1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "interpreter/bytecode.hpp"
  28 #include "interpreter/interpreter.hpp"
  29 #include "memory/allocation.inline.hpp"
  30 #include "memory/resourceArea.hpp"
  31 #include "memory/universe.inline.hpp"
  32 #include "oops/methodData.hpp"
  33 #include "oops/oop.inline.hpp"
  34 #include "prims/jvmtiThreadState.hpp"
  35 #include "runtime/handles.inline.hpp"
  36 #include "runtime/monitorChunk.hpp"
  37 #include "runtime/sharedRuntime.hpp"
  38 #include "runtime/vframe.hpp"
  39 #include "runtime/vframeArray.hpp"
  40 #include "runtime/vframe_hp.hpp"
  41 #include "utilities/events.hpp"
  42 #ifdef COMPILER2
  43 #include "opto/runtime.hpp"
  44 #endif
  45 
  46 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  47 
  48 int vframeArrayElement:: bci(void) const { return (_bci == SynchronizationEntryBCI ? 0 : _bci); }
  49 
  50 void vframeArrayElement::free_monitors(JavaThread* jt) {
  51   if (_monitors != NULL) {
  52      MonitorChunk* chunk = _monitors;
  53      _monitors = NULL;
  54      jt->remove_monitor_chunk(chunk);
  55      delete chunk;
  56   }
  57 }
  58 
  59 void vframeArrayElement::fill_in(compiledVFrame* vf) {
  60 
  61 // Copy the information from the compiled vframe to the
  62 // interpreter frame we will be creating to replace vf
  63 
  64   _method = vf->method();
  65   _bci    = vf->raw_bci();
  66   _reexecute = vf->should_reexecute();
  67 
  68   int index;
  69 
  70   // Get the monitors off-stack
  71 
  72   GrowableArray<MonitorInfo*>* list = vf->monitors();
  73   if (list->is_empty()) {
  74     _monitors = NULL;
  75   } else {
  76 
  77     // Allocate monitor chunk
  78     _monitors = new MonitorChunk(list->length());
  79     vf->thread()->add_monitor_chunk(_monitors);
  80 
  81     // Migrate the BasicLocks from the stack to the monitor chunk
  82     for (index = 0; index < list->length(); index++) {
  83       MonitorInfo* monitor = list->at(index);
  84       assert(!monitor->owner_is_scalar_replaced(), "object should be reallocated already");
  85       assert(monitor->owner() == NULL || (!monitor->owner()->is_unlocked() && !monitor->owner()->has_bias_pattern()), "object must be null or locked, and unbiased");
  86       BasicObjectLock* dest = _monitors->at(index);
  87       dest->set_obj(monitor->owner());
  88       monitor->lock()->move_to(monitor->owner(), dest->lock());
  89     }
  90   }
  91 
  92   // Convert the vframe locals and expressions to off stack
  93   // values. Because we will not gc all oops can be converted to
  94   // intptr_t (i.e. a stack slot) and we are fine. This is
  95   // good since we are inside a HandleMark and the oops in our
  96   // collection would go away between packing them here and
  97   // unpacking them in unpack_on_stack.
  98 
  99   // First the locals go off-stack
 100 
 101   // FIXME this seems silly it creates a StackValueCollection
 102   // in order to get the size to then copy them and
 103   // convert the types to intptr_t size slots. Seems like it
 104   // could do it in place... Still uses less memory than the
 105   // old way though
 106 
 107   StackValueCollection *locs = vf->locals();
 108   _locals = new StackValueCollection(locs->size());
 109   for(index = 0; index < locs->size(); index++) {
 110     StackValue* value = locs->at(index);
 111     switch(value->type()) {
 112       case T_OBJECT:
 113         assert(!value->obj_is_scalar_replaced(), "object should be reallocated already");
 114         // preserve object type
 115         _locals->add( new StackValue(cast_from_oop<intptr_t>((value->get_obj()())), T_OBJECT ));
 116         break;
 117       case T_CONFLICT:
 118         // A dead local.  Will be initialized to null/zero.
 119         _locals->add( new StackValue());
 120         break;
 121       case T_INT:
 122         _locals->add( new StackValue(value->get_int()));
 123         break;
 124       default:
 125         ShouldNotReachHere();
 126     }
 127   }
 128 
 129   // Now the expressions off-stack
 130   // Same silliness as above
 131 
 132   StackValueCollection *exprs = vf->expressions();
 133   _expressions = new StackValueCollection(exprs->size());
 134   for(index = 0; index < exprs->size(); index++) {
 135     StackValue* value = exprs->at(index);
 136     switch(value->type()) {
 137       case T_OBJECT:
 138         assert(!value->obj_is_scalar_replaced(), "object should be reallocated already");
 139         // preserve object type
 140         _expressions->add( new StackValue(cast_from_oop<intptr_t>((value->get_obj()())), T_OBJECT ));
 141         break;
 142       case T_CONFLICT:
 143         // A dead stack element.  Will be initialized to null/zero.
 144         // This can occur when the compiler emits a state in which stack
 145         // elements are known to be dead (because of an imminent exception).
 146         _expressions->add( new StackValue());
 147         break;
 148       case T_INT:
 149         _expressions->add( new StackValue(value->get_int()));
 150         break;
 151       default:
 152         ShouldNotReachHere();
 153     }
 154   }
 155 }
 156 
 157 int unpack_counter = 0;
 158 
 159 void vframeArrayElement::unpack_on_stack(int caller_actual_parameters,
 160                                          int callee_parameters,
 161                                          int callee_locals,
 162                                          frame* caller,
 163                                          bool is_top_frame,
 164                                          bool is_bottom_frame,
 165                                          int exec_mode) {
 166   JavaThread* thread = (JavaThread*) Thread::current();
 167 
 168   // Look at bci and decide on bcp and continuation pc
 169   address bcp;
 170   // C++ interpreter doesn't need a pc since it will figure out what to do when it
 171   // begins execution
 172   address pc;
 173   bool use_next_mdp = false; // true if we should use the mdp associated with the next bci
 174                              // rather than the one associated with bcp
 175   if (raw_bci() == SynchronizationEntryBCI) {
 176     // We are deoptimizing while hanging in prologue code for synchronized method
 177     bcp = method()->bcp_from(0); // first byte code
 178     pc  = Interpreter::deopt_entry(vtos, 0); // step = 0 since we don't skip current bytecode
 179   } else if (should_reexecute()) { //reexecute this bytecode
 180     assert(is_top_frame, "reexecute allowed only for the top frame");
 181     bcp = method()->bcp_from(bci());
 182     pc  = Interpreter::deopt_reexecute_entry(method(), bcp);
 183   } else {
 184     bcp = method()->bcp_from(bci());
 185     pc  = Interpreter::deopt_continue_after_entry(method(), bcp, callee_parameters, is_top_frame);
 186     use_next_mdp = true;
 187   }
 188   assert(Bytecodes::is_defined(*bcp), "must be a valid bytecode");
 189 
 190   // Monitorenter and pending exceptions:
 191   //
 192   // For Compiler2, there should be no pending exception when deoptimizing at monitorenter
 193   // because there is no safepoint at the null pointer check (it is either handled explicitly
 194   // or prior to the monitorenter) and asynchronous exceptions are not made "pending" by the
 195   // runtime interface for the slow case (see JRT_ENTRY_FOR_MONITORENTER).  If an asynchronous
 196   // exception was processed, the bytecode pointer would have to be extended one bytecode beyond
 197   // the monitorenter to place it in the proper exception range.
 198   //
 199   // For Compiler1, deoptimization can occur while throwing a NullPointerException at monitorenter,
 200   // in which case bcp should point to the monitorenter since it is within the exception's range.
 201 
 202   assert(*bcp != Bytecodes::_monitorenter || is_top_frame, "a _monitorenter must be a top frame");
 203   assert(thread->deopt_nmethod() != NULL, "nmethod should be known");
 204   guarantee(!(thread->deopt_nmethod()->is_compiled_by_c2() &&
 205               *bcp == Bytecodes::_monitorenter             &&
 206               exec_mode == Deoptimization::Unpack_exception),
 207             "shouldn't get exception during monitorenter");
 208 
 209   int popframe_preserved_args_size_in_bytes = 0;
 210   int popframe_preserved_args_size_in_words = 0;
 211   if (is_top_frame) {
 212     JvmtiThreadState *state = thread->jvmti_thread_state();
 213     if (JvmtiExport::can_pop_frame() &&
 214         (thread->has_pending_popframe() || thread->popframe_forcing_deopt_reexecution())) {
 215       if (thread->has_pending_popframe()) {
 216         // Pop top frame after deoptimization
 217 #ifndef CC_INTERP
 218         pc = Interpreter::remove_activation_preserving_args_entry();
 219 #else
 220         // Do an uncommon trap type entry. c++ interpreter will know
 221         // to pop frame and preserve the args
 222         pc = Interpreter::deopt_entry(vtos, 0);
 223         use_next_mdp = false;
 224 #endif
 225       } else {
 226         // Reexecute invoke in top frame
 227         pc = Interpreter::deopt_entry(vtos, 0);
 228         use_next_mdp = false;
 229         popframe_preserved_args_size_in_bytes = in_bytes(thread->popframe_preserved_args_size());
 230         // Note: the PopFrame-related extension of the expression stack size is done in
 231         // Deoptimization::fetch_unroll_info_helper
 232         popframe_preserved_args_size_in_words = in_words(thread->popframe_preserved_args_size_in_words());
 233       }
 234     } else if (JvmtiExport::can_force_early_return() && state != NULL && state->is_earlyret_pending()) {
 235       // Force early return from top frame after deoptimization
 236 #ifndef CC_INTERP
 237       pc = Interpreter::remove_activation_early_entry(state->earlyret_tos());
 238 #endif
 239     } else {
 240       // Possibly override the previous pc computation of the top (youngest) frame
 241       switch (exec_mode) {
 242       case Deoptimization::Unpack_deopt:
 243         // use what we've got
 244         break;
 245       case Deoptimization::Unpack_exception:
 246         // exception is pending
 247         pc = SharedRuntime::raw_exception_handler_for_return_address(thread, pc);
 248         // [phh] We're going to end up in some handler or other, so it doesn't
 249         // matter what mdp we point to.  See exception_handler_for_exception()
 250         // in interpreterRuntime.cpp.
 251         break;
 252       case Deoptimization::Unpack_uncommon_trap:
 253       case Deoptimization::Unpack_reexecute:
 254         // redo last byte code
 255         pc  = Interpreter::deopt_entry(vtos, 0);
 256         use_next_mdp = false;
 257         break;
 258       default:
 259         ShouldNotReachHere();
 260       }
 261     }
 262   }
 263 
 264   // Setup the interpreter frame
 265 
 266   assert(method() != NULL, "method must exist");
 267   int temps = expressions()->size();
 268 
 269   int locks = monitors() == NULL ? 0 : monitors()->number_of_monitors();
 270 
 271   Interpreter::layout_activation(method(),
 272                                  temps + callee_parameters,
 273                                  popframe_preserved_args_size_in_words,
 274                                  locks,
 275                                  caller_actual_parameters,
 276                                  callee_parameters,
 277                                  callee_locals,
 278                                  caller,
 279                                  iframe(),
 280                                  is_top_frame,
 281                                  is_bottom_frame);
 282 
 283   // Update the pc in the frame object and overwrite the temporary pc
 284   // we placed in the skeletal frame now that we finally know the
 285   // exact interpreter address we should use.
 286 
 287   _frame.patch_pc(thread, pc);
 288 
 289   assert (!method()->is_synchronized() || locks > 0, "synchronized methods must have monitors");
 290 
 291   BasicObjectLock* top = iframe()->interpreter_frame_monitor_begin();
 292   for (int index = 0; index < locks; index++) {
 293     top = iframe()->previous_monitor_in_interpreter_frame(top);
 294     BasicObjectLock* src = _monitors->at(index);
 295     top->set_obj(src->obj());
 296     src->lock()->move_to(src->obj(), top->lock());
 297   }
 298   if (ProfileInterpreter) {
 299     iframe()->interpreter_frame_set_mdx(0); // clear out the mdp.
 300   }
 301   iframe()->interpreter_frame_set_bcx((intptr_t)bcp); // cannot use bcp because frame is not initialized yet
 302   if (ProfileInterpreter) {
 303     MethodData* mdo = method()->method_data();
 304     if (mdo != NULL) {
 305       int bci = iframe()->interpreter_frame_bci();
 306       if (use_next_mdp) ++bci;
 307       address mdp = mdo->bci_to_dp(bci);
 308       iframe()->interpreter_frame_set_mdp(mdp);
 309     }
 310   }
 311 
 312   // Unpack expression stack
 313   // If this is an intermediate frame (i.e. not top frame) then this
 314   // only unpacks the part of the expression stack not used by callee
 315   // as parameters. The callee parameters are unpacked as part of the
 316   // callee locals.
 317   int i;
 318   for(i = 0; i < expressions()->size(); i++) {
 319     StackValue *value = expressions()->at(i);
 320     intptr_t*   addr  = iframe()->interpreter_frame_expression_stack_at(i);
 321     switch(value->type()) {
 322       case T_INT:
 323         *addr = value->get_int();
 324         break;
 325       case T_OBJECT:
 326         *addr = value->get_int(T_OBJECT);
 327         break;
 328       case T_CONFLICT:
 329         // A dead stack slot.  Initialize to null in case it is an oop.
 330         *addr = NULL_WORD;
 331         break;
 332       default:
 333         ShouldNotReachHere();
 334     }
 335   }
 336 
 337 
 338   // Unpack the locals
 339   for(i = 0; i < locals()->size(); i++) {
 340     StackValue *value = locals()->at(i);
 341     intptr_t* addr  = iframe()->interpreter_frame_local_at(i);
 342     switch(value->type()) {
 343       case T_INT:
 344         *addr = value->get_int();
 345         break;
 346       case T_OBJECT:
 347         *addr = value->get_int(T_OBJECT);
 348         break;
 349       case T_CONFLICT:
 350         // A dead location. If it is an oop then we need a NULL to prevent GC from following it
 351         *addr = NULL_WORD;
 352         break;
 353       default:
 354         ShouldNotReachHere();
 355     }
 356   }
 357 
 358   if (is_top_frame && JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) {
 359     // An interpreted frame was popped but it returns to a deoptimized
 360     // frame. The incoming arguments to the interpreted activation
 361     // were preserved in thread-local storage by the
 362     // remove_activation_preserving_args_entry in the interpreter; now
 363     // we put them back into the just-unpacked interpreter frame.
 364     // Note that this assumes that the locals arena grows toward lower
 365     // addresses.
 366     if (popframe_preserved_args_size_in_words != 0) {
 367       void* saved_args = thread->popframe_preserved_args();
 368       assert(saved_args != NULL, "must have been saved by interpreter");
 369 #ifdef ASSERT
 370       assert(popframe_preserved_args_size_in_words <=
 371              iframe()->interpreter_frame_expression_stack_size()*Interpreter::stackElementWords,
 372              "expression stack size should have been extended");
 373 #endif // ASSERT
 374       int top_element = iframe()->interpreter_frame_expression_stack_size()-1;
 375       intptr_t* base;
 376       if (frame::interpreter_frame_expression_stack_direction() < 0) {
 377         base = iframe()->interpreter_frame_expression_stack_at(top_element);
 378       } else {
 379         base = iframe()->interpreter_frame_expression_stack();
 380       }
 381       Copy::conjoint_jbytes(saved_args,
 382                             base,
 383                             popframe_preserved_args_size_in_bytes);
 384       thread->popframe_free_preserved_args();
 385     }
 386   }
 387 
 388 #ifndef PRODUCT
 389   if (TraceDeoptimization && Verbose) {
 390     ttyLocker ttyl;
 391     tty->print_cr("[%d Interpreted Frame]", ++unpack_counter);
 392     iframe()->print_on(tty);
 393     RegisterMap map(thread);
 394     vframe* f = vframe::new_vframe(iframe(), &map, thread);
 395     f->print();
 396 
 397     tty->print_cr("locals size     %d", locals()->size());
 398     tty->print_cr("expression size %d", expressions()->size());
 399 
 400     method()->print_value();
 401     tty->cr();
 402     // method()->print_codes();
 403   } else if (TraceDeoptimization) {
 404     tty->print("     ");
 405     method()->print_value();
 406     Bytecodes::Code code = Bytecodes::java_code_at(method(), bcp);
 407     int bci = method()->bci_from(bcp);
 408     tty->print(" - %s", Bytecodes::name(code));
 409     tty->print(" @ bci %d ", bci);
 410     tty->print_cr("sp = " PTR_FORMAT, iframe()->sp());
 411   }
 412 #endif // PRODUCT
 413 
 414   // The expression stack and locals are in the resource area don't leave
 415   // a dangling pointer in the vframeArray we leave around for debug
 416   // purposes
 417 
 418   _locals = _expressions = NULL;
 419 
 420 }
 421 
 422 int vframeArrayElement::on_stack_size(int callee_parameters,
 423                                       int callee_locals,
 424                                       bool is_top_frame,
 425                                       int popframe_extra_stack_expression_els) const {
 426   assert(method()->max_locals() == locals()->size(), "just checking");
 427   int locks = monitors() == NULL ? 0 : monitors()->number_of_monitors();
 428   int temps = expressions()->size();
 429   return Interpreter::size_activation(method()->max_stack(),
 430                                       temps + callee_parameters,
 431                                       popframe_extra_stack_expression_els,
 432                                       locks,
 433                                       callee_parameters,
 434                                       callee_locals,
 435                                       is_top_frame);
 436 }
 437 
 438 
 439 
 440 vframeArray* vframeArray::allocate(JavaThread* thread, int frame_size, GrowableArray<compiledVFrame*>* chunk,
 441                                    RegisterMap *reg_map, frame sender, frame caller, frame self) {
 442 
 443   // Allocate the vframeArray
 444   vframeArray * result = (vframeArray*) AllocateHeap(sizeof(vframeArray) + // fixed part
 445                                                      sizeof(vframeArrayElement) * (chunk->length() - 1), // variable part
 446                                                      mtCompiler);
 447   result->_frames = chunk->length();
 448   result->_owner_thread = thread;
 449   result->_sender = sender;
 450   result->_caller = caller;
 451   result->_original = self;
 452   result->set_unroll_block(NULL); // initialize it
 453   result->fill_in(thread, frame_size, chunk, reg_map);
 454   return result;
 455 }
 456 
 457 void vframeArray::fill_in(JavaThread* thread,
 458                           int frame_size,
 459                           GrowableArray<compiledVFrame*>* chunk,
 460                           const RegisterMap *reg_map) {
 461   // Set owner first, it is used when adding monitor chunks
 462 
 463   _frame_size = frame_size;
 464   for(int i = 0; i < chunk->length(); i++) {
 465     element(i)->fill_in(chunk->at(i));
 466   }
 467 
 468   // Copy registers for callee-saved registers
 469   if (reg_map != NULL) {
 470     for(int i = 0; i < RegisterMap::reg_count; i++) {
 471 #ifdef AMD64
 472       // The register map has one entry for every int (32-bit value), so
 473       // 64-bit physical registers have two entries in the map, one for
 474       // each half.  Ignore the high halves of 64-bit registers, just like
 475       // frame::oopmapreg_to_location does.
 476       //
 477       // [phh] FIXME: this is a temporary hack!  This code *should* work
 478       // correctly w/o this hack, possibly by changing RegisterMap::pd_location
 479       // in frame_amd64.cpp and the values of the phantom high half registers
 480       // in amd64.ad.
 481       //      if (VMReg::Name(i) < SharedInfo::stack0 && is_even(i)) {
 482         intptr_t* src = (intptr_t*) reg_map->location(VMRegImpl::as_VMReg(i));
 483         _callee_registers[i] = src != NULL ? *src : NULL_WORD;
 484         //      } else {
 485         //      jint* src = (jint*) reg_map->location(VMReg::Name(i));
 486         //      _callee_registers[i] = src != NULL ? *src : NULL_WORD;
 487         //      }
 488 #else
 489       jint* src = (jint*) reg_map->location(VMRegImpl::as_VMReg(i));
 490       _callee_registers[i] = src != NULL ? *src : NULL_WORD;
 491 #endif
 492       if (src == NULL) {
 493         set_location_valid(i, false);
 494       } else {
 495         set_location_valid(i, true);
 496         jint* dst = (jint*) register_location(i);
 497         *dst = *src;
 498       }
 499     }
 500   }
 501 }
 502 
 503 void vframeArray::unpack_to_stack(frame &unpack_frame, int exec_mode, int caller_actual_parameters) {
 504   // stack picture
 505   //   unpack_frame
 506   //   [new interpreter frames ] (frames are skeletal but walkable)
 507   //   caller_frame
 508   //
 509   //  This routine fills in the missing data for the skeletal interpreter frames
 510   //  in the above picture.
 511 
 512   // Find the skeletal interpreter frames to unpack into
 513   JavaThread* THREAD = JavaThread::current();
 514   RegisterMap map(THREAD, false);
 515   // Get the youngest frame we will unpack (last to be unpacked)
 516   frame me = unpack_frame.sender(&map);
 517   int index;
 518   for (index = 0; index < frames(); index++ ) {
 519     *element(index)->iframe() = me;
 520     // Get the caller frame (possibly skeletal)
 521     me = me.sender(&map);
 522   }
 523 
 524   // Do the unpacking of interpreter frames; the frame at index 0 represents the top activation, so it has no callee
 525   // Unpack the frames from the oldest (frames() -1) to the youngest (0)
 526   frame* caller_frame = &me;
 527   for (index = frames() - 1; index >= 0 ; index--) {
 528     vframeArrayElement* elem = element(index);  // caller
 529     int callee_parameters, callee_locals;
 530     if (index == 0) {
 531       callee_parameters = callee_locals = 0;
 532     } else {
 533       methodHandle caller = elem->method();
 534       methodHandle callee = element(index - 1)->method();
 535       Bytecode_invoke inv(caller, elem->bci());
 536       // invokedynamic instructions don't have a class but obviously don't have a MemberName appendix.
 537       // NOTE:  Use machinery here that avoids resolving of any kind.
 538       const bool has_member_arg =
 539           !inv.is_invokedynamic() && MethodHandles::has_member_arg(inv.klass(), inv.name());
 540       callee_parameters = callee->size_of_parameters() + (has_member_arg ? 1 : 0);
 541       callee_locals     = callee->max_locals();
 542     }
 543     elem->unpack_on_stack(caller_actual_parameters,
 544                           callee_parameters,
 545                           callee_locals,
 546                           caller_frame,
 547                           index == 0,
 548                           index == frames() - 1,
 549                           exec_mode);
 550     if (index == frames() - 1) {
 551       Deoptimization::unwind_callee_save_values(elem->iframe(), this);
 552     }
 553     caller_frame = elem->iframe();
 554     caller_actual_parameters = callee_parameters;
 555   }
 556   deallocate_monitor_chunks();
 557 }
 558 
 559 void vframeArray::deallocate_monitor_chunks() {
 560   JavaThread* jt = JavaThread::current();
 561   for (int index = 0; index < frames(); index++ ) {
 562      element(index)->free_monitors(jt);
 563   }
 564 }
 565 
 566 #ifndef PRODUCT
 567 
 568 bool vframeArray::structural_compare(JavaThread* thread, GrowableArray<compiledVFrame*>* chunk) {
 569   if (owner_thread() != thread) return false;
 570   int index = 0;
 571 #if 0 // FIXME can't do this comparison
 572 
 573   // Compare only within vframe array.
 574   for (deoptimizedVFrame* vf = deoptimizedVFrame::cast(vframe_at(first_index())); vf; vf = vf->deoptimized_sender_or_null()) {
 575     if (index >= chunk->length() || !vf->structural_compare(chunk->at(index))) return false;
 576     index++;
 577   }
 578   if (index != chunk->length()) return false;
 579 #endif
 580 
 581   return true;
 582 }
 583 
 584 #endif
 585 
 586 address vframeArray::register_location(int i) const {
 587   assert(0 <= i && i < RegisterMap::reg_count, "index out of bounds");
 588   return (address) & _callee_registers[i];
 589 }
 590 
 591 
 592 #ifndef PRODUCT
 593 
 594 // Printing
 595 
 596 // Note: we cannot have print_on as const, as we allocate inside the method
 597 void vframeArray::print_on_2(outputStream* st)  {
 598   st->print_cr(" - sp: " INTPTR_FORMAT, sp());
 599   st->print(" - thread: ");
 600   Thread::current()->print();
 601   st->print_cr(" - frame size: %d", frame_size());
 602   for (int index = 0; index < frames() ; index++ ) {
 603     element(index)->print(st);
 604   }
 605 }
 606 
 607 void vframeArrayElement::print(outputStream* st) {
 608   st->print_cr(" - interpreter_frame -> sp: " INTPTR_FORMAT, iframe()->sp());
 609 }
 610 
 611 void vframeArray::print_value_on(outputStream* st) const {
 612   st->print_cr("vframeArray [%d] ", frames());
 613 }
 614 
 615 
 616 #endif