1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // Must be at least Windows Vista or Server 2008 to use InitOnceExecuteOnce
  26 #define _WIN32_WINNT 0x0600
  27 
  28 // no precompiled headers
  29 #include "classfile/classLoader.hpp"
  30 #include "classfile/systemDictionary.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "code/icBuffer.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/disassembler.hpp"
  36 #include "interpreter/interpreter.hpp"
  37 #include "jvm_windows.h"
  38 #include "memory/allocation.inline.hpp"
  39 #include "memory/filemap.hpp"
  40 #include "mutex_windows.inline.hpp"
  41 #include "oops/oop.inline.hpp"
  42 #include "os_share_windows.hpp"
  43 #include "os_windows.inline.hpp"
  44 #include "prims/jniFastGetField.hpp"
  45 #include "prims/jvm.h"
  46 #include "prims/jvm_misc.hpp"
  47 #include "runtime/arguments.hpp"
  48 #include "runtime/atomic.inline.hpp"
  49 #include "runtime/extendedPC.hpp"
  50 #include "runtime/globals.hpp"
  51 #include "runtime/interfaceSupport.hpp"
  52 #include "runtime/java.hpp"
  53 #include "runtime/javaCalls.hpp"
  54 #include "runtime/mutexLocker.hpp"
  55 #include "runtime/objectMonitor.hpp"
  56 #include "runtime/orderAccess.inline.hpp"
  57 #include "runtime/osThread.hpp"
  58 #include "runtime/perfMemory.hpp"
  59 #include "runtime/sharedRuntime.hpp"
  60 #include "runtime/statSampler.hpp"
  61 #include "runtime/stubRoutines.hpp"
  62 #include "runtime/thread.inline.hpp"
  63 #include "runtime/threadCritical.hpp"
  64 #include "runtime/timer.hpp"
  65 #include "runtime/vm_version.hpp"
  66 #include "semaphore_windows.hpp"
  67 #include "services/attachListener.hpp"
  68 #include "services/memTracker.hpp"
  69 #include "services/runtimeService.hpp"
  70 #include "utilities/decoder.hpp"
  71 #include "utilities/defaultStream.hpp"
  72 #include "utilities/events.hpp"
  73 #include "utilities/growableArray.hpp"
  74 #include "utilities/vmError.hpp"
  75 
  76 #ifdef _DEBUG
  77 #include <crtdbg.h>
  78 #endif
  79 
  80 
  81 #include <windows.h>
  82 #include <sys/types.h>
  83 #include <sys/stat.h>
  84 #include <sys/timeb.h>
  85 #include <objidl.h>
  86 #include <shlobj.h>
  87 
  88 #include <malloc.h>
  89 #include <signal.h>
  90 #include <direct.h>
  91 #include <errno.h>
  92 #include <fcntl.h>
  93 #include <io.h>
  94 #include <process.h>              // For _beginthreadex(), _endthreadex()
  95 #include <imagehlp.h>             // For os::dll_address_to_function_name
  96 // for enumerating dll libraries
  97 #include <vdmdbg.h>
  98 
  99 // for timer info max values which include all bits
 100 #define ALL_64_BITS CONST64(-1)
 101 
 102 // For DLL loading/load error detection
 103 // Values of PE COFF
 104 #define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
 105 #define IMAGE_FILE_SIGNATURE_LENGTH 4
 106 
 107 static HANDLE main_process;
 108 static HANDLE main_thread;
 109 static int    main_thread_id;
 110 
 111 static FILETIME process_creation_time;
 112 static FILETIME process_exit_time;
 113 static FILETIME process_user_time;
 114 static FILETIME process_kernel_time;
 115 
 116 #ifdef _M_IA64
 117   #define __CPU__ ia64
 118 #else
 119   #ifdef _M_AMD64
 120     #define __CPU__ amd64
 121   #else
 122     #define __CPU__ i486
 123   #endif
 124 #endif
 125 
 126 // save DLL module handle, used by GetModuleFileName
 127 
 128 HINSTANCE vm_lib_handle;
 129 
 130 BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
 131   switch (reason) {
 132   case DLL_PROCESS_ATTACH:
 133     vm_lib_handle = hinst;
 134     if (ForceTimeHighResolution) {
 135       timeBeginPeriod(1L);
 136     }
 137     break;
 138   case DLL_PROCESS_DETACH:
 139     if (ForceTimeHighResolution) {
 140       timeEndPeriod(1L);
 141     }
 142     break;
 143   default:
 144     break;
 145   }
 146   return true;
 147 }
 148 
 149 static inline double fileTimeAsDouble(FILETIME* time) {
 150   const double high  = (double) ((unsigned int) ~0);
 151   const double split = 10000000.0;
 152   double result = (time->dwLowDateTime / split) +
 153                    time->dwHighDateTime * (high/split);
 154   return result;
 155 }
 156 
 157 // Implementation of os
 158 
 159 bool os::unsetenv(const char* name) {
 160   assert(name != NULL, "Null pointer");
 161   return (SetEnvironmentVariable(name, NULL) == TRUE);
 162 }
 163 
 164 // No setuid programs under Windows.
 165 bool os::have_special_privileges() {
 166   return false;
 167 }
 168 
 169 
 170 // This method is  a periodic task to check for misbehaving JNI applications
 171 // under CheckJNI, we can add any periodic checks here.
 172 // For Windows at the moment does nothing
 173 void os::run_periodic_checks() {
 174   return;
 175 }
 176 
 177 // previous UnhandledExceptionFilter, if there is one
 178 static LPTOP_LEVEL_EXCEPTION_FILTER prev_uef_handler = NULL;
 179 
 180 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
 181 
 182 void os::init_system_properties_values() {
 183   // sysclasspath, java_home, dll_dir
 184   {
 185     char *home_path;
 186     char *dll_path;
 187     char *pslash;
 188     char *bin = "\\bin";
 189     char home_dir[MAX_PATH + 1];
 190     char *alt_home_dir = ::getenv("_ALT_JAVA_HOME_DIR");
 191 
 192     if (alt_home_dir != NULL)  {
 193       strncpy(home_dir, alt_home_dir, MAX_PATH + 1);
 194       home_dir[MAX_PATH] = '\0';
 195     } else {
 196       os::jvm_path(home_dir, sizeof(home_dir));
 197       // Found the full path to jvm.dll.
 198       // Now cut the path to <java_home>/jre if we can.
 199       *(strrchr(home_dir, '\\')) = '\0';  // get rid of \jvm.dll
 200       pslash = strrchr(home_dir, '\\');
 201       if (pslash != NULL) {
 202         *pslash = '\0';                   // get rid of \{client|server}
 203         pslash = strrchr(home_dir, '\\');
 204         if (pslash != NULL) {
 205           *pslash = '\0';                 // get rid of \bin
 206         }
 207       }
 208     }
 209 
 210     home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1, mtInternal);
 211     if (home_path == NULL) {
 212       return;
 213     }
 214     strcpy(home_path, home_dir);
 215     Arguments::set_java_home(home_path);
 216     FREE_C_HEAP_ARRAY(char, home_path);
 217 
 218     dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1,
 219                                 mtInternal);
 220     if (dll_path == NULL) {
 221       return;
 222     }
 223     strcpy(dll_path, home_dir);
 224     strcat(dll_path, bin);
 225     Arguments::set_dll_dir(dll_path);
 226     FREE_C_HEAP_ARRAY(char, dll_path);
 227 
 228     if (!set_boot_path('\\', ';')) {
 229       return;
 230     }
 231   }
 232 
 233 // library_path
 234 #define EXT_DIR "\\lib\\ext"
 235 #define BIN_DIR "\\bin"
 236 #define PACKAGE_DIR "\\Sun\\Java"
 237   {
 238     // Win32 library search order (See the documentation for LoadLibrary):
 239     //
 240     // 1. The directory from which application is loaded.
 241     // 2. The system wide Java Extensions directory (Java only)
 242     // 3. System directory (GetSystemDirectory)
 243     // 4. Windows directory (GetWindowsDirectory)
 244     // 5. The PATH environment variable
 245     // 6. The current directory
 246 
 247     char *library_path;
 248     char tmp[MAX_PATH];
 249     char *path_str = ::getenv("PATH");
 250 
 251     library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
 252                                     sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10, mtInternal);
 253 
 254     library_path[0] = '\0';
 255 
 256     GetModuleFileName(NULL, tmp, sizeof(tmp));
 257     *(strrchr(tmp, '\\')) = '\0';
 258     strcat(library_path, tmp);
 259 
 260     GetWindowsDirectory(tmp, sizeof(tmp));
 261     strcat(library_path, ";");
 262     strcat(library_path, tmp);
 263     strcat(library_path, PACKAGE_DIR BIN_DIR);
 264 
 265     GetSystemDirectory(tmp, sizeof(tmp));
 266     strcat(library_path, ";");
 267     strcat(library_path, tmp);
 268 
 269     GetWindowsDirectory(tmp, sizeof(tmp));
 270     strcat(library_path, ";");
 271     strcat(library_path, tmp);
 272 
 273     if (path_str) {
 274       strcat(library_path, ";");
 275       strcat(library_path, path_str);
 276     }
 277 
 278     strcat(library_path, ";.");
 279 
 280     Arguments::set_library_path(library_path);
 281     FREE_C_HEAP_ARRAY(char, library_path);
 282   }
 283 
 284   // Default extensions directory
 285   {
 286     char path[MAX_PATH];
 287     char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
 288     GetWindowsDirectory(path, MAX_PATH);
 289     sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
 290             path, PACKAGE_DIR, EXT_DIR);
 291     Arguments::set_ext_dirs(buf);
 292   }
 293   #undef EXT_DIR
 294   #undef BIN_DIR
 295   #undef PACKAGE_DIR
 296 
 297 #ifndef _WIN64
 298   // set our UnhandledExceptionFilter and save any previous one
 299   prev_uef_handler = SetUnhandledExceptionFilter(Handle_FLT_Exception);
 300 #endif
 301 
 302   // Done
 303   return;
 304 }
 305 
 306 void os::breakpoint() {
 307   DebugBreak();
 308 }
 309 
 310 // Invoked from the BREAKPOINT Macro
 311 extern "C" void breakpoint() {
 312   os::breakpoint();
 313 }
 314 
 315 // RtlCaptureStackBackTrace Windows API may not exist prior to Windows XP.
 316 // So far, this method is only used by Native Memory Tracking, which is
 317 // only supported on Windows XP or later.
 318 //
 319 int os::get_native_stack(address* stack, int frames, int toSkip) {
 320 #ifdef _NMT_NOINLINE_
 321   toSkip++;
 322 #endif
 323   int captured = Kernel32Dll::RtlCaptureStackBackTrace(toSkip + 1, frames,
 324                                                        (PVOID*)stack, NULL);
 325   for (int index = captured; index < frames; index ++) {
 326     stack[index] = NULL;
 327   }
 328   return captured;
 329 }
 330 
 331 
 332 // os::current_stack_base()
 333 //
 334 //   Returns the base of the stack, which is the stack's
 335 //   starting address.  This function must be called
 336 //   while running on the stack of the thread being queried.
 337 
 338 address os::current_stack_base() {
 339   MEMORY_BASIC_INFORMATION minfo;
 340   address stack_bottom;
 341   size_t stack_size;
 342 
 343   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 344   stack_bottom =  (address)minfo.AllocationBase;
 345   stack_size = minfo.RegionSize;
 346 
 347   // Add up the sizes of all the regions with the same
 348   // AllocationBase.
 349   while (1) {
 350     VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
 351     if (stack_bottom == (address)minfo.AllocationBase) {
 352       stack_size += minfo.RegionSize;
 353     } else {
 354       break;
 355     }
 356   }
 357 
 358 #ifdef _M_IA64
 359   // IA64 has memory and register stacks
 360   //
 361   // This is the stack layout you get on NT/IA64 if you specify 1MB stack limit
 362   // at thread creation (1MB backing store growing upwards, 1MB memory stack
 363   // growing downwards, 2MB summed up)
 364   //
 365   // ...
 366   // ------- top of stack (high address) -----
 367   // |
 368   // |      1MB
 369   // |      Backing Store (Register Stack)
 370   // |
 371   // |         / \
 372   // |          |
 373   // |          |
 374   // |          |
 375   // ------------------------ stack base -----
 376   // |      1MB
 377   // |      Memory Stack
 378   // |
 379   // |          |
 380   // |          |
 381   // |          |
 382   // |         \ /
 383   // |
 384   // ----- bottom of stack (low address) -----
 385   // ...
 386 
 387   stack_size = stack_size / 2;
 388 #endif
 389   return stack_bottom + stack_size;
 390 }
 391 
 392 size_t os::current_stack_size() {
 393   size_t sz;
 394   MEMORY_BASIC_INFORMATION minfo;
 395   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 396   sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
 397   return sz;
 398 }
 399 
 400 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
 401   const struct tm* time_struct_ptr = localtime(clock);
 402   if (time_struct_ptr != NULL) {
 403     *res = *time_struct_ptr;
 404     return res;
 405   }
 406   return NULL;
 407 }
 408 
 409 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
 410 
 411 // Thread start routine for all new Java threads
 412 static unsigned __stdcall java_start(Thread* thread) {
 413   // Try to randomize the cache line index of hot stack frames.
 414   // This helps when threads of the same stack traces evict each other's
 415   // cache lines. The threads can be either from the same JVM instance, or
 416   // from different JVM instances. The benefit is especially true for
 417   // processors with hyperthreading technology.
 418   static int counter = 0;
 419   int pid = os::current_process_id();
 420   _alloca(((pid ^ counter++) & 7) * 128);
 421 
 422   OSThread* osthr = thread->osthread();
 423   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
 424 
 425   if (UseNUMA) {
 426     int lgrp_id = os::numa_get_group_id();
 427     if (lgrp_id != -1) {
 428       thread->set_lgrp_id(lgrp_id);
 429     }
 430   }
 431 
 432   // Diagnostic code to investigate JDK-6573254
 433   int res = 30115;  // non-java thread
 434   if (thread->is_Java_thread()) {
 435     res = 20115;    // java thread
 436   }
 437 
 438   // Install a win32 structured exception handler around every thread created
 439   // by VM, so VM can generate error dump when an exception occurred in non-
 440   // Java thread (e.g. VM thread).
 441   __try {
 442     thread->run();
 443   } __except(topLevelExceptionFilter(
 444                                      (_EXCEPTION_POINTERS*)_exception_info())) {
 445     // Nothing to do.
 446   }
 447 
 448   // One less thread is executing
 449   // When the VMThread gets here, the main thread may have already exited
 450   // which frees the CodeHeap containing the Atomic::add code
 451   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
 452     Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count);
 453   }
 454 
 455   // Thread must not return from exit_process_or_thread(), but if it does,
 456   // let it proceed to exit normally
 457   return (unsigned)os::win32::exit_process_or_thread(os::win32::EPT_THREAD, res);
 458 }
 459 
 460 static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle,
 461                                   int thread_id) {
 462   // Allocate the OSThread object
 463   OSThread* osthread = new OSThread(NULL, NULL);
 464   if (osthread == NULL) return NULL;
 465 
 466   // Initialize support for Java interrupts
 467   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 468   if (interrupt_event == NULL) {
 469     delete osthread;
 470     return NULL;
 471   }
 472   osthread->set_interrupt_event(interrupt_event);
 473 
 474   // Store info on the Win32 thread into the OSThread
 475   osthread->set_thread_handle(thread_handle);
 476   osthread->set_thread_id(thread_id);
 477 
 478   if (UseNUMA) {
 479     int lgrp_id = os::numa_get_group_id();
 480     if (lgrp_id != -1) {
 481       thread->set_lgrp_id(lgrp_id);
 482     }
 483   }
 484 
 485   // Initial thread state is INITIALIZED, not SUSPENDED
 486   osthread->set_state(INITIALIZED);
 487 
 488   return osthread;
 489 }
 490 
 491 
 492 bool os::create_attached_thread(JavaThread* thread) {
 493 #ifdef ASSERT
 494   thread->verify_not_published();
 495 #endif
 496   HANDLE thread_h;
 497   if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
 498                        &thread_h, THREAD_ALL_ACCESS, false, 0)) {
 499     fatal("DuplicateHandle failed\n");
 500   }
 501   OSThread* osthread = create_os_thread(thread, thread_h,
 502                                         (int)current_thread_id());
 503   if (osthread == NULL) {
 504     return false;
 505   }
 506 
 507   // Initial thread state is RUNNABLE
 508   osthread->set_state(RUNNABLE);
 509 
 510   thread->set_osthread(osthread);
 511   return true;
 512 }
 513 
 514 bool os::create_main_thread(JavaThread* thread) {
 515 #ifdef ASSERT
 516   thread->verify_not_published();
 517 #endif
 518   if (_starting_thread == NULL) {
 519     _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
 520     if (_starting_thread == NULL) {
 521       return false;
 522     }
 523   }
 524 
 525   // The primordial thread is runnable from the start)
 526   _starting_thread->set_state(RUNNABLE);
 527 
 528   thread->set_osthread(_starting_thread);
 529   return true;
 530 }
 531 
 532 // Allocate and initialize a new OSThread
 533 bool os::create_thread(Thread* thread, ThreadType thr_type,
 534                        size_t stack_size) {
 535   unsigned thread_id;
 536 
 537   // Allocate the OSThread object
 538   OSThread* osthread = new OSThread(NULL, NULL);
 539   if (osthread == NULL) {
 540     return false;
 541   }
 542 
 543   // Initialize support for Java interrupts
 544   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 545   if (interrupt_event == NULL) {
 546     delete osthread;
 547     return NULL;
 548   }
 549   osthread->set_interrupt_event(interrupt_event);
 550   osthread->set_interrupted(false);
 551 
 552   thread->set_osthread(osthread);
 553 
 554   if (stack_size == 0) {
 555     switch (thr_type) {
 556     case os::java_thread:
 557       // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
 558       if (JavaThread::stack_size_at_create() > 0) {
 559         stack_size = JavaThread::stack_size_at_create();
 560       }
 561       break;
 562     case os::compiler_thread:
 563       if (CompilerThreadStackSize > 0) {
 564         stack_size = (size_t)(CompilerThreadStackSize * K);
 565         break;
 566       } // else fall through:
 567         // use VMThreadStackSize if CompilerThreadStackSize is not defined
 568     case os::vm_thread:
 569     case os::pgc_thread:
 570     case os::cgc_thread:
 571     case os::watcher_thread:
 572       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 573       break;
 574     }
 575   }
 576 
 577   // Create the Win32 thread
 578   //
 579   // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
 580   // does not specify stack size. Instead, it specifies the size of
 581   // initially committed space. The stack size is determined by
 582   // PE header in the executable. If the committed "stack_size" is larger
 583   // than default value in the PE header, the stack is rounded up to the
 584   // nearest multiple of 1MB. For example if the launcher has default
 585   // stack size of 320k, specifying any size less than 320k does not
 586   // affect the actual stack size at all, it only affects the initial
 587   // commitment. On the other hand, specifying 'stack_size' larger than
 588   // default value may cause significant increase in memory usage, because
 589   // not only the stack space will be rounded up to MB, but also the
 590   // entire space is committed upfront.
 591   //
 592   // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
 593   // for CreateThread() that can treat 'stack_size' as stack size. However we
 594   // are not supposed to call CreateThread() directly according to MSDN
 595   // document because JVM uses C runtime library. The good news is that the
 596   // flag appears to work with _beginthredex() as well.
 597 
 598 #ifndef STACK_SIZE_PARAM_IS_A_RESERVATION
 599   #define STACK_SIZE_PARAM_IS_A_RESERVATION  (0x10000)
 600 #endif
 601 
 602   HANDLE thread_handle =
 603     (HANDLE)_beginthreadex(NULL,
 604                            (unsigned)stack_size,
 605                            (unsigned (__stdcall *)(void*)) java_start,
 606                            thread,
 607                            CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION,
 608                            &thread_id);
 609   if (thread_handle == NULL) {
 610     // perhaps STACK_SIZE_PARAM_IS_A_RESERVATION is not supported, try again
 611     // without the flag.
 612     thread_handle =
 613       (HANDLE)_beginthreadex(NULL,
 614                              (unsigned)stack_size,
 615                              (unsigned (__stdcall *)(void*)) java_start,
 616                              thread,
 617                              CREATE_SUSPENDED,
 618                              &thread_id);
 619   }
 620   if (thread_handle == NULL) {
 621     // Need to clean up stuff we've allocated so far
 622     CloseHandle(osthread->interrupt_event());
 623     thread->set_osthread(NULL);
 624     delete osthread;
 625     return NULL;
 626   }
 627 
 628   Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count);
 629 
 630   // Store info on the Win32 thread into the OSThread
 631   osthread->set_thread_handle(thread_handle);
 632   osthread->set_thread_id(thread_id);
 633 
 634   // Initial thread state is INITIALIZED, not SUSPENDED
 635   osthread->set_state(INITIALIZED);
 636 
 637   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
 638   return true;
 639 }
 640 
 641 
 642 // Free Win32 resources related to the OSThread
 643 void os::free_thread(OSThread* osthread) {
 644   assert(osthread != NULL, "osthread not set");
 645   CloseHandle(osthread->thread_handle());
 646   CloseHandle(osthread->interrupt_event());
 647   delete osthread;
 648 }
 649 
 650 static jlong first_filetime;
 651 static jlong initial_performance_count;
 652 static jlong performance_frequency;
 653 
 654 
 655 jlong as_long(LARGE_INTEGER x) {
 656   jlong result = 0; // initialization to avoid warning
 657   set_high(&result, x.HighPart);
 658   set_low(&result, x.LowPart);
 659   return result;
 660 }
 661 
 662 
 663 jlong os::elapsed_counter() {
 664   LARGE_INTEGER count;
 665   if (win32::_has_performance_count) {
 666     QueryPerformanceCounter(&count);
 667     return as_long(count) - initial_performance_count;
 668   } else {
 669     FILETIME wt;
 670     GetSystemTimeAsFileTime(&wt);
 671     return (jlong_from(wt.dwHighDateTime, wt.dwLowDateTime) - first_filetime);
 672   }
 673 }
 674 
 675 
 676 jlong os::elapsed_frequency() {
 677   if (win32::_has_performance_count) {
 678     return performance_frequency;
 679   } else {
 680     // the FILETIME time is the number of 100-nanosecond intervals since January 1,1601.
 681     return 10000000;
 682   }
 683 }
 684 
 685 
 686 julong os::available_memory() {
 687   return win32::available_memory();
 688 }
 689 
 690 julong os::win32::available_memory() {
 691   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
 692   // value if total memory is larger than 4GB
 693   MEMORYSTATUSEX ms;
 694   ms.dwLength = sizeof(ms);
 695   GlobalMemoryStatusEx(&ms);
 696 
 697   return (julong)ms.ullAvailPhys;
 698 }
 699 
 700 julong os::physical_memory() {
 701   return win32::physical_memory();
 702 }
 703 
 704 bool os::has_allocatable_memory_limit(julong* limit) {
 705   MEMORYSTATUSEX ms;
 706   ms.dwLength = sizeof(ms);
 707   GlobalMemoryStatusEx(&ms);
 708 #ifdef _LP64
 709   *limit = (julong)ms.ullAvailVirtual;
 710   return true;
 711 #else
 712   // Limit to 1400m because of the 2gb address space wall
 713   *limit = MIN2((julong)1400*M, (julong)ms.ullAvailVirtual);
 714   return true;
 715 #endif
 716 }
 717 
 718 // VC6 lacks DWORD_PTR
 719 #if _MSC_VER < 1300
 720 typedef UINT_PTR DWORD_PTR;
 721 #endif
 722 
 723 int os::active_processor_count() {
 724   DWORD_PTR lpProcessAffinityMask = 0;
 725   DWORD_PTR lpSystemAffinityMask = 0;
 726   int proc_count = processor_count();
 727   if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
 728       GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
 729     // Nof active processors is number of bits in process affinity mask
 730     int bitcount = 0;
 731     while (lpProcessAffinityMask != 0) {
 732       lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
 733       bitcount++;
 734     }
 735     return bitcount;
 736   } else {
 737     return proc_count;
 738   }
 739 }
 740 
 741 void os::set_native_thread_name(const char *name) {
 742 
 743   // See: http://msdn.microsoft.com/en-us/library/xcb2z8hs.aspx
 744   //
 745   // Note that unfortunately this only works if the process
 746   // is already attached to a debugger; debugger must observe
 747   // the exception below to show the correct name.
 748 
 749   const DWORD MS_VC_EXCEPTION = 0x406D1388;
 750   struct {
 751     DWORD dwType;     // must be 0x1000
 752     LPCSTR szName;    // pointer to name (in user addr space)
 753     DWORD dwThreadID; // thread ID (-1=caller thread)
 754     DWORD dwFlags;    // reserved for future use, must be zero
 755   } info;
 756 
 757   info.dwType = 0x1000;
 758   info.szName = name;
 759   info.dwThreadID = -1;
 760   info.dwFlags = 0;
 761 
 762   __try {
 763     RaiseException (MS_VC_EXCEPTION, 0, sizeof(info)/sizeof(DWORD), (const ULONG_PTR*)&info );
 764   } __except(EXCEPTION_CONTINUE_EXECUTION) {}
 765 }
 766 
 767 bool os::distribute_processes(uint length, uint* distribution) {
 768   // Not yet implemented.
 769   return false;
 770 }
 771 
 772 bool os::bind_to_processor(uint processor_id) {
 773   // Not yet implemented.
 774   return false;
 775 }
 776 
 777 void os::win32::initialize_performance_counter() {
 778   LARGE_INTEGER count;
 779   if (QueryPerformanceFrequency(&count)) {
 780     win32::_has_performance_count = 1;
 781     performance_frequency = as_long(count);
 782     QueryPerformanceCounter(&count);
 783     initial_performance_count = as_long(count);
 784   } else {
 785     win32::_has_performance_count = 0;
 786     FILETIME wt;
 787     GetSystemTimeAsFileTime(&wt);
 788     first_filetime = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 789   }
 790 }
 791 
 792 
 793 double os::elapsedTime() {
 794   return (double) elapsed_counter() / (double) elapsed_frequency();
 795 }
 796 
 797 
 798 // Windows format:
 799 //   The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
 800 // Java format:
 801 //   Java standards require the number of milliseconds since 1/1/1970
 802 
 803 // Constant offset - calculated using offset()
 804 static jlong  _offset   = 116444736000000000;
 805 // Fake time counter for reproducible results when debugging
 806 static jlong  fake_time = 0;
 807 
 808 #ifdef ASSERT
 809 // Just to be safe, recalculate the offset in debug mode
 810 static jlong _calculated_offset = 0;
 811 static int   _has_calculated_offset = 0;
 812 
 813 jlong offset() {
 814   if (_has_calculated_offset) return _calculated_offset;
 815   SYSTEMTIME java_origin;
 816   java_origin.wYear          = 1970;
 817   java_origin.wMonth         = 1;
 818   java_origin.wDayOfWeek     = 0; // ignored
 819   java_origin.wDay           = 1;
 820   java_origin.wHour          = 0;
 821   java_origin.wMinute        = 0;
 822   java_origin.wSecond        = 0;
 823   java_origin.wMilliseconds  = 0;
 824   FILETIME jot;
 825   if (!SystemTimeToFileTime(&java_origin, &jot)) {
 826     fatal(err_msg("Error = %d\nWindows error", GetLastError()));
 827   }
 828   _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
 829   _has_calculated_offset = 1;
 830   assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
 831   return _calculated_offset;
 832 }
 833 #else
 834 jlong offset() {
 835   return _offset;
 836 }
 837 #endif
 838 
 839 jlong windows_to_java_time(FILETIME wt) {
 840   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 841   return (a - offset()) / 10000;
 842 }
 843 
 844 // Returns time ticks in (10th of micro seconds)
 845 jlong windows_to_time_ticks(FILETIME wt) {
 846   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 847   return (a - offset());
 848 }
 849 
 850 FILETIME java_to_windows_time(jlong l) {
 851   jlong a = (l * 10000) + offset();
 852   FILETIME result;
 853   result.dwHighDateTime = high(a);
 854   result.dwLowDateTime  = low(a);
 855   return result;
 856 }
 857 
 858 bool os::supports_vtime() { return true; }
 859 bool os::enable_vtime() { return false; }
 860 bool os::vtime_enabled() { return false; }
 861 
 862 double os::elapsedVTime() {
 863   FILETIME created;
 864   FILETIME exited;
 865   FILETIME kernel;
 866   FILETIME user;
 867   if (GetThreadTimes(GetCurrentThread(), &created, &exited, &kernel, &user) != 0) {
 868     // the resolution of windows_to_java_time() should be sufficient (ms)
 869     return (double) (windows_to_java_time(kernel) + windows_to_java_time(user)) / MILLIUNITS;
 870   } else {
 871     return elapsedTime();
 872   }
 873 }
 874 
 875 jlong os::javaTimeMillis() {
 876   if (UseFakeTimers) {
 877     return fake_time++;
 878   } else {
 879     FILETIME wt;
 880     GetSystemTimeAsFileTime(&wt);
 881     return windows_to_java_time(wt);
 882   }
 883 }
 884 
 885 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
 886   FILETIME wt;
 887   GetSystemTimeAsFileTime(&wt);
 888   jlong ticks = windows_to_time_ticks(wt); // 10th of micros
 889   jlong secs = jlong(ticks / 10000000); // 10000 * 1000
 890   seconds = secs;
 891   nanos = jlong(ticks - (secs*10000000)) * 100;
 892 }
 893 
 894 jlong os::javaTimeNanos() {
 895   if (!win32::_has_performance_count) {
 896     return javaTimeMillis() * NANOSECS_PER_MILLISEC; // the best we can do.
 897   } else {
 898     LARGE_INTEGER current_count;
 899     QueryPerformanceCounter(&current_count);
 900     double current = as_long(current_count);
 901     double freq = performance_frequency;
 902     jlong time = (jlong)((current/freq) * NANOSECS_PER_SEC);
 903     return time;
 904   }
 905 }
 906 
 907 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
 908   if (!win32::_has_performance_count) {
 909     // javaTimeMillis() doesn't have much percision,
 910     // but it is not going to wrap -- so all 64 bits
 911     info_ptr->max_value = ALL_64_BITS;
 912 
 913     // this is a wall clock timer, so may skip
 914     info_ptr->may_skip_backward = true;
 915     info_ptr->may_skip_forward = true;
 916   } else {
 917     jlong freq = performance_frequency;
 918     if (freq < NANOSECS_PER_SEC) {
 919       // the performance counter is 64 bits and we will
 920       // be multiplying it -- so no wrap in 64 bits
 921       info_ptr->max_value = ALL_64_BITS;
 922     } else if (freq > NANOSECS_PER_SEC) {
 923       // use the max value the counter can reach to
 924       // determine the max value which could be returned
 925       julong max_counter = (julong)ALL_64_BITS;
 926       info_ptr->max_value = (jlong)(max_counter / (freq / NANOSECS_PER_SEC));
 927     } else {
 928       // the performance counter is 64 bits and we will
 929       // be using it directly -- so no wrap in 64 bits
 930       info_ptr->max_value = ALL_64_BITS;
 931     }
 932 
 933     // using a counter, so no skipping
 934     info_ptr->may_skip_backward = false;
 935     info_ptr->may_skip_forward = false;
 936   }
 937   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
 938 }
 939 
 940 char* os::local_time_string(char *buf, size_t buflen) {
 941   SYSTEMTIME st;
 942   GetLocalTime(&st);
 943   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
 944                st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
 945   return buf;
 946 }
 947 
 948 bool os::getTimesSecs(double* process_real_time,
 949                       double* process_user_time,
 950                       double* process_system_time) {
 951   HANDLE h_process = GetCurrentProcess();
 952   FILETIME create_time, exit_time, kernel_time, user_time;
 953   BOOL result = GetProcessTimes(h_process,
 954                                 &create_time,
 955                                 &exit_time,
 956                                 &kernel_time,
 957                                 &user_time);
 958   if (result != 0) {
 959     FILETIME wt;
 960     GetSystemTimeAsFileTime(&wt);
 961     jlong rtc_millis = windows_to_java_time(wt);
 962     jlong user_millis = windows_to_java_time(user_time);
 963     jlong system_millis = windows_to_java_time(kernel_time);
 964     *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
 965     *process_user_time = ((double) user_millis) / ((double) MILLIUNITS);
 966     *process_system_time = ((double) system_millis) / ((double) MILLIUNITS);
 967     return true;
 968   } else {
 969     return false;
 970   }
 971 }
 972 
 973 void os::shutdown() {
 974   // allow PerfMemory to attempt cleanup of any persistent resources
 975   perfMemory_exit();
 976 
 977   // flush buffered output, finish log files
 978   ostream_abort();
 979 
 980   // Check for abort hook
 981   abort_hook_t abort_hook = Arguments::abort_hook();
 982   if (abort_hook != NULL) {
 983     abort_hook();
 984   }
 985 }
 986 
 987 
 988 static BOOL (WINAPI *_MiniDumpWriteDump)(HANDLE, DWORD, HANDLE, MINIDUMP_TYPE,
 989                                          PMINIDUMP_EXCEPTION_INFORMATION,
 990                                          PMINIDUMP_USER_STREAM_INFORMATION,
 991                                          PMINIDUMP_CALLBACK_INFORMATION);
 992 
 993 static HANDLE dumpFile = NULL;
 994 
 995 // Check if dump file can be created.
 996 void os::check_dump_limit(char* buffer, size_t buffsz) {
 997   bool status = true;
 998   if (!FLAG_IS_DEFAULT(CreateCoredumpOnCrash) && !CreateCoredumpOnCrash) {
 999     jio_snprintf(buffer, buffsz, "CreateCoredumpOnCrash is disabled from command line");
1000     status = false;
1001   }
1002 
1003 #ifndef ASSERT
1004   if (!os::win32::is_windows_server() && FLAG_IS_DEFAULT(CreateCoredumpOnCrash)) {
1005     jio_snprintf(buffer, buffsz, "Minidumps are not enabled by default on client versions of Windows");
1006     status = false;
1007   }
1008 #endif
1009 
1010   if (status) {
1011     const char* cwd = get_current_directory(NULL, 0);
1012     int pid = current_process_id();
1013     if (cwd != NULL) {
1014       jio_snprintf(buffer, buffsz, "%s\\hs_err_pid%u.mdmp", cwd, pid);
1015     } else {
1016       jio_snprintf(buffer, buffsz, ".\\hs_err_pid%u.mdmp", pid);
1017     }
1018 
1019     if (dumpFile == NULL &&
1020        (dumpFile = CreateFile(buffer, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL))
1021                  == INVALID_HANDLE_VALUE) {
1022       jio_snprintf(buffer, buffsz, "Failed to create minidump file (0x%x).", GetLastError());
1023       status = false;
1024     }
1025   }
1026   VMError::record_coredump_status(buffer, status);
1027 }
1028 
1029 void os::abort(bool dump_core, void* siginfo, void* context) {
1030   HINSTANCE dbghelp;
1031   EXCEPTION_POINTERS ep;
1032   MINIDUMP_EXCEPTION_INFORMATION mei;
1033   MINIDUMP_EXCEPTION_INFORMATION* pmei;
1034 
1035   HANDLE hProcess = GetCurrentProcess();
1036   DWORD processId = GetCurrentProcessId();
1037   MINIDUMP_TYPE dumpType;
1038 
1039   shutdown();
1040   if (!dump_core || dumpFile == NULL) {
1041     if (dumpFile != NULL) {
1042       CloseHandle(dumpFile);
1043     }
1044     win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1045   }
1046 
1047   dbghelp = os::win32::load_Windows_dll("DBGHELP.DLL", NULL, 0);
1048 
1049   if (dbghelp == NULL) {
1050     jio_fprintf(stderr, "Failed to load dbghelp.dll\n");
1051     CloseHandle(dumpFile);
1052     win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1053   }
1054 
1055   _MiniDumpWriteDump =
1056       CAST_TO_FN_PTR(BOOL(WINAPI *)(HANDLE, DWORD, HANDLE, MINIDUMP_TYPE,
1057                                     PMINIDUMP_EXCEPTION_INFORMATION,
1058                                     PMINIDUMP_USER_STREAM_INFORMATION,
1059                                     PMINIDUMP_CALLBACK_INFORMATION),
1060                                     GetProcAddress(dbghelp,
1061                                     "MiniDumpWriteDump"));
1062 
1063   if (_MiniDumpWriteDump == NULL) {
1064     jio_fprintf(stderr, "Failed to find MiniDumpWriteDump() in module dbghelp.dll.\n");
1065     CloseHandle(dumpFile);
1066     win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1067   }
1068 
1069   dumpType = (MINIDUMP_TYPE)(MiniDumpWithFullMemory | MiniDumpWithHandleData);
1070 
1071   // Older versions of dbghelp.h do not contain all the dumptypes we want, dbghelp.h with
1072   // API_VERSION_NUMBER 11 or higher contains the ones we want though
1073 #if API_VERSION_NUMBER >= 11
1074   dumpType = (MINIDUMP_TYPE)(dumpType | MiniDumpWithFullMemoryInfo | MiniDumpWithThreadInfo |
1075                              MiniDumpWithUnloadedModules);
1076 #endif
1077 
1078   if (siginfo != NULL && context != NULL) {
1079     ep.ContextRecord = (PCONTEXT) context;
1080     ep.ExceptionRecord = (PEXCEPTION_RECORD) siginfo;
1081 
1082     mei.ThreadId = GetCurrentThreadId();
1083     mei.ExceptionPointers = &ep;
1084     pmei = &mei;
1085   } else {
1086     pmei = NULL;
1087   }
1088 
1089   // Older versions of dbghelp.dll (the one shipped with Win2003 for example) may not support all
1090   // the dump types we really want. If first call fails, lets fall back to just use MiniDumpWithFullMemory then.
1091   if (_MiniDumpWriteDump(hProcess, processId, dumpFile, dumpType, pmei, NULL, NULL) == false &&
1092       _MiniDumpWriteDump(hProcess, processId, dumpFile, (MINIDUMP_TYPE)MiniDumpWithFullMemory, pmei, NULL, NULL) == false) {
1093     jio_fprintf(stderr, "Call to MiniDumpWriteDump() failed (Error 0x%x)\n", GetLastError());
1094   }
1095   CloseHandle(dumpFile);
1096   win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1097 }
1098 
1099 // Die immediately, no exit hook, no abort hook, no cleanup.
1100 void os::die() {
1101   win32::exit_process_or_thread(win32::EPT_PROCESS_DIE, -1);
1102 }
1103 
1104 // Directory routines copied from src/win32/native/java/io/dirent_md.c
1105 //  * dirent_md.c       1.15 00/02/02
1106 //
1107 // The declarations for DIR and struct dirent are in jvm_win32.h.
1108 
1109 // Caller must have already run dirname through JVM_NativePath, which removes
1110 // duplicate slashes and converts all instances of '/' into '\\'.
1111 
1112 DIR * os::opendir(const char *dirname) {
1113   assert(dirname != NULL, "just checking");   // hotspot change
1114   DIR *dirp = (DIR *)malloc(sizeof(DIR), mtInternal);
1115   DWORD fattr;                                // hotspot change
1116   char alt_dirname[4] = { 0, 0, 0, 0 };
1117 
1118   if (dirp == 0) {
1119     errno = ENOMEM;
1120     return 0;
1121   }
1122 
1123   // Win32 accepts "\" in its POSIX stat(), but refuses to treat it
1124   // as a directory in FindFirstFile().  We detect this case here and
1125   // prepend the current drive name.
1126   //
1127   if (dirname[1] == '\0' && dirname[0] == '\\') {
1128     alt_dirname[0] = _getdrive() + 'A' - 1;
1129     alt_dirname[1] = ':';
1130     alt_dirname[2] = '\\';
1131     alt_dirname[3] = '\0';
1132     dirname = alt_dirname;
1133   }
1134 
1135   dirp->path = (char *)malloc(strlen(dirname) + 5, mtInternal);
1136   if (dirp->path == 0) {
1137     free(dirp);
1138     errno = ENOMEM;
1139     return 0;
1140   }
1141   strcpy(dirp->path, dirname);
1142 
1143   fattr = GetFileAttributes(dirp->path);
1144   if (fattr == 0xffffffff) {
1145     free(dirp->path);
1146     free(dirp);
1147     errno = ENOENT;
1148     return 0;
1149   } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
1150     free(dirp->path);
1151     free(dirp);
1152     errno = ENOTDIR;
1153     return 0;
1154   }
1155 
1156   // Append "*.*", or possibly "\\*.*", to path
1157   if (dirp->path[1] == ':' &&
1158       (dirp->path[2] == '\0' ||
1159       (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
1160     // No '\\' needed for cases like "Z:" or "Z:\"
1161     strcat(dirp->path, "*.*");
1162   } else {
1163     strcat(dirp->path, "\\*.*");
1164   }
1165 
1166   dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
1167   if (dirp->handle == INVALID_HANDLE_VALUE) {
1168     if (GetLastError() != ERROR_FILE_NOT_FOUND) {
1169       free(dirp->path);
1170       free(dirp);
1171       errno = EACCES;
1172       return 0;
1173     }
1174   }
1175   return dirp;
1176 }
1177 
1178 // parameter dbuf unused on Windows
1179 struct dirent * os::readdir(DIR *dirp, dirent *dbuf) {
1180   assert(dirp != NULL, "just checking");      // hotspot change
1181   if (dirp->handle == INVALID_HANDLE_VALUE) {
1182     return 0;
1183   }
1184 
1185   strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
1186 
1187   if (!FindNextFile(dirp->handle, &dirp->find_data)) {
1188     if (GetLastError() == ERROR_INVALID_HANDLE) {
1189       errno = EBADF;
1190       return 0;
1191     }
1192     FindClose(dirp->handle);
1193     dirp->handle = INVALID_HANDLE_VALUE;
1194   }
1195 
1196   return &dirp->dirent;
1197 }
1198 
1199 int os::closedir(DIR *dirp) {
1200   assert(dirp != NULL, "just checking");      // hotspot change
1201   if (dirp->handle != INVALID_HANDLE_VALUE) {
1202     if (!FindClose(dirp->handle)) {
1203       errno = EBADF;
1204       return -1;
1205     }
1206     dirp->handle = INVALID_HANDLE_VALUE;
1207   }
1208   free(dirp->path);
1209   free(dirp);
1210   return 0;
1211 }
1212 
1213 // This must be hard coded because it's the system's temporary
1214 // directory not the java application's temp directory, ala java.io.tmpdir.
1215 const char* os::get_temp_directory() {
1216   static char path_buf[MAX_PATH];
1217   if (GetTempPath(MAX_PATH, path_buf) > 0) {
1218     return path_buf;
1219   } else {
1220     path_buf[0] = '\0';
1221     return path_buf;
1222   }
1223 }
1224 
1225 static bool file_exists(const char* filename) {
1226   if (filename == NULL || strlen(filename) == 0) {
1227     return false;
1228   }
1229   return GetFileAttributes(filename) != INVALID_FILE_ATTRIBUTES;
1230 }
1231 
1232 bool os::dll_build_name(char *buffer, size_t buflen,
1233                         const char* pname, const char* fname) {
1234   bool retval = false;
1235   const size_t pnamelen = pname ? strlen(pname) : 0;
1236   const char c = (pnamelen > 0) ? pname[pnamelen-1] : 0;
1237 
1238   // Return error on buffer overflow.
1239   if (pnamelen + strlen(fname) + 10 > buflen) {
1240     return retval;
1241   }
1242 
1243   if (pnamelen == 0) {
1244     jio_snprintf(buffer, buflen, "%s.dll", fname);
1245     retval = true;
1246   } else if (c == ':' || c == '\\') {
1247     jio_snprintf(buffer, buflen, "%s%s.dll", pname, fname);
1248     retval = true;
1249   } else if (strchr(pname, *os::path_separator()) != NULL) {
1250     int n;
1251     char** pelements = split_path(pname, &n);
1252     if (pelements == NULL) {
1253       return false;
1254     }
1255     for (int i = 0; i < n; i++) {
1256       char* path = pelements[i];
1257       // Really shouldn't be NULL, but check can't hurt
1258       size_t plen = (path == NULL) ? 0 : strlen(path);
1259       if (plen == 0) {
1260         continue; // skip the empty path values
1261       }
1262       const char lastchar = path[plen - 1];
1263       if (lastchar == ':' || lastchar == '\\') {
1264         jio_snprintf(buffer, buflen, "%s%s.dll", path, fname);
1265       } else {
1266         jio_snprintf(buffer, buflen, "%s\\%s.dll", path, fname);
1267       }
1268       if (file_exists(buffer)) {
1269         retval = true;
1270         break;
1271       }
1272     }
1273     // release the storage
1274     for (int i = 0; i < n; i++) {
1275       if (pelements[i] != NULL) {
1276         FREE_C_HEAP_ARRAY(char, pelements[i]);
1277       }
1278     }
1279     if (pelements != NULL) {
1280       FREE_C_HEAP_ARRAY(char*, pelements);
1281     }
1282   } else {
1283     jio_snprintf(buffer, buflen, "%s\\%s.dll", pname, fname);
1284     retval = true;
1285   }
1286   return retval;
1287 }
1288 
1289 // Needs to be in os specific directory because windows requires another
1290 // header file <direct.h>
1291 const char* os::get_current_directory(char *buf, size_t buflen) {
1292   int n = static_cast<int>(buflen);
1293   if (buflen > INT_MAX)  n = INT_MAX;
1294   return _getcwd(buf, n);
1295 }
1296 
1297 //-----------------------------------------------------------
1298 // Helper functions for fatal error handler
1299 #ifdef _WIN64
1300 // Helper routine which returns true if address in
1301 // within the NTDLL address space.
1302 //
1303 static bool _addr_in_ntdll(address addr) {
1304   HMODULE hmod;
1305   MODULEINFO minfo;
1306 
1307   hmod = GetModuleHandle("NTDLL.DLL");
1308   if (hmod == NULL) return false;
1309   if (!os::PSApiDll::GetModuleInformation(GetCurrentProcess(), hmod,
1310                                           &minfo, sizeof(MODULEINFO))) {
1311     return false;
1312   }
1313 
1314   if ((addr >= minfo.lpBaseOfDll) &&
1315       (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage))) {
1316     return true;
1317   } else {
1318     return false;
1319   }
1320 }
1321 #endif
1322 
1323 struct _modinfo {
1324   address addr;
1325   char*   full_path;   // point to a char buffer
1326   int     buflen;      // size of the buffer
1327   address base_addr;
1328 };
1329 
1330 static int _locate_module_by_addr(const char * mod_fname, address base_addr,
1331                                   address top_address, void * param) {
1332   struct _modinfo *pmod = (struct _modinfo *)param;
1333   if (!pmod) return -1;
1334 
1335   if (base_addr   <= pmod->addr &&
1336       top_address > pmod->addr) {
1337     // if a buffer is provided, copy path name to the buffer
1338     if (pmod->full_path) {
1339       jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
1340     }
1341     pmod->base_addr = base_addr;
1342     return 1;
1343   }
1344   return 0;
1345 }
1346 
1347 bool os::dll_address_to_library_name(address addr, char* buf,
1348                                      int buflen, int* offset) {
1349   // buf is not optional, but offset is optional
1350   assert(buf != NULL, "sanity check");
1351 
1352 // NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
1353 //       return the full path to the DLL file, sometimes it returns path
1354 //       to the corresponding PDB file (debug info); sometimes it only
1355 //       returns partial path, which makes life painful.
1356 
1357   struct _modinfo mi;
1358   mi.addr      = addr;
1359   mi.full_path = buf;
1360   mi.buflen    = buflen;
1361   if (get_loaded_modules_info(_locate_module_by_addr, (void *)&mi)) {
1362     // buf already contains path name
1363     if (offset) *offset = addr - mi.base_addr;
1364     return true;
1365   }
1366 
1367   buf[0] = '\0';
1368   if (offset) *offset = -1;
1369   return false;
1370 }
1371 
1372 bool os::dll_address_to_function_name(address addr, char *buf,
1373                                       int buflen, int *offset,
1374                                       bool demangle) {
1375   // buf is not optional, but offset is optional
1376   assert(buf != NULL, "sanity check");
1377 
1378   if (Decoder::decode(addr, buf, buflen, offset, demangle)) {
1379     return true;
1380   }
1381   if (offset != NULL)  *offset  = -1;
1382   buf[0] = '\0';
1383   return false;
1384 }
1385 
1386 // save the start and end address of jvm.dll into param[0] and param[1]
1387 static int _locate_jvm_dll(const char* mod_fname, address base_addr,
1388                            address top_address, void * param) {
1389   if (!param) return -1;
1390 
1391   if (base_addr   <= (address)_locate_jvm_dll &&
1392       top_address > (address)_locate_jvm_dll) {
1393     ((address*)param)[0] = base_addr;
1394     ((address*)param)[1] = top_address;
1395     return 1;
1396   }
1397   return 0;
1398 }
1399 
1400 address vm_lib_location[2];    // start and end address of jvm.dll
1401 
1402 // check if addr is inside jvm.dll
1403 bool os::address_is_in_vm(address addr) {
1404   if (!vm_lib_location[0] || !vm_lib_location[1]) {
1405     if (!get_loaded_modules_info(_locate_jvm_dll, (void *)vm_lib_location)) {
1406       assert(false, "Can't find jvm module.");
1407       return false;
1408     }
1409   }
1410 
1411   return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
1412 }
1413 
1414 // print module info; param is outputStream*
1415 static int _print_module(const char* fname, address base_address,
1416                          address top_address, void* param) {
1417   if (!param) return -1;
1418 
1419   outputStream* st = (outputStream*)param;
1420 
1421   st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base_address, top_address, fname);
1422   return 0;
1423 }
1424 
1425 // Loads .dll/.so and
1426 // in case of error it checks if .dll/.so was built for the
1427 // same architecture as Hotspot is running on
1428 void * os::dll_load(const char *name, char *ebuf, int ebuflen) {
1429   void * result = LoadLibrary(name);
1430   if (result != NULL) {
1431     return result;
1432   }
1433 
1434   DWORD errcode = GetLastError();
1435   if (errcode == ERROR_MOD_NOT_FOUND) {
1436     strncpy(ebuf, "Can't find dependent libraries", ebuflen - 1);
1437     ebuf[ebuflen - 1] = '\0';
1438     return NULL;
1439   }
1440 
1441   // Parsing dll below
1442   // If we can read dll-info and find that dll was built
1443   // for an architecture other than Hotspot is running in
1444   // - then print to buffer "DLL was built for a different architecture"
1445   // else call os::lasterror to obtain system error message
1446 
1447   // Read system error message into ebuf
1448   // It may or may not be overwritten below (in the for loop and just above)
1449   lasterror(ebuf, (size_t) ebuflen);
1450   ebuf[ebuflen - 1] = '\0';
1451   int fd = ::open(name, O_RDONLY | O_BINARY, 0);
1452   if (fd < 0) {
1453     return NULL;
1454   }
1455 
1456   uint32_t signature_offset;
1457   uint16_t lib_arch = 0;
1458   bool failed_to_get_lib_arch =
1459     ( // Go to position 3c in the dll
1460      (os::seek_to_file_offset(fd, IMAGE_FILE_PTR_TO_SIGNATURE) < 0)
1461      ||
1462      // Read location of signature
1463      (sizeof(signature_offset) !=
1464      (os::read(fd, (void*)&signature_offset, sizeof(signature_offset))))
1465      ||
1466      // Go to COFF File Header in dll
1467      // that is located after "signature" (4 bytes long)
1468      (os::seek_to_file_offset(fd,
1469      signature_offset + IMAGE_FILE_SIGNATURE_LENGTH) < 0)
1470      ||
1471      // Read field that contains code of architecture
1472      // that dll was built for
1473      (sizeof(lib_arch) != (os::read(fd, (void*)&lib_arch, sizeof(lib_arch))))
1474     );
1475 
1476   ::close(fd);
1477   if (failed_to_get_lib_arch) {
1478     // file i/o error - report os::lasterror(...) msg
1479     return NULL;
1480   }
1481 
1482   typedef struct {
1483     uint16_t arch_code;
1484     char* arch_name;
1485   } arch_t;
1486 
1487   static const arch_t arch_array[] = {
1488     {IMAGE_FILE_MACHINE_I386,      (char*)"IA 32"},
1489     {IMAGE_FILE_MACHINE_AMD64,     (char*)"AMD 64"},
1490     {IMAGE_FILE_MACHINE_IA64,      (char*)"IA 64"}
1491   };
1492 #if   (defined _M_IA64)
1493   static const uint16_t running_arch = IMAGE_FILE_MACHINE_IA64;
1494 #elif (defined _M_AMD64)
1495   static const uint16_t running_arch = IMAGE_FILE_MACHINE_AMD64;
1496 #elif (defined _M_IX86)
1497   static const uint16_t running_arch = IMAGE_FILE_MACHINE_I386;
1498 #else
1499   #error Method os::dll_load requires that one of following \
1500          is defined :_M_IA64,_M_AMD64 or _M_IX86
1501 #endif
1502 
1503 
1504   // Obtain a string for printf operation
1505   // lib_arch_str shall contain string what platform this .dll was built for
1506   // running_arch_str shall string contain what platform Hotspot was built for
1507   char *running_arch_str = NULL, *lib_arch_str = NULL;
1508   for (unsigned int i = 0; i < ARRAY_SIZE(arch_array); i++) {
1509     if (lib_arch == arch_array[i].arch_code) {
1510       lib_arch_str = arch_array[i].arch_name;
1511     }
1512     if (running_arch == arch_array[i].arch_code) {
1513       running_arch_str = arch_array[i].arch_name;
1514     }
1515   }
1516 
1517   assert(running_arch_str,
1518          "Didn't find running architecture code in arch_array");
1519 
1520   // If the architecture is right
1521   // but some other error took place - report os::lasterror(...) msg
1522   if (lib_arch == running_arch) {
1523     return NULL;
1524   }
1525 
1526   if (lib_arch_str != NULL) {
1527     ::_snprintf(ebuf, ebuflen - 1,
1528                 "Can't load %s-bit .dll on a %s-bit platform",
1529                 lib_arch_str, running_arch_str);
1530   } else {
1531     // don't know what architecture this dll was build for
1532     ::_snprintf(ebuf, ebuflen - 1,
1533                 "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
1534                 lib_arch, running_arch_str);
1535   }
1536 
1537   return NULL;
1538 }
1539 
1540 void os::print_dll_info(outputStream *st) {
1541   st->print_cr("Dynamic libraries:");
1542   get_loaded_modules_info(_print_module, (void *)st);
1543 }
1544 
1545 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1546   HANDLE   hProcess;
1547 
1548 # define MAX_NUM_MODULES 128
1549   HMODULE     modules[MAX_NUM_MODULES];
1550   static char filename[MAX_PATH];
1551   int         result = 0;
1552 
1553   if (!os::PSApiDll::PSApiAvailable()) {
1554     return 0;
1555   }
1556 
1557   int pid = os::current_process_id();
1558   hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
1559                          FALSE, pid);
1560   if (hProcess == NULL) return 0;
1561 
1562   DWORD size_needed;
1563   if (!os::PSApiDll::EnumProcessModules(hProcess, modules,
1564                                         sizeof(modules), &size_needed)) {
1565     CloseHandle(hProcess);
1566     return 0;
1567   }
1568 
1569   // number of modules that are currently loaded
1570   int num_modules = size_needed / sizeof(HMODULE);
1571 
1572   for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
1573     // Get Full pathname:
1574     if (!os::PSApiDll::GetModuleFileNameEx(hProcess, modules[i],
1575                                            filename, sizeof(filename))) {
1576       filename[0] = '\0';
1577     }
1578 
1579     MODULEINFO modinfo;
1580     if (!os::PSApiDll::GetModuleInformation(hProcess, modules[i],
1581                                             &modinfo, sizeof(modinfo))) {
1582       modinfo.lpBaseOfDll = NULL;
1583       modinfo.SizeOfImage = 0;
1584     }
1585 
1586     // Invoke callback function
1587     result = callback(filename, (address)modinfo.lpBaseOfDll,
1588                       (address)((u8)modinfo.lpBaseOfDll + (u8)modinfo.SizeOfImage), param);
1589     if (result) break;
1590   }
1591 
1592   CloseHandle(hProcess);
1593   return result;
1594 }
1595 
1596 void os::print_os_info_brief(outputStream* st) {
1597   os::print_os_info(st);
1598 }
1599 
1600 void os::print_os_info(outputStream* st) {
1601 #ifdef ASSERT
1602   char buffer[1024];
1603   DWORD size = sizeof(buffer);
1604   st->print(" HostName: ");
1605   if (GetComputerNameEx(ComputerNameDnsHostname, buffer, &size)) {
1606     st->print("%s", buffer);
1607   } else {
1608     st->print("N/A");
1609   }
1610 #endif
1611   st->print(" OS:");
1612   os::win32::print_windows_version(st);
1613 }
1614 
1615 void os::win32::print_windows_version(outputStream* st) {
1616   OSVERSIONINFOEX osvi;
1617   VS_FIXEDFILEINFO *file_info;
1618   TCHAR kernel32_path[MAX_PATH];
1619   UINT len, ret;
1620 
1621   // Use the GetVersionEx information to see if we're on a server or
1622   // workstation edition of Windows. Starting with Windows 8.1 we can't
1623   // trust the OS version information returned by this API.
1624   ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
1625   osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
1626   if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
1627     st->print_cr("Call to GetVersionEx failed");
1628     return;
1629   }
1630   bool is_workstation = (osvi.wProductType == VER_NT_WORKSTATION);
1631 
1632   // Get the full path to \Windows\System32\kernel32.dll and use that for
1633   // determining what version of Windows we're running on.
1634   len = MAX_PATH - (UINT)strlen("\\kernel32.dll") - 1;
1635   ret = GetSystemDirectory(kernel32_path, len);
1636   if (ret == 0 || ret > len) {
1637     st->print_cr("Call to GetSystemDirectory failed");
1638     return;
1639   }
1640   strncat(kernel32_path, "\\kernel32.dll", MAX_PATH - ret);
1641 
1642   DWORD version_size = GetFileVersionInfoSize(kernel32_path, NULL);
1643   if (version_size == 0) {
1644     st->print_cr("Call to GetFileVersionInfoSize failed");
1645     return;
1646   }
1647 
1648   LPTSTR version_info = (LPTSTR)os::malloc(version_size, mtInternal);
1649   if (version_info == NULL) {
1650     st->print_cr("Failed to allocate version_info");
1651     return;
1652   }
1653 
1654   if (!GetFileVersionInfo(kernel32_path, NULL, version_size, version_info)) {
1655     os::free(version_info);
1656     st->print_cr("Call to GetFileVersionInfo failed");
1657     return;
1658   }
1659 
1660   if (!VerQueryValue(version_info, TEXT("\\"), (LPVOID*)&file_info, &len)) {
1661     os::free(version_info);
1662     st->print_cr("Call to VerQueryValue failed");
1663     return;
1664   }
1665 
1666   int major_version = HIWORD(file_info->dwProductVersionMS);
1667   int minor_version = LOWORD(file_info->dwProductVersionMS);
1668   int build_number = HIWORD(file_info->dwProductVersionLS);
1669   int build_minor = LOWORD(file_info->dwProductVersionLS);
1670   int os_vers = major_version * 1000 + minor_version;
1671   os::free(version_info);
1672 
1673   st->print(" Windows ");
1674   switch (os_vers) {
1675 
1676   case 6000:
1677     if (is_workstation) {
1678       st->print("Vista");
1679     } else {
1680       st->print("Server 2008");
1681     }
1682     break;
1683 
1684   case 6001:
1685     if (is_workstation) {
1686       st->print("7");
1687     } else {
1688       st->print("Server 2008 R2");
1689     }
1690     break;
1691 
1692   case 6002:
1693     if (is_workstation) {
1694       st->print("8");
1695     } else {
1696       st->print("Server 2012");
1697     }
1698     break;
1699 
1700   case 6003:
1701     if (is_workstation) {
1702       st->print("8.1");
1703     } else {
1704       st->print("Server 2012 R2");
1705     }
1706     break;
1707 
1708   case 10000:
1709     if (is_workstation) {
1710       st->print("10");
1711     } else {
1712       // The server version name of Windows 10 is not known at this time
1713       st->print("%d.%d", major_version, minor_version);
1714     }
1715     break;
1716 
1717   default:
1718     // Unrecognized windows, print out its major and minor versions
1719     st->print("%d.%d", major_version, minor_version);
1720     break;
1721   }
1722 
1723   // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
1724   // find out whether we are running on 64 bit processor or not
1725   SYSTEM_INFO si;
1726   ZeroMemory(&si, sizeof(SYSTEM_INFO));
1727   os::Kernel32Dll::GetNativeSystemInfo(&si);
1728   if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64) {
1729     st->print(" , 64 bit");
1730   }
1731 
1732   st->print(" Build %d", build_number);
1733   st->print(" (%d.%d.%d.%d)", major_version, minor_version, build_number, build_minor);
1734   st->cr();
1735 }
1736 
1737 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
1738   // Nothing to do for now.
1739 }
1740 
1741 void os::print_memory_info(outputStream* st) {
1742   st->print("Memory:");
1743   st->print(" %dk page", os::vm_page_size()>>10);
1744 
1745   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
1746   // value if total memory is larger than 4GB
1747   MEMORYSTATUSEX ms;
1748   ms.dwLength = sizeof(ms);
1749   GlobalMemoryStatusEx(&ms);
1750 
1751   st->print(", physical %uk", os::physical_memory() >> 10);
1752   st->print("(%uk free)", os::available_memory() >> 10);
1753 
1754   st->print(", swap %uk", ms.ullTotalPageFile >> 10);
1755   st->print("(%uk free)", ms.ullAvailPageFile >> 10);
1756   st->cr();
1757 }
1758 
1759 void os::print_siginfo(outputStream *st, void *siginfo) {
1760   EXCEPTION_RECORD* er = (EXCEPTION_RECORD*)siginfo;
1761   st->print("siginfo:");
1762   st->print(" ExceptionCode=0x%x", er->ExceptionCode);
1763 
1764   if (er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
1765       er->NumberParameters >= 2) {
1766     switch (er->ExceptionInformation[0]) {
1767     case 0: st->print(", reading address"); break;
1768     case 1: st->print(", writing address"); break;
1769     default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
1770                        er->ExceptionInformation[0]);
1771     }
1772     st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
1773   } else if (er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR &&
1774              er->NumberParameters >= 2 && UseSharedSpaces) {
1775     FileMapInfo* mapinfo = FileMapInfo::current_info();
1776     if (mapinfo->is_in_shared_space((void*)er->ExceptionInformation[1])) {
1777       st->print("\n\nError accessing class data sharing archive."       \
1778                 " Mapped file inaccessible during execution, "          \
1779                 " possible disk/network problem.");
1780     }
1781   } else {
1782     int num = er->NumberParameters;
1783     if (num > 0) {
1784       st->print(", ExceptionInformation=");
1785       for (int i = 0; i < num; i++) {
1786         st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
1787       }
1788     }
1789   }
1790   st->cr();
1791 }
1792 
1793 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1794   // do nothing
1795 }
1796 
1797 static char saved_jvm_path[MAX_PATH] = {0};
1798 
1799 // Find the full path to the current module, jvm.dll
1800 void os::jvm_path(char *buf, jint buflen) {
1801   // Error checking.
1802   if (buflen < MAX_PATH) {
1803     assert(false, "must use a large-enough buffer");
1804     buf[0] = '\0';
1805     return;
1806   }
1807   // Lazy resolve the path to current module.
1808   if (saved_jvm_path[0] != 0) {
1809     strcpy(buf, saved_jvm_path);
1810     return;
1811   }
1812 
1813   buf[0] = '\0';
1814   if (Arguments::sun_java_launcher_is_altjvm()) {
1815     // Support for the java launcher's '-XXaltjvm=<path>' option. Check
1816     // for a JAVA_HOME environment variable and fix up the path so it
1817     // looks like jvm.dll is installed there (append a fake suffix
1818     // hotspot/jvm.dll).
1819     char* java_home_var = ::getenv("JAVA_HOME");
1820     if (java_home_var != NULL && java_home_var[0] != 0 &&
1821         strlen(java_home_var) < (size_t)buflen) {
1822       strncpy(buf, java_home_var, buflen);
1823 
1824       // determine if this is a legacy image or modules image
1825       // modules image doesn't have "jre" subdirectory
1826       size_t len = strlen(buf);
1827       char* jrebin_p = buf + len;
1828       jio_snprintf(jrebin_p, buflen-len, "\\jre\\bin\\");
1829       if (0 != _access(buf, 0)) {
1830         jio_snprintf(jrebin_p, buflen-len, "\\bin\\");
1831       }
1832       len = strlen(buf);
1833       jio_snprintf(buf + len, buflen-len, "hotspot\\jvm.dll");
1834     }
1835   }
1836 
1837   if (buf[0] == '\0') {
1838     GetModuleFileName(vm_lib_handle, buf, buflen);
1839   }
1840   strncpy(saved_jvm_path, buf, MAX_PATH);
1841   saved_jvm_path[MAX_PATH - 1] = '\0';
1842 }
1843 
1844 
1845 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1846 #ifndef _WIN64
1847   st->print("_");
1848 #endif
1849 }
1850 
1851 
1852 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1853 #ifndef _WIN64
1854   st->print("@%d", args_size  * sizeof(int));
1855 #endif
1856 }
1857 
1858 // This method is a copy of JDK's sysGetLastErrorString
1859 // from src/windows/hpi/src/system_md.c
1860 
1861 size_t os::lasterror(char* buf, size_t len) {
1862   DWORD errval;
1863 
1864   if ((errval = GetLastError()) != 0) {
1865     // DOS error
1866     size_t n = (size_t)FormatMessage(
1867                                      FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
1868                                      NULL,
1869                                      errval,
1870                                      0,
1871                                      buf,
1872                                      (DWORD)len,
1873                                      NULL);
1874     if (n > 3) {
1875       // Drop final '.', CR, LF
1876       if (buf[n - 1] == '\n') n--;
1877       if (buf[n - 1] == '\r') n--;
1878       if (buf[n - 1] == '.') n--;
1879       buf[n] = '\0';
1880     }
1881     return n;
1882   }
1883 
1884   if (errno != 0) {
1885     // C runtime error that has no corresponding DOS error code
1886     const char* s = strerror(errno);
1887     size_t n = strlen(s);
1888     if (n >= len) n = len - 1;
1889     strncpy(buf, s, n);
1890     buf[n] = '\0';
1891     return n;
1892   }
1893 
1894   return 0;
1895 }
1896 
1897 int os::get_last_error() {
1898   DWORD error = GetLastError();
1899   if (error == 0) {
1900     error = errno;
1901   }
1902   return (int)error;
1903 }
1904 
1905 WindowsSemaphore::WindowsSemaphore(uint value) {
1906   _semaphore = ::CreateSemaphore(NULL, value, LONG_MAX, NULL);
1907 
1908   guarantee(_semaphore != NULL, err_msg("CreateSemaphore failed with error code: %lu", GetLastError()));
1909 }
1910 
1911 WindowsSemaphore::~WindowsSemaphore() {
1912   ::CloseHandle(_semaphore);
1913 }
1914 
1915 void WindowsSemaphore::signal(uint count) {
1916   if (count > 0) {
1917     BOOL ret = ::ReleaseSemaphore(_semaphore, count, NULL);
1918 
1919     assert(ret != 0, err_msg("ReleaseSemaphore failed with error code: %lu", GetLastError()));
1920   }
1921 }
1922 
1923 void WindowsSemaphore::wait() {
1924   DWORD ret = ::WaitForSingleObject(_semaphore, INFINITE);
1925   assert(ret != WAIT_FAILED,   err_msg("WaitForSingleObject failed with error code: %lu", GetLastError()));
1926   assert(ret == WAIT_OBJECT_0, err_msg("WaitForSingleObject failed with return value: %lu", ret));
1927 }
1928 
1929 // sun.misc.Signal
1930 // NOTE that this is a workaround for an apparent kernel bug where if
1931 // a signal handler for SIGBREAK is installed then that signal handler
1932 // takes priority over the console control handler for CTRL_CLOSE_EVENT.
1933 // See bug 4416763.
1934 static void (*sigbreakHandler)(int) = NULL;
1935 
1936 static void UserHandler(int sig, void *siginfo, void *context) {
1937   os::signal_notify(sig);
1938   // We need to reinstate the signal handler each time...
1939   os::signal(sig, (void*)UserHandler);
1940 }
1941 
1942 void* os::user_handler() {
1943   return (void*) UserHandler;
1944 }
1945 
1946 void* os::signal(int signal_number, void* handler) {
1947   if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
1948     void (*oldHandler)(int) = sigbreakHandler;
1949     sigbreakHandler = (void (*)(int)) handler;
1950     return (void*) oldHandler;
1951   } else {
1952     return (void*)::signal(signal_number, (void (*)(int))handler);
1953   }
1954 }
1955 
1956 void os::signal_raise(int signal_number) {
1957   raise(signal_number);
1958 }
1959 
1960 // The Win32 C runtime library maps all console control events other than ^C
1961 // into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
1962 // logoff, and shutdown events.  We therefore install our own console handler
1963 // that raises SIGTERM for the latter cases.
1964 //
1965 static BOOL WINAPI consoleHandler(DWORD event) {
1966   switch (event) {
1967   case CTRL_C_EVENT:
1968     if (is_error_reported()) {
1969       // Ctrl-C is pressed during error reporting, likely because the error
1970       // handler fails to abort. Let VM die immediately.
1971       os::die();
1972     }
1973 
1974     os::signal_raise(SIGINT);
1975     return TRUE;
1976     break;
1977   case CTRL_BREAK_EVENT:
1978     if (sigbreakHandler != NULL) {
1979       (*sigbreakHandler)(SIGBREAK);
1980     }
1981     return TRUE;
1982     break;
1983   case CTRL_LOGOFF_EVENT: {
1984     // Don't terminate JVM if it is running in a non-interactive session,
1985     // such as a service process.
1986     USEROBJECTFLAGS flags;
1987     HANDLE handle = GetProcessWindowStation();
1988     if (handle != NULL &&
1989         GetUserObjectInformation(handle, UOI_FLAGS, &flags,
1990         sizeof(USEROBJECTFLAGS), NULL)) {
1991       // If it is a non-interactive session, let next handler to deal
1992       // with it.
1993       if ((flags.dwFlags & WSF_VISIBLE) == 0) {
1994         return FALSE;
1995       }
1996     }
1997   }
1998   case CTRL_CLOSE_EVENT:
1999   case CTRL_SHUTDOWN_EVENT:
2000     os::signal_raise(SIGTERM);
2001     return TRUE;
2002     break;
2003   default:
2004     break;
2005   }
2006   return FALSE;
2007 }
2008 
2009 // The following code is moved from os.cpp for making this
2010 // code platform specific, which it is by its very nature.
2011 
2012 // Return maximum OS signal used + 1 for internal use only
2013 // Used as exit signal for signal_thread
2014 int os::sigexitnum_pd() {
2015   return NSIG;
2016 }
2017 
2018 // a counter for each possible signal value, including signal_thread exit signal
2019 static volatile jint pending_signals[NSIG+1] = { 0 };
2020 static HANDLE sig_sem = NULL;
2021 
2022 void os::signal_init_pd() {
2023   // Initialize signal structures
2024   memset((void*)pending_signals, 0, sizeof(pending_signals));
2025 
2026   sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
2027 
2028   // Programs embedding the VM do not want it to attempt to receive
2029   // events like CTRL_LOGOFF_EVENT, which are used to implement the
2030   // shutdown hooks mechanism introduced in 1.3.  For example, when
2031   // the VM is run as part of a Windows NT service (i.e., a servlet
2032   // engine in a web server), the correct behavior is for any console
2033   // control handler to return FALSE, not TRUE, because the OS's
2034   // "final" handler for such events allows the process to continue if
2035   // it is a service (while terminating it if it is not a service).
2036   // To make this behavior uniform and the mechanism simpler, we
2037   // completely disable the VM's usage of these console events if -Xrs
2038   // (=ReduceSignalUsage) is specified.  This means, for example, that
2039   // the CTRL-BREAK thread dump mechanism is also disabled in this
2040   // case.  See bugs 4323062, 4345157, and related bugs.
2041 
2042   if (!ReduceSignalUsage) {
2043     // Add a CTRL-C handler
2044     SetConsoleCtrlHandler(consoleHandler, TRUE);
2045   }
2046 }
2047 
2048 void os::signal_notify(int signal_number) {
2049   BOOL ret;
2050   if (sig_sem != NULL) {
2051     Atomic::inc(&pending_signals[signal_number]);
2052     ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2053     assert(ret != 0, "ReleaseSemaphore() failed");
2054   }
2055 }
2056 
2057 static int check_pending_signals(bool wait_for_signal) {
2058   DWORD ret;
2059   while (true) {
2060     for (int i = 0; i < NSIG + 1; i++) {
2061       jint n = pending_signals[i];
2062       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2063         return i;
2064       }
2065     }
2066     if (!wait_for_signal) {
2067       return -1;
2068     }
2069 
2070     JavaThread *thread = JavaThread::current();
2071 
2072     ThreadBlockInVM tbivm(thread);
2073 
2074     bool threadIsSuspended;
2075     do {
2076       thread->set_suspend_equivalent();
2077       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2078       ret = ::WaitForSingleObject(sig_sem, INFINITE);
2079       assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
2080 
2081       // were we externally suspended while we were waiting?
2082       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2083       if (threadIsSuspended) {
2084         // The semaphore has been incremented, but while we were waiting
2085         // another thread suspended us. We don't want to continue running
2086         // while suspended because that would surprise the thread that
2087         // suspended us.
2088         ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2089         assert(ret != 0, "ReleaseSemaphore() failed");
2090 
2091         thread->java_suspend_self();
2092       }
2093     } while (threadIsSuspended);
2094   }
2095 }
2096 
2097 int os::signal_lookup() {
2098   return check_pending_signals(false);
2099 }
2100 
2101 int os::signal_wait() {
2102   return check_pending_signals(true);
2103 }
2104 
2105 // Implicit OS exception handling
2106 
2107 LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo,
2108                       address handler) {
2109   JavaThread* thread = JavaThread::current();
2110   // Save pc in thread
2111 #ifdef _M_IA64
2112   // Do not blow up if no thread info available.
2113   if (thread) {
2114     // Saving PRECISE pc (with slot information) in thread.
2115     uint64_t precise_pc = (uint64_t) exceptionInfo->ExceptionRecord->ExceptionAddress;
2116     // Convert precise PC into "Unix" format
2117     precise_pc = (precise_pc & 0xFFFFFFFFFFFFFFF0) | ((precise_pc & 0xF) >> 2);
2118     thread->set_saved_exception_pc((address)precise_pc);
2119   }
2120   // Set pc to handler
2121   exceptionInfo->ContextRecord->StIIP = (DWORD64)handler;
2122   // Clear out psr.ri (= Restart Instruction) in order to continue
2123   // at the beginning of the target bundle.
2124   exceptionInfo->ContextRecord->StIPSR &= 0xFFFFF9FFFFFFFFFF;
2125   assert(((DWORD64)handler & 0xF) == 0, "Target address must point to the beginning of a bundle!");
2126 #else
2127   #ifdef _M_AMD64
2128   // Do not blow up if no thread info available.
2129   if (thread) {
2130     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Rip);
2131   }
2132   // Set pc to handler
2133   exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
2134   #else
2135   // Do not blow up if no thread info available.
2136   if (thread) {
2137     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Eip);
2138   }
2139   // Set pc to handler
2140   exceptionInfo->ContextRecord->Eip = (DWORD)(DWORD_PTR)handler;
2141   #endif
2142 #endif
2143 
2144   // Continue the execution
2145   return EXCEPTION_CONTINUE_EXECUTION;
2146 }
2147 
2148 
2149 // Used for PostMortemDump
2150 extern "C" void safepoints();
2151 extern "C" void find(int x);
2152 extern "C" void events();
2153 
2154 // According to Windows API documentation, an illegal instruction sequence should generate
2155 // the 0xC000001C exception code. However, real world experience shows that occasionnaly
2156 // the execution of an illegal instruction can generate the exception code 0xC000001E. This
2157 // seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
2158 
2159 #define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
2160 
2161 // From "Execution Protection in the Windows Operating System" draft 0.35
2162 // Once a system header becomes available, the "real" define should be
2163 // included or copied here.
2164 #define EXCEPTION_INFO_EXEC_VIOLATION 0x08
2165 
2166 // Handle NAT Bit consumption on IA64.
2167 #ifdef _M_IA64
2168   #define EXCEPTION_REG_NAT_CONSUMPTION    STATUS_REG_NAT_CONSUMPTION
2169 #endif
2170 
2171 // Windows Vista/2008 heap corruption check
2172 #define EXCEPTION_HEAP_CORRUPTION        0xC0000374
2173 
2174 #define def_excpt(val) #val, val
2175 
2176 struct siglabel {
2177   char *name;
2178   int   number;
2179 };
2180 
2181 // All Visual C++ exceptions thrown from code generated by the Microsoft Visual
2182 // C++ compiler contain this error code. Because this is a compiler-generated
2183 // error, the code is not listed in the Win32 API header files.
2184 // The code is actually a cryptic mnemonic device, with the initial "E"
2185 // standing for "exception" and the final 3 bytes (0x6D7363) representing the
2186 // ASCII values of "msc".
2187 
2188 #define EXCEPTION_UNCAUGHT_CXX_EXCEPTION    0xE06D7363
2189 
2190 
2191 struct siglabel exceptlabels[] = {
2192     def_excpt(EXCEPTION_ACCESS_VIOLATION),
2193     def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
2194     def_excpt(EXCEPTION_BREAKPOINT),
2195     def_excpt(EXCEPTION_SINGLE_STEP),
2196     def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
2197     def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
2198     def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
2199     def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
2200     def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
2201     def_excpt(EXCEPTION_FLT_OVERFLOW),
2202     def_excpt(EXCEPTION_FLT_STACK_CHECK),
2203     def_excpt(EXCEPTION_FLT_UNDERFLOW),
2204     def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
2205     def_excpt(EXCEPTION_INT_OVERFLOW),
2206     def_excpt(EXCEPTION_PRIV_INSTRUCTION),
2207     def_excpt(EXCEPTION_IN_PAGE_ERROR),
2208     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
2209     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
2210     def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
2211     def_excpt(EXCEPTION_STACK_OVERFLOW),
2212     def_excpt(EXCEPTION_INVALID_DISPOSITION),
2213     def_excpt(EXCEPTION_GUARD_PAGE),
2214     def_excpt(EXCEPTION_INVALID_HANDLE),
2215     def_excpt(EXCEPTION_UNCAUGHT_CXX_EXCEPTION),
2216     def_excpt(EXCEPTION_HEAP_CORRUPTION),
2217 #ifdef _M_IA64
2218     def_excpt(EXCEPTION_REG_NAT_CONSUMPTION),
2219 #endif
2220     NULL, 0
2221 };
2222 
2223 const char* os::exception_name(int exception_code, char *buf, size_t size) {
2224   for (int i = 0; exceptlabels[i].name != NULL; i++) {
2225     if (exceptlabels[i].number == exception_code) {
2226       jio_snprintf(buf, size, "%s", exceptlabels[i].name);
2227       return buf;
2228     }
2229   }
2230 
2231   return NULL;
2232 }
2233 
2234 //-----------------------------------------------------------------------------
2235 LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2236   // handle exception caused by idiv; should only happen for -MinInt/-1
2237   // (division by zero is handled explicitly)
2238 #ifdef _M_IA64
2239   assert(0, "Fix Handle_IDiv_Exception");
2240 #else
2241   #ifdef  _M_AMD64
2242   PCONTEXT ctx = exceptionInfo->ContextRecord;
2243   address pc = (address)ctx->Rip;
2244   assert(pc[0] == 0xF7, "not an idiv opcode");
2245   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2246   assert(ctx->Rax == min_jint, "unexpected idiv exception");
2247   // set correct result values and continue after idiv instruction
2248   ctx->Rip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2249   ctx->Rax = (DWORD)min_jint;      // result
2250   ctx->Rdx = (DWORD)0;             // remainder
2251   // Continue the execution
2252   #else
2253   PCONTEXT ctx = exceptionInfo->ContextRecord;
2254   address pc = (address)ctx->Eip;
2255   assert(pc[0] == 0xF7, "not an idiv opcode");
2256   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2257   assert(ctx->Eax == min_jint, "unexpected idiv exception");
2258   // set correct result values and continue after idiv instruction
2259   ctx->Eip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2260   ctx->Eax = (DWORD)min_jint;      // result
2261   ctx->Edx = (DWORD)0;             // remainder
2262   // Continue the execution
2263   #endif
2264 #endif
2265   return EXCEPTION_CONTINUE_EXECUTION;
2266 }
2267 
2268 //-----------------------------------------------------------------------------
2269 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2270   PCONTEXT ctx = exceptionInfo->ContextRecord;
2271 #ifndef  _WIN64
2272   // handle exception caused by native method modifying control word
2273   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2274 
2275   switch (exception_code) {
2276   case EXCEPTION_FLT_DENORMAL_OPERAND:
2277   case EXCEPTION_FLT_DIVIDE_BY_ZERO:
2278   case EXCEPTION_FLT_INEXACT_RESULT:
2279   case EXCEPTION_FLT_INVALID_OPERATION:
2280   case EXCEPTION_FLT_OVERFLOW:
2281   case EXCEPTION_FLT_STACK_CHECK:
2282   case EXCEPTION_FLT_UNDERFLOW:
2283     jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
2284     if (fp_control_word != ctx->FloatSave.ControlWord) {
2285       // Restore FPCW and mask out FLT exceptions
2286       ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
2287       // Mask out pending FLT exceptions
2288       ctx->FloatSave.StatusWord &=  0xffffff00;
2289       return EXCEPTION_CONTINUE_EXECUTION;
2290     }
2291   }
2292 
2293   if (prev_uef_handler != NULL) {
2294     // We didn't handle this exception so pass it to the previous
2295     // UnhandledExceptionFilter.
2296     return (prev_uef_handler)(exceptionInfo);
2297   }
2298 #else // !_WIN64
2299   // On Windows, the mxcsr control bits are non-volatile across calls
2300   // See also CR 6192333
2301   //
2302   jint MxCsr = INITIAL_MXCSR;
2303   // we can't use StubRoutines::addr_mxcsr_std()
2304   // because in Win64 mxcsr is not saved there
2305   if (MxCsr != ctx->MxCsr) {
2306     ctx->MxCsr = MxCsr;
2307     return EXCEPTION_CONTINUE_EXECUTION;
2308   }
2309 #endif // !_WIN64
2310 
2311   return EXCEPTION_CONTINUE_SEARCH;
2312 }
2313 
2314 static inline void report_error(Thread* t, DWORD exception_code,
2315                                 address addr, void* siginfo, void* context) {
2316   VMError err(t, exception_code, addr, siginfo, context);
2317   err.report_and_die();
2318 
2319   // If UseOsErrorReporting, this will return here and save the error file
2320   // somewhere where we can find it in the minidump.
2321 }
2322 
2323 //-----------------------------------------------------------------------------
2324 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2325   if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
2326   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2327 #ifdef _M_IA64
2328   // On Itanium, we need the "precise pc", which has the slot number coded
2329   // into the least 4 bits: 0000=slot0, 0100=slot1, 1000=slot2 (Windows format).
2330   address pc = (address) exceptionInfo->ExceptionRecord->ExceptionAddress;
2331   // Convert the pc to "Unix format", which has the slot number coded
2332   // into the least 2 bits: 0000=slot0, 0001=slot1, 0010=slot2
2333   // This is needed for IA64 because "relocation" / "implicit null check" / "poll instruction"
2334   // information is saved in the Unix format.
2335   address pc_unix_format = (address) ((((uint64_t)pc) & 0xFFFFFFFFFFFFFFF0) | ((((uint64_t)pc) & 0xF) >> 2));
2336 #else
2337   #ifdef _M_AMD64
2338   address pc = (address) exceptionInfo->ContextRecord->Rip;
2339   #else
2340   address pc = (address) exceptionInfo->ContextRecord->Eip;
2341   #endif
2342 #endif
2343   Thread* t = ThreadLocalStorage::get_thread_slow();          // slow & steady
2344 
2345   // Handle SafeFetch32 and SafeFetchN exceptions.
2346   if (StubRoutines::is_safefetch_fault(pc)) {
2347     return Handle_Exception(exceptionInfo, StubRoutines::continuation_for_safefetch_fault(pc));
2348   }
2349 
2350 #ifndef _WIN64
2351   // Execution protection violation - win32 running on AMD64 only
2352   // Handled first to avoid misdiagnosis as a "normal" access violation;
2353   // This is safe to do because we have a new/unique ExceptionInformation
2354   // code for this condition.
2355   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2356     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2357     int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
2358     address addr = (address) exceptionRecord->ExceptionInformation[1];
2359 
2360     if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
2361       int page_size = os::vm_page_size();
2362 
2363       // Make sure the pc and the faulting address are sane.
2364       //
2365       // If an instruction spans a page boundary, and the page containing
2366       // the beginning of the instruction is executable but the following
2367       // page is not, the pc and the faulting address might be slightly
2368       // different - we still want to unguard the 2nd page in this case.
2369       //
2370       // 15 bytes seems to be a (very) safe value for max instruction size.
2371       bool pc_is_near_addr =
2372         (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
2373       bool instr_spans_page_boundary =
2374         (align_size_down((intptr_t) pc ^ (intptr_t) addr,
2375                          (intptr_t) page_size) > 0);
2376 
2377       if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
2378         static volatile address last_addr =
2379           (address) os::non_memory_address_word();
2380 
2381         // In conservative mode, don't unguard unless the address is in the VM
2382         if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
2383             (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
2384 
2385           // Set memory to RWX and retry
2386           address page_start =
2387             (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
2388           bool res = os::protect_memory((char*) page_start, page_size,
2389                                         os::MEM_PROT_RWX);
2390 
2391           if (PrintMiscellaneous && Verbose) {
2392             char buf[256];
2393             jio_snprintf(buf, sizeof(buf), "Execution protection violation "
2394                          "at " INTPTR_FORMAT
2395                          ", unguarding " INTPTR_FORMAT ": %s", addr,
2396                          page_start, (res ? "success" : strerror(errno)));
2397             tty->print_raw_cr(buf);
2398           }
2399 
2400           // Set last_addr so if we fault again at the same address, we don't
2401           // end up in an endless loop.
2402           //
2403           // There are two potential complications here.  Two threads trapping
2404           // at the same address at the same time could cause one of the
2405           // threads to think it already unguarded, and abort the VM.  Likely
2406           // very rare.
2407           //
2408           // The other race involves two threads alternately trapping at
2409           // different addresses and failing to unguard the page, resulting in
2410           // an endless loop.  This condition is probably even more unlikely
2411           // than the first.
2412           //
2413           // Although both cases could be avoided by using locks or thread
2414           // local last_addr, these solutions are unnecessary complication:
2415           // this handler is a best-effort safety net, not a complete solution.
2416           // It is disabled by default and should only be used as a workaround
2417           // in case we missed any no-execute-unsafe VM code.
2418 
2419           last_addr = addr;
2420 
2421           return EXCEPTION_CONTINUE_EXECUTION;
2422         }
2423       }
2424 
2425       // Last unguard failed or not unguarding
2426       tty->print_raw_cr("Execution protection violation");
2427       report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
2428                    exceptionInfo->ContextRecord);
2429       return EXCEPTION_CONTINUE_SEARCH;
2430     }
2431   }
2432 #endif // _WIN64
2433 
2434   // Check to see if we caught the safepoint code in the
2435   // process of write protecting the memory serialization page.
2436   // It write enables the page immediately after protecting it
2437   // so just return.
2438   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2439     JavaThread* thread = (JavaThread*) t;
2440     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2441     address addr = (address) exceptionRecord->ExceptionInformation[1];
2442     if (os::is_memory_serialize_page(thread, addr)) {
2443       // Block current thread until the memory serialize page permission restored.
2444       os::block_on_serialize_page_trap();
2445       return EXCEPTION_CONTINUE_EXECUTION;
2446     }
2447   }
2448 
2449   if ((exception_code == EXCEPTION_ACCESS_VIOLATION) &&
2450       VM_Version::is_cpuinfo_segv_addr(pc)) {
2451     // Verify that OS save/restore AVX registers.
2452     return Handle_Exception(exceptionInfo, VM_Version::cpuinfo_cont_addr());
2453   }
2454 
2455   if (t != NULL && t->is_Java_thread()) {
2456     JavaThread* thread = (JavaThread*) t;
2457     bool in_java = thread->thread_state() == _thread_in_Java;
2458 
2459     // Handle potential stack overflows up front.
2460     if (exception_code == EXCEPTION_STACK_OVERFLOW) {
2461       if (os::uses_stack_guard_pages()) {
2462 #ifdef _M_IA64
2463         // Use guard page for register stack.
2464         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2465         address addr = (address) exceptionRecord->ExceptionInformation[1];
2466         // Check for a register stack overflow on Itanium
2467         if (thread->addr_inside_register_stack_red_zone(addr)) {
2468           // Fatal red zone violation happens if the Java program
2469           // catches a StackOverflow error and does so much processing
2470           // that it runs beyond the unprotected yellow guard zone. As
2471           // a result, we are out of here.
2472           fatal("ERROR: Unrecoverable stack overflow happened. JVM will exit.");
2473         } else if(thread->addr_inside_register_stack(addr)) {
2474           // Disable the yellow zone which sets the state that
2475           // we've got a stack overflow problem.
2476           if (thread->stack_yellow_zone_enabled()) {
2477             thread->disable_stack_yellow_zone();
2478           }
2479           // Give us some room to process the exception.
2480           thread->disable_register_stack_guard();
2481           // Tracing with +Verbose.
2482           if (Verbose) {
2483             tty->print_cr("SOF Compiled Register Stack overflow at " INTPTR_FORMAT " (SIGSEGV)", pc);
2484             tty->print_cr("Register Stack access at " INTPTR_FORMAT, addr);
2485             tty->print_cr("Register Stack base " INTPTR_FORMAT, thread->register_stack_base());
2486             tty->print_cr("Register Stack [" INTPTR_FORMAT "," INTPTR_FORMAT "]",
2487                           thread->register_stack_base(),
2488                           thread->register_stack_base() + thread->stack_size());
2489           }
2490 
2491           // Reguard the permanent register stack red zone just to be sure.
2492           // We saw Windows silently disabling this without telling us.
2493           thread->enable_register_stack_red_zone();
2494 
2495           return Handle_Exception(exceptionInfo,
2496                                   SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2497         }
2498 #endif
2499         if (thread->stack_yellow_zone_enabled()) {
2500           // Yellow zone violation.  The o/s has unprotected the first yellow
2501           // zone page for us.  Note:  must call disable_stack_yellow_zone to
2502           // update the enabled status, even if the zone contains only one page.
2503           thread->disable_stack_yellow_zone();
2504           // If not in java code, return and hope for the best.
2505           return in_java
2506               ? Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
2507               :  EXCEPTION_CONTINUE_EXECUTION;
2508         } else {
2509           // Fatal red zone violation.
2510           thread->disable_stack_red_zone();
2511           tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
2512           report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2513                        exceptionInfo->ContextRecord);
2514           return EXCEPTION_CONTINUE_SEARCH;
2515         }
2516       } else if (in_java) {
2517         // JVM-managed guard pages cannot be used on win95/98.  The o/s provides
2518         // a one-time-only guard page, which it has released to us.  The next
2519         // stack overflow on this thread will result in an ACCESS_VIOLATION.
2520         return Handle_Exception(exceptionInfo,
2521                                 SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2522       } else {
2523         // Can only return and hope for the best.  Further stack growth will
2524         // result in an ACCESS_VIOLATION.
2525         return EXCEPTION_CONTINUE_EXECUTION;
2526       }
2527     } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2528       // Either stack overflow or null pointer exception.
2529       if (in_java) {
2530         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2531         address addr = (address) exceptionRecord->ExceptionInformation[1];
2532         address stack_end = thread->stack_base() - thread->stack_size();
2533         if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
2534           // Stack overflow.
2535           assert(!os::uses_stack_guard_pages(),
2536                  "should be caught by red zone code above.");
2537           return Handle_Exception(exceptionInfo,
2538                                   SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2539         }
2540         // Check for safepoint polling and implicit null
2541         // We only expect null pointers in the stubs (vtable)
2542         // the rest are checked explicitly now.
2543         CodeBlob* cb = CodeCache::find_blob(pc);
2544         if (cb != NULL) {
2545           if (os::is_poll_address(addr)) {
2546             address stub = SharedRuntime::get_poll_stub(pc);
2547             return Handle_Exception(exceptionInfo, stub);
2548           }
2549         }
2550         {
2551 #ifdef _WIN64
2552           // If it's a legal stack address map the entire region in
2553           //
2554           PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2555           address addr = (address) exceptionRecord->ExceptionInformation[1];
2556           if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base()) {
2557             addr = (address)((uintptr_t)addr &
2558                              (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
2559             os::commit_memory((char *)addr, thread->stack_base() - addr,
2560                               !ExecMem);
2561             return EXCEPTION_CONTINUE_EXECUTION;
2562           } else
2563 #endif
2564           {
2565             // Null pointer exception.
2566 #ifdef _M_IA64
2567             // Process implicit null checks in compiled code. Note: Implicit null checks
2568             // can happen even if "ImplicitNullChecks" is disabled, e.g. in vtable stubs.
2569             if (CodeCache::contains((void*) pc_unix_format) && !MacroAssembler::needs_explicit_null_check((intptr_t) addr)) {
2570               CodeBlob *cb = CodeCache::find_blob_unsafe(pc_unix_format);
2571               // Handle implicit null check in UEP method entry
2572               if (cb && (cb->is_frame_complete_at(pc) ||
2573                          (cb->is_nmethod() && ((nmethod *)cb)->inlinecache_check_contains(pc)))) {
2574                 if (Verbose) {
2575                   intptr_t *bundle_start = (intptr_t*) ((intptr_t) pc_unix_format & 0xFFFFFFFFFFFFFFF0);
2576                   tty->print_cr("trap: null_check at " INTPTR_FORMAT " (SIGSEGV)", pc_unix_format);
2577                   tty->print_cr("      to addr " INTPTR_FORMAT, addr);
2578                   tty->print_cr("      bundle is " INTPTR_FORMAT " (high), " INTPTR_FORMAT " (low)",
2579                                 *(bundle_start + 1), *bundle_start);
2580                 }
2581                 return Handle_Exception(exceptionInfo,
2582                                         SharedRuntime::continuation_for_implicit_exception(thread, pc_unix_format, SharedRuntime::IMPLICIT_NULL));
2583               }
2584             }
2585 
2586             // Implicit null checks were processed above.  Hence, we should not reach
2587             // here in the usual case => die!
2588             if (Verbose) tty->print_raw_cr("Access violation, possible null pointer exception");
2589             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2590                          exceptionInfo->ContextRecord);
2591             return EXCEPTION_CONTINUE_SEARCH;
2592 
2593 #else // !IA64
2594 
2595             // Windows 98 reports faulting addresses incorrectly
2596             if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr) ||
2597                 !os::win32::is_nt()) {
2598               address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
2599               if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
2600             }
2601             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2602                          exceptionInfo->ContextRecord);
2603             return EXCEPTION_CONTINUE_SEARCH;
2604 #endif
2605           }
2606         }
2607       }
2608 
2609 #ifdef _WIN64
2610       // Special care for fast JNI field accessors.
2611       // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
2612       // in and the heap gets shrunk before the field access.
2613       if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2614         address addr = JNI_FastGetField::find_slowcase_pc(pc);
2615         if (addr != (address)-1) {
2616           return Handle_Exception(exceptionInfo, addr);
2617         }
2618       }
2619 #endif
2620 
2621       // Stack overflow or null pointer exception in native code.
2622       report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2623                    exceptionInfo->ContextRecord);
2624       return EXCEPTION_CONTINUE_SEARCH;
2625     } // /EXCEPTION_ACCESS_VIOLATION
2626     // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2627 #if defined _M_IA64
2628     else if ((exception_code == EXCEPTION_ILLEGAL_INSTRUCTION ||
2629               exception_code == EXCEPTION_ILLEGAL_INSTRUCTION_2)) {
2630       M37 handle_wrong_method_break(0, NativeJump::HANDLE_WRONG_METHOD, PR0);
2631 
2632       // Compiled method patched to be non entrant? Following conditions must apply:
2633       // 1. must be first instruction in bundle
2634       // 2. must be a break instruction with appropriate code
2635       if ((((uint64_t) pc & 0x0F) == 0) &&
2636           (((IPF_Bundle*) pc)->get_slot0() == handle_wrong_method_break.bits())) {
2637         return Handle_Exception(exceptionInfo,
2638                                 (address)SharedRuntime::get_handle_wrong_method_stub());
2639       }
2640     } // /EXCEPTION_ILLEGAL_INSTRUCTION
2641 #endif
2642 
2643 
2644     if (in_java) {
2645       switch (exception_code) {
2646       case EXCEPTION_INT_DIVIDE_BY_ZERO:
2647         return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
2648 
2649       case EXCEPTION_INT_OVERFLOW:
2650         return Handle_IDiv_Exception(exceptionInfo);
2651 
2652       } // switch
2653     }
2654     if (((thread->thread_state() == _thread_in_Java) ||
2655          (thread->thread_state() == _thread_in_native)) &&
2656          exception_code != EXCEPTION_UNCAUGHT_CXX_EXCEPTION) {
2657       LONG result=Handle_FLT_Exception(exceptionInfo);
2658       if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
2659     }
2660   }
2661 
2662   if (exception_code != EXCEPTION_BREAKPOINT) {
2663     report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2664                  exceptionInfo->ContextRecord);
2665   }
2666   return EXCEPTION_CONTINUE_SEARCH;
2667 }
2668 
2669 #ifndef _WIN64
2670 // Special care for fast JNI accessors.
2671 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
2672 // the heap gets shrunk before the field access.
2673 // Need to install our own structured exception handler since native code may
2674 // install its own.
2675 LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2676   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2677   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2678     address pc = (address) exceptionInfo->ContextRecord->Eip;
2679     address addr = JNI_FastGetField::find_slowcase_pc(pc);
2680     if (addr != (address)-1) {
2681       return Handle_Exception(exceptionInfo, addr);
2682     }
2683   }
2684   return EXCEPTION_CONTINUE_SEARCH;
2685 }
2686 
2687 #define DEFINE_FAST_GETFIELD(Return, Fieldname, Result)                     \
2688   Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env,           \
2689                                                      jobject obj,           \
2690                                                      jfieldID fieldID) {    \
2691     __try {                                                                 \
2692       return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env,       \
2693                                                                  obj,       \
2694                                                                  fieldID);  \
2695     } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)        \
2696                                               _exception_info())) {         \
2697     }                                                                       \
2698     return 0;                                                               \
2699   }
2700 
2701 DEFINE_FAST_GETFIELD(jboolean, bool,   Boolean)
2702 DEFINE_FAST_GETFIELD(jbyte,    byte,   Byte)
2703 DEFINE_FAST_GETFIELD(jchar,    char,   Char)
2704 DEFINE_FAST_GETFIELD(jshort,   short,  Short)
2705 DEFINE_FAST_GETFIELD(jint,     int,    Int)
2706 DEFINE_FAST_GETFIELD(jlong,    long,   Long)
2707 DEFINE_FAST_GETFIELD(jfloat,   float,  Float)
2708 DEFINE_FAST_GETFIELD(jdouble,  double, Double)
2709 
2710 address os::win32::fast_jni_accessor_wrapper(BasicType type) {
2711   switch (type) {
2712   case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
2713   case T_BYTE:    return (address)jni_fast_GetByteField_wrapper;
2714   case T_CHAR:    return (address)jni_fast_GetCharField_wrapper;
2715   case T_SHORT:   return (address)jni_fast_GetShortField_wrapper;
2716   case T_INT:     return (address)jni_fast_GetIntField_wrapper;
2717   case T_LONG:    return (address)jni_fast_GetLongField_wrapper;
2718   case T_FLOAT:   return (address)jni_fast_GetFloatField_wrapper;
2719   case T_DOUBLE:  return (address)jni_fast_GetDoubleField_wrapper;
2720   default:        ShouldNotReachHere();
2721   }
2722   return (address)-1;
2723 }
2724 #endif
2725 
2726 // Virtual Memory
2727 
2728 int os::vm_page_size() { return os::win32::vm_page_size(); }
2729 int os::vm_allocation_granularity() {
2730   return os::win32::vm_allocation_granularity();
2731 }
2732 
2733 // Windows large page support is available on Windows 2003. In order to use
2734 // large page memory, the administrator must first assign additional privilege
2735 // to the user:
2736 //   + select Control Panel -> Administrative Tools -> Local Security Policy
2737 //   + select Local Policies -> User Rights Assignment
2738 //   + double click "Lock pages in memory", add users and/or groups
2739 //   + reboot
2740 // Note the above steps are needed for administrator as well, as administrators
2741 // by default do not have the privilege to lock pages in memory.
2742 //
2743 // Note about Windows 2003: although the API supports committing large page
2744 // memory on a page-by-page basis and VirtualAlloc() returns success under this
2745 // scenario, I found through experiment it only uses large page if the entire
2746 // memory region is reserved and committed in a single VirtualAlloc() call.
2747 // This makes Windows large page support more or less like Solaris ISM, in
2748 // that the entire heap must be committed upfront. This probably will change
2749 // in the future, if so the code below needs to be revisited.
2750 
2751 #ifndef MEM_LARGE_PAGES
2752   #define MEM_LARGE_PAGES 0x20000000
2753 #endif
2754 
2755 static HANDLE    _hProcess;
2756 static HANDLE    _hToken;
2757 
2758 // Container for NUMA node list info
2759 class NUMANodeListHolder {
2760  private:
2761   int *_numa_used_node_list;  // allocated below
2762   int _numa_used_node_count;
2763 
2764   void free_node_list() {
2765     if (_numa_used_node_list != NULL) {
2766       FREE_C_HEAP_ARRAY(int, _numa_used_node_list);
2767     }
2768   }
2769 
2770  public:
2771   NUMANodeListHolder() {
2772     _numa_used_node_count = 0;
2773     _numa_used_node_list = NULL;
2774     // do rest of initialization in build routine (after function pointers are set up)
2775   }
2776 
2777   ~NUMANodeListHolder() {
2778     free_node_list();
2779   }
2780 
2781   bool build() {
2782     DWORD_PTR proc_aff_mask;
2783     DWORD_PTR sys_aff_mask;
2784     if (!GetProcessAffinityMask(GetCurrentProcess(), &proc_aff_mask, &sys_aff_mask)) return false;
2785     ULONG highest_node_number;
2786     if (!os::Kernel32Dll::GetNumaHighestNodeNumber(&highest_node_number)) return false;
2787     free_node_list();
2788     _numa_used_node_list = NEW_C_HEAP_ARRAY(int, highest_node_number + 1, mtInternal);
2789     for (unsigned int i = 0; i <= highest_node_number; i++) {
2790       ULONGLONG proc_mask_numa_node;
2791       if (!os::Kernel32Dll::GetNumaNodeProcessorMask(i, &proc_mask_numa_node)) return false;
2792       if ((proc_aff_mask & proc_mask_numa_node)!=0) {
2793         _numa_used_node_list[_numa_used_node_count++] = i;
2794       }
2795     }
2796     return (_numa_used_node_count > 1);
2797   }
2798 
2799   int get_count() { return _numa_used_node_count; }
2800   int get_node_list_entry(int n) {
2801     // for indexes out of range, returns -1
2802     return (n < _numa_used_node_count ? _numa_used_node_list[n] : -1);
2803   }
2804 
2805 } numa_node_list_holder;
2806 
2807 
2808 
2809 static size_t _large_page_size = 0;
2810 
2811 static bool resolve_functions_for_large_page_init() {
2812   return os::Kernel32Dll::GetLargePageMinimumAvailable() &&
2813     os::Advapi32Dll::AdvapiAvailable();
2814 }
2815 
2816 static bool request_lock_memory_privilege() {
2817   _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
2818                           os::current_process_id());
2819 
2820   LUID luid;
2821   if (_hProcess != NULL &&
2822       os::Advapi32Dll::OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
2823       os::Advapi32Dll::LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
2824 
2825     TOKEN_PRIVILEGES tp;
2826     tp.PrivilegeCount = 1;
2827     tp.Privileges[0].Luid = luid;
2828     tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
2829 
2830     // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
2831     // privilege. Check GetLastError() too. See MSDN document.
2832     if (os::Advapi32Dll::AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
2833         (GetLastError() == ERROR_SUCCESS)) {
2834       return true;
2835     }
2836   }
2837 
2838   return false;
2839 }
2840 
2841 static void cleanup_after_large_page_init() {
2842   if (_hProcess) CloseHandle(_hProcess);
2843   _hProcess = NULL;
2844   if (_hToken) CloseHandle(_hToken);
2845   _hToken = NULL;
2846 }
2847 
2848 static bool numa_interleaving_init() {
2849   bool success = false;
2850   bool use_numa_interleaving_specified = !FLAG_IS_DEFAULT(UseNUMAInterleaving);
2851 
2852   // print a warning if UseNUMAInterleaving flag is specified on command line
2853   bool warn_on_failure = use_numa_interleaving_specified;
2854 #define WARN(msg) if (warn_on_failure) { warning(msg); }
2855 
2856   // NUMAInterleaveGranularity cannot be less than vm_allocation_granularity (or _large_page_size if using large pages)
2857   size_t min_interleave_granularity = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2858   NUMAInterleaveGranularity = align_size_up(NUMAInterleaveGranularity, min_interleave_granularity);
2859 
2860   if (os::Kernel32Dll::NumaCallsAvailable()) {
2861     if (numa_node_list_holder.build()) {
2862       if (PrintMiscellaneous && Verbose) {
2863         tty->print("NUMA UsedNodeCount=%d, namely ", numa_node_list_holder.get_count());
2864         for (int i = 0; i < numa_node_list_holder.get_count(); i++) {
2865           tty->print("%d ", numa_node_list_holder.get_node_list_entry(i));
2866         }
2867         tty->print("\n");
2868       }
2869       success = true;
2870     } else {
2871       WARN("Process does not cover multiple NUMA nodes.");
2872     }
2873   } else {
2874     WARN("NUMA Interleaving is not supported by the operating system.");
2875   }
2876   if (!success) {
2877     if (use_numa_interleaving_specified) WARN("...Ignoring UseNUMAInterleaving flag.");
2878   }
2879   return success;
2880 #undef WARN
2881 }
2882 
2883 // this routine is used whenever we need to reserve a contiguous VA range
2884 // but we need to make separate VirtualAlloc calls for each piece of the range
2885 // Reasons for doing this:
2886 //  * UseLargePagesIndividualAllocation was set (normally only needed on WS2003 but possible to be set otherwise)
2887 //  * UseNUMAInterleaving requires a separate node for each piece
2888 static char* allocate_pages_individually(size_t bytes, char* addr, DWORD flags,
2889                                          DWORD prot,
2890                                          bool should_inject_error = false) {
2891   char * p_buf;
2892   // note: at setup time we guaranteed that NUMAInterleaveGranularity was aligned up to a page size
2893   size_t page_size = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2894   size_t chunk_size = UseNUMAInterleaving ? NUMAInterleaveGranularity : page_size;
2895 
2896   // first reserve enough address space in advance since we want to be
2897   // able to break a single contiguous virtual address range into multiple
2898   // large page commits but WS2003 does not allow reserving large page space
2899   // so we just use 4K pages for reserve, this gives us a legal contiguous
2900   // address space. then we will deallocate that reservation, and re alloc
2901   // using large pages
2902   const size_t size_of_reserve = bytes + chunk_size;
2903   if (bytes > size_of_reserve) {
2904     // Overflowed.
2905     return NULL;
2906   }
2907   p_buf = (char *) VirtualAlloc(addr,
2908                                 size_of_reserve,  // size of Reserve
2909                                 MEM_RESERVE,
2910                                 PAGE_READWRITE);
2911   // If reservation failed, return NULL
2912   if (p_buf == NULL) return NULL;
2913   MemTracker::record_virtual_memory_reserve((address)p_buf, size_of_reserve, CALLER_PC);
2914   os::release_memory(p_buf, bytes + chunk_size);
2915 
2916   // we still need to round up to a page boundary (in case we are using large pages)
2917   // but not to a chunk boundary (in case InterleavingGranularity doesn't align with page size)
2918   // instead we handle this in the bytes_to_rq computation below
2919   p_buf = (char *) align_size_up((size_t)p_buf, page_size);
2920 
2921   // now go through and allocate one chunk at a time until all bytes are
2922   // allocated
2923   size_t  bytes_remaining = bytes;
2924   // An overflow of align_size_up() would have been caught above
2925   // in the calculation of size_of_reserve.
2926   char * next_alloc_addr = p_buf;
2927   HANDLE hProc = GetCurrentProcess();
2928 
2929 #ifdef ASSERT
2930   // Variable for the failure injection
2931   long ran_num = os::random();
2932   size_t fail_after = ran_num % bytes;
2933 #endif
2934 
2935   int count=0;
2936   while (bytes_remaining) {
2937     // select bytes_to_rq to get to the next chunk_size boundary
2938 
2939     size_t bytes_to_rq = MIN2(bytes_remaining, chunk_size - ((size_t)next_alloc_addr % chunk_size));
2940     // Note allocate and commit
2941     char * p_new;
2942 
2943 #ifdef ASSERT
2944     bool inject_error_now = should_inject_error && (bytes_remaining <= fail_after);
2945 #else
2946     const bool inject_error_now = false;
2947 #endif
2948 
2949     if (inject_error_now) {
2950       p_new = NULL;
2951     } else {
2952       if (!UseNUMAInterleaving) {
2953         p_new = (char *) VirtualAlloc(next_alloc_addr,
2954                                       bytes_to_rq,
2955                                       flags,
2956                                       prot);
2957       } else {
2958         // get the next node to use from the used_node_list
2959         assert(numa_node_list_holder.get_count() > 0, "Multiple NUMA nodes expected");
2960         DWORD node = numa_node_list_holder.get_node_list_entry(count % numa_node_list_holder.get_count());
2961         p_new = (char *)os::Kernel32Dll::VirtualAllocExNuma(hProc,
2962                                                             next_alloc_addr,
2963                                                             bytes_to_rq,
2964                                                             flags,
2965                                                             prot,
2966                                                             node);
2967       }
2968     }
2969 
2970     if (p_new == NULL) {
2971       // Free any allocated pages
2972       if (next_alloc_addr > p_buf) {
2973         // Some memory was committed so release it.
2974         size_t bytes_to_release = bytes - bytes_remaining;
2975         // NMT has yet to record any individual blocks, so it
2976         // need to create a dummy 'reserve' record to match
2977         // the release.
2978         MemTracker::record_virtual_memory_reserve((address)p_buf,
2979                                                   bytes_to_release, CALLER_PC);
2980         os::release_memory(p_buf, bytes_to_release);
2981       }
2982 #ifdef ASSERT
2983       if (should_inject_error) {
2984         if (TracePageSizes && Verbose) {
2985           tty->print_cr("Reserving pages individually failed.");
2986         }
2987       }
2988 #endif
2989       return NULL;
2990     }
2991 
2992     bytes_remaining -= bytes_to_rq;
2993     next_alloc_addr += bytes_to_rq;
2994     count++;
2995   }
2996   // Although the memory is allocated individually, it is returned as one.
2997   // NMT records it as one block.
2998   if ((flags & MEM_COMMIT) != 0) {
2999     MemTracker::record_virtual_memory_reserve_and_commit((address)p_buf, bytes, CALLER_PC);
3000   } else {
3001     MemTracker::record_virtual_memory_reserve((address)p_buf, bytes, CALLER_PC);
3002   }
3003 
3004   // made it this far, success
3005   return p_buf;
3006 }
3007 
3008 
3009 
3010 void os::large_page_init() {
3011   if (!UseLargePages) return;
3012 
3013   // print a warning if any large page related flag is specified on command line
3014   bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
3015                          !FLAG_IS_DEFAULT(LargePageSizeInBytes);
3016   bool success = false;
3017 
3018 #define WARN(msg) if (warn_on_failure) { warning(msg); }
3019   if (resolve_functions_for_large_page_init()) {
3020     if (request_lock_memory_privilege()) {
3021       size_t s = os::Kernel32Dll::GetLargePageMinimum();
3022       if (s) {
3023 #if defined(IA32) || defined(AMD64)
3024         if (s > 4*M || LargePageSizeInBytes > 4*M) {
3025           WARN("JVM cannot use large pages bigger than 4mb.");
3026         } else {
3027 #endif
3028           if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
3029             _large_page_size = LargePageSizeInBytes;
3030           } else {
3031             _large_page_size = s;
3032           }
3033           success = true;
3034 #if defined(IA32) || defined(AMD64)
3035         }
3036 #endif
3037       } else {
3038         WARN("Large page is not supported by the processor.");
3039       }
3040     } else {
3041       WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
3042     }
3043   } else {
3044     WARN("Large page is not supported by the operating system.");
3045   }
3046 #undef WARN
3047 
3048   const size_t default_page_size = (size_t) vm_page_size();
3049   if (success && _large_page_size > default_page_size) {
3050     _page_sizes[0] = _large_page_size;
3051     _page_sizes[1] = default_page_size;
3052     _page_sizes[2] = 0;
3053   }
3054 
3055   cleanup_after_large_page_init();
3056   UseLargePages = success;
3057 }
3058 
3059 // On win32, one cannot release just a part of reserved memory, it's an
3060 // all or nothing deal.  When we split a reservation, we must break the
3061 // reservation into two reservations.
3062 void os::pd_split_reserved_memory(char *base, size_t size, size_t split,
3063                                   bool realloc) {
3064   if (size > 0) {
3065     release_memory(base, size);
3066     if (realloc) {
3067       reserve_memory(split, base);
3068     }
3069     if (size != split) {
3070       reserve_memory(size - split, base + split);
3071     }
3072   }
3073 }
3074 
3075 // Multiple threads can race in this code but it's not possible to unmap small sections of
3076 // virtual space to get requested alignment, like posix-like os's.
3077 // Windows prevents multiple thread from remapping over each other so this loop is thread-safe.
3078 char* os::reserve_memory_aligned(size_t size, size_t alignment) {
3079   assert((alignment & (os::vm_allocation_granularity() - 1)) == 0,
3080          "Alignment must be a multiple of allocation granularity (page size)");
3081   assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned");
3082 
3083   size_t extra_size = size + alignment;
3084   assert(extra_size >= size, "overflow, size is too large to allow alignment");
3085 
3086   char* aligned_base = NULL;
3087 
3088   do {
3089     char* extra_base = os::reserve_memory(extra_size, NULL, alignment);
3090     if (extra_base == NULL) {
3091       return NULL;
3092     }
3093     // Do manual alignment
3094     aligned_base = (char*) align_size_up((uintptr_t) extra_base, alignment);
3095 
3096     os::release_memory(extra_base, extra_size);
3097 
3098     aligned_base = os::reserve_memory(size, aligned_base);
3099 
3100   } while (aligned_base == NULL);
3101 
3102   return aligned_base;
3103 }
3104 
3105 char* os::pd_reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
3106   assert((size_t)addr % os::vm_allocation_granularity() == 0,
3107          "reserve alignment");
3108   assert(bytes % os::vm_page_size() == 0, "reserve page size");
3109   char* res;
3110   // note that if UseLargePages is on, all the areas that require interleaving
3111   // will go thru reserve_memory_special rather than thru here.
3112   bool use_individual = (UseNUMAInterleaving && !UseLargePages);
3113   if (!use_individual) {
3114     res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
3115   } else {
3116     elapsedTimer reserveTimer;
3117     if (Verbose && PrintMiscellaneous) reserveTimer.start();
3118     // in numa interleaving, we have to allocate pages individually
3119     // (well really chunks of NUMAInterleaveGranularity size)
3120     res = allocate_pages_individually(bytes, addr, MEM_RESERVE, PAGE_READWRITE);
3121     if (res == NULL) {
3122       warning("NUMA page allocation failed");
3123     }
3124     if (Verbose && PrintMiscellaneous) {
3125       reserveTimer.stop();
3126       tty->print_cr("reserve_memory of %Ix bytes took " JLONG_FORMAT " ms (" JLONG_FORMAT " ticks)", bytes,
3127                     reserveTimer.milliseconds(), reserveTimer.ticks());
3128     }
3129   }
3130   assert(res == NULL || addr == NULL || addr == res,
3131          "Unexpected address from reserve.");
3132 
3133   return res;
3134 }
3135 
3136 // Reserve memory at an arbitrary address, only if that area is
3137 // available (and not reserved for something else).
3138 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3139   // Windows os::reserve_memory() fails of the requested address range is
3140   // not avilable.
3141   return reserve_memory(bytes, requested_addr);
3142 }
3143 
3144 size_t os::large_page_size() {
3145   return _large_page_size;
3146 }
3147 
3148 bool os::can_commit_large_page_memory() {
3149   // Windows only uses large page memory when the entire region is reserved
3150   // and committed in a single VirtualAlloc() call. This may change in the
3151   // future, but with Windows 2003 it's not possible to commit on demand.
3152   return false;
3153 }
3154 
3155 bool os::can_execute_large_page_memory() {
3156   return true;
3157 }
3158 
3159 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* addr,
3160                                  bool exec) {
3161   assert(UseLargePages, "only for large pages");
3162 
3163   if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3164     return NULL; // Fallback to small pages.
3165   }
3166 
3167   const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
3168   const DWORD flags = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3169 
3170   // with large pages, there are two cases where we need to use Individual Allocation
3171   // 1) the UseLargePagesIndividualAllocation flag is set (set by default on WS2003)
3172   // 2) NUMA Interleaving is enabled, in which case we use a different node for each page
3173   if (UseLargePagesIndividualAllocation || UseNUMAInterleaving) {
3174     if (TracePageSizes && Verbose) {
3175       tty->print_cr("Reserving large pages individually.");
3176     }
3177     char * p_buf = allocate_pages_individually(bytes, addr, flags, prot, LargePagesIndividualAllocationInjectError);
3178     if (p_buf == NULL) {
3179       // give an appropriate warning message
3180       if (UseNUMAInterleaving) {
3181         warning("NUMA large page allocation failed, UseLargePages flag ignored");
3182       }
3183       if (UseLargePagesIndividualAllocation) {
3184         warning("Individually allocated large pages failed, "
3185                 "use -XX:-UseLargePagesIndividualAllocation to turn off");
3186       }
3187       return NULL;
3188     }
3189 
3190     return p_buf;
3191 
3192   } else {
3193     if (TracePageSizes && Verbose) {
3194       tty->print_cr("Reserving large pages in a single large chunk.");
3195     }
3196     // normal policy just allocate it all at once
3197     DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3198     char * res = (char *)VirtualAlloc(addr, bytes, flag, prot);
3199     if (res != NULL) {
3200       MemTracker::record_virtual_memory_reserve_and_commit((address)res, bytes, CALLER_PC);
3201     }
3202 
3203     return res;
3204   }
3205 }
3206 
3207 bool os::release_memory_special(char* base, size_t bytes) {
3208   assert(base != NULL, "Sanity check");
3209   return release_memory(base, bytes);
3210 }
3211 
3212 void os::print_statistics() {
3213 }
3214 
3215 static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec) {
3216   int err = os::get_last_error();
3217   char buf[256];
3218   size_t buf_len = os::lasterror(buf, sizeof(buf));
3219   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
3220           ", %d) failed; error='%s' (DOS error/errno=%d)", addr, bytes,
3221           exec, buf_len != 0 ? buf : "<no_error_string>", err);
3222 }
3223 
3224 bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
3225   if (bytes == 0) {
3226     // Don't bother the OS with noops.
3227     return true;
3228   }
3229   assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
3230   assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
3231   // Don't attempt to print anything if the OS call fails. We're
3232   // probably low on resources, so the print itself may cause crashes.
3233 
3234   // unless we have NUMAInterleaving enabled, the range of a commit
3235   // is always within a reserve covered by a single VirtualAlloc
3236   // in that case we can just do a single commit for the requested size
3237   if (!UseNUMAInterleaving) {
3238     if (VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) == NULL) {
3239       NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3240       return false;
3241     }
3242     if (exec) {
3243       DWORD oldprot;
3244       // Windows doc says to use VirtualProtect to get execute permissions
3245       if (!VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot)) {
3246         NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3247         return false;
3248       }
3249     }
3250     return true;
3251   } else {
3252 
3253     // when NUMAInterleaving is enabled, the commit might cover a range that
3254     // came from multiple VirtualAlloc reserves (using allocate_pages_individually).
3255     // VirtualQuery can help us determine that.  The RegionSize that VirtualQuery
3256     // returns represents the number of bytes that can be committed in one step.
3257     size_t bytes_remaining = bytes;
3258     char * next_alloc_addr = addr;
3259     while (bytes_remaining > 0) {
3260       MEMORY_BASIC_INFORMATION alloc_info;
3261       VirtualQuery(next_alloc_addr, &alloc_info, sizeof(alloc_info));
3262       size_t bytes_to_rq = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
3263       if (VirtualAlloc(next_alloc_addr, bytes_to_rq, MEM_COMMIT,
3264                        PAGE_READWRITE) == NULL) {
3265         NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3266                                             exec);)
3267         return false;
3268       }
3269       if (exec) {
3270         DWORD oldprot;
3271         if (!VirtualProtect(next_alloc_addr, bytes_to_rq,
3272                             PAGE_EXECUTE_READWRITE, &oldprot)) {
3273           NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3274                                               exec);)
3275           return false;
3276         }
3277       }
3278       bytes_remaining -= bytes_to_rq;
3279       next_alloc_addr += bytes_to_rq;
3280     }
3281   }
3282   // if we made it this far, return true
3283   return true;
3284 }
3285 
3286 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
3287                           bool exec) {
3288   // alignment_hint is ignored on this OS
3289   return pd_commit_memory(addr, size, exec);
3290 }
3291 
3292 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
3293                                   const char* mesg) {
3294   assert(mesg != NULL, "mesg must be specified");
3295   if (!pd_commit_memory(addr, size, exec)) {
3296     warn_fail_commit_memory(addr, size, exec);
3297     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
3298   }
3299 }
3300 
3301 void os::pd_commit_memory_or_exit(char* addr, size_t size,
3302                                   size_t alignment_hint, bool exec,
3303                                   const char* mesg) {
3304   // alignment_hint is ignored on this OS
3305   pd_commit_memory_or_exit(addr, size, exec, mesg);
3306 }
3307 
3308 bool os::pd_uncommit_memory(char* addr, size_t bytes) {
3309   if (bytes == 0) {
3310     // Don't bother the OS with noops.
3311     return true;
3312   }
3313   assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
3314   assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
3315   return (VirtualFree(addr, bytes, MEM_DECOMMIT) != 0);
3316 }
3317 
3318 bool os::pd_release_memory(char* addr, size_t bytes) {
3319   return VirtualFree(addr, 0, MEM_RELEASE) != 0;
3320 }
3321 
3322 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3323   return os::commit_memory(addr, size, !ExecMem);
3324 }
3325 
3326 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3327   return os::uncommit_memory(addr, size);
3328 }
3329 
3330 // Set protections specified
3331 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3332                         bool is_committed) {
3333   unsigned int p = 0;
3334   switch (prot) {
3335   case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
3336   case MEM_PROT_READ: p = PAGE_READONLY; break;
3337   case MEM_PROT_RW:   p = PAGE_READWRITE; break;
3338   case MEM_PROT_RWX:  p = PAGE_EXECUTE_READWRITE; break;
3339   default:
3340     ShouldNotReachHere();
3341   }
3342 
3343   DWORD old_status;
3344 
3345   // Strange enough, but on Win32 one can change protection only for committed
3346   // memory, not a big deal anyway, as bytes less or equal than 64K
3347   if (!is_committed) {
3348     commit_memory_or_exit(addr, bytes, prot == MEM_PROT_RWX,
3349                           "cannot commit protection page");
3350   }
3351   // One cannot use os::guard_memory() here, as on Win32 guard page
3352   // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
3353   //
3354   // Pages in the region become guard pages. Any attempt to access a guard page
3355   // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
3356   // the guard page status. Guard pages thus act as a one-time access alarm.
3357   return VirtualProtect(addr, bytes, p, &old_status) != 0;
3358 }
3359 
3360 bool os::guard_memory(char* addr, size_t bytes) {
3361   DWORD old_status;
3362   return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
3363 }
3364 
3365 bool os::unguard_memory(char* addr, size_t bytes) {
3366   DWORD old_status;
3367   return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
3368 }
3369 
3370 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3371 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3372 void os::numa_make_global(char *addr, size_t bytes)    { }
3373 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint)    { }
3374 bool os::numa_topology_changed()                       { return false; }
3375 size_t os::numa_get_groups_num()                       { return MAX2(numa_node_list_holder.get_count(), 1); }
3376 int os::numa_get_group_id()                            { return 0; }
3377 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
3378   if (numa_node_list_holder.get_count() == 0 && size > 0) {
3379     // Provide an answer for UMA systems
3380     ids[0] = 0;
3381     return 1;
3382   } else {
3383     // check for size bigger than actual groups_num
3384     size = MIN2(size, numa_get_groups_num());
3385     for (int i = 0; i < (int)size; i++) {
3386       ids[i] = numa_node_list_holder.get_node_list_entry(i);
3387     }
3388     return size;
3389   }
3390 }
3391 
3392 bool os::get_page_info(char *start, page_info* info) {
3393   return false;
3394 }
3395 
3396 char *os::scan_pages(char *start, char* end, page_info* page_expected,
3397                      page_info* page_found) {
3398   return end;
3399 }
3400 
3401 char* os::non_memory_address_word() {
3402   // Must never look like an address returned by reserve_memory,
3403   // even in its subfields (as defined by the CPU immediate fields,
3404   // if the CPU splits constants across multiple instructions).
3405   return (char*)-1;
3406 }
3407 
3408 #define MAX_ERROR_COUNT 100
3409 #define SYS_THREAD_ERROR 0xffffffffUL
3410 
3411 void os::pd_start_thread(Thread* thread) {
3412   DWORD ret = ResumeThread(thread->osthread()->thread_handle());
3413   // Returns previous suspend state:
3414   // 0:  Thread was not suspended
3415   // 1:  Thread is running now
3416   // >1: Thread is still suspended.
3417   assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
3418 }
3419 
3420 class HighResolutionInterval : public CHeapObj<mtThread> {
3421   // The default timer resolution seems to be 10 milliseconds.
3422   // (Where is this written down?)
3423   // If someone wants to sleep for only a fraction of the default,
3424   // then we set the timer resolution down to 1 millisecond for
3425   // the duration of their interval.
3426   // We carefully set the resolution back, since otherwise we
3427   // seem to incur an overhead (3%?) that we don't need.
3428   // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
3429   // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
3430   // Alternatively, we could compute the relative error (503/500 = .6%) and only use
3431   // timeBeginPeriod() if the relative error exceeded some threshold.
3432   // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
3433   // to decreased efficiency related to increased timer "tick" rates.  We want to minimize
3434   // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
3435   // resolution timers running.
3436  private:
3437   jlong resolution;
3438  public:
3439   HighResolutionInterval(jlong ms) {
3440     resolution = ms % 10L;
3441     if (resolution != 0) {
3442       MMRESULT result = timeBeginPeriod(1L);
3443     }
3444   }
3445   ~HighResolutionInterval() {
3446     if (resolution != 0) {
3447       MMRESULT result = timeEndPeriod(1L);
3448     }
3449     resolution = 0L;
3450   }
3451 };
3452 
3453 int os::sleep(Thread* thread, jlong ms, bool interruptable) {
3454   jlong limit = (jlong) MAXDWORD;
3455 
3456   while (ms > limit) {
3457     int res;
3458     if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT) {
3459       return res;
3460     }
3461     ms -= limit;
3462   }
3463 
3464   assert(thread == Thread::current(), "thread consistency check");
3465   OSThread* osthread = thread->osthread();
3466   OSThreadWaitState osts(osthread, false /* not Object.wait() */);
3467   int result;
3468   if (interruptable) {
3469     assert(thread->is_Java_thread(), "must be java thread");
3470     JavaThread *jt = (JavaThread *) thread;
3471     ThreadBlockInVM tbivm(jt);
3472 
3473     jt->set_suspend_equivalent();
3474     // cleared by handle_special_suspend_equivalent_condition() or
3475     // java_suspend_self() via check_and_wait_while_suspended()
3476 
3477     HANDLE events[1];
3478     events[0] = osthread->interrupt_event();
3479     HighResolutionInterval *phri=NULL;
3480     if (!ForceTimeHighResolution) {
3481       phri = new HighResolutionInterval(ms);
3482     }
3483     if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
3484       result = OS_TIMEOUT;
3485     } else {
3486       ResetEvent(osthread->interrupt_event());
3487       osthread->set_interrupted(false);
3488       result = OS_INTRPT;
3489     }
3490     delete phri; //if it is NULL, harmless
3491 
3492     // were we externally suspended while we were waiting?
3493     jt->check_and_wait_while_suspended();
3494   } else {
3495     assert(!thread->is_Java_thread(), "must not be java thread");
3496     Sleep((long) ms);
3497     result = OS_TIMEOUT;
3498   }
3499   return result;
3500 }
3501 
3502 // Short sleep, direct OS call.
3503 //
3504 // ms = 0, means allow others (if any) to run.
3505 //
3506 void os::naked_short_sleep(jlong ms) {
3507   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3508   Sleep(ms);
3509 }
3510 
3511 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3512 void os::infinite_sleep() {
3513   while (true) {    // sleep forever ...
3514     Sleep(100000);  // ... 100 seconds at a time
3515   }
3516 }
3517 
3518 typedef BOOL (WINAPI * STTSignature)(void);
3519 
3520 void os::naked_yield() {
3521   // Use either SwitchToThread() or Sleep(0)
3522   // Consider passing back the return value from SwitchToThread().
3523   if (os::Kernel32Dll::SwitchToThreadAvailable()) {
3524     SwitchToThread();
3525   } else {
3526     Sleep(0);
3527   }
3528 }
3529 
3530 // Win32 only gives you access to seven real priorities at a time,
3531 // so we compress Java's ten down to seven.  It would be better
3532 // if we dynamically adjusted relative priorities.
3533 
3534 int os::java_to_os_priority[CriticalPriority + 1] = {
3535   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3536   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3537   THREAD_PRIORITY_LOWEST,                       // 2
3538   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3539   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3540   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3541   THREAD_PRIORITY_NORMAL,                       // 6
3542   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3543   THREAD_PRIORITY_ABOVE_NORMAL,                 // 8
3544   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3545   THREAD_PRIORITY_HIGHEST,                      // 10 MaxPriority
3546   THREAD_PRIORITY_HIGHEST                       // 11 CriticalPriority
3547 };
3548 
3549 int prio_policy1[CriticalPriority + 1] = {
3550   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3551   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3552   THREAD_PRIORITY_LOWEST,                       // 2
3553   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3554   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3555   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3556   THREAD_PRIORITY_ABOVE_NORMAL,                 // 6
3557   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3558   THREAD_PRIORITY_HIGHEST,                      // 8
3559   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3560   THREAD_PRIORITY_TIME_CRITICAL,                // 10 MaxPriority
3561   THREAD_PRIORITY_TIME_CRITICAL                 // 11 CriticalPriority
3562 };
3563 
3564 static int prio_init() {
3565   // If ThreadPriorityPolicy is 1, switch tables
3566   if (ThreadPriorityPolicy == 1) {
3567     int i;
3568     for (i = 0; i < CriticalPriority + 1; i++) {
3569       os::java_to_os_priority[i] = prio_policy1[i];
3570     }
3571   }
3572   if (UseCriticalJavaThreadPriority) {
3573     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3574   }
3575   return 0;
3576 }
3577 
3578 OSReturn os::set_native_priority(Thread* thread, int priority) {
3579   if (!UseThreadPriorities) return OS_OK;
3580   bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
3581   return ret ? OS_OK : OS_ERR;
3582 }
3583 
3584 OSReturn os::get_native_priority(const Thread* const thread,
3585                                  int* priority_ptr) {
3586   if (!UseThreadPriorities) {
3587     *priority_ptr = java_to_os_priority[NormPriority];
3588     return OS_OK;
3589   }
3590   int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
3591   if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
3592     assert(false, "GetThreadPriority failed");
3593     return OS_ERR;
3594   }
3595   *priority_ptr = os_prio;
3596   return OS_OK;
3597 }
3598 
3599 
3600 // Hint to the underlying OS that a task switch would not be good.
3601 // Void return because it's a hint and can fail.
3602 void os::hint_no_preempt() {}
3603 
3604 void os::interrupt(Thread* thread) {
3605   assert(!thread->is_Java_thread() || Thread::current() == thread ||
3606          Threads_lock->owned_by_self(),
3607          "possibility of dangling Thread pointer");
3608 
3609   OSThread* osthread = thread->osthread();
3610   osthread->set_interrupted(true);
3611   // More than one thread can get here with the same value of osthread,
3612   // resulting in multiple notifications.  We do, however, want the store
3613   // to interrupted() to be visible to other threads before we post
3614   // the interrupt event.
3615   OrderAccess::release();
3616   SetEvent(osthread->interrupt_event());
3617   // For JSR166:  unpark after setting status
3618   if (thread->is_Java_thread()) {
3619     ((JavaThread*)thread)->parker()->unpark();
3620   }
3621 
3622   ParkEvent * ev = thread->_ParkEvent;
3623   if (ev != NULL) ev->unpark();
3624 }
3625 
3626 
3627 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3628   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3629          "possibility of dangling Thread pointer");
3630 
3631   OSThread* osthread = thread->osthread();
3632   // There is no synchronization between the setting of the interrupt
3633   // and it being cleared here. It is critical - see 6535709 - that
3634   // we only clear the interrupt state, and reset the interrupt event,
3635   // if we are going to report that we were indeed interrupted - else
3636   // an interrupt can be "lost", leading to spurious wakeups or lost wakeups
3637   // depending on the timing. By checking thread interrupt event to see
3638   // if the thread gets real interrupt thus prevent spurious wakeup.
3639   bool interrupted = osthread->interrupted() && (WaitForSingleObject(osthread->interrupt_event(), 0) == WAIT_OBJECT_0);
3640   if (interrupted && clear_interrupted) {
3641     osthread->set_interrupted(false);
3642     ResetEvent(osthread->interrupt_event());
3643   } // Otherwise leave the interrupted state alone
3644 
3645   return interrupted;
3646 }
3647 
3648 // Get's a pc (hint) for a running thread. Currently used only for profiling.
3649 ExtendedPC os::get_thread_pc(Thread* thread) {
3650   CONTEXT context;
3651   context.ContextFlags = CONTEXT_CONTROL;
3652   HANDLE handle = thread->osthread()->thread_handle();
3653 #ifdef _M_IA64
3654   assert(0, "Fix get_thread_pc");
3655   return ExtendedPC(NULL);
3656 #else
3657   if (GetThreadContext(handle, &context)) {
3658 #ifdef _M_AMD64
3659     return ExtendedPC((address) context.Rip);
3660 #else
3661     return ExtendedPC((address) context.Eip);
3662 #endif
3663   } else {
3664     return ExtendedPC(NULL);
3665   }
3666 #endif
3667 }
3668 
3669 // GetCurrentThreadId() returns DWORD
3670 intx os::current_thread_id()  { return GetCurrentThreadId(); }
3671 
3672 static int _initial_pid = 0;
3673 
3674 int os::current_process_id() {
3675   return (_initial_pid ? _initial_pid : _getpid());
3676 }
3677 
3678 int    os::win32::_vm_page_size              = 0;
3679 int    os::win32::_vm_allocation_granularity = 0;
3680 int    os::win32::_processor_type            = 0;
3681 // Processor level is not available on non-NT systems, use vm_version instead
3682 int    os::win32::_processor_level           = 0;
3683 julong os::win32::_physical_memory           = 0;
3684 size_t os::win32::_default_stack_size        = 0;
3685 
3686 intx          os::win32::_os_thread_limit    = 0;
3687 volatile intx os::win32::_os_thread_count    = 0;
3688 
3689 bool   os::win32::_is_nt                     = false;
3690 bool   os::win32::_is_windows_2003           = false;
3691 bool   os::win32::_is_windows_server         = false;
3692 
3693 // 6573254
3694 // Currently, the bug is observed across all the supported Windows releases,
3695 // including the latest one (as of this writing - Windows Server 2012 R2)
3696 bool   os::win32::_has_exit_bug              = true;
3697 bool   os::win32::_has_performance_count     = 0;
3698 
3699 void os::win32::initialize_system_info() {
3700   SYSTEM_INFO si;
3701   GetSystemInfo(&si);
3702   _vm_page_size    = si.dwPageSize;
3703   _vm_allocation_granularity = si.dwAllocationGranularity;
3704   _processor_type  = si.dwProcessorType;
3705   _processor_level = si.wProcessorLevel;
3706   set_processor_count(si.dwNumberOfProcessors);
3707 
3708   MEMORYSTATUSEX ms;
3709   ms.dwLength = sizeof(ms);
3710 
3711   // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
3712   // dwMemoryLoad (% of memory in use)
3713   GlobalMemoryStatusEx(&ms);
3714   _physical_memory = ms.ullTotalPhys;
3715 
3716   OSVERSIONINFOEX oi;
3717   oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
3718   GetVersionEx((OSVERSIONINFO*)&oi);
3719   switch (oi.dwPlatformId) {
3720   case VER_PLATFORM_WIN32_WINDOWS: _is_nt = false; break;
3721   case VER_PLATFORM_WIN32_NT:
3722     _is_nt = true;
3723     {
3724       int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
3725       if (os_vers == 5002) {
3726         _is_windows_2003 = true;
3727       }
3728       if (oi.wProductType == VER_NT_DOMAIN_CONTROLLER ||
3729           oi.wProductType == VER_NT_SERVER) {
3730         _is_windows_server = true;
3731       }
3732     }
3733     break;
3734   default: fatal("Unknown platform");
3735   }
3736 
3737   _default_stack_size = os::current_stack_size();
3738   assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
3739   assert((_default_stack_size & (_vm_page_size - 1)) == 0,
3740          "stack size not a multiple of page size");
3741 
3742   initialize_performance_counter();
3743 }
3744 
3745 
3746 HINSTANCE os::win32::load_Windows_dll(const char* name, char *ebuf,
3747                                       int ebuflen) {
3748   char path[MAX_PATH];
3749   DWORD size;
3750   DWORD pathLen = (DWORD)sizeof(path);
3751   HINSTANCE result = NULL;
3752 
3753   // only allow library name without path component
3754   assert(strchr(name, '\\') == NULL, "path not allowed");
3755   assert(strchr(name, ':') == NULL, "path not allowed");
3756   if (strchr(name, '\\') != NULL || strchr(name, ':') != NULL) {
3757     jio_snprintf(ebuf, ebuflen,
3758                  "Invalid parameter while calling os::win32::load_windows_dll(): cannot take path: %s", name);
3759     return NULL;
3760   }
3761 
3762   // search system directory
3763   if ((size = GetSystemDirectory(path, pathLen)) > 0) {
3764     if (size >= pathLen) {
3765       return NULL; // truncated
3766     }
3767     if (jio_snprintf(path + size, pathLen - size, "\\%s", name) == -1) {
3768       return NULL; // truncated
3769     }
3770     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3771       return result;
3772     }
3773   }
3774 
3775   // try Windows directory
3776   if ((size = GetWindowsDirectory(path, pathLen)) > 0) {
3777     if (size >= pathLen) {
3778       return NULL; // truncated
3779     }
3780     if (jio_snprintf(path + size, pathLen - size, "\\%s", name) == -1) {
3781       return NULL; // truncated
3782     }
3783     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3784       return result;
3785     }
3786   }
3787 
3788   jio_snprintf(ebuf, ebuflen,
3789                "os::win32::load_windows_dll() cannot load %s from system directories.", name);
3790   return NULL;
3791 }
3792 
3793 #define EXIT_TIMEOUT 300000 /* 5 minutes */
3794 
3795 static BOOL CALLBACK init_crit_sect_call(PINIT_ONCE, PVOID pcrit_sect, PVOID*) {
3796   InitializeCriticalSection((CRITICAL_SECTION*)pcrit_sect);
3797   return TRUE;
3798 }
3799 
3800 int os::win32::exit_process_or_thread(Ept what, int exit_code) {
3801   // Basic approach:
3802   //  - Each exiting thread registers its intent to exit and then does so.
3803   //  - A thread trying to terminate the process must wait for all
3804   //    threads currently exiting to complete their exit.
3805 
3806   if (os::win32::has_exit_bug()) {
3807     // The array holds handles of the threads that have started exiting by calling
3808     // _endthreadex().
3809     // Should be large enough to avoid blocking the exiting thread due to lack of
3810     // a free slot.
3811     static HANDLE handles[MAXIMUM_WAIT_OBJECTS];
3812     static int handle_count = 0;
3813 
3814     static INIT_ONCE init_once_crit_sect = INIT_ONCE_STATIC_INIT;
3815     static CRITICAL_SECTION crit_sect;
3816     static volatile jint process_exiting = 0;
3817     int i, j;
3818     DWORD res;
3819     HANDLE hproc, hthr;
3820 
3821     // The first thread that reached this point, initializes the critical section.
3822     if (!InitOnceExecuteOnce(&init_once_crit_sect, init_crit_sect_call, &crit_sect, NULL)) {
3823       warning("crit_sect initialization failed in %s: %d\n", __FILE__, __LINE__);
3824     } else if (OrderAccess::load_acquire(&process_exiting) == 0) {
3825       EnterCriticalSection(&crit_sect);
3826 
3827       if (what == EPT_THREAD && OrderAccess::load_acquire(&process_exiting) == 0) {
3828         // Remove from the array those handles of the threads that have completed exiting.
3829         for (i = 0, j = 0; i < handle_count; ++i) {
3830           res = WaitForSingleObject(handles[i], 0 /* don't wait */);
3831           if (res == WAIT_TIMEOUT) {
3832             handles[j++] = handles[i];
3833           } else {
3834             if (res == WAIT_FAILED) {
3835               warning("WaitForSingleObject failed (%u) in %s: %d\n",
3836                       GetLastError(), __FILE__, __LINE__);
3837             }
3838             // Don't keep the handle, if we failed waiting for it.
3839             CloseHandle(handles[i]);
3840           }
3841         }
3842 
3843         // If there's no free slot in the array of the kept handles, we'll have to
3844         // wait until at least one thread completes exiting.
3845         if ((handle_count = j) == MAXIMUM_WAIT_OBJECTS) {
3846           // Raise the priority of the oldest exiting thread to increase its chances
3847           // to complete sooner.
3848           SetThreadPriority(handles[0], THREAD_PRIORITY_ABOVE_NORMAL);
3849           res = WaitForMultipleObjects(MAXIMUM_WAIT_OBJECTS, handles, FALSE, EXIT_TIMEOUT);
3850           if (res >= WAIT_OBJECT_0 && res < (WAIT_OBJECT_0 + MAXIMUM_WAIT_OBJECTS)) {
3851             i = (res - WAIT_OBJECT_0);
3852             handle_count = MAXIMUM_WAIT_OBJECTS - 1;
3853             for (; i < handle_count; ++i) {
3854               handles[i] = handles[i + 1];
3855             }
3856           } else {
3857             warning("WaitForMultipleObjects %s (%u) in %s: %d\n",
3858                     (res == WAIT_FAILED ? "failed" : "timed out"),
3859                     GetLastError(), __FILE__, __LINE__);
3860             // Don't keep handles, if we failed waiting for them.
3861             for (i = 0; i < MAXIMUM_WAIT_OBJECTS; ++i) {
3862               CloseHandle(handles[i]);
3863             }
3864             handle_count = 0;
3865           }
3866         }
3867 
3868         // Store a duplicate of the current thread handle in the array of handles.
3869         hproc = GetCurrentProcess();
3870         hthr = GetCurrentThread();
3871         if (!DuplicateHandle(hproc, hthr, hproc, &handles[handle_count],
3872                              0, FALSE, DUPLICATE_SAME_ACCESS)) {
3873           warning("DuplicateHandle failed (%u) in %s: %d\n",
3874                   GetLastError(), __FILE__, __LINE__);
3875         } else {
3876           ++handle_count;
3877         }
3878 
3879         // The current exiting thread has stored its handle in the array, and now
3880         // should leave the critical section before calling _endthreadex().
3881 
3882       } else if (what != EPT_THREAD) {
3883         if (handle_count > 0) {
3884           // Before ending the process, make sure all the threads that had called
3885           // _endthreadex() completed.
3886 
3887           // Set the priority level of the current thread to the same value as
3888           // the priority level of exiting threads.
3889           // This is to ensure it will be given a fair chance to execute if
3890           // the timeout expires.
3891           hthr = GetCurrentThread();
3892           SetThreadPriority(hthr, THREAD_PRIORITY_ABOVE_NORMAL);
3893           for (i = 0; i < handle_count; ++i) {
3894             SetThreadPriority(handles[i], THREAD_PRIORITY_ABOVE_NORMAL);
3895           }
3896           res = WaitForMultipleObjects(handle_count, handles, TRUE, EXIT_TIMEOUT);
3897           if (res == WAIT_FAILED || res == WAIT_TIMEOUT) {
3898             warning("WaitForMultipleObjects %s (%u) in %s: %d\n",
3899                     (res == WAIT_FAILED ? "failed" : "timed out"),
3900                     GetLastError(), __FILE__, __LINE__);
3901           }
3902           for (i = 0; i < handle_count; ++i) {
3903             CloseHandle(handles[i]);
3904           }
3905           handle_count = 0;
3906         }
3907 
3908         OrderAccess::release_store(&process_exiting, 1);
3909       }
3910 
3911       LeaveCriticalSection(&crit_sect);
3912     }
3913 
3914     if (what == EPT_THREAD) {
3915       while (OrderAccess::load_acquire(&process_exiting) != 0) {
3916         // Some other thread is about to call exit(), so we
3917         // don't let the current thread proceed to _endthreadex()
3918         SuspendThread(GetCurrentThread());
3919         // Avoid busy-wait loop, if SuspendThread() failed.
3920         Sleep(EXIT_TIMEOUT);
3921       }
3922     }
3923   }
3924 
3925   // We are here if either
3926   // - there's no 'race at exit' bug on this OS release;
3927   // - initialization of the critical section failed (unlikely);
3928   // - the current thread has stored its handle and left the critical section;
3929   // - the process-exiting thread has raised the flag and left the critical section.
3930   if (what == EPT_THREAD) {
3931     _endthreadex((unsigned)exit_code);
3932   } else if (what == EPT_PROCESS) {
3933     ::exit(exit_code);
3934   } else {
3935     _exit(exit_code);
3936   }
3937 
3938   // Should not reach here
3939   return exit_code;
3940 }
3941 
3942 #undef EXIT_TIMEOUT
3943 
3944 void os::win32::setmode_streams() {
3945   _setmode(_fileno(stdin), _O_BINARY);
3946   _setmode(_fileno(stdout), _O_BINARY);
3947   _setmode(_fileno(stderr), _O_BINARY);
3948 }
3949 
3950 
3951 bool os::is_debugger_attached() {
3952   return IsDebuggerPresent() ? true : false;
3953 }
3954 
3955 
3956 void os::wait_for_keypress_at_exit(void) {
3957   if (PauseAtExit) {
3958     fprintf(stderr, "Press any key to continue...\n");
3959     fgetc(stdin);
3960   }
3961 }
3962 
3963 
3964 int os::message_box(const char* title, const char* message) {
3965   int result = MessageBox(NULL, message, title,
3966                           MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
3967   return result == IDYES;
3968 }
3969 
3970 int os::allocate_thread_local_storage() {
3971   return TlsAlloc();
3972 }
3973 
3974 
3975 void os::free_thread_local_storage(int index) {
3976   TlsFree(index);
3977 }
3978 
3979 
3980 void os::thread_local_storage_at_put(int index, void* value) {
3981   TlsSetValue(index, value);
3982   assert(thread_local_storage_at(index) == value, "Just checking");
3983 }
3984 
3985 
3986 void* os::thread_local_storage_at(int index) {
3987   return TlsGetValue(index);
3988 }
3989 
3990 
3991 #ifndef PRODUCT
3992 #ifndef _WIN64
3993 // Helpers to check whether NX protection is enabled
3994 int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
3995   if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
3996       pex->ExceptionRecord->NumberParameters > 0 &&
3997       pex->ExceptionRecord->ExceptionInformation[0] ==
3998       EXCEPTION_INFO_EXEC_VIOLATION) {
3999     return EXCEPTION_EXECUTE_HANDLER;
4000   }
4001   return EXCEPTION_CONTINUE_SEARCH;
4002 }
4003 
4004 void nx_check_protection() {
4005   // If NX is enabled we'll get an exception calling into code on the stack
4006   char code[] = { (char)0xC3 }; // ret
4007   void *code_ptr = (void *)code;
4008   __try {
4009     __asm call code_ptr
4010   } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
4011     tty->print_raw_cr("NX protection detected.");
4012   }
4013 }
4014 #endif // _WIN64
4015 #endif // PRODUCT
4016 
4017 // this is called _before_ the global arguments have been parsed
4018 void os::init(void) {
4019   _initial_pid = _getpid();
4020 
4021   init_random(1234567);
4022 
4023   win32::initialize_system_info();
4024   win32::setmode_streams();
4025   init_page_sizes((size_t) win32::vm_page_size());
4026 
4027   // This may be overridden later when argument processing is done.
4028   FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation,
4029                 os::win32::is_windows_2003());
4030 
4031   // Initialize main_process and main_thread
4032   main_process = GetCurrentProcess();  // Remember main_process is a pseudo handle
4033   if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
4034                        &main_thread, THREAD_ALL_ACCESS, false, 0)) {
4035     fatal("DuplicateHandle failed\n");
4036   }
4037   main_thread_id = (int) GetCurrentThreadId();
4038 }
4039 
4040 // To install functions for atexit processing
4041 extern "C" {
4042   static void perfMemory_exit_helper() {
4043     perfMemory_exit();
4044   }
4045 }
4046 
4047 static jint initSock();
4048 
4049 // this is called _after_ the global arguments have been parsed
4050 jint os::init_2(void) {
4051   // Allocate a single page and mark it as readable for safepoint polling
4052   address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
4053   guarantee(polling_page != NULL, "Reserve Failed for polling page");
4054 
4055   address return_page  = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
4056   guarantee(return_page != NULL, "Commit Failed for polling page");
4057 
4058   os::set_polling_page(polling_page);
4059 
4060 #ifndef PRODUCT
4061   if (Verbose && PrintMiscellaneous) {
4062     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
4063                (intptr_t)polling_page);
4064   }
4065 #endif
4066 
4067   if (!UseMembar) {
4068     address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READWRITE);
4069     guarantee(mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
4070 
4071     return_page  = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_READWRITE);
4072     guarantee(return_page != NULL, "Commit Failed for memory serialize page");
4073 
4074     os::set_memory_serialize_page(mem_serialize_page);
4075 
4076 #ifndef PRODUCT
4077     if (Verbose && PrintMiscellaneous) {
4078       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n",
4079                  (intptr_t)mem_serialize_page);
4080     }
4081 #endif
4082   }
4083 
4084   // Setup Windows Exceptions
4085 
4086   // for debugging float code generation bugs
4087   if (ForceFloatExceptions) {
4088 #ifndef  _WIN64
4089     static long fp_control_word = 0;
4090     __asm { fstcw fp_control_word }
4091     // see Intel PPro Manual, Vol. 2, p 7-16
4092     const long precision = 0x20;
4093     const long underflow = 0x10;
4094     const long overflow  = 0x08;
4095     const long zero_div  = 0x04;
4096     const long denorm    = 0x02;
4097     const long invalid   = 0x01;
4098     fp_control_word |= invalid;
4099     __asm { fldcw fp_control_word }
4100 #endif
4101   }
4102 
4103   // If stack_commit_size is 0, windows will reserve the default size,
4104   // but only commit a small portion of it.
4105   size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size());
4106   size_t default_reserve_size = os::win32::default_stack_size();
4107   size_t actual_reserve_size = stack_commit_size;
4108   if (stack_commit_size < default_reserve_size) {
4109     // If stack_commit_size == 0, we want this too
4110     actual_reserve_size = default_reserve_size;
4111   }
4112 
4113   // Check minimum allowable stack size for thread creation and to initialize
4114   // the java system classes, including StackOverflowError - depends on page
4115   // size.  Add a page for compiler2 recursion in main thread.
4116   // Add in 2*BytesPerWord times page size to account for VM stack during
4117   // class initialization depending on 32 or 64 bit VM.
4118   size_t min_stack_allowed =
4119             (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
4120                      2*BytesPerWord COMPILER2_PRESENT(+1)) * os::vm_page_size();
4121   if (actual_reserve_size < min_stack_allowed) {
4122     tty->print_cr("\nThe stack size specified is too small, "
4123                   "Specify at least %dk",
4124                   min_stack_allowed / K);
4125     return JNI_ERR;
4126   }
4127 
4128   JavaThread::set_stack_size_at_create(stack_commit_size);
4129 
4130   // Calculate theoretical max. size of Threads to guard gainst artifical
4131   // out-of-memory situations, where all available address-space has been
4132   // reserved by thread stacks.
4133   assert(actual_reserve_size != 0, "Must have a stack");
4134 
4135   // Calculate the thread limit when we should start doing Virtual Memory
4136   // banging. Currently when the threads will have used all but 200Mb of space.
4137   //
4138   // TODO: consider performing a similar calculation for commit size instead
4139   // as reserve size, since on a 64-bit platform we'll run into that more
4140   // often than running out of virtual memory space.  We can use the
4141   // lower value of the two calculations as the os_thread_limit.
4142   size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
4143   win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
4144 
4145   // at exit methods are called in the reverse order of their registration.
4146   // there is no limit to the number of functions registered. atexit does
4147   // not set errno.
4148 
4149   if (PerfAllowAtExitRegistration) {
4150     // only register atexit functions if PerfAllowAtExitRegistration is set.
4151     // atexit functions can be delayed until process exit time, which
4152     // can be problematic for embedded VM situations. Embedded VMs should
4153     // call DestroyJavaVM() to assure that VM resources are released.
4154 
4155     // note: perfMemory_exit_helper atexit function may be removed in
4156     // the future if the appropriate cleanup code can be added to the
4157     // VM_Exit VMOperation's doit method.
4158     if (atexit(perfMemory_exit_helper) != 0) {
4159       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4160     }
4161   }
4162 
4163 #ifndef _WIN64
4164   // Print something if NX is enabled (win32 on AMD64)
4165   NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
4166 #endif
4167 
4168   // initialize thread priority policy
4169   prio_init();
4170 
4171   if (UseNUMA && !ForceNUMA) {
4172     UseNUMA = false; // We don't fully support this yet
4173   }
4174 
4175   if (UseNUMAInterleaving) {
4176     // first check whether this Windows OS supports VirtualAllocExNuma, if not ignore this flag
4177     bool success = numa_interleaving_init();
4178     if (!success) UseNUMAInterleaving = false;
4179   }
4180 
4181   if (initSock() != JNI_OK) {
4182     return JNI_ERR;
4183   }
4184 
4185   return JNI_OK;
4186 }
4187 
4188 // Mark the polling page as unreadable
4189 void os::make_polling_page_unreadable(void) {
4190   DWORD old_status;
4191   if (!VirtualProtect((char *)_polling_page, os::vm_page_size(),
4192                       PAGE_NOACCESS, &old_status)) {
4193     fatal("Could not disable polling page");
4194   }
4195 }
4196 
4197 // Mark the polling page as readable
4198 void os::make_polling_page_readable(void) {
4199   DWORD old_status;
4200   if (!VirtualProtect((char *)_polling_page, os::vm_page_size(),
4201                       PAGE_READONLY, &old_status)) {
4202     fatal("Could not enable polling page");
4203   }
4204 }
4205 
4206 
4207 int os::stat(const char *path, struct stat *sbuf) {
4208   char pathbuf[MAX_PATH];
4209   if (strlen(path) > MAX_PATH - 1) {
4210     errno = ENAMETOOLONG;
4211     return -1;
4212   }
4213   os::native_path(strcpy(pathbuf, path));
4214   int ret = ::stat(pathbuf, sbuf);
4215   if (sbuf != NULL && UseUTCFileTimestamp) {
4216     // Fix for 6539723.  st_mtime returned from stat() is dependent on
4217     // the system timezone and so can return different values for the
4218     // same file if/when daylight savings time changes.  This adjustment
4219     // makes sure the same timestamp is returned regardless of the TZ.
4220     //
4221     // See:
4222     // http://msdn.microsoft.com/library/
4223     //   default.asp?url=/library/en-us/sysinfo/base/
4224     //   time_zone_information_str.asp
4225     // and
4226     // http://msdn.microsoft.com/library/default.asp?url=
4227     //   /library/en-us/sysinfo/base/settimezoneinformation.asp
4228     //
4229     // NOTE: there is a insidious bug here:  If the timezone is changed
4230     // after the call to stat() but before 'GetTimeZoneInformation()', then
4231     // the adjustment we do here will be wrong and we'll return the wrong
4232     // value (which will likely end up creating an invalid class data
4233     // archive).  Absent a better API for this, or some time zone locking
4234     // mechanism, we'll have to live with this risk.
4235     TIME_ZONE_INFORMATION tz;
4236     DWORD tzid = GetTimeZoneInformation(&tz);
4237     int daylightBias =
4238       (tzid == TIME_ZONE_ID_DAYLIGHT) ?  tz.DaylightBias : tz.StandardBias;
4239     sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
4240   }
4241   return ret;
4242 }
4243 
4244 
4245 #define FT2INT64(ft) \
4246   ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
4247 
4248 
4249 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4250 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
4251 // of a thread.
4252 //
4253 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4254 // the fast estimate available on the platform.
4255 
4256 // current_thread_cpu_time() is not optimized for Windows yet
4257 jlong os::current_thread_cpu_time() {
4258   // return user + sys since the cost is the same
4259   return os::thread_cpu_time(Thread::current(), true /* user+sys */);
4260 }
4261 
4262 jlong os::thread_cpu_time(Thread* thread) {
4263   // consistent with what current_thread_cpu_time() returns.
4264   return os::thread_cpu_time(thread, true /* user+sys */);
4265 }
4266 
4267 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4268   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4269 }
4270 
4271 jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
4272   // This code is copy from clasic VM -> hpi::sysThreadCPUTime
4273   // If this function changes, os::is_thread_cpu_time_supported() should too
4274   if (os::win32::is_nt()) {
4275     FILETIME CreationTime;
4276     FILETIME ExitTime;
4277     FILETIME KernelTime;
4278     FILETIME UserTime;
4279 
4280     if (GetThreadTimes(thread->osthread()->thread_handle(), &CreationTime,
4281                        &ExitTime, &KernelTime, &UserTime) == 0) {
4282       return -1;
4283     } else if (user_sys_cpu_time) {
4284       return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
4285     } else {
4286       return FT2INT64(UserTime) * 100;
4287     }
4288   } else {
4289     return (jlong) timeGetTime() * 1000000;
4290   }
4291 }
4292 
4293 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4294   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4295   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4296   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4297   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4298 }
4299 
4300 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4301   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4302   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4303   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4304   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4305 }
4306 
4307 bool os::is_thread_cpu_time_supported() {
4308   // see os::thread_cpu_time
4309   if (os::win32::is_nt()) {
4310     FILETIME CreationTime;
4311     FILETIME ExitTime;
4312     FILETIME KernelTime;
4313     FILETIME UserTime;
4314 
4315     if (GetThreadTimes(GetCurrentThread(), &CreationTime, &ExitTime,
4316                        &KernelTime, &UserTime) == 0) {
4317       return false;
4318     } else {
4319       return true;
4320     }
4321   } else {
4322     return false;
4323   }
4324 }
4325 
4326 // Windows does't provide a loadavg primitive so this is stubbed out for now.
4327 // It does have primitives (PDH API) to get CPU usage and run queue length.
4328 // "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
4329 // If we wanted to implement loadavg on Windows, we have a few options:
4330 //
4331 // a) Query CPU usage and run queue length and "fake" an answer by
4332 //    returning the CPU usage if it's under 100%, and the run queue
4333 //    length otherwise.  It turns out that querying is pretty slow
4334 //    on Windows, on the order of 200 microseconds on a fast machine.
4335 //    Note that on the Windows the CPU usage value is the % usage
4336 //    since the last time the API was called (and the first call
4337 //    returns 100%), so we'd have to deal with that as well.
4338 //
4339 // b) Sample the "fake" answer using a sampling thread and store
4340 //    the answer in a global variable.  The call to loadavg would
4341 //    just return the value of the global, avoiding the slow query.
4342 //
4343 // c) Sample a better answer using exponential decay to smooth the
4344 //    value.  This is basically the algorithm used by UNIX kernels.
4345 //
4346 // Note that sampling thread starvation could affect both (b) and (c).
4347 int os::loadavg(double loadavg[], int nelem) {
4348   return -1;
4349 }
4350 
4351 
4352 // DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
4353 bool os::dont_yield() {
4354   return DontYieldALot;
4355 }
4356 
4357 // This method is a slightly reworked copy of JDK's sysOpen
4358 // from src/windows/hpi/src/sys_api_md.c
4359 
4360 int os::open(const char *path, int oflag, int mode) {
4361   char pathbuf[MAX_PATH];
4362 
4363   if (strlen(path) > MAX_PATH - 1) {
4364     errno = ENAMETOOLONG;
4365     return -1;
4366   }
4367   os::native_path(strcpy(pathbuf, path));
4368   return ::open(pathbuf, oflag | O_BINARY | O_NOINHERIT, mode);
4369 }
4370 
4371 FILE* os::open(int fd, const char* mode) {
4372   return ::_fdopen(fd, mode);
4373 }
4374 
4375 // Is a (classpath) directory empty?
4376 bool os::dir_is_empty(const char* path) {
4377   WIN32_FIND_DATA fd;
4378   HANDLE f = FindFirstFile(path, &fd);
4379   if (f == INVALID_HANDLE_VALUE) {
4380     return true;
4381   }
4382   FindClose(f);
4383   return false;
4384 }
4385 
4386 // create binary file, rewriting existing file if required
4387 int os::create_binary_file(const char* path, bool rewrite_existing) {
4388   int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
4389   if (!rewrite_existing) {
4390     oflags |= _O_EXCL;
4391   }
4392   return ::open(path, oflags, _S_IREAD | _S_IWRITE);
4393 }
4394 
4395 // return current position of file pointer
4396 jlong os::current_file_offset(int fd) {
4397   return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
4398 }
4399 
4400 // move file pointer to the specified offset
4401 jlong os::seek_to_file_offset(int fd, jlong offset) {
4402   return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
4403 }
4404 
4405 
4406 jlong os::lseek(int fd, jlong offset, int whence) {
4407   return (jlong) ::_lseeki64(fd, offset, whence);
4408 }
4409 
4410 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
4411   OVERLAPPED ov;
4412   DWORD nread;
4413   BOOL result;
4414 
4415   ZeroMemory(&ov, sizeof(ov));
4416   ov.Offset = (DWORD)offset;
4417   ov.OffsetHigh = (DWORD)(offset >> 32);
4418 
4419   HANDLE h = (HANDLE)::_get_osfhandle(fd);
4420 
4421   result = ReadFile(h, (LPVOID)buf, nBytes, &nread, &ov);
4422 
4423   return result ? nread : 0;
4424 }
4425 
4426 
4427 // This method is a slightly reworked copy of JDK's sysNativePath
4428 // from src/windows/hpi/src/path_md.c
4429 
4430 // Convert a pathname to native format.  On win32, this involves forcing all
4431 // separators to be '\\' rather than '/' (both are legal inputs, but Win95
4432 // sometimes rejects '/') and removing redundant separators.  The input path is
4433 // assumed to have been converted into the character encoding used by the local
4434 // system.  Because this might be a double-byte encoding, care is taken to
4435 // treat double-byte lead characters correctly.
4436 //
4437 // This procedure modifies the given path in place, as the result is never
4438 // longer than the original.  There is no error return; this operation always
4439 // succeeds.
4440 char * os::native_path(char *path) {
4441   char *src = path, *dst = path, *end = path;
4442   char *colon = NULL;  // If a drive specifier is found, this will
4443                        // point to the colon following the drive letter
4444 
4445   // Assumption: '/', '\\', ':', and drive letters are never lead bytes
4446   assert(((!::IsDBCSLeadByte('/')) && (!::IsDBCSLeadByte('\\'))
4447           && (!::IsDBCSLeadByte(':'))), "Illegal lead byte");
4448 
4449   // Check for leading separators
4450 #define isfilesep(c) ((c) == '/' || (c) == '\\')
4451   while (isfilesep(*src)) {
4452     src++;
4453   }
4454 
4455   if (::isalpha(*src) && !::IsDBCSLeadByte(*src) && src[1] == ':') {
4456     // Remove leading separators if followed by drive specifier.  This
4457     // hack is necessary to support file URLs containing drive
4458     // specifiers (e.g., "file://c:/path").  As a side effect,
4459     // "/c:/path" can be used as an alternative to "c:/path".
4460     *dst++ = *src++;
4461     colon = dst;
4462     *dst++ = ':';
4463     src++;
4464   } else {
4465     src = path;
4466     if (isfilesep(src[0]) && isfilesep(src[1])) {
4467       // UNC pathname: Retain first separator; leave src pointed at
4468       // second separator so that further separators will be collapsed
4469       // into the second separator.  The result will be a pathname
4470       // beginning with "\\\\" followed (most likely) by a host name.
4471       src = dst = path + 1;
4472       path[0] = '\\';     // Force first separator to '\\'
4473     }
4474   }
4475 
4476   end = dst;
4477 
4478   // Remove redundant separators from remainder of path, forcing all
4479   // separators to be '\\' rather than '/'. Also, single byte space
4480   // characters are removed from the end of the path because those
4481   // are not legal ending characters on this operating system.
4482   //
4483   while (*src != '\0') {
4484     if (isfilesep(*src)) {
4485       *dst++ = '\\'; src++;
4486       while (isfilesep(*src)) src++;
4487       if (*src == '\0') {
4488         // Check for trailing separator
4489         end = dst;
4490         if (colon == dst - 2) break;  // "z:\\"
4491         if (dst == path + 1) break;   // "\\"
4492         if (dst == path + 2 && isfilesep(path[0])) {
4493           // "\\\\" is not collapsed to "\\" because "\\\\" marks the
4494           // beginning of a UNC pathname.  Even though it is not, by
4495           // itself, a valid UNC pathname, we leave it as is in order
4496           // to be consistent with the path canonicalizer as well
4497           // as the win32 APIs, which treat this case as an invalid
4498           // UNC pathname rather than as an alias for the root
4499           // directory of the current drive.
4500           break;
4501         }
4502         end = --dst;  // Path does not denote a root directory, so
4503                       // remove trailing separator
4504         break;
4505       }
4506       end = dst;
4507     } else {
4508       if (::IsDBCSLeadByte(*src)) {  // Copy a double-byte character
4509         *dst++ = *src++;
4510         if (*src) *dst++ = *src++;
4511         end = dst;
4512       } else {  // Copy a single-byte character
4513         char c = *src++;
4514         *dst++ = c;
4515         // Space is not a legal ending character
4516         if (c != ' ') end = dst;
4517       }
4518     }
4519   }
4520 
4521   *end = '\0';
4522 
4523   // For "z:", add "." to work around a bug in the C runtime library
4524   if (colon == dst - 1) {
4525     path[2] = '.';
4526     path[3] = '\0';
4527   }
4528 
4529   return path;
4530 }
4531 
4532 // This code is a copy of JDK's sysSetLength
4533 // from src/windows/hpi/src/sys_api_md.c
4534 
4535 int os::ftruncate(int fd, jlong length) {
4536   HANDLE h = (HANDLE)::_get_osfhandle(fd);
4537   long high = (long)(length >> 32);
4538   DWORD ret;
4539 
4540   if (h == (HANDLE)(-1)) {
4541     return -1;
4542   }
4543 
4544   ret = ::SetFilePointer(h, (long)(length), &high, FILE_BEGIN);
4545   if ((ret == 0xFFFFFFFF) && (::GetLastError() != NO_ERROR)) {
4546     return -1;
4547   }
4548 
4549   if (::SetEndOfFile(h) == FALSE) {
4550     return -1;
4551   }
4552 
4553   return 0;
4554 }
4555 
4556 
4557 // This code is a copy of JDK's sysSync
4558 // from src/windows/hpi/src/sys_api_md.c
4559 // except for the legacy workaround for a bug in Win 98
4560 
4561 int os::fsync(int fd) {
4562   HANDLE handle = (HANDLE)::_get_osfhandle(fd);
4563 
4564   if ((!::FlushFileBuffers(handle)) &&
4565       (GetLastError() != ERROR_ACCESS_DENIED)) {
4566     // from winerror.h
4567     return -1;
4568   }
4569   return 0;
4570 }
4571 
4572 static int nonSeekAvailable(int, long *);
4573 static int stdinAvailable(int, long *);
4574 
4575 #define S_ISCHR(mode)   (((mode) & _S_IFCHR) == _S_IFCHR)
4576 #define S_ISFIFO(mode)  (((mode) & _S_IFIFO) == _S_IFIFO)
4577 
4578 // This code is a copy of JDK's sysAvailable
4579 // from src/windows/hpi/src/sys_api_md.c
4580 
4581 int os::available(int fd, jlong *bytes) {
4582   jlong cur, end;
4583   struct _stati64 stbuf64;
4584 
4585   if (::_fstati64(fd, &stbuf64) >= 0) {
4586     int mode = stbuf64.st_mode;
4587     if (S_ISCHR(mode) || S_ISFIFO(mode)) {
4588       int ret;
4589       long lpbytes;
4590       if (fd == 0) {
4591         ret = stdinAvailable(fd, &lpbytes);
4592       } else {
4593         ret = nonSeekAvailable(fd, &lpbytes);
4594       }
4595       (*bytes) = (jlong)(lpbytes);
4596       return ret;
4597     }
4598     if ((cur = ::_lseeki64(fd, 0L, SEEK_CUR)) == -1) {
4599       return FALSE;
4600     } else if ((end = ::_lseeki64(fd, 0L, SEEK_END)) == -1) {
4601       return FALSE;
4602     } else if (::_lseeki64(fd, cur, SEEK_SET) == -1) {
4603       return FALSE;
4604     }
4605     *bytes = end - cur;
4606     return TRUE;
4607   } else {
4608     return FALSE;
4609   }
4610 }
4611 
4612 // This code is a copy of JDK's nonSeekAvailable
4613 // from src/windows/hpi/src/sys_api_md.c
4614 
4615 static int nonSeekAvailable(int fd, long *pbytes) {
4616   // This is used for available on non-seekable devices
4617   // (like both named and anonymous pipes, such as pipes
4618   //  connected to an exec'd process).
4619   // Standard Input is a special case.
4620   HANDLE han;
4621 
4622   if ((han = (HANDLE) ::_get_osfhandle(fd)) == (HANDLE)(-1)) {
4623     return FALSE;
4624   }
4625 
4626   if (! ::PeekNamedPipe(han, NULL, 0, NULL, (LPDWORD)pbytes, NULL)) {
4627     // PeekNamedPipe fails when at EOF.  In that case we
4628     // simply make *pbytes = 0 which is consistent with the
4629     // behavior we get on Solaris when an fd is at EOF.
4630     // The only alternative is to raise an Exception,
4631     // which isn't really warranted.
4632     //
4633     if (::GetLastError() != ERROR_BROKEN_PIPE) {
4634       return FALSE;
4635     }
4636     *pbytes = 0;
4637   }
4638   return TRUE;
4639 }
4640 
4641 #define MAX_INPUT_EVENTS 2000
4642 
4643 // This code is a copy of JDK's stdinAvailable
4644 // from src/windows/hpi/src/sys_api_md.c
4645 
4646 static int stdinAvailable(int fd, long *pbytes) {
4647   HANDLE han;
4648   DWORD numEventsRead = 0;  // Number of events read from buffer
4649   DWORD numEvents = 0;      // Number of events in buffer
4650   DWORD i = 0;              // Loop index
4651   DWORD curLength = 0;      // Position marker
4652   DWORD actualLength = 0;   // Number of bytes readable
4653   BOOL error = FALSE;       // Error holder
4654   INPUT_RECORD *lpBuffer;   // Pointer to records of input events
4655 
4656   if ((han = ::GetStdHandle(STD_INPUT_HANDLE)) == INVALID_HANDLE_VALUE) {
4657     return FALSE;
4658   }
4659 
4660   // Construct an array of input records in the console buffer
4661   error = ::GetNumberOfConsoleInputEvents(han, &numEvents);
4662   if (error == 0) {
4663     return nonSeekAvailable(fd, pbytes);
4664   }
4665 
4666   // lpBuffer must fit into 64K or else PeekConsoleInput fails
4667   if (numEvents > MAX_INPUT_EVENTS) {
4668     numEvents = MAX_INPUT_EVENTS;
4669   }
4670 
4671   lpBuffer = (INPUT_RECORD *)os::malloc(numEvents * sizeof(INPUT_RECORD), mtInternal);
4672   if (lpBuffer == NULL) {
4673     return FALSE;
4674   }
4675 
4676   error = ::PeekConsoleInput(han, lpBuffer, numEvents, &numEventsRead);
4677   if (error == 0) {
4678     os::free(lpBuffer);
4679     return FALSE;
4680   }
4681 
4682   // Examine input records for the number of bytes available
4683   for (i=0; i<numEvents; i++) {
4684     if (lpBuffer[i].EventType == KEY_EVENT) {
4685 
4686       KEY_EVENT_RECORD *keyRecord = (KEY_EVENT_RECORD *)
4687                                       &(lpBuffer[i].Event);
4688       if (keyRecord->bKeyDown == TRUE) {
4689         CHAR *keyPressed = (CHAR *) &(keyRecord->uChar);
4690         curLength++;
4691         if (*keyPressed == '\r') {
4692           actualLength = curLength;
4693         }
4694       }
4695     }
4696   }
4697 
4698   if (lpBuffer != NULL) {
4699     os::free(lpBuffer);
4700   }
4701 
4702   *pbytes = (long) actualLength;
4703   return TRUE;
4704 }
4705 
4706 // Map a block of memory.
4707 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4708                         char *addr, size_t bytes, bool read_only,
4709                         bool allow_exec) {
4710   HANDLE hFile;
4711   char* base;
4712 
4713   hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
4714                      OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
4715   if (hFile == NULL) {
4716     if (PrintMiscellaneous && Verbose) {
4717       DWORD err = GetLastError();
4718       tty->print_cr("CreateFile() failed: GetLastError->%ld.", err);
4719     }
4720     return NULL;
4721   }
4722 
4723   if (allow_exec) {
4724     // CreateFileMapping/MapViewOfFileEx can't map executable memory
4725     // unless it comes from a PE image (which the shared archive is not.)
4726     // Even VirtualProtect refuses to give execute access to mapped memory
4727     // that was not previously executable.
4728     //
4729     // Instead, stick the executable region in anonymous memory.  Yuck.
4730     // Penalty is that ~4 pages will not be shareable - in the future
4731     // we might consider DLLizing the shared archive with a proper PE
4732     // header so that mapping executable + sharing is possible.
4733 
4734     base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
4735                                 PAGE_READWRITE);
4736     if (base == NULL) {
4737       if (PrintMiscellaneous && Verbose) {
4738         DWORD err = GetLastError();
4739         tty->print_cr("VirtualAlloc() failed: GetLastError->%ld.", err);
4740       }
4741       CloseHandle(hFile);
4742       return NULL;
4743     }
4744 
4745     DWORD bytes_read;
4746     OVERLAPPED overlapped;
4747     overlapped.Offset = (DWORD)file_offset;
4748     overlapped.OffsetHigh = 0;
4749     overlapped.hEvent = NULL;
4750     // ReadFile guarantees that if the return value is true, the requested
4751     // number of bytes were read before returning.
4752     bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
4753     if (!res) {
4754       if (PrintMiscellaneous && Verbose) {
4755         DWORD err = GetLastError();
4756         tty->print_cr("ReadFile() failed: GetLastError->%ld.", err);
4757       }
4758       release_memory(base, bytes);
4759       CloseHandle(hFile);
4760       return NULL;
4761     }
4762   } else {
4763     HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
4764                                     NULL /* file_name */);
4765     if (hMap == NULL) {
4766       if (PrintMiscellaneous && Verbose) {
4767         DWORD err = GetLastError();
4768         tty->print_cr("CreateFileMapping() failed: GetLastError->%ld.", err);
4769       }
4770       CloseHandle(hFile);
4771       return NULL;
4772     }
4773 
4774     DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
4775     base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
4776                                   (DWORD)bytes, addr);
4777     if (base == NULL) {
4778       if (PrintMiscellaneous && Verbose) {
4779         DWORD err = GetLastError();
4780         tty->print_cr("MapViewOfFileEx() failed: GetLastError->%ld.", err);
4781       }
4782       CloseHandle(hMap);
4783       CloseHandle(hFile);
4784       return NULL;
4785     }
4786 
4787     if (CloseHandle(hMap) == 0) {
4788       if (PrintMiscellaneous && Verbose) {
4789         DWORD err = GetLastError();
4790         tty->print_cr("CloseHandle(hMap) failed: GetLastError->%ld.", err);
4791       }
4792       CloseHandle(hFile);
4793       return base;
4794     }
4795   }
4796 
4797   if (allow_exec) {
4798     DWORD old_protect;
4799     DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
4800     bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
4801 
4802     if (!res) {
4803       if (PrintMiscellaneous && Verbose) {
4804         DWORD err = GetLastError();
4805         tty->print_cr("VirtualProtect() failed: GetLastError->%ld.", err);
4806       }
4807       // Don't consider this a hard error, on IA32 even if the
4808       // VirtualProtect fails, we should still be able to execute
4809       CloseHandle(hFile);
4810       return base;
4811     }
4812   }
4813 
4814   if (CloseHandle(hFile) == 0) {
4815     if (PrintMiscellaneous && Verbose) {
4816       DWORD err = GetLastError();
4817       tty->print_cr("CloseHandle(hFile) failed: GetLastError->%ld.", err);
4818     }
4819     return base;
4820   }
4821 
4822   return base;
4823 }
4824 
4825 
4826 // Remap a block of memory.
4827 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4828                           char *addr, size_t bytes, bool read_only,
4829                           bool allow_exec) {
4830   // This OS does not allow existing memory maps to be remapped so we
4831   // have to unmap the memory before we remap it.
4832   if (!os::unmap_memory(addr, bytes)) {
4833     return NULL;
4834   }
4835 
4836   // There is a very small theoretical window between the unmap_memory()
4837   // call above and the map_memory() call below where a thread in native
4838   // code may be able to access an address that is no longer mapped.
4839 
4840   return os::map_memory(fd, file_name, file_offset, addr, bytes,
4841                         read_only, allow_exec);
4842 }
4843 
4844 
4845 // Unmap a block of memory.
4846 // Returns true=success, otherwise false.
4847 
4848 bool os::pd_unmap_memory(char* addr, size_t bytes) {
4849   BOOL result = UnmapViewOfFile(addr);
4850   if (result == 0) {
4851     if (PrintMiscellaneous && Verbose) {
4852       DWORD err = GetLastError();
4853       tty->print_cr("UnmapViewOfFile() failed: GetLastError->%ld.", err);
4854     }
4855     return false;
4856   }
4857   return true;
4858 }
4859 
4860 void os::pause() {
4861   char filename[MAX_PATH];
4862   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4863     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4864   } else {
4865     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4866   }
4867 
4868   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4869   if (fd != -1) {
4870     struct stat buf;
4871     ::close(fd);
4872     while (::stat(filename, &buf) == 0) {
4873       Sleep(100);
4874     }
4875   } else {
4876     jio_fprintf(stderr,
4877                 "Could not open pause file '%s', continuing immediately.\n", filename);
4878   }
4879 }
4880 
4881 os::WatcherThreadCrashProtection::WatcherThreadCrashProtection() {
4882   assert(Thread::current()->is_Watcher_thread(), "Must be WatcherThread");
4883 }
4884 
4885 // See the caveats for this class in os_windows.hpp
4886 // Protects the callback call so that raised OS EXCEPTIONS causes a jump back
4887 // into this method and returns false. If no OS EXCEPTION was raised, returns
4888 // true.
4889 // The callback is supposed to provide the method that should be protected.
4890 //
4891 bool os::WatcherThreadCrashProtection::call(os::CrashProtectionCallback& cb) {
4892   assert(Thread::current()->is_Watcher_thread(), "Only for WatcherThread");
4893   assert(!WatcherThread::watcher_thread()->has_crash_protection(),
4894          "crash_protection already set?");
4895 
4896   bool success = true;
4897   __try {
4898     WatcherThread::watcher_thread()->set_crash_protection(this);
4899     cb.call();
4900   } __except(EXCEPTION_EXECUTE_HANDLER) {
4901     // only for protection, nothing to do
4902     success = false;
4903   }
4904   WatcherThread::watcher_thread()->set_crash_protection(NULL);
4905   return success;
4906 }
4907 
4908 // An Event wraps a win32 "CreateEvent" kernel handle.
4909 //
4910 // We have a number of choices regarding "CreateEvent" win32 handle leakage:
4911 //
4912 // 1:  When a thread dies return the Event to the EventFreeList, clear the ParkHandle
4913 //     field, and call CloseHandle() on the win32 event handle.  Unpark() would
4914 //     need to be modified to tolerate finding a NULL (invalid) win32 event handle.
4915 //     In addition, an unpark() operation might fetch the handle field, but the
4916 //     event could recycle between the fetch and the SetEvent() operation.
4917 //     SetEvent() would either fail because the handle was invalid, or inadvertently work,
4918 //     as the win32 handle value had been recycled.  In an ideal world calling SetEvent()
4919 //     on an stale but recycled handle would be harmless, but in practice this might
4920 //     confuse other non-Sun code, so it's not a viable approach.
4921 //
4922 // 2:  Once a win32 event handle is associated with an Event, it remains associated
4923 //     with the Event.  The event handle is never closed.  This could be construed
4924 //     as handle leakage, but only up to the maximum # of threads that have been extant
4925 //     at any one time.  This shouldn't be an issue, as windows platforms typically
4926 //     permit a process to have hundreds of thousands of open handles.
4927 //
4928 // 3:  Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
4929 //     and release unused handles.
4930 //
4931 // 4:  Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
4932 //     It's not clear, however, that we wouldn't be trading one type of leak for another.
4933 //
4934 // 5.  Use an RCU-like mechanism (Read-Copy Update).
4935 //     Or perhaps something similar to Maged Michael's "Hazard pointers".
4936 //
4937 // We use (2).
4938 //
4939 // TODO-FIXME:
4940 // 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
4941 // 2.  Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
4942 //     to recover from (or at least detect) the dreaded Windows 841176 bug.
4943 // 3.  Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
4944 //     into a single win32 CreateEvent() handle.
4945 //
4946 // Assumption:
4947 //    Only one parker can exist on an event, which is why we allocate
4948 //    them per-thread. Multiple unparkers can coexist.
4949 //
4950 // _Event transitions in park()
4951 //   -1 => -1 : illegal
4952 //    1 =>  0 : pass - return immediately
4953 //    0 => -1 : block; then set _Event to 0 before returning
4954 //
4955 // _Event transitions in unpark()
4956 //    0 => 1 : just return
4957 //    1 => 1 : just return
4958 //   -1 => either 0 or 1; must signal target thread
4959 //         That is, we can safely transition _Event from -1 to either
4960 //         0 or 1.
4961 //
4962 // _Event serves as a restricted-range semaphore.
4963 //   -1 : thread is blocked, i.e. there is a waiter
4964 //    0 : neutral: thread is running or ready,
4965 //        could have been signaled after a wait started
4966 //    1 : signaled - thread is running or ready
4967 //
4968 // Another possible encoding of _Event would be with
4969 // explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
4970 //
4971 
4972 int os::PlatformEvent::park(jlong Millis) {
4973   // Transitions for _Event:
4974   //   -1 => -1 : illegal
4975   //    1 =>  0 : pass - return immediately
4976   //    0 => -1 : block; then set _Event to 0 before returning
4977 
4978   guarantee(_ParkHandle != NULL , "Invariant");
4979   guarantee(Millis > 0          , "Invariant");
4980 
4981   // CONSIDER: defer assigning a CreateEvent() handle to the Event until
4982   // the initial park() operation.
4983   // Consider: use atomic decrement instead of CAS-loop
4984 
4985   int v;
4986   for (;;) {
4987     v = _Event;
4988     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
4989   }
4990   guarantee((v == 0) || (v == 1), "invariant");
4991   if (v != 0) return OS_OK;
4992 
4993   // Do this the hard way by blocking ...
4994   // TODO: consider a brief spin here, gated on the success of recent
4995   // spin attempts by this thread.
4996   //
4997   // We decompose long timeouts into series of shorter timed waits.
4998   // Evidently large timo values passed in WaitForSingleObject() are problematic on some
4999   // versions of Windows.  See EventWait() for details.  This may be superstition.  Or not.
5000   // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
5001   // with os::javaTimeNanos().  Furthermore, we assume that spurious returns from
5002   // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
5003   // to happen early in the wait interval.  Specifically, after a spurious wakeup (rv ==
5004   // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
5005   // for the already waited time.  This policy does not admit any new outcomes.
5006   // In the future, however, we might want to track the accumulated wait time and
5007   // adjust Millis accordingly if we encounter a spurious wakeup.
5008 
5009   const int MAXTIMEOUT = 0x10000000;
5010   DWORD rv = WAIT_TIMEOUT;
5011   while (_Event < 0 && Millis > 0) {
5012     DWORD prd = Millis;     // set prd = MAX (Millis, MAXTIMEOUT)
5013     if (Millis > MAXTIMEOUT) {
5014       prd = MAXTIMEOUT;
5015     }
5016     rv = ::WaitForSingleObject(_ParkHandle, prd);
5017     assert(rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed");
5018     if (rv == WAIT_TIMEOUT) {
5019       Millis -= prd;
5020     }
5021   }
5022   v = _Event;
5023   _Event = 0;
5024   // see comment at end of os::PlatformEvent::park() below:
5025   OrderAccess::fence();
5026   // If we encounter a nearly simultanous timeout expiry and unpark()
5027   // we return OS_OK indicating we awoke via unpark().
5028   // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
5029   return (v >= 0) ? OS_OK : OS_TIMEOUT;
5030 }
5031 
5032 void os::PlatformEvent::park() {
5033   // Transitions for _Event:
5034   //   -1 => -1 : illegal
5035   //    1 =>  0 : pass - return immediately
5036   //    0 => -1 : block; then set _Event to 0 before returning
5037 
5038   guarantee(_ParkHandle != NULL, "Invariant");
5039   // Invariant: Only the thread associated with the Event/PlatformEvent
5040   // may call park().
5041   // Consider: use atomic decrement instead of CAS-loop
5042   int v;
5043   for (;;) {
5044     v = _Event;
5045     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5046   }
5047   guarantee((v == 0) || (v == 1), "invariant");
5048   if (v != 0) return;
5049 
5050   // Do this the hard way by blocking ...
5051   // TODO: consider a brief spin here, gated on the success of recent
5052   // spin attempts by this thread.
5053   while (_Event < 0) {
5054     DWORD rv = ::WaitForSingleObject(_ParkHandle, INFINITE);
5055     assert(rv == WAIT_OBJECT_0, "WaitForSingleObject failed");
5056   }
5057 
5058   // Usually we'll find _Event == 0 at this point, but as
5059   // an optional optimization we clear it, just in case can
5060   // multiple unpark() operations drove _Event up to 1.
5061   _Event = 0;
5062   OrderAccess::fence();
5063   guarantee(_Event >= 0, "invariant");
5064 }
5065 
5066 void os::PlatformEvent::unpark() {
5067   guarantee(_ParkHandle != NULL, "Invariant");
5068 
5069   // Transitions for _Event:
5070   //    0 => 1 : just return
5071   //    1 => 1 : just return
5072   //   -1 => either 0 or 1; must signal target thread
5073   //         That is, we can safely transition _Event from -1 to either
5074   //         0 or 1.
5075   // See also: "Semaphores in Plan 9" by Mullender & Cox
5076   //
5077   // Note: Forcing a transition from "-1" to "1" on an unpark() means
5078   // that it will take two back-to-back park() calls for the owning
5079   // thread to block. This has the benefit of forcing a spurious return
5080   // from the first park() call after an unpark() call which will help
5081   // shake out uses of park() and unpark() without condition variables.
5082 
5083   if (Atomic::xchg(1, &_Event) >= 0) return;
5084 
5085   ::SetEvent(_ParkHandle);
5086 }
5087 
5088 
5089 // JSR166
5090 // -------------------------------------------------------
5091 
5092 // The Windows implementation of Park is very straightforward: Basic
5093 // operations on Win32 Events turn out to have the right semantics to
5094 // use them directly. We opportunistically resuse the event inherited
5095 // from Monitor.
5096 
5097 void Parker::park(bool isAbsolute, jlong time) {
5098   guarantee(_ParkEvent != NULL, "invariant");
5099   // First, demultiplex/decode time arguments
5100   if (time < 0) { // don't wait
5101     return;
5102   } else if (time == 0 && !isAbsolute) {
5103     time = INFINITE;
5104   } else if (isAbsolute) {
5105     time -= os::javaTimeMillis(); // convert to relative time
5106     if (time <= 0) {  // already elapsed
5107       return;
5108     }
5109   } else { // relative
5110     time /= 1000000;  // Must coarsen from nanos to millis
5111     if (time == 0) {  // Wait for the minimal time unit if zero
5112       time = 1;
5113     }
5114   }
5115 
5116   JavaThread* thread = (JavaThread*)(Thread::current());
5117   assert(thread->is_Java_thread(), "Must be JavaThread");
5118   JavaThread *jt = (JavaThread *)thread;
5119 
5120   // Don't wait if interrupted or already triggered
5121   if (Thread::is_interrupted(thread, false) ||
5122       WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
5123     ResetEvent(_ParkEvent);
5124     return;
5125   } else {
5126     ThreadBlockInVM tbivm(jt);
5127     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5128     jt->set_suspend_equivalent();
5129 
5130     WaitForSingleObject(_ParkEvent, time);
5131     ResetEvent(_ParkEvent);
5132 
5133     // If externally suspended while waiting, re-suspend
5134     if (jt->handle_special_suspend_equivalent_condition()) {
5135       jt->java_suspend_self();
5136     }
5137   }
5138 }
5139 
5140 void Parker::unpark() {
5141   guarantee(_ParkEvent != NULL, "invariant");
5142   SetEvent(_ParkEvent);
5143 }
5144 
5145 // Run the specified command in a separate process. Return its exit value,
5146 // or -1 on failure (e.g. can't create a new process).
5147 int os::fork_and_exec(char* cmd) {
5148   STARTUPINFO si;
5149   PROCESS_INFORMATION pi;
5150 
5151   memset(&si, 0, sizeof(si));
5152   si.cb = sizeof(si);
5153   memset(&pi, 0, sizeof(pi));
5154   BOOL rslt = CreateProcess(NULL,   // executable name - use command line
5155                             cmd,    // command line
5156                             NULL,   // process security attribute
5157                             NULL,   // thread security attribute
5158                             TRUE,   // inherits system handles
5159                             0,      // no creation flags
5160                             NULL,   // use parent's environment block
5161                             NULL,   // use parent's starting directory
5162                             &si,    // (in) startup information
5163                             &pi);   // (out) process information
5164 
5165   if (rslt) {
5166     // Wait until child process exits.
5167     WaitForSingleObject(pi.hProcess, INFINITE);
5168 
5169     DWORD exit_code;
5170     GetExitCodeProcess(pi.hProcess, &exit_code);
5171 
5172     // Close process and thread handles.
5173     CloseHandle(pi.hProcess);
5174     CloseHandle(pi.hThread);
5175 
5176     return (int)exit_code;
5177   } else {
5178     return -1;
5179   }
5180 }
5181 
5182 //--------------------------------------------------------------------------------------------------
5183 // Non-product code
5184 
5185 static int mallocDebugIntervalCounter = 0;
5186 static int mallocDebugCounter = 0;
5187 bool os::check_heap(bool force) {
5188   if (++mallocDebugCounter < MallocVerifyStart && !force) return true;
5189   if (++mallocDebugIntervalCounter >= MallocVerifyInterval || force) {
5190     // Note: HeapValidate executes two hardware breakpoints when it finds something
5191     // wrong; at these points, eax contains the address of the offending block (I think).
5192     // To get to the exlicit error message(s) below, just continue twice.
5193     HANDLE heap = GetProcessHeap();
5194 
5195     // If we fail to lock the heap, then gflags.exe has been used
5196     // or some other special heap flag has been set that prevents
5197     // locking. We don't try to walk a heap we can't lock.
5198     if (HeapLock(heap) != 0) {
5199       PROCESS_HEAP_ENTRY phe;
5200       phe.lpData = NULL;
5201       while (HeapWalk(heap, &phe) != 0) {
5202         if ((phe.wFlags & PROCESS_HEAP_ENTRY_BUSY) &&
5203             !HeapValidate(heap, 0, phe.lpData)) {
5204           tty->print_cr("C heap has been corrupted (time: %d allocations)", mallocDebugCounter);
5205           tty->print_cr("corrupted block near address %#x, length %d", phe.lpData, phe.cbData);
5206           fatal("corrupted C heap");
5207         }
5208       }
5209       DWORD err = GetLastError();
5210       if (err != ERROR_NO_MORE_ITEMS && err != ERROR_CALL_NOT_IMPLEMENTED) {
5211         fatal(err_msg("heap walk aborted with error %d", err));
5212       }
5213       HeapUnlock(heap);
5214     }
5215     mallocDebugIntervalCounter = 0;
5216   }
5217   return true;
5218 }
5219 
5220 
5221 bool os::find(address addr, outputStream* st) {
5222   // Nothing yet
5223   return false;
5224 }
5225 
5226 LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
5227   DWORD exception_code = e->ExceptionRecord->ExceptionCode;
5228 
5229   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
5230     JavaThread* thread = (JavaThread*)ThreadLocalStorage::get_thread_slow();
5231     PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
5232     address addr = (address) exceptionRecord->ExceptionInformation[1];
5233 
5234     if (os::is_memory_serialize_page(thread, addr)) {
5235       return EXCEPTION_CONTINUE_EXECUTION;
5236     }
5237   }
5238 
5239   return EXCEPTION_CONTINUE_SEARCH;
5240 }
5241 
5242 // We don't build a headless jre for Windows
5243 bool os::is_headless_jre() { return false; }
5244 
5245 static jint initSock() {
5246   WSADATA wsadata;
5247 
5248   if (!os::WinSock2Dll::WinSock2Available()) {
5249     jio_fprintf(stderr, "Could not load Winsock (error: %d)\n",
5250                 ::GetLastError());
5251     return JNI_ERR;
5252   }
5253 
5254   if (os::WinSock2Dll::WSAStartup(MAKEWORD(2,2), &wsadata) != 0) {
5255     jio_fprintf(stderr, "Could not initialize Winsock (error: %d)\n",
5256                 ::GetLastError());
5257     return JNI_ERR;
5258   }
5259   return JNI_OK;
5260 }
5261 
5262 struct hostent* os::get_host_by_name(char* name) {
5263   return (struct hostent*)os::WinSock2Dll::gethostbyname(name);
5264 }
5265 
5266 int os::socket_close(int fd) {
5267   return ::closesocket(fd);
5268 }
5269 
5270 int os::socket(int domain, int type, int protocol) {
5271   return ::socket(domain, type, protocol);
5272 }
5273 
5274 int os::connect(int fd, struct sockaddr* him, socklen_t len) {
5275   return ::connect(fd, him, len);
5276 }
5277 
5278 int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
5279   return ::recv(fd, buf, (int)nBytes, flags);
5280 }
5281 
5282 int os::send(int fd, char* buf, size_t nBytes, uint flags) {
5283   return ::send(fd, buf, (int)nBytes, flags);
5284 }
5285 
5286 int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
5287   return ::send(fd, buf, (int)nBytes, flags);
5288 }
5289 
5290 // WINDOWS CONTEXT Flags for THREAD_SAMPLING
5291 #if defined(IA32)
5292   #define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT | CONTEXT_EXTENDED_REGISTERS)
5293 #elif defined (AMD64)
5294   #define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT)
5295 #endif
5296 
5297 // returns true if thread could be suspended,
5298 // false otherwise
5299 static bool do_suspend(HANDLE* h) {
5300   if (h != NULL) {
5301     if (SuspendThread(*h) != ~0) {
5302       return true;
5303     }
5304   }
5305   return false;
5306 }
5307 
5308 // resume the thread
5309 // calling resume on an active thread is a no-op
5310 static void do_resume(HANDLE* h) {
5311   if (h != NULL) {
5312     ResumeThread(*h);
5313   }
5314 }
5315 
5316 // retrieve a suspend/resume context capable handle
5317 // from the tid. Caller validates handle return value.
5318 void get_thread_handle_for_extended_context(HANDLE* h,
5319                                             OSThread::thread_id_t tid) {
5320   if (h != NULL) {
5321     *h = OpenThread(THREAD_SUSPEND_RESUME | THREAD_GET_CONTEXT | THREAD_QUERY_INFORMATION, FALSE, tid);
5322   }
5323 }
5324 
5325 // Thread sampling implementation
5326 //
5327 void os::SuspendedThreadTask::internal_do_task() {
5328   CONTEXT    ctxt;
5329   HANDLE     h = NULL;
5330 
5331   // get context capable handle for thread
5332   get_thread_handle_for_extended_context(&h, _thread->osthread()->thread_id());
5333 
5334   // sanity
5335   if (h == NULL || h == INVALID_HANDLE_VALUE) {
5336     return;
5337   }
5338 
5339   // suspend the thread
5340   if (do_suspend(&h)) {
5341     ctxt.ContextFlags = sampling_context_flags;
5342     // get thread context
5343     GetThreadContext(h, &ctxt);
5344     SuspendedThreadTaskContext context(_thread, &ctxt);
5345     // pass context to Thread Sampling impl
5346     do_task(context);
5347     // resume thread
5348     do_resume(&h);
5349   }
5350 
5351   // close handle
5352   CloseHandle(h);
5353 }
5354 
5355 
5356 // Kernel32 API
5357 typedef SIZE_T (WINAPI* GetLargePageMinimum_Fn)(void);
5358 typedef LPVOID (WINAPI *VirtualAllocExNuma_Fn)(HANDLE, LPVOID, SIZE_T, DWORD, DWORD, DWORD);
5359 typedef BOOL (WINAPI *GetNumaHighestNodeNumber_Fn)(PULONG);
5360 typedef BOOL (WINAPI *GetNumaNodeProcessorMask_Fn)(UCHAR, PULONGLONG);
5361 typedef USHORT (WINAPI* RtlCaptureStackBackTrace_Fn)(ULONG, ULONG, PVOID*, PULONG);
5362 
5363 GetLargePageMinimum_Fn      os::Kernel32Dll::_GetLargePageMinimum = NULL;
5364 VirtualAllocExNuma_Fn       os::Kernel32Dll::_VirtualAllocExNuma = NULL;
5365 GetNumaHighestNodeNumber_Fn os::Kernel32Dll::_GetNumaHighestNodeNumber = NULL;
5366 GetNumaNodeProcessorMask_Fn os::Kernel32Dll::_GetNumaNodeProcessorMask = NULL;
5367 RtlCaptureStackBackTrace_Fn os::Kernel32Dll::_RtlCaptureStackBackTrace = NULL;
5368 
5369 
5370 BOOL                        os::Kernel32Dll::initialized = FALSE;
5371 SIZE_T os::Kernel32Dll::GetLargePageMinimum() {
5372   assert(initialized && _GetLargePageMinimum != NULL,
5373          "GetLargePageMinimumAvailable() not yet called");
5374   return _GetLargePageMinimum();
5375 }
5376 
5377 BOOL os::Kernel32Dll::GetLargePageMinimumAvailable() {
5378   if (!initialized) {
5379     initialize();
5380   }
5381   return _GetLargePageMinimum != NULL;
5382 }
5383 
5384 BOOL os::Kernel32Dll::NumaCallsAvailable() {
5385   if (!initialized) {
5386     initialize();
5387   }
5388   return _VirtualAllocExNuma != NULL;
5389 }
5390 
5391 LPVOID os::Kernel32Dll::VirtualAllocExNuma(HANDLE hProc, LPVOID addr,
5392                                            SIZE_T bytes, DWORD flags,
5393                                            DWORD prot, DWORD node) {
5394   assert(initialized && _VirtualAllocExNuma != NULL,
5395          "NUMACallsAvailable() not yet called");
5396 
5397   return _VirtualAllocExNuma(hProc, addr, bytes, flags, prot, node);
5398 }
5399 
5400 BOOL os::Kernel32Dll::GetNumaHighestNodeNumber(PULONG ptr_highest_node_number) {
5401   assert(initialized && _GetNumaHighestNodeNumber != NULL,
5402          "NUMACallsAvailable() not yet called");
5403 
5404   return _GetNumaHighestNodeNumber(ptr_highest_node_number);
5405 }
5406 
5407 BOOL os::Kernel32Dll::GetNumaNodeProcessorMask(UCHAR node,
5408                                                PULONGLONG proc_mask) {
5409   assert(initialized && _GetNumaNodeProcessorMask != NULL,
5410          "NUMACallsAvailable() not yet called");
5411 
5412   return _GetNumaNodeProcessorMask(node, proc_mask);
5413 }
5414 
5415 USHORT os::Kernel32Dll::RtlCaptureStackBackTrace(ULONG FrameToSkip,
5416                                                  ULONG FrameToCapture,
5417                                                  PVOID* BackTrace,
5418                                                  PULONG BackTraceHash) {
5419   if (!initialized) {
5420     initialize();
5421   }
5422 
5423   if (_RtlCaptureStackBackTrace != NULL) {
5424     return _RtlCaptureStackBackTrace(FrameToSkip, FrameToCapture,
5425                                      BackTrace, BackTraceHash);
5426   } else {
5427     return 0;
5428   }
5429 }
5430 
5431 void os::Kernel32Dll::initializeCommon() {
5432   if (!initialized) {
5433     HMODULE handle = ::GetModuleHandle("Kernel32.dll");
5434     assert(handle != NULL, "Just check");
5435     _GetLargePageMinimum = (GetLargePageMinimum_Fn)::GetProcAddress(handle, "GetLargePageMinimum");
5436     _VirtualAllocExNuma = (VirtualAllocExNuma_Fn)::GetProcAddress(handle, "VirtualAllocExNuma");
5437     _GetNumaHighestNodeNumber = (GetNumaHighestNodeNumber_Fn)::GetProcAddress(handle, "GetNumaHighestNodeNumber");
5438     _GetNumaNodeProcessorMask = (GetNumaNodeProcessorMask_Fn)::GetProcAddress(handle, "GetNumaNodeProcessorMask");
5439     _RtlCaptureStackBackTrace = (RtlCaptureStackBackTrace_Fn)::GetProcAddress(handle, "RtlCaptureStackBackTrace");
5440     initialized = TRUE;
5441   }
5442 }
5443 
5444 
5445 
5446 #ifndef JDK6_OR_EARLIER
5447 
5448 void os::Kernel32Dll::initialize() {
5449   initializeCommon();
5450 }
5451 
5452 
5453 // Kernel32 API
5454 inline BOOL os::Kernel32Dll::SwitchToThread() {
5455   return ::SwitchToThread();
5456 }
5457 
5458 inline BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
5459   return true;
5460 }
5461 
5462 // Help tools
5463 inline BOOL os::Kernel32Dll::HelpToolsAvailable() {
5464   return true;
5465 }
5466 
5467 inline HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,
5468                                                         DWORD th32ProcessId) {
5469   return ::CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
5470 }
5471 
5472 inline BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,
5473                                            LPMODULEENTRY32 lpme) {
5474   return ::Module32First(hSnapshot, lpme);
5475 }
5476 
5477 inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,
5478                                           LPMODULEENTRY32 lpme) {
5479   return ::Module32Next(hSnapshot, lpme);
5480 }
5481 
5482 inline void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
5483   ::GetNativeSystemInfo(lpSystemInfo);
5484 }
5485 
5486 // PSAPI API
5487 inline BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess,
5488                                              HMODULE *lpModule, DWORD cb,
5489                                              LPDWORD lpcbNeeded) {
5490   return ::EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
5491 }
5492 
5493 inline DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess,
5494                                                HMODULE hModule,
5495                                                LPTSTR lpFilename,
5496                                                DWORD nSize) {
5497   return ::GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
5498 }
5499 
5500 inline BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess,
5501                                                HMODULE hModule,
5502                                                LPMODULEINFO lpmodinfo,
5503                                                DWORD cb) {
5504   return ::GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
5505 }
5506 
5507 inline BOOL os::PSApiDll::PSApiAvailable() {
5508   return true;
5509 }
5510 
5511 
5512 // WinSock2 API
5513 inline BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested,
5514                                         LPWSADATA lpWSAData) {
5515   return ::WSAStartup(wVersionRequested, lpWSAData);
5516 }
5517 
5518 inline struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
5519   return ::gethostbyname(name);
5520 }
5521 
5522 inline BOOL os::WinSock2Dll::WinSock2Available() {
5523   return true;
5524 }
5525 
5526 // Advapi API
5527 inline BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
5528                                                    BOOL DisableAllPrivileges,
5529                                                    PTOKEN_PRIVILEGES NewState,
5530                                                    DWORD BufferLength,
5531                                                    PTOKEN_PRIVILEGES PreviousState,
5532                                                    PDWORD ReturnLength) {
5533   return ::AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
5534                                  BufferLength, PreviousState, ReturnLength);
5535 }
5536 
5537 inline BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle,
5538                                               DWORD DesiredAccess,
5539                                               PHANDLE TokenHandle) {
5540   return ::OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
5541 }
5542 
5543 inline BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName,
5544                                                   LPCTSTR lpName,
5545                                                   PLUID lpLuid) {
5546   return ::LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
5547 }
5548 
5549 inline BOOL os::Advapi32Dll::AdvapiAvailable() {
5550   return true;
5551 }
5552 
5553 void* os::get_default_process_handle() {
5554   return (void*)GetModuleHandle(NULL);
5555 }
5556 
5557 // Builds a platform dependent Agent_OnLoad_<lib_name> function name
5558 // which is used to find statically linked in agents.
5559 // Additionally for windows, takes into account __stdcall names.
5560 // Parameters:
5561 //            sym_name: Symbol in library we are looking for
5562 //            lib_name: Name of library to look in, NULL for shared libs.
5563 //            is_absolute_path == true if lib_name is absolute path to agent
5564 //                                     such as "C:/a/b/L.dll"
5565 //            == false if only the base name of the library is passed in
5566 //               such as "L"
5567 char* os::build_agent_function_name(const char *sym_name, const char *lib_name,
5568                                     bool is_absolute_path) {
5569   char *agent_entry_name;
5570   size_t len;
5571   size_t name_len;
5572   size_t prefix_len = strlen(JNI_LIB_PREFIX);
5573   size_t suffix_len = strlen(JNI_LIB_SUFFIX);
5574   const char *start;
5575 
5576   if (lib_name != NULL) {
5577     len = name_len = strlen(lib_name);
5578     if (is_absolute_path) {
5579       // Need to strip path, prefix and suffix
5580       if ((start = strrchr(lib_name, *os::file_separator())) != NULL) {
5581         lib_name = ++start;
5582       } else {
5583         // Need to check for drive prefix
5584         if ((start = strchr(lib_name, ':')) != NULL) {
5585           lib_name = ++start;
5586         }
5587       }
5588       if (len <= (prefix_len + suffix_len)) {
5589         return NULL;
5590       }
5591       lib_name += prefix_len;
5592       name_len = strlen(lib_name) - suffix_len;
5593     }
5594   }
5595   len = (lib_name != NULL ? name_len : 0) + strlen(sym_name) + 2;
5596   agent_entry_name = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len, mtThread);
5597   if (agent_entry_name == NULL) {
5598     return NULL;
5599   }
5600   if (lib_name != NULL) {
5601     const char *p = strrchr(sym_name, '@');
5602     if (p != NULL && p != sym_name) {
5603       // sym_name == _Agent_OnLoad@XX
5604       strncpy(agent_entry_name, sym_name, (p - sym_name));
5605       agent_entry_name[(p-sym_name)] = '\0';
5606       // agent_entry_name == _Agent_OnLoad
5607       strcat(agent_entry_name, "_");
5608       strncat(agent_entry_name, lib_name, name_len);
5609       strcat(agent_entry_name, p);
5610       // agent_entry_name == _Agent_OnLoad_lib_name@XX
5611     } else {
5612       strcpy(agent_entry_name, sym_name);
5613       strcat(agent_entry_name, "_");
5614       strncat(agent_entry_name, lib_name, name_len);
5615     }
5616   } else {
5617     strcpy(agent_entry_name, sym_name);
5618   }
5619   return agent_entry_name;
5620 }
5621 
5622 #else
5623 // Kernel32 API
5624 typedef BOOL (WINAPI* SwitchToThread_Fn)(void);
5625 typedef HANDLE (WINAPI* CreateToolhelp32Snapshot_Fn)(DWORD, DWORD);
5626 typedef BOOL (WINAPI* Module32First_Fn)(HANDLE, LPMODULEENTRY32);
5627 typedef BOOL (WINAPI* Module32Next_Fn)(HANDLE, LPMODULEENTRY32);
5628 typedef void (WINAPI* GetNativeSystemInfo_Fn)(LPSYSTEM_INFO);
5629 
5630 SwitchToThread_Fn           os::Kernel32Dll::_SwitchToThread = NULL;
5631 CreateToolhelp32Snapshot_Fn os::Kernel32Dll::_CreateToolhelp32Snapshot = NULL;
5632 Module32First_Fn            os::Kernel32Dll::_Module32First = NULL;
5633 Module32Next_Fn             os::Kernel32Dll::_Module32Next = NULL;
5634 GetNativeSystemInfo_Fn      os::Kernel32Dll::_GetNativeSystemInfo = NULL;
5635 
5636 void os::Kernel32Dll::initialize() {
5637   if (!initialized) {
5638     HMODULE handle = ::GetModuleHandle("Kernel32.dll");
5639     assert(handle != NULL, "Just check");
5640 
5641     _SwitchToThread = (SwitchToThread_Fn)::GetProcAddress(handle, "SwitchToThread");
5642     _CreateToolhelp32Snapshot = (CreateToolhelp32Snapshot_Fn)
5643       ::GetProcAddress(handle, "CreateToolhelp32Snapshot");
5644     _Module32First = (Module32First_Fn)::GetProcAddress(handle, "Module32First");
5645     _Module32Next = (Module32Next_Fn)::GetProcAddress(handle, "Module32Next");
5646     _GetNativeSystemInfo = (GetNativeSystemInfo_Fn)::GetProcAddress(handle, "GetNativeSystemInfo");
5647     initializeCommon();  // resolve the functions that always need resolving
5648 
5649     initialized = TRUE;
5650   }
5651 }
5652 
5653 BOOL os::Kernel32Dll::SwitchToThread() {
5654   assert(initialized && _SwitchToThread != NULL,
5655          "SwitchToThreadAvailable() not yet called");
5656   return _SwitchToThread();
5657 }
5658 
5659 
5660 BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
5661   if (!initialized) {
5662     initialize();
5663   }
5664   return _SwitchToThread != NULL;
5665 }
5666 
5667 // Help tools
5668 BOOL os::Kernel32Dll::HelpToolsAvailable() {
5669   if (!initialized) {
5670     initialize();
5671   }
5672   return _CreateToolhelp32Snapshot != NULL &&
5673          _Module32First != NULL &&
5674          _Module32Next != NULL;
5675 }
5676 
5677 HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,
5678                                                  DWORD th32ProcessId) {
5679   assert(initialized && _CreateToolhelp32Snapshot != NULL,
5680          "HelpToolsAvailable() not yet called");
5681 
5682   return _CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
5683 }
5684 
5685 BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
5686   assert(initialized && _Module32First != NULL,
5687          "HelpToolsAvailable() not yet called");
5688 
5689   return _Module32First(hSnapshot, lpme);
5690 }
5691 
5692 inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,
5693                                           LPMODULEENTRY32 lpme) {
5694   assert(initialized && _Module32Next != NULL,
5695          "HelpToolsAvailable() not yet called");
5696 
5697   return _Module32Next(hSnapshot, lpme);
5698 }
5699 
5700 
5701 BOOL os::Kernel32Dll::GetNativeSystemInfoAvailable() {
5702   if (!initialized) {
5703     initialize();
5704   }
5705   return _GetNativeSystemInfo != NULL;
5706 }
5707 
5708 void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
5709   assert(initialized && _GetNativeSystemInfo != NULL,
5710          "GetNativeSystemInfoAvailable() not yet called");
5711 
5712   _GetNativeSystemInfo(lpSystemInfo);
5713 }
5714 
5715 // PSAPI API
5716 
5717 
5718 typedef BOOL (WINAPI *EnumProcessModules_Fn)(HANDLE, HMODULE *, DWORD, LPDWORD);
5719 typedef BOOL (WINAPI *GetModuleFileNameEx_Fn)(HANDLE, HMODULE, LPTSTR, DWORD);
5720 typedef BOOL (WINAPI *GetModuleInformation_Fn)(HANDLE, HMODULE, LPMODULEINFO, DWORD);
5721 
5722 EnumProcessModules_Fn   os::PSApiDll::_EnumProcessModules = NULL;
5723 GetModuleFileNameEx_Fn  os::PSApiDll::_GetModuleFileNameEx = NULL;
5724 GetModuleInformation_Fn os::PSApiDll::_GetModuleInformation = NULL;
5725 BOOL                    os::PSApiDll::initialized = FALSE;
5726 
5727 void os::PSApiDll::initialize() {
5728   if (!initialized) {
5729     HMODULE handle = os::win32::load_Windows_dll("PSAPI.DLL", NULL, 0);
5730     if (handle != NULL) {
5731       _EnumProcessModules = (EnumProcessModules_Fn)::GetProcAddress(handle,
5732                                                                     "EnumProcessModules");
5733       _GetModuleFileNameEx = (GetModuleFileNameEx_Fn)::GetProcAddress(handle,
5734                                                                       "GetModuleFileNameExA");
5735       _GetModuleInformation = (GetModuleInformation_Fn)::GetProcAddress(handle,
5736                                                                         "GetModuleInformation");
5737     }
5738     initialized = TRUE;
5739   }
5740 }
5741 
5742 
5743 
5744 BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule,
5745                                       DWORD cb, LPDWORD lpcbNeeded) {
5746   assert(initialized && _EnumProcessModules != NULL,
5747          "PSApiAvailable() not yet called");
5748   return _EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
5749 }
5750 
5751 DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule,
5752                                         LPTSTR lpFilename, DWORD nSize) {
5753   assert(initialized && _GetModuleFileNameEx != NULL,
5754          "PSApiAvailable() not yet called");
5755   return _GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
5756 }
5757 
5758 BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule,
5759                                         LPMODULEINFO lpmodinfo, DWORD cb) {
5760   assert(initialized && _GetModuleInformation != NULL,
5761          "PSApiAvailable() not yet called");
5762   return _GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
5763 }
5764 
5765 BOOL os::PSApiDll::PSApiAvailable() {
5766   if (!initialized) {
5767     initialize();
5768   }
5769   return _EnumProcessModules != NULL &&
5770     _GetModuleFileNameEx != NULL &&
5771     _GetModuleInformation != NULL;
5772 }
5773 
5774 
5775 // WinSock2 API
5776 typedef int (PASCAL FAR* WSAStartup_Fn)(WORD, LPWSADATA);
5777 typedef struct hostent *(PASCAL FAR *gethostbyname_Fn)(...);
5778 
5779 WSAStartup_Fn    os::WinSock2Dll::_WSAStartup = NULL;
5780 gethostbyname_Fn os::WinSock2Dll::_gethostbyname = NULL;
5781 BOOL             os::WinSock2Dll::initialized = FALSE;
5782 
5783 void os::WinSock2Dll::initialize() {
5784   if (!initialized) {
5785     HMODULE handle = os::win32::load_Windows_dll("ws2_32.dll", NULL, 0);
5786     if (handle != NULL) {
5787       _WSAStartup = (WSAStartup_Fn)::GetProcAddress(handle, "WSAStartup");
5788       _gethostbyname = (gethostbyname_Fn)::GetProcAddress(handle, "gethostbyname");
5789     }
5790     initialized = TRUE;
5791   }
5792 }
5793 
5794 
5795 BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) {
5796   assert(initialized && _WSAStartup != NULL,
5797          "WinSock2Available() not yet called");
5798   return _WSAStartup(wVersionRequested, lpWSAData);
5799 }
5800 
5801 struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
5802   assert(initialized && _gethostbyname != NULL,
5803          "WinSock2Available() not yet called");
5804   return _gethostbyname(name);
5805 }
5806 
5807 BOOL os::WinSock2Dll::WinSock2Available() {
5808   if (!initialized) {
5809     initialize();
5810   }
5811   return _WSAStartup != NULL &&
5812     _gethostbyname != NULL;
5813 }
5814 
5815 typedef BOOL (WINAPI *AdjustTokenPrivileges_Fn)(HANDLE, BOOL, PTOKEN_PRIVILEGES, DWORD, PTOKEN_PRIVILEGES, PDWORD);
5816 typedef BOOL (WINAPI *OpenProcessToken_Fn)(HANDLE, DWORD, PHANDLE);
5817 typedef BOOL (WINAPI *LookupPrivilegeValue_Fn)(LPCTSTR, LPCTSTR, PLUID);
5818 
5819 AdjustTokenPrivileges_Fn os::Advapi32Dll::_AdjustTokenPrivileges = NULL;
5820 OpenProcessToken_Fn      os::Advapi32Dll::_OpenProcessToken = NULL;
5821 LookupPrivilegeValue_Fn  os::Advapi32Dll::_LookupPrivilegeValue = NULL;
5822 BOOL                     os::Advapi32Dll::initialized = FALSE;
5823 
5824 void os::Advapi32Dll::initialize() {
5825   if (!initialized) {
5826     HMODULE handle = os::win32::load_Windows_dll("advapi32.dll", NULL, 0);
5827     if (handle != NULL) {
5828       _AdjustTokenPrivileges = (AdjustTokenPrivileges_Fn)::GetProcAddress(handle,
5829                                                                           "AdjustTokenPrivileges");
5830       _OpenProcessToken = (OpenProcessToken_Fn)::GetProcAddress(handle,
5831                                                                 "OpenProcessToken");
5832       _LookupPrivilegeValue = (LookupPrivilegeValue_Fn)::GetProcAddress(handle,
5833                                                                         "LookupPrivilegeValueA");
5834     }
5835     initialized = TRUE;
5836   }
5837 }
5838 
5839 BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
5840                                             BOOL DisableAllPrivileges,
5841                                             PTOKEN_PRIVILEGES NewState,
5842                                             DWORD BufferLength,
5843                                             PTOKEN_PRIVILEGES PreviousState,
5844                                             PDWORD ReturnLength) {
5845   assert(initialized && _AdjustTokenPrivileges != NULL,
5846          "AdvapiAvailable() not yet called");
5847   return _AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
5848                                 BufferLength, PreviousState, ReturnLength);
5849 }
5850 
5851 BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle,
5852                                        DWORD DesiredAccess,
5853                                        PHANDLE TokenHandle) {
5854   assert(initialized && _OpenProcessToken != NULL,
5855          "AdvapiAvailable() not yet called");
5856   return _OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
5857 }
5858 
5859 BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName,
5860                                            LPCTSTR lpName, PLUID lpLuid) {
5861   assert(initialized && _LookupPrivilegeValue != NULL,
5862          "AdvapiAvailable() not yet called");
5863   return _LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
5864 }
5865 
5866 BOOL os::Advapi32Dll::AdvapiAvailable() {
5867   if (!initialized) {
5868     initialize();
5869   }
5870   return _AdjustTokenPrivileges != NULL &&
5871     _OpenProcessToken != NULL &&
5872     _LookupPrivilegeValue != NULL;
5873 }
5874 
5875 #endif
5876 
5877 #ifndef PRODUCT
5878 
5879 // test the code path in reserve_memory_special() that tries to allocate memory in a single
5880 // contiguous memory block at a particular address.
5881 // The test first tries to find a good approximate address to allocate at by using the same
5882 // method to allocate some memory at any address. The test then tries to allocate memory in
5883 // the vicinity (not directly after it to avoid possible by-chance use of that location)
5884 // This is of course only some dodgy assumption, there is no guarantee that the vicinity of
5885 // the previously allocated memory is available for allocation. The only actual failure
5886 // that is reported is when the test tries to allocate at a particular location but gets a
5887 // different valid one. A NULL return value at this point is not considered an error but may
5888 // be legitimate.
5889 // If -XX:+VerboseInternalVMTests is enabled, print some explanatory messages.
5890 void TestReserveMemorySpecial_test() {
5891   if (!UseLargePages) {
5892     if (VerboseInternalVMTests) {
5893       gclog_or_tty->print("Skipping test because large pages are disabled");
5894     }
5895     return;
5896   }
5897   // save current value of globals
5898   bool old_use_large_pages_individual_allocation = UseLargePagesIndividualAllocation;
5899   bool old_use_numa_interleaving = UseNUMAInterleaving;
5900 
5901   // set globals to make sure we hit the correct code path
5902   UseLargePagesIndividualAllocation = UseNUMAInterleaving = false;
5903 
5904   // do an allocation at an address selected by the OS to get a good one.
5905   const size_t large_allocation_size = os::large_page_size() * 4;
5906   char* result = os::reserve_memory_special(large_allocation_size, os::large_page_size(), NULL, false);
5907   if (result == NULL) {
5908     if (VerboseInternalVMTests) {
5909       gclog_or_tty->print("Failed to allocate control block with size " SIZE_FORMAT ". Skipping remainder of test.",
5910                           large_allocation_size);
5911     }
5912   } else {
5913     os::release_memory_special(result, large_allocation_size);
5914 
5915     // allocate another page within the recently allocated memory area which seems to be a good location. At least
5916     // we managed to get it once.
5917     const size_t expected_allocation_size = os::large_page_size();
5918     char* expected_location = result + os::large_page_size();
5919     char* actual_location = os::reserve_memory_special(expected_allocation_size, os::large_page_size(), expected_location, false);
5920     if (actual_location == NULL) {
5921       if (VerboseInternalVMTests) {
5922         gclog_or_tty->print("Failed to allocate any memory at " PTR_FORMAT " size " SIZE_FORMAT ". Skipping remainder of test.",
5923                             expected_location, large_allocation_size);
5924       }
5925     } else {
5926       // release memory
5927       os::release_memory_special(actual_location, expected_allocation_size);
5928       // only now check, after releasing any memory to avoid any leaks.
5929       assert(actual_location == expected_location,
5930              err_msg("Failed to allocate memory at requested location " PTR_FORMAT " of size " SIZE_FORMAT ", is " PTR_FORMAT " instead",
5931              expected_location, expected_allocation_size, actual_location));
5932     }
5933   }
5934 
5935   // restore globals
5936   UseLargePagesIndividualAllocation = old_use_large_pages_individual_allocation;
5937   UseNUMAInterleaving = old_use_numa_interleaving;
5938 }
5939 #endif // PRODUCT