1 
   2 /*
   3  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "gc_implementation/parallelScavenge/parallelScavengeHeap.hpp"
  31 #include "gc_implementation/parallelScavenge/psAdaptiveSizePolicy.hpp"
  32 #include "gc_implementation/parallelScavenge/psMarkSweep.hpp"
  33 #include "gc_implementation/parallelScavenge/psMarkSweepDecorator.hpp"
  34 #include "gc_implementation/parallelScavenge/psOldGen.hpp"
  35 #include "gc_implementation/parallelScavenge/psScavenge.hpp"
  36 #include "gc_implementation/parallelScavenge/psYoungGen.hpp"
  37 #include "gc_implementation/shared/gcHeapSummary.hpp"
  38 #include "gc_implementation/shared/gcTimer.hpp"
  39 #include "gc_implementation/shared/gcTrace.hpp"
  40 #include "gc_implementation/shared/gcTraceTime.hpp"
  41 #include "gc_implementation/shared/isGCActiveMark.hpp"
  42 #include "gc_implementation/shared/markSweep.hpp"
  43 #include "gc_implementation/shared/spaceDecorator.hpp"
  44 #include "gc_interface/gcCause.hpp"
  45 #include "memory/gcLocker.inline.hpp"
  46 #include "memory/referencePolicy.hpp"
  47 #include "memory/referenceProcessor.hpp"
  48 #include "oops/oop.inline.hpp"
  49 #include "runtime/biasedLocking.hpp"
  50 #include "runtime/fprofiler.hpp"
  51 #include "runtime/safepoint.hpp"
  52 #include "runtime/vmThread.hpp"
  53 #include "services/management.hpp"
  54 #include "services/memoryService.hpp"
  55 #include "utilities/events.hpp"
  56 #include "utilities/stack.inline.hpp"
  57 
  58 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  59 
  60 elapsedTimer        PSMarkSweep::_accumulated_time;
  61 jlong               PSMarkSweep::_time_of_last_gc   = 0;
  62 CollectorCounters*  PSMarkSweep::_counters = NULL;
  63 
  64 void PSMarkSweep::initialize() {
  65   MemRegion mr = Universe::heap()->reserved_region();
  66   _ref_processor = new ReferenceProcessor(mr);     // a vanilla ref proc
  67   _counters = new CollectorCounters("PSMarkSweep", 1);
  68 }
  69 
  70 // This method contains all heap specific policy for invoking mark sweep.
  71 // PSMarkSweep::invoke_no_policy() will only attempt to mark-sweep-compact
  72 // the heap. It will do nothing further. If we need to bail out for policy
  73 // reasons, scavenge before full gc, or any other specialized behavior, it
  74 // needs to be added here.
  75 //
  76 // Note that this method should only be called from the vm_thread while
  77 // at a safepoint!
  78 //
  79 // Note that the all_soft_refs_clear flag in the collector policy
  80 // may be true because this method can be called without intervening
  81 // activity.  For example when the heap space is tight and full measure
  82 // are being taken to free space.
  83 
  84 void PSMarkSweep::invoke(bool maximum_heap_compaction) {
  85   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
  86   assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
  87   assert(!Universe::heap()->is_gc_active(), "not reentrant");
  88 
  89   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
  90   GCCause::Cause gc_cause = heap->gc_cause();
  91   PSAdaptiveSizePolicy* policy = heap->size_policy();
  92   IsGCActiveMark mark;
  93 
  94   if (ScavengeBeforeFullGC) {
  95     PSScavenge::invoke_no_policy();
  96   }
  97 
  98   const bool clear_all_soft_refs =
  99     heap->collector_policy()->should_clear_all_soft_refs();
 100 
 101   uint count = maximum_heap_compaction ? 1 : MarkSweepAlwaysCompactCount;
 102   UIntFlagSetting flag_setting(MarkSweepAlwaysCompactCount, count);
 103   PSMarkSweep::invoke_no_policy(clear_all_soft_refs || maximum_heap_compaction);
 104 }
 105 
 106 // This method contains no policy. You should probably
 107 // be calling invoke() instead.
 108 bool PSMarkSweep::invoke_no_policy(bool clear_all_softrefs) {
 109   assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
 110   assert(ref_processor() != NULL, "Sanity");
 111 
 112   if (GC_locker::check_active_before_gc()) {
 113     return false;
 114   }
 115 
 116   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 117   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 118   GCCause::Cause gc_cause = heap->gc_cause();
 119 
 120   _gc_timer->register_gc_start();
 121   _gc_tracer->report_gc_start(gc_cause, _gc_timer->gc_start());
 122 
 123   PSAdaptiveSizePolicy* size_policy = heap->size_policy();
 124 
 125   // The scope of casr should end after code that can change
 126   // CollectorPolicy::_should_clear_all_soft_refs.
 127   ClearedAllSoftRefs casr(clear_all_softrefs, heap->collector_policy());
 128 
 129   PSYoungGen* young_gen = heap->young_gen();
 130   PSOldGen* old_gen = heap->old_gen();
 131 
 132   // Increment the invocation count
 133   heap->increment_total_collections(true /* full */);
 134 
 135   // Save information needed to minimize mangling
 136   heap->record_gen_tops_before_GC();
 137 
 138   // We need to track unique mark sweep invocations as well.
 139   _total_invocations++;
 140 
 141   AdaptiveSizePolicyOutput(size_policy, heap->total_collections());
 142 
 143   heap->print_heap_before_gc();
 144   heap->trace_heap_before_gc(_gc_tracer);
 145 
 146   // Fill in TLABs
 147   heap->accumulate_statistics_all_tlabs();
 148   heap->ensure_parsability(true);  // retire TLABs
 149 
 150   if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
 151     HandleMark hm;  // Discard invalid handles created during verification
 152     Universe::verify(" VerifyBeforeGC:");
 153   }
 154 
 155   // Verify object start arrays
 156   if (VerifyObjectStartArray &&
 157       VerifyBeforeGC) {
 158     old_gen->verify_object_start_array();
 159   }
 160 
 161   heap->pre_full_gc_dump(_gc_timer);
 162 
 163   // Filled in below to track the state of the young gen after the collection.
 164   bool eden_empty;
 165   bool survivors_empty;
 166   bool young_gen_empty;
 167 
 168   {
 169     HandleMark hm;
 170 
 171     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
 172     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
 173     GCTraceTime t1(GCCauseString("Full GC", gc_cause), PrintGC, !PrintGCDetails, NULL, _gc_tracer->gc_id());
 174     TraceCollectorStats tcs(counters());
 175     TraceMemoryManagerStats tms(true /* Full GC */,gc_cause);
 176 
 177     if (TraceOldGenTime) accumulated_time()->start();
 178 
 179     // Let the size policy know we're starting
 180     size_policy->major_collection_begin();
 181 
 182     CodeCache::gc_prologue();
 183     Threads::gc_prologue();
 184     BiasedLocking::preserve_marks();
 185 
 186     // Capture heap size before collection for printing.
 187     size_t prev_used = heap->used();
 188 
 189     // Capture metadata size before collection for sizing.
 190     size_t metadata_prev_used = MetaspaceAux::used_bytes();
 191 
 192     // For PrintGCDetails
 193     size_t old_gen_prev_used = old_gen->used_in_bytes();
 194     size_t young_gen_prev_used = young_gen->used_in_bytes();
 195 
 196     allocate_stacks();
 197 
 198     COMPILER2_PRESENT(DerivedPointerTable::clear());
 199 
 200     ref_processor()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
 201     ref_processor()->setup_policy(clear_all_softrefs);
 202 
 203     mark_sweep_phase1(clear_all_softrefs);
 204 
 205     mark_sweep_phase2();
 206 
 207     // Don't add any more derived pointers during phase3
 208     COMPILER2_PRESENT(assert(DerivedPointerTable::is_active(), "Sanity"));
 209     COMPILER2_PRESENT(DerivedPointerTable::set_active(false));
 210 
 211     mark_sweep_phase3();
 212 
 213     mark_sweep_phase4();
 214 
 215     restore_marks();
 216 
 217     deallocate_stacks();
 218 
 219     if (ZapUnusedHeapArea) {
 220       // Do a complete mangle (top to end) because the usage for
 221       // scratch does not maintain a top pointer.
 222       young_gen->to_space()->mangle_unused_area_complete();
 223     }
 224 
 225     eden_empty = young_gen->eden_space()->is_empty();
 226     if (!eden_empty) {
 227       eden_empty = absorb_live_data_from_eden(size_policy, young_gen, old_gen);
 228     }
 229 
 230     // Update heap occupancy information which is used as
 231     // input to soft ref clearing policy at the next gc.
 232     Universe::update_heap_info_at_gc();
 233 
 234     survivors_empty = young_gen->from_space()->is_empty() &&
 235                       young_gen->to_space()->is_empty();
 236     young_gen_empty = eden_empty && survivors_empty;
 237 
 238     BarrierSet* bs = heap->barrier_set();
 239     if (bs->is_a(BarrierSet::ModRef)) {
 240       ModRefBarrierSet* modBS = (ModRefBarrierSet*)bs;
 241       MemRegion old_mr = heap->old_gen()->reserved();
 242       if (young_gen_empty) {
 243         modBS->clear(MemRegion(old_mr.start(), old_mr.end()));
 244       } else {
 245         modBS->invalidate(MemRegion(old_mr.start(), old_mr.end()));
 246       }
 247     }
 248 
 249     // Delete metaspaces for unloaded class loaders and clean up loader_data graph
 250     ClassLoaderDataGraph::purge();
 251     MetaspaceAux::verify_metrics();
 252 
 253     BiasedLocking::restore_marks();
 254     Threads::gc_epilogue();
 255     CodeCache::gc_epilogue();
 256     JvmtiExport::gc_epilogue();
 257 
 258     COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
 259 
 260     ref_processor()->enqueue_discovered_references(NULL);
 261 
 262     // Update time of last GC
 263     reset_millis_since_last_gc();
 264 
 265     // Let the size policy know we're done
 266     size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause);
 267 
 268     if (UseAdaptiveSizePolicy) {
 269 
 270       if (PrintAdaptiveSizePolicy) {
 271         gclog_or_tty->print("AdaptiveSizeStart: ");
 272         gclog_or_tty->stamp();
 273         gclog_or_tty->print_cr(" collection: %d ",
 274                        heap->total_collections());
 275         if (Verbose) {
 276           gclog_or_tty->print("old_gen_capacity: " SIZE_FORMAT
 277             " young_gen_capacity: " SIZE_FORMAT,
 278             old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes());
 279         }
 280       }
 281 
 282       // Don't check if the size_policy is ready here.  Let
 283       // the size_policy check that internally.
 284       if (UseAdaptiveGenerationSizePolicyAtMajorCollection &&
 285           ((gc_cause != GCCause::_java_lang_system_gc) ||
 286             UseAdaptiveSizePolicyWithSystemGC)) {
 287         // Swap the survivor spaces if from_space is empty. The
 288         // resize_young_gen() called below is normally used after
 289         // a successful young GC and swapping of survivor spaces;
 290         // otherwise, it will fail to resize the young gen with
 291         // the current implementation.
 292         if (young_gen->from_space()->is_empty()) {
 293           young_gen->from_space()->clear(SpaceDecorator::Mangle);
 294           young_gen->swap_spaces();
 295         }
 296 
 297         // Calculate optimal free space amounts
 298         assert(young_gen->max_size() >
 299           young_gen->from_space()->capacity_in_bytes() +
 300           young_gen->to_space()->capacity_in_bytes(),
 301           "Sizes of space in young gen are out-of-bounds");
 302 
 303         size_t young_live = young_gen->used_in_bytes();
 304         size_t eden_live = young_gen->eden_space()->used_in_bytes();
 305         size_t old_live = old_gen->used_in_bytes();
 306         size_t cur_eden = young_gen->eden_space()->capacity_in_bytes();
 307         size_t max_old_gen_size = old_gen->max_gen_size();
 308         size_t max_eden_size = young_gen->max_size() -
 309           young_gen->from_space()->capacity_in_bytes() -
 310           young_gen->to_space()->capacity_in_bytes();
 311 
 312         // Used for diagnostics
 313         size_policy->clear_generation_free_space_flags();
 314 
 315         size_policy->compute_generations_free_space(young_live,
 316                                                     eden_live,
 317                                                     old_live,
 318                                                     cur_eden,
 319                                                     max_old_gen_size,
 320                                                     max_eden_size,
 321                                                     true /* full gc*/);
 322 
 323         size_policy->check_gc_overhead_limit(young_live,
 324                                              eden_live,
 325                                              max_old_gen_size,
 326                                              max_eden_size,
 327                                              true /* full gc*/,
 328                                              gc_cause,
 329                                              heap->collector_policy());
 330 
 331         size_policy->decay_supplemental_growth(true /* full gc*/);
 332 
 333         heap->resize_old_gen(size_policy->calculated_old_free_size_in_bytes());
 334 
 335         heap->resize_young_gen(size_policy->calculated_eden_size_in_bytes(),
 336                                size_policy->calculated_survivor_size_in_bytes());
 337       }
 338       if (PrintAdaptiveSizePolicy) {
 339         gclog_or_tty->print_cr("AdaptiveSizeStop: collection: %d ",
 340                        heap->total_collections());
 341       }
 342     }
 343 
 344     if (UsePerfData) {
 345       heap->gc_policy_counters()->update_counters();
 346       heap->gc_policy_counters()->update_old_capacity(
 347         old_gen->capacity_in_bytes());
 348       heap->gc_policy_counters()->update_young_capacity(
 349         young_gen->capacity_in_bytes());
 350     }
 351 
 352     heap->resize_all_tlabs();
 353 
 354     // We collected the heap, recalculate the metaspace capacity
 355     MetaspaceGC::compute_new_size();
 356 
 357     if (TraceOldGenTime) accumulated_time()->stop();
 358 
 359     if (PrintGC) {
 360       if (PrintGCDetails) {
 361         // Don't print a GC timestamp here.  This is after the GC so
 362         // would be confusing.
 363         young_gen->print_used_change(young_gen_prev_used);
 364         old_gen->print_used_change(old_gen_prev_used);
 365       }
 366       heap->print_heap_change(prev_used);
 367       if (PrintGCDetails) {
 368         MetaspaceAux::print_metaspace_change(metadata_prev_used);
 369       }
 370     }
 371 
 372     // Track memory usage and detect low memory
 373     MemoryService::track_memory_usage();
 374     heap->update_counters();
 375   }
 376 
 377   if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
 378     HandleMark hm;  // Discard invalid handles created during verification
 379     Universe::verify(" VerifyAfterGC:");
 380   }
 381 
 382   // Re-verify object start arrays
 383   if (VerifyObjectStartArray &&
 384       VerifyAfterGC) {
 385     old_gen->verify_object_start_array();
 386   }
 387 
 388   if (ZapUnusedHeapArea) {
 389     old_gen->object_space()->check_mangled_unused_area_complete();
 390   }
 391 
 392   NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
 393 
 394   heap->print_heap_after_gc();
 395   heap->trace_heap_after_gc(_gc_tracer);
 396 
 397   heap->post_full_gc_dump(_gc_timer);
 398 
 399 #ifdef TRACESPINNING
 400   ParallelTaskTerminator::print_termination_counts();
 401 #endif
 402 
 403   _gc_timer->register_gc_end();
 404 
 405   _gc_tracer->report_gc_end(_gc_timer->gc_end(), _gc_timer->time_partitions());
 406 
 407   return true;
 408 }
 409 
 410 bool PSMarkSweep::absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
 411                                              PSYoungGen* young_gen,
 412                                              PSOldGen* old_gen) {
 413   MutableSpace* const eden_space = young_gen->eden_space();
 414   assert(!eden_space->is_empty(), "eden must be non-empty");
 415   assert(young_gen->virtual_space()->alignment() ==
 416          old_gen->virtual_space()->alignment(), "alignments do not match");
 417 
 418   if (!(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary)) {
 419     return false;
 420   }
 421 
 422   // Both generations must be completely committed.
 423   if (young_gen->virtual_space()->uncommitted_size() != 0) {
 424     return false;
 425   }
 426   if (old_gen->virtual_space()->uncommitted_size() != 0) {
 427     return false;
 428   }
 429 
 430   // Figure out how much to take from eden.  Include the average amount promoted
 431   // in the total; otherwise the next young gen GC will simply bail out to a
 432   // full GC.
 433   const size_t alignment = old_gen->virtual_space()->alignment();
 434   const size_t eden_used = eden_space->used_in_bytes();
 435   const size_t promoted = (size_t)size_policy->avg_promoted()->padded_average();
 436   const size_t absorb_size = align_size_up(eden_used + promoted, alignment);
 437   const size_t eden_capacity = eden_space->capacity_in_bytes();
 438 
 439   if (absorb_size >= eden_capacity) {
 440     return false; // Must leave some space in eden.
 441   }
 442 
 443   const size_t new_young_size = young_gen->capacity_in_bytes() - absorb_size;
 444   if (new_young_size < young_gen->min_gen_size()) {
 445     return false; // Respect young gen minimum size.
 446   }
 447 
 448   if (TraceAdaptiveGCBoundary && Verbose) {
 449     gclog_or_tty->print(" absorbing " SIZE_FORMAT "K:  "
 450                         "eden " SIZE_FORMAT "K->" SIZE_FORMAT "K "
 451                         "from " SIZE_FORMAT "K, to " SIZE_FORMAT "K "
 452                         "young_gen " SIZE_FORMAT "K->" SIZE_FORMAT "K ",
 453                         absorb_size / K,
 454                         eden_capacity / K, (eden_capacity - absorb_size) / K,
 455                         young_gen->from_space()->used_in_bytes() / K,
 456                         young_gen->to_space()->used_in_bytes() / K,
 457                         young_gen->capacity_in_bytes() / K, new_young_size / K);
 458   }
 459 
 460   // Fill the unused part of the old gen.
 461   MutableSpace* const old_space = old_gen->object_space();
 462   HeapWord* const unused_start = old_space->top();
 463   size_t const unused_words = pointer_delta(old_space->end(), unused_start);
 464 
 465   if (unused_words > 0) {
 466     if (unused_words < CollectedHeap::min_fill_size()) {
 467       return false;  // If the old gen cannot be filled, must give up.
 468     }
 469     CollectedHeap::fill_with_objects(unused_start, unused_words);
 470   }
 471 
 472   // Take the live data from eden and set both top and end in the old gen to
 473   // eden top.  (Need to set end because reset_after_change() mangles the region
 474   // from end to virtual_space->high() in debug builds).
 475   HeapWord* const new_top = eden_space->top();
 476   old_gen->virtual_space()->expand_into(young_gen->virtual_space(),
 477                                         absorb_size);
 478   young_gen->reset_after_change();
 479   old_space->set_top(new_top);
 480   old_space->set_end(new_top);
 481   old_gen->reset_after_change();
 482 
 483   // Update the object start array for the filler object and the data from eden.
 484   ObjectStartArray* const start_array = old_gen->start_array();
 485   for (HeapWord* p = unused_start; p < new_top; p += oop(p)->size()) {
 486     start_array->allocate_block(p);
 487   }
 488 
 489   // Could update the promoted average here, but it is not typically updated at
 490   // full GCs and the value to use is unclear.  Something like
 491   //
 492   // cur_promoted_avg + absorb_size / number_of_scavenges_since_last_full_gc.
 493 
 494   size_policy->set_bytes_absorbed_from_eden(absorb_size);
 495   return true;
 496 }
 497 
 498 void PSMarkSweep::allocate_stacks() {
 499   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 500   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 501 
 502   PSYoungGen* young_gen = heap->young_gen();
 503 
 504   MutableSpace* to_space = young_gen->to_space();
 505   _preserved_marks = (PreservedMark*)to_space->top();
 506   _preserved_count = 0;
 507 
 508   // We want to calculate the size in bytes first.
 509   _preserved_count_max  = pointer_delta(to_space->end(), to_space->top(), sizeof(jbyte));
 510   // Now divide by the size of a PreservedMark
 511   _preserved_count_max /= sizeof(PreservedMark);
 512 }
 513 
 514 
 515 void PSMarkSweep::deallocate_stacks() {
 516   _preserved_mark_stack.clear(true);
 517   _preserved_oop_stack.clear(true);
 518   _marking_stack.clear();
 519   _objarray_stack.clear(true);
 520 }
 521 
 522 void PSMarkSweep::mark_sweep_phase1(bool clear_all_softrefs) {
 523   // Recursively traverse all live objects and mark them
 524   GCTraceTime tm("phase 1", PrintGCDetails && Verbose, true, _gc_timer, _gc_tracer->gc_id());
 525   trace(" 1");
 526 
 527   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 528   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 529 
 530   // Need to clear claim bits before the tracing starts.
 531   ClassLoaderDataGraph::clear_claimed_marks();
 532 
 533   // General strong roots.
 534   {
 535     ParallelScavengeHeap::ParStrongRootsScope psrs;
 536     Universe::oops_do(mark_and_push_closure());
 537     JNIHandles::oops_do(mark_and_push_closure());   // Global (strong) JNI handles
 538     CLDToOopClosure mark_and_push_from_cld(mark_and_push_closure());
 539     MarkingCodeBlobClosure each_active_code_blob(mark_and_push_closure(), !CodeBlobToOopClosure::FixRelocations);
 540     Threads::oops_do(mark_and_push_closure(), &mark_and_push_from_cld, &each_active_code_blob);
 541     ObjectSynchronizer::oops_do(mark_and_push_closure());
 542     FlatProfiler::oops_do(mark_and_push_closure());
 543     Management::oops_do(mark_and_push_closure());
 544     JvmtiExport::oops_do(mark_and_push_closure());
 545     SystemDictionary::always_strong_oops_do(mark_and_push_closure());
 546     ClassLoaderDataGraph::always_strong_cld_do(follow_cld_closure());
 547     // Do not treat nmethods as strong roots for mark/sweep, since we can unload them.
 548     //CodeCache::scavenge_root_nmethods_do(CodeBlobToOopClosure(mark_and_push_closure()));
 549   }
 550 
 551   // Flush marking stack.
 552   follow_stack();
 553 
 554   // Process reference objects found during marking
 555   {
 556     ref_processor()->setup_policy(clear_all_softrefs);
 557     const ReferenceProcessorStats& stats =
 558       ref_processor()->process_discovered_references(
 559         is_alive_closure(), mark_and_push_closure(), follow_stack_closure(), NULL, _gc_timer, _gc_tracer->gc_id());
 560     gc_tracer()->report_gc_reference_stats(stats);
 561   }
 562 
 563   // This is the point where the entire marking should have completed.
 564   assert(_marking_stack.is_empty(), "Marking should have completed");
 565 
 566   // Unload classes and purge the SystemDictionary.
 567   bool purged_class = SystemDictionary::do_unloading(is_alive_closure());
 568 
 569   // Unload nmethods.
 570   CodeCache::do_unloading(is_alive_closure(), purged_class);
 571 
 572   // Prune dead klasses from subklass/sibling/implementor lists.
 573   Klass::clean_weak_klass_links(is_alive_closure());
 574 
 575   // Delete entries for dead interned strings.
 576   StringTable::unlink(is_alive_closure());
 577 
 578   // Clean up unreferenced symbols in symbol table.
 579   SymbolTable::unlink();
 580   _gc_tracer->report_object_count_after_gc(is_alive_closure());
 581 }
 582 
 583 
 584 void PSMarkSweep::mark_sweep_phase2() {
 585   GCTraceTime tm("phase 2", PrintGCDetails && Verbose, true, _gc_timer, _gc_tracer->gc_id());
 586   trace("2");
 587 
 588   // Now all live objects are marked, compute the new object addresses.
 589 
 590   // It is not required that we traverse spaces in the same order in
 591   // phase2, phase3 and phase4, but the ValidateMarkSweep live oops
 592   // tracking expects us to do so. See comment under phase4.
 593 
 594   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 595   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 596 
 597   PSOldGen* old_gen = heap->old_gen();
 598 
 599   // Begin compacting into the old gen
 600   PSMarkSweepDecorator::set_destination_decorator_tenured();
 601 
 602   // This will also compact the young gen spaces.
 603   old_gen->precompact();
 604 }
 605 
 606 // This should be moved to the shared markSweep code!
 607 class PSAlwaysTrueClosure: public BoolObjectClosure {
 608 public:
 609   bool do_object_b(oop p) { return true; }
 610 };
 611 static PSAlwaysTrueClosure always_true;
 612 
 613 void PSMarkSweep::mark_sweep_phase3() {
 614   // Adjust the pointers to reflect the new locations
 615   GCTraceTime tm("phase 3", PrintGCDetails && Verbose, true, _gc_timer, _gc_tracer->gc_id());
 616   trace("3");
 617 
 618   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 619   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 620 
 621   PSYoungGen* young_gen = heap->young_gen();
 622   PSOldGen* old_gen = heap->old_gen();
 623 
 624   // Need to clear claim bits before the tracing starts.
 625   ClassLoaderDataGraph::clear_claimed_marks();
 626 
 627   // General strong roots.
 628   Universe::oops_do(adjust_pointer_closure());
 629   JNIHandles::oops_do(adjust_pointer_closure());   // Global (strong) JNI handles
 630   CLDToOopClosure adjust_from_cld(adjust_pointer_closure());
 631   Threads::oops_do(adjust_pointer_closure(), &adjust_from_cld, NULL);
 632   ObjectSynchronizer::oops_do(adjust_pointer_closure());
 633   FlatProfiler::oops_do(adjust_pointer_closure());
 634   Management::oops_do(adjust_pointer_closure());
 635   JvmtiExport::oops_do(adjust_pointer_closure());
 636   SystemDictionary::oops_do(adjust_pointer_closure());
 637   ClassLoaderDataGraph::cld_do(adjust_cld_closure());
 638 
 639   // Now adjust pointers in remaining weak roots.  (All of which should
 640   // have been cleared if they pointed to non-surviving objects.)
 641   // Global (weak) JNI handles
 642   JNIHandles::weak_oops_do(&always_true, adjust_pointer_closure());
 643 
 644   CodeBlobToOopClosure adjust_from_blobs(adjust_pointer_closure(), CodeBlobToOopClosure::FixRelocations);
 645   CodeCache::blobs_do(&adjust_from_blobs);
 646   StringTable::oops_do(adjust_pointer_closure());
 647   ref_processor()->weak_oops_do(adjust_pointer_closure());
 648   PSScavenge::reference_processor()->weak_oops_do(adjust_pointer_closure());
 649 
 650   adjust_marks();
 651 
 652   young_gen->adjust_pointers();
 653   old_gen->adjust_pointers();
 654 }
 655 
 656 void PSMarkSweep::mark_sweep_phase4() {
 657   EventMark m("4 compact heap");
 658   GCTraceTime tm("phase 4", PrintGCDetails && Verbose, true, _gc_timer, _gc_tracer->gc_id());
 659   trace("4");
 660 
 661   // All pointers are now adjusted, move objects accordingly
 662 
 663   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 664   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 665 
 666   PSYoungGen* young_gen = heap->young_gen();
 667   PSOldGen* old_gen = heap->old_gen();
 668 
 669   old_gen->compact();
 670   young_gen->compact();
 671 }
 672 
 673 jlong PSMarkSweep::millis_since_last_gc() {
 674   // We need a monotonically non-decreasing time in ms but
 675   // os::javaTimeMillis() does not guarantee monotonicity.
 676   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
 677   jlong ret_val = now - _time_of_last_gc;
 678   // XXX See note in genCollectedHeap::millis_since_last_gc().
 679   if (ret_val < 0) {
 680     NOT_PRODUCT(warning("time warp: "INT64_FORMAT, ret_val);)
 681     return 0;
 682   }
 683   return ret_val;
 684 }
 685 
 686 void PSMarkSweep::reset_millis_since_last_gc() {
 687   // We need a monotonically non-decreasing time in ms but
 688   // os::javaTimeMillis() does not guarantee monotonicity.
 689   _time_of_last_gc = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
 690 }