
1416   set_vm_result_2(NULL);
1417   set_vframe_array_head(NULL);
1418   set_vframe_array_last(NULL);
1419   set_deferred_locals(NULL);
1420   set_deopt_mark(NULL);
1421   set_deopt_nmethod(NULL);
1422   clear_must_deopt_id();
1423   set_monitor_chunks(NULL);
1424   set_next(NULL);
1425   set_thread_state(_thread_new);
1426 #if INCLUDE_NMT
1427   set_recorder(NULL);
1428 #endif
1429   _terminated = _not_terminated;
1430   _privileged_stack_top = NULL;
1431   _array_for_gc = NULL;
1432   _suspend_equivalent = false;
1433   _in_deopt_handler = 0;
1434   _doing_unsafe_access = false;
1435   _stack_guard_state = stack_guard_unused;
1436   (void)const_cast<oop&>(_exception_oop = oop(NULL));
1437   _exception_pc  = 0;
1438   _exception_handler_pc = 0;
1439   _is_method_handle_return = 0;
1440   _jvmti_thread_state= NULL;
1441   _should_post_on_exceptions_flag = JNI_FALSE;
1442   _jvmti_get_loaded_classes_closure = NULL;
1443   _interp_only_mode    = 0;
1444   _special_runtime_exit_condition = _no_async_condition;
1445   _pending_async_exception = NULL;
1446   _thread_stat = NULL;
1447   _thread_stat = new ThreadStatistics();
1448   _blocked_on_compilation = false;
1449   _jni_active_critical = 0;
1450   _pending_jni_exception_check_fn = NULL;
1451   _do_not_unlock_if_synchronized = false;
1452   _cached_monitor_info = NULL;
1453   _parker = Parker::Allocate(this);
1454 
1455 #ifndef PRODUCT
1456   _jmp_ring_index = 0;
1457   for (int ji = 0; ji < jump_ring_buffer_size; ji++) {
1458     record_jump(NULL, NULL, NULL, 0);
1459   }
1460 #endif /* PRODUCT */
1461 
1462   set_thread_profiler(NULL);
1463   if (FlatProfiler::is_active()) {
1464     // This is where we would decide to either give each thread it's own profiler
1465     // or use one global one from FlatProfiler,
1466     // or up to some count of the number of profiled threads, etc.
1467     ThreadProfiler* pp = new ThreadProfiler();
1468     pp->engage();
1469     set_thread_profiler(pp);
1470   }
1471 
1472   // Setup safepoint state info for this thread
1473   ThreadSafepointState::create(this);
1474 
1475   debug_only(_java_call_counter = 0);
1476 
1477   // JVMTI PopFrame support
1478   _popframe_condition = popframe_inactive;
1479   _popframe_preserved_args = NULL;
1480   _popframe_preserved_args_size = 0;
1481 
1482   pd_initialize();
1483 }
1484 
1485 #if INCLUDE_ALL_GCS
1486 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1487 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1488 #endif // INCLUDE_ALL_GCS
1489 
1490 JavaThread::JavaThread(bool is_attaching_via_jni) :
1491   Thread()
1492 #if INCLUDE_ALL_GCS
1493   , _satb_mark_queue(&_satb_mark_queue_set),
1494   _dirty_card_queue(&_dirty_card_queue_set)
1495 #endif // INCLUDE_ALL_GCS
1496 {
1497   initialize();
1498   if (is_attaching_via_jni) {
1499     _jni_attach_state = _attaching_via_jni;
1500   } else {
1501     _jni_attach_state = _not_attaching_via_jni;
1502   }
1503   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1504   _safepoint_visible = false;
1505 }
1506 
1507 bool JavaThread::reguard_stack(address cur_sp) {
1508   if (_stack_guard_state != stack_guard_yellow_disabled) {
1509     return true; // Stack already guarded or guard pages not needed.
1510   }
1511 
1512   if (register_stack_overflow()) {
1513     // For those architectures which have separate register and
1514     // memory stacks, we must check the register stack to see if
1515     // it has overflowed.
1516     return false;
1517   }
1518 
1519   // Java code never executes within the yellow zone: the latter is only
1520   // there to provoke an exception during stack banging.  If java code
1521   // is executing there, either StackShadowPages should be larger, or
1522   // some exception code in c1, c2 or the interpreter isn't unwinding
1523   // when it should.
1524   guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
1525 
1526   enable_stack_yellow_zone();
1527   return true;
1528 }
1529 
1530 bool JavaThread::reguard_stack(void) {
1531   return reguard_stack(os::current_stack_pointer());
1532 }
1533 
1534 
1535 void JavaThread::block_if_vm_exited() {
1536   if (_terminated == _vm_exited) {
1537     // _vm_exited is set at safepoint, and Threads_lock is never released
1538     // we will block here forever
1539     Threads_lock->lock_without_safepoint_check();
1540     ShouldNotReachHere();
1541   }
1542 }
1543 
1544 
1545 // Remove this ifdef when C1 is ported to the compiler interface.
1546 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1547 
1548 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1549   Thread()
1550 #if INCLUDE_ALL_GCS
1551   , _satb_mark_queue(&_satb_mark_queue_set),
1552   _dirty_card_queue(&_dirty_card_queue_set)
1553 #endif // INCLUDE_ALL_GCS
1554 {
1555   if (TraceThreadEvents) {
1556     tty->print_cr("creating thread %p", this);
1557   }
1558   initialize();
1559   _jni_attach_state = _not_attaching_via_jni;
1560   set_entry_point(entry_point);
1561   // Create the native thread itself.
1562   // %note runtime_23
1563   os::ThreadType thr_type = os::java_thread;
1564   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1565                                                      os::java_thread;
1566   os::create_thread(this, thr_type, stack_sz);
1567   _safepoint_visible = false;
1568   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1569   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1570   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1571   // the exception consists of creating the exception object & initializing it, initialization
1572   // will leave the VM via a JavaCall and then all locks must be unlocked).
1573   //
1574   // The thread is still suspended when we reach here. Thread must be explicit started
1575   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1576   // by calling Threads:add. The reason why this is not done here, is because the thread
1577   // object must be fully initialized (take a look at JVM_Start)
1578 }
1579 
1580 JavaThread::~JavaThread() {
1581   if (TraceThreadEvents) {
1582       tty->print_cr("terminate thread %p", this);
1583   }
1584 
1585   // By now, this thread should already be invisible to safepoint,
1586   // and its per-thread recorder also collected.
1587   assert(!is_safepoint_visible(), "wrong state");
1588 #if INCLUDE_NMT
1589   assert(get_recorder() == NULL, "Already collected");
1590 #endif // INCLUDE_NMT
1591 
1592   // JSR166 -- return the parker to the free list
1593   Parker::Release(_parker);
1594   _parker = NULL;
1595 
1596   // Free any remaining  previous UnrollBlock
1597   vframeArray* old_array = vframe_array_last();
1598 
1599   if (old_array != NULL) {
1600     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1601     old_array->set_unroll_block(NULL);
1602     delete old_info;
1603     delete old_array;
1604   }
1605 
1606   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1607   if (deferred != NULL) {
1608     // This can only happen if thread is destroyed before deoptimization occurs.
1609     assert(deferred->length() != 0, "empty array!");
1610     do {
1611       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1612       deferred->remove_at(0);
1613       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1614       delete dlv;
1615     } while (deferred->length() != 0);
1616     delete deferred;
1617   }
1618 
1619   // All Java related clean up happens in exit
1620   ThreadSafepointState::destroy(this);
1621   if (_thread_profiler != NULL) delete _thread_profiler;
1622   if (_thread_stat != NULL) delete _thread_stat;
1623 }
1624 
1625 
1626 // The first routine called by a new Java thread
1627 void JavaThread::run() {
1628   // initialize thread-local alloc buffer related fields
1629   this->initialize_tlab();
1630 
1631   // used to test validity of stack trace backs
1632   this->record_base_of_stack_pointer();
1633 
1634   // Record real stack base and size.
1635   this->record_stack_base_and_size();
1636 
1637   // Initialize thread local storage; set before calling MutexLocker
1638   this->initialize_thread_local_storage();
1639 
1640   this->create_stack_guard_pages();
1641 
1642   this->cache_global_variables();
1643 
1644   // Thread is now sufficient initialized to be handled by the safepoint code as being
1645   // in the VM. Change thread state from _thread_new to _thread_in_vm
1646   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1647 
1648   assert(JavaThread::current() == this, "sanity check");
1649   assert(!Thread::current()->owns_locks(), "sanity check");
1650 
1651   DTRACE_THREAD_PROBE(start, this);
1652 
1653   // This operation might block. We call that after all safepoint checks for a new thread has
1654   // been completed.
1655   this->set_active_handles(JNIHandleBlock::allocate_block());
1656 
1657   if (JvmtiExport::should_post_thread_life()) {
1658     JvmtiExport::post_thread_start(this);
1659   }
1660 
1661   EventThreadStart event;
1662   if (event.should_commit()) {
1663      event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1664      event.commit();
1665   }
1666 
1667   // We call another function to do the rest so we are sure that the stack addresses used
1668   // from there will be lower than the stack base just computed
1669   thread_main_inner();
1670 
1671   // Note, thread is no longer valid at this point!
1672 }
1673 
1674 
1675 void JavaThread::thread_main_inner() {
1676   assert(JavaThread::current() == this, "sanity check");
1677   assert(this->threadObj() != NULL, "just checking");
1678 
1679   // Execute thread entry point unless this thread has a pending exception
1680   // or has been stopped before starting.
1681   // Note: Due to JVM_StopThread we can have pending exceptions already!
1682   if (!this->has_pending_exception() &&
1683       !java_lang_Thread::is_stillborn(this->threadObj())) {
1684     {
1685       ResourceMark rm(this);
1686       this->set_native_thread_name(this->get_thread_name());
1687     }
1688     HandleMark hm(this);
1689     this->entry_point()(this, this);
1690   }
1691 
1692   DTRACE_THREAD_PROBE(stop, this);
1693 
1694   this->exit(false);
1695   delete this;
1696 }
1697 
1698 
1699 static void ensure_join(JavaThread* thread) {
1700   // We do not need to grap the Threads_lock, since we are operating on ourself.
1701   Handle threadObj(thread, thread->threadObj());
1702   assert(threadObj.not_null(), "java thread object must exist");
1703   ObjectLocker lock(threadObj, thread);
1704   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1705   thread->clear_pending_exception();
1706   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1707   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1708   // Clear the native thread instance - this makes isAlive return false and allows the join()
1709   // to complete once we've done the notify_all below
1710   java_lang_Thread::set_thread(threadObj(), NULL);
1711   lock.notify_all(thread);
1712   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1713   thread->clear_pending_exception();
1714 }
1715 
1716 
1717 // For any new cleanup additions, please check to see if they need to be applied to
1718 // cleanup_failed_attach_current_thread as well.
1719 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1720   assert(this == JavaThread::current(), "thread consistency check");
1721 
1722   HandleMark hm(this);
1723   Handle uncaught_exception(this, this->pending_exception());
1724   this->clear_pending_exception();
1725   Handle threadObj(this, this->threadObj());
1726   assert(threadObj.not_null(), "Java thread object should be created");
1727 
1728   if (get_thread_profiler() != NULL) {
1729     get_thread_profiler()->disengage();
1730     ResourceMark rm;
1731     get_thread_profiler()->print(get_thread_name());
1732   }
1733 
1734 
1735   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1736   {
1737     EXCEPTION_MARK;
1738 
1739     CLEAR_PENDING_EXCEPTION;
1740   }
1741   if (!destroy_vm) {
1742     if (uncaught_exception.not_null()) {
1743       EXCEPTION_MARK;
1744       // Call method Thread.dispatchUncaughtException().
1745       KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1746       JavaValue result(T_VOID);
1747       JavaCalls::call_virtual(&result,
1748                               threadObj, thread_klass,
1749                               vmSymbols::dispatchUncaughtException_name(),
1750                               vmSymbols::throwable_void_signature(),
1751                               uncaught_exception,
1752                               THREAD);
1753       if (HAS_PENDING_EXCEPTION) {
1754         ResourceMark rm(this);
1755         jio_fprintf(defaultStream::error_stream(),
1756               "\nException: %s thrown from the UncaughtExceptionHandler"
1757               " in thread \"%s\"\n",
1758               pending_exception()->klass()->external_name(),
1759               get_thread_name());
1760         CLEAR_PENDING_EXCEPTION;
1761       }
1762     }
1763 
1764     // Called before the java thread exit since we want to read info
1765     // from java_lang_Thread object
1766     EventThreadEnd event;
1767     if (event.should_commit()) {
1768         event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1769         event.commit();
1770     }
1771 
1772     // Call after last event on thread
1773     EVENT_THREAD_EXIT(this);
1774 
1775     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1776     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1777     // is deprecated anyhow.
1778     if (!is_Compiler_thread()) {
1779       int count = 3;
1780       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1781         EXCEPTION_MARK;
1782         JavaValue result(T_VOID);
1783         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1784         JavaCalls::call_virtual(&result,
1785                               threadObj, thread_klass,
1786                               vmSymbols::exit_method_name(),
1787                               vmSymbols::void_method_signature(),
1788                               THREAD);
1789         CLEAR_PENDING_EXCEPTION;
1790       }
1791     }
1792     // notify JVMTI
1793     if (JvmtiExport::should_post_thread_life()) {
1794       JvmtiExport::post_thread_end(this);
1795     }
1796 
1797     // We have notified the agents that we are exiting, before we go on,
1798     // we must check for a pending external suspend request and honor it
1799     // in order to not surprise the thread that made the suspend request.
1800     while (true) {
1801       {
1802         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1803         if (!is_external_suspend()) {
1804           set_terminated(_thread_exiting);
1805           ThreadService::current_thread_exiting(this);
1806           break;
1807         }
1808         // Implied else:
1809         // Things get a little tricky here. We have a pending external
1810         // suspend request, but we are holding the SR_lock so we
1811         // can't just self-suspend. So we temporarily drop the lock
1812         // and then self-suspend.
1813       }
1814 
1815       ThreadBlockInVM tbivm(this);
1816       java_suspend_self();
1817 
1818       // We're done with this suspend request, but we have to loop around
1819       // and check again. Eventually we will get SR_lock without a pending
1820       // external suspend request and will be able to mark ourselves as
1821       // exiting.
1822     }
1823     // no more external suspends are allowed at this point
1824   } else {
1825     // before_exit() has already posted JVMTI THREAD_END events
1826   }
1827 
1828   // Notify waiters on thread object. This has to be done after exit() is called
1829   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1830   // group should have the destroyed bit set before waiters are notified).
1831   ensure_join(this);
1832   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1833 
1834   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1835   // held by this thread must be released.  A detach operation must only
1836   // get here if there are no Java frames on the stack.  Therefore, any
1837   // owned monitors at this point MUST be JNI-acquired monitors which are
1838   // pre-inflated and in the monitor cache.
1839   //
1840   // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
1841   if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
1842     assert(!this->has_last_Java_frame(), "detaching with Java frames?");
1843     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1844     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1845   }
1846 
1847   // These things needs to be done while we are still a Java Thread. Make sure that thread
1848   // is in a consistent state, in case GC happens
1849   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1850 
1851   if (active_handles() != NULL) {
1852     JNIHandleBlock* block = active_handles();
1853     set_active_handles(NULL);
1854     JNIHandleBlock::release_block(block);
1855   }
1856 
1857   if (free_handle_block() != NULL) {
1858     JNIHandleBlock* block = free_handle_block();
1859     set_free_handle_block(NULL);
1860     JNIHandleBlock::release_block(block);
1861   }
1862 
1863   // These have to be removed while this is still a valid thread.
1864   remove_stack_guard_pages();
1865 
1866   if (UseTLAB) {
1867     tlab().make_parsable(true);  // retire TLAB
1868   }
1869 
1870   if (JvmtiEnv::environments_might_exist()) {
1871     JvmtiExport::cleanup_thread(this);
1872   }
1873 
1874   // We must flush any deferred card marks before removing a thread from
1875   // the list of active threads.
1876   Universe::heap()->flush_deferred_store_barrier(this);
1877   assert(deferred_card_mark().is_empty(), "Should have been flushed");
1878 
1879 #if INCLUDE_ALL_GCS
1880   // We must flush the G1-related buffers before removing a thread
1881   // from the list of active threads. We must do this after any deferred
1882   // card marks have been flushed (above) so that any entries that are
1883   // added to the thread's dirty card queue as a result are not lost.
1884   if (UseG1GC) {
1885     flush_barrier_queues();
1886   }
1887 #endif // INCLUDE_ALL_GCS
1888 
1889   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1890   Threads::remove(this);
1891 }
1892 
1893 #if INCLUDE_ALL_GCS
1894 // Flush G1-related queues.
1895 void JavaThread::flush_barrier_queues() {
1896   satb_mark_queue().flush();
1897   dirty_card_queue().flush();
1898 }
1899 
1900 void JavaThread::initialize_queues() {
1901   assert(!SafepointSynchronize::is_at_safepoint(),
1902          "we should not be at a safepoint");
1903 
1904   ObjPtrQueue& satb_queue = satb_mark_queue();
1905   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1906   // The SATB queue should have been constructed with its active
1907   // field set to false.
1908   assert(!satb_queue.is_active(), "SATB queue should not be active");
1909   assert(satb_queue.is_empty(), "SATB queue should be empty");
1910   // If we are creating the thread during a marking cycle, we should
1911   // set the active field of the SATB queue to true.
1912   if (satb_queue_set.is_active()) {
1913     satb_queue.set_active(true);
1914   }
1915 
1916   DirtyCardQueue& dirty_queue = dirty_card_queue();
1917   // The dirty card queue should have been constructed with its
1918   // active field set to true.
1919   assert(dirty_queue.is_active(), "dirty card queue should be active");
1920 }
1921 #endif // INCLUDE_ALL_GCS
1922 
1923 void JavaThread::cleanup_failed_attach_current_thread() {
1924   if (get_thread_profiler() != NULL) {
1925     get_thread_profiler()->disengage();
1926     ResourceMark rm;
1927     get_thread_profiler()->print(get_thread_name());
1928   }
1929 
1930   if (active_handles() != NULL) {
1931     JNIHandleBlock* block = active_handles();
1932     set_active_handles(NULL);
1933     JNIHandleBlock::release_block(block);
1934   }
1935 
1936   if (free_handle_block() != NULL) {
1937     JNIHandleBlock* block = free_handle_block();
1938     set_free_handle_block(NULL);
1939     JNIHandleBlock::release_block(block);
1940   }
1941 
1942   // These have to be removed while this is still a valid thread.
1943   remove_stack_guard_pages();
1944 
1945   if (UseTLAB) {
1946     tlab().make_parsable(true);  // retire TLAB, if any
1947   }
1948 
1949 #if INCLUDE_ALL_GCS
1950   if (UseG1GC) {
1951     flush_barrier_queues();
1952   }
1953 #endif // INCLUDE_ALL_GCS
1954 
1955   Threads::remove(this);
1956   delete this;
1957 }
1958 
1959 
1960 
1961 
1962 JavaThread* JavaThread::active() {
1963   Thread* thread = ThreadLocalStorage::thread();
1964   assert(thread != NULL, "just checking");
1965   if (thread->is_Java_thread()) {
1966     return (JavaThread*) thread;
1967   } else {
1968     assert(thread->is_VM_thread(), "this must be a vm thread");
1969     VM_Operation* op = ((VMThread*) thread)->vm_operation();
1970     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
1971     assert(ret->is_Java_thread(), "must be a Java thread");
1972     return ret;
1973   }
1974 }
1975 
1976 bool JavaThread::is_lock_owned(address adr) const {
1977   if (Thread::is_lock_owned(adr)) return true;
1978 
1979   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
1980     if (chunk->contains(adr)) return true;
1981   }
1982 
1983   return false;
1984 }
1985 
1986 
1987 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
1988   chunk->set_next(monitor_chunks());
1989   set_monitor_chunks(chunk);
1990 }
1991 
1992 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
1993   guarantee(monitor_chunks() != NULL, "must be non empty");
1994   if (monitor_chunks() == chunk) {
1995     set_monitor_chunks(chunk->next());
1996   } else {
1997     MonitorChunk* prev = monitor_chunks();
1998     while (prev->next() != chunk) prev = prev->next();
1999     prev->set_next(chunk->next());
2000   }
2001 }
2002 
2003 // JVM support.
2004 
2005 // Note: this function shouldn't block if it's called in
2006 // _thread_in_native_trans state (such as from
2007 // check_special_condition_for_native_trans()).
2008 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2009 
2010   if (has_last_Java_frame() && has_async_condition()) {
2011     // If we are at a polling page safepoint (not a poll return)
2012     // then we must defer async exception because live registers
2013     // will be clobbered by the exception path. Poll return is
2014     // ok because the call we a returning from already collides
2015     // with exception handling registers and so there is no issue.
2016     // (The exception handling path kills call result registers but
2017     //  this is ok since the exception kills the result anyway).
2018 
2019     if (is_at_poll_safepoint()) {
2020       // if the code we are returning to has deoptimized we must defer
2021       // the exception otherwise live registers get clobbered on the
2022       // exception path before deoptimization is able to retrieve them.
2023       //
2024       RegisterMap map(this, false);
2025       frame caller_fr = last_frame().sender(&map);
2026       assert(caller_fr.is_compiled_frame(), "what?");
2027       if (caller_fr.is_deoptimized_frame()) {
2028         if (TraceExceptions) {
2029           ResourceMark rm;
2030           tty->print_cr("deferred async exception at compiled safepoint");
2031         }
2032         return;
2033       }
2034     }
2035   }
2036 
2037   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2038   if (condition == _no_async_condition) {
2039     // Conditions have changed since has_special_runtime_exit_condition()
2040     // was called:
2041     // - if we were here only because of an external suspend request,
2042     //   then that was taken care of above (or cancelled) so we are done
2043     // - if we were here because of another async request, then it has
2044     //   been cleared between the has_special_runtime_exit_condition()
2045     //   and now so again we are done
2046     return;
2047   }
2048 
2049   // Check for pending async. exception
2050   if (_pending_async_exception != NULL) {
2051     // Only overwrite an already pending exception, if it is not a threadDeath.
2052     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2053 
2054       // We cannot call Exceptions::_throw(...) here because we cannot block
2055       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2056 
2057       if (TraceExceptions) {
2058         ResourceMark rm;
2059         tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
2060         if (has_last_Java_frame()) {
2061           frame f = last_frame();
2062           tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
2063         }
2064         tty->print_cr(" of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2065       }
2066       _pending_async_exception = NULL;
2067       clear_has_async_exception();
2068     }
2069   }
2070 
2071   if (check_unsafe_error &&
2072       condition == _async_unsafe_access_error && !has_pending_exception()) {
2073     condition = _no_async_condition;  // done
2074     switch (thread_state()) {
2075     case _thread_in_vm:
2076       {
2077         JavaThread* THREAD = this;
2078         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2079       }
2080     case _thread_in_native:
2081       {
2082         ThreadInVMfromNative tiv(this);
2083         JavaThread* THREAD = this;
2084         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2085       }
2086     case _thread_in_Java:
2087       {
2088         ThreadInVMfromJava tiv(this);
2089         JavaThread* THREAD = this;
2090         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2091       }
2092     default:
2093       ShouldNotReachHere();
2094     }
2095   }
2096 
2097   assert(condition == _no_async_condition || has_pending_exception() ||
2098          (!check_unsafe_error && condition == _async_unsafe_access_error),
2099          "must have handled the async condition, if no exception");
2100 }
2101 
2102 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2103   //
2104   // Check for pending external suspend. Internal suspend requests do
2105   // not use handle_special_runtime_exit_condition().
2106   // If JNIEnv proxies are allowed, don't self-suspend if the target
2107   // thread is not the current thread. In older versions of jdbx, jdbx
2108   // threads could call into the VM with another thread's JNIEnv so we
2109   // can be here operating on behalf of a suspended thread (4432884).
2110   bool do_self_suspend = is_external_suspend_with_lock();
2111   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2112     //
2113     // Because thread is external suspended the safepoint code will count
2114     // thread as at a safepoint. This can be odd because we can be here
2115     // as _thread_in_Java which would normally transition to _thread_blocked
2116     // at a safepoint. We would like to mark the thread as _thread_blocked
2117     // before calling java_suspend_self like all other callers of it but
2118     // we must then observe proper safepoint protocol. (We can't leave
2119     // _thread_blocked with a safepoint in progress). However we can be
2120     // here as _thread_in_native_trans so we can't use a normal transition
2121     // constructor/destructor pair because they assert on that type of
2122     // transition. We could do something like:
2123     //
2124     // JavaThreadState state = thread_state();
2125     // set_thread_state(_thread_in_vm);
2126     // {
2127     //   ThreadBlockInVM tbivm(this);
2128     //   java_suspend_self()
2129     // }
2130     // set_thread_state(_thread_in_vm_trans);
2131     // if (safepoint) block;
2132     // set_thread_state(state);
2133     //
2134     // but that is pretty messy. Instead we just go with the way the
2135     // code has worked before and note that this is the only path to
2136     // java_suspend_self that doesn't put the thread in _thread_blocked
2137     // mode.
2138 
2139     frame_anchor()->make_walkable(this);
2140     java_suspend_self();
2141 
2142     // We might be here for reasons in addition to the self-suspend request
2143     // so check for other async requests.
2144   }
2145 
2146   if (check_asyncs) {
2147     check_and_handle_async_exceptions();
2148   }
2149 }
2150 
2151 void JavaThread::send_thread_stop(oop java_throwable)  {
2152   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2153   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2154   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2155 
2156   // Do not throw asynchronous exceptions against the compiler thread
2157   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2158   if (is_Compiler_thread()) return;
2159 
2160   {
2161     // Actually throw the Throwable against the target Thread - however
2162     // only if there is no thread death exception installed already.
2163     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2164       // If the topmost frame is a runtime stub, then we are calling into
2165       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2166       // must deoptimize the caller before continuing, as the compiled  exception handler table
2167       // may not be valid
2168       if (has_last_Java_frame()) {
2169         frame f = last_frame();
2170         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2171           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2172           RegisterMap reg_map(this, UseBiasedLocking);
2173           frame compiled_frame = f.sender(&reg_map);
2174           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2175             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2176           }
2177         }
2178       }
2179 
2180       // Set async. pending exception in thread.
2181       set_pending_async_exception(java_throwable);
2182 
2183       if (TraceExceptions) {
2184        ResourceMark rm;
2185        tty->print_cr("Pending Async. exception installed of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2186       }
2187       // for AbortVMOnException flag
2188       NOT_PRODUCT(Exceptions::debug_check_abort(InstanceKlass::cast(_pending_async_exception->klass())->external_name()));
2189     }
2190   }
2191 
2192 
2193   // Interrupt thread so it will wake up from a potential wait()
2194   Thread::interrupt(this);
2195 }
2196 
2197 // External suspension mechanism.
2198 //
2199 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2200 // to any VM_locks and it is at a transition
2201 // Self-suspension will happen on the transition out of the vm.
2202 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2203 //
2204 // Guarantees on return:
2205 //   + Target thread will not execute any new bytecode (that's why we need to
2206 //     force a safepoint)
2207 //   + Target thread will not enter any new monitors
2208 //
2209 void JavaThread::java_suspend() {
2210   { MutexLocker mu(Threads_lock);
2211     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2212        return;
2213     }
2214   }
2215 
2216   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2217     if (!is_external_suspend()) {
2218       // a racing resume has cancelled us; bail out now
2219       return;
2220     }
2221 
2222     // suspend is done
2223     uint32_t debug_bits = 0;
2224     // Warning: is_ext_suspend_completed() may temporarily drop the
2225     // SR_lock to allow the thread to reach a stable thread state if
2226     // it is currently in a transient thread state.
2227     if (is_ext_suspend_completed(false /* !called_by_wait */,
2228                                  SuspendRetryDelay, &debug_bits) ) {
2229       return;
2230     }
2231   }
2232 
2233   VM_ForceSafepoint vm_suspend;
2234   VMThread::execute(&vm_suspend);
2235 }
2236 
2237 // Part II of external suspension.
2238 // A JavaThread self suspends when it detects a pending external suspend
2239 // request. This is usually on transitions. It is also done in places
2240 // where continuing to the next transition would surprise the caller,
2241 // e.g., monitor entry.
2242 //
2243 // Returns the number of times that the thread self-suspended.
2244 //
2245 // Note: DO NOT call java_suspend_self() when you just want to block current
2246 //       thread. java_suspend_self() is the second stage of cooperative
2247 //       suspension for external suspend requests and should only be used
2248 //       to complete an external suspend request.
2249 //
2250 int JavaThread::java_suspend_self() {
2251   int ret = 0;
2252 
2253   // we are in the process of exiting so don't suspend
2254   if (is_exiting()) {
2255      clear_external_suspend();
2256      return ret;
2257   }
2258 
2259   assert(_anchor.walkable() ||
2260     (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2261     "must have walkable stack");
2262 
2263   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2264 
2265   assert(!this->is_ext_suspended(),
2266     "a thread trying to self-suspend should not already be suspended");
2267 
2268   if (this->is_suspend_equivalent()) {
2269     // If we are self-suspending as a result of the lifting of a
2270     // suspend equivalent condition, then the suspend_equivalent
2271     // flag is not cleared until we set the ext_suspended flag so
2272     // that wait_for_ext_suspend_completion() returns consistent
2273     // results.
2274     this->clear_suspend_equivalent();
2275   }
2276 
2277   // A racing resume may have cancelled us before we grabbed SR_lock
2278   // above. Or another external suspend request could be waiting for us
2279   // by the time we return from SR_lock()->wait(). The thread
2280   // that requested the suspension may already be trying to walk our
2281   // stack and if we return now, we can change the stack out from under
2282   // it. This would be a "bad thing (TM)" and cause the stack walker
2283   // to crash. We stay self-suspended until there are no more pending
2284   // external suspend requests.
2285   while (is_external_suspend()) {
2286     ret++;
2287     this->set_ext_suspended();
2288 
2289     // _ext_suspended flag is cleared by java_resume()
2290     while (is_ext_suspended()) {
2291       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2292     }
2293   }
2294 
2295   return ret;
2296 }
2297 
2298 #ifdef ASSERT
2299 // verify the JavaThread has not yet been published in the Threads::list, and
2300 // hence doesn't need protection from concurrent access at this stage
2301 void JavaThread::verify_not_published() {
2302   if (!Threads_lock->owned_by_self()) {
2303    MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2304    assert(!Threads::includes(this),
2305            "java thread shouldn't have been published yet!");
2306   }
2307   else {
2308    assert(!Threads::includes(this),
2309            "java thread shouldn't have been published yet!");
2310   }
2311 }
2312 #endif
2313 
2314 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2315 // progress or when _suspend_flags is non-zero.
2316 // Current thread needs to self-suspend if there is a suspend request and/or
2317 // block if a safepoint is in progress.
2318 // Async exception ISN'T checked.
2319 // Note only the ThreadInVMfromNative transition can call this function
2320 // directly and when thread state is _thread_in_native_trans
2321 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2322   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2323 
2324   JavaThread *curJT = JavaThread::current();
2325   bool do_self_suspend = thread->is_external_suspend();
2326 
2327   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2328 
2329   // If JNIEnv proxies are allowed, don't self-suspend if the target
2330   // thread is not the current thread. In older versions of jdbx, jdbx
2331   // threads could call into the VM with another thread's JNIEnv so we
2332   // can be here operating on behalf of a suspended thread (4432884).
2333   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2334     JavaThreadState state = thread->thread_state();
2335 
2336     // We mark this thread_blocked state as a suspend-equivalent so
2337     // that a caller to is_ext_suspend_completed() won't be confused.
2338     // The suspend-equivalent state is cleared by java_suspend_self().
2339     thread->set_suspend_equivalent();
2340 
2341     // If the safepoint code sees the _thread_in_native_trans state, it will
2342     // wait until the thread changes to other thread state. There is no
2343     // guarantee on how soon we can obtain the SR_lock and complete the
2344     // self-suspend request. It would be a bad idea to let safepoint wait for
2345     // too long. Temporarily change the state to _thread_blocked to
2346     // let the VM thread know that this thread is ready for GC. The problem
2347     // of changing thread state is that safepoint could happen just after
2348     // java_suspend_self() returns after being resumed, and VM thread will
2349     // see the _thread_blocked state. We must check for safepoint
2350     // after restoring the state and make sure we won't leave while a safepoint
2351     // is in progress.
2352     thread->set_thread_state(_thread_blocked);
2353     thread->java_suspend_self();
2354     thread->set_thread_state(state);
2355     // Make sure new state is seen by VM thread
2356     if (os::is_MP()) {
2357       if (UseMembar) {
2358         // Force a fence between the write above and read below
2359         OrderAccess::fence();
2360       } else {
2361         // Must use this rather than serialization page in particular on Windows
2362         InterfaceSupport::serialize_memory(thread);
2363       }
2364     }
2365   }
2366 
2367   if (SafepointSynchronize::do_call_back()) {
2368     // If we are safepointing, then block the caller which may not be
2369     // the same as the target thread (see above).
2370     SafepointSynchronize::block(curJT);
2371   }
2372 
2373   if (thread->is_deopt_suspend()) {
2374     thread->clear_deopt_suspend();
2375     RegisterMap map(thread, false);
2376     frame f = thread->last_frame();
2377     while (f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2378       f = f.sender(&map);
2379     }
2380     if (f.id() == thread->must_deopt_id()) {
2381       thread->clear_must_deopt_id();
2382       f.deoptimize(thread);
2383     } else {
2384       fatal("missed deoptimization!");
2385     }
2386   }
2387 }
2388 
2389 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2390 // progress or when _suspend_flags is non-zero.
2391 // Current thread needs to self-suspend if there is a suspend request and/or
2392 // block if a safepoint is in progress.
2393 // Also check for pending async exception (not including unsafe access error).
2394 // Note only the native==>VM/Java barriers can call this function and when
2395 // thread state is _thread_in_native_trans.
2396 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2397   check_safepoint_and_suspend_for_native_trans(thread);
2398 
2399   if (thread->has_async_exception()) {
2400     // We are in _thread_in_native_trans state, don't handle unsafe
2401     // access error since that may block.
2402     thread->check_and_handle_async_exceptions(false);
2403   }
2404 }
2405 
2406 // This is a variant of the normal
2407 // check_special_condition_for_native_trans with slightly different
2408 // semantics for use by critical native wrappers.  It does all the
2409 // normal checks but also performs the transition back into
2410 // thread_in_Java state.  This is required so that critical natives
2411 // can potentially block and perform a GC if they are the last thread
2412 // exiting the GC_locker.
2413 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2414   check_special_condition_for_native_trans(thread);
2415 
2416   // Finish the transition
2417   thread->set_thread_state(_thread_in_Java);
2418 
2419   if (thread->do_critical_native_unlock()) {
2420     ThreadInVMfromJavaNoAsyncException tiv(thread);
2421     GC_locker::unlock_critical(thread);
2422     thread->clear_critical_native_unlock();
2423   }
2424 }
2425 
2426 // We need to guarantee the Threads_lock here, since resumes are not
2427 // allowed during safepoint synchronization
2428 // Can only resume from an external suspension
2429 void JavaThread::java_resume() {
2430   assert_locked_or_safepoint(Threads_lock);
2431 
2432   // Sanity check: thread is gone, has started exiting or the thread
2433   // was not externally suspended.
2434   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2435     return;
2436   }
2437 
2438   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2439 
2440   clear_external_suspend();
2441 
2442   if (is_ext_suspended()) {
2443     clear_ext_suspended();
2444     SR_lock()->notify_all();
2445   }
2446 }
2447 
2448 void JavaThread::create_stack_guard_pages() {
2449   if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
2450   address low_addr = stack_base() - stack_size();
2451   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2452 
2453   int allocate = os::allocate_stack_guard_pages();
2454   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2455 
2456   if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
2457     warning("Attempt to allocate stack guard pages failed.");
2458     return;
2459   }
2460 
2461   if (os::guard_memory((char *) low_addr, len)) {
2462     _stack_guard_state = stack_guard_enabled;
2463   } else {
2464     warning("Attempt to protect stack guard pages failed.");
2465     if (os::uncommit_memory((char *) low_addr, len)) {
2466       warning("Attempt to deallocate stack guard pages failed.");
2467     }
2468   }
2469 }
2470 
2471 void JavaThread::remove_stack_guard_pages() {
2472   assert(Thread::current() == this, "from different thread");
2473   if (_stack_guard_state == stack_guard_unused) return;
2474   address low_addr = stack_base() - stack_size();
2475   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2476 
2477   if (os::allocate_stack_guard_pages()) {
2478     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2479       _stack_guard_state = stack_guard_unused;
2480     } else {
2481       warning("Attempt to deallocate stack guard pages failed.");
2482     }
2483   } else {
2484     if (_stack_guard_state == stack_guard_unused) return;
2485     if (os::unguard_memory((char *) low_addr, len)) {
2486       _stack_guard_state = stack_guard_unused;
2487     } else {
2488         warning("Attempt to unprotect stack guard pages failed.");
2489     }
2490   }
2491 }
2492 
2493 void JavaThread::enable_stack_yellow_zone() {
2494   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2495   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2496 
2497   // The base notation is from the stacks point of view, growing downward.
2498   // We need to adjust it to work correctly with guard_memory()
2499   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2500 
2501   guarantee(base < stack_base(), "Error calculating stack yellow zone");
2502   guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2503 
2504   if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
2505     _stack_guard_state = stack_guard_enabled;
2506   } else {
2507     warning("Attempt to guard stack yellow zone failed.");
2508   }
2509   enable_register_stack_guard();
2510 }
2511 
2512 void JavaThread::disable_stack_yellow_zone() {
2513   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2514   assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
2515 
2516   // Simply return if called for a thread that does not use guard pages.
2517   if (_stack_guard_state == stack_guard_unused) return;
2518 
2519   // The base notation is from the stacks point of view, growing downward.
2520   // We need to adjust it to work correctly with guard_memory()
2521   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2522 
2523   if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
2524     _stack_guard_state = stack_guard_yellow_disabled;
2525   } else {
2526     warning("Attempt to unguard stack yellow zone failed.");
2527   }
2528   disable_register_stack_guard();
2529 }
2530 
2531 void JavaThread::enable_stack_red_zone() {
2532   // The base notation is from the stacks point of view, growing downward.
2533   // We need to adjust it to work correctly with guard_memory()
2534   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2535   address base = stack_red_zone_base() - stack_red_zone_size();
2536 
2537   guarantee(base < stack_base(), "Error calculating stack red zone");
2538   guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2539 
2540   if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2541     warning("Attempt to guard stack red zone failed.");
2542   }
2543 }
2544 
2545 void JavaThread::disable_stack_red_zone() {
2546   // The base notation is from the stacks point of view, growing downward.
2547   // We need to adjust it to work correctly with guard_memory()
2548   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2549   address base = stack_red_zone_base() - stack_red_zone_size();
2550   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2551     warning("Attempt to unguard stack red zone failed.");
2552   }
2553 }
2554 
2555 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2556   // ignore is there is no stack
2557   if (!has_last_Java_frame()) return;
2558   // traverse the stack frames. Starts from top frame.
2559   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2560     frame* fr = fst.current();
2561     f(fr, fst.register_map());
2562   }
2563 }
2564 
2565 
2566 #ifndef PRODUCT
2567 // Deoptimization
2568 // Function for testing deoptimization
2569 void JavaThread::deoptimize() {
2570   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2571   StackFrameStream fst(this, UseBiasedLocking);
2572   bool deopt = false;           // Dump stack only if a deopt actually happens.
2573   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2574   // Iterate over all frames in the thread and deoptimize
2575   for (; !fst.is_done(); fst.next()) {
2576     if (fst.current()->can_be_deoptimized()) {
2577 
2578       if (only_at) {
2579         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2580         // consists of comma or carriage return separated numbers so
2581         // search for the current bci in that string.
2582         address pc = fst.current()->pc();
2583         nmethod* nm =  (nmethod*) fst.current()->cb();
2584         ScopeDesc* sd = nm->scope_desc_at( pc);
2585         char buffer[8];
2586         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2587         size_t len = strlen(buffer);
2588         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2589         while (found != NULL) {
2590           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2591               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2592             // Check that the bci found is bracketed by terminators.
2593             break;
2594           }
2595           found = strstr(found + 1, buffer);
2596         }
2597         if (!found) {
2598           continue;
2599         }
2600       }
2601 
2602       if (DebugDeoptimization && !deopt) {
2603         deopt = true; // One-time only print before deopt
2604         tty->print_cr("[BEFORE Deoptimization]");
2605         trace_frames();
2606         trace_stack();
2607       }
2608       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2609     }
2610   }
2611 
2612   if (DebugDeoptimization && deopt) {
2613     tty->print_cr("[AFTER Deoptimization]");
2614     trace_frames();
2615   }
2616 }
2617 
2618 
2619 // Make zombies
2620 void JavaThread::make_zombies() {
2621   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2622     if (fst.current()->can_be_deoptimized()) {
2623       // it is a Java nmethod
2624       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2625       nm->make_not_entrant();
2626     }
2627   }
2628 }
2629 #endif // PRODUCT
2630 
2631 
2632 void JavaThread::deoptimized_wrt_marked_nmethods() {
2633   if (!has_last_Java_frame()) return;
2634   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2635   StackFrameStream fst(this, UseBiasedLocking);
2636   for (; !fst.is_done(); fst.next()) {
2637     if (fst.current()->should_be_deoptimized()) {
2638       if (LogCompilation && xtty != NULL) {
2639         nmethod* nm = fst.current()->cb()->as_nmethod_or_null();
2640         xtty->elem("deoptimized thread='" UINTX_FORMAT "' compile_id='%d'",
2641                    this->name(), nm != NULL ? nm->compile_id() : -1);
2642       }
2643 
2644       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2645     }
2646   }
2647 }
2648 
2649 
2650 // GC support
2651 static void frame_gc_epilogue(frame* f, const RegisterMap* map) { f->gc_epilogue(); }
2652 
2653 void JavaThread::gc_epilogue() {
2654   frames_do(frame_gc_epilogue);
2655 }
2656 
2657 
2658 static void frame_gc_prologue(frame* f, const RegisterMap* map) { f->gc_prologue(); }
2659 
2660 void JavaThread::gc_prologue() {
2661   frames_do(frame_gc_prologue);
2662 }
2663 
2664 // If the caller is a NamedThread, then remember, in the current scope,
2665 // the given JavaThread in its _processed_thread field.
2666 class RememberProcessedThread: public StackObj {
2667   NamedThread* _cur_thr;
2668 public:
2669   RememberProcessedThread(JavaThread* jthr) {
2670     Thread* thread = Thread::current();
2671     if (thread->is_Named_thread()) {
2672       _cur_thr = (NamedThread *)thread;
2673       _cur_thr->set_processed_thread(jthr);
2674     } else {
2675       _cur_thr = NULL;
2676     }
2677   }
2678 
2679   ~RememberProcessedThread() {
2680     if (_cur_thr) {
2681       _cur_thr->set_processed_thread(NULL);
2682     }
2683   }
2684 };
2685 
2686 void JavaThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
2687   // Verify that the deferred card marks have been flushed.
2688   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2689 
2690   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2691   // since there may be more than one thread using each ThreadProfiler.
2692 
2693   // Traverse the GCHandles
2694   Thread::oops_do(f, cld_f, cf);
2695 
2696   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2697           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2698 
2699   if (has_last_Java_frame()) {
2700     // Record JavaThread to GC thread
2701     RememberProcessedThread rpt(this);
2702 
2703     // Traverse the privileged stack
2704     if (_privileged_stack_top != NULL) {
2705       _privileged_stack_top->oops_do(f);
2706     }
2707 
2708     // traverse the registered growable array
2709     if (_array_for_gc != NULL) {
2710       for (int index = 0; index < _array_for_gc->length(); index++) {
2711         f->do_oop(_array_for_gc->adr_at(index));
2712       }
2713     }
2714 
2715     // Traverse the monitor chunks
2716     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2717       chunk->oops_do(f);
2718     }
2719 
2720     // Traverse the execution stack
2721     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2722       fst.current()->oops_do(f, cld_f, cf, fst.register_map());
2723     }
2724   }
2725 
2726   // callee_target is never live across a gc point so NULL it here should
2727   // it still contain a methdOop.
2728 
2729   set_callee_target(NULL);
2730 
2731   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2732   // If we have deferred set_locals there might be oops waiting to be
2733   // written
2734   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2735   if (list != NULL) {
2736     for (int i = 0; i < list->length(); i++) {
2737       list->at(i)->oops_do(f);
2738     }
2739   }
2740 
2741   // Traverse instance variables at the end since the GC may be moving things
2742   // around using this function
2743   f->do_oop((oop*) &_threadObj);
2744   f->do_oop((oop*) &_vm_result);
2745   f->do_oop((oop*) &_exception_oop);
2746   f->do_oop((oop*) &_pending_async_exception);
2747 
2748   if (jvmti_thread_state() != NULL) {
2749     jvmti_thread_state()->oops_do(f);
2750   }
2751 }
2752 
2753 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2754   Thread::nmethods_do(cf);  // (super method is a no-op)
2755 
2756   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2757           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2758 
2759   if (has_last_Java_frame()) {
2760     // Traverse the execution stack
2761     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2762       fst.current()->nmethods_do(cf);
2763     }
2764   }
2765 }
2766 
2767 void JavaThread::metadata_do(void f(Metadata*)) {
2768   Thread::metadata_do(f);
2769   if (has_last_Java_frame()) {
2770     // Traverse the execution stack to call f() on the methods in the stack
2771     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2772       fst.current()->metadata_do(f);
2773     }
2774   } else if (is_Compiler_thread()) {
2775     // need to walk ciMetadata in current compile tasks to keep alive.
2776     CompilerThread* ct = (CompilerThread*)this;
2777     if (ct->env() != NULL) {
2778       ct->env()->metadata_do(f);
2779     }
2780   }
2781 }
2782 
2783 // Printing
2784 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2785   switch (_thread_state) {
2786   case _thread_uninitialized:     return "_thread_uninitialized";
2787   case _thread_new:               return "_thread_new";
2788   case _thread_new_trans:         return "_thread_new_trans";
2789   case _thread_in_native:         return "_thread_in_native";
2790   case _thread_in_native_trans:   return "_thread_in_native_trans";
2791   case _thread_in_vm:             return "_thread_in_vm";
2792   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2793   case _thread_in_Java:           return "_thread_in_Java";
2794   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2795   case _thread_blocked:           return "_thread_blocked";
2796   case _thread_blocked_trans:     return "_thread_blocked_trans";
2797   default:                        return "unknown thread state";
2798   }
2799 }
2800 
2801 #ifndef PRODUCT
2802 void JavaThread::print_thread_state_on(outputStream *st) const {
2803   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2804 };
2805 void JavaThread::print_thread_state() const {
2806   print_thread_state_on(tty);
2807 };
2808 #endif // PRODUCT
2809 
2810 // Called by Threads::print() for VM_PrintThreads operation
2811 void JavaThread::print_on(outputStream *st) const {
2812   st->print("\"%s\" ", get_thread_name());
2813   oop thread_oop = threadObj();
2814   if (thread_oop != NULL) {
2815     st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
2816     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2817     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2818   }
2819   Thread::print_on(st);
2820   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2821   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2822   if (thread_oop != NULL) {
2823     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2824   }
2825 #ifndef PRODUCT
2826   print_thread_state_on(st);
2827   _safepoint_state->print_on(st);
2828 #endif // PRODUCT
2829 }
2830 
2831 // Called by fatal error handler. The difference between this and
2832 // JavaThread::print() is that we can't grab lock or allocate memory.
2833 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2834   st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
2835   oop thread_obj = threadObj();
2836   if (thread_obj != NULL) {
2837      if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2838   }
2839   st->print(" [");
2840   st->print("%s", _get_thread_state_name(_thread_state));
2841   if (osthread()) {
2842     st->print(", id=%d", osthread()->thread_id());
2843   }
2844   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2845             _stack_base - _stack_size, _stack_base);
2846   st->print("]");
2847   return;
2848 }
2849 
2850 // Verification
2851 
2852 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2853 
2854 void JavaThread::verify() {
2855   // Verify oops in the thread.
2856   oops_do(&VerifyOopClosure::verify_oop, NULL, NULL);
2857 
2858   // Verify the stack frames.
2859   frames_do(frame_verify);
2860 }
2861 
2862 // CR 6300358 (sub-CR 2137150)
2863 // Most callers of this method assume that it can't return NULL but a
2864 // thread may not have a name whilst it is in the process of attaching to
2865 // the VM - see CR 6412693, and there are places where a JavaThread can be
2866 // seen prior to having it's threadObj set (eg JNI attaching threads and
2867 // if vm exit occurs during initialization). These cases can all be accounted
2868 // for such that this method never returns NULL.
2869 const char* JavaThread::get_thread_name() const {
2870 #ifdef ASSERT
2871   // early safepoints can hit while current thread does not yet have TLS
2872   if (!SafepointSynchronize::is_at_safepoint()) {
2873     Thread *cur = Thread::current();
2874     if (!(cur->is_Java_thread() && cur == this)) {
2875       // Current JavaThreads are allowed to get their own name without
2876       // the Threads_lock.
2877       assert_locked_or_safepoint(Threads_lock);
2878     }
2879   }
2880 #endif // ASSERT
2881     return get_thread_name_string();
2882 }
2883 
2884 // Returns a non-NULL representation of this thread's name, or a suitable
2885 // descriptive string if there is no set name
2886 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2887   const char* name_str;
2888   oop thread_obj = threadObj();
2889   if (thread_obj != NULL) {
2890     typeArrayOop name = java_lang_Thread::name(thread_obj);
2891     if (name != NULL) {
2892       if (buf == NULL) {
2893         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2894       }
2895       else {
2896         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length(), buf, buflen);
2897       }
2898     }
2899     else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
2900       name_str = "<no-name - thread is attaching>";
2901     }
2902     else {
2903       name_str = Thread::name();
2904     }
2905   }
2906   else {
2907     name_str = Thread::name();
2908   }
2909   assert(name_str != NULL, "unexpected NULL thread name");
2910   return name_str;
2911 }
2912 
2913 
2914 const char* JavaThread::get_threadgroup_name() const {
2915   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2916   oop thread_obj = threadObj();
2917   if (thread_obj != NULL) {
2918     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2919     if (thread_group != NULL) {
2920       typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
2921       // ThreadGroup.name can be null
2922       if (name != NULL) {
2923         const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2924         return str;
2925       }
2926     }
2927   }
2928   return NULL;
2929 }
2930 
2931 const char* JavaThread::get_parent_name() const {
2932   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2933   oop thread_obj = threadObj();
2934   if (thread_obj != NULL) {
2935     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2936     if (thread_group != NULL) {
2937       oop parent = java_lang_ThreadGroup::parent(thread_group);
2938       if (parent != NULL) {
2939         typeArrayOop name = java_lang_ThreadGroup::name(parent);
2940         // ThreadGroup.name can be null
2941         if (name != NULL) {
2942           const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2943           return str;
2944         }
2945       }
2946     }
2947   }
2948   return NULL;
2949 }
2950 
2951 ThreadPriority JavaThread::java_priority() const {
2952   oop thr_oop = threadObj();
2953   if (thr_oop == NULL) return NormPriority; // Bootstrapping
2954   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
2955   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
2956   return priority;
2957 }
2958 
2959 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
2960 
2961   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
2962   // Link Java Thread object <-> C++ Thread
2963 
2964   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
2965   // and put it into a new Handle.  The Handle "thread_oop" can then
2966   // be used to pass the C++ thread object to other methods.
2967 
2968   // Set the Java level thread object (jthread) field of the
2969   // new thread (a JavaThread *) to C++ thread object using the
2970   // "thread_oop" handle.
2971 
2972   // Set the thread field (a JavaThread *) of the
2973   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
2974 
2975   Handle thread_oop(Thread::current(),
2976                     JNIHandles::resolve_non_null(jni_thread));
2977   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
2978     "must be initialized");
2979   set_threadObj(thread_oop());
2980   java_lang_Thread::set_thread(thread_oop(), this);
2981 
2982   if (prio == NoPriority) {
2983     prio = java_lang_Thread::priority(thread_oop());
2984     assert(prio != NoPriority, "A valid priority should be present");
2985   }
2986 
2987   // Push the Java priority down to the native thread; needs Threads_lock
2988   Thread::set_priority(this, prio);
2989 
2990   // Add the new thread to the Threads list and set it in motion.
2991   // We must have threads lock in order to call Threads::add.
2992   // It is crucial that we do not block before the thread is
2993   // added to the Threads list for if a GC happens, then the java_thread oop
2994   // will not be visited by GC.
2995   Threads::add(this);
2996 }
2997 
2998 oop JavaThread::current_park_blocker() {
2999   // Support for JSR-166 locks
3000   oop thread_oop = threadObj();
3001   if (thread_oop != NULL &&
3002       JDK_Version::current().supports_thread_park_blocker()) {
3003     return java_lang_Thread::park_blocker(thread_oop);
3004   }
3005   return NULL;
3006 }
3007 
3008 
3009 void JavaThread::print_stack_on(outputStream* st) {
3010   if (!has_last_Java_frame()) return;
3011   ResourceMark rm;
3012   HandleMark   hm;
3013 
3014   RegisterMap reg_map(this);
3015   vframe* start_vf = last_java_vframe(&reg_map);
3016   int count = 0;
3017   for (vframe* f = start_vf; f; f = f->sender()) {
3018     if (f->is_java_frame()) {
3019       javaVFrame* jvf = javaVFrame::cast(f);
3020       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3021 
3022       // Print out lock information
3023       if (JavaMonitorsInStackTrace) {
3024         jvf->print_lock_info_on(st, count);
3025       }
3026     } else {
3027       // Ignore non-Java frames
3028     }
3029 
3030     // Bail-out case for too deep stacks
3031     count++;
3032     if (MaxJavaStackTraceDepth == count) return;
3033   }
3034 }
3035 
3036 
3037 // JVMTI PopFrame support
3038 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3039   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3040   if (in_bytes(size_in_bytes) != 0) {
3041     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3042     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3043     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3044   }
3045 }
3046 
3047 void* JavaThread::popframe_preserved_args() {
3048   return _popframe_preserved_args;
3049 }
3050 
3051 ByteSize JavaThread::popframe_preserved_args_size() {
3052   return in_ByteSize(_popframe_preserved_args_size);
3053 }
3054 
3055 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3056   int sz = in_bytes(popframe_preserved_args_size());
3057   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3058   return in_WordSize(sz / wordSize);
3059 }
3060 
3061 void JavaThread::popframe_free_preserved_args() {
3062   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3063   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args, mtThread);
3064   _popframe_preserved_args = NULL;
3065   _popframe_preserved_args_size = 0;
3066 }
3067 
3068 #ifndef PRODUCT
3069 
3070 void JavaThread::trace_frames() {
3071   tty->print_cr("[Describe stack]");
3072   int frame_no = 1;
3073   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3074     tty->print("  %d. ", frame_no++);
3075     fst.current()->print_value_on(tty, this);
3076     tty->cr();
3077   }
3078 }
3079 
3080 class PrintAndVerifyOopClosure: public OopClosure {
3081  protected:
3082   template <class T> inline void do_oop_work(T* p) {
3083     oop obj = oopDesc::load_decode_heap_oop(p);
3084     if (obj == NULL) return;
3085     tty->print(INTPTR_FORMAT ": ", p);
3086     if (obj->is_oop_or_null()) {
3087       if (obj->is_objArray()) {
3088         tty->print_cr("valid objArray: " INTPTR_FORMAT, (oopDesc*) obj);
3089       } else {
3090         obj->print();
3091       }
3092     } else {
3093       tty->print_cr("invalid oop: " INTPTR_FORMAT, (oopDesc*) obj);
3094     }
3095     tty->cr();
3096   }
3097  public:
3098   virtual void do_oop(oop* p) { do_oop_work(p); }
3099   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3100 };
3101 
3102 
3103 static void oops_print(frame* f, const RegisterMap *map) {
3104   PrintAndVerifyOopClosure print;
3105   f->print_value();
3106   f->oops_do(&print, NULL, NULL, (RegisterMap*)map);
3107 }
3108 
3109 // Print our all the locations that contain oops and whether they are
3110 // valid or not.  This useful when trying to find the oldest frame
3111 // where an oop has gone bad since the frame walk is from youngest to
3112 // oldest.
3113 void JavaThread::trace_oops() {
3114   tty->print_cr("[Trace oops]");
3115   frames_do(oops_print);
3116 }
3117 
3118 
3119 #ifdef ASSERT
3120 // Print or validate the layout of stack frames
3121 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3122   ResourceMark rm;
3123   PRESERVE_EXCEPTION_MARK;
3124   FrameValues values;
3125   int frame_no = 0;
3126   for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3127     fst.current()->describe(values, ++frame_no);
3128     if (depth == frame_no) break;
3129   }
3130   if (validate_only) {
3131     values.validate();
3132   } else {
3133     tty->print_cr("[Describe stack layout]");
3134     values.print(this);
3135   }
3136 }
3137 #endif
3138 
3139 void JavaThread::trace_stack_from(vframe* start_vf) {
3140   ResourceMark rm;
3141   int vframe_no = 1;
3142   for (vframe* f = start_vf; f; f = f->sender()) {
3143     if (f->is_java_frame()) {
3144       javaVFrame::cast(f)->print_activation(vframe_no++);
3145     } else {
3146       f->print();
3147     }
3148     if (vframe_no > StackPrintLimit) {
3149       tty->print_cr("...<more frames>...");
3150       return;
3151     }
3152   }
3153 }
3154 
3155 
3156 void JavaThread::trace_stack() {
3157   if (!has_last_Java_frame()) return;
3158   ResourceMark rm;
3159   HandleMark   hm;
3160   RegisterMap reg_map(this);
3161   trace_stack_from(last_java_vframe(&reg_map));
3162 }
3163 
3164 
3165 #endif // PRODUCT
3166 
3167 
3168 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3169   assert(reg_map != NULL, "a map must be given");
3170   frame f = last_frame();
3171   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3172     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3173   }
3174   return NULL;
3175 }
3176 
3177 
3178 Klass* JavaThread::security_get_caller_class(int depth) {
3179   vframeStream vfst(this);
3180   vfst.security_get_caller_frame(depth);
3181   if (!vfst.at_end()) {
3182     return vfst.method()->method_holder();
3183   }
3184   return NULL;
3185 }
3186 
3187 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3188   assert(thread->is_Compiler_thread(), "must be compiler thread");
3189   CompileBroker::compiler_thread_loop();
3190 }
3191 
3192 // Create a CompilerThread
3193 CompilerThread::CompilerThread(CompileQueue* queue, CompilerCounters* counters)
3194 : JavaThread(&compiler_thread_entry) {
3195   _env   = NULL;
3196   _log   = NULL;
3197   _task  = NULL;
3198   _queue = queue;
3199   _counters = counters;
3200   _buffer_blob = NULL;
3201   _scanned_nmethod = NULL;
3202   _compiler = NULL;
3203 
3204 #ifndef PRODUCT
3205   _ideal_graph_printer = NULL;
3206 #endif
3207 }
3208 
3209 void CompilerThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
3210   JavaThread::oops_do(f, cld_f, cf);
3211   if (_scanned_nmethod != NULL && cf != NULL) {
3212     // Safepoints can occur when the sweeper is scanning an nmethod so
3213     // process it here to make sure it isn't unloaded in the middle of
3214     // a scan.
3215     cf->do_code_blob(_scanned_nmethod);
3216   }
3217 }
3218 
3219 
3220 // ======= Threads ========
3221 
3222 // The Threads class links together all active threads, and provides
3223 // operations over all threads.  It is protected by its own Mutex
3224 // lock, which is also used in other contexts to protect thread
3225 // operations from having the thread being operated on from exiting
3226 // and going away unexpectedly (e.g., safepoint synchronization)
3227 
3228 JavaThread* Threads::_thread_list = NULL;
3229 int         Threads::_number_of_threads = 0;
3230 int         Threads::_number_of_non_daemon_threads = 0;
3231 int         Threads::_return_code = 0;
3232 size_t      JavaThread::_stack_size_at_create = 0;
3233 #ifdef ASSERT
3234 bool        Threads::_vm_complete = false;
3235 #endif
3236 
3237 // All JavaThreads
3238 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3239 
3240 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3241 void Threads::threads_do(ThreadClosure* tc) {
3242   assert_locked_or_safepoint(Threads_lock);
3243   // ALL_JAVA_THREADS iterates through all JavaThreads
3244   ALL_JAVA_THREADS(p) {
3245     tc->do_thread(p);
3246   }
3247   // Someday we could have a table or list of all non-JavaThreads.
3248   // For now, just manually iterate through them.
3249   tc->do_thread(VMThread::vm_thread());
3250   Universe::heap()->gc_threads_do(tc);
3251   WatcherThread *wt = WatcherThread::watcher_thread();
3252   // Strictly speaking, the following NULL check isn't sufficient to make sure
3253   // the data for WatcherThread is still valid upon being examined. However,
3254   // considering that WatchThread terminates when the VM is on the way to
3255   // exit at safepoint, the chance of the above is extremely small. The right
3256   // way to prevent termination of WatcherThread would be to acquire
3257   // Terminator_lock, but we can't do that without violating the lock rank
3258   // checking in some cases.
3259   if (wt != NULL)
3260     tc->do_thread(wt);
3261 
3262   // If CompilerThreads ever become non-JavaThreads, add them here
3263 }
3264 
3265 
3266 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3267   TraceTime timer("Initialize java.lang classes", TraceStartupTime);
3268 
3269   if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3270     create_vm_init_libraries();
3271   }
3272 
3273   initialize_class(vmSymbols::java_lang_String(), CHECK);
3274 
3275   // Initialize java_lang.System (needed before creating the thread)
3276   initialize_class(vmSymbols::java_lang_System(), CHECK);
3277   initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3278   Handle thread_group = create_initial_thread_group(CHECK);
3279   Universe::set_main_thread_group(thread_group());
3280   initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3281   oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3282   main_thread->set_threadObj(thread_object);
3283   // Set thread status to running since main thread has
3284   // been started and running.
3285   java_lang_Thread::set_thread_status(thread_object,
3286                                       java_lang_Thread::RUNNABLE);
3287 
3288   // The VM creates & returns objects of this class. Make sure it's initialized.
3289   initialize_class(vmSymbols::java_lang_Class(), CHECK);
3290 
3291   // The VM preresolves methods to these classes. Make sure that they get initialized
3292   initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3293   initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3294   call_initializeSystemClass(CHECK);
3295 
3296   // get the Java runtime name after java.lang.System is initialized
3297   JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3298   JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3299 
3300   // an instance of OutOfMemory exception has been allocated earlier
3301   initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3302   initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3303   initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3304   initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3305   initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3306   initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3307   initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3308   initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3309 }
3310 
3311 void Threads::initialize_jsr292_core_classes(TRAPS) {
3312   initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3313   initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3314   initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3315 }
3316 
3317 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3318 
3319   extern void JDK_Version_init();
3320 
3321   // Check version
3322   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3323 
3324   // Initialize the output stream module
3325   ostream_init();
3326 
3327   // Process java launcher properties.
3328   Arguments::process_sun_java_launcher_properties(args);
3329 
3330   // Initialize the os module before using TLS
3331   os::init();
3332 
3333   // Initialize system properties.
3334   Arguments::init_system_properties();
3335 
3336   // So that JDK version can be used as a discriminator when parsing arguments
3337   JDK_Version_init();
3338 
3339   // Update/Initialize System properties after JDK version number is known
3340   Arguments::init_version_specific_system_properties();
3341 
3342   // Parse arguments
3343   jint parse_result = Arguments::parse(args);
3344   if (parse_result != JNI_OK) return parse_result;
3345 
3346   os::init_before_ergo();
3347 
3348   jint ergo_result = Arguments::apply_ergo();
3349   if (ergo_result != JNI_OK) return ergo_result;
3350 
3351   if (PauseAtStartup) {
3352     os::pause();
3353   }
3354 
3355   HOTSPOT_VM_INIT_BEGIN();
3356 
3357   // Record VM creation timing statistics
3358   TraceVmCreationTime create_vm_timer;
3359   create_vm_timer.start();
3360 
3361   // Timing (must come after argument parsing)
3362   TraceTime timer("Create VM", TraceStartupTime);
3363 
3364   // Initialize the os module after parsing the args
3365   jint os_init_2_result = os::init_2();
3366   if (os_init_2_result != JNI_OK) return os_init_2_result;
3367 
3368   jint adjust_after_os_result = Arguments::adjust_after_os();
3369   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3370 
3371   // initialize TLS
3372   ThreadLocalStorage::init();
3373 
3374   // Bootstrap native memory tracking, so it can start recording memory
3375   // activities before worker thread is started. This is the first phase
3376   // of bootstrapping, VM is currently running in single-thread mode.
3377   MemTracker::bootstrap_single_thread();
3378 
3379   // Initialize output stream logging
3380   ostream_init_log();
3381 
3382   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3383   // Must be before create_vm_init_agents()
3384   if (Arguments::init_libraries_at_startup()) {
3385     convert_vm_init_libraries_to_agents();
3386   }
3387 
3388   // Launch -agentlib/-agentpath and converted -Xrun agents
3389   if (Arguments::init_agents_at_startup()) {
3390     create_vm_init_agents();
3391   }
3392 
3393   // Initialize Threads state
3394   _thread_list = NULL;
3395   _number_of_threads = 0;
3396   _number_of_non_daemon_threads = 0;
3397 
3398   // Initialize global data structures and create system classes in heap
3399   vm_init_globals();
3400 
3401   // Attach the main thread to this os thread
3402   JavaThread* main_thread = new JavaThread();
3403   main_thread->set_thread_state(_thread_in_vm);
3404   // must do this before set_active_handles and initialize_thread_local_storage
3405   // Note: on solaris initialize_thread_local_storage() will (indirectly)
3406   // change the stack size recorded here to one based on the java thread
3407   // stacksize. This adjusted size is what is used to figure the placement
3408   // of the guard pages.
3409   main_thread->record_stack_base_and_size();
3410   main_thread->initialize_thread_local_storage();
3411 
3412   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3413 
3414   if (!main_thread->set_as_starting_thread()) {
3415     vm_shutdown_during_initialization(
3416       "Failed necessary internal allocation. Out of swap space");
3417     delete main_thread;
3418     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3419     return JNI_ENOMEM;
3420   }
3421 
3422   // Enable guard page *after* os::create_main_thread(), otherwise it would
3423   // crash Linux VM, see notes in os_linux.cpp.
3424   main_thread->create_stack_guard_pages();
3425 
3426   // Initialize Java-Level synchronization subsystem
3427   ObjectMonitor::Initialize();
3428 
3429   // Second phase of bootstrapping, VM is about entering multi-thread mode
3430   MemTracker::bootstrap_multi_thread();
3431 
3432   // Initialize global modules
3433   jint status = init_globals();
3434   if (status != JNI_OK) {
3435     delete main_thread;
3436     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3437     return status;
3438   }
3439 
3440   // Should be done after the heap is fully created
3441   main_thread->cache_global_variables();
3442 
3443   HandleMark hm;
3444 
3445   { MutexLocker mu(Threads_lock);
3446     Threads::add(main_thread);
3447   }
3448 
3449   // Any JVMTI raw monitors entered in onload will transition into
3450   // real raw monitor. VM is setup enough here for raw monitor enter.
3451   JvmtiExport::transition_pending_onload_raw_monitors();
3452 
3453   // Fully start NMT
3454   MemTracker::start();
3455 
3456   // Create the VMThread
3457   { TraceTime timer("Start VMThread", TraceStartupTime);
3458     VMThread::create();
3459     Thread* vmthread = VMThread::vm_thread();
3460 
3461     if (!os::create_thread(vmthread, os::vm_thread))
3462       vm_exit_during_initialization("Cannot create VM thread. Out of system resources.");
3463 
3464     // Wait for the VM thread to become ready, and VMThread::run to initialize
3465     // Monitors can have spurious returns, must always check another state flag
3466     {
3467       MutexLocker ml(Notify_lock);
3468       os::start_thread(vmthread);
3469       while (vmthread->active_handles() == NULL) {
3470         Notify_lock->wait();
3471       }
3472     }
3473   }
3474 
3475   assert(Universe::is_fully_initialized(), "not initialized");
3476   if (VerifyDuringStartup) {
3477     // Make sure we're starting with a clean slate.
3478     VM_Verify verify_op;
3479     VMThread::execute(&verify_op);
3480   }
3481 
3482   Thread* THREAD = Thread::current();
3483 
3484   // At this point, the Universe is initialized, but we have not executed
3485   // any byte code.  Now is a good time (the only time) to dump out the
3486   // internal state of the JVM for sharing.
3487   if (DumpSharedSpaces) {
3488     MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
3489     ShouldNotReachHere();
3490   }
3491 
3492   // Always call even when there are not JVMTI environments yet, since environments
3493   // may be attached late and JVMTI must track phases of VM execution
3494   JvmtiExport::enter_start_phase();
3495 
3496   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3497   JvmtiExport::post_vm_start();
3498 
3499   initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3500 
3501   // We need this for ClassDataSharing - the initial vm.info property is set
3502   // with the default value of CDS "sharing" which may be reset through
3503   // command line options.
3504   reset_vm_info_property(CHECK_JNI_ERR);
3505 
3506   quicken_jni_functions();
3507 
3508   // Must be run after init_ft which initializes ft_enabled
3509   if (TRACE_INITIALIZE() != JNI_OK) {
3510     vm_exit_during_initialization("Failed to initialize tracing backend");
3511   }
3512 
3513   // Set flag that basic initialization has completed. Used by exceptions and various
3514   // debug stuff, that does not work until all basic classes have been initialized.
3515   set_init_completed();
3516 
3517   Metaspace::post_initialize();
3518 
3519   HOTSPOT_VM_INIT_END();
3520 
3521   // record VM initialization completion time
3522 #if INCLUDE_MANAGEMENT
3523   Management::record_vm_init_completed();
3524 #endif // INCLUDE_MANAGEMENT
3525 
3526   // Compute system loader. Note that this has to occur after set_init_completed, since
3527   // valid exceptions may be thrown in the process.
3528   // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3529   // set_init_completed has just been called, causing exceptions not to be shortcut
3530   // anymore. We call vm_exit_during_initialization directly instead.
3531   SystemDictionary::compute_java_system_loader(CHECK_JNI_ERR);
3532 
3533 #if INCLUDE_ALL_GCS
3534   // Support for ConcurrentMarkSweep. This should be cleaned up
3535   // and better encapsulated. The ugly nested if test would go away
3536   // once things are properly refactored. XXX YSR
3537   if (UseConcMarkSweepGC || UseG1GC) {
3538     if (UseConcMarkSweepGC) {
3539       ConcurrentMarkSweepThread::makeSurrogateLockerThread(CHECK_JNI_ERR);
3540     } else {
3541       ConcurrentMarkThread::makeSurrogateLockerThread(CHECK_JNI_ERR);
3542     }
3543   }
3544 #endif // INCLUDE_ALL_GCS
3545 
3546   // Always call even when there are not JVMTI environments yet, since environments
3547   // may be attached late and JVMTI must track phases of VM execution
3548   JvmtiExport::enter_live_phase();
3549 
3550   // Signal Dispatcher needs to be started before VMInit event is posted
3551   os::signal_init();
3552 
3553   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3554   if (!DisableAttachMechanism) {
3555     AttachListener::vm_start();
3556     if (StartAttachListener || AttachListener::init_at_startup()) {
3557       AttachListener::init();
3558     }
3559   }
3560 
3561   // Launch -Xrun agents
3562   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3563   // back-end can launch with -Xdebug -Xrunjdwp.
3564   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3565     create_vm_init_libraries();
3566   }
3567 
3568   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3569   JvmtiExport::post_vm_initialized();
3570 
3571   if (TRACE_START() != JNI_OK) {
3572     vm_exit_during_initialization("Failed to start tracing backend.");
3573   }
3574 
3575   if (CleanChunkPoolAsync) {
3576     Chunk::start_chunk_pool_cleaner_task();
3577   }
3578 
3579   // initialize compiler(s)
3580 #if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK)
3581   CompileBroker::compilation_init();
3582 #endif
3583 
3584   // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3585   // It is done after compilers are initialized, because otherwise compilations of
3586   // signature polymorphic MH intrinsics can be missed
3587   // (see SystemDictionary::find_method_handle_intrinsic).
3588   initialize_jsr292_core_classes(CHECK_JNI_ERR);
3589 
3590 #if INCLUDE_MANAGEMENT
3591   Management::initialize(THREAD);
3592 
3593   if (HAS_PENDING_EXCEPTION) {
3594     // management agent fails to start possibly due to
3595     // configuration problem and is responsible for printing
3596     // stack trace if appropriate. Simply exit VM.
3597     vm_exit(1);
3598   }
3599 #endif // INCLUDE_MANAGEMENT
3600 
3601   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3602   if (MemProfiling)                   MemProfiler::engage();
3603   StatSampler::engage();
3604   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3605 
3606   BiasedLocking::init();
3607 
3608 #if INCLUDE_RTM_OPT
3609   RTMLockingCounters::init();
3610 #endif
3611 
3612   if (JDK_Version::current().post_vm_init_hook_enabled()) {
3613     call_postVMInitHook(THREAD);
3614     // The Java side of PostVMInitHook.run must deal with all
3615     // exceptions and provide means of diagnosis.
3616     if (HAS_PENDING_EXCEPTION) {
3617       CLEAR_PENDING_EXCEPTION;
3618     }
3619   }
3620 
3621   {
3622       MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
3623       // Make sure the watcher thread can be started by WatcherThread::start()
3624       // or by dynamic enrollment.
3625       WatcherThread::make_startable();
3626       // Start up the WatcherThread if there are any periodic tasks
3627       // NOTE:  All PeriodicTasks should be registered by now. If they
3628       //   aren't, late joiners might appear to start slowly (we might
3629       //   take a while to process their first tick).
3630       if (PeriodicTask::num_tasks() > 0) {
3631           WatcherThread::start();
3632       }
3633   }
3634 
3635   // Give os specific code one last chance to start
3636   os::init_3();
3637 
3638   create_vm_timer.end();
3639 #ifdef ASSERT
3640   _vm_complete = true;
3641 #endif
3642   return JNI_OK;
3643 }
3644 
3645 // type for the Agent_OnLoad and JVM_OnLoad entry points
3646 extern "C" {
3647   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3648 }
3649 // Find a command line agent library and return its entry point for
3650 //         -agentlib:  -agentpath:   -Xrun
3651 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3652 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent, const char *on_load_symbols[], size_t num_symbol_entries) {
3653   OnLoadEntry_t on_load_entry = NULL;
3654   void *library = NULL;
3655 
3656   if (!agent->valid()) {
3657     char buffer[JVM_MAXPATHLEN];
3658     char ebuf[1024];
3659     const char *name = agent->name();
3660     const char *msg = "Could not find agent library ";
3661 
3662     // First check to see if agent is statically linked into executable
3663     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
3664       library = agent->os_lib();
3665     } else if (agent->is_absolute_path()) {
3666       library = os::dll_load(name, ebuf, sizeof ebuf);
3667       if (library == NULL) {
3668         const char *sub_msg = " in absolute path, with error: ";
3669         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3670         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3671         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3672         // If we can't find the agent, exit.
3673         vm_exit_during_initialization(buf, NULL);
3674         FREE_C_HEAP_ARRAY(char, buf, mtThread);
3675       }
3676     } else {
3677       // Try to load the agent from the standard dll directory
3678       if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3679                              name)) {
3680         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3681       }
3682       if (library == NULL) { // Try the local directory
3683         char ns[1] = {0};
3684         if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
3685           library = os::dll_load(buffer, ebuf, sizeof ebuf);
3686         }
3687         if (library == NULL) {
3688           const char *sub_msg = " on the library path, with error: ";
3689           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3690           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3691           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3692           // If we can't find the agent, exit.
3693           vm_exit_during_initialization(buf, NULL);
3694           FREE_C_HEAP_ARRAY(char, buf, mtThread);
3695         }
3696       }
3697     }
3698     agent->set_os_lib(library);
3699     agent->set_valid();
3700   }
3701 
3702   // Find the OnLoad function.
3703   on_load_entry =
3704     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
3705                                                           false,
3706                                                           on_load_symbols,
3707                                                           num_symbol_entries));
3708   return on_load_entry;
3709 }
3710 
3711 // Find the JVM_OnLoad entry point
3712 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3713   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3714   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3715 }
3716 
3717 // Find the Agent_OnLoad entry point
3718 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3719   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3720   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3721 }
3722 
3723 // For backwards compatibility with -Xrun
3724 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3725 // treated like -agentpath:
3726 // Must be called before agent libraries are created
3727 void Threads::convert_vm_init_libraries_to_agents() {
3728   AgentLibrary* agent;
3729   AgentLibrary* next;
3730 
3731   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3732     next = agent->next();  // cache the next agent now as this agent may get moved off this list
3733     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3734 
3735     // If there is an JVM_OnLoad function it will get called later,
3736     // otherwise see if there is an Agent_OnLoad
3737     if (on_load_entry == NULL) {
3738       on_load_entry = lookup_agent_on_load(agent);
3739       if (on_load_entry != NULL) {
3740         // switch it to the agent list -- so that Agent_OnLoad will be called,
3741         // JVM_OnLoad won't be attempted and Agent_OnUnload will
3742         Arguments::convert_library_to_agent(agent);
3743       } else {
3744         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3745       }
3746     }
3747   }
3748 }
3749 
3750 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
3751 // Invokes Agent_OnLoad
3752 // Called very early -- before JavaThreads exist
3753 void Threads::create_vm_init_agents() {
3754   extern struct JavaVM_ main_vm;
3755   AgentLibrary* agent;
3756 
3757   JvmtiExport::enter_onload_phase();
3758 
3759   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3760     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3761 
3762     if (on_load_entry != NULL) {
3763       // Invoke the Agent_OnLoad function
3764       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3765       if (err != JNI_OK) {
3766         vm_exit_during_initialization("agent library failed to init", agent->name());
3767       }
3768     } else {
3769       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3770     }
3771   }
3772   JvmtiExport::enter_primordial_phase();
3773 }
3774 
3775 extern "C" {
3776   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3777 }
3778 
3779 void Threads::shutdown_vm_agents() {
3780   // Send any Agent_OnUnload notifications
3781   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3782   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
3783   extern struct JavaVM_ main_vm;
3784   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3785 
3786     // Find the Agent_OnUnload function.
3787     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3788       os::find_agent_function(agent,
3789       false,
3790       on_unload_symbols,
3791       num_symbol_entries));
3792 
3793     // Invoke the Agent_OnUnload function
3794     if (unload_entry != NULL) {
3795       JavaThread* thread = JavaThread::current();
3796       ThreadToNativeFromVM ttn(thread);
3797       HandleMark hm(thread);
3798       (*unload_entry)(&main_vm);
3799     }
3800   }
3801 }
3802 
3803 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3804 // Invokes JVM_OnLoad
3805 void Threads::create_vm_init_libraries() {
3806   extern struct JavaVM_ main_vm;
3807   AgentLibrary* agent;
3808 
3809   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3810     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3811 
3812     if (on_load_entry != NULL) {
3813       // Invoke the JVM_OnLoad function
3814       JavaThread* thread = JavaThread::current();
3815       ThreadToNativeFromVM ttn(thread);
3816       HandleMark hm(thread);
3817       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3818       if (err != JNI_OK) {
3819         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3820       }
3821     } else {
3822       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3823     }
3824   }
3825 }
3826 
3827 // Last thread running calls java.lang.Shutdown.shutdown()
3828 void JavaThread::invoke_shutdown_hooks() {
3829   HandleMark hm(this);
3830 
3831   // We could get here with a pending exception, if so clear it now.
3832   if (this->has_pending_exception()) {
3833     this->clear_pending_exception();
3834   }
3835 
3836   EXCEPTION_MARK;
3837   Klass* k =
3838     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
3839                                       THREAD);
3840   if (k != NULL) {
3841     // SystemDictionary::resolve_or_null will return null if there was
3842     // an exception.  If we cannot load the Shutdown class, just don't
3843     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
3844     // and finalizers (if runFinalizersOnExit is set) won't be run.
3845     // Note that if a shutdown hook was registered or runFinalizersOnExit
3846     // was called, the Shutdown class would have already been loaded
3847     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
3848     instanceKlassHandle shutdown_klass (THREAD, k);
3849     JavaValue result(T_VOID);
3850     JavaCalls::call_static(&result,
3851                            shutdown_klass,
3852                            vmSymbols::shutdown_method_name(),
3853                            vmSymbols::void_method_signature(),
3854                            THREAD);
3855   }
3856   CLEAR_PENDING_EXCEPTION;
3857 }
3858 
3859 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
3860 // the program falls off the end of main(). Another VM exit path is through
3861 // vm_exit() when the program calls System.exit() to return a value or when
3862 // there is a serious error in VM. The two shutdown paths are not exactly
3863 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
3864 // and VM_Exit op at VM level.
3865 //
3866 // Shutdown sequence:
3867 //   + Shutdown native memory tracking if it is on
3868 //   + Wait until we are the last non-daemon thread to execute
3869 //     <-- every thing is still working at this moment -->
3870 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
3871 //        shutdown hooks, run finalizers if finalization-on-exit
3872 //   + Call before_exit(), prepare for VM exit
3873 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
3874 //        currently the only user of this mechanism is File.deleteOnExit())
3875 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
3876 //        post thread end and vm death events to JVMTI,
3877 //        stop signal thread
3878 //   + Call JavaThread::exit(), it will:
3879 //      > release JNI handle blocks, remove stack guard pages
3880 //      > remove this thread from Threads list
3881 //     <-- no more Java code from this thread after this point -->
3882 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
3883 //     the compiler threads at safepoint
3884 //     <-- do not use anything that could get blocked by Safepoint -->
3885 //   + Disable tracing at JNI/JVM barriers
3886 //   + Set _vm_exited flag for threads that are still running native code
3887 //   + Delete this thread
3888 //   + Call exit_globals()
3889 //      > deletes tty
3890 //      > deletes PerfMemory resources
3891 //   + Return to caller
3892 
3893 bool Threads::destroy_vm() {
3894   JavaThread* thread = JavaThread::current();
3895 
3896 #ifdef ASSERT
3897   _vm_complete = false;
3898 #endif
3899   // Wait until we are the last non-daemon thread to execute
3900   { MutexLocker nu(Threads_lock);
3901     while (Threads::number_of_non_daemon_threads() > 1)
3902       // This wait should make safepoint checks, wait without a timeout,
3903       // and wait as a suspend-equivalent condition.
3904       //
3905       // Note: If the FlatProfiler is running and this thread is waiting
3906       // for another non-daemon thread to finish, then the FlatProfiler
3907       // is waiting for the external suspend request on this thread to
3908       // complete. wait_for_ext_suspend_completion() will eventually
3909       // timeout, but that takes time. Making this wait a suspend-
3910       // equivalent condition solves that timeout problem.
3911       //
3912       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
3913                          Mutex::_as_suspend_equivalent_flag);
3914   }
3915 
3916   // Hang forever on exit if we are reporting an error.
3917   if (ShowMessageBoxOnError && is_error_reported()) {
3918     os::infinite_sleep();
3919   }
3920   os::wait_for_keypress_at_exit();
3921 
3922   // run Java level shutdown hooks
3923   thread->invoke_shutdown_hooks();
3924 
3925   before_exit(thread);
3926 
3927   thread->exit(true);
3928 
3929   // Stop VM thread.
3930   {
3931     // 4945125 The vm thread comes to a safepoint during exit.
3932     // GC vm_operations can get caught at the safepoint, and the
3933     // heap is unparseable if they are caught. Grab the Heap_lock
3934     // to prevent this. The GC vm_operations will not be able to
3935     // queue until after the vm thread is dead. After this point,
3936     // we'll never emerge out of the safepoint before the VM exits.
3937 
3938     MutexLocker ml(Heap_lock);
3939 
3940     VMThread::wait_for_vm_thread_exit();
3941     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
3942     VMThread::destroy();
3943   }
3944 
3945   // clean up ideal graph printers
3946 #if defined(COMPILER2) && !defined(PRODUCT)
3947   IdealGraphPrinter::clean_up();
3948 #endif
3949 
3950   // Now, all Java threads are gone except daemon threads. Daemon threads
3951   // running Java code or in VM are stopped by the Safepoint. However,
3952   // daemon threads executing native code are still running.  But they
3953   // will be stopped at native=>Java/VM barriers. Note that we can't
3954   // simply kill or suspend them, as it is inherently deadlock-prone.
3955 
3956 #ifndef PRODUCT
3957   // disable function tracing at JNI/JVM barriers
3958   TraceJNICalls = false;
3959   TraceJVMCalls = false;
3960   TraceRuntimeCalls = false;
3961 #endif
3962 
3963   VM_Exit::set_vm_exited();
3964 
3965   notify_vm_shutdown();
3966 
3967   delete thread;
3968 
3969   // exit_globals() will delete tty
3970   exit_globals();
3971 
3972   return true;
3973 }
3974 
3975 
3976 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
3977   if (version == JNI_VERSION_1_1) return JNI_TRUE;
3978   return is_supported_jni_version(version);
3979 }
3980 
3981 
3982 jboolean Threads::is_supported_jni_version(jint version) {
3983   if (version == JNI_VERSION_1_2) return JNI_TRUE;
3984   if (version == JNI_VERSION_1_4) return JNI_TRUE;
3985   if (version == JNI_VERSION_1_6) return JNI_TRUE;
3986   if (version == JNI_VERSION_1_8) return JNI_TRUE;
3987   return JNI_FALSE;
3988 }
3989 
3990 
3991 void Threads::add(JavaThread* p, bool force_daemon) {
3992   // The threads lock must be owned at this point
3993   assert_locked_or_safepoint(Threads_lock);
3994 
3995   // See the comment for this method in thread.hpp for its purpose and
3996   // why it is called here.
3997   p->initialize_queues();
3998   p->set_next(_thread_list);
3999   _thread_list = p;
4000   _number_of_threads++;
4001   oop threadObj = p->threadObj();
4002   bool daemon = true;
4003   // Bootstrapping problem: threadObj can be null for initial
4004   // JavaThread (or for threads attached via JNI)
4005   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4006     _number_of_non_daemon_threads++;
4007     daemon = false;
4008   }
4009 
4010   p->set_safepoint_visible(true);
4011 
4012   ThreadService::add_thread(p, daemon);
4013 
4014   // Possible GC point.
4015   Events::log(p, "Thread added: " INTPTR_FORMAT, p);
4016 }
4017 
4018 void Threads::remove(JavaThread* p) {
4019   // Extra scope needed for Thread_lock, so we can check
4020   // that we do not remove thread without safepoint code notice
4021   { MutexLocker ml(Threads_lock);
4022 
4023     assert(includes(p), "p must be present");
4024 
4025     JavaThread* current = _thread_list;
4026     JavaThread* prev    = NULL;
4027 
4028     while (current != p) {
4029       prev    = current;
4030       current = current->next();
4031     }
4032 
4033     if (prev) {
4034       prev->set_next(current->next());
4035     } else {
4036       _thread_list = p->next();
4037     }
4038     _number_of_threads--;
4039     oop threadObj = p->threadObj();
4040     bool daemon = true;
4041     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4042       _number_of_non_daemon_threads--;
4043       daemon = false;
4044 
4045       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4046       // on destroy_vm will wake up.
4047       if (number_of_non_daemon_threads() == 1)
4048         Threads_lock->notify_all();
4049     }
4050     ThreadService::remove_thread(p, daemon);
4051 
4052     // Make sure that safepoint code disregard this thread. This is needed since
4053     // the thread might mess around with locks after this point. This can cause it
4054     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4055     // of this thread since it is removed from the queue.
4056     p->set_terminated_value();
4057 
4058     // Now, this thread is not visible to safepoint
4059     p->set_safepoint_visible(false);
4060     // once the thread becomes safepoint invisible, we can not use its per-thread
4061     // recorder. And Threads::do_threads() no longer walks this thread, so we have
4062     // to release its per-thread recorder here.
4063     MemTracker::thread_exiting(p);
4064   } // unlock Threads_lock
4065 
4066   // Since Events::log uses a lock, we grab it outside the Threads_lock
4067   Events::log(p, "Thread exited: " INTPTR_FORMAT, p);
4068 }
4069 
4070 // Threads_lock must be held when this is called (or must be called during a safepoint)
4071 bool Threads::includes(JavaThread* p) {
4072   assert(Threads_lock->is_locked(), "sanity check");
4073   ALL_JAVA_THREADS(q) {
4074     if (q == p) {
4075       return true;
4076     }
4077   }
4078   return false;
4079 }
4080 
4081 // Operations on the Threads list for GC.  These are not explicitly locked,
4082 // but the garbage collector must provide a safe context for them to run.
4083 // In particular, these things should never be called when the Threads_lock
4084 // is held by some other thread. (Note: the Safepoint abstraction also
4085 // uses the Threads_lock to guarantee this property. It also makes sure that
4086 // all threads gets blocked when exiting or starting).
4087 
4088 void Threads::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4089   ALL_JAVA_THREADS(p) {
4090     p->oops_do(f, cld_f, cf);
4091   }
4092   VMThread::vm_thread()->oops_do(f, cld_f, cf);
4093 }
4094 
4095 void Threads::possibly_parallel_oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4096   // Introduce a mechanism allowing parallel threads to claim threads as
4097   // root groups.  Overhead should be small enough to use all the time,
4098   // even in sequential code.
4099   SharedHeap* sh = SharedHeap::heap();
4100   // Cannot yet substitute active_workers for n_par_threads
4101   // because of G1CollectedHeap::verify() use of
4102   // SharedHeap::process_roots().  n_par_threads == 0 will
4103   // turn off parallelism in process_roots while active_workers
4104   // is being used for parallelism elsewhere.
4105   bool is_par = sh->n_par_threads() > 0;
4106   assert(!is_par ||
4107          (SharedHeap::heap()->n_par_threads() ==
4108           SharedHeap::heap()->workers()->active_workers()), "Mismatch");
4109   int cp = SharedHeap::heap()->strong_roots_parity();
4110   ALL_JAVA_THREADS(p) {
4111     if (p->claim_oops_do(is_par, cp)) {
4112       p->oops_do(f, cld_f, cf);
4113     }
4114   }
4115   VMThread* vmt = VMThread::vm_thread();
4116   if (vmt->claim_oops_do(is_par, cp)) {
4117     vmt->oops_do(f, cld_f, cf);
4118   }
4119 }
4120 
4121 #if INCLUDE_ALL_GCS
4122 // Used by ParallelScavenge
4123 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4124   ALL_JAVA_THREADS(p) {
4125     q->enqueue(new ThreadRootsTask(p));
4126   }
4127   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4128 }
4129 
4130 // Used by Parallel Old
4131 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4132   ALL_JAVA_THREADS(p) {
4133     q->enqueue(new ThreadRootsMarkingTask(p));
4134   }
4135   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4136 }
4137 #endif // INCLUDE_ALL_GCS
4138 
4139 void Threads::nmethods_do(CodeBlobClosure* cf) {
4140   ALL_JAVA_THREADS(p) {
4141     p->nmethods_do(cf);
4142   }
4143   VMThread::vm_thread()->nmethods_do(cf);
4144 }
4145 
4146 void Threads::metadata_do(void f(Metadata*)) {
4147   ALL_JAVA_THREADS(p) {
4148     p->metadata_do(f);
4149   }
4150 }
4151 
4152 void Threads::gc_epilogue() {
4153   ALL_JAVA_THREADS(p) {
4154     p->gc_epilogue();
4155   }
4156 }
4157 
4158 void Threads::gc_prologue() {
4159   ALL_JAVA_THREADS(p) {
4160     p->gc_prologue();
4161   }
4162 }
4163 
4164 void Threads::deoptimized_wrt_marked_nmethods() {
4165   ALL_JAVA_THREADS(p) {
4166     p->deoptimized_wrt_marked_nmethods();
4167   }
4168 }
4169 
4170 
4171 // Get count Java threads that are waiting to enter the specified monitor.
4172 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4173   address monitor, bool doLock) {
4174   assert(doLock || SafepointSynchronize::is_at_safepoint(),
4175     "must grab Threads_lock or be at safepoint");
4176   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4177 
4178   int i = 0;
4179   {
4180     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4181     ALL_JAVA_THREADS(p) {
4182       if (p->is_Compiler_thread()) continue;
4183 
4184       address pending = (address)p->current_pending_monitor();
4185       if (pending == monitor) {             // found a match
4186         if (i < count) result->append(p);   // save the first count matches
4187         i++;
4188       }
4189     }
4190   }
4191   return result;
4192 }
4193 
4194 
4195 JavaThread *Threads::owning_thread_from_monitor_owner(address owner, bool doLock) {
4196   assert(doLock ||
4197          Threads_lock->owned_by_self() ||
4198          SafepointSynchronize::is_at_safepoint(),
4199          "must grab Threads_lock or be at safepoint");
4200 
4201   // NULL owner means not locked so we can skip the search
4202   if (owner == NULL) return NULL;
4203 
4204   {
4205     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4206     ALL_JAVA_THREADS(p) {
4207       // first, see if owner is the address of a Java thread
4208       if (owner == (address)p) return p;
4209     }
4210   }
4211   // Cannot assert on lack of success here since this function may be
4212   // used by code that is trying to report useful problem information
4213   // like deadlock detection.
4214   if (UseHeavyMonitors) return NULL;
4215 
4216   //
4217   // If we didn't find a matching Java thread and we didn't force use of
4218   // heavyweight monitors, then the owner is the stack address of the
4219   // Lock Word in the owning Java thread's stack.
4220   //
4221   JavaThread* the_owner = NULL;
4222   {
4223     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4224     ALL_JAVA_THREADS(q) {
4225       if (q->is_lock_owned(owner)) {
4226         the_owner = q;
4227         break;
4228       }
4229     }
4230   }
4231   // cannot assert on lack of success here; see above comment
4232   return the_owner;
4233 }
4234 
4235 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4236 void Threads::print_on(outputStream* st, bool print_stacks, bool internal_format, bool print_concurrent_locks) {
4237   char buf[32];
4238   st->print_cr("%s", os::local_time_string(buf, sizeof(buf)));
4239 
4240   st->print_cr("Full thread dump %s (%s %s):",
4241                 Abstract_VM_Version::vm_name(),
4242                 Abstract_VM_Version::vm_release(),
4243                 Abstract_VM_Version::vm_info_string()
4244                );
4245   st->cr();
4246 
4247 #if INCLUDE_ALL_GCS
4248   // Dump concurrent locks
4249   ConcurrentLocksDump concurrent_locks;
4250   if (print_concurrent_locks) {
4251     concurrent_locks.dump_at_safepoint();
4252   }
4253 #endif // INCLUDE_ALL_GCS
4254 
4255   ALL_JAVA_THREADS(p) {
4256     ResourceMark rm;
4257     p->print_on(st);
4258     if (print_stacks) {
4259       if (internal_format) {
4260         p->trace_stack();
4261       } else {
4262         p->print_stack_on(st);
4263       }
4264     }
4265     st->cr();
4266 #if INCLUDE_ALL_GCS
4267     if (print_concurrent_locks) {
4268       concurrent_locks.print_locks_on(p, st);
4269     }
4270 #endif // INCLUDE_ALL_GCS
4271   }
4272 
4273   VMThread::vm_thread()->print_on(st);
4274   st->cr();
4275   Universe::heap()->print_gc_threads_on(st);
4276   WatcherThread* wt = WatcherThread::watcher_thread();
4277   if (wt != NULL) {
4278     wt->print_on(st);
4279     st->cr();
4280   }
4281   CompileBroker::print_compiler_threads_on(st);
4282   st->flush();
4283 }
4284 
4285 // Threads::print_on_error() is called by fatal error handler. It's possible
4286 // that VM is not at safepoint and/or current thread is inside signal handler.
4287 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4288 // memory (even in resource area), it might deadlock the error handler.
4289 void Threads::print_on_error(outputStream* st, Thread* current, char* buf, int buflen) {
4290   bool found_current = false;
4291   st->print_cr("Java Threads: ( => current thread )");
4292   ALL_JAVA_THREADS(thread) {
4293     bool is_current = (current == thread);
4294     found_current = found_current || is_current;
4295 
4296     st->print("%s", is_current ? "=>" : "  ");
4297 
4298     st->print(PTR_FORMAT, thread);
4299     st->print(" ");
4300     thread->print_on_error(st, buf, buflen);
4301     st->cr();
4302   }
4303   st->cr();
4304 
4305   st->print_cr("Other Threads:");
4306   if (VMThread::vm_thread()) {
4307     bool is_current = (current == VMThread::vm_thread());
4308     found_current = found_current || is_current;
4309     st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
4310 
4311     st->print(PTR_FORMAT, VMThread::vm_thread());
4312     st->print(" ");
4313     VMThread::vm_thread()->print_on_error(st, buf, buflen);
4314     st->cr();
4315   }
4316   WatcherThread* wt = WatcherThread::watcher_thread();
4317   if (wt != NULL) {
4318     bool is_current = (current == wt);
4319     found_current = found_current || is_current;
4320     st->print("%s", is_current ? "=>" : "  ");
4321 
4322     st->print(PTR_FORMAT, wt);
4323     st->print(" ");
4324     wt->print_on_error(st, buf, buflen);
4325     st->cr();
4326   }
4327   if (!found_current) {
4328     st->cr();
4329     st->print("=>" PTR_FORMAT " (exited) ", current);
4330     current->print_on_error(st, buf, buflen);
4331     st->cr();
4332   }
4333 }
4334 
4335 // Internal SpinLock and Mutex
4336 // Based on ParkEvent
4337 
4338 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4339 //
4340 // We employ SpinLocks _only for low-contention, fixed-length
4341 // short-duration critical sections where we're concerned
4342 // about native mutex_t or HotSpot Mutex:: latency.
4343 // The mux construct provides a spin-then-block mutual exclusion
4344 // mechanism.
4345 //
4346 // Testing has shown that contention on the ListLock guarding gFreeList
4347 // is common.  If we implement ListLock as a simple SpinLock it's common
4348 // for the JVM to devolve to yielding with little progress.  This is true
4349 // despite the fact that the critical sections protected by ListLock are
4350 // extremely short.
4351 //
4352 // TODO-FIXME: ListLock should be of type SpinLock.
4353 // We should make this a 1st-class type, integrated into the lock
4354 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4355 // should have sufficient padding to avoid false-sharing and excessive
4356 // cache-coherency traffic.
4357 
4358 
4359 typedef volatile int SpinLockT;
4360 
4361 void Thread::SpinAcquire (volatile int * adr, const char * LockName) {
4362   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4363      return;   // normal fast-path return
4364   }
4365 
4366   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4367   TEVENT(SpinAcquire - ctx);
4368   int ctr = 0;
4369   int Yields = 0;
4370   for (;;) {
4371      while (*adr != 0) {
4372         ++ctr;
4373         if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4374            if (Yields > 5) {
4375              os::naked_short_sleep(1);
4376            } else {
4377              os::naked_yield();
4378              ++Yields;
4379            }
4380         } else {
4381            SpinPause();
4382         }
4383      }
4384      if (Atomic::cmpxchg(1, adr, 0) == 0) return;
4385   }
4386 }
4387 
4388 void Thread::SpinRelease (volatile int * adr) {
4389   assert(*adr != 0, "invariant");
4390   OrderAccess::fence();      // guarantee at least release consistency.
4391   // Roach-motel semantics.
4392   // It's safe if subsequent LDs and STs float "up" into the critical section,
4393   // but prior LDs and STs within the critical section can't be allowed
4394   // to reorder or float past the ST that releases the lock.
4395   // Loads and stores in the critical section - which appear in program
4396   // order before the store that releases the lock - must also appear
4397   // before the store that releases the lock in memory visibility order.
4398   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4399   // the ST of 0 into the lock-word which releases the lock, so fence
4400   // more than covers this on all platforms.
4401   *adr = 0;
4402 }
4403 
4404 // muxAcquire and muxRelease:
4405 //
4406 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4407 //    The LSB of the word is set IFF the lock is held.
4408 //    The remainder of the word points to the head of a singly-linked list
4409 //    of threads blocked on the lock.
4410 //
4411 // *  The current implementation of muxAcquire-muxRelease uses its own
4412 //    dedicated Thread._MuxEvent instance.  If we're interested in
4413 //    minimizing the peak number of extant ParkEvent instances then
4414 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4415 //    as certain invariants were satisfied.  Specifically, care would need
4416 //    to be taken with regards to consuming unpark() "permits".
4417 //    A safe rule of thumb is that a thread would never call muxAcquire()
4418 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4419 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4420 //    consume an unpark() permit intended for monitorenter, for instance.
4421 //    One way around this would be to widen the restricted-range semaphore
4422 //    implemented in park().  Another alternative would be to provide
4423 //    multiple instances of the PlatformEvent() for each thread.  One
4424 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4425 //
4426 // *  Usage:
4427 //    -- Only as leaf locks
4428 //    -- for short-term locking only as muxAcquire does not perform
4429 //       thread state transitions.
4430 //
4431 // Alternatives:
4432 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4433 //    but with parking or spin-then-park instead of pure spinning.
4434 // *  Use Taura-Oyama-Yonenzawa locks.
4435 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4436 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4437 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4438 //    acquiring threads use timers (ParkTimed) to detect and recover from
4439 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4440 //    boundaries by using placement-new.
4441 // *  Augment MCS with advisory back-link fields maintained with CAS().
4442 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4443 //    The validity of the backlinks must be ratified before we trust the value.
4444 //    If the backlinks are invalid the exiting thread must back-track through the
4445 //    the forward links, which are always trustworthy.
4446 // *  Add a successor indication.  The LockWord is currently encoded as
4447 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4448 //    to provide the usual futile-wakeup optimization.
4449 //    See RTStt for details.
4450 // *  Consider schedctl.sc_nopreempt to cover the critical section.
4451 //
4452 
4453 
4454 typedef volatile intptr_t MutexT;      // Mux Lock-word
4455 enum MuxBits { LOCKBIT = 1 };
4456 
4457 void Thread::muxAcquire (volatile intptr_t * Lock, const char * LockName) {
4458   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4459   if (w == 0) return;
4460   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4461      return;
4462   }
4463 
4464   TEVENT(muxAcquire - Contention);
4465   ParkEvent * const Self = Thread::current()->_MuxEvent;
4466   assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4467   for (;;) {
4468      int its = (os::is_MP() ? 100 : 0) + 1;
4469 
4470      // Optional spin phase: spin-then-park strategy
4471      while (--its >= 0) {
4472        w = *Lock;
4473        if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4474           return;
4475        }
4476      }
4477 
4478      Self->reset();
4479      Self->OnList = intptr_t(Lock);
4480      // The following fence() isn't _strictly necessary as the subsequent
4481      // CAS() both serializes execution and ratifies the fetched *Lock value.
4482      OrderAccess::fence();
4483      for (;;) {
4484         w = *Lock;
4485         if ((w & LOCKBIT) == 0) {
4486             if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4487                 Self->OnList = 0;   // hygiene - allows stronger asserts
4488                 return;
4489             }
4490             continue;      // Interference -- *Lock changed -- Just retry
4491         }
4492         assert(w & LOCKBIT, "invariant");
4493         Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4494         if (Atomic::cmpxchg_ptr(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
4495      }
4496 
4497      while (Self->OnList != 0) {
4498         Self->park();
4499      }
4500   }
4501 }
4502 
4503 void Thread::muxAcquireW (volatile intptr_t * Lock, ParkEvent * ev) {
4504   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4505   if (w == 0) return;
4506   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4507     return;
4508   }
4509 
4510   TEVENT(muxAcquire - Contention);
4511   ParkEvent * ReleaseAfter = NULL;
4512   if (ev == NULL) {
4513     ev = ReleaseAfter = ParkEvent::Allocate(NULL);
4514   }
4515   assert((intptr_t(ev) & LOCKBIT) == 0, "invariant");
4516   for (;;) {
4517     guarantee(ev->OnList == 0, "invariant");
4518     int its = (os::is_MP() ? 100 : 0) + 1;
4519 
4520     // Optional spin phase: spin-then-park strategy
4521     while (--its >= 0) {
4522       w = *Lock;
4523       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4524         if (ReleaseAfter != NULL) {
4525           ParkEvent::Release(ReleaseAfter);
4526         }
4527         return;
4528       }
4529     }
4530 
4531     ev->reset();
4532     ev->OnList = intptr_t(Lock);
4533     // The following fence() isn't _strictly necessary as the subsequent
4534     // CAS() both serializes execution and ratifies the fetched *Lock value.
4535     OrderAccess::fence();
4536     for (;;) {
4537       w = *Lock;
4538       if ((w & LOCKBIT) == 0) {
4539         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4540           ev->OnList = 0;
4541           // We call ::Release while holding the outer lock, thus
4542           // artificially lengthening the critical section.
4543           // Consider deferring the ::Release() until the subsequent unlock(),
4544           // after we've dropped the outer lock.
4545           if (ReleaseAfter != NULL) {
4546             ParkEvent::Release(ReleaseAfter);
4547           }
4548           return;
4549         }
4550         continue;      // Interference -- *Lock changed -- Just retry
4551       }
4552       assert(w & LOCKBIT, "invariant");
4553       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4554       if (Atomic::cmpxchg_ptr(intptr_t(ev)|LOCKBIT, Lock, w) == w) break;
4555     }
4556 
4557     while (ev->OnList != 0) {
4558       ev->park();
4559     }
4560   }
4561 }
4562 
4563 // Release() must extract a successor from the list and then wake that thread.
4564 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4565 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4566 // Release() would :
4567 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4568 // (B) Extract a successor from the private list "in-hand"
4569 // (C) attempt to CAS() the residual back into *Lock over null.
4570 //     If there were any newly arrived threads and the CAS() would fail.
4571 //     In that case Release() would detach the RATs, re-merge the list in-hand
4572 //     with the RATs and repeat as needed.  Alternately, Release() might
4573 //     detach and extract a successor, but then pass the residual list to the wakee.
4574 //     The wakee would be responsible for reattaching and remerging before it
4575 //     competed for the lock.
4576 //
4577 // Both "pop" and DMR are immune from ABA corruption -- there can be
4578 // multiple concurrent pushers, but only one popper or detacher.
4579 // This implementation pops from the head of the list.  This is unfair,
4580 // but tends to provide excellent throughput as hot threads remain hot.
4581 // (We wake recently run threads first).
4582 //
4583 // All paths through muxRelease() will execute a CAS.
4584 // Release consistency -- We depend on the CAS in muxRelease() to provide full
4585 // bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
4586 // executed within the critical section are complete and globally visible before the
4587 // store (CAS) to the lock-word that releases the lock becomes globally visible.
4588 void Thread::muxRelease (volatile intptr_t * Lock)  {
4589   for (;;) {
4590     const intptr_t w = Atomic::cmpxchg_ptr(0, Lock, LOCKBIT);
4591     assert(w & LOCKBIT, "invariant");
4592     if (w == LOCKBIT) return;
4593     ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
4594     assert(List != NULL, "invariant");
4595     assert(List->OnList == intptr_t(Lock), "invariant");
4596     ParkEvent * const nxt = List->ListNext;
4597     guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
4598 
4599     // The following CAS() releases the lock and pops the head element.
4600     // The CAS() also ratifies the previously fetched lock-word value.
4601     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4602       continue;
4603     }
4604     List->OnList = 0;
4605     OrderAccess::fence();
4606     List->unpark();
4607     return;
4608   }
4609 }
4610 
4611 
4612 void Threads::verify() {
4613   ALL_JAVA_THREADS(p) {
4614     p->verify();
4615   }
4616   VMThread* thread = VMThread::vm_thread();
4617   if (thread != NULL) thread->verify();
4618 }