1 /*
   2  * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_linux.h"
  35 #include "memory/allocation.inline.hpp"
  36 #include "memory/filemap.hpp"
  37 #include "mutex_linux.inline.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_linux.inline.hpp"
  40 #include "os_share_linux.hpp"
  41 #include "prims/jniFastGetField.hpp"
  42 #include "prims/jvm.h"
  43 #include "prims/jvm_misc.hpp"
  44 #include "runtime/arguments.hpp"
  45 #include "runtime/atomic.inline.hpp"
  46 #include "runtime/extendedPC.hpp"
  47 #include "runtime/globals.hpp"
  48 #include "runtime/interfaceSupport.hpp"
  49 #include "runtime/init.hpp"
  50 #include "runtime/java.hpp"
  51 #include "runtime/javaCalls.hpp"
  52 #include "runtime/mutexLocker.hpp"
  53 #include "runtime/objectMonitor.hpp"
  54 #include "runtime/orderAccess.inline.hpp"
  55 #include "runtime/osThread.hpp"
  56 #include "runtime/perfMemory.hpp"
  57 #include "runtime/sharedRuntime.hpp"
  58 #include "runtime/statSampler.hpp"
  59 #include "runtime/stubRoutines.hpp"
  60 #include "runtime/thread.inline.hpp"
  61 #include "runtime/threadCritical.hpp"
  62 #include "runtime/timer.hpp"
  63 #include "semaphore_posix.hpp"
  64 #include "services/attachListener.hpp"
  65 #include "services/memTracker.hpp"
  66 #include "services/runtimeService.hpp"
  67 #include "utilities/decoder.hpp"
  68 #include "utilities/defaultStream.hpp"
  69 #include "utilities/events.hpp"
  70 #include "utilities/elfFile.hpp"
  71 #include "utilities/growableArray.hpp"
  72 #include "utilities/macros.hpp"
  73 #include "utilities/vmError.hpp"
  74 
  75 // put OS-includes here
  76 # include <sys/types.h>
  77 # include <sys/mman.h>
  78 # include <sys/stat.h>
  79 # include <sys/select.h>
  80 # include <pthread.h>
  81 # include <signal.h>
  82 # include <errno.h>
  83 # include <dlfcn.h>
  84 # include <stdio.h>
  85 # include <unistd.h>
  86 # include <sys/resource.h>
  87 # include <pthread.h>
  88 # include <sys/stat.h>
  89 # include <sys/time.h>
  90 # include <sys/times.h>
  91 # include <sys/utsname.h>
  92 # include <sys/socket.h>
  93 # include <sys/wait.h>
  94 # include <pwd.h>
  95 # include <poll.h>
  96 # include <semaphore.h>
  97 # include <fcntl.h>
  98 # include <string.h>
  99 # include <syscall.h>
 100 # include <sys/sysinfo.h>
 101 # include <gnu/libc-version.h>
 102 # include <sys/ipc.h>
 103 # include <sys/shm.h>
 104 # include <link.h>
 105 # include <stdint.h>
 106 # include <inttypes.h>
 107 # include <sys/ioctl.h>
 108 
 109 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
 110 
 111 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 112 // getrusage() is prepared to handle the associated failure.
 113 #ifndef RUSAGE_THREAD
 114   #define RUSAGE_THREAD   (1)               /* only the calling thread */
 115 #endif
 116 
 117 #define MAX_PATH    (2 * K)
 118 
 119 #define MAX_SECS 100000000
 120 
 121 // for timer info max values which include all bits
 122 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 123 
 124 #define LARGEPAGES_BIT (1 << 6)
 125 ////////////////////////////////////////////////////////////////////////////////
 126 // global variables
 127 julong os::Linux::_physical_memory = 0;
 128 
 129 address   os::Linux::_initial_thread_stack_bottom = NULL;
 130 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 131 
 132 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 133 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 134 int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
 135 Mutex* os::Linux::_createThread_lock = NULL;
 136 pthread_t os::Linux::_main_thread;
 137 int os::Linux::_page_size = -1;
 138 const int os::Linux::_vm_default_page_size = (8 * K);
 139 bool os::Linux::_supports_fast_thread_cpu_time = false;
 140 const char * os::Linux::_glibc_version = NULL;
 141 const char * os::Linux::_libpthread_version = NULL;
 142 pthread_condattr_t os::Linux::_condattr[1];
 143 
 144 static jlong initial_time_count=0;
 145 
 146 static int clock_tics_per_sec = 100;
 147 
 148 // For diagnostics to print a message once. see run_periodic_checks
 149 static sigset_t check_signal_done;
 150 static bool check_signals = true;
 151 
 152 // Signal number used to suspend/resume a thread
 153 
 154 // do not use any signal number less than SIGSEGV, see 4355769
 155 static int SR_signum = SIGUSR2;
 156 sigset_t SR_sigset;
 157 
 158 // Declarations
 159 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
 160 
 161 // utility functions
 162 
 163 static int SR_initialize();
 164 
 165 julong os::available_memory() {
 166   return Linux::available_memory();
 167 }
 168 
 169 julong os::Linux::available_memory() {
 170   // values in struct sysinfo are "unsigned long"
 171   struct sysinfo si;
 172   sysinfo(&si);
 173 
 174   return (julong)si.freeram * si.mem_unit;
 175 }
 176 
 177 julong os::physical_memory() {
 178   return Linux::physical_memory();
 179 }
 180 
 181 // Return true if user is running as root.
 182 
 183 bool os::have_special_privileges() {
 184   static bool init = false;
 185   static bool privileges = false;
 186   if (!init) {
 187     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 188     init = true;
 189   }
 190   return privileges;
 191 }
 192 
 193 
 194 #ifndef SYS_gettid
 195 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 196   #ifdef __ia64__
 197     #define SYS_gettid 1105
 198   #else
 199     #ifdef __i386__
 200       #define SYS_gettid 224
 201     #else
 202       #ifdef __amd64__
 203         #define SYS_gettid 186
 204       #else
 205         #ifdef __sparc__
 206           #define SYS_gettid 143
 207         #else
 208           #error define gettid for the arch
 209         #endif
 210       #endif
 211     #endif
 212   #endif
 213 #endif
 214 
 215 // Cpu architecture string
 216 static char cpu_arch[] = HOTSPOT_LIB_ARCH;
 217 
 218 
 219 // pid_t gettid()
 220 //
 221 // Returns the kernel thread id of the currently running thread. Kernel
 222 // thread id is used to access /proc.
 223 pid_t os::Linux::gettid() {
 224   int rslt = syscall(SYS_gettid);
 225   assert(rslt != -1, "must be."); // old linuxthreads implementation?
 226   return (pid_t)rslt;
 227 }
 228 
 229 // Most versions of linux have a bug where the number of processors are
 230 // determined by looking at the /proc file system.  In a chroot environment,
 231 // the system call returns 1.  This causes the VM to act as if it is
 232 // a single processor and elide locking (see is_MP() call).
 233 static bool unsafe_chroot_detected = false;
 234 static const char *unstable_chroot_error = "/proc file system not found.\n"
 235                      "Java may be unstable running multithreaded in a chroot "
 236                      "environment on Linux when /proc filesystem is not mounted.";
 237 
 238 void os::Linux::initialize_system_info() {
 239   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 240   if (processor_count() == 1) {
 241     pid_t pid = os::Linux::gettid();
 242     char fname[32];
 243     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 244     FILE *fp = fopen(fname, "r");
 245     if (fp == NULL) {
 246       unsafe_chroot_detected = true;
 247     } else {
 248       fclose(fp);
 249     }
 250   }
 251   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 252   assert(processor_count() > 0, "linux error");
 253 }
 254 
 255 void os::init_system_properties_values() {
 256   // The next steps are taken in the product version:
 257   //
 258   // Obtain the JAVA_HOME value from the location of libjvm.so.
 259   // This library should be located at:
 260   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
 261   //
 262   // If "/jre/lib/" appears at the right place in the path, then we
 263   // assume libjvm.so is installed in a JDK and we use this path.
 264   //
 265   // Otherwise exit with message: "Could not create the Java virtual machine."
 266   //
 267   // The following extra steps are taken in the debugging version:
 268   //
 269   // If "/jre/lib/" does NOT appear at the right place in the path
 270   // instead of exit check for $JAVA_HOME environment variable.
 271   //
 272   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 273   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 274   // it looks like libjvm.so is installed there
 275   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 276   //
 277   // Otherwise exit.
 278   //
 279   // Important note: if the location of libjvm.so changes this
 280   // code needs to be changed accordingly.
 281 
 282   // See ld(1):
 283   //      The linker uses the following search paths to locate required
 284   //      shared libraries:
 285   //        1: ...
 286   //        ...
 287   //        7: The default directories, normally /lib and /usr/lib.
 288 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
 289   #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 290 #else
 291   #define DEFAULT_LIBPATH "/lib:/usr/lib"
 292 #endif
 293 
 294 // Base path of extensions installed on the system.
 295 #define SYS_EXT_DIR     "/usr/java/packages"
 296 #define EXTENSIONS_DIR  "/lib/ext"
 297 
 298   // Buffer that fits several sprintfs.
 299   // Note that the space for the colon and the trailing null are provided
 300   // by the nulls included by the sizeof operator.
 301   const size_t bufsize =
 302     MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
 303          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
 304   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 305 
 306   // sysclasspath, java_home, dll_dir
 307   {
 308     char *pslash;
 309     os::jvm_path(buf, bufsize);
 310 
 311     // Found the full path to libjvm.so.
 312     // Now cut the path to <java_home>/jre if we can.
 313     pslash = strrchr(buf, '/');
 314     if (pslash != NULL) {
 315       *pslash = '\0';            // Get rid of /libjvm.so.
 316     }
 317     pslash = strrchr(buf, '/');
 318     if (pslash != NULL) {
 319       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 320     }
 321     Arguments::set_dll_dir(buf);
 322 
 323     if (pslash != NULL) {
 324       pslash = strrchr(buf, '/');
 325       if (pslash != NULL) {
 326         *pslash = '\0';          // Get rid of /<arch>.
 327         pslash = strrchr(buf, '/');
 328         if (pslash != NULL) {
 329           *pslash = '\0';        // Get rid of /lib.
 330         }
 331       }
 332     }
 333     Arguments::set_java_home(buf);
 334     set_boot_path('/', ':');
 335   }
 336 
 337   // Where to look for native libraries.
 338   //
 339   // Note: Due to a legacy implementation, most of the library path
 340   // is set in the launcher. This was to accomodate linking restrictions
 341   // on legacy Linux implementations (which are no longer supported).
 342   // Eventually, all the library path setting will be done here.
 343   //
 344   // However, to prevent the proliferation of improperly built native
 345   // libraries, the new path component /usr/java/packages is added here.
 346   // Eventually, all the library path setting will be done here.
 347   {
 348     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 349     // should always exist (until the legacy problem cited above is
 350     // addressed).
 351     const char *v = ::getenv("LD_LIBRARY_PATH");
 352     const char *v_colon = ":";
 353     if (v == NULL) { v = ""; v_colon = ""; }
 354     // That's +1 for the colon and +1 for the trailing '\0'.
 355     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 356                                                      strlen(v) + 1 +
 357                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
 358                                                      mtInternal);
 359     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
 360     Arguments::set_library_path(ld_library_path);
 361     FREE_C_HEAP_ARRAY(char, ld_library_path);
 362   }
 363 
 364   // Extensions directories.
 365   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 366   Arguments::set_ext_dirs(buf);
 367 
 368   FREE_C_HEAP_ARRAY(char, buf);
 369 
 370 #undef DEFAULT_LIBPATH
 371 #undef SYS_EXT_DIR
 372 #undef EXTENSIONS_DIR
 373 }
 374 
 375 ////////////////////////////////////////////////////////////////////////////////
 376 // breakpoint support
 377 
 378 void os::breakpoint() {
 379   BREAKPOINT;
 380 }
 381 
 382 extern "C" void breakpoint() {
 383   // use debugger to set breakpoint here
 384 }
 385 
 386 ////////////////////////////////////////////////////////////////////////////////
 387 // signal support
 388 
 389 debug_only(static bool signal_sets_initialized = false);
 390 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
 391 
 392 bool os::Linux::is_sig_ignored(int sig) {
 393   struct sigaction oact;
 394   sigaction(sig, (struct sigaction*)NULL, &oact);
 395   void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 396                                  : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 397   if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
 398     return true;
 399   } else {
 400     return false;
 401   }
 402 }
 403 
 404 void os::Linux::signal_sets_init() {
 405   // Should also have an assertion stating we are still single-threaded.
 406   assert(!signal_sets_initialized, "Already initialized");
 407   // Fill in signals that are necessarily unblocked for all threads in
 408   // the VM. Currently, we unblock the following signals:
 409   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 410   //                         by -Xrs (=ReduceSignalUsage));
 411   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 412   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 413   // the dispositions or masks wrt these signals.
 414   // Programs embedding the VM that want to use the above signals for their
 415   // own purposes must, at this time, use the "-Xrs" option to prevent
 416   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 417   // (See bug 4345157, and other related bugs).
 418   // In reality, though, unblocking these signals is really a nop, since
 419   // these signals are not blocked by default.
 420   sigemptyset(&unblocked_sigs);
 421   sigemptyset(&allowdebug_blocked_sigs);
 422   sigaddset(&unblocked_sigs, SIGILL);
 423   sigaddset(&unblocked_sigs, SIGSEGV);
 424   sigaddset(&unblocked_sigs, SIGBUS);
 425   sigaddset(&unblocked_sigs, SIGFPE);
 426 #if defined(PPC64)
 427   sigaddset(&unblocked_sigs, SIGTRAP);
 428 #endif
 429   sigaddset(&unblocked_sigs, SR_signum);
 430 
 431   if (!ReduceSignalUsage) {
 432     if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 433       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 434       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
 435     }
 436     if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 437       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 438       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
 439     }
 440     if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 441       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 442       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
 443     }
 444   }
 445   // Fill in signals that are blocked by all but the VM thread.
 446   sigemptyset(&vm_sigs);
 447   if (!ReduceSignalUsage) {
 448     sigaddset(&vm_sigs, BREAK_SIGNAL);
 449   }
 450   debug_only(signal_sets_initialized = true);
 451 
 452 }
 453 
 454 // These are signals that are unblocked while a thread is running Java.
 455 // (For some reason, they get blocked by default.)
 456 sigset_t* os::Linux::unblocked_signals() {
 457   assert(signal_sets_initialized, "Not initialized");
 458   return &unblocked_sigs;
 459 }
 460 
 461 // These are the signals that are blocked while a (non-VM) thread is
 462 // running Java. Only the VM thread handles these signals.
 463 sigset_t* os::Linux::vm_signals() {
 464   assert(signal_sets_initialized, "Not initialized");
 465   return &vm_sigs;
 466 }
 467 
 468 // These are signals that are blocked during cond_wait to allow debugger in
 469 sigset_t* os::Linux::allowdebug_blocked_signals() {
 470   assert(signal_sets_initialized, "Not initialized");
 471   return &allowdebug_blocked_sigs;
 472 }
 473 
 474 void os::Linux::hotspot_sigmask(Thread* thread) {
 475 
 476   //Save caller's signal mask before setting VM signal mask
 477   sigset_t caller_sigmask;
 478   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 479 
 480   OSThread* osthread = thread->osthread();
 481   osthread->set_caller_sigmask(caller_sigmask);
 482 
 483   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 484 
 485   if (!ReduceSignalUsage) {
 486     if (thread->is_VM_thread()) {
 487       // Only the VM thread handles BREAK_SIGNAL ...
 488       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 489     } else {
 490       // ... all other threads block BREAK_SIGNAL
 491       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 492     }
 493   }
 494 }
 495 
 496 //////////////////////////////////////////////////////////////////////////////
 497 // detecting pthread library
 498 
 499 void os::Linux::libpthread_init() {
 500   // Save glibc and pthread version strings.
 501 #if !defined(_CS_GNU_LIBC_VERSION) || \
 502     !defined(_CS_GNU_LIBPTHREAD_VERSION)
 503   #error "glibc too old (< 2.3.2)"
 504 #endif
 505 
 506   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 507   assert(n > 0, "cannot retrieve glibc version");
 508   char *str = (char *)malloc(n, mtInternal);
 509   confstr(_CS_GNU_LIBC_VERSION, str, n);
 510   os::Linux::set_glibc_version(str);
 511 
 512   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 513   assert(n > 0, "cannot retrieve pthread version");
 514   str = (char *)malloc(n, mtInternal);
 515   confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 516   os::Linux::set_libpthread_version(str);
 517 }
 518 
 519 /////////////////////////////////////////////////////////////////////////////
 520 // thread stack expansion
 521 
 522 // os::Linux::manually_expand_stack() takes care of expanding the thread
 523 // stack. Note that this is normally not needed: pthread stacks allocate
 524 // thread stack using mmap() without MAP_NORESERVE, so the stack is already
 525 // committed. Therefore it is not necessary to expand the stack manually.
 526 //
 527 // Manually expanding the stack was historically needed on LinuxThreads
 528 // thread stacks, which were allocated with mmap(MAP_GROWSDOWN). Nowadays
 529 // it is kept to deal with very rare corner cases:
 530 //
 531 // For one, user may run the VM on an own implementation of threads
 532 // whose stacks are - like the old LinuxThreads - implemented using
 533 // mmap(MAP_GROWSDOWN).
 534 //
 535 // Also, this coding may be needed if the VM is running on the primordial
 536 // thread. Normally we avoid running on the primordial thread; however,
 537 // user may still invoke the VM on the primordial thread.
 538 //
 539 // The following historical comment describes the details about running
 540 // on a thread stack allocated with mmap(MAP_GROWSDOWN):
 541 
 542 
 543 // Force Linux kernel to expand current thread stack. If "bottom" is close
 544 // to the stack guard, caller should block all signals.
 545 //
 546 // MAP_GROWSDOWN:
 547 //   A special mmap() flag that is used to implement thread stacks. It tells
 548 //   kernel that the memory region should extend downwards when needed. This
 549 //   allows early versions of LinuxThreads to only mmap the first few pages
 550 //   when creating a new thread. Linux kernel will automatically expand thread
 551 //   stack as needed (on page faults).
 552 //
 553 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 554 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 555 //   region, it's hard to tell if the fault is due to a legitimate stack
 556 //   access or because of reading/writing non-exist memory (e.g. buffer
 557 //   overrun). As a rule, if the fault happens below current stack pointer,
 558 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 559 //   application (see Linux kernel fault.c).
 560 //
 561 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 562 //   stack overflow detection.
 563 //
 564 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 565 //   not use MAP_GROWSDOWN.
 566 //
 567 // To get around the problem and allow stack banging on Linux, we need to
 568 // manually expand thread stack after receiving the SIGSEGV.
 569 //
 570 // There are two ways to expand thread stack to address "bottom", we used
 571 // both of them in JVM before 1.5:
 572 //   1. adjust stack pointer first so that it is below "bottom", and then
 573 //      touch "bottom"
 574 //   2. mmap() the page in question
 575 //
 576 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 577 // if current sp is already near the lower end of page 101, and we need to
 578 // call mmap() to map page 100, it is possible that part of the mmap() frame
 579 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 580 // That will destroy the mmap() frame and cause VM to crash.
 581 //
 582 // The following code works by adjusting sp first, then accessing the "bottom"
 583 // page to force a page fault. Linux kernel will then automatically expand the
 584 // stack mapping.
 585 //
 586 // _expand_stack_to() assumes its frame size is less than page size, which
 587 // should always be true if the function is not inlined.
 588 
 589 #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
 590   #define NOINLINE
 591 #else
 592   #define NOINLINE __attribute__ ((noinline))
 593 #endif
 594 
 595 static void _expand_stack_to(address bottom) NOINLINE;
 596 
 597 static void _expand_stack_to(address bottom) {
 598   address sp;
 599   size_t size;
 600   volatile char *p;
 601 
 602   // Adjust bottom to point to the largest address within the same page, it
 603   // gives us a one-page buffer if alloca() allocates slightly more memory.
 604   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
 605   bottom += os::Linux::page_size() - 1;
 606 
 607   // sp might be slightly above current stack pointer; if that's the case, we
 608   // will alloca() a little more space than necessary, which is OK. Don't use
 609   // os::current_stack_pointer(), as its result can be slightly below current
 610   // stack pointer, causing us to not alloca enough to reach "bottom".
 611   sp = (address)&sp;
 612 
 613   if (sp > bottom) {
 614     size = sp - bottom;
 615     p = (volatile char *)alloca(size);
 616     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 617     p[0] = '\0';
 618   }
 619 }
 620 
 621 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 622   assert(t!=NULL, "just checking");
 623   assert(t->osthread()->expanding_stack(), "expand should be set");
 624   assert(t->stack_base() != NULL, "stack_base was not initialized");
 625 
 626   if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
 627     sigset_t mask_all, old_sigset;
 628     sigfillset(&mask_all);
 629     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 630     _expand_stack_to(addr);
 631     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 632     return true;
 633   }
 634   return false;
 635 }
 636 
 637 //////////////////////////////////////////////////////////////////////////////
 638 // create new thread
 639 
 640 // Thread start routine for all newly created threads
 641 static void *java_start(Thread *thread) {
 642   // Try to randomize the cache line index of hot stack frames.
 643   // This helps when threads of the same stack traces evict each other's
 644   // cache lines. The threads can be either from the same JVM instance, or
 645   // from different JVM instances. The benefit is especially true for
 646   // processors with hyperthreading technology.
 647   static int counter = 0;
 648   int pid = os::current_process_id();
 649   alloca(((pid ^ counter++) & 7) * 128);
 650 
 651   ThreadLocalStorage::set_thread(thread);
 652 
 653   OSThread* osthread = thread->osthread();
 654   Monitor* sync = osthread->startThread_lock();
 655 
 656   // thread_id is kernel thread id (similar to Solaris LWP id)
 657   osthread->set_thread_id(os::Linux::gettid());
 658 
 659   if (UseNUMA) {
 660     int lgrp_id = os::numa_get_group_id();
 661     if (lgrp_id != -1) {
 662       thread->set_lgrp_id(lgrp_id);
 663     }
 664   }
 665   // initialize signal mask for this thread
 666   os::Linux::hotspot_sigmask(thread);
 667 
 668   // initialize floating point control register
 669   os::Linux::init_thread_fpu_state();
 670 
 671   // handshaking with parent thread
 672   {
 673     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 674 
 675     // notify parent thread
 676     osthread->set_state(INITIALIZED);
 677     sync->notify_all();
 678 
 679     // wait until os::start_thread()
 680     while (osthread->get_state() == INITIALIZED) {
 681       sync->wait(Mutex::_no_safepoint_check_flag);
 682     }
 683   }
 684 
 685   // call one more level start routine
 686   thread->run();
 687 
 688   return 0;
 689 }
 690 
 691 bool os::create_thread(Thread* thread, ThreadType thr_type,
 692                        size_t stack_size) {
 693   assert(thread->osthread() == NULL, "caller responsible");
 694 
 695   // Allocate the OSThread object
 696   OSThread* osthread = new OSThread(NULL, NULL);
 697   if (osthread == NULL) {
 698     return false;
 699   }
 700 
 701   // set the correct thread state
 702   osthread->set_thread_type(thr_type);
 703 
 704   // Initial state is ALLOCATED but not INITIALIZED
 705   osthread->set_state(ALLOCATED);
 706 
 707   thread->set_osthread(osthread);
 708 
 709   // init thread attributes
 710   pthread_attr_t attr;
 711   pthread_attr_init(&attr);
 712   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 713 
 714   // stack size
 715   if (os::Linux::supports_variable_stack_size()) {
 716     // calculate stack size if it's not specified by caller
 717     if (stack_size == 0) {
 718       stack_size = os::Linux::default_stack_size(thr_type);
 719 
 720       switch (thr_type) {
 721       case os::java_thread:
 722         // Java threads use ThreadStackSize which default value can be
 723         // changed with the flag -Xss
 724         assert(JavaThread::stack_size_at_create() > 0, "this should be set");
 725         stack_size = JavaThread::stack_size_at_create();
 726         break;
 727       case os::compiler_thread:
 728         if (CompilerThreadStackSize > 0) {
 729           stack_size = (size_t)(CompilerThreadStackSize * K);
 730           break;
 731         } // else fall through:
 732           // use VMThreadStackSize if CompilerThreadStackSize is not defined
 733       case os::vm_thread:
 734       case os::pgc_thread:
 735       case os::cgc_thread:
 736       case os::watcher_thread:
 737         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 738         break;
 739       }
 740     }
 741 
 742     stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
 743     pthread_attr_setstacksize(&attr, stack_size);
 744   } else {
 745     // let pthread_create() pick the default value.
 746   }
 747 
 748   // glibc guard page
 749   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 750 
 751   ThreadState state;
 752 
 753   {
 754     pthread_t tid;
 755     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
 756 
 757     pthread_attr_destroy(&attr);
 758 
 759     if (ret != 0) {
 760       if (PrintMiscellaneous && (Verbose || WizardMode)) {
 761         perror("pthread_create()");
 762       }
 763       // Need to clean up stuff we've allocated so far
 764       thread->set_osthread(NULL);
 765       delete osthread;
 766       return false;
 767     }
 768 
 769     // Store pthread info into the OSThread
 770     osthread->set_pthread_id(tid);
 771 
 772     // Wait until child thread is either initialized or aborted
 773     {
 774       Monitor* sync_with_child = osthread->startThread_lock();
 775       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 776       while ((state = osthread->get_state()) == ALLOCATED) {
 777         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 778       }
 779     }
 780   }
 781 
 782   // Aborted due to thread limit being reached
 783   if (state == ZOMBIE) {
 784     thread->set_osthread(NULL);
 785     delete osthread;
 786     return false;
 787   }
 788 
 789   // The thread is returned suspended (in state INITIALIZED),
 790   // and is started higher up in the call chain
 791   assert(state == INITIALIZED, "race condition");
 792   return true;
 793 }
 794 
 795 /////////////////////////////////////////////////////////////////////////////
 796 // attach existing thread
 797 
 798 // bootstrap the main thread
 799 bool os::create_main_thread(JavaThread* thread) {
 800   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 801   return create_attached_thread(thread);
 802 }
 803 
 804 bool os::create_attached_thread(JavaThread* thread) {
 805 #ifdef ASSERT
 806   thread->verify_not_published();
 807 #endif
 808 
 809   // Allocate the OSThread object
 810   OSThread* osthread = new OSThread(NULL, NULL);
 811 
 812   if (osthread == NULL) {
 813     return false;
 814   }
 815 
 816   // Store pthread info into the OSThread
 817   osthread->set_thread_id(os::Linux::gettid());
 818   osthread->set_pthread_id(::pthread_self());
 819 
 820   // initialize floating point control register
 821   os::Linux::init_thread_fpu_state();
 822 
 823   // Initial thread state is RUNNABLE
 824   osthread->set_state(RUNNABLE);
 825 
 826   thread->set_osthread(osthread);
 827 
 828   if (UseNUMA) {
 829     int lgrp_id = os::numa_get_group_id();
 830     if (lgrp_id != -1) {
 831       thread->set_lgrp_id(lgrp_id);
 832     }
 833   }
 834 
 835   if (os::Linux::is_initial_thread()) {
 836     // If current thread is initial thread, its stack is mapped on demand,
 837     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
 838     // the entire stack region to avoid SEGV in stack banging.
 839     // It is also useful to get around the heap-stack-gap problem on SuSE
 840     // kernel (see 4821821 for details). We first expand stack to the top
 841     // of yellow zone, then enable stack yellow zone (order is significant,
 842     // enabling yellow zone first will crash JVM on SuSE Linux), so there
 843     // is no gap between the last two virtual memory regions.
 844 
 845     JavaThread *jt = (JavaThread *)thread;
 846     address addr = jt->stack_yellow_zone_base();
 847     assert(addr != NULL, "initialization problem?");
 848     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
 849 
 850     osthread->set_expanding_stack();
 851     os::Linux::manually_expand_stack(jt, addr);
 852     osthread->clear_expanding_stack();
 853   }
 854 
 855   // initialize signal mask for this thread
 856   // and save the caller's signal mask
 857   os::Linux::hotspot_sigmask(thread);
 858 
 859   return true;
 860 }
 861 
 862 void os::pd_start_thread(Thread* thread) {
 863   OSThread * osthread = thread->osthread();
 864   assert(osthread->get_state() != INITIALIZED, "just checking");
 865   Monitor* sync_with_child = osthread->startThread_lock();
 866   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 867   sync_with_child->notify();
 868 }
 869 
 870 // Free Linux resources related to the OSThread
 871 void os::free_thread(OSThread* osthread) {
 872   assert(osthread != NULL, "osthread not set");
 873 
 874   if (Thread::current()->osthread() == osthread) {
 875     // Restore caller's signal mask
 876     sigset_t sigmask = osthread->caller_sigmask();
 877     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
 878   }
 879 
 880   delete osthread;
 881 }
 882 
 883 //////////////////////////////////////////////////////////////////////////////
 884 // thread local storage
 885 
 886 // Restore the thread pointer if the destructor is called. This is in case
 887 // someone from JNI code sets up a destructor with pthread_key_create to run
 888 // detachCurrentThread on thread death. Unless we restore the thread pointer we
 889 // will hang or crash. When detachCurrentThread is called the key will be set
 890 // to null and we will not be called again. If detachCurrentThread is never
 891 // called we could loop forever depending on the pthread implementation.
 892 static void restore_thread_pointer(void* p) {
 893   Thread* thread = (Thread*) p;
 894   os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
 895 }
 896 
 897 int os::allocate_thread_local_storage() {
 898   pthread_key_t key;
 899   int rslt = pthread_key_create(&key, restore_thread_pointer);
 900   assert(rslt == 0, "cannot allocate thread local storage");
 901   return (int)key;
 902 }
 903 
 904 // Note: This is currently not used by VM, as we don't destroy TLS key
 905 // on VM exit.
 906 void os::free_thread_local_storage(int index) {
 907   int rslt = pthread_key_delete((pthread_key_t)index);
 908   assert(rslt == 0, "invalid index");
 909 }
 910 
 911 void os::thread_local_storage_at_put(int index, void* value) {
 912   int rslt = pthread_setspecific((pthread_key_t)index, value);
 913   assert(rslt == 0, "pthread_setspecific failed");
 914 }
 915 
 916 extern "C" Thread* get_thread() {
 917   return ThreadLocalStorage::thread();
 918 }
 919 
 920 //////////////////////////////////////////////////////////////////////////////
 921 // initial thread
 922 
 923 // Check if current thread is the initial thread, similar to Solaris thr_main.
 924 bool os::Linux::is_initial_thread(void) {
 925   char dummy;
 926   // If called before init complete, thread stack bottom will be null.
 927   // Can be called if fatal error occurs before initialization.
 928   if (initial_thread_stack_bottom() == NULL) return false;
 929   assert(initial_thread_stack_bottom() != NULL &&
 930          initial_thread_stack_size()   != 0,
 931          "os::init did not locate initial thread's stack region");
 932   if ((address)&dummy >= initial_thread_stack_bottom() &&
 933       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size()) {
 934     return true;
 935   } else {
 936     return false;
 937   }
 938 }
 939 
 940 // Find the virtual memory area that contains addr
 941 static bool find_vma(address addr, address* vma_low, address* vma_high) {
 942   FILE *fp = fopen("/proc/self/maps", "r");
 943   if (fp) {
 944     address low, high;
 945     while (!feof(fp)) {
 946       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
 947         if (low <= addr && addr < high) {
 948           if (vma_low)  *vma_low  = low;
 949           if (vma_high) *vma_high = high;
 950           fclose(fp);
 951           return true;
 952         }
 953       }
 954       for (;;) {
 955         int ch = fgetc(fp);
 956         if (ch == EOF || ch == (int)'\n') break;
 957       }
 958     }
 959     fclose(fp);
 960   }
 961   return false;
 962 }
 963 
 964 // Locate initial thread stack. This special handling of initial thread stack
 965 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
 966 // bogus value for initial thread.
 967 void os::Linux::capture_initial_stack(size_t max_size) {
 968   // stack size is the easy part, get it from RLIMIT_STACK
 969   size_t stack_size;
 970   struct rlimit rlim;
 971   getrlimit(RLIMIT_STACK, &rlim);
 972   stack_size = rlim.rlim_cur;
 973 
 974   // 6308388: a bug in ld.so will relocate its own .data section to the
 975   //   lower end of primordial stack; reduce ulimit -s value a little bit
 976   //   so we won't install guard page on ld.so's data section.
 977   stack_size -= 2 * page_size();
 978 
 979   // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
 980   //   7.1, in both cases we will get 2G in return value.
 981   // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
 982   //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
 983   //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
 984   //   in case other parts in glibc still assumes 2M max stack size.
 985   // FIXME: alt signal stack is gone, maybe we can relax this constraint?
 986   // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
 987   if (stack_size > 2 * K * K IA64_ONLY(*2)) {
 988     stack_size = 2 * K * K IA64_ONLY(*2);
 989   }
 990   // Try to figure out where the stack base (top) is. This is harder.
 991   //
 992   // When an application is started, glibc saves the initial stack pointer in
 993   // a global variable "__libc_stack_end", which is then used by system
 994   // libraries. __libc_stack_end should be pretty close to stack top. The
 995   // variable is available since the very early days. However, because it is
 996   // a private interface, it could disappear in the future.
 997   //
 998   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
 999   // to __libc_stack_end, it is very close to stack top, but isn't the real
1000   // stack top. Note that /proc may not exist if VM is running as a chroot
1001   // program, so reading /proc/<pid>/stat could fail. Also the contents of
1002   // /proc/<pid>/stat could change in the future (though unlikely).
1003   //
1004   // We try __libc_stack_end first. If that doesn't work, look for
1005   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1006   // as a hint, which should work well in most cases.
1007 
1008   uintptr_t stack_start;
1009 
1010   // try __libc_stack_end first
1011   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1012   if (p && *p) {
1013     stack_start = *p;
1014   } else {
1015     // see if we can get the start_stack field from /proc/self/stat
1016     FILE *fp;
1017     int pid;
1018     char state;
1019     int ppid;
1020     int pgrp;
1021     int session;
1022     int nr;
1023     int tpgrp;
1024     unsigned long flags;
1025     unsigned long minflt;
1026     unsigned long cminflt;
1027     unsigned long majflt;
1028     unsigned long cmajflt;
1029     unsigned long utime;
1030     unsigned long stime;
1031     long cutime;
1032     long cstime;
1033     long prio;
1034     long nice;
1035     long junk;
1036     long it_real;
1037     uintptr_t start;
1038     uintptr_t vsize;
1039     intptr_t rss;
1040     uintptr_t rsslim;
1041     uintptr_t scodes;
1042     uintptr_t ecode;
1043     int i;
1044 
1045     // Figure what the primordial thread stack base is. Code is inspired
1046     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1047     // followed by command name surrounded by parentheses, state, etc.
1048     char stat[2048];
1049     int statlen;
1050 
1051     fp = fopen("/proc/self/stat", "r");
1052     if (fp) {
1053       statlen = fread(stat, 1, 2047, fp);
1054       stat[statlen] = '\0';
1055       fclose(fp);
1056 
1057       // Skip pid and the command string. Note that we could be dealing with
1058       // weird command names, e.g. user could decide to rename java launcher
1059       // to "java 1.4.2 :)", then the stat file would look like
1060       //                1234 (java 1.4.2 :)) R ... ...
1061       // We don't really need to know the command string, just find the last
1062       // occurrence of ")" and then start parsing from there. See bug 4726580.
1063       char * s = strrchr(stat, ')');
1064 
1065       i = 0;
1066       if (s) {
1067         // Skip blank chars
1068         do { s++; } while (s && isspace(*s));
1069 
1070 #define _UFM UINTX_FORMAT
1071 #define _DFM INTX_FORMAT
1072 
1073         //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1074         //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1075         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1076                    &state,          // 3  %c
1077                    &ppid,           // 4  %d
1078                    &pgrp,           // 5  %d
1079                    &session,        // 6  %d
1080                    &nr,             // 7  %d
1081                    &tpgrp,          // 8  %d
1082                    &flags,          // 9  %lu
1083                    &minflt,         // 10 %lu
1084                    &cminflt,        // 11 %lu
1085                    &majflt,         // 12 %lu
1086                    &cmajflt,        // 13 %lu
1087                    &utime,          // 14 %lu
1088                    &stime,          // 15 %lu
1089                    &cutime,         // 16 %ld
1090                    &cstime,         // 17 %ld
1091                    &prio,           // 18 %ld
1092                    &nice,           // 19 %ld
1093                    &junk,           // 20 %ld
1094                    &it_real,        // 21 %ld
1095                    &start,          // 22 UINTX_FORMAT
1096                    &vsize,          // 23 UINTX_FORMAT
1097                    &rss,            // 24 INTX_FORMAT
1098                    &rsslim,         // 25 UINTX_FORMAT
1099                    &scodes,         // 26 UINTX_FORMAT
1100                    &ecode,          // 27 UINTX_FORMAT
1101                    &stack_start);   // 28 UINTX_FORMAT
1102       }
1103 
1104 #undef _UFM
1105 #undef _DFM
1106 
1107       if (i != 28 - 2) {
1108         assert(false, "Bad conversion from /proc/self/stat");
1109         // product mode - assume we are the initial thread, good luck in the
1110         // embedded case.
1111         warning("Can't detect initial thread stack location - bad conversion");
1112         stack_start = (uintptr_t) &rlim;
1113       }
1114     } else {
1115       // For some reason we can't open /proc/self/stat (for example, running on
1116       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1117       // most cases, so don't abort:
1118       warning("Can't detect initial thread stack location - no /proc/self/stat");
1119       stack_start = (uintptr_t) &rlim;
1120     }
1121   }
1122 
1123   // Now we have a pointer (stack_start) very close to the stack top, the
1124   // next thing to do is to figure out the exact location of stack top. We
1125   // can find out the virtual memory area that contains stack_start by
1126   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1127   // and its upper limit is the real stack top. (again, this would fail if
1128   // running inside chroot, because /proc may not exist.)
1129 
1130   uintptr_t stack_top;
1131   address low, high;
1132   if (find_vma((address)stack_start, &low, &high)) {
1133     // success, "high" is the true stack top. (ignore "low", because initial
1134     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1135     stack_top = (uintptr_t)high;
1136   } else {
1137     // failed, likely because /proc/self/maps does not exist
1138     warning("Can't detect initial thread stack location - find_vma failed");
1139     // best effort: stack_start is normally within a few pages below the real
1140     // stack top, use it as stack top, and reduce stack size so we won't put
1141     // guard page outside stack.
1142     stack_top = stack_start;
1143     stack_size -= 16 * page_size();
1144   }
1145 
1146   // stack_top could be partially down the page so align it
1147   stack_top = align_size_up(stack_top, page_size());
1148 
1149   if (max_size && stack_size > max_size) {
1150     _initial_thread_stack_size = max_size;
1151   } else {
1152     _initial_thread_stack_size = stack_size;
1153   }
1154 
1155   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1156   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1157 }
1158 
1159 ////////////////////////////////////////////////////////////////////////////////
1160 // time support
1161 
1162 // Time since start-up in seconds to a fine granularity.
1163 // Used by VMSelfDestructTimer and the MemProfiler.
1164 double os::elapsedTime() {
1165 
1166   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1167 }
1168 
1169 jlong os::elapsed_counter() {
1170   return javaTimeNanos() - initial_time_count;
1171 }
1172 
1173 jlong os::elapsed_frequency() {
1174   return NANOSECS_PER_SEC; // nanosecond resolution
1175 }
1176 
1177 bool os::supports_vtime() { return true; }
1178 bool os::enable_vtime()   { return false; }
1179 bool os::vtime_enabled()  { return false; }
1180 
1181 double os::elapsedVTime() {
1182   struct rusage usage;
1183   int retval = getrusage(RUSAGE_THREAD, &usage);
1184   if (retval == 0) {
1185     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1186   } else {
1187     // better than nothing, but not much
1188     return elapsedTime();
1189   }
1190 }
1191 
1192 jlong os::javaTimeMillis() {
1193   timeval time;
1194   int status = gettimeofday(&time, NULL);
1195   assert(status != -1, "linux error");
1196   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1197 }
1198 
1199 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1200   timeval time;
1201   int status = gettimeofday(&time, NULL);
1202   assert(status != -1, "linux error");
1203   seconds = jlong(time.tv_sec);
1204   nanos = jlong(time.tv_usec) * 1000;
1205 }
1206 
1207 
1208 #ifndef CLOCK_MONOTONIC
1209   #define CLOCK_MONOTONIC (1)
1210 #endif
1211 
1212 void os::Linux::clock_init() {
1213   // we do dlopen's in this particular order due to bug in linux
1214   // dynamical loader (see 6348968) leading to crash on exit
1215   void* handle = dlopen("librt.so.1", RTLD_LAZY);
1216   if (handle == NULL) {
1217     handle = dlopen("librt.so", RTLD_LAZY);
1218   }
1219 
1220   if (handle) {
1221     int (*clock_getres_func)(clockid_t, struct timespec*) =
1222            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1223     int (*clock_gettime_func)(clockid_t, struct timespec*) =
1224            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1225     if (clock_getres_func && clock_gettime_func) {
1226       // See if monotonic clock is supported by the kernel. Note that some
1227       // early implementations simply return kernel jiffies (updated every
1228       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1229       // for nano time (though the monotonic property is still nice to have).
1230       // It's fixed in newer kernels, however clock_getres() still returns
1231       // 1/HZ. We check if clock_getres() works, but will ignore its reported
1232       // resolution for now. Hopefully as people move to new kernels, this
1233       // won't be a problem.
1234       struct timespec res;
1235       struct timespec tp;
1236       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1237           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1238         // yes, monotonic clock is supported
1239         _clock_gettime = clock_gettime_func;
1240         return;
1241       } else {
1242         // close librt if there is no monotonic clock
1243         dlclose(handle);
1244       }
1245     }
1246   }
1247   warning("No monotonic clock was available - timed services may " \
1248           "be adversely affected if the time-of-day clock changes");
1249 }
1250 
1251 #ifndef SYS_clock_getres
1252   #if defined(IA32) || defined(AMD64)
1253     #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1254     #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1255   #else
1256     #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1257     #define sys_clock_getres(x,y)  -1
1258   #endif
1259 #else
1260   #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1261 #endif
1262 
1263 void os::Linux::fast_thread_clock_init() {
1264   if (!UseLinuxPosixThreadCPUClocks) {
1265     return;
1266   }
1267   clockid_t clockid;
1268   struct timespec tp;
1269   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1270       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1271 
1272   // Switch to using fast clocks for thread cpu time if
1273   // the sys_clock_getres() returns 0 error code.
1274   // Note, that some kernels may support the current thread
1275   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1276   // returned by the pthread_getcpuclockid().
1277   // If the fast Posix clocks are supported then the sys_clock_getres()
1278   // must return at least tp.tv_sec == 0 which means a resolution
1279   // better than 1 sec. This is extra check for reliability.
1280 
1281   if (pthread_getcpuclockid_func &&
1282       pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1283       sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1284     _supports_fast_thread_cpu_time = true;
1285     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1286   }
1287 }
1288 
1289 jlong os::javaTimeNanos() {
1290   if (os::supports_monotonic_clock()) {
1291     struct timespec tp;
1292     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1293     assert(status == 0, "gettime error");
1294     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1295     return result;
1296   } else {
1297     timeval time;
1298     int status = gettimeofday(&time, NULL);
1299     assert(status != -1, "linux error");
1300     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1301     return 1000 * usecs;
1302   }
1303 }
1304 
1305 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1306   if (os::supports_monotonic_clock()) {
1307     info_ptr->max_value = ALL_64_BITS;
1308 
1309     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1310     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1311     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1312   } else {
1313     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1314     info_ptr->max_value = ALL_64_BITS;
1315 
1316     // gettimeofday is a real time clock so it skips
1317     info_ptr->may_skip_backward = true;
1318     info_ptr->may_skip_forward = true;
1319   }
1320 
1321   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1322 }
1323 
1324 // Return the real, user, and system times in seconds from an
1325 // arbitrary fixed point in the past.
1326 bool os::getTimesSecs(double* process_real_time,
1327                       double* process_user_time,
1328                       double* process_system_time) {
1329   struct tms ticks;
1330   clock_t real_ticks = times(&ticks);
1331 
1332   if (real_ticks == (clock_t) (-1)) {
1333     return false;
1334   } else {
1335     double ticks_per_second = (double) clock_tics_per_sec;
1336     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1337     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1338     *process_real_time = ((double) real_ticks) / ticks_per_second;
1339 
1340     return true;
1341   }
1342 }
1343 
1344 
1345 char * os::local_time_string(char *buf, size_t buflen) {
1346   struct tm t;
1347   time_t long_time;
1348   time(&long_time);
1349   localtime_r(&long_time, &t);
1350   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1351                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1352                t.tm_hour, t.tm_min, t.tm_sec);
1353   return buf;
1354 }
1355 
1356 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1357   return localtime_r(clock, res);
1358 }
1359 
1360 ////////////////////////////////////////////////////////////////////////////////
1361 // runtime exit support
1362 
1363 // Note: os::shutdown() might be called very early during initialization, or
1364 // called from signal handler. Before adding something to os::shutdown(), make
1365 // sure it is async-safe and can handle partially initialized VM.
1366 void os::shutdown() {
1367 
1368   // allow PerfMemory to attempt cleanup of any persistent resources
1369   perfMemory_exit();
1370 
1371   // needs to remove object in file system
1372   AttachListener::abort();
1373 
1374   // flush buffered output, finish log files
1375   ostream_abort();
1376 
1377   // Check for abort hook
1378   abort_hook_t abort_hook = Arguments::abort_hook();
1379   if (abort_hook != NULL) {
1380     abort_hook();
1381   }
1382 
1383 }
1384 
1385 // Note: os::abort() might be called very early during initialization, or
1386 // called from signal handler. Before adding something to os::abort(), make
1387 // sure it is async-safe and can handle partially initialized VM.
1388 void os::abort(bool dump_core, void* siginfo, void* context) {
1389   os::shutdown();
1390   if (dump_core) {
1391 #ifndef PRODUCT
1392     fdStream out(defaultStream::output_fd());
1393     out.print_raw("Current thread is ");
1394     char buf[16];
1395     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1396     out.print_raw_cr(buf);
1397     out.print_raw_cr("Dumping core ...");
1398 #endif
1399     ::abort(); // dump core
1400   }
1401 
1402   ::exit(1);
1403 }
1404 
1405 // Die immediately, no exit hook, no abort hook, no cleanup.
1406 void os::die() {
1407   ::abort();
1408 }
1409 
1410 
1411 // This method is a copy of JDK's sysGetLastErrorString
1412 // from src/solaris/hpi/src/system_md.c
1413 
1414 size_t os::lasterror(char *buf, size_t len) {
1415   if (errno == 0)  return 0;
1416 
1417   const char *s = ::strerror(errno);
1418   size_t n = ::strlen(s);
1419   if (n >= len) {
1420     n = len - 1;
1421   }
1422   ::strncpy(buf, s, n);
1423   buf[n] = '\0';
1424   return n;
1425 }
1426 
1427 intx os::current_thread_id() { return (intx)pthread_self(); }
1428 int os::current_process_id() {
1429   return ::getpid();
1430 }
1431 
1432 // DLL functions
1433 
1434 const char* os::dll_file_extension() { return ".so"; }
1435 
1436 // This must be hard coded because it's the system's temporary
1437 // directory not the java application's temp directory, ala java.io.tmpdir.
1438 const char* os::get_temp_directory() { return "/tmp"; }
1439 
1440 static bool file_exists(const char* filename) {
1441   struct stat statbuf;
1442   if (filename == NULL || strlen(filename) == 0) {
1443     return false;
1444   }
1445   return os::stat(filename, &statbuf) == 0;
1446 }
1447 
1448 bool os::dll_build_name(char* buffer, size_t buflen,
1449                         const char* pname, const char* fname) {
1450   bool retval = false;
1451   // Copied from libhpi
1452   const size_t pnamelen = pname ? strlen(pname) : 0;
1453 
1454   // Return error on buffer overflow.
1455   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1456     return retval;
1457   }
1458 
1459   if (pnamelen == 0) {
1460     snprintf(buffer, buflen, "lib%s.so", fname);
1461     retval = true;
1462   } else if (strchr(pname, *os::path_separator()) != NULL) {
1463     int n;
1464     char** pelements = split_path(pname, &n);
1465     if (pelements == NULL) {
1466       return false;
1467     }
1468     for (int i = 0; i < n; i++) {
1469       // Really shouldn't be NULL, but check can't hurt
1470       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1471         continue; // skip the empty path values
1472       }
1473       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1474       if (file_exists(buffer)) {
1475         retval = true;
1476         break;
1477       }
1478     }
1479     // release the storage
1480     for (int i = 0; i < n; i++) {
1481       if (pelements[i] != NULL) {
1482         FREE_C_HEAP_ARRAY(char, pelements[i]);
1483       }
1484     }
1485     if (pelements != NULL) {
1486       FREE_C_HEAP_ARRAY(char*, pelements);
1487     }
1488   } else {
1489     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1490     retval = true;
1491   }
1492   return retval;
1493 }
1494 
1495 // check if addr is inside libjvm.so
1496 bool os::address_is_in_vm(address addr) {
1497   static address libjvm_base_addr;
1498   Dl_info dlinfo;
1499 
1500   if (libjvm_base_addr == NULL) {
1501     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1502       libjvm_base_addr = (address)dlinfo.dli_fbase;
1503     }
1504     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1505   }
1506 
1507   if (dladdr((void *)addr, &dlinfo) != 0) {
1508     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1509   }
1510 
1511   return false;
1512 }
1513 
1514 bool os::dll_address_to_function_name(address addr, char *buf,
1515                                       int buflen, int *offset,
1516                                       bool demangle) {
1517   // buf is not optional, but offset is optional
1518   assert(buf != NULL, "sanity check");
1519 
1520   Dl_info dlinfo;
1521 
1522   if (dladdr((void*)addr, &dlinfo) != 0) {
1523     // see if we have a matching symbol
1524     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1525       if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1526         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1527       }
1528       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1529       return true;
1530     }
1531     // no matching symbol so try for just file info
1532     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1533       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1534                           buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1535         return true;
1536       }
1537     }
1538   }
1539 
1540   buf[0] = '\0';
1541   if (offset != NULL) *offset = -1;
1542   return false;
1543 }
1544 
1545 struct _address_to_library_name {
1546   address addr;          // input : memory address
1547   size_t  buflen;        //         size of fname
1548   char*   fname;         // output: library name
1549   address base;          //         library base addr
1550 };
1551 
1552 static int address_to_library_name_callback(struct dl_phdr_info *info,
1553                                             size_t size, void *data) {
1554   int i;
1555   bool found = false;
1556   address libbase = NULL;
1557   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1558 
1559   // iterate through all loadable segments
1560   for (i = 0; i < info->dlpi_phnum; i++) {
1561     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1562     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1563       // base address of a library is the lowest address of its loaded
1564       // segments.
1565       if (libbase == NULL || libbase > segbase) {
1566         libbase = segbase;
1567       }
1568       // see if 'addr' is within current segment
1569       if (segbase <= d->addr &&
1570           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1571         found = true;
1572       }
1573     }
1574   }
1575 
1576   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1577   // so dll_address_to_library_name() can fall through to use dladdr() which
1578   // can figure out executable name from argv[0].
1579   if (found && info->dlpi_name && info->dlpi_name[0]) {
1580     d->base = libbase;
1581     if (d->fname) {
1582       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1583     }
1584     return 1;
1585   }
1586   return 0;
1587 }
1588 
1589 bool os::dll_address_to_library_name(address addr, char* buf,
1590                                      int buflen, int* offset) {
1591   // buf is not optional, but offset is optional
1592   assert(buf != NULL, "sanity check");
1593 
1594   Dl_info dlinfo;
1595   struct _address_to_library_name data;
1596 
1597   // There is a bug in old glibc dladdr() implementation that it could resolve
1598   // to wrong library name if the .so file has a base address != NULL. Here
1599   // we iterate through the program headers of all loaded libraries to find
1600   // out which library 'addr' really belongs to. This workaround can be
1601   // removed once the minimum requirement for glibc is moved to 2.3.x.
1602   data.addr = addr;
1603   data.fname = buf;
1604   data.buflen = buflen;
1605   data.base = NULL;
1606   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1607 
1608   if (rslt) {
1609     // buf already contains library name
1610     if (offset) *offset = addr - data.base;
1611     return true;
1612   }
1613   if (dladdr((void*)addr, &dlinfo) != 0) {
1614     if (dlinfo.dli_fname != NULL) {
1615       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1616     }
1617     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1618       *offset = addr - (address)dlinfo.dli_fbase;
1619     }
1620     return true;
1621   }
1622 
1623   buf[0] = '\0';
1624   if (offset) *offset = -1;
1625   return false;
1626 }
1627 
1628 // Loads .dll/.so and
1629 // in case of error it checks if .dll/.so was built for the
1630 // same architecture as Hotspot is running on
1631 
1632 
1633 // Remember the stack's state. The Linux dynamic linker will change
1634 // the stack to 'executable' at most once, so we must safepoint only once.
1635 bool os::Linux::_stack_is_executable = false;
1636 
1637 // VM operation that loads a library.  This is necessary if stack protection
1638 // of the Java stacks can be lost during loading the library.  If we
1639 // do not stop the Java threads, they can stack overflow before the stacks
1640 // are protected again.
1641 class VM_LinuxDllLoad: public VM_Operation {
1642  private:
1643   const char *_filename;
1644   char *_ebuf;
1645   int _ebuflen;
1646   void *_lib;
1647  public:
1648   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1649     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1650   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1651   void doit() {
1652     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1653     os::Linux::_stack_is_executable = true;
1654   }
1655   void* loaded_library() { return _lib; }
1656 };
1657 
1658 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1659   void * result = NULL;
1660   bool load_attempted = false;
1661 
1662   // Check whether the library to load might change execution rights
1663   // of the stack. If they are changed, the protection of the stack
1664   // guard pages will be lost. We need a safepoint to fix this.
1665   //
1666   // See Linux man page execstack(8) for more info.
1667   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1668     ElfFile ef(filename);
1669     if (!ef.specifies_noexecstack()) {
1670       if (!is_init_completed()) {
1671         os::Linux::_stack_is_executable = true;
1672         // This is OK - No Java threads have been created yet, and hence no
1673         // stack guard pages to fix.
1674         //
1675         // This should happen only when you are building JDK7 using a very
1676         // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1677         //
1678         // Dynamic loader will make all stacks executable after
1679         // this function returns, and will not do that again.
1680         assert(Threads::first() == NULL, "no Java threads should exist yet.");
1681       } else {
1682         warning("You have loaded library %s which might have disabled stack guard. "
1683                 "The VM will try to fix the stack guard now.\n"
1684                 "It's highly recommended that you fix the library with "
1685                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1686                 filename);
1687 
1688         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1689         JavaThread *jt = JavaThread::current();
1690         if (jt->thread_state() != _thread_in_native) {
1691           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1692           // that requires ExecStack. Cannot enter safe point. Let's give up.
1693           warning("Unable to fix stack guard. Giving up.");
1694         } else {
1695           if (!LoadExecStackDllInVMThread) {
1696             // This is for the case where the DLL has an static
1697             // constructor function that executes JNI code. We cannot
1698             // load such DLLs in the VMThread.
1699             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1700           }
1701 
1702           ThreadInVMfromNative tiv(jt);
1703           debug_only(VMNativeEntryWrapper vew;)
1704 
1705           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1706           VMThread::execute(&op);
1707           if (LoadExecStackDllInVMThread) {
1708             result = op.loaded_library();
1709           }
1710           load_attempted = true;
1711         }
1712       }
1713     }
1714   }
1715 
1716   if (!load_attempted) {
1717     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1718   }
1719 
1720   if (result != NULL) {
1721     // Successful loading
1722     return result;
1723   }
1724 
1725   Elf32_Ehdr elf_head;
1726   int diag_msg_max_length=ebuflen-strlen(ebuf);
1727   char* diag_msg_buf=ebuf+strlen(ebuf);
1728 
1729   if (diag_msg_max_length==0) {
1730     // No more space in ebuf for additional diagnostics message
1731     return NULL;
1732   }
1733 
1734 
1735   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1736 
1737   if (file_descriptor < 0) {
1738     // Can't open library, report dlerror() message
1739     return NULL;
1740   }
1741 
1742   bool failed_to_read_elf_head=
1743     (sizeof(elf_head)!=
1744      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1745 
1746   ::close(file_descriptor);
1747   if (failed_to_read_elf_head) {
1748     // file i/o error - report dlerror() msg
1749     return NULL;
1750   }
1751 
1752   typedef struct {
1753     Elf32_Half  code;         // Actual value as defined in elf.h
1754     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1755     char        elf_class;    // 32 or 64 bit
1756     char        endianess;    // MSB or LSB
1757     char*       name;         // String representation
1758   } arch_t;
1759 
1760 #ifndef EM_486
1761   #define EM_486          6               /* Intel 80486 */
1762 #endif
1763 #ifndef EM_AARCH64
1764   #define EM_AARCH64    183               /* ARM AARCH64 */
1765 #endif
1766 
1767   static const arch_t arch_array[]={
1768     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1769     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1770     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1771     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1772     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1773     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1774     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1775     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1776 #if defined(VM_LITTLE_ENDIAN)
1777     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64"},
1778 #else
1779     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1780 #endif
1781     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1782     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1783     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1784     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1785     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1786     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1787     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"},
1788     {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"},
1789   };
1790 
1791 #if  (defined IA32)
1792   static  Elf32_Half running_arch_code=EM_386;
1793 #elif   (defined AMD64)
1794   static  Elf32_Half running_arch_code=EM_X86_64;
1795 #elif  (defined IA64)
1796   static  Elf32_Half running_arch_code=EM_IA_64;
1797 #elif  (defined __sparc) && (defined _LP64)
1798   static  Elf32_Half running_arch_code=EM_SPARCV9;
1799 #elif  (defined __sparc) && (!defined _LP64)
1800   static  Elf32_Half running_arch_code=EM_SPARC;
1801 #elif  (defined __powerpc64__)
1802   static  Elf32_Half running_arch_code=EM_PPC64;
1803 #elif  (defined __powerpc__)
1804   static  Elf32_Half running_arch_code=EM_PPC;
1805 #elif  (defined ARM)
1806   static  Elf32_Half running_arch_code=EM_ARM;
1807 #elif  (defined S390)
1808   static  Elf32_Half running_arch_code=EM_S390;
1809 #elif  (defined ALPHA)
1810   static  Elf32_Half running_arch_code=EM_ALPHA;
1811 #elif  (defined MIPSEL)
1812   static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1813 #elif  (defined PARISC)
1814   static  Elf32_Half running_arch_code=EM_PARISC;
1815 #elif  (defined MIPS)
1816   static  Elf32_Half running_arch_code=EM_MIPS;
1817 #elif  (defined M68K)
1818   static  Elf32_Half running_arch_code=EM_68K;
1819 #elif  (defined AARCH64)
1820   static  Elf32_Half running_arch_code=EM_AARCH64;
1821 #else
1822     #error Method os::dll_load requires that one of following is defined:\
1823          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K, AARCH64
1824 #endif
1825 
1826   // Identify compatability class for VM's architecture and library's architecture
1827   // Obtain string descriptions for architectures
1828 
1829   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1830   int running_arch_index=-1;
1831 
1832   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1833     if (running_arch_code == arch_array[i].code) {
1834       running_arch_index    = i;
1835     }
1836     if (lib_arch.code == arch_array[i].code) {
1837       lib_arch.compat_class = arch_array[i].compat_class;
1838       lib_arch.name         = arch_array[i].name;
1839     }
1840   }
1841 
1842   assert(running_arch_index != -1,
1843          "Didn't find running architecture code (running_arch_code) in arch_array");
1844   if (running_arch_index == -1) {
1845     // Even though running architecture detection failed
1846     // we may still continue with reporting dlerror() message
1847     return NULL;
1848   }
1849 
1850   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1851     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1852     return NULL;
1853   }
1854 
1855 #ifndef S390
1856   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1857     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1858     return NULL;
1859   }
1860 #endif // !S390
1861 
1862   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1863     if (lib_arch.name!=NULL) {
1864       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1865                  " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1866                  lib_arch.name, arch_array[running_arch_index].name);
1867     } else {
1868       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1869                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1870                  lib_arch.code,
1871                  arch_array[running_arch_index].name);
1872     }
1873   }
1874 
1875   return NULL;
1876 }
1877 
1878 void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
1879                                 int ebuflen) {
1880   void * result = ::dlopen(filename, RTLD_LAZY);
1881   if (result == NULL) {
1882     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
1883     ebuf[ebuflen-1] = '\0';
1884   }
1885   return result;
1886 }
1887 
1888 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
1889                                        int ebuflen) {
1890   void * result = NULL;
1891   if (LoadExecStackDllInVMThread) {
1892     result = dlopen_helper(filename, ebuf, ebuflen);
1893   }
1894 
1895   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
1896   // library that requires an executable stack, or which does not have this
1897   // stack attribute set, dlopen changes the stack attribute to executable. The
1898   // read protection of the guard pages gets lost.
1899   //
1900   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
1901   // may have been queued at the same time.
1902 
1903   if (!_stack_is_executable) {
1904     JavaThread *jt = Threads::first();
1905 
1906     while (jt) {
1907       if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
1908           jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
1909         if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
1910                               jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
1911           warning("Attempt to reguard stack yellow zone failed.");
1912         }
1913       }
1914       jt = jt->next();
1915     }
1916   }
1917 
1918   return result;
1919 }
1920 
1921 void* os::dll_lookup(void* handle, const char* name) {
1922   void* res = dlsym(handle, name);
1923   return res;
1924 }
1925 
1926 void* os::get_default_process_handle() {
1927   return (void*)::dlopen(NULL, RTLD_LAZY);
1928 }
1929 
1930 static bool _print_ascii_file(const char* filename, outputStream* st) {
1931   int fd = ::open(filename, O_RDONLY);
1932   if (fd == -1) {
1933     return false;
1934   }
1935 
1936   char buf[32];
1937   int bytes;
1938   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1939     st->print_raw(buf, bytes);
1940   }
1941 
1942   ::close(fd);
1943 
1944   return true;
1945 }
1946 
1947 void os::print_dll_info(outputStream *st) {
1948   st->print_cr("Dynamic libraries:");
1949 
1950   char fname[32];
1951   pid_t pid = os::Linux::gettid();
1952 
1953   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
1954 
1955   if (!_print_ascii_file(fname, st)) {
1956     st->print("Can not get library information for pid = %d\n", pid);
1957   }
1958 }
1959 
1960 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1961   FILE *procmapsFile = NULL;
1962 
1963   // Open the procfs maps file for the current process
1964   if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
1965     // Allocate PATH_MAX for file name plus a reasonable size for other fields.
1966     char line[PATH_MAX + 100];
1967 
1968     // Read line by line from 'file'
1969     while (fgets(line, sizeof(line), procmapsFile) != NULL) {
1970       u8 base, top, offset, inode;
1971       char permissions[5];
1972       char device[6];
1973       char name[PATH_MAX + 1];
1974 
1975       // Parse fields from line
1976       sscanf(line, "%lx-%lx %4s %lx %5s %ld %s", &base, &top, permissions, &offset, device, &inode, name);
1977 
1978       // Filter by device id '00:00' so that we only get file system mapped files.
1979       if (strcmp(device, "00:00") != 0) {
1980 
1981         // Call callback with the fields of interest
1982         if(callback(name, (address)base, (address)top, param)) {
1983           // Oops abort, callback aborted
1984           fclose(procmapsFile);
1985           return 1;
1986         }
1987       }
1988     }
1989     fclose(procmapsFile);
1990   }
1991   return 0;
1992 }
1993 
1994 void os::print_os_info_brief(outputStream* st) {
1995   os::Linux::print_distro_info(st);
1996 
1997   os::Posix::print_uname_info(st);
1998 
1999   os::Linux::print_libversion_info(st);
2000 
2001 }
2002 
2003 void os::print_os_info(outputStream* st) {
2004   st->print("OS:");
2005 
2006   os::Linux::print_distro_info(st);
2007 
2008   os::Posix::print_uname_info(st);
2009 
2010   // Print warning if unsafe chroot environment detected
2011   if (unsafe_chroot_detected) {
2012     st->print("WARNING!! ");
2013     st->print_cr("%s", unstable_chroot_error);
2014   }
2015 
2016   os::Linux::print_libversion_info(st);
2017 
2018   os::Posix::print_rlimit_info(st);
2019 
2020   os::Posix::print_load_average(st);
2021 
2022   os::Linux::print_full_memory_info(st);
2023 }
2024 
2025 // Try to identify popular distros.
2026 // Most Linux distributions have a /etc/XXX-release file, which contains
2027 // the OS version string. Newer Linux distributions have a /etc/lsb-release
2028 // file that also contains the OS version string. Some have more than one
2029 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2030 // /etc/redhat-release.), so the order is important.
2031 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2032 // their own specific XXX-release file as well as a redhat-release file.
2033 // Because of this the XXX-release file needs to be searched for before the
2034 // redhat-release file.
2035 // Since Red Hat has a lsb-release file that is not very descriptive the
2036 // search for redhat-release needs to be before lsb-release.
2037 // Since the lsb-release file is the new standard it needs to be searched
2038 // before the older style release files.
2039 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
2040 // next to last resort.  The os-release file is a new standard that contains
2041 // distribution information and the system-release file seems to be an old
2042 // standard that has been replaced by the lsb-release and os-release files.
2043 // Searching for the debian_version file is the last resort.  It contains
2044 // an informative string like "6.0.6" or "wheezy/sid". Because of this
2045 // "Debian " is printed before the contents of the debian_version file.
2046 
2047 const char* distro_files[] = {
2048   "/etc/oracle-release",
2049   "/etc/mandriva-release",
2050   "/etc/mandrake-release",
2051   "/etc/sun-release",
2052   "/etc/redhat-release",
2053   "/etc/lsb-release",
2054   "/etc/SuSE-release",
2055   "/etc/turbolinux-release",
2056   "/etc/gentoo-release",
2057   "/etc/ltib-release",
2058   "/etc/angstrom-version",
2059   "/etc/system-release",
2060   "/etc/os-release",
2061   NULL };
2062 
2063 void os::Linux::print_distro_info(outputStream* st) {
2064   for (int i = 0;; i++) {
2065     const char* file = distro_files[i];
2066     if (file == NULL) break;
2067     // If file prints, we found it.
2068     if (_print_ascii_file(file, st)) return;
2069   }
2070   if (file_exists("/etc/debian_version")) {
2071     st->print("Debian ");
2072     _print_ascii_file("/etc/debian_version", st);
2073   } else {
2074     st->print("Linux");
2075   }
2076   st->cr();
2077 }
2078 
2079 static void parse_os_info(char* distro, size_t length, const char* file) {
2080   FILE* fp = fopen(file, "r");
2081   if (fp != NULL) {
2082     char buf[257];
2083     // get last line of the file.
2084     while (!feof(fp)) {
2085       fgets(buf, sizeof(buf), fp);
2086     }
2087     // Edit out ubuntu things
2088     if (strstr(buf, "DISTRIB_DESCRIPTION=") != NULL) {
2089       char* ptr = strstr(buf, "\"");
2090       if (ptr != NULL) {
2091         ptr++; // go beyond first "
2092         char* nl = strchr(ptr, '\"');
2093         if (nl != NULL) *nl = '\0';
2094         strncpy(distro, ptr, length);
2095         fclose(fp);
2096         return;
2097       }
2098     } else {
2099       // if not Ubuntu, print out whole line minus \n
2100       char* nl = strchr(buf, '\n');
2101       if (nl != NULL) *nl = '\0';
2102       strncpy(distro, buf, length);
2103       fclose(fp);
2104       return;
2105     }
2106   }
2107 }
2108 
2109 void os::get_summary_os_info(char* buf, size_t buflen) {
2110   for (int i = 0;; i++) {
2111     const char* file = distro_files[i];
2112     if (file == NULL) break;
2113     if (file_exists(file)) {
2114       parse_os_info(buf, buflen, file);
2115       return;
2116     }
2117   }
2118   // special case for debian
2119   if (file_exists("/etc/debian_version")) {
2120     strncpy(buf, "Debian ", buflen);
2121     parse_os_info(&buf[7], buflen-7, "/etc/debian_version");
2122   } else {
2123     strncpy(buf, "Linux", buflen);
2124   }
2125 }
2126 
2127 void os::Linux::print_libversion_info(outputStream* st) {
2128   // libc, pthread
2129   st->print("libc:");
2130   st->print("%s ", os::Linux::glibc_version());
2131   st->print("%s ", os::Linux::libpthread_version());
2132   st->cr();
2133 }
2134 
2135 void os::Linux::print_full_memory_info(outputStream* st) {
2136   st->print("\n/proc/meminfo:\n");
2137   _print_ascii_file("/proc/meminfo", st);
2138   st->cr();
2139 }
2140 
2141 void os::print_memory_info(outputStream* st) {
2142 
2143   st->print("Memory:");
2144   st->print(" %dk page", os::vm_page_size()>>10);
2145 
2146   // values in struct sysinfo are "unsigned long"
2147   struct sysinfo si;
2148   sysinfo(&si);
2149 
2150   st->print(", physical " UINT64_FORMAT "k",
2151             os::physical_memory() >> 10);
2152   st->print("(" UINT64_FORMAT "k free)",
2153             os::available_memory() >> 10);
2154   st->print(", swap " UINT64_FORMAT "k",
2155             ((jlong)si.totalswap * si.mem_unit) >> 10);
2156   st->print("(" UINT64_FORMAT "k free)",
2157             ((jlong)si.freeswap * si.mem_unit) >> 10);
2158   st->cr();
2159 }
2160 
2161 // Print the first "model name" line and the first "flags" line
2162 // that we find and nothing more. We assume "model name" comes
2163 // before "flags" so if we find a second "model name", then the
2164 // "flags" field is considered missing.
2165 static bool print_model_name_and_flags(outputStream* st, char* buf, size_t buflen) {
2166 #if defined(IA32) || defined(AMD64)
2167   // Other platforms have less repetitive cpuinfo files
2168   FILE *fp = fopen("/proc/cpuinfo", "r");
2169   if (fp) {
2170     while (!feof(fp)) {
2171       if (fgets(buf, buflen, fp)) {
2172         // Assume model name comes before flags
2173         bool model_name_printed = false;
2174         if (strstr(buf, "model name") != NULL) {
2175           if (!model_name_printed) {
2176             st->print_raw("\nCPU Model and flags from /proc/cpuinfo:\n");
2177             st->print_raw(buf);
2178             model_name_printed = true;
2179           } else {
2180             // model name printed but not flags?  Odd, just return
2181             fclose(fp);
2182             return true;
2183           }
2184         }
2185         // print the flags line too
2186         if (strstr(buf, "flags") != NULL) {
2187           st->print_raw(buf);
2188           fclose(fp);
2189           return true;
2190         }
2191       }
2192     }
2193     fclose(fp);
2194   }
2195 #endif // x86 platforms
2196   return false;
2197 }
2198 
2199 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
2200   // Only print the model name if the platform provides this as a summary
2201   if (!print_model_name_and_flags(st, buf, buflen)) {
2202     st->print("\n/proc/cpuinfo:\n");
2203     if (!_print_ascii_file("/proc/cpuinfo", st)) {
2204       st->print_cr("  <Not Available>");
2205     }
2206   }
2207 }
2208 
2209 const char* search_string = IA32_ONLY("model name") AMD64_ONLY("model name") 
2210                             IA64_ONLY("") SPARC_ONLY("cpu")
2211                             ARM32_ONLY("Processor") PPC_ONLY("Processor") AARCH64_ONLY("Processor");
2212 
2213 // Parses the cpuinfo file for string representing the model name.
2214 void os::get_summary_cpu_info(char* cpuinfo, size_t length) {
2215   FILE* fp = fopen("/proc/cpuinfo", "r");
2216   if (fp != NULL) {
2217     while (!feof(fp)) {
2218       char buf[257];
2219       if (fgets(buf, sizeof(buf), fp)) {
2220         char* start = strstr(buf, search_string);
2221         if (start != NULL) {
2222           char *ptr = start + strlen(search_string);
2223           char *end = buf + strlen(buf);
2224           while (ptr != end) {
2225              // skip whitespace and colon for the rest of the name.
2226              if (*ptr != ' ' && *ptr != '\t' && *ptr != ':') {
2227                break;
2228              }
2229              ptr++;
2230           }
2231           if (ptr != end) {
2232             // reasonable string, get rid of newline and keep the rest
2233             char* nl = strchr(buf, '\n');
2234             if (nl != NULL) *nl = '\0';
2235             strncpy(cpuinfo, ptr, length);
2236             fclose(fp);
2237             return;
2238           }
2239         }
2240       }
2241     }
2242   }
2243   // cpuinfo not found or parsing failed, just print generic string.  The entire
2244   // /proc/cpuinfo file will be printed later in the file (or enough of it for x86)
2245   strncpy(cpuinfo, IA32_ONLY("x86 IA32") AMD64_ONLY("x86 IA64") 
2246                    IA64_ONLY("IA64") SPARC_ONLY("sparcv9")
2247                    ARM32_ONLY("arm32") PPC_ONLY("PPC64") AARCH64_ONLY("AARCH64"), length);
2248 }
2249 
2250 void os::print_siginfo(outputStream* st, void* siginfo) {
2251   const siginfo_t* si = (const siginfo_t*)siginfo;
2252 
2253   os::Posix::print_siginfo_brief(st, si);
2254 #if INCLUDE_CDS
2255   if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2256       UseSharedSpaces) {
2257     FileMapInfo* mapinfo = FileMapInfo::current_info();
2258     if (mapinfo->is_in_shared_space(si->si_addr)) {
2259       st->print("\n\nError accessing class data sharing archive."   \
2260                 " Mapped file inaccessible during execution, "      \
2261                 " possible disk/network problem.");
2262     }
2263   }
2264 #endif
2265   st->cr();
2266 }
2267 
2268 
2269 static void print_signal_handler(outputStream* st, int sig,
2270                                  char* buf, size_t buflen);
2271 
2272 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2273   st->print_cr("Signal Handlers:");
2274   print_signal_handler(st, SIGSEGV, buf, buflen);
2275   print_signal_handler(st, SIGBUS , buf, buflen);
2276   print_signal_handler(st, SIGFPE , buf, buflen);
2277   print_signal_handler(st, SIGPIPE, buf, buflen);
2278   print_signal_handler(st, SIGXFSZ, buf, buflen);
2279   print_signal_handler(st, SIGILL , buf, buflen);
2280   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2281   print_signal_handler(st, SR_signum, buf, buflen);
2282   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2283   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2284   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2285   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2286 #if defined(PPC64)
2287   print_signal_handler(st, SIGTRAP, buf, buflen);
2288 #endif
2289 }
2290 
2291 static char saved_jvm_path[MAXPATHLEN] = {0};
2292 
2293 // Find the full path to the current module, libjvm.so
2294 void os::jvm_path(char *buf, jint buflen) {
2295   // Error checking.
2296   if (buflen < MAXPATHLEN) {
2297     assert(false, "must use a large-enough buffer");
2298     buf[0] = '\0';
2299     return;
2300   }
2301   // Lazy resolve the path to current module.
2302   if (saved_jvm_path[0] != 0) {
2303     strcpy(buf, saved_jvm_path);
2304     return;
2305   }
2306 
2307   char dli_fname[MAXPATHLEN];
2308   bool ret = dll_address_to_library_name(
2309                                          CAST_FROM_FN_PTR(address, os::jvm_path),
2310                                          dli_fname, sizeof(dli_fname), NULL);
2311   assert(ret, "cannot locate libjvm");
2312   char *rp = NULL;
2313   if (ret && dli_fname[0] != '\0') {
2314     rp = realpath(dli_fname, buf);
2315   }
2316   if (rp == NULL) {
2317     return;
2318   }
2319 
2320   if (Arguments::sun_java_launcher_is_altjvm()) {
2321     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2322     // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".
2323     // If "/jre/lib/" appears at the right place in the string, then
2324     // assume we are installed in a JDK and we're done. Otherwise, check
2325     // for a JAVA_HOME environment variable and fix up the path so it
2326     // looks like libjvm.so is installed there (append a fake suffix
2327     // hotspot/libjvm.so).
2328     const char *p = buf + strlen(buf) - 1;
2329     for (int count = 0; p > buf && count < 5; ++count) {
2330       for (--p; p > buf && *p != '/'; --p)
2331         /* empty */ ;
2332     }
2333 
2334     if (strncmp(p, "/jre/lib/", 9) != 0) {
2335       // Look for JAVA_HOME in the environment.
2336       char* java_home_var = ::getenv("JAVA_HOME");
2337       if (java_home_var != NULL && java_home_var[0] != 0) {
2338         char* jrelib_p;
2339         int len;
2340 
2341         // Check the current module name "libjvm.so".
2342         p = strrchr(buf, '/');
2343         if (p == NULL) {
2344           return;
2345         }
2346         assert(strstr(p, "/libjvm") == p, "invalid library name");
2347 
2348         rp = realpath(java_home_var, buf);
2349         if (rp == NULL) {
2350           return;
2351         }
2352 
2353         // determine if this is a legacy image or modules image
2354         // modules image doesn't have "jre" subdirectory
2355         len = strlen(buf);
2356         assert(len < buflen, "Ran out of buffer room");
2357         jrelib_p = buf + len;
2358         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2359         if (0 != access(buf, F_OK)) {
2360           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2361         }
2362 
2363         if (0 == access(buf, F_OK)) {
2364           // Use current module name "libjvm.so"
2365           len = strlen(buf);
2366           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2367         } else {
2368           // Go back to path of .so
2369           rp = realpath(dli_fname, buf);
2370           if (rp == NULL) {
2371             return;
2372           }
2373         }
2374       }
2375     }
2376   }
2377 
2378   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2379   saved_jvm_path[MAXPATHLEN - 1] = '\0';
2380 }
2381 
2382 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2383   // no prefix required, not even "_"
2384 }
2385 
2386 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2387   // no suffix required
2388 }
2389 
2390 ////////////////////////////////////////////////////////////////////////////////
2391 // sun.misc.Signal support
2392 
2393 static volatile jint sigint_count = 0;
2394 
2395 static void UserHandler(int sig, void *siginfo, void *context) {
2396   // 4511530 - sem_post is serialized and handled by the manager thread. When
2397   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2398   // don't want to flood the manager thread with sem_post requests.
2399   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
2400     return;
2401   }
2402 
2403   // Ctrl-C is pressed during error reporting, likely because the error
2404   // handler fails to abort. Let VM die immediately.
2405   if (sig == SIGINT && is_error_reported()) {
2406     os::die();
2407   }
2408 
2409   os::signal_notify(sig);
2410 }
2411 
2412 void* os::user_handler() {
2413   return CAST_FROM_FN_PTR(void*, UserHandler);
2414 }
2415 
2416 struct timespec PosixSemaphore::create_timespec(unsigned int sec, int nsec) {
2417   struct timespec ts;
2418   // Semaphore's are always associated with CLOCK_REALTIME
2419   os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2420   // see unpackTime for discussion on overflow checking
2421   if (sec >= MAX_SECS) {
2422     ts.tv_sec += MAX_SECS;
2423     ts.tv_nsec = 0;
2424   } else {
2425     ts.tv_sec += sec;
2426     ts.tv_nsec += nsec;
2427     if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2428       ts.tv_nsec -= NANOSECS_PER_SEC;
2429       ++ts.tv_sec; // note: this must be <= max_secs
2430     }
2431   }
2432 
2433   return ts;
2434 }
2435 
2436 extern "C" {
2437   typedef void (*sa_handler_t)(int);
2438   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2439 }
2440 
2441 void* os::signal(int signal_number, void* handler) {
2442   struct sigaction sigAct, oldSigAct;
2443 
2444   sigfillset(&(sigAct.sa_mask));
2445   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2446   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2447 
2448   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2449     // -1 means registration failed
2450     return (void *)-1;
2451   }
2452 
2453   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2454 }
2455 
2456 void os::signal_raise(int signal_number) {
2457   ::raise(signal_number);
2458 }
2459 
2460 // The following code is moved from os.cpp for making this
2461 // code platform specific, which it is by its very nature.
2462 
2463 // Will be modified when max signal is changed to be dynamic
2464 int os::sigexitnum_pd() {
2465   return NSIG;
2466 }
2467 
2468 // a counter for each possible signal value
2469 static volatile jint pending_signals[NSIG+1] = { 0 };
2470 
2471 // Linux(POSIX) specific hand shaking semaphore.
2472 static sem_t sig_sem;
2473 static PosixSemaphore sr_semaphore;
2474 
2475 void os::signal_init_pd() {
2476   // Initialize signal structures
2477   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2478 
2479   // Initialize signal semaphore
2480   ::sem_init(&sig_sem, 0, 0);
2481 }
2482 
2483 void os::signal_notify(int sig) {
2484   Atomic::inc(&pending_signals[sig]);
2485   ::sem_post(&sig_sem);
2486 }
2487 
2488 static int check_pending_signals(bool wait) {
2489   Atomic::store(0, &sigint_count);
2490   for (;;) {
2491     for (int i = 0; i < NSIG + 1; i++) {
2492       jint n = pending_signals[i];
2493       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2494         return i;
2495       }
2496     }
2497     if (!wait) {
2498       return -1;
2499     }
2500     JavaThread *thread = JavaThread::current();
2501     ThreadBlockInVM tbivm(thread);
2502 
2503     bool threadIsSuspended;
2504     do {
2505       thread->set_suspend_equivalent();
2506       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2507       ::sem_wait(&sig_sem);
2508 
2509       // were we externally suspended while we were waiting?
2510       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2511       if (threadIsSuspended) {
2512         // The semaphore has been incremented, but while we were waiting
2513         // another thread suspended us. We don't want to continue running
2514         // while suspended because that would surprise the thread that
2515         // suspended us.
2516         ::sem_post(&sig_sem);
2517 
2518         thread->java_suspend_self();
2519       }
2520     } while (threadIsSuspended);
2521   }
2522 }
2523 
2524 int os::signal_lookup() {
2525   return check_pending_signals(false);
2526 }
2527 
2528 int os::signal_wait() {
2529   return check_pending_signals(true);
2530 }
2531 
2532 ////////////////////////////////////////////////////////////////////////////////
2533 // Virtual Memory
2534 
2535 int os::vm_page_size() {
2536   // Seems redundant as all get out
2537   assert(os::Linux::page_size() != -1, "must call os::init");
2538   return os::Linux::page_size();
2539 }
2540 
2541 // Solaris allocates memory by pages.
2542 int os::vm_allocation_granularity() {
2543   assert(os::Linux::page_size() != -1, "must call os::init");
2544   return os::Linux::page_size();
2545 }
2546 
2547 // Rationale behind this function:
2548 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2549 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2550 //  samples for JITted code. Here we create private executable mapping over the code cache
2551 //  and then we can use standard (well, almost, as mapping can change) way to provide
2552 //  info for the reporting script by storing timestamp and location of symbol
2553 void linux_wrap_code(char* base, size_t size) {
2554   static volatile jint cnt = 0;
2555 
2556   if (!UseOprofile) {
2557     return;
2558   }
2559 
2560   char buf[PATH_MAX+1];
2561   int num = Atomic::add(1, &cnt);
2562 
2563   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2564            os::get_temp_directory(), os::current_process_id(), num);
2565   unlink(buf);
2566 
2567   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2568 
2569   if (fd != -1) {
2570     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2571     if (rv != (off_t)-1) {
2572       if (::write(fd, "", 1) == 1) {
2573         mmap(base, size,
2574              PROT_READ|PROT_WRITE|PROT_EXEC,
2575              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2576       }
2577     }
2578     ::close(fd);
2579     unlink(buf);
2580   }
2581 }
2582 
2583 static bool recoverable_mmap_error(int err) {
2584   // See if the error is one we can let the caller handle. This
2585   // list of errno values comes from JBS-6843484. I can't find a
2586   // Linux man page that documents this specific set of errno
2587   // values so while this list currently matches Solaris, it may
2588   // change as we gain experience with this failure mode.
2589   switch (err) {
2590   case EBADF:
2591   case EINVAL:
2592   case ENOTSUP:
2593     // let the caller deal with these errors
2594     return true;
2595 
2596   default:
2597     // Any remaining errors on this OS can cause our reserved mapping
2598     // to be lost. That can cause confusion where different data
2599     // structures think they have the same memory mapped. The worst
2600     // scenario is if both the VM and a library think they have the
2601     // same memory mapped.
2602     return false;
2603   }
2604 }
2605 
2606 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2607                                     int err) {
2608   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2609           ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2610           strerror(err), err);
2611 }
2612 
2613 static void warn_fail_commit_memory(char* addr, size_t size,
2614                                     size_t alignment_hint, bool exec,
2615                                     int err) {
2616   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2617           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, size,
2618           alignment_hint, exec, strerror(err), err);
2619 }
2620 
2621 // NOTE: Linux kernel does not really reserve the pages for us.
2622 //       All it does is to check if there are enough free pages
2623 //       left at the time of mmap(). This could be a potential
2624 //       problem.
2625 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2626   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2627   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2628                                      MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2629   if (res != (uintptr_t) MAP_FAILED) {
2630     if (UseNUMAInterleaving) {
2631       numa_make_global(addr, size);
2632     }
2633     return 0;
2634   }
2635 
2636   int err = errno;  // save errno from mmap() call above
2637 
2638   if (!recoverable_mmap_error(err)) {
2639     warn_fail_commit_memory(addr, size, exec, err);
2640     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2641   }
2642 
2643   return err;
2644 }
2645 
2646 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2647   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2648 }
2649 
2650 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2651                                   const char* mesg) {
2652   assert(mesg != NULL, "mesg must be specified");
2653   int err = os::Linux::commit_memory_impl(addr, size, exec);
2654   if (err != 0) {
2655     // the caller wants all commit errors to exit with the specified mesg:
2656     warn_fail_commit_memory(addr, size, exec, err);
2657     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2658   }
2659 }
2660 
2661 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2662 #ifndef MAP_HUGETLB
2663   #define MAP_HUGETLB 0x40000
2664 #endif
2665 
2666 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2667 #ifndef MADV_HUGEPAGE
2668   #define MADV_HUGEPAGE 14
2669 #endif
2670 
2671 int os::Linux::commit_memory_impl(char* addr, size_t size,
2672                                   size_t alignment_hint, bool exec) {
2673   int err = os::Linux::commit_memory_impl(addr, size, exec);
2674   if (err == 0) {
2675     realign_memory(addr, size, alignment_hint);
2676   }
2677   return err;
2678 }
2679 
2680 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2681                           bool exec) {
2682   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2683 }
2684 
2685 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2686                                   size_t alignment_hint, bool exec,
2687                                   const char* mesg) {
2688   assert(mesg != NULL, "mesg must be specified");
2689   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2690   if (err != 0) {
2691     // the caller wants all commit errors to exit with the specified mesg:
2692     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2693     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2694   }
2695 }
2696 
2697 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2698   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2699     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2700     // be supported or the memory may already be backed by huge pages.
2701     ::madvise(addr, bytes, MADV_HUGEPAGE);
2702   }
2703 }
2704 
2705 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2706   // This method works by doing an mmap over an existing mmaping and effectively discarding
2707   // the existing pages. However it won't work for SHM-based large pages that cannot be
2708   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2709   // small pages on top of the SHM segment. This method always works for small pages, so we
2710   // allow that in any case.
2711   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2712     commit_memory(addr, bytes, alignment_hint, !ExecMem);
2713   }
2714 }
2715 
2716 void os::numa_make_global(char *addr, size_t bytes) {
2717   Linux::numa_interleave_memory(addr, bytes);
2718 }
2719 
2720 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2721 // bind policy to MPOL_PREFERRED for the current thread.
2722 #define USE_MPOL_PREFERRED 0
2723 
2724 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2725   // To make NUMA and large pages more robust when both enabled, we need to ease
2726   // the requirements on where the memory should be allocated. MPOL_BIND is the
2727   // default policy and it will force memory to be allocated on the specified
2728   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2729   // the specified node, but will not force it. Using this policy will prevent
2730   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2731   // free large pages.
2732   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2733   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2734 }
2735 
2736 bool os::numa_topology_changed() { return false; }
2737 
2738 size_t os::numa_get_groups_num() {
2739   int max_node = Linux::numa_max_node();
2740   return max_node > 0 ? max_node + 1 : 1;
2741 }
2742 
2743 int os::numa_get_group_id() {
2744   int cpu_id = Linux::sched_getcpu();
2745   if (cpu_id != -1) {
2746     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2747     if (lgrp_id != -1) {
2748       return lgrp_id;
2749     }
2750   }
2751   return 0;
2752 }
2753 
2754 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2755   for (size_t i = 0; i < size; i++) {
2756     ids[i] = i;
2757   }
2758   return size;
2759 }
2760 
2761 bool os::get_page_info(char *start, page_info* info) {
2762   return false;
2763 }
2764 
2765 char *os::scan_pages(char *start, char* end, page_info* page_expected,
2766                      page_info* page_found) {
2767   return end;
2768 }
2769 
2770 
2771 int os::Linux::sched_getcpu_syscall(void) {
2772   unsigned int cpu;
2773   int retval = -1;
2774 
2775 #if defined(IA32)
2776   #ifndef SYS_getcpu
2777     #define SYS_getcpu 318
2778   #endif
2779   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2780 #elif defined(AMD64)
2781 // Unfortunately we have to bring all these macros here from vsyscall.h
2782 // to be able to compile on old linuxes.
2783   #define __NR_vgetcpu 2
2784   #define VSYSCALL_START (-10UL << 20)
2785   #define VSYSCALL_SIZE 1024
2786   #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2787   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2788   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2789   retval = vgetcpu(&cpu, NULL, NULL);
2790 #endif
2791 
2792   return (retval == -1) ? retval : cpu;
2793 }
2794 
2795 // Something to do with the numa-aware allocator needs these symbols
2796 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2797 extern "C" JNIEXPORT void numa_error(char *where) { }
2798 extern "C" JNIEXPORT int fork1() { return fork(); }
2799 
2800 
2801 // If we are running with libnuma version > 2, then we should
2802 // be trying to use symbols with versions 1.1
2803 // If we are running with earlier version, which did not have symbol versions,
2804 // we should use the base version.
2805 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2806   void *f = dlvsym(handle, name, "libnuma_1.1");
2807   if (f == NULL) {
2808     f = dlsym(handle, name);
2809   }
2810   return f;
2811 }
2812 
2813 bool os::Linux::libnuma_init() {
2814   // sched_getcpu() should be in libc.
2815   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2816                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2817 
2818   // If it's not, try a direct syscall.
2819   if (sched_getcpu() == -1) {
2820     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2821                                     (void*)&sched_getcpu_syscall));
2822   }
2823 
2824   if (sched_getcpu() != -1) { // Does it work?
2825     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2826     if (handle != NULL) {
2827       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2828                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
2829       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2830                                        libnuma_dlsym(handle, "numa_max_node")));
2831       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2832                                         libnuma_dlsym(handle, "numa_available")));
2833       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2834                                             libnuma_dlsym(handle, "numa_tonode_memory")));
2835       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2836                                                 libnuma_dlsym(handle, "numa_interleave_memory")));
2837       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2838                                               libnuma_dlsym(handle, "numa_set_bind_policy")));
2839 
2840 
2841       if (numa_available() != -1) {
2842         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2843         // Create a cpu -> node mapping
2844         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2845         rebuild_cpu_to_node_map();
2846         return true;
2847       }
2848     }
2849   }
2850   return false;
2851 }
2852 
2853 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2854 // The table is later used in get_node_by_cpu().
2855 void os::Linux::rebuild_cpu_to_node_map() {
2856   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2857                               // in libnuma (possible values are starting from 16,
2858                               // and continuing up with every other power of 2, but less
2859                               // than the maximum number of CPUs supported by kernel), and
2860                               // is a subject to change (in libnuma version 2 the requirements
2861                               // are more reasonable) we'll just hardcode the number they use
2862                               // in the library.
2863   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2864 
2865   size_t cpu_num = os::active_processor_count();
2866   size_t cpu_map_size = NCPUS / BitsPerCLong;
2867   size_t cpu_map_valid_size =
2868     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2869 
2870   cpu_to_node()->clear();
2871   cpu_to_node()->at_grow(cpu_num - 1);
2872   size_t node_num = numa_get_groups_num();
2873 
2874   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2875   for (size_t i = 0; i < node_num; i++) {
2876     if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2877       for (size_t j = 0; j < cpu_map_valid_size; j++) {
2878         if (cpu_map[j] != 0) {
2879           for (size_t k = 0; k < BitsPerCLong; k++) {
2880             if (cpu_map[j] & (1UL << k)) {
2881               cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2882             }
2883           }
2884         }
2885       }
2886     }
2887   }
2888   FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
2889 }
2890 
2891 int os::Linux::get_node_by_cpu(int cpu_id) {
2892   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2893     return cpu_to_node()->at(cpu_id);
2894   }
2895   return -1;
2896 }
2897 
2898 GrowableArray<int>* os::Linux::_cpu_to_node;
2899 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2900 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2901 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2902 os::Linux::numa_available_func_t os::Linux::_numa_available;
2903 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2904 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2905 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
2906 unsigned long* os::Linux::_numa_all_nodes;
2907 
2908 bool os::pd_uncommit_memory(char* addr, size_t size) {
2909   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2910                                      MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2911   return res  != (uintptr_t) MAP_FAILED;
2912 }
2913 
2914 static address get_stack_commited_bottom(address bottom, size_t size) {
2915   address nbot = bottom;
2916   address ntop = bottom + size;
2917 
2918   size_t page_sz = os::vm_page_size();
2919   unsigned pages = size / page_sz;
2920 
2921   unsigned char vec[1];
2922   unsigned imin = 1, imax = pages + 1, imid;
2923   int mincore_return_value = 0;
2924 
2925   assert(imin <= imax, "Unexpected page size");
2926 
2927   while (imin < imax) {
2928     imid = (imax + imin) / 2;
2929     nbot = ntop - (imid * page_sz);
2930 
2931     // Use a trick with mincore to check whether the page is mapped or not.
2932     // mincore sets vec to 1 if page resides in memory and to 0 if page
2933     // is swapped output but if page we are asking for is unmapped
2934     // it returns -1,ENOMEM
2935     mincore_return_value = mincore(nbot, page_sz, vec);
2936 
2937     if (mincore_return_value == -1) {
2938       // Page is not mapped go up
2939       // to find first mapped page
2940       if (errno != EAGAIN) {
2941         assert(errno == ENOMEM, "Unexpected mincore errno");
2942         imax = imid;
2943       }
2944     } else {
2945       // Page is mapped go down
2946       // to find first not mapped page
2947       imin = imid + 1;
2948     }
2949   }
2950 
2951   nbot = nbot + page_sz;
2952 
2953   // Adjust stack bottom one page up if last checked page is not mapped
2954   if (mincore_return_value == -1) {
2955     nbot = nbot + page_sz;
2956   }
2957 
2958   return nbot;
2959 }
2960 
2961 
2962 // Linux uses a growable mapping for the stack, and if the mapping for
2963 // the stack guard pages is not removed when we detach a thread the
2964 // stack cannot grow beyond the pages where the stack guard was
2965 // mapped.  If at some point later in the process the stack expands to
2966 // that point, the Linux kernel cannot expand the stack any further
2967 // because the guard pages are in the way, and a segfault occurs.
2968 //
2969 // However, it's essential not to split the stack region by unmapping
2970 // a region (leaving a hole) that's already part of the stack mapping,
2971 // so if the stack mapping has already grown beyond the guard pages at
2972 // the time we create them, we have to truncate the stack mapping.
2973 // So, we need to know the extent of the stack mapping when
2974 // create_stack_guard_pages() is called.
2975 
2976 // We only need this for stacks that are growable: at the time of
2977 // writing thread stacks don't use growable mappings (i.e. those
2978 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
2979 // only applies to the main thread.
2980 
2981 // If the (growable) stack mapping already extends beyond the point
2982 // where we're going to put our guard pages, truncate the mapping at
2983 // that point by munmap()ping it.  This ensures that when we later
2984 // munmap() the guard pages we don't leave a hole in the stack
2985 // mapping. This only affects the main/initial thread
2986 
2987 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2988   if (os::Linux::is_initial_thread()) {
2989     // As we manually grow stack up to bottom inside create_attached_thread(),
2990     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
2991     // we don't need to do anything special.
2992     // Check it first, before calling heavy function.
2993     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
2994     unsigned char vec[1];
2995 
2996     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
2997       // Fallback to slow path on all errors, including EAGAIN
2998       stack_extent = (uintptr_t) get_stack_commited_bottom(
2999                                                            os::Linux::initial_thread_stack_bottom(),
3000                                                            (size_t)addr - stack_extent);
3001     }
3002 
3003     if (stack_extent < (uintptr_t)addr) {
3004       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3005     }
3006   }
3007 
3008   return os::commit_memory(addr, size, !ExecMem);
3009 }
3010 
3011 // If this is a growable mapping, remove the guard pages entirely by
3012 // munmap()ping them.  If not, just call uncommit_memory(). This only
3013 // affects the main/initial thread, but guard against future OS changes
3014 // It's safe to always unmap guard pages for initial thread because we
3015 // always place it right after end of the mapped region
3016 
3017 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3018   uintptr_t stack_extent, stack_base;
3019 
3020   if (os::Linux::is_initial_thread()) {
3021     return ::munmap(addr, size) == 0;
3022   }
3023 
3024   return os::uncommit_memory(addr, size);
3025 }
3026 
3027 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3028 // at 'requested_addr'. If there are existing memory mappings at the same
3029 // location, however, they will be overwritten. If 'fixed' is false,
3030 // 'requested_addr' is only treated as a hint, the return value may or
3031 // may not start from the requested address. Unlike Linux mmap(), this
3032 // function returns NULL to indicate failure.
3033 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3034   char * addr;
3035   int flags;
3036 
3037   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3038   if (fixed) {
3039     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3040     flags |= MAP_FIXED;
3041   }
3042 
3043   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3044   // touch an uncommitted page. Otherwise, the read/write might
3045   // succeed if we have enough swap space to back the physical page.
3046   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3047                        flags, -1, 0);
3048 
3049   return addr == MAP_FAILED ? NULL : addr;
3050 }
3051 
3052 static int anon_munmap(char * addr, size_t size) {
3053   return ::munmap(addr, size) == 0;
3054 }
3055 
3056 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3057                             size_t alignment_hint) {
3058   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3059 }
3060 
3061 bool os::pd_release_memory(char* addr, size_t size) {
3062   return anon_munmap(addr, size);
3063 }
3064 
3065 static bool linux_mprotect(char* addr, size_t size, int prot) {
3066   // Linux wants the mprotect address argument to be page aligned.
3067   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
3068 
3069   // According to SUSv3, mprotect() should only be used with mappings
3070   // established by mmap(), and mmap() always maps whole pages. Unaligned
3071   // 'addr' likely indicates problem in the VM (e.g. trying to change
3072   // protection of malloc'ed or statically allocated memory). Check the
3073   // caller if you hit this assert.
3074   assert(addr == bottom, "sanity check");
3075 
3076   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3077   return ::mprotect(bottom, size, prot) == 0;
3078 }
3079 
3080 // Set protections specified
3081 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3082                         bool is_committed) {
3083   unsigned int p = 0;
3084   switch (prot) {
3085   case MEM_PROT_NONE: p = PROT_NONE; break;
3086   case MEM_PROT_READ: p = PROT_READ; break;
3087   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3088   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3089   default:
3090     ShouldNotReachHere();
3091   }
3092   // is_committed is unused.
3093   return linux_mprotect(addr, bytes, p);
3094 }
3095 
3096 bool os::guard_memory(char* addr, size_t size) {
3097   return linux_mprotect(addr, size, PROT_NONE);
3098 }
3099 
3100 bool os::unguard_memory(char* addr, size_t size) {
3101   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3102 }
3103 
3104 bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3105                                                     size_t page_size) {
3106   bool result = false;
3107   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3108                  MAP_ANONYMOUS|MAP_PRIVATE,
3109                  -1, 0);
3110   if (p != MAP_FAILED) {
3111     void *aligned_p = align_ptr_up(p, page_size);
3112 
3113     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3114 
3115     munmap(p, page_size * 2);
3116   }
3117 
3118   if (warn && !result) {
3119     warning("TransparentHugePages is not supported by the operating system.");
3120   }
3121 
3122   return result;
3123 }
3124 
3125 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3126   bool result = false;
3127   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3128                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3129                  -1, 0);
3130 
3131   if (p != MAP_FAILED) {
3132     // We don't know if this really is a huge page or not.
3133     FILE *fp = fopen("/proc/self/maps", "r");
3134     if (fp) {
3135       while (!feof(fp)) {
3136         char chars[257];
3137         long x = 0;
3138         if (fgets(chars, sizeof(chars), fp)) {
3139           if (sscanf(chars, "%lx-%*x", &x) == 1
3140               && x == (long)p) {
3141             if (strstr (chars, "hugepage")) {
3142               result = true;
3143               break;
3144             }
3145           }
3146         }
3147       }
3148       fclose(fp);
3149     }
3150     munmap(p, page_size);
3151   }
3152 
3153   if (warn && !result) {
3154     warning("HugeTLBFS is not supported by the operating system.");
3155   }
3156 
3157   return result;
3158 }
3159 
3160 // Set the coredump_filter bits to include largepages in core dump (bit 6)
3161 //
3162 // From the coredump_filter documentation:
3163 //
3164 // - (bit 0) anonymous private memory
3165 // - (bit 1) anonymous shared memory
3166 // - (bit 2) file-backed private memory
3167 // - (bit 3) file-backed shared memory
3168 // - (bit 4) ELF header pages in file-backed private memory areas (it is
3169 //           effective only if the bit 2 is cleared)
3170 // - (bit 5) hugetlb private memory
3171 // - (bit 6) hugetlb shared memory
3172 //
3173 static void set_coredump_filter(void) {
3174   FILE *f;
3175   long cdm;
3176 
3177   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3178     return;
3179   }
3180 
3181   if (fscanf(f, "%lx", &cdm) != 1) {
3182     fclose(f);
3183     return;
3184   }
3185 
3186   rewind(f);
3187 
3188   if ((cdm & LARGEPAGES_BIT) == 0) {
3189     cdm |= LARGEPAGES_BIT;
3190     fprintf(f, "%#lx", cdm);
3191   }
3192 
3193   fclose(f);
3194 }
3195 
3196 // Large page support
3197 
3198 static size_t _large_page_size = 0;
3199 
3200 size_t os::Linux::find_large_page_size() {
3201   size_t large_page_size = 0;
3202 
3203   // large_page_size on Linux is used to round up heap size. x86 uses either
3204   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3205   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3206   // page as large as 256M.
3207   //
3208   // Here we try to figure out page size by parsing /proc/meminfo and looking
3209   // for a line with the following format:
3210   //    Hugepagesize:     2048 kB
3211   //
3212   // If we can't determine the value (e.g. /proc is not mounted, or the text
3213   // format has been changed), we'll use the largest page size supported by
3214   // the processor.
3215 
3216 #ifndef ZERO
3217   large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3218                      ARM32_ONLY(2 * M) PPC_ONLY(4 * M) AARCH64_ONLY(2 * M);
3219 #endif // ZERO
3220 
3221   FILE *fp = fopen("/proc/meminfo", "r");
3222   if (fp) {
3223     while (!feof(fp)) {
3224       int x = 0;
3225       char buf[16];
3226       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3227         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3228           large_page_size = x * K;
3229           break;
3230         }
3231       } else {
3232         // skip to next line
3233         for (;;) {
3234           int ch = fgetc(fp);
3235           if (ch == EOF || ch == (int)'\n') break;
3236         }
3237       }
3238     }
3239     fclose(fp);
3240   }
3241 
3242   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3243     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3244             SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3245             proper_unit_for_byte_size(large_page_size));
3246   }
3247 
3248   return large_page_size;
3249 }
3250 
3251 size_t os::Linux::setup_large_page_size() {
3252   _large_page_size = Linux::find_large_page_size();
3253   const size_t default_page_size = (size_t)Linux::page_size();
3254   if (_large_page_size > default_page_size) {
3255     _page_sizes[0] = _large_page_size;
3256     _page_sizes[1] = default_page_size;
3257     _page_sizes[2] = 0;
3258   }
3259 
3260   return _large_page_size;
3261 }
3262 
3263 bool os::Linux::setup_large_page_type(size_t page_size) {
3264   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3265       FLAG_IS_DEFAULT(UseSHM) &&
3266       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3267 
3268     // The type of large pages has not been specified by the user.
3269 
3270     // Try UseHugeTLBFS and then UseSHM.
3271     UseHugeTLBFS = UseSHM = true;
3272 
3273     // Don't try UseTransparentHugePages since there are known
3274     // performance issues with it turned on. This might change in the future.
3275     UseTransparentHugePages = false;
3276   }
3277 
3278   if (UseTransparentHugePages) {
3279     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3280     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3281       UseHugeTLBFS = false;
3282       UseSHM = false;
3283       return true;
3284     }
3285     UseTransparentHugePages = false;
3286   }
3287 
3288   if (UseHugeTLBFS) {
3289     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3290     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3291       UseSHM = false;
3292       return true;
3293     }
3294     UseHugeTLBFS = false;
3295   }
3296 
3297   return UseSHM;
3298 }
3299 
3300 void os::large_page_init() {
3301   if (!UseLargePages &&
3302       !UseTransparentHugePages &&
3303       !UseHugeTLBFS &&
3304       !UseSHM) {
3305     // Not using large pages.
3306     return;
3307   }
3308 
3309   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3310     // The user explicitly turned off large pages.
3311     // Ignore the rest of the large pages flags.
3312     UseTransparentHugePages = false;
3313     UseHugeTLBFS = false;
3314     UseSHM = false;
3315     return;
3316   }
3317 
3318   size_t large_page_size = Linux::setup_large_page_size();
3319   UseLargePages          = Linux::setup_large_page_type(large_page_size);
3320 
3321   set_coredump_filter();
3322 }
3323 
3324 #ifndef SHM_HUGETLB
3325   #define SHM_HUGETLB 04000
3326 #endif
3327 
3328 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
3329                                             char* req_addr, bool exec) {
3330   // "exec" is passed in but not used.  Creating the shared image for
3331   // the code cache doesn't have an SHM_X executable permission to check.
3332   assert(UseLargePages && UseSHM, "only for SHM large pages");
3333   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3334 
3335   if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3336     return NULL; // Fallback to small pages.
3337   }
3338 
3339   key_t key = IPC_PRIVATE;
3340   char *addr;
3341 
3342   bool warn_on_failure = UseLargePages &&
3343                         (!FLAG_IS_DEFAULT(UseLargePages) ||
3344                          !FLAG_IS_DEFAULT(UseSHM) ||
3345                          !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3346   char msg[128];
3347 
3348   // Create a large shared memory region to attach to based on size.
3349   // Currently, size is the total size of the heap
3350   int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3351   if (shmid == -1) {
3352     // Possible reasons for shmget failure:
3353     // 1. shmmax is too small for Java heap.
3354     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3355     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3356     // 2. not enough large page memory.
3357     //    > check available large pages: cat /proc/meminfo
3358     //    > increase amount of large pages:
3359     //          echo new_value > /proc/sys/vm/nr_hugepages
3360     //      Note 1: different Linux may use different name for this property,
3361     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3362     //      Note 2: it's possible there's enough physical memory available but
3363     //            they are so fragmented after a long run that they can't
3364     //            coalesce into large pages. Try to reserve large pages when
3365     //            the system is still "fresh".
3366     if (warn_on_failure) {
3367       jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3368       warning("%s", msg);
3369     }
3370     return NULL;
3371   }
3372 
3373   // attach to the region
3374   addr = (char*)shmat(shmid, req_addr, 0);
3375   int err = errno;
3376 
3377   // Remove shmid. If shmat() is successful, the actual shared memory segment
3378   // will be deleted when it's detached by shmdt() or when the process
3379   // terminates. If shmat() is not successful this will remove the shared
3380   // segment immediately.
3381   shmctl(shmid, IPC_RMID, NULL);
3382 
3383   if ((intptr_t)addr == -1) {
3384     if (warn_on_failure) {
3385       jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3386       warning("%s", msg);
3387     }
3388     return NULL;
3389   }
3390 
3391   return addr;
3392 }
3393 
3394 static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
3395                                         int error) {
3396   assert(error == ENOMEM, "Only expect to fail if no memory is available");
3397 
3398   bool warn_on_failure = UseLargePages &&
3399       (!FLAG_IS_DEFAULT(UseLargePages) ||
3400        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3401        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3402 
3403   if (warn_on_failure) {
3404     char msg[128];
3405     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3406                  PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3407     warning("%s", msg);
3408   }
3409 }
3410 
3411 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
3412                                                         char* req_addr,
3413                                                         bool exec) {
3414   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3415   assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
3416   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3417 
3418   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3419   char* addr = (char*)::mmap(req_addr, bytes, prot,
3420                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3421                              -1, 0);
3422 
3423   if (addr == MAP_FAILED) {
3424     warn_on_large_pages_failure(req_addr, bytes, errno);
3425     return NULL;
3426   }
3427 
3428   assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
3429 
3430   return addr;
3431 }
3432 
3433 // Helper for os::Linux::reserve_memory_special_huge_tlbfs_mixed().
3434 // Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
3435 //   (req_addr != NULL) or with a given alignment.
3436 //  - bytes shall be a multiple of alignment.
3437 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3438 //  - alignment sets the alignment at which memory shall be allocated.
3439 //     It must be a multiple of allocation granularity.
3440 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3441 //  req_addr or NULL.
3442 static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
3443 
3444   size_t extra_size = bytes;
3445   if (req_addr == NULL && alignment > 0) {
3446     extra_size += alignment;
3447   }
3448 
3449   char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
3450     MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
3451     -1, 0);
3452   if (start == MAP_FAILED) {
3453     start = NULL;
3454   } else {
3455     if (req_addr != NULL) {
3456       if (start != req_addr) {
3457         ::munmap(start, extra_size);
3458         start = NULL;
3459       }
3460     } else {
3461       char* const start_aligned = (char*) align_ptr_up(start, alignment);
3462       char* const end_aligned = start_aligned + bytes;
3463       char* const end = start + extra_size;
3464       if (start_aligned > start) {
3465         ::munmap(start, start_aligned - start);
3466       }
3467       if (end_aligned < end) {
3468         ::munmap(end_aligned, end - end_aligned);
3469       }
3470       start = start_aligned;
3471     }
3472   }
3473   return start;
3474 
3475 }
3476 
3477 // Reserve memory using mmap(MAP_HUGETLB).
3478 //  - bytes shall be a multiple of alignment.
3479 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3480 //  - alignment sets the alignment at which memory shall be allocated.
3481 //     It must be a multiple of allocation granularity.
3482 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3483 //  req_addr or NULL.
3484 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
3485                                                          size_t alignment,
3486                                                          char* req_addr,
3487                                                          bool exec) {
3488   size_t large_page_size = os::large_page_size();
3489   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3490 
3491   assert(is_ptr_aligned(req_addr, alignment), "Must be");
3492   assert(is_size_aligned(bytes, alignment), "Must be");
3493 
3494   // First reserve - but not commit - the address range in small pages.
3495   char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
3496 
3497   if (start == NULL) {
3498     return NULL;
3499   }
3500 
3501   assert(is_ptr_aligned(start, alignment), "Must be");
3502 
3503   char* end = start + bytes;
3504 
3505   // Find the regions of the allocated chunk that can be promoted to large pages.
3506   char* lp_start = (char*)align_ptr_up(start, large_page_size);
3507   char* lp_end   = (char*)align_ptr_down(end, large_page_size);
3508 
3509   size_t lp_bytes = lp_end - lp_start;
3510 
3511   assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
3512 
3513   if (lp_bytes == 0) {
3514     // The mapped region doesn't even span the start and the end of a large page.
3515     // Fall back to allocate a non-special area.
3516     ::munmap(start, end - start);
3517     return NULL;
3518   }
3519 
3520   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3521 
3522   void* result;
3523 
3524   // Commit small-paged leading area.
3525   if (start != lp_start) {
3526     result = ::mmap(start, lp_start - start, prot,
3527                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3528                     -1, 0);
3529     if (result == MAP_FAILED) {
3530       ::munmap(lp_start, end - lp_start);
3531       return NULL;
3532     }
3533   }
3534 
3535   // Commit large-paged area.
3536   result = ::mmap(lp_start, lp_bytes, prot,
3537                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3538                   -1, 0);
3539   if (result == MAP_FAILED) {
3540     warn_on_large_pages_failure(lp_start, lp_bytes, errno);
3541     // If the mmap above fails, the large pages region will be unmapped and we
3542     // have regions before and after with small pages. Release these regions.
3543     //
3544     // |  mapped  |  unmapped  |  mapped  |
3545     // ^          ^            ^          ^
3546     // start      lp_start     lp_end     end
3547     //
3548     ::munmap(start, lp_start - start);
3549     ::munmap(lp_end, end - lp_end);
3550     return NULL;
3551   }
3552 
3553   // Commit small-paged trailing area.
3554   if (lp_end != end) {
3555     result = ::mmap(lp_end, end - lp_end, prot,
3556                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3557                     -1, 0);
3558     if (result == MAP_FAILED) {
3559       ::munmap(start, lp_end - start);
3560       return NULL;
3561     }
3562   }
3563 
3564   return start;
3565 }
3566 
3567 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
3568                                                    size_t alignment,
3569                                                    char* req_addr,
3570                                                    bool exec) {
3571   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3572   assert(is_ptr_aligned(req_addr, alignment), "Must be");
3573   assert(is_size_aligned(alignment, os::vm_allocation_granularity()), "Must be");
3574   assert(is_power_of_2(os::large_page_size()), "Must be");
3575   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3576 
3577   if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3578     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3579   } else {
3580     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3581   }
3582 }
3583 
3584 char* os::reserve_memory_special(size_t bytes, size_t alignment,
3585                                  char* req_addr, bool exec) {
3586   assert(UseLargePages, "only for large pages");
3587 
3588   char* addr;
3589   if (UseSHM) {
3590     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3591   } else {
3592     assert(UseHugeTLBFS, "must be");
3593     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3594   }
3595 
3596   if (addr != NULL) {
3597     if (UseNUMAInterleaving) {
3598       numa_make_global(addr, bytes);
3599     }
3600 
3601     // The memory is committed
3602     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3603   }
3604 
3605   return addr;
3606 }
3607 
3608 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3609   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3610   return shmdt(base) == 0;
3611 }
3612 
3613 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3614   return pd_release_memory(base, bytes);
3615 }
3616 
3617 bool os::release_memory_special(char* base, size_t bytes) {
3618   bool res;
3619   if (MemTracker::tracking_level() > NMT_minimal) {
3620     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3621     res = os::Linux::release_memory_special_impl(base, bytes);
3622     if (res) {
3623       tkr.record((address)base, bytes);
3624     }
3625 
3626   } else {
3627     res = os::Linux::release_memory_special_impl(base, bytes);
3628   }
3629   return res;
3630 }
3631 
3632 bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3633   assert(UseLargePages, "only for large pages");
3634   bool res;
3635 
3636   if (UseSHM) {
3637     res = os::Linux::release_memory_special_shm(base, bytes);
3638   } else {
3639     assert(UseHugeTLBFS, "must be");
3640     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3641   }
3642   return res;
3643 }
3644 
3645 size_t os::large_page_size() {
3646   return _large_page_size;
3647 }
3648 
3649 // With SysV SHM the entire memory region must be allocated as shared
3650 // memory.
3651 // HugeTLBFS allows application to commit large page memory on demand.
3652 // However, when committing memory with HugeTLBFS fails, the region
3653 // that was supposed to be committed will lose the old reservation
3654 // and allow other threads to steal that memory region. Because of this
3655 // behavior we can't commit HugeTLBFS memory.
3656 bool os::can_commit_large_page_memory() {
3657   return UseTransparentHugePages;
3658 }
3659 
3660 bool os::can_execute_large_page_memory() {
3661   return UseTransparentHugePages || UseHugeTLBFS;
3662 }
3663 
3664 // Reserve memory at an arbitrary address, only if that area is
3665 // available (and not reserved for something else).
3666 
3667 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3668   const int max_tries = 10;
3669   char* base[max_tries];
3670   size_t size[max_tries];
3671   const size_t gap = 0x000000;
3672 
3673   // Assert only that the size is a multiple of the page size, since
3674   // that's all that mmap requires, and since that's all we really know
3675   // about at this low abstraction level.  If we need higher alignment,
3676   // we can either pass an alignment to this method or verify alignment
3677   // in one of the methods further up the call chain.  See bug 5044738.
3678   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3679 
3680   // Repeatedly allocate blocks until the block is allocated at the
3681   // right spot.
3682 
3683   // Linux mmap allows caller to pass an address as hint; give it a try first,
3684   // if kernel honors the hint then we can return immediately.
3685   char * addr = anon_mmap(requested_addr, bytes, false);
3686   if (addr == requested_addr) {
3687     return requested_addr;
3688   }
3689 
3690   if (addr != NULL) {
3691     // mmap() is successful but it fails to reserve at the requested address
3692     anon_munmap(addr, bytes);
3693   }
3694 
3695   int i;
3696   for (i = 0; i < max_tries; ++i) {
3697     base[i] = reserve_memory(bytes);
3698 
3699     if (base[i] != NULL) {
3700       // Is this the block we wanted?
3701       if (base[i] == requested_addr) {
3702         size[i] = bytes;
3703         break;
3704       }
3705 
3706       // Does this overlap the block we wanted? Give back the overlapped
3707       // parts and try again.
3708 
3709       ptrdiff_t top_overlap = requested_addr + (bytes + gap) - base[i];
3710       if (top_overlap >= 0 && (size_t)top_overlap < bytes) {
3711         unmap_memory(base[i], top_overlap);
3712         base[i] += top_overlap;
3713         size[i] = bytes - top_overlap;
3714       } else {
3715         ptrdiff_t bottom_overlap = base[i] + bytes - requested_addr;
3716         if (bottom_overlap >= 0 && (size_t)bottom_overlap < bytes) {
3717           unmap_memory(requested_addr, bottom_overlap);
3718           size[i] = bytes - bottom_overlap;
3719         } else {
3720           size[i] = bytes;
3721         }
3722       }
3723     }
3724   }
3725 
3726   // Give back the unused reserved pieces.
3727 
3728   for (int j = 0; j < i; ++j) {
3729     if (base[j] != NULL) {
3730       unmap_memory(base[j], size[j]);
3731     }
3732   }
3733 
3734   if (i < max_tries) {
3735     return requested_addr;
3736   } else {
3737     return NULL;
3738   }
3739 }
3740 
3741 size_t os::read(int fd, void *buf, unsigned int nBytes) {
3742   return ::read(fd, buf, nBytes);
3743 }
3744 
3745 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
3746   return ::pread(fd, buf, nBytes, offset);
3747 }
3748 
3749 // Short sleep, direct OS call.
3750 //
3751 // Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
3752 // sched_yield(2) will actually give up the CPU:
3753 //
3754 //   * Alone on this pariticular CPU, keeps running.
3755 //   * Before the introduction of "skip_buddy" with "compat_yield" disabled
3756 //     (pre 2.6.39).
3757 //
3758 // So calling this with 0 is an alternative.
3759 //
3760 void os::naked_short_sleep(jlong ms) {
3761   struct timespec req;
3762 
3763   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3764   req.tv_sec = 0;
3765   if (ms > 0) {
3766     req.tv_nsec = (ms % 1000) * 1000000;
3767   } else {
3768     req.tv_nsec = 1;
3769   }
3770 
3771   nanosleep(&req, NULL);
3772 
3773   return;
3774 }
3775 
3776 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3777 void os::infinite_sleep() {
3778   while (true) {    // sleep forever ...
3779     ::sleep(100);   // ... 100 seconds at a time
3780   }
3781 }
3782 
3783 // Used to convert frequent JVM_Yield() to nops
3784 bool os::dont_yield() {
3785   return DontYieldALot;
3786 }
3787 
3788 void os::naked_yield() {
3789   sched_yield();
3790 }
3791 
3792 ////////////////////////////////////////////////////////////////////////////////
3793 // thread priority support
3794 
3795 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3796 // only supports dynamic priority, static priority must be zero. For real-time
3797 // applications, Linux supports SCHED_RR which allows static priority (1-99).
3798 // However, for large multi-threaded applications, SCHED_RR is not only slower
3799 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3800 // of 5 runs - Sep 2005).
3801 //
3802 // The following code actually changes the niceness of kernel-thread/LWP. It
3803 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
3804 // not the entire user process, and user level threads are 1:1 mapped to kernel
3805 // threads. It has always been the case, but could change in the future. For
3806 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3807 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3808 
3809 int os::java_to_os_priority[CriticalPriority + 1] = {
3810   19,              // 0 Entry should never be used
3811 
3812    4,              // 1 MinPriority
3813    3,              // 2
3814    2,              // 3
3815 
3816    1,              // 4
3817    0,              // 5 NormPriority
3818   -1,              // 6
3819 
3820   -2,              // 7
3821   -3,              // 8
3822   -4,              // 9 NearMaxPriority
3823 
3824   -5,              // 10 MaxPriority
3825 
3826   -5               // 11 CriticalPriority
3827 };
3828 
3829 static int prio_init() {
3830   if (ThreadPriorityPolicy == 1) {
3831     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3832     // if effective uid is not root. Perhaps, a more elegant way of doing
3833     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3834     if (geteuid() != 0) {
3835       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3836         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3837       }
3838       ThreadPriorityPolicy = 0;
3839     }
3840   }
3841   if (UseCriticalJavaThreadPriority) {
3842     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3843   }
3844   return 0;
3845 }
3846 
3847 OSReturn os::set_native_priority(Thread* thread, int newpri) {
3848   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
3849 
3850   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3851   return (ret == 0) ? OS_OK : OS_ERR;
3852 }
3853 
3854 OSReturn os::get_native_priority(const Thread* const thread,
3855                                  int *priority_ptr) {
3856   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
3857     *priority_ptr = java_to_os_priority[NormPriority];
3858     return OS_OK;
3859   }
3860 
3861   errno = 0;
3862   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3863   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3864 }
3865 
3866 // Hint to the underlying OS that a task switch would not be good.
3867 // Void return because it's a hint and can fail.
3868 void os::hint_no_preempt() {}
3869 
3870 ////////////////////////////////////////////////////////////////////////////////
3871 // suspend/resume support
3872 
3873 //  the low-level signal-based suspend/resume support is a remnant from the
3874 //  old VM-suspension that used to be for java-suspension, safepoints etc,
3875 //  within hotspot. Now there is a single use-case for this:
3876 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
3877 //      that runs in the watcher thread.
3878 //  The remaining code is greatly simplified from the more general suspension
3879 //  code that used to be used.
3880 //
3881 //  The protocol is quite simple:
3882 //  - suspend:
3883 //      - sends a signal to the target thread
3884 //      - polls the suspend state of the osthread using a yield loop
3885 //      - target thread signal handler (SR_handler) sets suspend state
3886 //        and blocks in sigsuspend until continued
3887 //  - resume:
3888 //      - sets target osthread state to continue
3889 //      - sends signal to end the sigsuspend loop in the SR_handler
3890 //
3891 //  Note that the SR_lock plays no role in this suspend/resume protocol.
3892 
3893 static void resume_clear_context(OSThread *osthread) {
3894   osthread->set_ucontext(NULL);
3895   osthread->set_siginfo(NULL);
3896 }
3897 
3898 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
3899                                  ucontext_t* context) {
3900   osthread->set_ucontext(context);
3901   osthread->set_siginfo(siginfo);
3902 }
3903 
3904 // Handler function invoked when a thread's execution is suspended or
3905 // resumed. We have to be careful that only async-safe functions are
3906 // called here (Note: most pthread functions are not async safe and
3907 // should be avoided.)
3908 //
3909 // Note: sigwait() is a more natural fit than sigsuspend() from an
3910 // interface point of view, but sigwait() prevents the signal hander
3911 // from being run. libpthread would get very confused by not having
3912 // its signal handlers run and prevents sigwait()'s use with the
3913 // mutex granting granting signal.
3914 //
3915 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
3916 //
3917 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3918   // Save and restore errno to avoid confusing native code with EINTR
3919   // after sigsuspend.
3920   int old_errno = errno;
3921 
3922   Thread* thread = Thread::current();
3923   OSThread* osthread = thread->osthread();
3924   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
3925 
3926   os::SuspendResume::State current = osthread->sr.state();
3927   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
3928     suspend_save_context(osthread, siginfo, context);
3929 
3930     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
3931     os::SuspendResume::State state = osthread->sr.suspended();
3932     if (state == os::SuspendResume::SR_SUSPENDED) {
3933       sigset_t suspend_set;  // signals for sigsuspend()
3934 
3935       // get current set of blocked signals and unblock resume signal
3936       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3937       sigdelset(&suspend_set, SR_signum);
3938 
3939       sr_semaphore.signal();
3940       // wait here until we are resumed
3941       while (1) {
3942         sigsuspend(&suspend_set);
3943 
3944         os::SuspendResume::State result = osthread->sr.running();
3945         if (result == os::SuspendResume::SR_RUNNING) {
3946           sr_semaphore.signal();
3947           break;
3948         }
3949       }
3950 
3951     } else if (state == os::SuspendResume::SR_RUNNING) {
3952       // request was cancelled, continue
3953     } else {
3954       ShouldNotReachHere();
3955     }
3956 
3957     resume_clear_context(osthread);
3958   } else if (current == os::SuspendResume::SR_RUNNING) {
3959     // request was cancelled, continue
3960   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
3961     // ignore
3962   } else {
3963     // ignore
3964   }
3965 
3966   errno = old_errno;
3967 }
3968 
3969 
3970 static int SR_initialize() {
3971   struct sigaction act;
3972   char *s;
3973   // Get signal number to use for suspend/resume
3974   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
3975     int sig = ::strtol(s, 0, 10);
3976     if (sig > 0 || sig < _NSIG) {
3977       SR_signum = sig;
3978     }
3979   }
3980 
3981   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
3982          "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
3983 
3984   sigemptyset(&SR_sigset);
3985   sigaddset(&SR_sigset, SR_signum);
3986 
3987   // Set up signal handler for suspend/resume
3988   act.sa_flags = SA_RESTART|SA_SIGINFO;
3989   act.sa_handler = (void (*)(int)) SR_handler;
3990 
3991   // SR_signum is blocked by default.
3992   // 4528190 - We also need to block pthread restart signal (32 on all
3993   // supported Linux platforms). Note that LinuxThreads need to block
3994   // this signal for all threads to work properly. So we don't have
3995   // to use hard-coded signal number when setting up the mask.
3996   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
3997 
3998   if (sigaction(SR_signum, &act, 0) == -1) {
3999     return -1;
4000   }
4001 
4002   // Save signal flag
4003   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4004   return 0;
4005 }
4006 
4007 static int sr_notify(OSThread* osthread) {
4008   int status = pthread_kill(osthread->pthread_id(), SR_signum);
4009   assert_status(status == 0, status, "pthread_kill");
4010   return status;
4011 }
4012 
4013 // "Randomly" selected value for how long we want to spin
4014 // before bailing out on suspending a thread, also how often
4015 // we send a signal to a thread we want to resume
4016 static const int RANDOMLY_LARGE_INTEGER = 1000000;
4017 static const int RANDOMLY_LARGE_INTEGER2 = 100;
4018 
4019 // returns true on success and false on error - really an error is fatal
4020 // but this seems the normal response to library errors
4021 static bool do_suspend(OSThread* osthread) {
4022   assert(osthread->sr.is_running(), "thread should be running");
4023   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4024 
4025   // mark as suspended and send signal
4026   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4027     // failed to switch, state wasn't running?
4028     ShouldNotReachHere();
4029     return false;
4030   }
4031 
4032   if (sr_notify(osthread) != 0) {
4033     ShouldNotReachHere();
4034   }
4035 
4036   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4037   while (true) {
4038     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4039       break;
4040     } else {
4041       // timeout
4042       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4043       if (cancelled == os::SuspendResume::SR_RUNNING) {
4044         return false;
4045       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4046         // make sure that we consume the signal on the semaphore as well
4047         sr_semaphore.wait();
4048         break;
4049       } else {
4050         ShouldNotReachHere();
4051         return false;
4052       }
4053     }
4054   }
4055 
4056   guarantee(osthread->sr.is_suspended(), "Must be suspended");
4057   return true;
4058 }
4059 
4060 static void do_resume(OSThread* osthread) {
4061   assert(osthread->sr.is_suspended(), "thread should be suspended");
4062   assert(!sr_semaphore.trywait(), "invalid semaphore state");
4063 
4064   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4065     // failed to switch to WAKEUP_REQUEST
4066     ShouldNotReachHere();
4067     return;
4068   }
4069 
4070   while (true) {
4071     if (sr_notify(osthread) == 0) {
4072       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4073         if (osthread->sr.is_running()) {
4074           return;
4075         }
4076       }
4077     } else {
4078       ShouldNotReachHere();
4079     }
4080   }
4081 
4082   guarantee(osthread->sr.is_running(), "Must be running!");
4083 }
4084 
4085 ///////////////////////////////////////////////////////////////////////////////////
4086 // signal handling (except suspend/resume)
4087 
4088 // This routine may be used by user applications as a "hook" to catch signals.
4089 // The user-defined signal handler must pass unrecognized signals to this
4090 // routine, and if it returns true (non-zero), then the signal handler must
4091 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
4092 // routine will never retun false (zero), but instead will execute a VM panic
4093 // routine kill the process.
4094 //
4095 // If this routine returns false, it is OK to call it again.  This allows
4096 // the user-defined signal handler to perform checks either before or after
4097 // the VM performs its own checks.  Naturally, the user code would be making
4098 // a serious error if it tried to handle an exception (such as a null check
4099 // or breakpoint) that the VM was generating for its own correct operation.
4100 //
4101 // This routine may recognize any of the following kinds of signals:
4102 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4103 // It should be consulted by handlers for any of those signals.
4104 //
4105 // The caller of this routine must pass in the three arguments supplied
4106 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
4107 // field of the structure passed to sigaction().  This routine assumes that
4108 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4109 //
4110 // Note that the VM will print warnings if it detects conflicting signal
4111 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4112 //
4113 extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4114                                                  siginfo_t* siginfo,
4115                                                  void* ucontext,
4116                                                  int abort_if_unrecognized);
4117 
4118 void signalHandler(int sig, siginfo_t* info, void* uc) {
4119   assert(info != NULL && uc != NULL, "it must be old kernel");
4120   int orig_errno = errno;  // Preserve errno value over signal handler.
4121   JVM_handle_linux_signal(sig, info, uc, true);
4122   errno = orig_errno;
4123 }
4124 
4125 
4126 // This boolean allows users to forward their own non-matching signals
4127 // to JVM_handle_linux_signal, harmlessly.
4128 bool os::Linux::signal_handlers_are_installed = false;
4129 
4130 // For signal-chaining
4131 struct sigaction os::Linux::sigact[MAXSIGNUM];
4132 unsigned int os::Linux::sigs = 0;
4133 bool os::Linux::libjsig_is_loaded = false;
4134 typedef struct sigaction *(*get_signal_t)(int);
4135 get_signal_t os::Linux::get_signal_action = NULL;
4136 
4137 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4138   struct sigaction *actp = NULL;
4139 
4140   if (libjsig_is_loaded) {
4141     // Retrieve the old signal handler from libjsig
4142     actp = (*get_signal_action)(sig);
4143   }
4144   if (actp == NULL) {
4145     // Retrieve the preinstalled signal handler from jvm
4146     actp = get_preinstalled_handler(sig);
4147   }
4148 
4149   return actp;
4150 }
4151 
4152 static bool call_chained_handler(struct sigaction *actp, int sig,
4153                                  siginfo_t *siginfo, void *context) {
4154   // Call the old signal handler
4155   if (actp->sa_handler == SIG_DFL) {
4156     // It's more reasonable to let jvm treat it as an unexpected exception
4157     // instead of taking the default action.
4158     return false;
4159   } else if (actp->sa_handler != SIG_IGN) {
4160     if ((actp->sa_flags & SA_NODEFER) == 0) {
4161       // automaticlly block the signal
4162       sigaddset(&(actp->sa_mask), sig);
4163     }
4164 
4165     sa_handler_t hand;
4166     sa_sigaction_t sa;
4167     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4168     // retrieve the chained handler
4169     if (siginfo_flag_set) {
4170       sa = actp->sa_sigaction;
4171     } else {
4172       hand = actp->sa_handler;
4173     }
4174 
4175     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4176       actp->sa_handler = SIG_DFL;
4177     }
4178 
4179     // try to honor the signal mask
4180     sigset_t oset;
4181     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4182 
4183     // call into the chained handler
4184     if (siginfo_flag_set) {
4185       (*sa)(sig, siginfo, context);
4186     } else {
4187       (*hand)(sig);
4188     }
4189 
4190     // restore the signal mask
4191     pthread_sigmask(SIG_SETMASK, &oset, 0);
4192   }
4193   // Tell jvm's signal handler the signal is taken care of.
4194   return true;
4195 }
4196 
4197 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4198   bool chained = false;
4199   // signal-chaining
4200   if (UseSignalChaining) {
4201     struct sigaction *actp = get_chained_signal_action(sig);
4202     if (actp != NULL) {
4203       chained = call_chained_handler(actp, sig, siginfo, context);
4204     }
4205   }
4206   return chained;
4207 }
4208 
4209 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4210   if ((((unsigned int)1 << sig) & sigs) != 0) {
4211     return &sigact[sig];
4212   }
4213   return NULL;
4214 }
4215 
4216 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4217   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4218   sigact[sig] = oldAct;
4219   sigs |= (unsigned int)1 << sig;
4220 }
4221 
4222 // for diagnostic
4223 int os::Linux::sigflags[MAXSIGNUM];
4224 
4225 int os::Linux::get_our_sigflags(int sig) {
4226   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4227   return sigflags[sig];
4228 }
4229 
4230 void os::Linux::set_our_sigflags(int sig, int flags) {
4231   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4232   sigflags[sig] = flags;
4233 }
4234 
4235 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4236   // Check for overwrite.
4237   struct sigaction oldAct;
4238   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4239 
4240   void* oldhand = oldAct.sa_sigaction
4241                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4242                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4243   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4244       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4245       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4246     if (AllowUserSignalHandlers || !set_installed) {
4247       // Do not overwrite; user takes responsibility to forward to us.
4248       return;
4249     } else if (UseSignalChaining) {
4250       // save the old handler in jvm
4251       save_preinstalled_handler(sig, oldAct);
4252       // libjsig also interposes the sigaction() call below and saves the
4253       // old sigaction on it own.
4254     } else {
4255       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
4256                     "%#lx for signal %d.", (long)oldhand, sig));
4257     }
4258   }
4259 
4260   struct sigaction sigAct;
4261   sigfillset(&(sigAct.sa_mask));
4262   sigAct.sa_handler = SIG_DFL;
4263   if (!set_installed) {
4264     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4265   } else {
4266     sigAct.sa_sigaction = signalHandler;
4267     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4268   }
4269   // Save flags, which are set by ours
4270   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4271   sigflags[sig] = sigAct.sa_flags;
4272 
4273   int ret = sigaction(sig, &sigAct, &oldAct);
4274   assert(ret == 0, "check");
4275 
4276   void* oldhand2  = oldAct.sa_sigaction
4277                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4278                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4279   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4280 }
4281 
4282 // install signal handlers for signals that HotSpot needs to
4283 // handle in order to support Java-level exception handling.
4284 
4285 void os::Linux::install_signal_handlers() {
4286   if (!signal_handlers_are_installed) {
4287     signal_handlers_are_installed = true;
4288 
4289     // signal-chaining
4290     typedef void (*signal_setting_t)();
4291     signal_setting_t begin_signal_setting = NULL;
4292     signal_setting_t end_signal_setting = NULL;
4293     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4294                                           dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4295     if (begin_signal_setting != NULL) {
4296       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4297                                           dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4298       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4299                                          dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4300       libjsig_is_loaded = true;
4301       assert(UseSignalChaining, "should enable signal-chaining");
4302     }
4303     if (libjsig_is_loaded) {
4304       // Tell libjsig jvm is setting signal handlers
4305       (*begin_signal_setting)();
4306     }
4307 
4308     set_signal_handler(SIGSEGV, true);
4309     set_signal_handler(SIGPIPE, true);
4310     set_signal_handler(SIGBUS, true);
4311     set_signal_handler(SIGILL, true);
4312     set_signal_handler(SIGFPE, true);
4313 #if defined(PPC64)
4314     set_signal_handler(SIGTRAP, true);
4315 #endif
4316     set_signal_handler(SIGXFSZ, true);
4317 
4318     if (libjsig_is_loaded) {
4319       // Tell libjsig jvm finishes setting signal handlers
4320       (*end_signal_setting)();
4321     }
4322 
4323     // We don't activate signal checker if libjsig is in place, we trust ourselves
4324     // and if UserSignalHandler is installed all bets are off.
4325     // Log that signal checking is off only if -verbose:jni is specified.
4326     if (CheckJNICalls) {
4327       if (libjsig_is_loaded) {
4328         if (PrintJNIResolving) {
4329           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4330         }
4331         check_signals = false;
4332       }
4333       if (AllowUserSignalHandlers) {
4334         if (PrintJNIResolving) {
4335           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4336         }
4337         check_signals = false;
4338       }
4339     }
4340   }
4341 }
4342 
4343 // This is the fastest way to get thread cpu time on Linux.
4344 // Returns cpu time (user+sys) for any thread, not only for current.
4345 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4346 // It might work on 2.6.10+ with a special kernel/glibc patch.
4347 // For reference, please, see IEEE Std 1003.1-2004:
4348 //   http://www.unix.org/single_unix_specification
4349 
4350 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4351   struct timespec tp;
4352   int rc = os::Linux::clock_gettime(clockid, &tp);
4353   assert(rc == 0, "clock_gettime is expected to return 0 code");
4354 
4355   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4356 }
4357 
4358 /////
4359 // glibc on Linux platform uses non-documented flag
4360 // to indicate, that some special sort of signal
4361 // trampoline is used.
4362 // We will never set this flag, and we should
4363 // ignore this flag in our diagnostic
4364 #ifdef SIGNIFICANT_SIGNAL_MASK
4365   #undef SIGNIFICANT_SIGNAL_MASK
4366 #endif
4367 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4368 
4369 static const char* get_signal_handler_name(address handler,
4370                                            char* buf, int buflen) {
4371   int offset;
4372   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4373   if (found) {
4374     // skip directory names
4375     const char *p1, *p2;
4376     p1 = buf;
4377     size_t len = strlen(os::file_separator());
4378     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4379     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4380   } else {
4381     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4382   }
4383   return buf;
4384 }
4385 
4386 static void print_signal_handler(outputStream* st, int sig,
4387                                  char* buf, size_t buflen) {
4388   struct sigaction sa;
4389 
4390   sigaction(sig, NULL, &sa);
4391 
4392   // See comment for SIGNIFICANT_SIGNAL_MASK define
4393   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4394 
4395   st->print("%s: ", os::exception_name(sig, buf, buflen));
4396 
4397   address handler = (sa.sa_flags & SA_SIGINFO)
4398     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4399     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4400 
4401   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4402     st->print("SIG_DFL");
4403   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4404     st->print("SIG_IGN");
4405   } else {
4406     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4407   }
4408 
4409   st->print(", sa_mask[0]=");
4410   os::Posix::print_signal_set_short(st, &sa.sa_mask);
4411 
4412   address rh = VMError::get_resetted_sighandler(sig);
4413   // May be, handler was resetted by VMError?
4414   if (rh != NULL) {
4415     handler = rh;
4416     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4417   }
4418 
4419   st->print(", sa_flags=");
4420   os::Posix::print_sa_flags(st, sa.sa_flags);
4421 
4422   // Check: is it our handler?
4423   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4424       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4425     // It is our signal handler
4426     // check for flags, reset system-used one!
4427     if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4428       st->print(
4429                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4430                 os::Linux::get_our_sigflags(sig));
4431     }
4432   }
4433   st->cr();
4434 }
4435 
4436 
4437 #define DO_SIGNAL_CHECK(sig)                      \
4438   do {                                            \
4439     if (!sigismember(&check_signal_done, sig)) {  \
4440       os::Linux::check_signal_handler(sig);       \
4441     }                                             \
4442   } while (0)
4443 
4444 // This method is a periodic task to check for misbehaving JNI applications
4445 // under CheckJNI, we can add any periodic checks here
4446 
4447 void os::run_periodic_checks() {
4448   if (check_signals == false) return;
4449 
4450   // SEGV and BUS if overridden could potentially prevent
4451   // generation of hs*.log in the event of a crash, debugging
4452   // such a case can be very challenging, so we absolutely
4453   // check the following for a good measure:
4454   DO_SIGNAL_CHECK(SIGSEGV);
4455   DO_SIGNAL_CHECK(SIGILL);
4456   DO_SIGNAL_CHECK(SIGFPE);
4457   DO_SIGNAL_CHECK(SIGBUS);
4458   DO_SIGNAL_CHECK(SIGPIPE);
4459   DO_SIGNAL_CHECK(SIGXFSZ);
4460 #if defined(PPC64)
4461   DO_SIGNAL_CHECK(SIGTRAP);
4462 #endif
4463 
4464   // ReduceSignalUsage allows the user to override these handlers
4465   // see comments at the very top and jvm_solaris.h
4466   if (!ReduceSignalUsage) {
4467     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4468     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4469     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4470     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4471   }
4472 
4473   DO_SIGNAL_CHECK(SR_signum);
4474   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
4475 }
4476 
4477 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4478 
4479 static os_sigaction_t os_sigaction = NULL;
4480 
4481 void os::Linux::check_signal_handler(int sig) {
4482   char buf[O_BUFLEN];
4483   address jvmHandler = NULL;
4484 
4485 
4486   struct sigaction act;
4487   if (os_sigaction == NULL) {
4488     // only trust the default sigaction, in case it has been interposed
4489     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4490     if (os_sigaction == NULL) return;
4491   }
4492 
4493   os_sigaction(sig, (struct sigaction*)NULL, &act);
4494 
4495 
4496   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4497 
4498   address thisHandler = (act.sa_flags & SA_SIGINFO)
4499     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4500     : CAST_FROM_FN_PTR(address, act.sa_handler);
4501 
4502 
4503   switch (sig) {
4504   case SIGSEGV:
4505   case SIGBUS:
4506   case SIGFPE:
4507   case SIGPIPE:
4508   case SIGILL:
4509   case SIGXFSZ:
4510     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4511     break;
4512 
4513   case SHUTDOWN1_SIGNAL:
4514   case SHUTDOWN2_SIGNAL:
4515   case SHUTDOWN3_SIGNAL:
4516   case BREAK_SIGNAL:
4517     jvmHandler = (address)user_handler();
4518     break;
4519 
4520   case INTERRUPT_SIGNAL:
4521     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
4522     break;
4523 
4524   default:
4525     if (sig == SR_signum) {
4526       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4527     } else {
4528       return;
4529     }
4530     break;
4531   }
4532 
4533   if (thisHandler != jvmHandler) {
4534     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4535     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4536     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4537     // No need to check this sig any longer
4538     sigaddset(&check_signal_done, sig);
4539     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4540     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4541       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4542                     exception_name(sig, buf, O_BUFLEN));
4543     }
4544   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4545     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4546     tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
4547     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4548     // No need to check this sig any longer
4549     sigaddset(&check_signal_done, sig);
4550   }
4551 
4552   // Dump all the signal
4553   if (sigismember(&check_signal_done, sig)) {
4554     print_signal_handlers(tty, buf, O_BUFLEN);
4555   }
4556 }
4557 
4558 extern void report_error(char* file_name, int line_no, char* title,
4559                          char* format, ...);
4560 
4561 extern bool signal_name(int signo, char* buf, size_t len);
4562 
4563 const char* os::exception_name(int exception_code, char* buf, size_t size) {
4564   if (0 < exception_code && exception_code <= SIGRTMAX) {
4565     // signal
4566     if (!signal_name(exception_code, buf, size)) {
4567       jio_snprintf(buf, size, "SIG%d", exception_code);
4568     }
4569     return buf;
4570   } else {
4571     return NULL;
4572   }
4573 }
4574 
4575 // this is called _before_ the most of global arguments have been parsed
4576 void os::init(void) {
4577   char dummy;   // used to get a guess on initial stack address
4578 //  first_hrtime = gethrtime();
4579 
4580   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4581 
4582   init_random(1234567);
4583 
4584   ThreadCritical::initialize();
4585 
4586   Linux::set_page_size(sysconf(_SC_PAGESIZE));
4587   if (Linux::page_size() == -1) {
4588     fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
4589                   strerror(errno)));
4590   }
4591   init_page_sizes((size_t) Linux::page_size());
4592 
4593   Linux::initialize_system_info();
4594 
4595   // main_thread points to the aboriginal thread
4596   Linux::_main_thread = pthread_self();
4597 
4598   Linux::clock_init();
4599   initial_time_count = javaTimeNanos();
4600 
4601   // pthread_condattr initialization for monotonic clock
4602   int status;
4603   pthread_condattr_t* _condattr = os::Linux::condAttr();
4604   if ((status = pthread_condattr_init(_condattr)) != 0) {
4605     fatal(err_msg("pthread_condattr_init: %s", strerror(status)));
4606   }
4607   // Only set the clock if CLOCK_MONOTONIC is available
4608   if (os::supports_monotonic_clock()) {
4609     if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
4610       if (status == EINVAL) {
4611         warning("Unable to use monotonic clock with relative timed-waits" \
4612                 " - changes to the time-of-day clock may have adverse affects");
4613       } else {
4614         fatal(err_msg("pthread_condattr_setclock: %s", strerror(status)));
4615       }
4616     }
4617   }
4618   // else it defaults to CLOCK_REALTIME
4619 
4620   // If the pagesize of the VM is greater than 8K determine the appropriate
4621   // number of initial guard pages.  The user can change this with the
4622   // command line arguments, if needed.
4623   if (vm_page_size() > (int)Linux::vm_default_page_size()) {
4624     StackYellowPages = 1;
4625     StackRedPages = 1;
4626     StackShadowPages = round_to((StackShadowPages*Linux::vm_default_page_size()), vm_page_size()) / vm_page_size();
4627   }
4628 
4629   // retrieve entry point for pthread_setname_np
4630   Linux::_pthread_setname_np =
4631     (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
4632 
4633 }
4634 
4635 // To install functions for atexit system call
4636 extern "C" {
4637   static void perfMemory_exit_helper() {
4638     perfMemory_exit();
4639   }
4640 }
4641 
4642 // this is called _after_ the global arguments have been parsed
4643 jint os::init_2(void) {
4644   Linux::fast_thread_clock_init();
4645 
4646   // Allocate a single page and mark it as readable for safepoint polling
4647   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4648   guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
4649 
4650   os::set_polling_page(polling_page);
4651 
4652 #ifndef PRODUCT
4653   if (Verbose && PrintMiscellaneous) {
4654     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
4655                (intptr_t)polling_page);
4656   }
4657 #endif
4658 
4659   if (!UseMembar) {
4660     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4661     guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
4662     os::set_memory_serialize_page(mem_serialize_page);
4663 
4664 #ifndef PRODUCT
4665     if (Verbose && PrintMiscellaneous) {
4666       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n",
4667                  (intptr_t)mem_serialize_page);
4668     }
4669 #endif
4670   }
4671 
4672   // initialize suspend/resume support - must do this before signal_sets_init()
4673   if (SR_initialize() != 0) {
4674     perror("SR_initialize failed");
4675     return JNI_ERR;
4676   }
4677 
4678   Linux::signal_sets_init();
4679   Linux::install_signal_handlers();
4680 
4681   // Check minimum allowable stack size for thread creation and to initialize
4682   // the java system classes, including StackOverflowError - depends on page
4683   // size.  Add a page for compiler2 recursion in main thread.
4684   // Add in 2*BytesPerWord times page size to account for VM stack during
4685   // class initialization depending on 32 or 64 bit VM.
4686   os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4687                                       (size_t)(StackYellowPages+StackRedPages+StackShadowPages) * Linux::page_size() +
4688                                       (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
4689 
4690   size_t threadStackSizeInBytes = ThreadStackSize * K;
4691   if (threadStackSizeInBytes != 0 &&
4692       threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4693     tty->print_cr("\nThe stack size specified is too small, "
4694                   "Specify at least %dk",
4695                   os::Linux::min_stack_allowed/ K);
4696     return JNI_ERR;
4697   }
4698 
4699   // Make the stack size a multiple of the page size so that
4700   // the yellow/red zones can be guarded.
4701   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4702                                                 vm_page_size()));
4703 
4704   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4705 
4706 #if defined(IA32)
4707   workaround_expand_exec_shield_cs_limit();
4708 #endif
4709 
4710   Linux::libpthread_init();
4711   if (PrintMiscellaneous && (Verbose || WizardMode)) {
4712     tty->print_cr("[HotSpot is running with %s, %s]\n",
4713                   Linux::glibc_version(), Linux::libpthread_version());
4714   }
4715 
4716   if (UseNUMA) {
4717     if (!Linux::libnuma_init()) {
4718       UseNUMA = false;
4719     } else {
4720       if ((Linux::numa_max_node() < 1)) {
4721         // There's only one node(they start from 0), disable NUMA.
4722         UseNUMA = false;
4723       }
4724     }
4725     // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
4726     // we can make the adaptive lgrp chunk resizing work. If the user specified
4727     // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
4728     // disable adaptive resizing.
4729     if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
4730       if (FLAG_IS_DEFAULT(UseNUMA)) {
4731         UseNUMA = false;
4732       } else {
4733         if (FLAG_IS_DEFAULT(UseLargePages) &&
4734             FLAG_IS_DEFAULT(UseSHM) &&
4735             FLAG_IS_DEFAULT(UseHugeTLBFS)) {
4736           UseLargePages = false;
4737         } else if (UseAdaptiveSizePolicy || UseAdaptiveNUMAChunkSizing) {
4738           warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing (-XX:-UseAdaptiveSizePolicy -XX:-UseAdaptiveNUMAChunkSizing)");
4739           UseAdaptiveSizePolicy = false;
4740           UseAdaptiveNUMAChunkSizing = false;
4741         }
4742       }
4743     }
4744     if (!UseNUMA && ForceNUMA) {
4745       UseNUMA = true;
4746     }
4747   }
4748 
4749   if (MaxFDLimit) {
4750     // set the number of file descriptors to max. print out error
4751     // if getrlimit/setrlimit fails but continue regardless.
4752     struct rlimit nbr_files;
4753     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4754     if (status != 0) {
4755       if (PrintMiscellaneous && (Verbose || WizardMode)) {
4756         perror("os::init_2 getrlimit failed");
4757       }
4758     } else {
4759       nbr_files.rlim_cur = nbr_files.rlim_max;
4760       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4761       if (status != 0) {
4762         if (PrintMiscellaneous && (Verbose || WizardMode)) {
4763           perror("os::init_2 setrlimit failed");
4764         }
4765       }
4766     }
4767   }
4768 
4769   // Initialize lock used to serialize thread creation (see os::create_thread)
4770   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4771 
4772   // at-exit methods are called in the reverse order of their registration.
4773   // atexit functions are called on return from main or as a result of a
4774   // call to exit(3C). There can be only 32 of these functions registered
4775   // and atexit() does not set errno.
4776 
4777   if (PerfAllowAtExitRegistration) {
4778     // only register atexit functions if PerfAllowAtExitRegistration is set.
4779     // atexit functions can be delayed until process exit time, which
4780     // can be problematic for embedded VM situations. Embedded VMs should
4781     // call DestroyJavaVM() to assure that VM resources are released.
4782 
4783     // note: perfMemory_exit_helper atexit function may be removed in
4784     // the future if the appropriate cleanup code can be added to the
4785     // VM_Exit VMOperation's doit method.
4786     if (atexit(perfMemory_exit_helper) != 0) {
4787       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4788     }
4789   }
4790 
4791   // initialize thread priority policy
4792   prio_init();
4793 
4794   return JNI_OK;
4795 }
4796 
4797 // Mark the polling page as unreadable
4798 void os::make_polling_page_unreadable(void) {
4799   if (!guard_memory((char*)_polling_page, Linux::page_size())) {
4800     fatal("Could not disable polling page");
4801   }
4802 }
4803 
4804 // Mark the polling page as readable
4805 void os::make_polling_page_readable(void) {
4806   if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4807     fatal("Could not enable polling page");
4808   }
4809 }
4810 
4811 int os::active_processor_count() {
4812   // Linux doesn't yet have a (official) notion of processor sets,
4813   // so just return the number of online processors.
4814   int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4815   assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4816   return online_cpus;
4817 }
4818 
4819 void os::set_native_thread_name(const char *name) {
4820   if (Linux::_pthread_setname_np) {
4821     char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
4822     snprintf(buf, sizeof(buf), "%s", name);
4823     buf[sizeof(buf) - 1] = '\0';
4824     const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
4825     // ERANGE should not happen; all other errors should just be ignored.
4826     assert(rc != ERANGE, "pthread_setname_np failed");
4827   }
4828 }
4829 
4830 bool os::distribute_processes(uint length, uint* distribution) {
4831   // Not yet implemented.
4832   return false;
4833 }
4834 
4835 bool os::bind_to_processor(uint processor_id) {
4836   // Not yet implemented.
4837   return false;
4838 }
4839 
4840 ///
4841 
4842 void os::SuspendedThreadTask::internal_do_task() {
4843   if (do_suspend(_thread->osthread())) {
4844     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
4845     do_task(context);
4846     do_resume(_thread->osthread());
4847   }
4848 }
4849 
4850 class PcFetcher : public os::SuspendedThreadTask {
4851  public:
4852   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
4853   ExtendedPC result();
4854  protected:
4855   void do_task(const os::SuspendedThreadTaskContext& context);
4856  private:
4857   ExtendedPC _epc;
4858 };
4859 
4860 ExtendedPC PcFetcher::result() {
4861   guarantee(is_done(), "task is not done yet.");
4862   return _epc;
4863 }
4864 
4865 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
4866   Thread* thread = context.thread();
4867   OSThread* osthread = thread->osthread();
4868   if (osthread->ucontext() != NULL) {
4869     _epc = os::Linux::ucontext_get_pc((ucontext_t *) context.ucontext());
4870   } else {
4871     // NULL context is unexpected, double-check this is the VMThread
4872     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4873   }
4874 }
4875 
4876 // Suspends the target using the signal mechanism and then grabs the PC before
4877 // resuming the target. Used by the flat-profiler only
4878 ExtendedPC os::get_thread_pc(Thread* thread) {
4879   // Make sure that it is called by the watcher for the VMThread
4880   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4881   assert(thread->is_VM_thread(), "Can only be called for VMThread");
4882 
4883   PcFetcher fetcher(thread);
4884   fetcher.run();
4885   return fetcher.result();
4886 }
4887 
4888 ////////////////////////////////////////////////////////////////////////////////
4889 // debug support
4890 
4891 bool os::find(address addr, outputStream* st) {
4892   Dl_info dlinfo;
4893   memset(&dlinfo, 0, sizeof(dlinfo));
4894   if (dladdr(addr, &dlinfo) != 0) {
4895     st->print(PTR_FORMAT ": ", addr);
4896     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
4897       st->print("%s+%#x", dlinfo.dli_sname,
4898                 addr - (intptr_t)dlinfo.dli_saddr);
4899     } else if (dlinfo.dli_fbase != NULL) {
4900       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
4901     } else {
4902       st->print("<absolute address>");
4903     }
4904     if (dlinfo.dli_fname != NULL) {
4905       st->print(" in %s", dlinfo.dli_fname);
4906     }
4907     if (dlinfo.dli_fbase != NULL) {
4908       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
4909     }
4910     st->cr();
4911 
4912     if (Verbose) {
4913       // decode some bytes around the PC
4914       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
4915       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
4916       address       lowest = (address) dlinfo.dli_sname;
4917       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
4918       if (begin < lowest)  begin = lowest;
4919       Dl_info dlinfo2;
4920       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
4921           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
4922         end = (address) dlinfo2.dli_saddr;
4923       }
4924       Disassembler::decode(begin, end, st);
4925     }
4926     return true;
4927   }
4928   return false;
4929 }
4930 
4931 ////////////////////////////////////////////////////////////////////////////////
4932 // misc
4933 
4934 // This does not do anything on Linux. This is basically a hook for being
4935 // able to use structured exception handling (thread-local exception filters)
4936 // on, e.g., Win32.
4937 void
4938 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
4939                          JavaCallArguments* args, Thread* thread) {
4940   f(value, method, args, thread);
4941 }
4942 
4943 void os::print_statistics() {
4944 }
4945 
4946 int os::message_box(const char* title, const char* message) {
4947   int i;
4948   fdStream err(defaultStream::error_fd());
4949   for (i = 0; i < 78; i++) err.print_raw("=");
4950   err.cr();
4951   err.print_raw_cr(title);
4952   for (i = 0; i < 78; i++) err.print_raw("-");
4953   err.cr();
4954   err.print_raw_cr(message);
4955   for (i = 0; i < 78; i++) err.print_raw("=");
4956   err.cr();
4957 
4958   char buf[16];
4959   // Prevent process from exiting upon "read error" without consuming all CPU
4960   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
4961 
4962   return buf[0] == 'y' || buf[0] == 'Y';
4963 }
4964 
4965 int os::stat(const char *path, struct stat *sbuf) {
4966   char pathbuf[MAX_PATH];
4967   if (strlen(path) > MAX_PATH - 1) {
4968     errno = ENAMETOOLONG;
4969     return -1;
4970   }
4971   os::native_path(strcpy(pathbuf, path));
4972   return ::stat(pathbuf, sbuf);
4973 }
4974 
4975 bool os::check_heap(bool force) {
4976   return true;
4977 }
4978 
4979 // Is a (classpath) directory empty?
4980 bool os::dir_is_empty(const char* path) {
4981   DIR *dir = NULL;
4982   struct dirent *ptr;
4983 
4984   dir = opendir(path);
4985   if (dir == NULL) return true;
4986 
4987   // Scan the directory
4988   bool result = true;
4989   char buf[sizeof(struct dirent) + MAX_PATH];
4990   while (result && (ptr = ::readdir(dir)) != NULL) {
4991     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
4992       result = false;
4993     }
4994   }
4995   closedir(dir);
4996   return result;
4997 }
4998 
4999 // This code originates from JDK's sysOpen and open64_w
5000 // from src/solaris/hpi/src/system_md.c
5001 
5002 int os::open(const char *path, int oflag, int mode) {
5003   if (strlen(path) > MAX_PATH - 1) {
5004     errno = ENAMETOOLONG;
5005     return -1;
5006   }
5007 
5008   // All file descriptors that are opened in the Java process and not
5009   // specifically destined for a subprocess should have the close-on-exec
5010   // flag set.  If we don't set it, then careless 3rd party native code
5011   // might fork and exec without closing all appropriate file descriptors
5012   // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
5013   // turn might:
5014   //
5015   // - cause end-of-file to fail to be detected on some file
5016   //   descriptors, resulting in mysterious hangs, or
5017   //
5018   // - might cause an fopen in the subprocess to fail on a system
5019   //   suffering from bug 1085341.
5020   //
5021   // (Yes, the default setting of the close-on-exec flag is a Unix
5022   // design flaw)
5023   //
5024   // See:
5025   // 1085341: 32-bit stdio routines should support file descriptors >255
5026   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5027   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5028   //
5029   // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
5030   // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
5031   // because it saves a system call and removes a small window where the flag
5032   // is unset.  On ancient Linux kernels the O_CLOEXEC flag will be ignored
5033   // and we fall back to using FD_CLOEXEC (see below).
5034 #ifdef O_CLOEXEC
5035   oflag |= O_CLOEXEC;
5036 #endif
5037 
5038   int fd = ::open64(path, oflag, mode);
5039   if (fd == -1) return -1;
5040 
5041   //If the open succeeded, the file might still be a directory
5042   {
5043     struct stat64 buf64;
5044     int ret = ::fstat64(fd, &buf64);
5045     int st_mode = buf64.st_mode;
5046 
5047     if (ret != -1) {
5048       if ((st_mode & S_IFMT) == S_IFDIR) {
5049         errno = EISDIR;
5050         ::close(fd);
5051         return -1;
5052       }
5053     } else {
5054       ::close(fd);
5055       return -1;
5056     }
5057   }
5058 
5059 #ifdef FD_CLOEXEC
5060   // Validate that the use of the O_CLOEXEC flag on open above worked.
5061   // With recent kernels, we will perform this check exactly once.
5062   static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
5063   if (!O_CLOEXEC_is_known_to_work) {
5064     int flags = ::fcntl(fd, F_GETFD);
5065     if (flags != -1) {
5066       if ((flags & FD_CLOEXEC) != 0)
5067         O_CLOEXEC_is_known_to_work = 1;
5068       else
5069         ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5070     }
5071   }
5072 #endif
5073 
5074   return fd;
5075 }
5076 
5077 
5078 // create binary file, rewriting existing file if required
5079 int os::create_binary_file(const char* path, bool rewrite_existing) {
5080   int oflags = O_WRONLY | O_CREAT;
5081   if (!rewrite_existing) {
5082     oflags |= O_EXCL;
5083   }
5084   return ::open64(path, oflags, S_IREAD | S_IWRITE);
5085 }
5086 
5087 // return current position of file pointer
5088 jlong os::current_file_offset(int fd) {
5089   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5090 }
5091 
5092 // move file pointer to the specified offset
5093 jlong os::seek_to_file_offset(int fd, jlong offset) {
5094   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5095 }
5096 
5097 // This code originates from JDK's sysAvailable
5098 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5099 
5100 int os::available(int fd, jlong *bytes) {
5101   jlong cur, end;
5102   int mode;
5103   struct stat64 buf64;
5104 
5105   if (::fstat64(fd, &buf64) >= 0) {
5106     mode = buf64.st_mode;
5107     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5108       // XXX: is the following call interruptible? If so, this might
5109       // need to go through the INTERRUPT_IO() wrapper as for other
5110       // blocking, interruptible calls in this file.
5111       int n;
5112       if (::ioctl(fd, FIONREAD, &n) >= 0) {
5113         *bytes = n;
5114         return 1;
5115       }
5116     }
5117   }
5118   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5119     return 0;
5120   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5121     return 0;
5122   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5123     return 0;
5124   }
5125   *bytes = end - cur;
5126   return 1;
5127 }
5128 
5129 // Map a block of memory.
5130 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5131                         char *addr, size_t bytes, bool read_only,
5132                         bool allow_exec) {
5133   int prot;
5134   int flags = MAP_PRIVATE;
5135 
5136   if (read_only) {
5137     prot = PROT_READ;
5138   } else {
5139     prot = PROT_READ | PROT_WRITE;
5140   }
5141 
5142   if (allow_exec) {
5143     prot |= PROT_EXEC;
5144   }
5145 
5146   if (addr != NULL) {
5147     flags |= MAP_FIXED;
5148   }
5149 
5150   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5151                                      fd, file_offset);
5152   if (mapped_address == MAP_FAILED) {
5153     return NULL;
5154   }
5155   return mapped_address;
5156 }
5157 
5158 
5159 // Remap a block of memory.
5160 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5161                           char *addr, size_t bytes, bool read_only,
5162                           bool allow_exec) {
5163   // same as map_memory() on this OS
5164   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5165                         allow_exec);
5166 }
5167 
5168 
5169 // Unmap a block of memory.
5170 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5171   return munmap(addr, bytes) == 0;
5172 }
5173 
5174 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5175 
5176 static clockid_t thread_cpu_clockid(Thread* thread) {
5177   pthread_t tid = thread->osthread()->pthread_id();
5178   clockid_t clockid;
5179 
5180   // Get thread clockid
5181   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5182   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5183   return clockid;
5184 }
5185 
5186 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5187 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5188 // of a thread.
5189 //
5190 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5191 // the fast estimate available on the platform.
5192 
5193 jlong os::current_thread_cpu_time() {
5194   if (os::Linux::supports_fast_thread_cpu_time()) {
5195     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5196   } else {
5197     // return user + sys since the cost is the same
5198     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5199   }
5200 }
5201 
5202 jlong os::thread_cpu_time(Thread* thread) {
5203   // consistent with what current_thread_cpu_time() returns
5204   if (os::Linux::supports_fast_thread_cpu_time()) {
5205     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5206   } else {
5207     return slow_thread_cpu_time(thread, true /* user + sys */);
5208   }
5209 }
5210 
5211 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5212   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5213     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5214   } else {
5215     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5216   }
5217 }
5218 
5219 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5220   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5221     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5222   } else {
5223     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5224   }
5225 }
5226 
5227 //  -1 on error.
5228 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5229   pid_t  tid = thread->osthread()->thread_id();
5230   char *s;
5231   char stat[2048];
5232   int statlen;
5233   char proc_name[64];
5234   int count;
5235   long sys_time, user_time;
5236   char cdummy;
5237   int idummy;
5238   long ldummy;
5239   FILE *fp;
5240 
5241   snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5242   fp = fopen(proc_name, "r");
5243   if (fp == NULL) return -1;
5244   statlen = fread(stat, 1, 2047, fp);
5245   stat[statlen] = '\0';
5246   fclose(fp);
5247 
5248   // Skip pid and the command string. Note that we could be dealing with
5249   // weird command names, e.g. user could decide to rename java launcher
5250   // to "java 1.4.2 :)", then the stat file would look like
5251   //                1234 (java 1.4.2 :)) R ... ...
5252   // We don't really need to know the command string, just find the last
5253   // occurrence of ")" and then start parsing from there. See bug 4726580.
5254   s = strrchr(stat, ')');
5255   if (s == NULL) return -1;
5256 
5257   // Skip blank chars
5258   do { s++; } while (s && isspace(*s));
5259 
5260   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5261                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5262                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5263                  &user_time, &sys_time);
5264   if (count != 13) return -1;
5265   if (user_sys_cpu_time) {
5266     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5267   } else {
5268     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5269   }
5270 }
5271 
5272 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5273   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5274   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5275   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5276   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5277 }
5278 
5279 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5280   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5281   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5282   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5283   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5284 }
5285 
5286 bool os::is_thread_cpu_time_supported() {
5287   return true;
5288 }
5289 
5290 // System loadavg support.  Returns -1 if load average cannot be obtained.
5291 // Linux doesn't yet have a (official) notion of processor sets,
5292 // so just return the system wide load average.
5293 int os::loadavg(double loadavg[], int nelem) {
5294   return ::getloadavg(loadavg, nelem);
5295 }
5296 
5297 void os::pause() {
5298   char filename[MAX_PATH];
5299   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5300     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
5301   } else {
5302     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5303   }
5304 
5305   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5306   if (fd != -1) {
5307     struct stat buf;
5308     ::close(fd);
5309     while (::stat(filename, &buf) == 0) {
5310       (void)::poll(NULL, 0, 100);
5311     }
5312   } else {
5313     jio_fprintf(stderr,
5314                 "Could not open pause file '%s', continuing immediately.\n", filename);
5315   }
5316 }
5317 
5318 
5319 // Refer to the comments in os_solaris.cpp park-unpark. The next two
5320 // comment paragraphs are worth repeating here:
5321 //
5322 // Assumption:
5323 //    Only one parker can exist on an event, which is why we allocate
5324 //    them per-thread. Multiple unparkers can coexist.
5325 //
5326 // _Event serves as a restricted-range semaphore.
5327 //   -1 : thread is blocked, i.e. there is a waiter
5328 //    0 : neutral: thread is running or ready,
5329 //        could have been signaled after a wait started
5330 //    1 : signaled - thread is running or ready
5331 //
5332 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
5333 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
5334 // For specifics regarding the bug see GLIBC BUGID 261237 :
5335 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
5336 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
5337 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
5338 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
5339 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
5340 // and monitorenter when we're using 1-0 locking.  All those operations may result in
5341 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
5342 // of libpthread avoids the problem, but isn't practical.
5343 //
5344 // Possible remedies:
5345 //
5346 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
5347 //      This is palliative and probabilistic, however.  If the thread is preempted
5348 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
5349 //      than the minimum period may have passed, and the abstime may be stale (in the
5350 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
5351 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
5352 //
5353 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
5354 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
5355 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
5356 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
5357 //      thread.
5358 //
5359 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
5360 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
5361 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
5362 //      This also works well.  In fact it avoids kernel-level scalability impediments
5363 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
5364 //      timers in a graceful fashion.
5365 //
5366 // 4.   When the abstime value is in the past it appears that control returns
5367 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
5368 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
5369 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
5370 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
5371 //      It may be possible to avoid reinitialization by checking the return
5372 //      value from pthread_cond_timedwait().  In addition to reinitializing the
5373 //      condvar we must establish the invariant that cond_signal() is only called
5374 //      within critical sections protected by the adjunct mutex.  This prevents
5375 //      cond_signal() from "seeing" a condvar that's in the midst of being
5376 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
5377 //      desirable signal-after-unlock optimization that avoids futile context switching.
5378 //
5379 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
5380 //      structure when a condvar is used or initialized.  cond_destroy()  would
5381 //      release the helper structure.  Our reinitialize-after-timedwait fix
5382 //      put excessive stress on malloc/free and locks protecting the c-heap.
5383 //
5384 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
5385 // It may be possible to refine (4) by checking the kernel and NTPL verisons
5386 // and only enabling the work-around for vulnerable environments.
5387 
5388 // utility to compute the abstime argument to timedwait:
5389 // millis is the relative timeout time
5390 // abstime will be the absolute timeout time
5391 // TODO: replace compute_abstime() with unpackTime()
5392 
5393 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
5394   if (millis < 0)  millis = 0;
5395 
5396   jlong seconds = millis / 1000;
5397   millis %= 1000;
5398   if (seconds > 50000000) { // see man cond_timedwait(3T)
5399     seconds = 50000000;
5400   }
5401 
5402   if (os::supports_monotonic_clock()) {
5403     struct timespec now;
5404     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5405     assert_status(status == 0, status, "clock_gettime");
5406     abstime->tv_sec = now.tv_sec  + seconds;
5407     long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
5408     if (nanos >= NANOSECS_PER_SEC) {
5409       abstime->tv_sec += 1;
5410       nanos -= NANOSECS_PER_SEC;
5411     }
5412     abstime->tv_nsec = nanos;
5413   } else {
5414     struct timeval now;
5415     int status = gettimeofday(&now, NULL);
5416     assert(status == 0, "gettimeofday");
5417     abstime->tv_sec = now.tv_sec  + seconds;
5418     long usec = now.tv_usec + millis * 1000;
5419     if (usec >= 1000000) {
5420       abstime->tv_sec += 1;
5421       usec -= 1000000;
5422     }
5423     abstime->tv_nsec = usec * 1000;
5424   }
5425   return abstime;
5426 }
5427 
5428 void os::PlatformEvent::park() {       // AKA "down()"
5429   // Transitions for _Event:
5430   //   -1 => -1 : illegal
5431   //    1 =>  0 : pass - return immediately
5432   //    0 => -1 : block; then set _Event to 0 before returning
5433 
5434   // Invariant: Only the thread associated with the Event/PlatformEvent
5435   // may call park().
5436   // TODO: assert that _Assoc != NULL or _Assoc == Self
5437   assert(_nParked == 0, "invariant");
5438 
5439   int v;
5440   for (;;) {
5441     v = _Event;
5442     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5443   }
5444   guarantee(v >= 0, "invariant");
5445   if (v == 0) {
5446     // Do this the hard way by blocking ...
5447     int status = pthread_mutex_lock(_mutex);
5448     assert_status(status == 0, status, "mutex_lock");
5449     guarantee(_nParked == 0, "invariant");
5450     ++_nParked;
5451     while (_Event < 0) {
5452       status = pthread_cond_wait(_cond, _mutex);
5453       // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5454       // Treat this the same as if the wait was interrupted
5455       if (status == ETIME) { status = EINTR; }
5456       assert_status(status == 0 || status == EINTR, status, "cond_wait");
5457     }
5458     --_nParked;
5459 
5460     _Event = 0;
5461     status = pthread_mutex_unlock(_mutex);
5462     assert_status(status == 0, status, "mutex_unlock");
5463     // Paranoia to ensure our locked and lock-free paths interact
5464     // correctly with each other.
5465     OrderAccess::fence();
5466   }
5467   guarantee(_Event >= 0, "invariant");
5468 }
5469 
5470 int os::PlatformEvent::park(jlong millis) {
5471   // Transitions for _Event:
5472   //   -1 => -1 : illegal
5473   //    1 =>  0 : pass - return immediately
5474   //    0 => -1 : block; then set _Event to 0 before returning
5475 
5476   guarantee(_nParked == 0, "invariant");
5477 
5478   int v;
5479   for (;;) {
5480     v = _Event;
5481     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5482   }
5483   guarantee(v >= 0, "invariant");
5484   if (v != 0) return OS_OK;
5485 
5486   // We do this the hard way, by blocking the thread.
5487   // Consider enforcing a minimum timeout value.
5488   struct timespec abst;
5489   compute_abstime(&abst, millis);
5490 
5491   int ret = OS_TIMEOUT;
5492   int status = pthread_mutex_lock(_mutex);
5493   assert_status(status == 0, status, "mutex_lock");
5494   guarantee(_nParked == 0, "invariant");
5495   ++_nParked;
5496 
5497   // Object.wait(timo) will return because of
5498   // (a) notification
5499   // (b) timeout
5500   // (c) thread.interrupt
5501   //
5502   // Thread.interrupt and object.notify{All} both call Event::set.
5503   // That is, we treat thread.interrupt as a special case of notification.
5504   // We ignore spurious OS wakeups unless FilterSpuriousWakeups is false.
5505   // We assume all ETIME returns are valid.
5506   //
5507   // TODO: properly differentiate simultaneous notify+interrupt.
5508   // In that case, we should propagate the notify to another waiter.
5509 
5510   while (_Event < 0) {
5511     status = pthread_cond_timedwait(_cond, _mutex, &abst);
5512     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5513       pthread_cond_destroy(_cond);
5514       pthread_cond_init(_cond, os::Linux::condAttr());
5515     }
5516     assert_status(status == 0 || status == EINTR ||
5517                   status == ETIME || status == ETIMEDOUT,
5518                   status, "cond_timedwait");
5519     if (!FilterSpuriousWakeups) break;                 // previous semantics
5520     if (status == ETIME || status == ETIMEDOUT) break;
5521     // We consume and ignore EINTR and spurious wakeups.
5522   }
5523   --_nParked;
5524   if (_Event >= 0) {
5525     ret = OS_OK;
5526   }
5527   _Event = 0;
5528   status = pthread_mutex_unlock(_mutex);
5529   assert_status(status == 0, status, "mutex_unlock");
5530   assert(_nParked == 0, "invariant");
5531   // Paranoia to ensure our locked and lock-free paths interact
5532   // correctly with each other.
5533   OrderAccess::fence();
5534   return ret;
5535 }
5536 
5537 void os::PlatformEvent::unpark() {
5538   // Transitions for _Event:
5539   //    0 => 1 : just return
5540   //    1 => 1 : just return
5541   //   -1 => either 0 or 1; must signal target thread
5542   //         That is, we can safely transition _Event from -1 to either
5543   //         0 or 1.
5544   // See also: "Semaphores in Plan 9" by Mullender & Cox
5545   //
5546   // Note: Forcing a transition from "-1" to "1" on an unpark() means
5547   // that it will take two back-to-back park() calls for the owning
5548   // thread to block. This has the benefit of forcing a spurious return
5549   // from the first park() call after an unpark() call which will help
5550   // shake out uses of park() and unpark() without condition variables.
5551 
5552   if (Atomic::xchg(1, &_Event) >= 0) return;
5553 
5554   // Wait for the thread associated with the event to vacate
5555   int status = pthread_mutex_lock(_mutex);
5556   assert_status(status == 0, status, "mutex_lock");
5557   int AnyWaiters = _nParked;
5558   assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5559   if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
5560     AnyWaiters = 0;
5561     pthread_cond_signal(_cond);
5562   }
5563   status = pthread_mutex_unlock(_mutex);
5564   assert_status(status == 0, status, "mutex_unlock");
5565   if (AnyWaiters != 0) {
5566     // Note that we signal() *after* dropping the lock for "immortal" Events.
5567     // This is safe and avoids a common class of  futile wakeups.  In rare
5568     // circumstances this can cause a thread to return prematurely from
5569     // cond_{timed}wait() but the spurious wakeup is benign and the victim
5570     // will simply re-test the condition and re-park itself.
5571     // This provides particular benefit if the underlying platform does not
5572     // provide wait morphing.
5573     status = pthread_cond_signal(_cond);
5574     assert_status(status == 0, status, "cond_signal");
5575   }
5576 }
5577 
5578 
5579 // JSR166
5580 // -------------------------------------------------------
5581 
5582 // The solaris and linux implementations of park/unpark are fairly
5583 // conservative for now, but can be improved. They currently use a
5584 // mutex/condvar pair, plus a a count.
5585 // Park decrements count if > 0, else does a condvar wait.  Unpark
5586 // sets count to 1 and signals condvar.  Only one thread ever waits
5587 // on the condvar. Contention seen when trying to park implies that someone
5588 // is unparking you, so don't wait. And spurious returns are fine, so there
5589 // is no need to track notifications.
5590 
5591 // This code is common to linux and solaris and will be moved to a
5592 // common place in dolphin.
5593 //
5594 // The passed in time value is either a relative time in nanoseconds
5595 // or an absolute time in milliseconds. Either way it has to be unpacked
5596 // into suitable seconds and nanoseconds components and stored in the
5597 // given timespec structure.
5598 // Given time is a 64-bit value and the time_t used in the timespec is only
5599 // a signed-32-bit value (except on 64-bit Linux) we have to watch for
5600 // overflow if times way in the future are given. Further on Solaris versions
5601 // prior to 10 there is a restriction (see cond_timedwait) that the specified
5602 // number of seconds, in abstime, is less than current_time  + 100,000,000.
5603 // As it will be 28 years before "now + 100000000" will overflow we can
5604 // ignore overflow and just impose a hard-limit on seconds using the value
5605 // of "now + 100,000,000". This places a limit on the timeout of about 3.17
5606 // years from "now".
5607 
5608 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5609   assert(time > 0, "convertTime");
5610   time_t max_secs = 0;
5611 
5612   if (!os::supports_monotonic_clock() || isAbsolute) {
5613     struct timeval now;
5614     int status = gettimeofday(&now, NULL);
5615     assert(status == 0, "gettimeofday");
5616 
5617     max_secs = now.tv_sec + MAX_SECS;
5618 
5619     if (isAbsolute) {
5620       jlong secs = time / 1000;
5621       if (secs > max_secs) {
5622         absTime->tv_sec = max_secs;
5623       } else {
5624         absTime->tv_sec = secs;
5625       }
5626       absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5627     } else {
5628       jlong secs = time / NANOSECS_PER_SEC;
5629       if (secs >= MAX_SECS) {
5630         absTime->tv_sec = max_secs;
5631         absTime->tv_nsec = 0;
5632       } else {
5633         absTime->tv_sec = now.tv_sec + secs;
5634         absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5635         if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5636           absTime->tv_nsec -= NANOSECS_PER_SEC;
5637           ++absTime->tv_sec; // note: this must be <= max_secs
5638         }
5639       }
5640     }
5641   } else {
5642     // must be relative using monotonic clock
5643     struct timespec now;
5644     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5645     assert_status(status == 0, status, "clock_gettime");
5646     max_secs = now.tv_sec + MAX_SECS;
5647     jlong secs = time / NANOSECS_PER_SEC;
5648     if (secs >= MAX_SECS) {
5649       absTime->tv_sec = max_secs;
5650       absTime->tv_nsec = 0;
5651     } else {
5652       absTime->tv_sec = now.tv_sec + secs;
5653       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
5654       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5655         absTime->tv_nsec -= NANOSECS_PER_SEC;
5656         ++absTime->tv_sec; // note: this must be <= max_secs
5657       }
5658     }
5659   }
5660   assert(absTime->tv_sec >= 0, "tv_sec < 0");
5661   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5662   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5663   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5664 }
5665 
5666 void Parker::park(bool isAbsolute, jlong time) {
5667   // Ideally we'd do something useful while spinning, such
5668   // as calling unpackTime().
5669 
5670   // Optional fast-path check:
5671   // Return immediately if a permit is available.
5672   // We depend on Atomic::xchg() having full barrier semantics
5673   // since we are doing a lock-free update to _counter.
5674   if (Atomic::xchg(0, &_counter) > 0) return;
5675 
5676   Thread* thread = Thread::current();
5677   assert(thread->is_Java_thread(), "Must be JavaThread");
5678   JavaThread *jt = (JavaThread *)thread;
5679 
5680   // Optional optimization -- avoid state transitions if there's an interrupt pending.
5681   // Check interrupt before trying to wait
5682   if (Thread::is_interrupted(thread, false)) {
5683     return;
5684   }
5685 
5686   // Next, demultiplex/decode time arguments
5687   timespec absTime;
5688   if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
5689     return;
5690   }
5691   if (time > 0) {
5692     unpackTime(&absTime, isAbsolute, time);
5693   }
5694 
5695 
5696   // Enter safepoint region
5697   // Beware of deadlocks such as 6317397.
5698   // The per-thread Parker:: mutex is a classic leaf-lock.
5699   // In particular a thread must never block on the Threads_lock while
5700   // holding the Parker:: mutex.  If safepoints are pending both the
5701   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5702   ThreadBlockInVM tbivm(jt);
5703 
5704   // Don't wait if cannot get lock since interference arises from
5705   // unblocking.  Also. check interrupt before trying wait
5706   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5707     return;
5708   }
5709 
5710   int status;
5711   if (_counter > 0)  { // no wait needed
5712     _counter = 0;
5713     status = pthread_mutex_unlock(_mutex);
5714     assert(status == 0, "invariant");
5715     // Paranoia to ensure our locked and lock-free paths interact
5716     // correctly with each other and Java-level accesses.
5717     OrderAccess::fence();
5718     return;
5719   }
5720 
5721 #ifdef ASSERT
5722   // Don't catch signals while blocked; let the running threads have the signals.
5723   // (This allows a debugger to break into the running thread.)
5724   sigset_t oldsigs;
5725   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5726   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5727 #endif
5728 
5729   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5730   jt->set_suspend_equivalent();
5731   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5732 
5733   assert(_cur_index == -1, "invariant");
5734   if (time == 0) {
5735     _cur_index = REL_INDEX; // arbitrary choice when not timed
5736     status = pthread_cond_wait(&_cond[_cur_index], _mutex);
5737   } else {
5738     _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
5739     status = pthread_cond_timedwait(&_cond[_cur_index], _mutex, &absTime);
5740     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5741       pthread_cond_destroy(&_cond[_cur_index]);
5742       pthread_cond_init(&_cond[_cur_index], isAbsolute ? NULL : os::Linux::condAttr());
5743     }
5744   }
5745   _cur_index = -1;
5746   assert_status(status == 0 || status == EINTR ||
5747                 status == ETIME || status == ETIMEDOUT,
5748                 status, "cond_timedwait");
5749 
5750 #ifdef ASSERT
5751   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5752 #endif
5753 
5754   _counter = 0;
5755   status = pthread_mutex_unlock(_mutex);
5756   assert_status(status == 0, status, "invariant");
5757   // Paranoia to ensure our locked and lock-free paths interact
5758   // correctly with each other and Java-level accesses.
5759   OrderAccess::fence();
5760 
5761   // If externally suspended while waiting, re-suspend
5762   if (jt->handle_special_suspend_equivalent_condition()) {
5763     jt->java_suspend_self();
5764   }
5765 }
5766 
5767 void Parker::unpark() {
5768   int status = pthread_mutex_lock(_mutex);
5769   assert(status == 0, "invariant");
5770   const int s = _counter;
5771   _counter = 1;
5772   if (s < 1) {
5773     // thread might be parked
5774     if (_cur_index != -1) {
5775       // thread is definitely parked
5776       if (WorkAroundNPTLTimedWaitHang) {
5777         status = pthread_cond_signal(&_cond[_cur_index]);
5778         assert(status == 0, "invariant");
5779         status = pthread_mutex_unlock(_mutex);
5780         assert(status == 0, "invariant");
5781       } else {
5782         status = pthread_mutex_unlock(_mutex);
5783         assert(status == 0, "invariant");
5784         status = pthread_cond_signal(&_cond[_cur_index]);
5785         assert(status == 0, "invariant");
5786       }
5787     } else {
5788       pthread_mutex_unlock(_mutex);
5789       assert(status == 0, "invariant");
5790     }
5791   } else {
5792     pthread_mutex_unlock(_mutex);
5793     assert(status == 0, "invariant");
5794   }
5795 }
5796 
5797 
5798 extern char** environ;
5799 
5800 // Run the specified command in a separate process. Return its exit value,
5801 // or -1 on failure (e.g. can't fork a new process).
5802 // Unlike system(), this function can be called from signal handler. It
5803 // doesn't block SIGINT et al.
5804 int os::fork_and_exec(char* cmd) {
5805   const char * argv[4] = {"sh", "-c", cmd, NULL};
5806 
5807   pid_t pid = fork();
5808 
5809   if (pid < 0) {
5810     // fork failed
5811     return -1;
5812 
5813   } else if (pid == 0) {
5814     // child process
5815 
5816     execve("/bin/sh", (char* const*)argv, environ);
5817 
5818     // execve failed
5819     _exit(-1);
5820 
5821   } else  {
5822     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5823     // care about the actual exit code, for now.
5824 
5825     int status;
5826 
5827     // Wait for the child process to exit.  This returns immediately if
5828     // the child has already exited. */
5829     while (waitpid(pid, &status, 0) < 0) {
5830       switch (errno) {
5831       case ECHILD: return 0;
5832       case EINTR: break;
5833       default: return -1;
5834       }
5835     }
5836 
5837     if (WIFEXITED(status)) {
5838       // The child exited normally; get its exit code.
5839       return WEXITSTATUS(status);
5840     } else if (WIFSIGNALED(status)) {
5841       // The child exited because of a signal
5842       // The best value to return is 0x80 + signal number,
5843       // because that is what all Unix shells do, and because
5844       // it allows callers to distinguish between process exit and
5845       // process death by signal.
5846       return 0x80 + WTERMSIG(status);
5847     } else {
5848       // Unknown exit code; pass it through
5849       return status;
5850     }
5851   }
5852 }
5853 
5854 // is_headless_jre()
5855 //
5856 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
5857 // in order to report if we are running in a headless jre
5858 //
5859 // Since JDK8 xawt/libmawt.so was moved into the same directory
5860 // as libawt.so, and renamed libawt_xawt.so
5861 //
5862 bool os::is_headless_jre() {
5863   struct stat statbuf;
5864   char buf[MAXPATHLEN];
5865   char libmawtpath[MAXPATHLEN];
5866   const char *xawtstr  = "/xawt/libmawt.so";
5867   const char *new_xawtstr = "/libawt_xawt.so";
5868   char *p;
5869 
5870   // Get path to libjvm.so
5871   os::jvm_path(buf, sizeof(buf));
5872 
5873   // Get rid of libjvm.so
5874   p = strrchr(buf, '/');
5875   if (p == NULL) {
5876     return false;
5877   } else {
5878     *p = '\0';
5879   }
5880 
5881   // Get rid of client or server
5882   p = strrchr(buf, '/');
5883   if (p == NULL) {
5884     return false;
5885   } else {
5886     *p = '\0';
5887   }
5888 
5889   // check xawt/libmawt.so
5890   strcpy(libmawtpath, buf);
5891   strcat(libmawtpath, xawtstr);
5892   if (::stat(libmawtpath, &statbuf) == 0) return false;
5893 
5894   // check libawt_xawt.so
5895   strcpy(libmawtpath, buf);
5896   strcat(libmawtpath, new_xawtstr);
5897   if (::stat(libmawtpath, &statbuf) == 0) return false;
5898 
5899   return true;
5900 }
5901 
5902 // Get the default path to the core file
5903 // Returns the length of the string
5904 int os::get_core_path(char* buffer, size_t bufferSize) {
5905   /*
5906    * Max length of /proc/sys/kernel/core_pattern is 128 characters.
5907    * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
5908    */
5909   const int core_pattern_len = 129;
5910   char core_pattern[core_pattern_len] = {0};
5911 
5912   int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
5913   if (core_pattern_file != -1) {
5914     ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
5915     ::close(core_pattern_file);
5916 
5917     if (ret > 0) {
5918       char *last_char = core_pattern + strlen(core_pattern) - 1;
5919 
5920       if (*last_char == '\n') {
5921         *last_char = '\0';
5922       }
5923     }
5924   }
5925 
5926   if (strlen(core_pattern) == 0) {
5927     return -1;
5928   }
5929 
5930   char *pid_pos = strstr(core_pattern, "%p");
5931   int written;
5932 
5933   if (core_pattern[0] == '/') {
5934     written = jio_snprintf(buffer, bufferSize, core_pattern);
5935   } else {
5936     char cwd[PATH_MAX];
5937 
5938     const char* p = get_current_directory(cwd, PATH_MAX);
5939     if (p == NULL) {
5940       return -1;
5941     }
5942 
5943     if (core_pattern[0] == '|') {
5944       written = jio_snprintf(buffer, bufferSize,
5945                         "\"%s\" (or dumping to %s/core.%d)",
5946                                      &core_pattern[1], p, current_process_id());
5947     } else {
5948       written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
5949     }
5950   }
5951 
5952   if (written < 0) {
5953     return -1;
5954   }
5955 
5956   if (((size_t)written < bufferSize) && (pid_pos == NULL) && (core_pattern[0] != '|')) {
5957     int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
5958 
5959     if (core_uses_pid_file != -1) {
5960       char core_uses_pid = 0;
5961       ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
5962       ::close(core_uses_pid_file);
5963 
5964       if (core_uses_pid == '1') {
5965         jio_snprintf(buffer + written, bufferSize - written,
5966                                           ".%d", current_process_id());
5967       }
5968     }
5969   }
5970 
5971   return strlen(buffer);
5972 }
5973 
5974 /////////////// Unit tests ///////////////
5975 
5976 #ifndef PRODUCT
5977 
5978 #define test_log(...)              \
5979   do {                             \
5980     if (VerboseInternalVMTests) {  \
5981       tty->print_cr(__VA_ARGS__);  \
5982       tty->flush();                \
5983     }                              \
5984   } while (false)
5985 
5986 class TestReserveMemorySpecial : AllStatic {
5987  public:
5988   static void small_page_write(void* addr, size_t size) {
5989     size_t page_size = os::vm_page_size();
5990 
5991     char* end = (char*)addr + size;
5992     for (char* p = (char*)addr; p < end; p += page_size) {
5993       *p = 1;
5994     }
5995   }
5996 
5997   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
5998     if (!UseHugeTLBFS) {
5999       return;
6000     }
6001 
6002     test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
6003 
6004     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6005 
6006     if (addr != NULL) {
6007       small_page_write(addr, size);
6008 
6009       os::Linux::release_memory_special_huge_tlbfs(addr, size);
6010     }
6011   }
6012 
6013   static void test_reserve_memory_special_huge_tlbfs_only() {
6014     if (!UseHugeTLBFS) {
6015       return;
6016     }
6017 
6018     size_t lp = os::large_page_size();
6019 
6020     for (size_t size = lp; size <= lp * 10; size += lp) {
6021       test_reserve_memory_special_huge_tlbfs_only(size);
6022     }
6023   }
6024 
6025   static void test_reserve_memory_special_huge_tlbfs_mixed() {
6026     size_t lp = os::large_page_size();
6027     size_t ag = os::vm_allocation_granularity();
6028 
6029     // sizes to test
6030     const size_t sizes[] = {
6031       lp, lp + ag, lp + lp / 2, lp * 2,
6032       lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
6033       lp * 10, lp * 10 + lp / 2
6034     };
6035     const int num_sizes = sizeof(sizes) / sizeof(size_t);
6036 
6037     // For each size/alignment combination, we test three scenarios:
6038     // 1) with req_addr == NULL
6039     // 2) with a non-null req_addr at which we expect to successfully allocate
6040     // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
6041     //    expect the allocation to either fail or to ignore req_addr
6042 
6043     // Pre-allocate two areas; they shall be as large as the largest allocation
6044     //  and aligned to the largest alignment we will be testing.
6045     const size_t mapping_size = sizes[num_sizes - 1] * 2;
6046     char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
6047       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6048       -1, 0);
6049     assert(mapping1 != MAP_FAILED, "should work");
6050 
6051     char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
6052       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6053       -1, 0);
6054     assert(mapping2 != MAP_FAILED, "should work");
6055 
6056     // Unmap the first mapping, but leave the second mapping intact: the first
6057     // mapping will serve as a value for a "good" req_addr (case 2). The second
6058     // mapping, still intact, as "bad" req_addr (case 3).
6059     ::munmap(mapping1, mapping_size);
6060 
6061     // Case 1
6062     test_log("%s, req_addr NULL:", __FUNCTION__);
6063     test_log("size            align           result");
6064 
6065     for (int i = 0; i < num_sizes; i++) {
6066       const size_t size = sizes[i];
6067       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6068         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6069         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " ->  " PTR_FORMAT " %s",
6070             size, alignment, p, (p != NULL ? "" : "(failed)"));
6071         if (p != NULL) {
6072           assert(is_ptr_aligned(p, alignment), "must be");
6073           small_page_write(p, size);
6074           os::Linux::release_memory_special_huge_tlbfs(p, size);
6075         }
6076       }
6077     }
6078 
6079     // Case 2
6080     test_log("%s, req_addr non-NULL:", __FUNCTION__);
6081     test_log("size            align           req_addr         result");
6082 
6083     for (int i = 0; i < num_sizes; i++) {
6084       const size_t size = sizes[i];
6085       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6086         char* const req_addr = (char*) align_ptr_up(mapping1, alignment);
6087         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6088         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6089             size, alignment, req_addr, p,
6090             ((p != NULL ? (p == req_addr ? "(exact match)" : "") : "(failed)")));
6091         if (p != NULL) {
6092           assert(p == req_addr, "must be");
6093           small_page_write(p, size);
6094           os::Linux::release_memory_special_huge_tlbfs(p, size);
6095         }
6096       }
6097     }
6098 
6099     // Case 3
6100     test_log("%s, req_addr non-NULL with preexisting mapping:", __FUNCTION__);
6101     test_log("size            align           req_addr         result");
6102 
6103     for (int i = 0; i < num_sizes; i++) {
6104       const size_t size = sizes[i];
6105       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6106         char* const req_addr = (char*) align_ptr_up(mapping2, alignment);
6107         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6108         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6109             size, alignment, req_addr, p,
6110             ((p != NULL ? "" : "(failed)")));
6111         // as the area around req_addr contains already existing mappings, the API should always
6112         // return NULL (as per contract, it cannot return another address)
6113         assert(p == NULL, "must be");
6114       }
6115     }
6116 
6117     ::munmap(mapping2, mapping_size);
6118 
6119   }
6120 
6121   static void test_reserve_memory_special_huge_tlbfs() {
6122     if (!UseHugeTLBFS) {
6123       return;
6124     }
6125 
6126     test_reserve_memory_special_huge_tlbfs_only();
6127     test_reserve_memory_special_huge_tlbfs_mixed();
6128   }
6129 
6130   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6131     if (!UseSHM) {
6132       return;
6133     }
6134 
6135     test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6136 
6137     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6138 
6139     if (addr != NULL) {
6140       assert(is_ptr_aligned(addr, alignment), "Check");
6141       assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
6142 
6143       small_page_write(addr, size);
6144 
6145       os::Linux::release_memory_special_shm(addr, size);
6146     }
6147   }
6148 
6149   static void test_reserve_memory_special_shm() {
6150     size_t lp = os::large_page_size();
6151     size_t ag = os::vm_allocation_granularity();
6152 
6153     for (size_t size = ag; size < lp * 3; size += ag) {
6154       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6155         test_reserve_memory_special_shm(size, alignment);
6156       }
6157     }
6158   }
6159 
6160   static void test() {
6161     test_reserve_memory_special_huge_tlbfs();
6162     test_reserve_memory_special_shm();
6163   }
6164 };
6165 
6166 void TestReserveMemorySpecial_test() {
6167   TestReserveMemorySpecial::test();
6168 }
6169 
6170 #endif