1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // Must be at least Windows Vista or Server 2008 to use InitOnceExecuteOnce
  26 #define _WIN32_WINNT 0x0600
  27 
  28 // no precompiled headers
  29 #include "classfile/classLoader.hpp"
  30 #include "classfile/systemDictionary.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "code/icBuffer.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/disassembler.hpp"
  36 #include "interpreter/interpreter.hpp"
  37 #include "jvm_windows.h"
  38 #include "memory/allocation.inline.hpp"
  39 #include "memory/filemap.hpp"
  40 #include "mutex_windows.inline.hpp"
  41 #include "oops/oop.inline.hpp"
  42 #include "os_share_windows.hpp"
  43 #include "os_windows.inline.hpp"
  44 #include "prims/jniFastGetField.hpp"
  45 #include "prims/jvm.h"
  46 #include "prims/jvm_misc.hpp"
  47 #include "runtime/arguments.hpp"
  48 #include "runtime/atomic.inline.hpp"
  49 #include "runtime/extendedPC.hpp"
  50 #include "runtime/globals.hpp"
  51 #include "runtime/interfaceSupport.hpp"
  52 #include "runtime/java.hpp"
  53 #include "runtime/javaCalls.hpp"
  54 #include "runtime/mutexLocker.hpp"
  55 #include "runtime/objectMonitor.hpp"
  56 #include "runtime/orderAccess.inline.hpp"
  57 #include "runtime/osThread.hpp"
  58 #include "runtime/perfMemory.hpp"
  59 #include "runtime/sharedRuntime.hpp"
  60 #include "runtime/statSampler.hpp"
  61 #include "runtime/stubRoutines.hpp"
  62 #include "runtime/thread.inline.hpp"
  63 #include "runtime/threadCritical.hpp"
  64 #include "runtime/timer.hpp"
  65 #include "runtime/vm_version.hpp"
  66 #include "semaphore_windows.hpp"
  67 #include "services/attachListener.hpp"
  68 #include "services/memTracker.hpp"
  69 #include "services/runtimeService.hpp"
  70 #include "utilities/decoder.hpp"
  71 #include "utilities/defaultStream.hpp"
  72 #include "utilities/events.hpp"
  73 #include "utilities/growableArray.hpp"
  74 #include "utilities/vmError.hpp"
  75 
  76 #ifdef _DEBUG
  77 #include <crtdbg.h>
  78 #endif
  79 
  80 
  81 #include <windows.h>
  82 #include <sys/types.h>
  83 #include <sys/stat.h>
  84 #include <sys/timeb.h>
  85 #include <objidl.h>
  86 #include <shlobj.h>
  87 
  88 #include <malloc.h>
  89 #include <signal.h>
  90 #include <direct.h>
  91 #include <errno.h>
  92 #include <fcntl.h>
  93 #include <io.h>
  94 #include <process.h>              // For _beginthreadex(), _endthreadex()
  95 #include <imagehlp.h>             // For os::dll_address_to_function_name
  96 // for enumerating dll libraries
  97 #include <vdmdbg.h>
  98 
  99 // for timer info max values which include all bits
 100 #define ALL_64_BITS CONST64(-1)
 101 
 102 // For DLL loading/load error detection
 103 // Values of PE COFF
 104 #define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
 105 #define IMAGE_FILE_SIGNATURE_LENGTH 4
 106 
 107 static HANDLE main_process;
 108 static HANDLE main_thread;
 109 static int    main_thread_id;
 110 
 111 static FILETIME process_creation_time;
 112 static FILETIME process_exit_time;
 113 static FILETIME process_user_time;
 114 static FILETIME process_kernel_time;
 115 
 116 #ifdef _M_IA64
 117   #define __CPU__ ia64
 118 #else
 119   #ifdef _M_AMD64
 120     #define __CPU__ amd64
 121   #else
 122     #define __CPU__ i486
 123   #endif
 124 #endif
 125 
 126 // save DLL module handle, used by GetModuleFileName
 127 
 128 HINSTANCE vm_lib_handle;
 129 
 130 BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
 131   switch (reason) {
 132   case DLL_PROCESS_ATTACH:
 133     vm_lib_handle = hinst;
 134     if (ForceTimeHighResolution) {
 135       timeBeginPeriod(1L);
 136     }
 137     break;
 138   case DLL_PROCESS_DETACH:
 139     if (ForceTimeHighResolution) {
 140       timeEndPeriod(1L);
 141     }
 142     break;
 143   default:
 144     break;
 145   }
 146   return true;
 147 }
 148 
 149 static inline double fileTimeAsDouble(FILETIME* time) {
 150   const double high  = (double) ((unsigned int) ~0);
 151   const double split = 10000000.0;
 152   double result = (time->dwLowDateTime / split) +
 153                    time->dwHighDateTime * (high/split);
 154   return result;
 155 }
 156 
 157 // Implementation of os
 158 
 159 bool os::unsetenv(const char* name) {
 160   assert(name != NULL, "Null pointer");
 161   return (SetEnvironmentVariable(name, NULL) == TRUE);
 162 }
 163 
 164 // No setuid programs under Windows.
 165 bool os::have_special_privileges() {
 166   return false;
 167 }
 168 
 169 
 170 // This method is  a periodic task to check for misbehaving JNI applications
 171 // under CheckJNI, we can add any periodic checks here.
 172 // For Windows at the moment does nothing
 173 void os::run_periodic_checks() {
 174   return;
 175 }
 176 
 177 // previous UnhandledExceptionFilter, if there is one
 178 static LPTOP_LEVEL_EXCEPTION_FILTER prev_uef_handler = NULL;
 179 
 180 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
 181 
 182 void os::init_system_properties_values() {
 183   // sysclasspath, java_home, dll_dir
 184   {
 185     char *home_path;
 186     char *dll_path;
 187     char *pslash;
 188     char *bin = "\\bin";
 189     char home_dir[MAX_PATH + 1];
 190     char *alt_home_dir = ::getenv("_ALT_JAVA_HOME_DIR");
 191 
 192     if (alt_home_dir != NULL)  {
 193       strncpy(home_dir, alt_home_dir, MAX_PATH + 1);
 194       home_dir[MAX_PATH] = '\0';
 195     } else {
 196       os::jvm_path(home_dir, sizeof(home_dir));
 197       // Found the full path to jvm.dll.
 198       // Now cut the path to <java_home>/jre if we can.
 199       *(strrchr(home_dir, '\\')) = '\0';  // get rid of \jvm.dll
 200       pslash = strrchr(home_dir, '\\');
 201       if (pslash != NULL) {
 202         *pslash = '\0';                   // get rid of \{client|server}
 203         pslash = strrchr(home_dir, '\\');
 204         if (pslash != NULL) {
 205           *pslash = '\0';                 // get rid of \bin
 206         }
 207       }
 208     }
 209 
 210     home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1, mtInternal);
 211     if (home_path == NULL) {
 212       return;
 213     }
 214     strcpy(home_path, home_dir);
 215     Arguments::set_java_home(home_path);
 216     FREE_C_HEAP_ARRAY(char, home_path);
 217 
 218     dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1,
 219                                 mtInternal);
 220     if (dll_path == NULL) {
 221       return;
 222     }
 223     strcpy(dll_path, home_dir);
 224     strcat(dll_path, bin);
 225     Arguments::set_dll_dir(dll_path);
 226     FREE_C_HEAP_ARRAY(char, dll_path);
 227 
 228     if (!set_boot_path('\\', ';')) {
 229       return;
 230     }
 231   }
 232 
 233 // library_path
 234 #define EXT_DIR "\\lib\\ext"
 235 #define BIN_DIR "\\bin"
 236 #define PACKAGE_DIR "\\Sun\\Java"
 237   {
 238     // Win32 library search order (See the documentation for LoadLibrary):
 239     //
 240     // 1. The directory from which application is loaded.
 241     // 2. The system wide Java Extensions directory (Java only)
 242     // 3. System directory (GetSystemDirectory)
 243     // 4. Windows directory (GetWindowsDirectory)
 244     // 5. The PATH environment variable
 245     // 6. The current directory
 246 
 247     char *library_path;
 248     char tmp[MAX_PATH];
 249     char *path_str = ::getenv("PATH");
 250 
 251     library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
 252                                     sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10, mtInternal);
 253 
 254     library_path[0] = '\0';
 255 
 256     GetModuleFileName(NULL, tmp, sizeof(tmp));
 257     *(strrchr(tmp, '\\')) = '\0';
 258     strcat(library_path, tmp);
 259 
 260     GetWindowsDirectory(tmp, sizeof(tmp));
 261     strcat(library_path, ";");
 262     strcat(library_path, tmp);
 263     strcat(library_path, PACKAGE_DIR BIN_DIR);
 264 
 265     GetSystemDirectory(tmp, sizeof(tmp));
 266     strcat(library_path, ";");
 267     strcat(library_path, tmp);
 268 
 269     GetWindowsDirectory(tmp, sizeof(tmp));
 270     strcat(library_path, ";");
 271     strcat(library_path, tmp);
 272 
 273     if (path_str) {
 274       strcat(library_path, ";");
 275       strcat(library_path, path_str);
 276     }
 277 
 278     strcat(library_path, ";.");
 279 
 280     Arguments::set_library_path(library_path);
 281     FREE_C_HEAP_ARRAY(char, library_path);
 282   }
 283 
 284   // Default extensions directory
 285   {
 286     char path[MAX_PATH];
 287     char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
 288     GetWindowsDirectory(path, MAX_PATH);
 289     sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
 290             path, PACKAGE_DIR, EXT_DIR);
 291     Arguments::set_ext_dirs(buf);
 292   }
 293   #undef EXT_DIR
 294   #undef BIN_DIR
 295   #undef PACKAGE_DIR
 296 
 297 #ifndef _WIN64
 298   // set our UnhandledExceptionFilter and save any previous one
 299   prev_uef_handler = SetUnhandledExceptionFilter(Handle_FLT_Exception);
 300 #endif
 301 
 302   // Done
 303   return;
 304 }
 305 
 306 void os::breakpoint() {
 307   DebugBreak();
 308 }
 309 
 310 // Invoked from the BREAKPOINT Macro
 311 extern "C" void breakpoint() {
 312   os::breakpoint();
 313 }
 314 
 315 // RtlCaptureStackBackTrace Windows API may not exist prior to Windows XP.
 316 // So far, this method is only used by Native Memory Tracking, which is
 317 // only supported on Windows XP or later.
 318 //
 319 int os::get_native_stack(address* stack, int frames, int toSkip) {
 320 #ifdef _NMT_NOINLINE_
 321   toSkip++;
 322 #endif
 323   int captured = Kernel32Dll::RtlCaptureStackBackTrace(toSkip + 1, frames,
 324                                                        (PVOID*)stack, NULL);
 325   for (int index = captured; index < frames; index ++) {
 326     stack[index] = NULL;
 327   }
 328   return captured;
 329 }
 330 
 331 
 332 // os::current_stack_base()
 333 //
 334 //   Returns the base of the stack, which is the stack's
 335 //   starting address.  This function must be called
 336 //   while running on the stack of the thread being queried.
 337 
 338 address os::current_stack_base() {
 339   MEMORY_BASIC_INFORMATION minfo;
 340   address stack_bottom;
 341   size_t stack_size;
 342 
 343   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 344   stack_bottom =  (address)minfo.AllocationBase;
 345   stack_size = minfo.RegionSize;
 346 
 347   // Add up the sizes of all the regions with the same
 348   // AllocationBase.
 349   while (1) {
 350     VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
 351     if (stack_bottom == (address)minfo.AllocationBase) {
 352       stack_size += minfo.RegionSize;
 353     } else {
 354       break;
 355     }
 356   }
 357 
 358 #ifdef _M_IA64
 359   // IA64 has memory and register stacks
 360   //
 361   // This is the stack layout you get on NT/IA64 if you specify 1MB stack limit
 362   // at thread creation (1MB backing store growing upwards, 1MB memory stack
 363   // growing downwards, 2MB summed up)
 364   //
 365   // ...
 366   // ------- top of stack (high address) -----
 367   // |
 368   // |      1MB
 369   // |      Backing Store (Register Stack)
 370   // |
 371   // |         / \
 372   // |          |
 373   // |          |
 374   // |          |
 375   // ------------------------ stack base -----
 376   // |      1MB
 377   // |      Memory Stack
 378   // |
 379   // |          |
 380   // |          |
 381   // |          |
 382   // |         \ /
 383   // |
 384   // ----- bottom of stack (low address) -----
 385   // ...
 386 
 387   stack_size = stack_size / 2;
 388 #endif
 389   return stack_bottom + stack_size;
 390 }
 391 
 392 size_t os::current_stack_size() {
 393   size_t sz;
 394   MEMORY_BASIC_INFORMATION minfo;
 395   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 396   sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
 397   return sz;
 398 }
 399 
 400 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
 401   const struct tm* time_struct_ptr = localtime(clock);
 402   if (time_struct_ptr != NULL) {
 403     *res = *time_struct_ptr;
 404     return res;
 405   }
 406   return NULL;
 407 }
 408 
 409 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
 410 
 411 // Thread start routine for all new Java threads
 412 static unsigned __stdcall java_start(Thread* thread) {
 413   // Try to randomize the cache line index of hot stack frames.
 414   // This helps when threads of the same stack traces evict each other's
 415   // cache lines. The threads can be either from the same JVM instance, or
 416   // from different JVM instances. The benefit is especially true for
 417   // processors with hyperthreading technology.
 418   static int counter = 0;
 419   int pid = os::current_process_id();
 420   _alloca(((pid ^ counter++) & 7) * 128);
 421 
 422   OSThread* osthr = thread->osthread();
 423   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
 424 
 425   if (UseNUMA) {
 426     int lgrp_id = os::numa_get_group_id();
 427     if (lgrp_id != -1) {
 428       thread->set_lgrp_id(lgrp_id);
 429     }
 430   }
 431 
 432   // Diagnostic code to investigate JDK-6573254
 433   int res = 30115;  // non-java thread
 434   if (thread->is_Java_thread()) {
 435     res = 20115;    // java thread
 436   }
 437 
 438   // Install a win32 structured exception handler around every thread created
 439   // by VM, so VM can generate error dump when an exception occurred in non-
 440   // Java thread (e.g. VM thread).
 441   __try {
 442     thread->run();
 443   } __except(topLevelExceptionFilter(
 444                                      (_EXCEPTION_POINTERS*)_exception_info())) {
 445     // Nothing to do.
 446   }
 447 
 448   // One less thread is executing
 449   // When the VMThread gets here, the main thread may have already exited
 450   // which frees the CodeHeap containing the Atomic::add code
 451   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
 452     Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count);
 453   }
 454 
 455   // Thread must not return from exit_process_or_thread(), but if it does,
 456   // let it proceed to exit normally
 457   return (unsigned)os::win32::exit_process_or_thread(os::win32::EPT_THREAD, res);
 458 }
 459 
 460 static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle,
 461                                   int thread_id) {
 462   // Allocate the OSThread object
 463   OSThread* osthread = new OSThread(NULL, NULL);
 464   if (osthread == NULL) return NULL;
 465 
 466   // Initialize support for Java interrupts
 467   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 468   if (interrupt_event == NULL) {
 469     delete osthread;
 470     return NULL;
 471   }
 472   osthread->set_interrupt_event(interrupt_event);
 473 
 474   // Store info on the Win32 thread into the OSThread
 475   osthread->set_thread_handle(thread_handle);
 476   osthread->set_thread_id(thread_id);
 477 
 478   if (UseNUMA) {
 479     int lgrp_id = os::numa_get_group_id();
 480     if (lgrp_id != -1) {
 481       thread->set_lgrp_id(lgrp_id);
 482     }
 483   }
 484 
 485   // Initial thread state is INITIALIZED, not SUSPENDED
 486   osthread->set_state(INITIALIZED);
 487 
 488   return osthread;
 489 }
 490 
 491 
 492 bool os::create_attached_thread(JavaThread* thread) {
 493 #ifdef ASSERT
 494   thread->verify_not_published();
 495 #endif
 496   HANDLE thread_h;
 497   if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
 498                        &thread_h, THREAD_ALL_ACCESS, false, 0)) {
 499     fatal("DuplicateHandle failed\n");
 500   }
 501   OSThread* osthread = create_os_thread(thread, thread_h,
 502                                         (int)current_thread_id());
 503   if (osthread == NULL) {
 504     return false;
 505   }
 506 
 507   // Initial thread state is RUNNABLE
 508   osthread->set_state(RUNNABLE);
 509 
 510   thread->set_osthread(osthread);
 511   return true;
 512 }
 513 
 514 bool os::create_main_thread(JavaThread* thread) {
 515 #ifdef ASSERT
 516   thread->verify_not_published();
 517 #endif
 518   if (_starting_thread == NULL) {
 519     _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
 520     if (_starting_thread == NULL) {
 521       return false;
 522     }
 523   }
 524 
 525   // The primordial thread is runnable from the start)
 526   _starting_thread->set_state(RUNNABLE);
 527 
 528   thread->set_osthread(_starting_thread);
 529   return true;
 530 }
 531 
 532 // Allocate and initialize a new OSThread
 533 bool os::create_thread(Thread* thread, ThreadType thr_type,
 534                        size_t stack_size) {
 535   unsigned thread_id;
 536 
 537   // Allocate the OSThread object
 538   OSThread* osthread = new OSThread(NULL, NULL);
 539   if (osthread == NULL) {
 540     return false;
 541   }
 542 
 543   // Initialize support for Java interrupts
 544   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 545   if (interrupt_event == NULL) {
 546     delete osthread;
 547     return NULL;
 548   }
 549   osthread->set_interrupt_event(interrupt_event);
 550   osthread->set_interrupted(false);
 551 
 552   thread->set_osthread(osthread);
 553 
 554   if (stack_size == 0) {
 555     switch (thr_type) {
 556     case os::java_thread:
 557       // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
 558       if (JavaThread::stack_size_at_create() > 0) {
 559         stack_size = JavaThread::stack_size_at_create();
 560       }
 561       break;
 562     case os::compiler_thread:
 563       if (CompilerThreadStackSize > 0) {
 564         stack_size = (size_t)(CompilerThreadStackSize * K);
 565         break;
 566       } // else fall through:
 567         // use VMThreadStackSize if CompilerThreadStackSize is not defined
 568     case os::vm_thread:
 569     case os::pgc_thread:
 570     case os::cgc_thread:
 571     case os::watcher_thread:
 572       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 573       break;
 574     }
 575   }
 576 
 577   // Create the Win32 thread
 578   //
 579   // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
 580   // does not specify stack size. Instead, it specifies the size of
 581   // initially committed space. The stack size is determined by
 582   // PE header in the executable. If the committed "stack_size" is larger
 583   // than default value in the PE header, the stack is rounded up to the
 584   // nearest multiple of 1MB. For example if the launcher has default
 585   // stack size of 320k, specifying any size less than 320k does not
 586   // affect the actual stack size at all, it only affects the initial
 587   // commitment. On the other hand, specifying 'stack_size' larger than
 588   // default value may cause significant increase in memory usage, because
 589   // not only the stack space will be rounded up to MB, but also the
 590   // entire space is committed upfront.
 591   //
 592   // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
 593   // for CreateThread() that can treat 'stack_size' as stack size. However we
 594   // are not supposed to call CreateThread() directly according to MSDN
 595   // document because JVM uses C runtime library. The good news is that the
 596   // flag appears to work with _beginthredex() as well.
 597 
 598 #ifndef STACK_SIZE_PARAM_IS_A_RESERVATION
 599   #define STACK_SIZE_PARAM_IS_A_RESERVATION  (0x10000)
 600 #endif
 601 
 602   HANDLE thread_handle =
 603     (HANDLE)_beginthreadex(NULL,
 604                            (unsigned)stack_size,
 605                            (unsigned (__stdcall *)(void*)) java_start,
 606                            thread,
 607                            CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION,
 608                            &thread_id);
 609   if (thread_handle == NULL) {
 610     // perhaps STACK_SIZE_PARAM_IS_A_RESERVATION is not supported, try again
 611     // without the flag.
 612     thread_handle =
 613       (HANDLE)_beginthreadex(NULL,
 614                              (unsigned)stack_size,
 615                              (unsigned (__stdcall *)(void*)) java_start,
 616                              thread,
 617                              CREATE_SUSPENDED,
 618                              &thread_id);
 619   }
 620   if (thread_handle == NULL) {
 621     // Need to clean up stuff we've allocated so far
 622     CloseHandle(osthread->interrupt_event());
 623     thread->set_osthread(NULL);
 624     delete osthread;
 625     return NULL;
 626   }
 627 
 628   Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count);
 629 
 630   // Store info on the Win32 thread into the OSThread
 631   osthread->set_thread_handle(thread_handle);
 632   osthread->set_thread_id(thread_id);
 633 
 634   // Initial thread state is INITIALIZED, not SUSPENDED
 635   osthread->set_state(INITIALIZED);
 636 
 637   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
 638   return true;
 639 }
 640 
 641 
 642 // Free Win32 resources related to the OSThread
 643 void os::free_thread(OSThread* osthread) {
 644   assert(osthread != NULL, "osthread not set");
 645   CloseHandle(osthread->thread_handle());
 646   CloseHandle(osthread->interrupt_event());
 647   delete osthread;
 648 }
 649 
 650 static jlong first_filetime;
 651 static jlong initial_performance_count;
 652 static jlong performance_frequency;
 653 
 654 
 655 jlong as_long(LARGE_INTEGER x) {
 656   jlong result = 0; // initialization to avoid warning
 657   set_high(&result, x.HighPart);
 658   set_low(&result, x.LowPart);
 659   return result;
 660 }
 661 
 662 
 663 jlong os::elapsed_counter() {
 664   LARGE_INTEGER count;
 665   if (win32::_has_performance_count) {
 666     QueryPerformanceCounter(&count);
 667     return as_long(count) - initial_performance_count;
 668   } else {
 669     FILETIME wt;
 670     GetSystemTimeAsFileTime(&wt);
 671     return (jlong_from(wt.dwHighDateTime, wt.dwLowDateTime) - first_filetime);
 672   }
 673 }
 674 
 675 
 676 jlong os::elapsed_frequency() {
 677   if (win32::_has_performance_count) {
 678     return performance_frequency;
 679   } else {
 680     // the FILETIME time is the number of 100-nanosecond intervals since January 1,1601.
 681     return 10000000;
 682   }
 683 }
 684 
 685 
 686 julong os::available_memory() {
 687   return win32::available_memory();
 688 }
 689 
 690 julong os::win32::available_memory() {
 691   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
 692   // value if total memory is larger than 4GB
 693   MEMORYSTATUSEX ms;
 694   ms.dwLength = sizeof(ms);
 695   GlobalMemoryStatusEx(&ms);
 696 
 697   return (julong)ms.ullAvailPhys;
 698 }
 699 
 700 julong os::physical_memory() {
 701   return win32::physical_memory();
 702 }
 703 
 704 bool os::has_allocatable_memory_limit(julong* limit) {
 705   MEMORYSTATUSEX ms;
 706   ms.dwLength = sizeof(ms);
 707   GlobalMemoryStatusEx(&ms);
 708 #ifdef _LP64
 709   *limit = (julong)ms.ullAvailVirtual;
 710   return true;
 711 #else
 712   // Limit to 1400m because of the 2gb address space wall
 713   *limit = MIN2((julong)1400*M, (julong)ms.ullAvailVirtual);
 714   return true;
 715 #endif
 716 }
 717 
 718 // VC6 lacks DWORD_PTR
 719 #if _MSC_VER < 1300
 720 typedef UINT_PTR DWORD_PTR;
 721 #endif
 722 
 723 int os::active_processor_count() {
 724   DWORD_PTR lpProcessAffinityMask = 0;
 725   DWORD_PTR lpSystemAffinityMask = 0;
 726   int proc_count = processor_count();
 727   if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
 728       GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
 729     // Nof active processors is number of bits in process affinity mask
 730     int bitcount = 0;
 731     while (lpProcessAffinityMask != 0) {
 732       lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
 733       bitcount++;
 734     }
 735     return bitcount;
 736   } else {
 737     return proc_count;
 738   }
 739 }
 740 
 741 void os::set_native_thread_name(const char *name) {
 742 
 743   // See: http://msdn.microsoft.com/en-us/library/xcb2z8hs.aspx
 744   //
 745   // Note that unfortunately this only works if the process
 746   // is already attached to a debugger; debugger must observe
 747   // the exception below to show the correct name.
 748 
 749   const DWORD MS_VC_EXCEPTION = 0x406D1388;
 750   struct {
 751     DWORD dwType;     // must be 0x1000
 752     LPCSTR szName;    // pointer to name (in user addr space)
 753     DWORD dwThreadID; // thread ID (-1=caller thread)
 754     DWORD dwFlags;    // reserved for future use, must be zero
 755   } info;
 756 
 757   info.dwType = 0x1000;
 758   info.szName = name;
 759   info.dwThreadID = -1;
 760   info.dwFlags = 0;
 761 
 762   __try {
 763     RaiseException (MS_VC_EXCEPTION, 0, sizeof(info)/sizeof(DWORD), (const ULONG_PTR*)&info );
 764   } __except(EXCEPTION_CONTINUE_EXECUTION) {}
 765 }
 766 
 767 bool os::distribute_processes(uint length, uint* distribution) {
 768   // Not yet implemented.
 769   return false;
 770 }
 771 
 772 bool os::bind_to_processor(uint processor_id) {
 773   // Not yet implemented.
 774   return false;
 775 }
 776 
 777 void os::win32::initialize_performance_counter() {
 778   LARGE_INTEGER count;
 779   if (QueryPerformanceFrequency(&count)) {
 780     win32::_has_performance_count = 1;
 781     performance_frequency = as_long(count);
 782     QueryPerformanceCounter(&count);
 783     initial_performance_count = as_long(count);
 784   } else {
 785     win32::_has_performance_count = 0;
 786     FILETIME wt;
 787     GetSystemTimeAsFileTime(&wt);
 788     first_filetime = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 789   }
 790 }
 791 
 792 
 793 double os::elapsedTime() {
 794   return (double) elapsed_counter() / (double) elapsed_frequency();
 795 }
 796 
 797 
 798 // Windows format:
 799 //   The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
 800 // Java format:
 801 //   Java standards require the number of milliseconds since 1/1/1970
 802 
 803 // Constant offset - calculated using offset()
 804 static jlong  _offset   = 116444736000000000;
 805 // Fake time counter for reproducible results when debugging
 806 static jlong  fake_time = 0;
 807 
 808 #ifdef ASSERT
 809 // Just to be safe, recalculate the offset in debug mode
 810 static jlong _calculated_offset = 0;
 811 static int   _has_calculated_offset = 0;
 812 
 813 jlong offset() {
 814   if (_has_calculated_offset) return _calculated_offset;
 815   SYSTEMTIME java_origin;
 816   java_origin.wYear          = 1970;
 817   java_origin.wMonth         = 1;
 818   java_origin.wDayOfWeek     = 0; // ignored
 819   java_origin.wDay           = 1;
 820   java_origin.wHour          = 0;
 821   java_origin.wMinute        = 0;
 822   java_origin.wSecond        = 0;
 823   java_origin.wMilliseconds  = 0;
 824   FILETIME jot;
 825   if (!SystemTimeToFileTime(&java_origin, &jot)) {
 826     fatal(err_msg("Error = %d\nWindows error", GetLastError()));
 827   }
 828   _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
 829   _has_calculated_offset = 1;
 830   assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
 831   return _calculated_offset;
 832 }
 833 #else
 834 jlong offset() {
 835   return _offset;
 836 }
 837 #endif
 838 
 839 jlong windows_to_java_time(FILETIME wt) {
 840   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 841   return (a - offset()) / 10000;
 842 }
 843 
 844 // Returns time ticks in (10th of micro seconds)
 845 jlong windows_to_time_ticks(FILETIME wt) {
 846   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 847   return (a - offset());
 848 }
 849 
 850 FILETIME java_to_windows_time(jlong l) {
 851   jlong a = (l * 10000) + offset();
 852   FILETIME result;
 853   result.dwHighDateTime = high(a);
 854   result.dwLowDateTime  = low(a);
 855   return result;
 856 }
 857 
 858 bool os::supports_vtime() { return true; }
 859 bool os::enable_vtime() { return false; }
 860 bool os::vtime_enabled() { return false; }
 861 
 862 double os::elapsedVTime() {
 863   FILETIME created;
 864   FILETIME exited;
 865   FILETIME kernel;
 866   FILETIME user;
 867   if (GetThreadTimes(GetCurrentThread(), &created, &exited, &kernel, &user) != 0) {
 868     // the resolution of windows_to_java_time() should be sufficient (ms)
 869     return (double) (windows_to_java_time(kernel) + windows_to_java_time(user)) / MILLIUNITS;
 870   } else {
 871     return elapsedTime();
 872   }
 873 }
 874 
 875 jlong os::javaTimeMillis() {
 876   if (UseFakeTimers) {
 877     return fake_time++;
 878   } else {
 879     FILETIME wt;
 880     GetSystemTimeAsFileTime(&wt);
 881     return windows_to_java_time(wt);
 882   }
 883 }
 884 
 885 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
 886   FILETIME wt;
 887   GetSystemTimeAsFileTime(&wt);
 888   jlong ticks = windows_to_time_ticks(wt); // 10th of micros
 889   jlong secs = jlong(ticks / 10000000); // 10000 * 1000
 890   seconds = secs;
 891   nanos = jlong(ticks - (secs*10000000)) * 100;
 892 }
 893 
 894 jlong os::javaTimeNanos() {
 895   if (!win32::_has_performance_count) {
 896     return javaTimeMillis() * NANOSECS_PER_MILLISEC; // the best we can do.
 897   } else {
 898     LARGE_INTEGER current_count;
 899     QueryPerformanceCounter(&current_count);
 900     double current = as_long(current_count);
 901     double freq = performance_frequency;
 902     jlong time = (jlong)((current/freq) * NANOSECS_PER_SEC);
 903     return time;
 904   }
 905 }
 906 
 907 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
 908   if (!win32::_has_performance_count) {
 909     // javaTimeMillis() doesn't have much percision,
 910     // but it is not going to wrap -- so all 64 bits
 911     info_ptr->max_value = ALL_64_BITS;
 912 
 913     // this is a wall clock timer, so may skip
 914     info_ptr->may_skip_backward = true;
 915     info_ptr->may_skip_forward = true;
 916   } else {
 917     jlong freq = performance_frequency;
 918     if (freq < NANOSECS_PER_SEC) {
 919       // the performance counter is 64 bits and we will
 920       // be multiplying it -- so no wrap in 64 bits
 921       info_ptr->max_value = ALL_64_BITS;
 922     } else if (freq > NANOSECS_PER_SEC) {
 923       // use the max value the counter can reach to
 924       // determine the max value which could be returned
 925       julong max_counter = (julong)ALL_64_BITS;
 926       info_ptr->max_value = (jlong)(max_counter / (freq / NANOSECS_PER_SEC));
 927     } else {
 928       // the performance counter is 64 bits and we will
 929       // be using it directly -- so no wrap in 64 bits
 930       info_ptr->max_value = ALL_64_BITS;
 931     }
 932 
 933     // using a counter, so no skipping
 934     info_ptr->may_skip_backward = false;
 935     info_ptr->may_skip_forward = false;
 936   }
 937   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
 938 }
 939 
 940 char* os::local_time_string(char *buf, size_t buflen) {
 941   SYSTEMTIME st;
 942   GetLocalTime(&st);
 943   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
 944                st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
 945   return buf;
 946 }
 947 
 948 bool os::getTimesSecs(double* process_real_time,
 949                       double* process_user_time,
 950                       double* process_system_time) {
 951   HANDLE h_process = GetCurrentProcess();
 952   FILETIME create_time, exit_time, kernel_time, user_time;
 953   BOOL result = GetProcessTimes(h_process,
 954                                 &create_time,
 955                                 &exit_time,
 956                                 &kernel_time,
 957                                 &user_time);
 958   if (result != 0) {
 959     FILETIME wt;
 960     GetSystemTimeAsFileTime(&wt);
 961     jlong rtc_millis = windows_to_java_time(wt);
 962     jlong user_millis = windows_to_java_time(user_time);
 963     jlong system_millis = windows_to_java_time(kernel_time);
 964     *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
 965     *process_user_time = ((double) user_millis) / ((double) MILLIUNITS);
 966     *process_system_time = ((double) system_millis) / ((double) MILLIUNITS);
 967     return true;
 968   } else {
 969     return false;
 970   }
 971 }
 972 
 973 void os::shutdown() {
 974   // allow PerfMemory to attempt cleanup of any persistent resources
 975   perfMemory_exit();
 976 
 977   // flush buffered output, finish log files
 978   ostream_abort();
 979 
 980   // Check for abort hook
 981   abort_hook_t abort_hook = Arguments::abort_hook();
 982   if (abort_hook != NULL) {
 983     abort_hook();
 984   }
 985 }
 986 
 987 
 988 static BOOL (WINAPI *_MiniDumpWriteDump)(HANDLE, DWORD, HANDLE, MINIDUMP_TYPE,
 989                                          PMINIDUMP_EXCEPTION_INFORMATION,
 990                                          PMINIDUMP_USER_STREAM_INFORMATION,
 991                                          PMINIDUMP_CALLBACK_INFORMATION);
 992 
 993 static HANDLE dumpFile = NULL;
 994 
 995 // Check if dump file can be created.
 996 void os::check_dump_limit(char* buffer, size_t buffsz) {
 997   bool status = true;
 998   if (!FLAG_IS_DEFAULT(CreateCoredumpOnCrash) && !CreateCoredumpOnCrash) {
 999     jio_snprintf(buffer, buffsz, "CreateCoredumpOnCrash is disabled from command line");
1000     status = false;
1001   }
1002 
1003 #ifndef ASSERT
1004   if (!os::win32::is_windows_server() && FLAG_IS_DEFAULT(CreateCoredumpOnCrash)) {
1005     jio_snprintf(buffer, buffsz, "Minidumps are not enabled by default on client versions of Windows");
1006     status = false;
1007   }
1008 #endif
1009 
1010   if (status) {
1011     const char* cwd = get_current_directory(NULL, 0);
1012     int pid = current_process_id();
1013     if (cwd != NULL) {
1014       jio_snprintf(buffer, buffsz, "%s\\hs_err_pid%u.mdmp", cwd, pid);
1015     } else {
1016       jio_snprintf(buffer, buffsz, ".\\hs_err_pid%u.mdmp", pid);
1017     }
1018 
1019     if (dumpFile == NULL &&
1020        (dumpFile = CreateFile(buffer, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL))
1021                  == INVALID_HANDLE_VALUE) {
1022       jio_snprintf(buffer, buffsz, "Failed to create minidump file (0x%x).", GetLastError());
1023       status = false;
1024     }
1025   }
1026   VMError::record_coredump_status(buffer, status);
1027 }
1028 
1029 void os::abort(bool dump_core, void* siginfo, void* context) {
1030   HINSTANCE dbghelp;
1031   EXCEPTION_POINTERS ep;
1032   MINIDUMP_EXCEPTION_INFORMATION mei;
1033   MINIDUMP_EXCEPTION_INFORMATION* pmei;
1034 
1035   HANDLE hProcess = GetCurrentProcess();
1036   DWORD processId = GetCurrentProcessId();
1037   MINIDUMP_TYPE dumpType;
1038 
1039   shutdown();
1040   if (!dump_core || dumpFile == NULL) {
1041     if (dumpFile != NULL) {
1042       CloseHandle(dumpFile);
1043     }
1044     win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1045   }
1046 
1047   dbghelp = os::win32::load_Windows_dll("DBGHELP.DLL", NULL, 0);
1048 
1049   if (dbghelp == NULL) {
1050     jio_fprintf(stderr, "Failed to load dbghelp.dll\n");
1051     CloseHandle(dumpFile);
1052     win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1053   }
1054 
1055   _MiniDumpWriteDump =
1056       CAST_TO_FN_PTR(BOOL(WINAPI *)(HANDLE, DWORD, HANDLE, MINIDUMP_TYPE,
1057                                     PMINIDUMP_EXCEPTION_INFORMATION,
1058                                     PMINIDUMP_USER_STREAM_INFORMATION,
1059                                     PMINIDUMP_CALLBACK_INFORMATION),
1060                                     GetProcAddress(dbghelp,
1061                                     "MiniDumpWriteDump"));
1062 
1063   if (_MiniDumpWriteDump == NULL) {
1064     jio_fprintf(stderr, "Failed to find MiniDumpWriteDump() in module dbghelp.dll.\n");
1065     CloseHandle(dumpFile);
1066     win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1067   }
1068 
1069   dumpType = (MINIDUMP_TYPE)(MiniDumpWithFullMemory | MiniDumpWithHandleData);
1070 
1071   // Older versions of dbghelp.h do not contain all the dumptypes we want, dbghelp.h with
1072   // API_VERSION_NUMBER 11 or higher contains the ones we want though
1073 #if API_VERSION_NUMBER >= 11
1074   dumpType = (MINIDUMP_TYPE)(dumpType | MiniDumpWithFullMemoryInfo | MiniDumpWithThreadInfo |
1075                              MiniDumpWithUnloadedModules);
1076 #endif
1077 
1078   if (siginfo != NULL && context != NULL) {
1079     ep.ContextRecord = (PCONTEXT) context;
1080     ep.ExceptionRecord = (PEXCEPTION_RECORD) siginfo;
1081 
1082     mei.ThreadId = GetCurrentThreadId();
1083     mei.ExceptionPointers = &ep;
1084     pmei = &mei;
1085   } else {
1086     pmei = NULL;
1087   }
1088 
1089   // Older versions of dbghelp.dll (the one shipped with Win2003 for example) may not support all
1090   // the dump types we really want. If first call fails, lets fall back to just use MiniDumpWithFullMemory then.
1091   if (_MiniDumpWriteDump(hProcess, processId, dumpFile, dumpType, pmei, NULL, NULL) == false &&
1092       _MiniDumpWriteDump(hProcess, processId, dumpFile, (MINIDUMP_TYPE)MiniDumpWithFullMemory, pmei, NULL, NULL) == false) {
1093     jio_fprintf(stderr, "Call to MiniDumpWriteDump() failed (Error 0x%x)\n", GetLastError());
1094   }
1095   CloseHandle(dumpFile);
1096   win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1097 }
1098 
1099 // Die immediately, no exit hook, no abort hook, no cleanup.
1100 void os::die() {
1101   win32::exit_process_or_thread(win32::EPT_PROCESS_DIE, -1);
1102 }
1103 
1104 // Directory routines copied from src/win32/native/java/io/dirent_md.c
1105 //  * dirent_md.c       1.15 00/02/02
1106 //
1107 // The declarations for DIR and struct dirent are in jvm_win32.h.
1108 
1109 // Caller must have already run dirname through JVM_NativePath, which removes
1110 // duplicate slashes and converts all instances of '/' into '\\'.
1111 
1112 DIR * os::opendir(const char *dirname) {
1113   assert(dirname != NULL, "just checking");   // hotspot change
1114   DIR *dirp = (DIR *)malloc(sizeof(DIR), mtInternal);
1115   DWORD fattr;                                // hotspot change
1116   char alt_dirname[4] = { 0, 0, 0, 0 };
1117 
1118   if (dirp == 0) {
1119     errno = ENOMEM;
1120     return 0;
1121   }
1122 
1123   // Win32 accepts "\" in its POSIX stat(), but refuses to treat it
1124   // as a directory in FindFirstFile().  We detect this case here and
1125   // prepend the current drive name.
1126   //
1127   if (dirname[1] == '\0' && dirname[0] == '\\') {
1128     alt_dirname[0] = _getdrive() + 'A' - 1;
1129     alt_dirname[1] = ':';
1130     alt_dirname[2] = '\\';
1131     alt_dirname[3] = '\0';
1132     dirname = alt_dirname;
1133   }
1134 
1135   dirp->path = (char *)malloc(strlen(dirname) + 5, mtInternal);
1136   if (dirp->path == 0) {
1137     free(dirp);
1138     errno = ENOMEM;
1139     return 0;
1140   }
1141   strcpy(dirp->path, dirname);
1142 
1143   fattr = GetFileAttributes(dirp->path);
1144   if (fattr == 0xffffffff) {
1145     free(dirp->path);
1146     free(dirp);
1147     errno = ENOENT;
1148     return 0;
1149   } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
1150     free(dirp->path);
1151     free(dirp);
1152     errno = ENOTDIR;
1153     return 0;
1154   }
1155 
1156   // Append "*.*", or possibly "\\*.*", to path
1157   if (dirp->path[1] == ':' &&
1158       (dirp->path[2] == '\0' ||
1159       (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
1160     // No '\\' needed for cases like "Z:" or "Z:\"
1161     strcat(dirp->path, "*.*");
1162   } else {
1163     strcat(dirp->path, "\\*.*");
1164   }
1165 
1166   dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
1167   if (dirp->handle == INVALID_HANDLE_VALUE) {
1168     if (GetLastError() != ERROR_FILE_NOT_FOUND) {
1169       free(dirp->path);
1170       free(dirp);
1171       errno = EACCES;
1172       return 0;
1173     }
1174   }
1175   return dirp;
1176 }
1177 
1178 // parameter dbuf unused on Windows
1179 struct dirent * os::readdir(DIR *dirp, dirent *dbuf) {
1180   assert(dirp != NULL, "just checking");      // hotspot change
1181   if (dirp->handle == INVALID_HANDLE_VALUE) {
1182     return 0;
1183   }
1184 
1185   strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
1186 
1187   if (!FindNextFile(dirp->handle, &dirp->find_data)) {
1188     if (GetLastError() == ERROR_INVALID_HANDLE) {
1189       errno = EBADF;
1190       return 0;
1191     }
1192     FindClose(dirp->handle);
1193     dirp->handle = INVALID_HANDLE_VALUE;
1194   }
1195 
1196   return &dirp->dirent;
1197 }
1198 
1199 int os::closedir(DIR *dirp) {
1200   assert(dirp != NULL, "just checking");      // hotspot change
1201   if (dirp->handle != INVALID_HANDLE_VALUE) {
1202     if (!FindClose(dirp->handle)) {
1203       errno = EBADF;
1204       return -1;
1205     }
1206     dirp->handle = INVALID_HANDLE_VALUE;
1207   }
1208   free(dirp->path);
1209   free(dirp);
1210   return 0;
1211 }
1212 
1213 // This must be hard coded because it's the system's temporary
1214 // directory not the java application's temp directory, ala java.io.tmpdir.
1215 const char* os::get_temp_directory() {
1216   static char path_buf[MAX_PATH];
1217   if (GetTempPath(MAX_PATH, path_buf) > 0) {
1218     return path_buf;
1219   } else {
1220     path_buf[0] = '\0';
1221     return path_buf;
1222   }
1223 }
1224 
1225 static bool file_exists(const char* filename) {
1226   if (filename == NULL || strlen(filename) == 0) {
1227     return false;
1228   }
1229   return GetFileAttributes(filename) != INVALID_FILE_ATTRIBUTES;
1230 }
1231 
1232 bool os::dll_build_name(char *buffer, size_t buflen,
1233                         const char* pname, const char* fname) {
1234   bool retval = false;
1235   const size_t pnamelen = pname ? strlen(pname) : 0;
1236   const char c = (pnamelen > 0) ? pname[pnamelen-1] : 0;
1237 
1238   // Return error on buffer overflow.
1239   if (pnamelen + strlen(fname) + 10 > buflen) {
1240     return retval;
1241   }
1242 
1243   if (pnamelen == 0) {
1244     jio_snprintf(buffer, buflen, "%s.dll", fname);
1245     retval = true;
1246   } else if (c == ':' || c == '\\') {
1247     jio_snprintf(buffer, buflen, "%s%s.dll", pname, fname);
1248     retval = true;
1249   } else if (strchr(pname, *os::path_separator()) != NULL) {
1250     int n;
1251     char** pelements = split_path(pname, &n);
1252     if (pelements == NULL) {
1253       return false;
1254     }
1255     for (int i = 0; i < n; i++) {
1256       char* path = pelements[i];
1257       // Really shouldn't be NULL, but check can't hurt
1258       size_t plen = (path == NULL) ? 0 : strlen(path);
1259       if (plen == 0) {
1260         continue; // skip the empty path values
1261       }
1262       const char lastchar = path[plen - 1];
1263       if (lastchar == ':' || lastchar == '\\') {
1264         jio_snprintf(buffer, buflen, "%s%s.dll", path, fname);
1265       } else {
1266         jio_snprintf(buffer, buflen, "%s\\%s.dll", path, fname);
1267       }
1268       if (file_exists(buffer)) {
1269         retval = true;
1270         break;
1271       }
1272     }
1273     // release the storage
1274     for (int i = 0; i < n; i++) {
1275       if (pelements[i] != NULL) {
1276         FREE_C_HEAP_ARRAY(char, pelements[i]);
1277       }
1278     }
1279     if (pelements != NULL) {
1280       FREE_C_HEAP_ARRAY(char*, pelements);
1281     }
1282   } else {
1283     jio_snprintf(buffer, buflen, "%s\\%s.dll", pname, fname);
1284     retval = true;
1285   }
1286   return retval;
1287 }
1288 
1289 // Needs to be in os specific directory because windows requires another
1290 // header file <direct.h>
1291 const char* os::get_current_directory(char *buf, size_t buflen) {
1292   int n = static_cast<int>(buflen);
1293   if (buflen > INT_MAX)  n = INT_MAX;
1294   return _getcwd(buf, n);
1295 }
1296 
1297 //-----------------------------------------------------------
1298 // Helper functions for fatal error handler
1299 #ifdef _WIN64
1300 // Helper routine which returns true if address in
1301 // within the NTDLL address space.
1302 //
1303 static bool _addr_in_ntdll(address addr) {
1304   HMODULE hmod;
1305   MODULEINFO minfo;
1306 
1307   hmod = GetModuleHandle("NTDLL.DLL");
1308   if (hmod == NULL) return false;
1309   if (!os::PSApiDll::GetModuleInformation(GetCurrentProcess(), hmod,
1310                                           &minfo, sizeof(MODULEINFO))) {
1311     return false;
1312   }
1313 
1314   if ((addr >= minfo.lpBaseOfDll) &&
1315       (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage))) {
1316     return true;
1317   } else {
1318     return false;
1319   }
1320 }
1321 #endif
1322 
1323 struct _modinfo {
1324   address addr;
1325   char*   full_path;   // point to a char buffer
1326   int     buflen;      // size of the buffer
1327   address base_addr;
1328 };
1329 
1330 static int _locate_module_by_addr(const char * mod_fname, address base_addr,
1331                                   address top_address, void * param) {
1332   struct _modinfo *pmod = (struct _modinfo *)param;
1333   if (!pmod) return -1;
1334 
1335   if (base_addr   <= pmod->addr &&
1336       top_address > pmod->addr) {
1337     // if a buffer is provided, copy path name to the buffer
1338     if (pmod->full_path) {
1339       jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
1340     }
1341     pmod->base_addr = base_addr;
1342     return 1;
1343   }
1344   return 0;
1345 }
1346 
1347 bool os::dll_address_to_library_name(address addr, char* buf,
1348                                      int buflen, int* offset) {
1349   // buf is not optional, but offset is optional
1350   assert(buf != NULL, "sanity check");
1351 
1352 // NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
1353 //       return the full path to the DLL file, sometimes it returns path
1354 //       to the corresponding PDB file (debug info); sometimes it only
1355 //       returns partial path, which makes life painful.
1356 
1357   struct _modinfo mi;
1358   mi.addr      = addr;
1359   mi.full_path = buf;
1360   mi.buflen    = buflen;
1361   if (get_loaded_modules_info(_locate_module_by_addr, (void *)&mi)) {
1362     // buf already contains path name
1363     if (offset) *offset = addr - mi.base_addr;
1364     return true;
1365   }
1366 
1367   buf[0] = '\0';
1368   if (offset) *offset = -1;
1369   return false;
1370 }
1371 
1372 bool os::dll_address_to_function_name(address addr, char *buf,
1373                                       int buflen, int *offset,
1374                                       bool demangle) {
1375   // buf is not optional, but offset is optional
1376   assert(buf != NULL, "sanity check");
1377 
1378   if (Decoder::decode(addr, buf, buflen, offset, demangle)) {
1379     return true;
1380   }
1381   if (offset != NULL)  *offset  = -1;
1382   buf[0] = '\0';
1383   return false;
1384 }
1385 
1386 // save the start and end address of jvm.dll into param[0] and param[1]
1387 static int _locate_jvm_dll(const char* mod_fname, address base_addr,
1388                            address top_address, void * param) {
1389   if (!param) return -1;
1390 
1391   if (base_addr   <= (address)_locate_jvm_dll &&
1392       top_address > (address)_locate_jvm_dll) {
1393     ((address*)param)[0] = base_addr;
1394     ((address*)param)[1] = top_address;
1395     return 1;
1396   }
1397   return 0;
1398 }
1399 
1400 address vm_lib_location[2];    // start and end address of jvm.dll
1401 
1402 // check if addr is inside jvm.dll
1403 bool os::address_is_in_vm(address addr) {
1404   if (!vm_lib_location[0] || !vm_lib_location[1]) {
1405     if (!get_loaded_modules_info(_locate_jvm_dll, (void *)vm_lib_location)) {
1406       assert(false, "Can't find jvm module.");
1407       return false;
1408     }
1409   }
1410 
1411   return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
1412 }
1413 
1414 // print module info; param is outputStream*
1415 static int _print_module(const char* fname, address base_address,
1416                          address top_address, void* param) {
1417   if (!param) return -1;
1418 
1419   outputStream* st = (outputStream*)param;
1420 
1421   st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base_address, top_address, fname);
1422   return 0;
1423 }
1424 
1425 // Loads .dll/.so and
1426 // in case of error it checks if .dll/.so was built for the
1427 // same architecture as Hotspot is running on
1428 void * os::dll_load(const char *name, char *ebuf, int ebuflen) {
1429   void * result = LoadLibrary(name);
1430   if (result != NULL) {
1431     return result;
1432   }
1433 
1434   DWORD errcode = GetLastError();
1435   if (errcode == ERROR_MOD_NOT_FOUND) {
1436     strncpy(ebuf, "Can't find dependent libraries", ebuflen - 1);
1437     ebuf[ebuflen - 1] = '\0';
1438     return NULL;
1439   }
1440 
1441   // Parsing dll below
1442   // If we can read dll-info and find that dll was built
1443   // for an architecture other than Hotspot is running in
1444   // - then print to buffer "DLL was built for a different architecture"
1445   // else call os::lasterror to obtain system error message
1446 
1447   // Read system error message into ebuf
1448   // It may or may not be overwritten below (in the for loop and just above)
1449   lasterror(ebuf, (size_t) ebuflen);
1450   ebuf[ebuflen - 1] = '\0';
1451   int fd = ::open(name, O_RDONLY | O_BINARY, 0);
1452   if (fd < 0) {
1453     return NULL;
1454   }
1455 
1456   uint32_t signature_offset;
1457   uint16_t lib_arch = 0;
1458   bool failed_to_get_lib_arch =
1459     ( // Go to position 3c in the dll
1460      (os::seek_to_file_offset(fd, IMAGE_FILE_PTR_TO_SIGNATURE) < 0)
1461      ||
1462      // Read location of signature
1463      (sizeof(signature_offset) !=
1464      (os::read(fd, (void*)&signature_offset, sizeof(signature_offset))))
1465      ||
1466      // Go to COFF File Header in dll
1467      // that is located after "signature" (4 bytes long)
1468      (os::seek_to_file_offset(fd,
1469      signature_offset + IMAGE_FILE_SIGNATURE_LENGTH) < 0)
1470      ||
1471      // Read field that contains code of architecture
1472      // that dll was built for
1473      (sizeof(lib_arch) != (os::read(fd, (void*)&lib_arch, sizeof(lib_arch))))
1474     );
1475 
1476   ::close(fd);
1477   if (failed_to_get_lib_arch) {
1478     // file i/o error - report os::lasterror(...) msg
1479     return NULL;
1480   }
1481 
1482   typedef struct {
1483     uint16_t arch_code;
1484     char* arch_name;
1485   } arch_t;
1486 
1487   static const arch_t arch_array[] = {
1488     {IMAGE_FILE_MACHINE_I386,      (char*)"IA 32"},
1489     {IMAGE_FILE_MACHINE_AMD64,     (char*)"AMD 64"},
1490     {IMAGE_FILE_MACHINE_IA64,      (char*)"IA 64"}
1491   };
1492 #if   (defined _M_IA64)
1493   static const uint16_t running_arch = IMAGE_FILE_MACHINE_IA64;
1494 #elif (defined _M_AMD64)
1495   static const uint16_t running_arch = IMAGE_FILE_MACHINE_AMD64;
1496 #elif (defined _M_IX86)
1497   static const uint16_t running_arch = IMAGE_FILE_MACHINE_I386;
1498 #else
1499   #error Method os::dll_load requires that one of following \
1500          is defined :_M_IA64,_M_AMD64 or _M_IX86
1501 #endif
1502 
1503 
1504   // Obtain a string for printf operation
1505   // lib_arch_str shall contain string what platform this .dll was built for
1506   // running_arch_str shall string contain what platform Hotspot was built for
1507   char *running_arch_str = NULL, *lib_arch_str = NULL;
1508   for (unsigned int i = 0; i < ARRAY_SIZE(arch_array); i++) {
1509     if (lib_arch == arch_array[i].arch_code) {
1510       lib_arch_str = arch_array[i].arch_name;
1511     }
1512     if (running_arch == arch_array[i].arch_code) {
1513       running_arch_str = arch_array[i].arch_name;
1514     }
1515   }
1516 
1517   assert(running_arch_str,
1518          "Didn't find running architecture code in arch_array");
1519 
1520   // If the architecture is right
1521   // but some other error took place - report os::lasterror(...) msg
1522   if (lib_arch == running_arch) {
1523     return NULL;
1524   }
1525 
1526   if (lib_arch_str != NULL) {
1527     ::_snprintf(ebuf, ebuflen - 1,
1528                 "Can't load %s-bit .dll on a %s-bit platform",
1529                 lib_arch_str, running_arch_str);
1530   } else {
1531     // don't know what architecture this dll was build for
1532     ::_snprintf(ebuf, ebuflen - 1,
1533                 "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
1534                 lib_arch, running_arch_str);
1535   }
1536 
1537   return NULL;
1538 }
1539 
1540 void os::print_dll_info(outputStream *st) {
1541   st->print_cr("Dynamic libraries:");
1542   get_loaded_modules_info(_print_module, (void *)st);
1543 }
1544 
1545 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1546   HANDLE   hProcess;
1547 
1548 # define MAX_NUM_MODULES 128
1549   HMODULE     modules[MAX_NUM_MODULES];
1550   static char filename[MAX_PATH];
1551   int         result = 0;
1552 
1553   if (!os::PSApiDll::PSApiAvailable()) {
1554     return 0;
1555   }
1556 
1557   int pid = os::current_process_id();
1558   hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
1559                          FALSE, pid);
1560   if (hProcess == NULL) return 0;
1561 
1562   DWORD size_needed;
1563   if (!os::PSApiDll::EnumProcessModules(hProcess, modules,
1564                                         sizeof(modules), &size_needed)) {
1565     CloseHandle(hProcess);
1566     return 0;
1567   }
1568 
1569   // number of modules that are currently loaded
1570   int num_modules = size_needed / sizeof(HMODULE);
1571 
1572   for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
1573     // Get Full pathname:
1574     if (!os::PSApiDll::GetModuleFileNameEx(hProcess, modules[i],
1575                                            filename, sizeof(filename))) {
1576       filename[0] = '\0';
1577     }
1578 
1579     MODULEINFO modinfo;
1580     if (!os::PSApiDll::GetModuleInformation(hProcess, modules[i],
1581                                             &modinfo, sizeof(modinfo))) {
1582       modinfo.lpBaseOfDll = NULL;
1583       modinfo.SizeOfImage = 0;
1584     }
1585 
1586     // Invoke callback function
1587     result = callback(filename, (address)modinfo.lpBaseOfDll,
1588                       (address)((u8)modinfo.lpBaseOfDll + (u8)modinfo.SizeOfImage), param);
1589     if (result) break;
1590   }
1591 
1592   CloseHandle(hProcess);
1593   return result;
1594 }
1595 
1596 #ifndef PRODUCT
1597 bool os::get_host_name(char* buf, size_t buflen) {
1598   DWORD size = (DWORD)buflen;
1599   return (GetComputerNameEx(ComputerNameDnsHostname, buf, &size) == TRUE);
1600 }
1601 #endif // PRODUCT
1602 
1603 void os::get_summary_os_info(char* buf, size_t buflen) {
1604   stringStream sst(buf, buflen);
1605   os::win32::print_windows_version(&sst);
1606   // chop off newline character
1607   char* nl = strchr(buf, '\n');
1608   if (nl != NULL) *nl = '\0';
1609 }
1610 
1611 void os::print_os_info_brief(outputStream* st) {
1612   os::print_os_info(st);
1613 }
1614 
1615 void os::print_os_info(outputStream* st) {
1616 #ifdef ASSERT
1617   char buffer[1024];
1618   DWORD size = sizeof(buffer);
1619   st->print("HostName: ");
1620   if (GetComputerNameEx(ComputerNameDnsHostname, buffer, &size)) {
1621     st->print("%s ", buffer);
1622   } else {
1623     st->print("N/A ");
1624   }
1625 #endif
1626   st->print("OS:");
1627   os::win32::print_windows_version(st);
1628 }
1629 
1630 void os::win32::print_windows_version(outputStream* st) {
1631   OSVERSIONINFOEX osvi;
1632   VS_FIXEDFILEINFO *file_info;
1633   TCHAR kernel32_path[MAX_PATH];
1634   UINT len, ret;
1635 
1636   // Use the GetVersionEx information to see if we're on a server or
1637   // workstation edition of Windows. Starting with Windows 8.1 we can't
1638   // trust the OS version information returned by this API.
1639   ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
1640   osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
1641   if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
1642     st->print_cr("Call to GetVersionEx failed");
1643     return;
1644   }
1645   bool is_workstation = (osvi.wProductType == VER_NT_WORKSTATION);
1646 
1647   // Get the full path to \Windows\System32\kernel32.dll and use that for
1648   // determining what version of Windows we're running on.
1649   len = MAX_PATH - (UINT)strlen("\\kernel32.dll") - 1;
1650   ret = GetSystemDirectory(kernel32_path, len);
1651   if (ret == 0 || ret > len) {
1652     st->print_cr("Call to GetSystemDirectory failed");
1653     return;
1654   }
1655   strncat(kernel32_path, "\\kernel32.dll", MAX_PATH - ret);
1656 
1657   DWORD version_size = GetFileVersionInfoSize(kernel32_path, NULL);
1658   if (version_size == 0) {
1659     st->print_cr("Call to GetFileVersionInfoSize failed");
1660     return;
1661   }
1662 
1663   LPTSTR version_info = (LPTSTR)os::malloc(version_size, mtInternal);
1664   if (version_info == NULL) {
1665     st->print_cr("Failed to allocate version_info");
1666     return;
1667   }
1668 
1669   if (!GetFileVersionInfo(kernel32_path, NULL, version_size, version_info)) {
1670     os::free(version_info);
1671     st->print_cr("Call to GetFileVersionInfo failed");
1672     return;
1673   }
1674 
1675   if (!VerQueryValue(version_info, TEXT("\\"), (LPVOID*)&file_info, &len)) {
1676     os::free(version_info);
1677     st->print_cr("Call to VerQueryValue failed");
1678     return;
1679   }
1680 
1681   int major_version = HIWORD(file_info->dwProductVersionMS);
1682   int minor_version = LOWORD(file_info->dwProductVersionMS);
1683   int build_number = HIWORD(file_info->dwProductVersionLS);
1684   int build_minor = LOWORD(file_info->dwProductVersionLS);
1685   int os_vers = major_version * 1000 + minor_version;
1686   os::free(version_info);
1687 
1688   st->print(" Windows ");
1689   switch (os_vers) {
1690 
1691   case 6000:
1692     if (is_workstation) {
1693       st->print("Vista");
1694     } else {
1695       st->print("Server 2008");
1696     }
1697     break;
1698 
1699   case 6001:
1700     if (is_workstation) {
1701       st->print("7");
1702     } else {
1703       st->print("Server 2008 R2");
1704     }
1705     break;
1706 
1707   case 6002:
1708     if (is_workstation) {
1709       st->print("8");
1710     } else {
1711       st->print("Server 2012");
1712     }
1713     break;
1714 
1715   case 6003:
1716     if (is_workstation) {
1717       st->print("8.1");
1718     } else {
1719       st->print("Server 2012 R2");
1720     }
1721     break;
1722 
1723   case 10000:
1724     if (is_workstation) {
1725       st->print("10");
1726     } else {
1727       // The server version name of Windows 10 is not known at this time
1728       st->print("%d.%d", major_version, minor_version);
1729     }
1730     break;
1731 
1732   default:
1733     // Unrecognized windows, print out its major and minor versions
1734     st->print("%d.%d", major_version, minor_version);
1735     break;
1736   }
1737 
1738   // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
1739   // find out whether we are running on 64 bit processor or not
1740   SYSTEM_INFO si;
1741   ZeroMemory(&si, sizeof(SYSTEM_INFO));
1742   os::Kernel32Dll::GetNativeSystemInfo(&si);
1743   if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64) {
1744     st->print(" , 64 bit");
1745   }
1746 
1747   st->print(" Build %d", build_number);
1748   st->print(" (%d.%d.%d.%d)", major_version, minor_version, build_number, build_minor);
1749   st->cr();
1750 }
1751 
1752 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
1753   // Nothing to do for now.
1754 }
1755 
1756 void os::get_summary_cpu_info(char* buf, size_t buflen) {
1757   HKEY key;
1758   DWORD status = RegOpenKey(HKEY_LOCAL_MACHINE,
1759                "HARDWARE\\DESCRIPTION\\System\\CentralProcessor\\0", &key);
1760   if (status == ERROR_SUCCESS) {
1761     DWORD size = (DWORD)buflen;
1762     status = RegQueryValueEx(key, "ProcessorNameString", NULL, NULL, (byte*)buf, &size);
1763     if (status != ERROR_SUCCESS) {
1764         strncpy(buf, "## __CPU__", buflen);
1765     }
1766     RegCloseKey(key);
1767   } else {
1768     // Put generic cpu info to return
1769     strncpy(buf, "## __CPU__", buflen);
1770   }
1771 }
1772 
1773 void os::print_memory_info(outputStream* st) {
1774   st->print("Memory:");
1775   st->print(" %dk page", os::vm_page_size()>>10);
1776 
1777   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
1778   // value if total memory is larger than 4GB
1779   MEMORYSTATUSEX ms;
1780   ms.dwLength = sizeof(ms);
1781   GlobalMemoryStatusEx(&ms);
1782 
1783   st->print(", physical %uk", os::physical_memory() >> 10);
1784   st->print("(%uk free)", os::available_memory() >> 10);
1785 
1786   st->print(", swap %uk", ms.ullTotalPageFile >> 10);
1787   st->print("(%uk free)", ms.ullAvailPageFile >> 10);
1788   st->cr();
1789 }
1790 
1791 void os::print_siginfo(outputStream *st, void *siginfo) {
1792   EXCEPTION_RECORD* er = (EXCEPTION_RECORD*)siginfo;
1793   st->print("siginfo:");
1794   st->print(" ExceptionCode=0x%x", er->ExceptionCode);
1795 
1796   if (er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
1797       er->NumberParameters >= 2) {
1798     switch (er->ExceptionInformation[0]) {
1799     case 0: st->print(", reading address"); break;
1800     case 1: st->print(", writing address"); break;
1801     default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
1802                        er->ExceptionInformation[0]);
1803     }
1804     st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
1805   } else if (er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR &&
1806              er->NumberParameters >= 2 && UseSharedSpaces) {
1807     FileMapInfo* mapinfo = FileMapInfo::current_info();
1808     if (mapinfo->is_in_shared_space((void*)er->ExceptionInformation[1])) {
1809       st->print("\n\nError accessing class data sharing archive."       \
1810                 " Mapped file inaccessible during execution, "          \
1811                 " possible disk/network problem.");
1812     }
1813   } else {
1814     int num = er->NumberParameters;
1815     if (num > 0) {
1816       st->print(", ExceptionInformation=");
1817       for (int i = 0; i < num; i++) {
1818         st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
1819       }
1820     }
1821   }
1822   st->cr();
1823 }
1824 
1825 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1826   // do nothing
1827 }
1828 
1829 static char saved_jvm_path[MAX_PATH] = {0};
1830 
1831 // Find the full path to the current module, jvm.dll
1832 void os::jvm_path(char *buf, jint buflen) {
1833   // Error checking.
1834   if (buflen < MAX_PATH) {
1835     assert(false, "must use a large-enough buffer");
1836     buf[0] = '\0';
1837     return;
1838   }
1839   // Lazy resolve the path to current module.
1840   if (saved_jvm_path[0] != 0) {
1841     strcpy(buf, saved_jvm_path);
1842     return;
1843   }
1844 
1845   buf[0] = '\0';
1846   if (Arguments::sun_java_launcher_is_altjvm()) {
1847     // Support for the java launcher's '-XXaltjvm=<path>' option. Check
1848     // for a JAVA_HOME environment variable and fix up the path so it
1849     // looks like jvm.dll is installed there (append a fake suffix
1850     // hotspot/jvm.dll).
1851     char* java_home_var = ::getenv("JAVA_HOME");
1852     if (java_home_var != NULL && java_home_var[0] != 0 &&
1853         strlen(java_home_var) < (size_t)buflen) {
1854       strncpy(buf, java_home_var, buflen);
1855 
1856       // determine if this is a legacy image or modules image
1857       // modules image doesn't have "jre" subdirectory
1858       size_t len = strlen(buf);
1859       char* jrebin_p = buf + len;
1860       jio_snprintf(jrebin_p, buflen-len, "\\jre\\bin\\");
1861       if (0 != _access(buf, 0)) {
1862         jio_snprintf(jrebin_p, buflen-len, "\\bin\\");
1863       }
1864       len = strlen(buf);
1865       jio_snprintf(buf + len, buflen-len, "hotspot\\jvm.dll");
1866     }
1867   }
1868 
1869   if (buf[0] == '\0') {
1870     GetModuleFileName(vm_lib_handle, buf, buflen);
1871   }
1872   strncpy(saved_jvm_path, buf, MAX_PATH);
1873   saved_jvm_path[MAX_PATH - 1] = '\0';
1874 }
1875 
1876 
1877 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1878 #ifndef _WIN64
1879   st->print("_");
1880 #endif
1881 }
1882 
1883 
1884 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1885 #ifndef _WIN64
1886   st->print("@%d", args_size  * sizeof(int));
1887 #endif
1888 }
1889 
1890 // This method is a copy of JDK's sysGetLastErrorString
1891 // from src/windows/hpi/src/system_md.c
1892 
1893 size_t os::lasterror(char* buf, size_t len) {
1894   DWORD errval;
1895 
1896   if ((errval = GetLastError()) != 0) {
1897     // DOS error
1898     size_t n = (size_t)FormatMessage(
1899                                      FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
1900                                      NULL,
1901                                      errval,
1902                                      0,
1903                                      buf,
1904                                      (DWORD)len,
1905                                      NULL);
1906     if (n > 3) {
1907       // Drop final '.', CR, LF
1908       if (buf[n - 1] == '\n') n--;
1909       if (buf[n - 1] == '\r') n--;
1910       if (buf[n - 1] == '.') n--;
1911       buf[n] = '\0';
1912     }
1913     return n;
1914   }
1915 
1916   if (errno != 0) {
1917     // C runtime error that has no corresponding DOS error code
1918     const char* s = strerror(errno);
1919     size_t n = strlen(s);
1920     if (n >= len) n = len - 1;
1921     strncpy(buf, s, n);
1922     buf[n] = '\0';
1923     return n;
1924   }
1925 
1926   return 0;
1927 }
1928 
1929 int os::get_last_error() {
1930   DWORD error = GetLastError();
1931   if (error == 0) {
1932     error = errno;
1933   }
1934   return (int)error;
1935 }
1936 
1937 WindowsSemaphore::WindowsSemaphore(uint value) {
1938   _semaphore = ::CreateSemaphore(NULL, value, LONG_MAX, NULL);
1939 
1940   guarantee(_semaphore != NULL, err_msg("CreateSemaphore failed with error code: %lu", GetLastError()));
1941 }
1942 
1943 WindowsSemaphore::~WindowsSemaphore() {
1944   ::CloseHandle(_semaphore);
1945 }
1946 
1947 void WindowsSemaphore::signal(uint count) {
1948   if (count > 0) {
1949     BOOL ret = ::ReleaseSemaphore(_semaphore, count, NULL);
1950 
1951     assert(ret != 0, err_msg("ReleaseSemaphore failed with error code: %lu", GetLastError()));
1952   }
1953 }
1954 
1955 void WindowsSemaphore::wait() {
1956   DWORD ret = ::WaitForSingleObject(_semaphore, INFINITE);
1957   assert(ret != WAIT_FAILED,   err_msg("WaitForSingleObject failed with error code: %lu", GetLastError()));
1958   assert(ret == WAIT_OBJECT_0, err_msg("WaitForSingleObject failed with return value: %lu", ret));
1959 }
1960 
1961 // sun.misc.Signal
1962 // NOTE that this is a workaround for an apparent kernel bug where if
1963 // a signal handler for SIGBREAK is installed then that signal handler
1964 // takes priority over the console control handler for CTRL_CLOSE_EVENT.
1965 // See bug 4416763.
1966 static void (*sigbreakHandler)(int) = NULL;
1967 
1968 static void UserHandler(int sig, void *siginfo, void *context) {
1969   os::signal_notify(sig);
1970   // We need to reinstate the signal handler each time...
1971   os::signal(sig, (void*)UserHandler);
1972 }
1973 
1974 void* os::user_handler() {
1975   return (void*) UserHandler;
1976 }
1977 
1978 void* os::signal(int signal_number, void* handler) {
1979   if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
1980     void (*oldHandler)(int) = sigbreakHandler;
1981     sigbreakHandler = (void (*)(int)) handler;
1982     return (void*) oldHandler;
1983   } else {
1984     return (void*)::signal(signal_number, (void (*)(int))handler);
1985   }
1986 }
1987 
1988 void os::signal_raise(int signal_number) {
1989   raise(signal_number);
1990 }
1991 
1992 // The Win32 C runtime library maps all console control events other than ^C
1993 // into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
1994 // logoff, and shutdown events.  We therefore install our own console handler
1995 // that raises SIGTERM for the latter cases.
1996 //
1997 static BOOL WINAPI consoleHandler(DWORD event) {
1998   switch (event) {
1999   case CTRL_C_EVENT:
2000     if (is_error_reported()) {
2001       // Ctrl-C is pressed during error reporting, likely because the error
2002       // handler fails to abort. Let VM die immediately.
2003       os::die();
2004     }
2005 
2006     os::signal_raise(SIGINT);
2007     return TRUE;
2008     break;
2009   case CTRL_BREAK_EVENT:
2010     if (sigbreakHandler != NULL) {
2011       (*sigbreakHandler)(SIGBREAK);
2012     }
2013     return TRUE;
2014     break;
2015   case CTRL_LOGOFF_EVENT: {
2016     // Don't terminate JVM if it is running in a non-interactive session,
2017     // such as a service process.
2018     USEROBJECTFLAGS flags;
2019     HANDLE handle = GetProcessWindowStation();
2020     if (handle != NULL &&
2021         GetUserObjectInformation(handle, UOI_FLAGS, &flags,
2022         sizeof(USEROBJECTFLAGS), NULL)) {
2023       // If it is a non-interactive session, let next handler to deal
2024       // with it.
2025       if ((flags.dwFlags & WSF_VISIBLE) == 0) {
2026         return FALSE;
2027       }
2028     }
2029   }
2030   case CTRL_CLOSE_EVENT:
2031   case CTRL_SHUTDOWN_EVENT:
2032     os::signal_raise(SIGTERM);
2033     return TRUE;
2034     break;
2035   default:
2036     break;
2037   }
2038   return FALSE;
2039 }
2040 
2041 // The following code is moved from os.cpp for making this
2042 // code platform specific, which it is by its very nature.
2043 
2044 // Return maximum OS signal used + 1 for internal use only
2045 // Used as exit signal for signal_thread
2046 int os::sigexitnum_pd() {
2047   return NSIG;
2048 }
2049 
2050 // a counter for each possible signal value, including signal_thread exit signal
2051 static volatile jint pending_signals[NSIG+1] = { 0 };
2052 static HANDLE sig_sem = NULL;
2053 
2054 void os::signal_init_pd() {
2055   // Initialize signal structures
2056   memset((void*)pending_signals, 0, sizeof(pending_signals));
2057 
2058   sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
2059 
2060   // Programs embedding the VM do not want it to attempt to receive
2061   // events like CTRL_LOGOFF_EVENT, which are used to implement the
2062   // shutdown hooks mechanism introduced in 1.3.  For example, when
2063   // the VM is run as part of a Windows NT service (i.e., a servlet
2064   // engine in a web server), the correct behavior is for any console
2065   // control handler to return FALSE, not TRUE, because the OS's
2066   // "final" handler for such events allows the process to continue if
2067   // it is a service (while terminating it if it is not a service).
2068   // To make this behavior uniform and the mechanism simpler, we
2069   // completely disable the VM's usage of these console events if -Xrs
2070   // (=ReduceSignalUsage) is specified.  This means, for example, that
2071   // the CTRL-BREAK thread dump mechanism is also disabled in this
2072   // case.  See bugs 4323062, 4345157, and related bugs.
2073 
2074   if (!ReduceSignalUsage) {
2075     // Add a CTRL-C handler
2076     SetConsoleCtrlHandler(consoleHandler, TRUE);
2077   }
2078 }
2079 
2080 void os::signal_notify(int signal_number) {
2081   BOOL ret;
2082   if (sig_sem != NULL) {
2083     Atomic::inc(&pending_signals[signal_number]);
2084     ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2085     assert(ret != 0, "ReleaseSemaphore() failed");
2086   }
2087 }
2088 
2089 static int check_pending_signals(bool wait_for_signal) {
2090   DWORD ret;
2091   while (true) {
2092     for (int i = 0; i < NSIG + 1; i++) {
2093       jint n = pending_signals[i];
2094       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2095         return i;
2096       }
2097     }
2098     if (!wait_for_signal) {
2099       return -1;
2100     }
2101 
2102     JavaThread *thread = JavaThread::current();
2103 
2104     ThreadBlockInVM tbivm(thread);
2105 
2106     bool threadIsSuspended;
2107     do {
2108       thread->set_suspend_equivalent();
2109       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2110       ret = ::WaitForSingleObject(sig_sem, INFINITE);
2111       assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
2112 
2113       // were we externally suspended while we were waiting?
2114       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2115       if (threadIsSuspended) {
2116         // The semaphore has been incremented, but while we were waiting
2117         // another thread suspended us. We don't want to continue running
2118         // while suspended because that would surprise the thread that
2119         // suspended us.
2120         ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2121         assert(ret != 0, "ReleaseSemaphore() failed");
2122 
2123         thread->java_suspend_self();
2124       }
2125     } while (threadIsSuspended);
2126   }
2127 }
2128 
2129 int os::signal_lookup() {
2130   return check_pending_signals(false);
2131 }
2132 
2133 int os::signal_wait() {
2134   return check_pending_signals(true);
2135 }
2136 
2137 // Implicit OS exception handling
2138 
2139 LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo,
2140                       address handler) {
2141   JavaThread* thread = JavaThread::current();
2142   // Save pc in thread
2143 #ifdef _M_IA64
2144   // Do not blow up if no thread info available.
2145   if (thread) {
2146     // Saving PRECISE pc (with slot information) in thread.
2147     uint64_t precise_pc = (uint64_t) exceptionInfo->ExceptionRecord->ExceptionAddress;
2148     // Convert precise PC into "Unix" format
2149     precise_pc = (precise_pc & 0xFFFFFFFFFFFFFFF0) | ((precise_pc & 0xF) >> 2);
2150     thread->set_saved_exception_pc((address)precise_pc);
2151   }
2152   // Set pc to handler
2153   exceptionInfo->ContextRecord->StIIP = (DWORD64)handler;
2154   // Clear out psr.ri (= Restart Instruction) in order to continue
2155   // at the beginning of the target bundle.
2156   exceptionInfo->ContextRecord->StIPSR &= 0xFFFFF9FFFFFFFFFF;
2157   assert(((DWORD64)handler & 0xF) == 0, "Target address must point to the beginning of a bundle!");
2158 #else
2159   #ifdef _M_AMD64
2160   // Do not blow up if no thread info available.
2161   if (thread) {
2162     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Rip);
2163   }
2164   // Set pc to handler
2165   exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
2166   #else
2167   // Do not blow up if no thread info available.
2168   if (thread) {
2169     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Eip);
2170   }
2171   // Set pc to handler
2172   exceptionInfo->ContextRecord->Eip = (DWORD)(DWORD_PTR)handler;
2173   #endif
2174 #endif
2175 
2176   // Continue the execution
2177   return EXCEPTION_CONTINUE_EXECUTION;
2178 }
2179 
2180 
2181 // Used for PostMortemDump
2182 extern "C" void safepoints();
2183 extern "C" void find(int x);
2184 extern "C" void events();
2185 
2186 // According to Windows API documentation, an illegal instruction sequence should generate
2187 // the 0xC000001C exception code. However, real world experience shows that occasionnaly
2188 // the execution of an illegal instruction can generate the exception code 0xC000001E. This
2189 // seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
2190 
2191 #define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
2192 
2193 // From "Execution Protection in the Windows Operating System" draft 0.35
2194 // Once a system header becomes available, the "real" define should be
2195 // included or copied here.
2196 #define EXCEPTION_INFO_EXEC_VIOLATION 0x08
2197 
2198 // Handle NAT Bit consumption on IA64.
2199 #ifdef _M_IA64
2200   #define EXCEPTION_REG_NAT_CONSUMPTION    STATUS_REG_NAT_CONSUMPTION
2201 #endif
2202 
2203 // Windows Vista/2008 heap corruption check
2204 #define EXCEPTION_HEAP_CORRUPTION        0xC0000374
2205 
2206 #define def_excpt(val) #val, val
2207 
2208 struct siglabel {
2209   char *name;
2210   int   number;
2211 };
2212 
2213 // All Visual C++ exceptions thrown from code generated by the Microsoft Visual
2214 // C++ compiler contain this error code. Because this is a compiler-generated
2215 // error, the code is not listed in the Win32 API header files.
2216 // The code is actually a cryptic mnemonic device, with the initial "E"
2217 // standing for "exception" and the final 3 bytes (0x6D7363) representing the
2218 // ASCII values of "msc".
2219 
2220 #define EXCEPTION_UNCAUGHT_CXX_EXCEPTION    0xE06D7363
2221 
2222 
2223 struct siglabel exceptlabels[] = {
2224     def_excpt(EXCEPTION_ACCESS_VIOLATION),
2225     def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
2226     def_excpt(EXCEPTION_BREAKPOINT),
2227     def_excpt(EXCEPTION_SINGLE_STEP),
2228     def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
2229     def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
2230     def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
2231     def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
2232     def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
2233     def_excpt(EXCEPTION_FLT_OVERFLOW),
2234     def_excpt(EXCEPTION_FLT_STACK_CHECK),
2235     def_excpt(EXCEPTION_FLT_UNDERFLOW),
2236     def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
2237     def_excpt(EXCEPTION_INT_OVERFLOW),
2238     def_excpt(EXCEPTION_PRIV_INSTRUCTION),
2239     def_excpt(EXCEPTION_IN_PAGE_ERROR),
2240     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
2241     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
2242     def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
2243     def_excpt(EXCEPTION_STACK_OVERFLOW),
2244     def_excpt(EXCEPTION_INVALID_DISPOSITION),
2245     def_excpt(EXCEPTION_GUARD_PAGE),
2246     def_excpt(EXCEPTION_INVALID_HANDLE),
2247     def_excpt(EXCEPTION_UNCAUGHT_CXX_EXCEPTION),
2248     def_excpt(EXCEPTION_HEAP_CORRUPTION),
2249 #ifdef _M_IA64
2250     def_excpt(EXCEPTION_REG_NAT_CONSUMPTION),
2251 #endif
2252     NULL, 0
2253 };
2254 
2255 const char* os::exception_name(int exception_code, char *buf, size_t size) {
2256   for (int i = 0; exceptlabels[i].name != NULL; i++) {
2257     if (exceptlabels[i].number == exception_code) {
2258       jio_snprintf(buf, size, "%s", exceptlabels[i].name);
2259       return buf;
2260     }
2261   }
2262 
2263   return NULL;
2264 }
2265 
2266 //-----------------------------------------------------------------------------
2267 LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2268   // handle exception caused by idiv; should only happen for -MinInt/-1
2269   // (division by zero is handled explicitly)
2270 #ifdef _M_IA64
2271   assert(0, "Fix Handle_IDiv_Exception");
2272 #else
2273   #ifdef  _M_AMD64
2274   PCONTEXT ctx = exceptionInfo->ContextRecord;
2275   address pc = (address)ctx->Rip;
2276   assert(pc[0] == 0xF7, "not an idiv opcode");
2277   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2278   assert(ctx->Rax == min_jint, "unexpected idiv exception");
2279   // set correct result values and continue after idiv instruction
2280   ctx->Rip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2281   ctx->Rax = (DWORD)min_jint;      // result
2282   ctx->Rdx = (DWORD)0;             // remainder
2283   // Continue the execution
2284   #else
2285   PCONTEXT ctx = exceptionInfo->ContextRecord;
2286   address pc = (address)ctx->Eip;
2287   assert(pc[0] == 0xF7, "not an idiv opcode");
2288   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2289   assert(ctx->Eax == min_jint, "unexpected idiv exception");
2290   // set correct result values and continue after idiv instruction
2291   ctx->Eip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2292   ctx->Eax = (DWORD)min_jint;      // result
2293   ctx->Edx = (DWORD)0;             // remainder
2294   // Continue the execution
2295   #endif
2296 #endif
2297   return EXCEPTION_CONTINUE_EXECUTION;
2298 }
2299 
2300 //-----------------------------------------------------------------------------
2301 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2302   PCONTEXT ctx = exceptionInfo->ContextRecord;
2303 #ifndef  _WIN64
2304   // handle exception caused by native method modifying control word
2305   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2306 
2307   switch (exception_code) {
2308   case EXCEPTION_FLT_DENORMAL_OPERAND:
2309   case EXCEPTION_FLT_DIVIDE_BY_ZERO:
2310   case EXCEPTION_FLT_INEXACT_RESULT:
2311   case EXCEPTION_FLT_INVALID_OPERATION:
2312   case EXCEPTION_FLT_OVERFLOW:
2313   case EXCEPTION_FLT_STACK_CHECK:
2314   case EXCEPTION_FLT_UNDERFLOW:
2315     jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
2316     if (fp_control_word != ctx->FloatSave.ControlWord) {
2317       // Restore FPCW and mask out FLT exceptions
2318       ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
2319       // Mask out pending FLT exceptions
2320       ctx->FloatSave.StatusWord &=  0xffffff00;
2321       return EXCEPTION_CONTINUE_EXECUTION;
2322     }
2323   }
2324 
2325   if (prev_uef_handler != NULL) {
2326     // We didn't handle this exception so pass it to the previous
2327     // UnhandledExceptionFilter.
2328     return (prev_uef_handler)(exceptionInfo);
2329   }
2330 #else // !_WIN64
2331   // On Windows, the mxcsr control bits are non-volatile across calls
2332   // See also CR 6192333
2333   //
2334   jint MxCsr = INITIAL_MXCSR;
2335   // we can't use StubRoutines::addr_mxcsr_std()
2336   // because in Win64 mxcsr is not saved there
2337   if (MxCsr != ctx->MxCsr) {
2338     ctx->MxCsr = MxCsr;
2339     return EXCEPTION_CONTINUE_EXECUTION;
2340   }
2341 #endif // !_WIN64
2342 
2343   return EXCEPTION_CONTINUE_SEARCH;
2344 }
2345 
2346 static inline void report_error(Thread* t, DWORD exception_code,
2347                                 address addr, void* siginfo, void* context) {
2348   VMError err(t, exception_code, addr, siginfo, context);
2349   err.report_and_die();
2350 
2351   // If UseOsErrorReporting, this will return here and save the error file
2352   // somewhere where we can find it in the minidump.
2353 }
2354 
2355 //-----------------------------------------------------------------------------
2356 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2357   if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
2358   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2359 #ifdef _M_IA64
2360   // On Itanium, we need the "precise pc", which has the slot number coded
2361   // into the least 4 bits: 0000=slot0, 0100=slot1, 1000=slot2 (Windows format).
2362   address pc = (address) exceptionInfo->ExceptionRecord->ExceptionAddress;
2363   // Convert the pc to "Unix format", which has the slot number coded
2364   // into the least 2 bits: 0000=slot0, 0001=slot1, 0010=slot2
2365   // This is needed for IA64 because "relocation" / "implicit null check" / "poll instruction"
2366   // information is saved in the Unix format.
2367   address pc_unix_format = (address) ((((uint64_t)pc) & 0xFFFFFFFFFFFFFFF0) | ((((uint64_t)pc) & 0xF) >> 2));
2368 #else
2369   #ifdef _M_AMD64
2370   address pc = (address) exceptionInfo->ContextRecord->Rip;
2371   #else
2372   address pc = (address) exceptionInfo->ContextRecord->Eip;
2373   #endif
2374 #endif
2375   Thread* t = ThreadLocalStorage::get_thread_slow();          // slow & steady
2376 
2377   // Handle SafeFetch32 and SafeFetchN exceptions.
2378   if (StubRoutines::is_safefetch_fault(pc)) {
2379     return Handle_Exception(exceptionInfo, StubRoutines::continuation_for_safefetch_fault(pc));
2380   }
2381 
2382 #ifndef _WIN64
2383   // Execution protection violation - win32 running on AMD64 only
2384   // Handled first to avoid misdiagnosis as a "normal" access violation;
2385   // This is safe to do because we have a new/unique ExceptionInformation
2386   // code for this condition.
2387   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2388     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2389     int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
2390     address addr = (address) exceptionRecord->ExceptionInformation[1];
2391 
2392     if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
2393       int page_size = os::vm_page_size();
2394 
2395       // Make sure the pc and the faulting address are sane.
2396       //
2397       // If an instruction spans a page boundary, and the page containing
2398       // the beginning of the instruction is executable but the following
2399       // page is not, the pc and the faulting address might be slightly
2400       // different - we still want to unguard the 2nd page in this case.
2401       //
2402       // 15 bytes seems to be a (very) safe value for max instruction size.
2403       bool pc_is_near_addr =
2404         (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
2405       bool instr_spans_page_boundary =
2406         (align_size_down((intptr_t) pc ^ (intptr_t) addr,
2407                          (intptr_t) page_size) > 0);
2408 
2409       if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
2410         static volatile address last_addr =
2411           (address) os::non_memory_address_word();
2412 
2413         // In conservative mode, don't unguard unless the address is in the VM
2414         if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
2415             (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
2416 
2417           // Set memory to RWX and retry
2418           address page_start =
2419             (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
2420           bool res = os::protect_memory((char*) page_start, page_size,
2421                                         os::MEM_PROT_RWX);
2422 
2423           if (PrintMiscellaneous && Verbose) {
2424             char buf[256];
2425             jio_snprintf(buf, sizeof(buf), "Execution protection violation "
2426                          "at " INTPTR_FORMAT
2427                          ", unguarding " INTPTR_FORMAT ": %s", addr,
2428                          page_start, (res ? "success" : strerror(errno)));
2429             tty->print_raw_cr(buf);
2430           }
2431 
2432           // Set last_addr so if we fault again at the same address, we don't
2433           // end up in an endless loop.
2434           //
2435           // There are two potential complications here.  Two threads trapping
2436           // at the same address at the same time could cause one of the
2437           // threads to think it already unguarded, and abort the VM.  Likely
2438           // very rare.
2439           //
2440           // The other race involves two threads alternately trapping at
2441           // different addresses and failing to unguard the page, resulting in
2442           // an endless loop.  This condition is probably even more unlikely
2443           // than the first.
2444           //
2445           // Although both cases could be avoided by using locks or thread
2446           // local last_addr, these solutions are unnecessary complication:
2447           // this handler is a best-effort safety net, not a complete solution.
2448           // It is disabled by default and should only be used as a workaround
2449           // in case we missed any no-execute-unsafe VM code.
2450 
2451           last_addr = addr;
2452 
2453           return EXCEPTION_CONTINUE_EXECUTION;
2454         }
2455       }
2456 
2457       // Last unguard failed or not unguarding
2458       tty->print_raw_cr("Execution protection violation");
2459       report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
2460                    exceptionInfo->ContextRecord);
2461       return EXCEPTION_CONTINUE_SEARCH;
2462     }
2463   }
2464 #endif // _WIN64
2465 
2466   // Check to see if we caught the safepoint code in the
2467   // process of write protecting the memory serialization page.
2468   // It write enables the page immediately after protecting it
2469   // so just return.
2470   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2471     JavaThread* thread = (JavaThread*) t;
2472     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2473     address addr = (address) exceptionRecord->ExceptionInformation[1];
2474     if (os::is_memory_serialize_page(thread, addr)) {
2475       // Block current thread until the memory serialize page permission restored.
2476       os::block_on_serialize_page_trap();
2477       return EXCEPTION_CONTINUE_EXECUTION;
2478     }
2479   }
2480 
2481   if ((exception_code == EXCEPTION_ACCESS_VIOLATION) &&
2482       VM_Version::is_cpuinfo_segv_addr(pc)) {
2483     // Verify that OS save/restore AVX registers.
2484     return Handle_Exception(exceptionInfo, VM_Version::cpuinfo_cont_addr());
2485   }
2486 
2487   if (t != NULL && t->is_Java_thread()) {
2488     JavaThread* thread = (JavaThread*) t;
2489     bool in_java = thread->thread_state() == _thread_in_Java;
2490 
2491     // Handle potential stack overflows up front.
2492     if (exception_code == EXCEPTION_STACK_OVERFLOW) {
2493       if (os::uses_stack_guard_pages()) {
2494 #ifdef _M_IA64
2495         // Use guard page for register stack.
2496         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2497         address addr = (address) exceptionRecord->ExceptionInformation[1];
2498         // Check for a register stack overflow on Itanium
2499         if (thread->addr_inside_register_stack_red_zone(addr)) {
2500           // Fatal red zone violation happens if the Java program
2501           // catches a StackOverflow error and does so much processing
2502           // that it runs beyond the unprotected yellow guard zone. As
2503           // a result, we are out of here.
2504           fatal("ERROR: Unrecoverable stack overflow happened. JVM will exit.");
2505         } else if(thread->addr_inside_register_stack(addr)) {
2506           // Disable the yellow zone which sets the state that
2507           // we've got a stack overflow problem.
2508           if (thread->stack_yellow_zone_enabled()) {
2509             thread->disable_stack_yellow_zone();
2510           }
2511           // Give us some room to process the exception.
2512           thread->disable_register_stack_guard();
2513           // Tracing with +Verbose.
2514           if (Verbose) {
2515             tty->print_cr("SOF Compiled Register Stack overflow at " INTPTR_FORMAT " (SIGSEGV)", pc);
2516             tty->print_cr("Register Stack access at " INTPTR_FORMAT, addr);
2517             tty->print_cr("Register Stack base " INTPTR_FORMAT, thread->register_stack_base());
2518             tty->print_cr("Register Stack [" INTPTR_FORMAT "," INTPTR_FORMAT "]",
2519                           thread->register_stack_base(),
2520                           thread->register_stack_base() + thread->stack_size());
2521           }
2522 
2523           // Reguard the permanent register stack red zone just to be sure.
2524           // We saw Windows silently disabling this without telling us.
2525           thread->enable_register_stack_red_zone();
2526 
2527           return Handle_Exception(exceptionInfo,
2528                                   SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2529         }
2530 #endif
2531         if (thread->stack_yellow_zone_enabled()) {
2532           // Yellow zone violation.  The o/s has unprotected the first yellow
2533           // zone page for us.  Note:  must call disable_stack_yellow_zone to
2534           // update the enabled status, even if the zone contains only one page.
2535           thread->disable_stack_yellow_zone();
2536           // If not in java code, return and hope for the best.
2537           return in_java
2538               ? Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
2539               :  EXCEPTION_CONTINUE_EXECUTION;
2540         } else {
2541           // Fatal red zone violation.
2542           thread->disable_stack_red_zone();
2543           tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
2544           report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2545                        exceptionInfo->ContextRecord);
2546           return EXCEPTION_CONTINUE_SEARCH;
2547         }
2548       } else if (in_java) {
2549         // JVM-managed guard pages cannot be used on win95/98.  The o/s provides
2550         // a one-time-only guard page, which it has released to us.  The next
2551         // stack overflow on this thread will result in an ACCESS_VIOLATION.
2552         return Handle_Exception(exceptionInfo,
2553                                 SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2554       } else {
2555         // Can only return and hope for the best.  Further stack growth will
2556         // result in an ACCESS_VIOLATION.
2557         return EXCEPTION_CONTINUE_EXECUTION;
2558       }
2559     } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2560       // Either stack overflow or null pointer exception.
2561       if (in_java) {
2562         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2563         address addr = (address) exceptionRecord->ExceptionInformation[1];
2564         address stack_end = thread->stack_base() - thread->stack_size();
2565         if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
2566           // Stack overflow.
2567           assert(!os::uses_stack_guard_pages(),
2568                  "should be caught by red zone code above.");
2569           return Handle_Exception(exceptionInfo,
2570                                   SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2571         }
2572         // Check for safepoint polling and implicit null
2573         // We only expect null pointers in the stubs (vtable)
2574         // the rest are checked explicitly now.
2575         CodeBlob* cb = CodeCache::find_blob(pc);
2576         if (cb != NULL) {
2577           if (os::is_poll_address(addr)) {
2578             address stub = SharedRuntime::get_poll_stub(pc);
2579             return Handle_Exception(exceptionInfo, stub);
2580           }
2581         }
2582         {
2583 #ifdef _WIN64
2584           // If it's a legal stack address map the entire region in
2585           //
2586           PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2587           address addr = (address) exceptionRecord->ExceptionInformation[1];
2588           if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base()) {
2589             addr = (address)((uintptr_t)addr &
2590                              (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
2591             os::commit_memory((char *)addr, thread->stack_base() - addr,
2592                               !ExecMem);
2593             return EXCEPTION_CONTINUE_EXECUTION;
2594           } else
2595 #endif
2596           {
2597             // Null pointer exception.
2598 #ifdef _M_IA64
2599             // Process implicit null checks in compiled code. Note: Implicit null checks
2600             // can happen even if "ImplicitNullChecks" is disabled, e.g. in vtable stubs.
2601             if (CodeCache::contains((void*) pc_unix_format) && !MacroAssembler::needs_explicit_null_check((intptr_t) addr)) {
2602               CodeBlob *cb = CodeCache::find_blob_unsafe(pc_unix_format);
2603               // Handle implicit null check in UEP method entry
2604               if (cb && (cb->is_frame_complete_at(pc) ||
2605                          (cb->is_nmethod() && ((nmethod *)cb)->inlinecache_check_contains(pc)))) {
2606                 if (Verbose) {
2607                   intptr_t *bundle_start = (intptr_t*) ((intptr_t) pc_unix_format & 0xFFFFFFFFFFFFFFF0);
2608                   tty->print_cr("trap: null_check at " INTPTR_FORMAT " (SIGSEGV)", pc_unix_format);
2609                   tty->print_cr("      to addr " INTPTR_FORMAT, addr);
2610                   tty->print_cr("      bundle is " INTPTR_FORMAT " (high), " INTPTR_FORMAT " (low)",
2611                                 *(bundle_start + 1), *bundle_start);
2612                 }
2613                 return Handle_Exception(exceptionInfo,
2614                                         SharedRuntime::continuation_for_implicit_exception(thread, pc_unix_format, SharedRuntime::IMPLICIT_NULL));
2615               }
2616             }
2617 
2618             // Implicit null checks were processed above.  Hence, we should not reach
2619             // here in the usual case => die!
2620             if (Verbose) tty->print_raw_cr("Access violation, possible null pointer exception");
2621             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2622                          exceptionInfo->ContextRecord);
2623             return EXCEPTION_CONTINUE_SEARCH;
2624 
2625 #else // !IA64
2626 
2627             // Windows 98 reports faulting addresses incorrectly
2628             if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr) ||
2629                 !os::win32::is_nt()) {
2630               address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
2631               if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
2632             }
2633             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2634                          exceptionInfo->ContextRecord);
2635             return EXCEPTION_CONTINUE_SEARCH;
2636 #endif
2637           }
2638         }
2639       }
2640 
2641 #ifdef _WIN64
2642       // Special care for fast JNI field accessors.
2643       // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
2644       // in and the heap gets shrunk before the field access.
2645       if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2646         address addr = JNI_FastGetField::find_slowcase_pc(pc);
2647         if (addr != (address)-1) {
2648           return Handle_Exception(exceptionInfo, addr);
2649         }
2650       }
2651 #endif
2652 
2653       // Stack overflow or null pointer exception in native code.
2654       report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2655                    exceptionInfo->ContextRecord);
2656       return EXCEPTION_CONTINUE_SEARCH;
2657     } // /EXCEPTION_ACCESS_VIOLATION
2658     // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2659 #if defined _M_IA64
2660     else if ((exception_code == EXCEPTION_ILLEGAL_INSTRUCTION ||
2661               exception_code == EXCEPTION_ILLEGAL_INSTRUCTION_2)) {
2662       M37 handle_wrong_method_break(0, NativeJump::HANDLE_WRONG_METHOD, PR0);
2663 
2664       // Compiled method patched to be non entrant? Following conditions must apply:
2665       // 1. must be first instruction in bundle
2666       // 2. must be a break instruction with appropriate code
2667       if ((((uint64_t) pc & 0x0F) == 0) &&
2668           (((IPF_Bundle*) pc)->get_slot0() == handle_wrong_method_break.bits())) {
2669         return Handle_Exception(exceptionInfo,
2670                                 (address)SharedRuntime::get_handle_wrong_method_stub());
2671       }
2672     } // /EXCEPTION_ILLEGAL_INSTRUCTION
2673 #endif
2674 
2675 
2676     if (in_java) {
2677       switch (exception_code) {
2678       case EXCEPTION_INT_DIVIDE_BY_ZERO:
2679         return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
2680 
2681       case EXCEPTION_INT_OVERFLOW:
2682         return Handle_IDiv_Exception(exceptionInfo);
2683 
2684       } // switch
2685     }
2686     if (((thread->thread_state() == _thread_in_Java) ||
2687          (thread->thread_state() == _thread_in_native)) &&
2688          exception_code != EXCEPTION_UNCAUGHT_CXX_EXCEPTION) {
2689       LONG result=Handle_FLT_Exception(exceptionInfo);
2690       if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
2691     }
2692   }
2693 
2694   if (exception_code != EXCEPTION_BREAKPOINT) {
2695     report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2696                  exceptionInfo->ContextRecord);
2697   }
2698   return EXCEPTION_CONTINUE_SEARCH;
2699 }
2700 
2701 #ifndef _WIN64
2702 // Special care for fast JNI accessors.
2703 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
2704 // the heap gets shrunk before the field access.
2705 // Need to install our own structured exception handler since native code may
2706 // install its own.
2707 LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2708   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2709   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2710     address pc = (address) exceptionInfo->ContextRecord->Eip;
2711     address addr = JNI_FastGetField::find_slowcase_pc(pc);
2712     if (addr != (address)-1) {
2713       return Handle_Exception(exceptionInfo, addr);
2714     }
2715   }
2716   return EXCEPTION_CONTINUE_SEARCH;
2717 }
2718 
2719 #define DEFINE_FAST_GETFIELD(Return, Fieldname, Result)                     \
2720   Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env,           \
2721                                                      jobject obj,           \
2722                                                      jfieldID fieldID) {    \
2723     __try {                                                                 \
2724       return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env,       \
2725                                                                  obj,       \
2726                                                                  fieldID);  \
2727     } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)        \
2728                                               _exception_info())) {         \
2729     }                                                                       \
2730     return 0;                                                               \
2731   }
2732 
2733 DEFINE_FAST_GETFIELD(jboolean, bool,   Boolean)
2734 DEFINE_FAST_GETFIELD(jbyte,    byte,   Byte)
2735 DEFINE_FAST_GETFIELD(jchar,    char,   Char)
2736 DEFINE_FAST_GETFIELD(jshort,   short,  Short)
2737 DEFINE_FAST_GETFIELD(jint,     int,    Int)
2738 DEFINE_FAST_GETFIELD(jlong,    long,   Long)
2739 DEFINE_FAST_GETFIELD(jfloat,   float,  Float)
2740 DEFINE_FAST_GETFIELD(jdouble,  double, Double)
2741 
2742 address os::win32::fast_jni_accessor_wrapper(BasicType type) {
2743   switch (type) {
2744   case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
2745   case T_BYTE:    return (address)jni_fast_GetByteField_wrapper;
2746   case T_CHAR:    return (address)jni_fast_GetCharField_wrapper;
2747   case T_SHORT:   return (address)jni_fast_GetShortField_wrapper;
2748   case T_INT:     return (address)jni_fast_GetIntField_wrapper;
2749   case T_LONG:    return (address)jni_fast_GetLongField_wrapper;
2750   case T_FLOAT:   return (address)jni_fast_GetFloatField_wrapper;
2751   case T_DOUBLE:  return (address)jni_fast_GetDoubleField_wrapper;
2752   default:        ShouldNotReachHere();
2753   }
2754   return (address)-1;
2755 }
2756 #endif
2757 
2758 // Virtual Memory
2759 
2760 int os::vm_page_size() { return os::win32::vm_page_size(); }
2761 int os::vm_allocation_granularity() {
2762   return os::win32::vm_allocation_granularity();
2763 }
2764 
2765 // Windows large page support is available on Windows 2003. In order to use
2766 // large page memory, the administrator must first assign additional privilege
2767 // to the user:
2768 //   + select Control Panel -> Administrative Tools -> Local Security Policy
2769 //   + select Local Policies -> User Rights Assignment
2770 //   + double click "Lock pages in memory", add users and/or groups
2771 //   + reboot
2772 // Note the above steps are needed for administrator as well, as administrators
2773 // by default do not have the privilege to lock pages in memory.
2774 //
2775 // Note about Windows 2003: although the API supports committing large page
2776 // memory on a page-by-page basis and VirtualAlloc() returns success under this
2777 // scenario, I found through experiment it only uses large page if the entire
2778 // memory region is reserved and committed in a single VirtualAlloc() call.
2779 // This makes Windows large page support more or less like Solaris ISM, in
2780 // that the entire heap must be committed upfront. This probably will change
2781 // in the future, if so the code below needs to be revisited.
2782 
2783 #ifndef MEM_LARGE_PAGES
2784   #define MEM_LARGE_PAGES 0x20000000
2785 #endif
2786 
2787 static HANDLE    _hProcess;
2788 static HANDLE    _hToken;
2789 
2790 // Container for NUMA node list info
2791 class NUMANodeListHolder {
2792  private:
2793   int *_numa_used_node_list;  // allocated below
2794   int _numa_used_node_count;
2795 
2796   void free_node_list() {
2797     if (_numa_used_node_list != NULL) {
2798       FREE_C_HEAP_ARRAY(int, _numa_used_node_list);
2799     }
2800   }
2801 
2802  public:
2803   NUMANodeListHolder() {
2804     _numa_used_node_count = 0;
2805     _numa_used_node_list = NULL;
2806     // do rest of initialization in build routine (after function pointers are set up)
2807   }
2808 
2809   ~NUMANodeListHolder() {
2810     free_node_list();
2811   }
2812 
2813   bool build() {
2814     DWORD_PTR proc_aff_mask;
2815     DWORD_PTR sys_aff_mask;
2816     if (!GetProcessAffinityMask(GetCurrentProcess(), &proc_aff_mask, &sys_aff_mask)) return false;
2817     ULONG highest_node_number;
2818     if (!os::Kernel32Dll::GetNumaHighestNodeNumber(&highest_node_number)) return false;
2819     free_node_list();
2820     _numa_used_node_list = NEW_C_HEAP_ARRAY(int, highest_node_number + 1, mtInternal);
2821     for (unsigned int i = 0; i <= highest_node_number; i++) {
2822       ULONGLONG proc_mask_numa_node;
2823       if (!os::Kernel32Dll::GetNumaNodeProcessorMask(i, &proc_mask_numa_node)) return false;
2824       if ((proc_aff_mask & proc_mask_numa_node)!=0) {
2825         _numa_used_node_list[_numa_used_node_count++] = i;
2826       }
2827     }
2828     return (_numa_used_node_count > 1);
2829   }
2830 
2831   int get_count() { return _numa_used_node_count; }
2832   int get_node_list_entry(int n) {
2833     // for indexes out of range, returns -1
2834     return (n < _numa_used_node_count ? _numa_used_node_list[n] : -1);
2835   }
2836 
2837 } numa_node_list_holder;
2838 
2839 
2840 
2841 static size_t _large_page_size = 0;
2842 
2843 static bool resolve_functions_for_large_page_init() {
2844   return os::Kernel32Dll::GetLargePageMinimumAvailable() &&
2845     os::Advapi32Dll::AdvapiAvailable();
2846 }
2847 
2848 static bool request_lock_memory_privilege() {
2849   _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
2850                           os::current_process_id());
2851 
2852   LUID luid;
2853   if (_hProcess != NULL &&
2854       os::Advapi32Dll::OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
2855       os::Advapi32Dll::LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
2856 
2857     TOKEN_PRIVILEGES tp;
2858     tp.PrivilegeCount = 1;
2859     tp.Privileges[0].Luid = luid;
2860     tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
2861 
2862     // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
2863     // privilege. Check GetLastError() too. See MSDN document.
2864     if (os::Advapi32Dll::AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
2865         (GetLastError() == ERROR_SUCCESS)) {
2866       return true;
2867     }
2868   }
2869 
2870   return false;
2871 }
2872 
2873 static void cleanup_after_large_page_init() {
2874   if (_hProcess) CloseHandle(_hProcess);
2875   _hProcess = NULL;
2876   if (_hToken) CloseHandle(_hToken);
2877   _hToken = NULL;
2878 }
2879 
2880 static bool numa_interleaving_init() {
2881   bool success = false;
2882   bool use_numa_interleaving_specified = !FLAG_IS_DEFAULT(UseNUMAInterleaving);
2883 
2884   // print a warning if UseNUMAInterleaving flag is specified on command line
2885   bool warn_on_failure = use_numa_interleaving_specified;
2886 #define WARN(msg) if (warn_on_failure) { warning(msg); }
2887 
2888   // NUMAInterleaveGranularity cannot be less than vm_allocation_granularity (or _large_page_size if using large pages)
2889   size_t min_interleave_granularity = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2890   NUMAInterleaveGranularity = align_size_up(NUMAInterleaveGranularity, min_interleave_granularity);
2891 
2892   if (os::Kernel32Dll::NumaCallsAvailable()) {
2893     if (numa_node_list_holder.build()) {
2894       if (PrintMiscellaneous && Verbose) {
2895         tty->print("NUMA UsedNodeCount=%d, namely ", numa_node_list_holder.get_count());
2896         for (int i = 0; i < numa_node_list_holder.get_count(); i++) {
2897           tty->print("%d ", numa_node_list_holder.get_node_list_entry(i));
2898         }
2899         tty->print("\n");
2900       }
2901       success = true;
2902     } else {
2903       WARN("Process does not cover multiple NUMA nodes.");
2904     }
2905   } else {
2906     WARN("NUMA Interleaving is not supported by the operating system.");
2907   }
2908   if (!success) {
2909     if (use_numa_interleaving_specified) WARN("...Ignoring UseNUMAInterleaving flag.");
2910   }
2911   return success;
2912 #undef WARN
2913 }
2914 
2915 // this routine is used whenever we need to reserve a contiguous VA range
2916 // but we need to make separate VirtualAlloc calls for each piece of the range
2917 // Reasons for doing this:
2918 //  * UseLargePagesIndividualAllocation was set (normally only needed on WS2003 but possible to be set otherwise)
2919 //  * UseNUMAInterleaving requires a separate node for each piece
2920 static char* allocate_pages_individually(size_t bytes, char* addr, DWORD flags,
2921                                          DWORD prot,
2922                                          bool should_inject_error = false) {
2923   char * p_buf;
2924   // note: at setup time we guaranteed that NUMAInterleaveGranularity was aligned up to a page size
2925   size_t page_size = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2926   size_t chunk_size = UseNUMAInterleaving ? NUMAInterleaveGranularity : page_size;
2927 
2928   // first reserve enough address space in advance since we want to be
2929   // able to break a single contiguous virtual address range into multiple
2930   // large page commits but WS2003 does not allow reserving large page space
2931   // so we just use 4K pages for reserve, this gives us a legal contiguous
2932   // address space. then we will deallocate that reservation, and re alloc
2933   // using large pages
2934   const size_t size_of_reserve = bytes + chunk_size;
2935   if (bytes > size_of_reserve) {
2936     // Overflowed.
2937     return NULL;
2938   }
2939   p_buf = (char *) VirtualAlloc(addr,
2940                                 size_of_reserve,  // size of Reserve
2941                                 MEM_RESERVE,
2942                                 PAGE_READWRITE);
2943   // If reservation failed, return NULL
2944   if (p_buf == NULL) return NULL;
2945   MemTracker::record_virtual_memory_reserve((address)p_buf, size_of_reserve, CALLER_PC);
2946   os::release_memory(p_buf, bytes + chunk_size);
2947 
2948   // we still need to round up to a page boundary (in case we are using large pages)
2949   // but not to a chunk boundary (in case InterleavingGranularity doesn't align with page size)
2950   // instead we handle this in the bytes_to_rq computation below
2951   p_buf = (char *) align_size_up((size_t)p_buf, page_size);
2952 
2953   // now go through and allocate one chunk at a time until all bytes are
2954   // allocated
2955   size_t  bytes_remaining = bytes;
2956   // An overflow of align_size_up() would have been caught above
2957   // in the calculation of size_of_reserve.
2958   char * next_alloc_addr = p_buf;
2959   HANDLE hProc = GetCurrentProcess();
2960 
2961 #ifdef ASSERT
2962   // Variable for the failure injection
2963   long ran_num = os::random();
2964   size_t fail_after = ran_num % bytes;
2965 #endif
2966 
2967   int count=0;
2968   while (bytes_remaining) {
2969     // select bytes_to_rq to get to the next chunk_size boundary
2970 
2971     size_t bytes_to_rq = MIN2(bytes_remaining, chunk_size - ((size_t)next_alloc_addr % chunk_size));
2972     // Note allocate and commit
2973     char * p_new;
2974 
2975 #ifdef ASSERT
2976     bool inject_error_now = should_inject_error && (bytes_remaining <= fail_after);
2977 #else
2978     const bool inject_error_now = false;
2979 #endif
2980 
2981     if (inject_error_now) {
2982       p_new = NULL;
2983     } else {
2984       if (!UseNUMAInterleaving) {
2985         p_new = (char *) VirtualAlloc(next_alloc_addr,
2986                                       bytes_to_rq,
2987                                       flags,
2988                                       prot);
2989       } else {
2990         // get the next node to use from the used_node_list
2991         assert(numa_node_list_holder.get_count() > 0, "Multiple NUMA nodes expected");
2992         DWORD node = numa_node_list_holder.get_node_list_entry(count % numa_node_list_holder.get_count());
2993         p_new = (char *)os::Kernel32Dll::VirtualAllocExNuma(hProc,
2994                                                             next_alloc_addr,
2995                                                             bytes_to_rq,
2996                                                             flags,
2997                                                             prot,
2998                                                             node);
2999       }
3000     }
3001 
3002     if (p_new == NULL) {
3003       // Free any allocated pages
3004       if (next_alloc_addr > p_buf) {
3005         // Some memory was committed so release it.
3006         size_t bytes_to_release = bytes - bytes_remaining;
3007         // NMT has yet to record any individual blocks, so it
3008         // need to create a dummy 'reserve' record to match
3009         // the release.
3010         MemTracker::record_virtual_memory_reserve((address)p_buf,
3011                                                   bytes_to_release, CALLER_PC);
3012         os::release_memory(p_buf, bytes_to_release);
3013       }
3014 #ifdef ASSERT
3015       if (should_inject_error) {
3016         if (TracePageSizes && Verbose) {
3017           tty->print_cr("Reserving pages individually failed.");
3018         }
3019       }
3020 #endif
3021       return NULL;
3022     }
3023 
3024     bytes_remaining -= bytes_to_rq;
3025     next_alloc_addr += bytes_to_rq;
3026     count++;
3027   }
3028   // Although the memory is allocated individually, it is returned as one.
3029   // NMT records it as one block.
3030   if ((flags & MEM_COMMIT) != 0) {
3031     MemTracker::record_virtual_memory_reserve_and_commit((address)p_buf, bytes, CALLER_PC);
3032   } else {
3033     MemTracker::record_virtual_memory_reserve((address)p_buf, bytes, CALLER_PC);
3034   }
3035 
3036   // made it this far, success
3037   return p_buf;
3038 }
3039 
3040 
3041 
3042 void os::large_page_init() {
3043   if (!UseLargePages) return;
3044 
3045   // print a warning if any large page related flag is specified on command line
3046   bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
3047                          !FLAG_IS_DEFAULT(LargePageSizeInBytes);
3048   bool success = false;
3049 
3050 #define WARN(msg) if (warn_on_failure) { warning(msg); }
3051   if (resolve_functions_for_large_page_init()) {
3052     if (request_lock_memory_privilege()) {
3053       size_t s = os::Kernel32Dll::GetLargePageMinimum();
3054       if (s) {
3055 #if defined(IA32) || defined(AMD64)
3056         if (s > 4*M || LargePageSizeInBytes > 4*M) {
3057           WARN("JVM cannot use large pages bigger than 4mb.");
3058         } else {
3059 #endif
3060           if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
3061             _large_page_size = LargePageSizeInBytes;
3062           } else {
3063             _large_page_size = s;
3064           }
3065           success = true;
3066 #if defined(IA32) || defined(AMD64)
3067         }
3068 #endif
3069       } else {
3070         WARN("Large page is not supported by the processor.");
3071       }
3072     } else {
3073       WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
3074     }
3075   } else {
3076     WARN("Large page is not supported by the operating system.");
3077   }
3078 #undef WARN
3079 
3080   const size_t default_page_size = (size_t) vm_page_size();
3081   if (success && _large_page_size > default_page_size) {
3082     _page_sizes[0] = _large_page_size;
3083     _page_sizes[1] = default_page_size;
3084     _page_sizes[2] = 0;
3085   }
3086 
3087   cleanup_after_large_page_init();
3088   UseLargePages = success;
3089 }
3090 
3091 // On win32, one cannot release just a part of reserved memory, it's an
3092 // all or nothing deal.  When we split a reservation, we must break the
3093 // reservation into two reservations.
3094 void os::pd_split_reserved_memory(char *base, size_t size, size_t split,
3095                                   bool realloc) {
3096   if (size > 0) {
3097     release_memory(base, size);
3098     if (realloc) {
3099       reserve_memory(split, base);
3100     }
3101     if (size != split) {
3102       reserve_memory(size - split, base + split);
3103     }
3104   }
3105 }
3106 
3107 // Multiple threads can race in this code but it's not possible to unmap small sections of
3108 // virtual space to get requested alignment, like posix-like os's.
3109 // Windows prevents multiple thread from remapping over each other so this loop is thread-safe.
3110 char* os::reserve_memory_aligned(size_t size, size_t alignment) {
3111   assert((alignment & (os::vm_allocation_granularity() - 1)) == 0,
3112          "Alignment must be a multiple of allocation granularity (page size)");
3113   assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned");
3114 
3115   size_t extra_size = size + alignment;
3116   assert(extra_size >= size, "overflow, size is too large to allow alignment");
3117 
3118   char* aligned_base = NULL;
3119 
3120   do {
3121     char* extra_base = os::reserve_memory(extra_size, NULL, alignment);
3122     if (extra_base == NULL) {
3123       return NULL;
3124     }
3125     // Do manual alignment
3126     aligned_base = (char*) align_size_up((uintptr_t) extra_base, alignment);
3127 
3128     os::release_memory(extra_base, extra_size);
3129 
3130     aligned_base = os::reserve_memory(size, aligned_base);
3131 
3132   } while (aligned_base == NULL);
3133 
3134   return aligned_base;
3135 }
3136 
3137 char* os::pd_reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
3138   assert((size_t)addr % os::vm_allocation_granularity() == 0,
3139          "reserve alignment");
3140   assert(bytes % os::vm_page_size() == 0, "reserve page size");
3141   char* res;
3142   // note that if UseLargePages is on, all the areas that require interleaving
3143   // will go thru reserve_memory_special rather than thru here.
3144   bool use_individual = (UseNUMAInterleaving && !UseLargePages);
3145   if (!use_individual) {
3146     res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
3147   } else {
3148     elapsedTimer reserveTimer;
3149     if (Verbose && PrintMiscellaneous) reserveTimer.start();
3150     // in numa interleaving, we have to allocate pages individually
3151     // (well really chunks of NUMAInterleaveGranularity size)
3152     res = allocate_pages_individually(bytes, addr, MEM_RESERVE, PAGE_READWRITE);
3153     if (res == NULL) {
3154       warning("NUMA page allocation failed");
3155     }
3156     if (Verbose && PrintMiscellaneous) {
3157       reserveTimer.stop();
3158       tty->print_cr("reserve_memory of %Ix bytes took " JLONG_FORMAT " ms (" JLONG_FORMAT " ticks)", bytes,
3159                     reserveTimer.milliseconds(), reserveTimer.ticks());
3160     }
3161   }
3162   assert(res == NULL || addr == NULL || addr == res,
3163          "Unexpected address from reserve.");
3164 
3165   return res;
3166 }
3167 
3168 // Reserve memory at an arbitrary address, only if that area is
3169 // available (and not reserved for something else).
3170 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3171   // Windows os::reserve_memory() fails of the requested address range is
3172   // not avilable.
3173   return reserve_memory(bytes, requested_addr);
3174 }
3175 
3176 size_t os::large_page_size() {
3177   return _large_page_size;
3178 }
3179 
3180 bool os::can_commit_large_page_memory() {
3181   // Windows only uses large page memory when the entire region is reserved
3182   // and committed in a single VirtualAlloc() call. This may change in the
3183   // future, but with Windows 2003 it's not possible to commit on demand.
3184   return false;
3185 }
3186 
3187 bool os::can_execute_large_page_memory() {
3188   return true;
3189 }
3190 
3191 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* addr,
3192                                  bool exec) {
3193   assert(UseLargePages, "only for large pages");
3194 
3195   if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3196     return NULL; // Fallback to small pages.
3197   }
3198 
3199   const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
3200   const DWORD flags = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3201 
3202   // with large pages, there are two cases where we need to use Individual Allocation
3203   // 1) the UseLargePagesIndividualAllocation flag is set (set by default on WS2003)
3204   // 2) NUMA Interleaving is enabled, in which case we use a different node for each page
3205   if (UseLargePagesIndividualAllocation || UseNUMAInterleaving) {
3206     if (TracePageSizes && Verbose) {
3207       tty->print_cr("Reserving large pages individually.");
3208     }
3209     char * p_buf = allocate_pages_individually(bytes, addr, flags, prot, LargePagesIndividualAllocationInjectError);
3210     if (p_buf == NULL) {
3211       // give an appropriate warning message
3212       if (UseNUMAInterleaving) {
3213         warning("NUMA large page allocation failed, UseLargePages flag ignored");
3214       }
3215       if (UseLargePagesIndividualAllocation) {
3216         warning("Individually allocated large pages failed, "
3217                 "use -XX:-UseLargePagesIndividualAllocation to turn off");
3218       }
3219       return NULL;
3220     }
3221 
3222     return p_buf;
3223 
3224   } else {
3225     if (TracePageSizes && Verbose) {
3226       tty->print_cr("Reserving large pages in a single large chunk.");
3227     }
3228     // normal policy just allocate it all at once
3229     DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3230     char * res = (char *)VirtualAlloc(addr, bytes, flag, prot);
3231     if (res != NULL) {
3232       MemTracker::record_virtual_memory_reserve_and_commit((address)res, bytes, CALLER_PC);
3233     }
3234 
3235     return res;
3236   }
3237 }
3238 
3239 bool os::release_memory_special(char* base, size_t bytes) {
3240   assert(base != NULL, "Sanity check");
3241   return release_memory(base, bytes);
3242 }
3243 
3244 void os::print_statistics() {
3245 }
3246 
3247 static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec) {
3248   int err = os::get_last_error();
3249   char buf[256];
3250   size_t buf_len = os::lasterror(buf, sizeof(buf));
3251   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
3252           ", %d) failed; error='%s' (DOS error/errno=%d)", addr, bytes,
3253           exec, buf_len != 0 ? buf : "<no_error_string>", err);
3254 }
3255 
3256 bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
3257   if (bytes == 0) {
3258     // Don't bother the OS with noops.
3259     return true;
3260   }
3261   assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
3262   assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
3263   // Don't attempt to print anything if the OS call fails. We're
3264   // probably low on resources, so the print itself may cause crashes.
3265 
3266   // unless we have NUMAInterleaving enabled, the range of a commit
3267   // is always within a reserve covered by a single VirtualAlloc
3268   // in that case we can just do a single commit for the requested size
3269   if (!UseNUMAInterleaving) {
3270     if (VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) == NULL) {
3271       NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3272       return false;
3273     }
3274     if (exec) {
3275       DWORD oldprot;
3276       // Windows doc says to use VirtualProtect to get execute permissions
3277       if (!VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot)) {
3278         NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3279         return false;
3280       }
3281     }
3282     return true;
3283   } else {
3284 
3285     // when NUMAInterleaving is enabled, the commit might cover a range that
3286     // came from multiple VirtualAlloc reserves (using allocate_pages_individually).
3287     // VirtualQuery can help us determine that.  The RegionSize that VirtualQuery
3288     // returns represents the number of bytes that can be committed in one step.
3289     size_t bytes_remaining = bytes;
3290     char * next_alloc_addr = addr;
3291     while (bytes_remaining > 0) {
3292       MEMORY_BASIC_INFORMATION alloc_info;
3293       VirtualQuery(next_alloc_addr, &alloc_info, sizeof(alloc_info));
3294       size_t bytes_to_rq = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
3295       if (VirtualAlloc(next_alloc_addr, bytes_to_rq, MEM_COMMIT,
3296                        PAGE_READWRITE) == NULL) {
3297         NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3298                                             exec);)
3299         return false;
3300       }
3301       if (exec) {
3302         DWORD oldprot;
3303         if (!VirtualProtect(next_alloc_addr, bytes_to_rq,
3304                             PAGE_EXECUTE_READWRITE, &oldprot)) {
3305           NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3306                                               exec);)
3307           return false;
3308         }
3309       }
3310       bytes_remaining -= bytes_to_rq;
3311       next_alloc_addr += bytes_to_rq;
3312     }
3313   }
3314   // if we made it this far, return true
3315   return true;
3316 }
3317 
3318 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
3319                           bool exec) {
3320   // alignment_hint is ignored on this OS
3321   return pd_commit_memory(addr, size, exec);
3322 }
3323 
3324 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
3325                                   const char* mesg) {
3326   assert(mesg != NULL, "mesg must be specified");
3327   if (!pd_commit_memory(addr, size, exec)) {
3328     warn_fail_commit_memory(addr, size, exec);
3329     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
3330   }
3331 }
3332 
3333 void os::pd_commit_memory_or_exit(char* addr, size_t size,
3334                                   size_t alignment_hint, bool exec,
3335                                   const char* mesg) {
3336   // alignment_hint is ignored on this OS
3337   pd_commit_memory_or_exit(addr, size, exec, mesg);
3338 }
3339 
3340 bool os::pd_uncommit_memory(char* addr, size_t bytes) {
3341   if (bytes == 0) {
3342     // Don't bother the OS with noops.
3343     return true;
3344   }
3345   assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
3346   assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
3347   return (VirtualFree(addr, bytes, MEM_DECOMMIT) != 0);
3348 }
3349 
3350 bool os::pd_release_memory(char* addr, size_t bytes) {
3351   return VirtualFree(addr, 0, MEM_RELEASE) != 0;
3352 }
3353 
3354 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3355   return os::commit_memory(addr, size, !ExecMem);
3356 }
3357 
3358 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3359   return os::uncommit_memory(addr, size);
3360 }
3361 
3362 // Set protections specified
3363 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3364                         bool is_committed) {
3365   unsigned int p = 0;
3366   switch (prot) {
3367   case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
3368   case MEM_PROT_READ: p = PAGE_READONLY; break;
3369   case MEM_PROT_RW:   p = PAGE_READWRITE; break;
3370   case MEM_PROT_RWX:  p = PAGE_EXECUTE_READWRITE; break;
3371   default:
3372     ShouldNotReachHere();
3373   }
3374 
3375   DWORD old_status;
3376 
3377   // Strange enough, but on Win32 one can change protection only for committed
3378   // memory, not a big deal anyway, as bytes less or equal than 64K
3379   if (!is_committed) {
3380     commit_memory_or_exit(addr, bytes, prot == MEM_PROT_RWX,
3381                           "cannot commit protection page");
3382   }
3383   // One cannot use os::guard_memory() here, as on Win32 guard page
3384   // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
3385   //
3386   // Pages in the region become guard pages. Any attempt to access a guard page
3387   // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
3388   // the guard page status. Guard pages thus act as a one-time access alarm.
3389   return VirtualProtect(addr, bytes, p, &old_status) != 0;
3390 }
3391 
3392 bool os::guard_memory(char* addr, size_t bytes) {
3393   DWORD old_status;
3394   return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
3395 }
3396 
3397 bool os::unguard_memory(char* addr, size_t bytes) {
3398   DWORD old_status;
3399   return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
3400 }
3401 
3402 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3403 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3404 void os::numa_make_global(char *addr, size_t bytes)    { }
3405 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint)    { }
3406 bool os::numa_topology_changed()                       { return false; }
3407 size_t os::numa_get_groups_num()                       { return MAX2(numa_node_list_holder.get_count(), 1); }
3408 int os::numa_get_group_id()                            { return 0; }
3409 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
3410   if (numa_node_list_holder.get_count() == 0 && size > 0) {
3411     // Provide an answer for UMA systems
3412     ids[0] = 0;
3413     return 1;
3414   } else {
3415     // check for size bigger than actual groups_num
3416     size = MIN2(size, numa_get_groups_num());
3417     for (int i = 0; i < (int)size; i++) {
3418       ids[i] = numa_node_list_holder.get_node_list_entry(i);
3419     }
3420     return size;
3421   }
3422 }
3423 
3424 bool os::get_page_info(char *start, page_info* info) {
3425   return false;
3426 }
3427 
3428 char *os::scan_pages(char *start, char* end, page_info* page_expected,
3429                      page_info* page_found) {
3430   return end;
3431 }
3432 
3433 char* os::non_memory_address_word() {
3434   // Must never look like an address returned by reserve_memory,
3435   // even in its subfields (as defined by the CPU immediate fields,
3436   // if the CPU splits constants across multiple instructions).
3437   return (char*)-1;
3438 }
3439 
3440 #define MAX_ERROR_COUNT 100
3441 #define SYS_THREAD_ERROR 0xffffffffUL
3442 
3443 void os::pd_start_thread(Thread* thread) {
3444   DWORD ret = ResumeThread(thread->osthread()->thread_handle());
3445   // Returns previous suspend state:
3446   // 0:  Thread was not suspended
3447   // 1:  Thread is running now
3448   // >1: Thread is still suspended.
3449   assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
3450 }
3451 
3452 class HighResolutionInterval : public CHeapObj<mtThread> {
3453   // The default timer resolution seems to be 10 milliseconds.
3454   // (Where is this written down?)
3455   // If someone wants to sleep for only a fraction of the default,
3456   // then we set the timer resolution down to 1 millisecond for
3457   // the duration of their interval.
3458   // We carefully set the resolution back, since otherwise we
3459   // seem to incur an overhead (3%?) that we don't need.
3460   // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
3461   // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
3462   // Alternatively, we could compute the relative error (503/500 = .6%) and only use
3463   // timeBeginPeriod() if the relative error exceeded some threshold.
3464   // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
3465   // to decreased efficiency related to increased timer "tick" rates.  We want to minimize
3466   // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
3467   // resolution timers running.
3468  private:
3469   jlong resolution;
3470  public:
3471   HighResolutionInterval(jlong ms) {
3472     resolution = ms % 10L;
3473     if (resolution != 0) {
3474       MMRESULT result = timeBeginPeriod(1L);
3475     }
3476   }
3477   ~HighResolutionInterval() {
3478     if (resolution != 0) {
3479       MMRESULT result = timeEndPeriod(1L);
3480     }
3481     resolution = 0L;
3482   }
3483 };
3484 
3485 int os::sleep(Thread* thread, jlong ms, bool interruptable) {
3486   jlong limit = (jlong) MAXDWORD;
3487 
3488   while (ms > limit) {
3489     int res;
3490     if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT) {
3491       return res;
3492     }
3493     ms -= limit;
3494   }
3495 
3496   assert(thread == Thread::current(), "thread consistency check");
3497   OSThread* osthread = thread->osthread();
3498   OSThreadWaitState osts(osthread, false /* not Object.wait() */);
3499   int result;
3500   if (interruptable) {
3501     assert(thread->is_Java_thread(), "must be java thread");
3502     JavaThread *jt = (JavaThread *) thread;
3503     ThreadBlockInVM tbivm(jt);
3504 
3505     jt->set_suspend_equivalent();
3506     // cleared by handle_special_suspend_equivalent_condition() or
3507     // java_suspend_self() via check_and_wait_while_suspended()
3508 
3509     HANDLE events[1];
3510     events[0] = osthread->interrupt_event();
3511     HighResolutionInterval *phri=NULL;
3512     if (!ForceTimeHighResolution) {
3513       phri = new HighResolutionInterval(ms);
3514     }
3515     if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
3516       result = OS_TIMEOUT;
3517     } else {
3518       ResetEvent(osthread->interrupt_event());
3519       osthread->set_interrupted(false);
3520       result = OS_INTRPT;
3521     }
3522     delete phri; //if it is NULL, harmless
3523 
3524     // were we externally suspended while we were waiting?
3525     jt->check_and_wait_while_suspended();
3526   } else {
3527     assert(!thread->is_Java_thread(), "must not be java thread");
3528     Sleep((long) ms);
3529     result = OS_TIMEOUT;
3530   }
3531   return result;
3532 }
3533 
3534 // Short sleep, direct OS call.
3535 //
3536 // ms = 0, means allow others (if any) to run.
3537 //
3538 void os::naked_short_sleep(jlong ms) {
3539   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3540   Sleep(ms);
3541 }
3542 
3543 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3544 void os::infinite_sleep() {
3545   while (true) {    // sleep forever ...
3546     Sleep(100000);  // ... 100 seconds at a time
3547   }
3548 }
3549 
3550 typedef BOOL (WINAPI * STTSignature)(void);
3551 
3552 void os::naked_yield() {
3553   // Use either SwitchToThread() or Sleep(0)
3554   // Consider passing back the return value from SwitchToThread().
3555   if (os::Kernel32Dll::SwitchToThreadAvailable()) {
3556     SwitchToThread();
3557   } else {
3558     Sleep(0);
3559   }
3560 }
3561 
3562 // Win32 only gives you access to seven real priorities at a time,
3563 // so we compress Java's ten down to seven.  It would be better
3564 // if we dynamically adjusted relative priorities.
3565 
3566 int os::java_to_os_priority[CriticalPriority + 1] = {
3567   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3568   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3569   THREAD_PRIORITY_LOWEST,                       // 2
3570   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3571   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3572   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3573   THREAD_PRIORITY_NORMAL,                       // 6
3574   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3575   THREAD_PRIORITY_ABOVE_NORMAL,                 // 8
3576   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3577   THREAD_PRIORITY_HIGHEST,                      // 10 MaxPriority
3578   THREAD_PRIORITY_HIGHEST                       // 11 CriticalPriority
3579 };
3580 
3581 int prio_policy1[CriticalPriority + 1] = {
3582   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3583   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3584   THREAD_PRIORITY_LOWEST,                       // 2
3585   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3586   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3587   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3588   THREAD_PRIORITY_ABOVE_NORMAL,                 // 6
3589   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3590   THREAD_PRIORITY_HIGHEST,                      // 8
3591   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3592   THREAD_PRIORITY_TIME_CRITICAL,                // 10 MaxPriority
3593   THREAD_PRIORITY_TIME_CRITICAL                 // 11 CriticalPriority
3594 };
3595 
3596 static int prio_init() {
3597   // If ThreadPriorityPolicy is 1, switch tables
3598   if (ThreadPriorityPolicy == 1) {
3599     int i;
3600     for (i = 0; i < CriticalPriority + 1; i++) {
3601       os::java_to_os_priority[i] = prio_policy1[i];
3602     }
3603   }
3604   if (UseCriticalJavaThreadPriority) {
3605     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3606   }
3607   return 0;
3608 }
3609 
3610 OSReturn os::set_native_priority(Thread* thread, int priority) {
3611   if (!UseThreadPriorities) return OS_OK;
3612   bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
3613   return ret ? OS_OK : OS_ERR;
3614 }
3615 
3616 OSReturn os::get_native_priority(const Thread* const thread,
3617                                  int* priority_ptr) {
3618   if (!UseThreadPriorities) {
3619     *priority_ptr = java_to_os_priority[NormPriority];
3620     return OS_OK;
3621   }
3622   int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
3623   if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
3624     assert(false, "GetThreadPriority failed");
3625     return OS_ERR;
3626   }
3627   *priority_ptr = os_prio;
3628   return OS_OK;
3629 }
3630 
3631 
3632 // Hint to the underlying OS that a task switch would not be good.
3633 // Void return because it's a hint and can fail.
3634 void os::hint_no_preempt() {}
3635 
3636 void os::interrupt(Thread* thread) {
3637   assert(!thread->is_Java_thread() || Thread::current() == thread ||
3638          Threads_lock->owned_by_self(),
3639          "possibility of dangling Thread pointer");
3640 
3641   OSThread* osthread = thread->osthread();
3642   osthread->set_interrupted(true);
3643   // More than one thread can get here with the same value of osthread,
3644   // resulting in multiple notifications.  We do, however, want the store
3645   // to interrupted() to be visible to other threads before we post
3646   // the interrupt event.
3647   OrderAccess::release();
3648   SetEvent(osthread->interrupt_event());
3649   // For JSR166:  unpark after setting status
3650   if (thread->is_Java_thread()) {
3651     ((JavaThread*)thread)->parker()->unpark();
3652   }
3653 
3654   ParkEvent * ev = thread->_ParkEvent;
3655   if (ev != NULL) ev->unpark();
3656 }
3657 
3658 
3659 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3660   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3661          "possibility of dangling Thread pointer");
3662 
3663   OSThread* osthread = thread->osthread();
3664   // There is no synchronization between the setting of the interrupt
3665   // and it being cleared here. It is critical - see 6535709 - that
3666   // we only clear the interrupt state, and reset the interrupt event,
3667   // if we are going to report that we were indeed interrupted - else
3668   // an interrupt can be "lost", leading to spurious wakeups or lost wakeups
3669   // depending on the timing. By checking thread interrupt event to see
3670   // if the thread gets real interrupt thus prevent spurious wakeup.
3671   bool interrupted = osthread->interrupted() && (WaitForSingleObject(osthread->interrupt_event(), 0) == WAIT_OBJECT_0);
3672   if (interrupted && clear_interrupted) {
3673     osthread->set_interrupted(false);
3674     ResetEvent(osthread->interrupt_event());
3675   } // Otherwise leave the interrupted state alone
3676 
3677   return interrupted;
3678 }
3679 
3680 // Get's a pc (hint) for a running thread. Currently used only for profiling.
3681 ExtendedPC os::get_thread_pc(Thread* thread) {
3682   CONTEXT context;
3683   context.ContextFlags = CONTEXT_CONTROL;
3684   HANDLE handle = thread->osthread()->thread_handle();
3685 #ifdef _M_IA64
3686   assert(0, "Fix get_thread_pc");
3687   return ExtendedPC(NULL);
3688 #else
3689   if (GetThreadContext(handle, &context)) {
3690 #ifdef _M_AMD64
3691     return ExtendedPC((address) context.Rip);
3692 #else
3693     return ExtendedPC((address) context.Eip);
3694 #endif
3695   } else {
3696     return ExtendedPC(NULL);
3697   }
3698 #endif
3699 }
3700 
3701 // GetCurrentThreadId() returns DWORD
3702 intx os::current_thread_id()  { return GetCurrentThreadId(); }
3703 
3704 static int _initial_pid = 0;
3705 
3706 int os::current_process_id() {
3707   return (_initial_pid ? _initial_pid : _getpid());
3708 }
3709 
3710 int    os::win32::_vm_page_size              = 0;
3711 int    os::win32::_vm_allocation_granularity = 0;
3712 int    os::win32::_processor_type            = 0;
3713 // Processor level is not available on non-NT systems, use vm_version instead
3714 int    os::win32::_processor_level           = 0;
3715 julong os::win32::_physical_memory           = 0;
3716 size_t os::win32::_default_stack_size        = 0;
3717 
3718 intx          os::win32::_os_thread_limit    = 0;
3719 volatile intx os::win32::_os_thread_count    = 0;
3720 
3721 bool   os::win32::_is_nt                     = false;
3722 bool   os::win32::_is_windows_2003           = false;
3723 bool   os::win32::_is_windows_server         = false;
3724 
3725 // 6573254
3726 // Currently, the bug is observed across all the supported Windows releases,
3727 // including the latest one (as of this writing - Windows Server 2012 R2)
3728 bool   os::win32::_has_exit_bug              = true;
3729 bool   os::win32::_has_performance_count     = 0;
3730 
3731 void os::win32::initialize_system_info() {
3732   SYSTEM_INFO si;
3733   GetSystemInfo(&si);
3734   _vm_page_size    = si.dwPageSize;
3735   _vm_allocation_granularity = si.dwAllocationGranularity;
3736   _processor_type  = si.dwProcessorType;
3737   _processor_level = si.wProcessorLevel;
3738   set_processor_count(si.dwNumberOfProcessors);
3739 
3740   MEMORYSTATUSEX ms;
3741   ms.dwLength = sizeof(ms);
3742 
3743   // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
3744   // dwMemoryLoad (% of memory in use)
3745   GlobalMemoryStatusEx(&ms);
3746   _physical_memory = ms.ullTotalPhys;
3747 
3748   OSVERSIONINFOEX oi;
3749   oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
3750   GetVersionEx((OSVERSIONINFO*)&oi);
3751   switch (oi.dwPlatformId) {
3752   case VER_PLATFORM_WIN32_WINDOWS: _is_nt = false; break;
3753   case VER_PLATFORM_WIN32_NT:
3754     _is_nt = true;
3755     {
3756       int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
3757       if (os_vers == 5002) {
3758         _is_windows_2003 = true;
3759       }
3760       if (oi.wProductType == VER_NT_DOMAIN_CONTROLLER ||
3761           oi.wProductType == VER_NT_SERVER) {
3762         _is_windows_server = true;
3763       }
3764     }
3765     break;
3766   default: fatal("Unknown platform");
3767   }
3768 
3769   _default_stack_size = os::current_stack_size();
3770   assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
3771   assert((_default_stack_size & (_vm_page_size - 1)) == 0,
3772          "stack size not a multiple of page size");
3773 
3774   initialize_performance_counter();
3775 }
3776 
3777 
3778 HINSTANCE os::win32::load_Windows_dll(const char* name, char *ebuf,
3779                                       int ebuflen) {
3780   char path[MAX_PATH];
3781   DWORD size;
3782   DWORD pathLen = (DWORD)sizeof(path);
3783   HINSTANCE result = NULL;
3784 
3785   // only allow library name without path component
3786   assert(strchr(name, '\\') == NULL, "path not allowed");
3787   assert(strchr(name, ':') == NULL, "path not allowed");
3788   if (strchr(name, '\\') != NULL || strchr(name, ':') != NULL) {
3789     jio_snprintf(ebuf, ebuflen,
3790                  "Invalid parameter while calling os::win32::load_windows_dll(): cannot take path: %s", name);
3791     return NULL;
3792   }
3793 
3794   // search system directory
3795   if ((size = GetSystemDirectory(path, pathLen)) > 0) {
3796     if (size >= pathLen) {
3797       return NULL; // truncated
3798     }
3799     if (jio_snprintf(path + size, pathLen - size, "\\%s", name) == -1) {
3800       return NULL; // truncated
3801     }
3802     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3803       return result;
3804     }
3805   }
3806 
3807   // try Windows directory
3808   if ((size = GetWindowsDirectory(path, pathLen)) > 0) {
3809     if (size >= pathLen) {
3810       return NULL; // truncated
3811     }
3812     if (jio_snprintf(path + size, pathLen - size, "\\%s", name) == -1) {
3813       return NULL; // truncated
3814     }
3815     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3816       return result;
3817     }
3818   }
3819 
3820   jio_snprintf(ebuf, ebuflen,
3821                "os::win32::load_windows_dll() cannot load %s from system directories.", name);
3822   return NULL;
3823 }
3824 
3825 #define EXIT_TIMEOUT 300000 /* 5 minutes */
3826 
3827 static BOOL CALLBACK init_crit_sect_call(PINIT_ONCE, PVOID pcrit_sect, PVOID*) {
3828   InitializeCriticalSection((CRITICAL_SECTION*)pcrit_sect);
3829   return TRUE;
3830 }
3831 
3832 int os::win32::exit_process_or_thread(Ept what, int exit_code) {
3833   // Basic approach:
3834   //  - Each exiting thread registers its intent to exit and then does so.
3835   //  - A thread trying to terminate the process must wait for all
3836   //    threads currently exiting to complete their exit.
3837 
3838   if (os::win32::has_exit_bug()) {
3839     // The array holds handles of the threads that have started exiting by calling
3840     // _endthreadex().
3841     // Should be large enough to avoid blocking the exiting thread due to lack of
3842     // a free slot.
3843     static HANDLE handles[MAXIMUM_WAIT_OBJECTS];
3844     static int handle_count = 0;
3845 
3846     static INIT_ONCE init_once_crit_sect = INIT_ONCE_STATIC_INIT;
3847     static CRITICAL_SECTION crit_sect;
3848     static volatile jint process_exiting = 0;
3849     int i, j;
3850     DWORD res;
3851     HANDLE hproc, hthr;
3852 
3853     // The first thread that reached this point, initializes the critical section.
3854     if (!InitOnceExecuteOnce(&init_once_crit_sect, init_crit_sect_call, &crit_sect, NULL)) {
3855       warning("crit_sect initialization failed in %s: %d\n", __FILE__, __LINE__);
3856     } else if (OrderAccess::load_acquire(&process_exiting) == 0) {
3857       EnterCriticalSection(&crit_sect);
3858 
3859       if (what == EPT_THREAD && OrderAccess::load_acquire(&process_exiting) == 0) {
3860         // Remove from the array those handles of the threads that have completed exiting.
3861         for (i = 0, j = 0; i < handle_count; ++i) {
3862           res = WaitForSingleObject(handles[i], 0 /* don't wait */);
3863           if (res == WAIT_TIMEOUT) {
3864             handles[j++] = handles[i];
3865           } else {
3866             if (res == WAIT_FAILED) {
3867               warning("WaitForSingleObject failed (%u) in %s: %d\n",
3868                       GetLastError(), __FILE__, __LINE__);
3869             }
3870             // Don't keep the handle, if we failed waiting for it.
3871             CloseHandle(handles[i]);
3872           }
3873         }
3874 
3875         // If there's no free slot in the array of the kept handles, we'll have to
3876         // wait until at least one thread completes exiting.
3877         if ((handle_count = j) == MAXIMUM_WAIT_OBJECTS) {
3878           // Raise the priority of the oldest exiting thread to increase its chances
3879           // to complete sooner.
3880           SetThreadPriority(handles[0], THREAD_PRIORITY_ABOVE_NORMAL);
3881           res = WaitForMultipleObjects(MAXIMUM_WAIT_OBJECTS, handles, FALSE, EXIT_TIMEOUT);
3882           if (res >= WAIT_OBJECT_0 && res < (WAIT_OBJECT_0 + MAXIMUM_WAIT_OBJECTS)) {
3883             i = (res - WAIT_OBJECT_0);
3884             handle_count = MAXIMUM_WAIT_OBJECTS - 1;
3885             for (; i < handle_count; ++i) {
3886               handles[i] = handles[i + 1];
3887             }
3888           } else {
3889             warning("WaitForMultipleObjects %s (%u) in %s: %d\n",
3890                     (res == WAIT_FAILED ? "failed" : "timed out"),
3891                     GetLastError(), __FILE__, __LINE__);
3892             // Don't keep handles, if we failed waiting for them.
3893             for (i = 0; i < MAXIMUM_WAIT_OBJECTS; ++i) {
3894               CloseHandle(handles[i]);
3895             }
3896             handle_count = 0;
3897           }
3898         }
3899 
3900         // Store a duplicate of the current thread handle in the array of handles.
3901         hproc = GetCurrentProcess();
3902         hthr = GetCurrentThread();
3903         if (!DuplicateHandle(hproc, hthr, hproc, &handles[handle_count],
3904                              0, FALSE, DUPLICATE_SAME_ACCESS)) {
3905           warning("DuplicateHandle failed (%u) in %s: %d\n",
3906                   GetLastError(), __FILE__, __LINE__);
3907         } else {
3908           ++handle_count;
3909         }
3910 
3911         // The current exiting thread has stored its handle in the array, and now
3912         // should leave the critical section before calling _endthreadex().
3913 
3914       } else if (what != EPT_THREAD) {
3915         if (handle_count > 0) {
3916           // Before ending the process, make sure all the threads that had called
3917           // _endthreadex() completed.
3918 
3919           // Set the priority level of the current thread to the same value as
3920           // the priority level of exiting threads.
3921           // This is to ensure it will be given a fair chance to execute if
3922           // the timeout expires.
3923           hthr = GetCurrentThread();
3924           SetThreadPriority(hthr, THREAD_PRIORITY_ABOVE_NORMAL);
3925           for (i = 0; i < handle_count; ++i) {
3926             SetThreadPriority(handles[i], THREAD_PRIORITY_ABOVE_NORMAL);
3927           }
3928           res = WaitForMultipleObjects(handle_count, handles, TRUE, EXIT_TIMEOUT);
3929           if (res == WAIT_FAILED || res == WAIT_TIMEOUT) {
3930             warning("WaitForMultipleObjects %s (%u) in %s: %d\n",
3931                     (res == WAIT_FAILED ? "failed" : "timed out"),
3932                     GetLastError(), __FILE__, __LINE__);
3933           }
3934           for (i = 0; i < handle_count; ++i) {
3935             CloseHandle(handles[i]);
3936           }
3937           handle_count = 0;
3938         }
3939 
3940         OrderAccess::release_store(&process_exiting, 1);
3941       }
3942 
3943       LeaveCriticalSection(&crit_sect);
3944     }
3945 
3946     if (what == EPT_THREAD) {
3947       while (OrderAccess::load_acquire(&process_exiting) != 0) {
3948         // Some other thread is about to call exit(), so we
3949         // don't let the current thread proceed to _endthreadex()
3950         SuspendThread(GetCurrentThread());
3951         // Avoid busy-wait loop, if SuspendThread() failed.
3952         Sleep(EXIT_TIMEOUT);
3953       }
3954     }
3955   }
3956 
3957   // We are here if either
3958   // - there's no 'race at exit' bug on this OS release;
3959   // - initialization of the critical section failed (unlikely);
3960   // - the current thread has stored its handle and left the critical section;
3961   // - the process-exiting thread has raised the flag and left the critical section.
3962   if (what == EPT_THREAD) {
3963     _endthreadex((unsigned)exit_code);
3964   } else if (what == EPT_PROCESS) {
3965     ::exit(exit_code);
3966   } else {
3967     _exit(exit_code);
3968   }
3969 
3970   // Should not reach here
3971   return exit_code;
3972 }
3973 
3974 #undef EXIT_TIMEOUT
3975 
3976 void os::win32::setmode_streams() {
3977   _setmode(_fileno(stdin), _O_BINARY);
3978   _setmode(_fileno(stdout), _O_BINARY);
3979   _setmode(_fileno(stderr), _O_BINARY);
3980 }
3981 
3982 
3983 bool os::is_debugger_attached() {
3984   return IsDebuggerPresent() ? true : false;
3985 }
3986 
3987 
3988 void os::wait_for_keypress_at_exit(void) {
3989   if (PauseAtExit) {
3990     fprintf(stderr, "Press any key to continue...\n");
3991     fgetc(stdin);
3992   }
3993 }
3994 
3995 
3996 int os::message_box(const char* title, const char* message) {
3997   int result = MessageBox(NULL, message, title,
3998                           MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
3999   return result == IDYES;
4000 }
4001 
4002 int os::allocate_thread_local_storage() {
4003   return TlsAlloc();
4004 }
4005 
4006 
4007 void os::free_thread_local_storage(int index) {
4008   TlsFree(index);
4009 }
4010 
4011 
4012 void os::thread_local_storage_at_put(int index, void* value) {
4013   TlsSetValue(index, value);
4014   assert(thread_local_storage_at(index) == value, "Just checking");
4015 }
4016 
4017 
4018 void* os::thread_local_storage_at(int index) {
4019   return TlsGetValue(index);
4020 }
4021 
4022 
4023 #ifndef PRODUCT
4024 #ifndef _WIN64
4025 // Helpers to check whether NX protection is enabled
4026 int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
4027   if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
4028       pex->ExceptionRecord->NumberParameters > 0 &&
4029       pex->ExceptionRecord->ExceptionInformation[0] ==
4030       EXCEPTION_INFO_EXEC_VIOLATION) {
4031     return EXCEPTION_EXECUTE_HANDLER;
4032   }
4033   return EXCEPTION_CONTINUE_SEARCH;
4034 }
4035 
4036 void nx_check_protection() {
4037   // If NX is enabled we'll get an exception calling into code on the stack
4038   char code[] = { (char)0xC3 }; // ret
4039   void *code_ptr = (void *)code;
4040   __try {
4041     __asm call code_ptr
4042   } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
4043     tty->print_raw_cr("NX protection detected.");
4044   }
4045 }
4046 #endif // _WIN64
4047 #endif // PRODUCT
4048 
4049 // this is called _before_ the global arguments have been parsed
4050 void os::init(void) {
4051   _initial_pid = _getpid();
4052 
4053   init_random(1234567);
4054 
4055   win32::initialize_system_info();
4056   win32::setmode_streams();
4057   init_page_sizes((size_t) win32::vm_page_size());
4058 
4059   // This may be overridden later when argument processing is done.
4060   FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation,
4061                 os::win32::is_windows_2003());
4062 
4063   // Initialize main_process and main_thread
4064   main_process = GetCurrentProcess();  // Remember main_process is a pseudo handle
4065   if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
4066                        &main_thread, THREAD_ALL_ACCESS, false, 0)) {
4067     fatal("DuplicateHandle failed\n");
4068   }
4069   main_thread_id = (int) GetCurrentThreadId();
4070 }
4071 
4072 // To install functions for atexit processing
4073 extern "C" {
4074   static void perfMemory_exit_helper() {
4075     perfMemory_exit();
4076   }
4077 }
4078 
4079 static jint initSock();
4080 
4081 // this is called _after_ the global arguments have been parsed
4082 jint os::init_2(void) {
4083   // Allocate a single page and mark it as readable for safepoint polling
4084   address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
4085   guarantee(polling_page != NULL, "Reserve Failed for polling page");
4086 
4087   address return_page  = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
4088   guarantee(return_page != NULL, "Commit Failed for polling page");
4089 
4090   os::set_polling_page(polling_page);
4091 
4092 #ifndef PRODUCT
4093   if (Verbose && PrintMiscellaneous) {
4094     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
4095                (intptr_t)polling_page);
4096   }
4097 #endif
4098 
4099   if (!UseMembar) {
4100     address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READWRITE);
4101     guarantee(mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
4102 
4103     return_page  = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_READWRITE);
4104     guarantee(return_page != NULL, "Commit Failed for memory serialize page");
4105 
4106     os::set_memory_serialize_page(mem_serialize_page);
4107 
4108 #ifndef PRODUCT
4109     if (Verbose && PrintMiscellaneous) {
4110       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n",
4111                  (intptr_t)mem_serialize_page);
4112     }
4113 #endif
4114   }
4115 
4116   // Setup Windows Exceptions
4117 
4118   // for debugging float code generation bugs
4119   if (ForceFloatExceptions) {
4120 #ifndef  _WIN64
4121     static long fp_control_word = 0;
4122     __asm { fstcw fp_control_word }
4123     // see Intel PPro Manual, Vol. 2, p 7-16
4124     const long precision = 0x20;
4125     const long underflow = 0x10;
4126     const long overflow  = 0x08;
4127     const long zero_div  = 0x04;
4128     const long denorm    = 0x02;
4129     const long invalid   = 0x01;
4130     fp_control_word |= invalid;
4131     __asm { fldcw fp_control_word }
4132 #endif
4133   }
4134 
4135   // If stack_commit_size is 0, windows will reserve the default size,
4136   // but only commit a small portion of it.
4137   size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size());
4138   size_t default_reserve_size = os::win32::default_stack_size();
4139   size_t actual_reserve_size = stack_commit_size;
4140   if (stack_commit_size < default_reserve_size) {
4141     // If stack_commit_size == 0, we want this too
4142     actual_reserve_size = default_reserve_size;
4143   }
4144 
4145   // Check minimum allowable stack size for thread creation and to initialize
4146   // the java system classes, including StackOverflowError - depends on page
4147   // size.  Add a page for compiler2 recursion in main thread.
4148   // Add in 2*BytesPerWord times page size to account for VM stack during
4149   // class initialization depending on 32 or 64 bit VM.
4150   size_t min_stack_allowed =
4151             (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
4152                      2*BytesPerWord COMPILER2_PRESENT(+1)) * os::vm_page_size();
4153   if (actual_reserve_size < min_stack_allowed) {
4154     tty->print_cr("\nThe stack size specified is too small, "
4155                   "Specify at least %dk",
4156                   min_stack_allowed / K);
4157     return JNI_ERR;
4158   }
4159 
4160   JavaThread::set_stack_size_at_create(stack_commit_size);
4161 
4162   // Calculate theoretical max. size of Threads to guard gainst artifical
4163   // out-of-memory situations, where all available address-space has been
4164   // reserved by thread stacks.
4165   assert(actual_reserve_size != 0, "Must have a stack");
4166 
4167   // Calculate the thread limit when we should start doing Virtual Memory
4168   // banging. Currently when the threads will have used all but 200Mb of space.
4169   //
4170   // TODO: consider performing a similar calculation for commit size instead
4171   // as reserve size, since on a 64-bit platform we'll run into that more
4172   // often than running out of virtual memory space.  We can use the
4173   // lower value of the two calculations as the os_thread_limit.
4174   size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
4175   win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
4176 
4177   // at exit methods are called in the reverse order of their registration.
4178   // there is no limit to the number of functions registered. atexit does
4179   // not set errno.
4180 
4181   if (PerfAllowAtExitRegistration) {
4182     // only register atexit functions if PerfAllowAtExitRegistration is set.
4183     // atexit functions can be delayed until process exit time, which
4184     // can be problematic for embedded VM situations. Embedded VMs should
4185     // call DestroyJavaVM() to assure that VM resources are released.
4186 
4187     // note: perfMemory_exit_helper atexit function may be removed in
4188     // the future if the appropriate cleanup code can be added to the
4189     // VM_Exit VMOperation's doit method.
4190     if (atexit(perfMemory_exit_helper) != 0) {
4191       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4192     }
4193   }
4194 
4195 #ifndef _WIN64
4196   // Print something if NX is enabled (win32 on AMD64)
4197   NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
4198 #endif
4199 
4200   // initialize thread priority policy
4201   prio_init();
4202 
4203   if (UseNUMA && !ForceNUMA) {
4204     UseNUMA = false; // We don't fully support this yet
4205   }
4206 
4207   if (UseNUMAInterleaving) {
4208     // first check whether this Windows OS supports VirtualAllocExNuma, if not ignore this flag
4209     bool success = numa_interleaving_init();
4210     if (!success) UseNUMAInterleaving = false;
4211   }
4212 
4213   if (initSock() != JNI_OK) {
4214     return JNI_ERR;
4215   }
4216 
4217   return JNI_OK;
4218 }
4219 
4220 // Mark the polling page as unreadable
4221 void os::make_polling_page_unreadable(void) {
4222   DWORD old_status;
4223   if (!VirtualProtect((char *)_polling_page, os::vm_page_size(),
4224                       PAGE_NOACCESS, &old_status)) {
4225     fatal("Could not disable polling page");
4226   }
4227 }
4228 
4229 // Mark the polling page as readable
4230 void os::make_polling_page_readable(void) {
4231   DWORD old_status;
4232   if (!VirtualProtect((char *)_polling_page, os::vm_page_size(),
4233                       PAGE_READONLY, &old_status)) {
4234     fatal("Could not enable polling page");
4235   }
4236 }
4237 
4238 
4239 int os::stat(const char *path, struct stat *sbuf) {
4240   char pathbuf[MAX_PATH];
4241   if (strlen(path) > MAX_PATH - 1) {
4242     errno = ENAMETOOLONG;
4243     return -1;
4244   }
4245   os::native_path(strcpy(pathbuf, path));
4246   int ret = ::stat(pathbuf, sbuf);
4247   if (sbuf != NULL && UseUTCFileTimestamp) {
4248     // Fix for 6539723.  st_mtime returned from stat() is dependent on
4249     // the system timezone and so can return different values for the
4250     // same file if/when daylight savings time changes.  This adjustment
4251     // makes sure the same timestamp is returned regardless of the TZ.
4252     //
4253     // See:
4254     // http://msdn.microsoft.com/library/
4255     //   default.asp?url=/library/en-us/sysinfo/base/
4256     //   time_zone_information_str.asp
4257     // and
4258     // http://msdn.microsoft.com/library/default.asp?url=
4259     //   /library/en-us/sysinfo/base/settimezoneinformation.asp
4260     //
4261     // NOTE: there is a insidious bug here:  If the timezone is changed
4262     // after the call to stat() but before 'GetTimeZoneInformation()', then
4263     // the adjustment we do here will be wrong and we'll return the wrong
4264     // value (which will likely end up creating an invalid class data
4265     // archive).  Absent a better API for this, or some time zone locking
4266     // mechanism, we'll have to live with this risk.
4267     TIME_ZONE_INFORMATION tz;
4268     DWORD tzid = GetTimeZoneInformation(&tz);
4269     int daylightBias =
4270       (tzid == TIME_ZONE_ID_DAYLIGHT) ?  tz.DaylightBias : tz.StandardBias;
4271     sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
4272   }
4273   return ret;
4274 }
4275 
4276 
4277 #define FT2INT64(ft) \
4278   ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
4279 
4280 
4281 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4282 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
4283 // of a thread.
4284 //
4285 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4286 // the fast estimate available on the platform.
4287 
4288 // current_thread_cpu_time() is not optimized for Windows yet
4289 jlong os::current_thread_cpu_time() {
4290   // return user + sys since the cost is the same
4291   return os::thread_cpu_time(Thread::current(), true /* user+sys */);
4292 }
4293 
4294 jlong os::thread_cpu_time(Thread* thread) {
4295   // consistent with what current_thread_cpu_time() returns.
4296   return os::thread_cpu_time(thread, true /* user+sys */);
4297 }
4298 
4299 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4300   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4301 }
4302 
4303 jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
4304   // This code is copy from clasic VM -> hpi::sysThreadCPUTime
4305   // If this function changes, os::is_thread_cpu_time_supported() should too
4306   if (os::win32::is_nt()) {
4307     FILETIME CreationTime;
4308     FILETIME ExitTime;
4309     FILETIME KernelTime;
4310     FILETIME UserTime;
4311 
4312     if (GetThreadTimes(thread->osthread()->thread_handle(), &CreationTime,
4313                        &ExitTime, &KernelTime, &UserTime) == 0) {
4314       return -1;
4315     } else if (user_sys_cpu_time) {
4316       return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
4317     } else {
4318       return FT2INT64(UserTime) * 100;
4319     }
4320   } else {
4321     return (jlong) timeGetTime() * 1000000;
4322   }
4323 }
4324 
4325 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4326   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4327   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4328   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4329   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4330 }
4331 
4332 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4333   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4334   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4335   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4336   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4337 }
4338 
4339 bool os::is_thread_cpu_time_supported() {
4340   // see os::thread_cpu_time
4341   if (os::win32::is_nt()) {
4342     FILETIME CreationTime;
4343     FILETIME ExitTime;
4344     FILETIME KernelTime;
4345     FILETIME UserTime;
4346 
4347     if (GetThreadTimes(GetCurrentThread(), &CreationTime, &ExitTime,
4348                        &KernelTime, &UserTime) == 0) {
4349       return false;
4350     } else {
4351       return true;
4352     }
4353   } else {
4354     return false;
4355   }
4356 }
4357 
4358 // Windows does't provide a loadavg primitive so this is stubbed out for now.
4359 // It does have primitives (PDH API) to get CPU usage and run queue length.
4360 // "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
4361 // If we wanted to implement loadavg on Windows, we have a few options:
4362 //
4363 // a) Query CPU usage and run queue length and "fake" an answer by
4364 //    returning the CPU usage if it's under 100%, and the run queue
4365 //    length otherwise.  It turns out that querying is pretty slow
4366 //    on Windows, on the order of 200 microseconds on a fast machine.
4367 //    Note that on the Windows the CPU usage value is the % usage
4368 //    since the last time the API was called (and the first call
4369 //    returns 100%), so we'd have to deal with that as well.
4370 //
4371 // b) Sample the "fake" answer using a sampling thread and store
4372 //    the answer in a global variable.  The call to loadavg would
4373 //    just return the value of the global, avoiding the slow query.
4374 //
4375 // c) Sample a better answer using exponential decay to smooth the
4376 //    value.  This is basically the algorithm used by UNIX kernels.
4377 //
4378 // Note that sampling thread starvation could affect both (b) and (c).
4379 int os::loadavg(double loadavg[], int nelem) {
4380   return -1;
4381 }
4382 
4383 
4384 // DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
4385 bool os::dont_yield() {
4386   return DontYieldALot;
4387 }
4388 
4389 // This method is a slightly reworked copy of JDK's sysOpen
4390 // from src/windows/hpi/src/sys_api_md.c
4391 
4392 int os::open(const char *path, int oflag, int mode) {
4393   char pathbuf[MAX_PATH];
4394 
4395   if (strlen(path) > MAX_PATH - 1) {
4396     errno = ENAMETOOLONG;
4397     return -1;
4398   }
4399   os::native_path(strcpy(pathbuf, path));
4400   return ::open(pathbuf, oflag | O_BINARY | O_NOINHERIT, mode);
4401 }
4402 
4403 FILE* os::open(int fd, const char* mode) {
4404   return ::_fdopen(fd, mode);
4405 }
4406 
4407 // Is a (classpath) directory empty?
4408 bool os::dir_is_empty(const char* path) {
4409   WIN32_FIND_DATA fd;
4410   HANDLE f = FindFirstFile(path, &fd);
4411   if (f == INVALID_HANDLE_VALUE) {
4412     return true;
4413   }
4414   FindClose(f);
4415   return false;
4416 }
4417 
4418 // create binary file, rewriting existing file if required
4419 int os::create_binary_file(const char* path, bool rewrite_existing) {
4420   int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
4421   if (!rewrite_existing) {
4422     oflags |= _O_EXCL;
4423   }
4424   return ::open(path, oflags, _S_IREAD | _S_IWRITE);
4425 }
4426 
4427 // return current position of file pointer
4428 jlong os::current_file_offset(int fd) {
4429   return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
4430 }
4431 
4432 // move file pointer to the specified offset
4433 jlong os::seek_to_file_offset(int fd, jlong offset) {
4434   return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
4435 }
4436 
4437 
4438 jlong os::lseek(int fd, jlong offset, int whence) {
4439   return (jlong) ::_lseeki64(fd, offset, whence);
4440 }
4441 
4442 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
4443   OVERLAPPED ov;
4444   DWORD nread;
4445   BOOL result;
4446 
4447   ZeroMemory(&ov, sizeof(ov));
4448   ov.Offset = (DWORD)offset;
4449   ov.OffsetHigh = (DWORD)(offset >> 32);
4450 
4451   HANDLE h = (HANDLE)::_get_osfhandle(fd);
4452 
4453   result = ReadFile(h, (LPVOID)buf, nBytes, &nread, &ov);
4454 
4455   return result ? nread : 0;
4456 }
4457 
4458 
4459 // This method is a slightly reworked copy of JDK's sysNativePath
4460 // from src/windows/hpi/src/path_md.c
4461 
4462 // Convert a pathname to native format.  On win32, this involves forcing all
4463 // separators to be '\\' rather than '/' (both are legal inputs, but Win95
4464 // sometimes rejects '/') and removing redundant separators.  The input path is
4465 // assumed to have been converted into the character encoding used by the local
4466 // system.  Because this might be a double-byte encoding, care is taken to
4467 // treat double-byte lead characters correctly.
4468 //
4469 // This procedure modifies the given path in place, as the result is never
4470 // longer than the original.  There is no error return; this operation always
4471 // succeeds.
4472 char * os::native_path(char *path) {
4473   char *src = path, *dst = path, *end = path;
4474   char *colon = NULL;  // If a drive specifier is found, this will
4475                        // point to the colon following the drive letter
4476 
4477   // Assumption: '/', '\\', ':', and drive letters are never lead bytes
4478   assert(((!::IsDBCSLeadByte('/')) && (!::IsDBCSLeadByte('\\'))
4479           && (!::IsDBCSLeadByte(':'))), "Illegal lead byte");
4480 
4481   // Check for leading separators
4482 #define isfilesep(c) ((c) == '/' || (c) == '\\')
4483   while (isfilesep(*src)) {
4484     src++;
4485   }
4486 
4487   if (::isalpha(*src) && !::IsDBCSLeadByte(*src) && src[1] == ':') {
4488     // Remove leading separators if followed by drive specifier.  This
4489     // hack is necessary to support file URLs containing drive
4490     // specifiers (e.g., "file://c:/path").  As a side effect,
4491     // "/c:/path" can be used as an alternative to "c:/path".
4492     *dst++ = *src++;
4493     colon = dst;
4494     *dst++ = ':';
4495     src++;
4496   } else {
4497     src = path;
4498     if (isfilesep(src[0]) && isfilesep(src[1])) {
4499       // UNC pathname: Retain first separator; leave src pointed at
4500       // second separator so that further separators will be collapsed
4501       // into the second separator.  The result will be a pathname
4502       // beginning with "\\\\" followed (most likely) by a host name.
4503       src = dst = path + 1;
4504       path[0] = '\\';     // Force first separator to '\\'
4505     }
4506   }
4507 
4508   end = dst;
4509 
4510   // Remove redundant separators from remainder of path, forcing all
4511   // separators to be '\\' rather than '/'. Also, single byte space
4512   // characters are removed from the end of the path because those
4513   // are not legal ending characters on this operating system.
4514   //
4515   while (*src != '\0') {
4516     if (isfilesep(*src)) {
4517       *dst++ = '\\'; src++;
4518       while (isfilesep(*src)) src++;
4519       if (*src == '\0') {
4520         // Check for trailing separator
4521         end = dst;
4522         if (colon == dst - 2) break;  // "z:\\"
4523         if (dst == path + 1) break;   // "\\"
4524         if (dst == path + 2 && isfilesep(path[0])) {
4525           // "\\\\" is not collapsed to "\\" because "\\\\" marks the
4526           // beginning of a UNC pathname.  Even though it is not, by
4527           // itself, a valid UNC pathname, we leave it as is in order
4528           // to be consistent with the path canonicalizer as well
4529           // as the win32 APIs, which treat this case as an invalid
4530           // UNC pathname rather than as an alias for the root
4531           // directory of the current drive.
4532           break;
4533         }
4534         end = --dst;  // Path does not denote a root directory, so
4535                       // remove trailing separator
4536         break;
4537       }
4538       end = dst;
4539     } else {
4540       if (::IsDBCSLeadByte(*src)) {  // Copy a double-byte character
4541         *dst++ = *src++;
4542         if (*src) *dst++ = *src++;
4543         end = dst;
4544       } else {  // Copy a single-byte character
4545         char c = *src++;
4546         *dst++ = c;
4547         // Space is not a legal ending character
4548         if (c != ' ') end = dst;
4549       }
4550     }
4551   }
4552 
4553   *end = '\0';
4554 
4555   // For "z:", add "." to work around a bug in the C runtime library
4556   if (colon == dst - 1) {
4557     path[2] = '.';
4558     path[3] = '\0';
4559   }
4560 
4561   return path;
4562 }
4563 
4564 // This code is a copy of JDK's sysSetLength
4565 // from src/windows/hpi/src/sys_api_md.c
4566 
4567 int os::ftruncate(int fd, jlong length) {
4568   HANDLE h = (HANDLE)::_get_osfhandle(fd);
4569   long high = (long)(length >> 32);
4570   DWORD ret;
4571 
4572   if (h == (HANDLE)(-1)) {
4573     return -1;
4574   }
4575 
4576   ret = ::SetFilePointer(h, (long)(length), &high, FILE_BEGIN);
4577   if ((ret == 0xFFFFFFFF) && (::GetLastError() != NO_ERROR)) {
4578     return -1;
4579   }
4580 
4581   if (::SetEndOfFile(h) == FALSE) {
4582     return -1;
4583   }
4584 
4585   return 0;
4586 }
4587 
4588 
4589 // This code is a copy of JDK's sysSync
4590 // from src/windows/hpi/src/sys_api_md.c
4591 // except for the legacy workaround for a bug in Win 98
4592 
4593 int os::fsync(int fd) {
4594   HANDLE handle = (HANDLE)::_get_osfhandle(fd);
4595 
4596   if ((!::FlushFileBuffers(handle)) &&
4597       (GetLastError() != ERROR_ACCESS_DENIED)) {
4598     // from winerror.h
4599     return -1;
4600   }
4601   return 0;
4602 }
4603 
4604 static int nonSeekAvailable(int, long *);
4605 static int stdinAvailable(int, long *);
4606 
4607 #define S_ISCHR(mode)   (((mode) & _S_IFCHR) == _S_IFCHR)
4608 #define S_ISFIFO(mode)  (((mode) & _S_IFIFO) == _S_IFIFO)
4609 
4610 // This code is a copy of JDK's sysAvailable
4611 // from src/windows/hpi/src/sys_api_md.c
4612 
4613 int os::available(int fd, jlong *bytes) {
4614   jlong cur, end;
4615   struct _stati64 stbuf64;
4616 
4617   if (::_fstati64(fd, &stbuf64) >= 0) {
4618     int mode = stbuf64.st_mode;
4619     if (S_ISCHR(mode) || S_ISFIFO(mode)) {
4620       int ret;
4621       long lpbytes;
4622       if (fd == 0) {
4623         ret = stdinAvailable(fd, &lpbytes);
4624       } else {
4625         ret = nonSeekAvailable(fd, &lpbytes);
4626       }
4627       (*bytes) = (jlong)(lpbytes);
4628       return ret;
4629     }
4630     if ((cur = ::_lseeki64(fd, 0L, SEEK_CUR)) == -1) {
4631       return FALSE;
4632     } else if ((end = ::_lseeki64(fd, 0L, SEEK_END)) == -1) {
4633       return FALSE;
4634     } else if (::_lseeki64(fd, cur, SEEK_SET) == -1) {
4635       return FALSE;
4636     }
4637     *bytes = end - cur;
4638     return TRUE;
4639   } else {
4640     return FALSE;
4641   }
4642 }
4643 
4644 // This code is a copy of JDK's nonSeekAvailable
4645 // from src/windows/hpi/src/sys_api_md.c
4646 
4647 static int nonSeekAvailable(int fd, long *pbytes) {
4648   // This is used for available on non-seekable devices
4649   // (like both named and anonymous pipes, such as pipes
4650   //  connected to an exec'd process).
4651   // Standard Input is a special case.
4652   HANDLE han;
4653 
4654   if ((han = (HANDLE) ::_get_osfhandle(fd)) == (HANDLE)(-1)) {
4655     return FALSE;
4656   }
4657 
4658   if (! ::PeekNamedPipe(han, NULL, 0, NULL, (LPDWORD)pbytes, NULL)) {
4659     // PeekNamedPipe fails when at EOF.  In that case we
4660     // simply make *pbytes = 0 which is consistent with the
4661     // behavior we get on Solaris when an fd is at EOF.
4662     // The only alternative is to raise an Exception,
4663     // which isn't really warranted.
4664     //
4665     if (::GetLastError() != ERROR_BROKEN_PIPE) {
4666       return FALSE;
4667     }
4668     *pbytes = 0;
4669   }
4670   return TRUE;
4671 }
4672 
4673 #define MAX_INPUT_EVENTS 2000
4674 
4675 // This code is a copy of JDK's stdinAvailable
4676 // from src/windows/hpi/src/sys_api_md.c
4677 
4678 static int stdinAvailable(int fd, long *pbytes) {
4679   HANDLE han;
4680   DWORD numEventsRead = 0;  // Number of events read from buffer
4681   DWORD numEvents = 0;      // Number of events in buffer
4682   DWORD i = 0;              // Loop index
4683   DWORD curLength = 0;      // Position marker
4684   DWORD actualLength = 0;   // Number of bytes readable
4685   BOOL error = FALSE;       // Error holder
4686   INPUT_RECORD *lpBuffer;   // Pointer to records of input events
4687 
4688   if ((han = ::GetStdHandle(STD_INPUT_HANDLE)) == INVALID_HANDLE_VALUE) {
4689     return FALSE;
4690   }
4691 
4692   // Construct an array of input records in the console buffer
4693   error = ::GetNumberOfConsoleInputEvents(han, &numEvents);
4694   if (error == 0) {
4695     return nonSeekAvailable(fd, pbytes);
4696   }
4697 
4698   // lpBuffer must fit into 64K or else PeekConsoleInput fails
4699   if (numEvents > MAX_INPUT_EVENTS) {
4700     numEvents = MAX_INPUT_EVENTS;
4701   }
4702 
4703   lpBuffer = (INPUT_RECORD *)os::malloc(numEvents * sizeof(INPUT_RECORD), mtInternal);
4704   if (lpBuffer == NULL) {
4705     return FALSE;
4706   }
4707 
4708   error = ::PeekConsoleInput(han, lpBuffer, numEvents, &numEventsRead);
4709   if (error == 0) {
4710     os::free(lpBuffer);
4711     return FALSE;
4712   }
4713 
4714   // Examine input records for the number of bytes available
4715   for (i=0; i<numEvents; i++) {
4716     if (lpBuffer[i].EventType == KEY_EVENT) {
4717 
4718       KEY_EVENT_RECORD *keyRecord = (KEY_EVENT_RECORD *)
4719                                       &(lpBuffer[i].Event);
4720       if (keyRecord->bKeyDown == TRUE) {
4721         CHAR *keyPressed = (CHAR *) &(keyRecord->uChar);
4722         curLength++;
4723         if (*keyPressed == '\r') {
4724           actualLength = curLength;
4725         }
4726       }
4727     }
4728   }
4729 
4730   if (lpBuffer != NULL) {
4731     os::free(lpBuffer);
4732   }
4733 
4734   *pbytes = (long) actualLength;
4735   return TRUE;
4736 }
4737 
4738 // Map a block of memory.
4739 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4740                         char *addr, size_t bytes, bool read_only,
4741                         bool allow_exec) {
4742   HANDLE hFile;
4743   char* base;
4744 
4745   hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
4746                      OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
4747   if (hFile == NULL) {
4748     if (PrintMiscellaneous && Verbose) {
4749       DWORD err = GetLastError();
4750       tty->print_cr("CreateFile() failed: GetLastError->%ld.", err);
4751     }
4752     return NULL;
4753   }
4754 
4755   if (allow_exec) {
4756     // CreateFileMapping/MapViewOfFileEx can't map executable memory
4757     // unless it comes from a PE image (which the shared archive is not.)
4758     // Even VirtualProtect refuses to give execute access to mapped memory
4759     // that was not previously executable.
4760     //
4761     // Instead, stick the executable region in anonymous memory.  Yuck.
4762     // Penalty is that ~4 pages will not be shareable - in the future
4763     // we might consider DLLizing the shared archive with a proper PE
4764     // header so that mapping executable + sharing is possible.
4765 
4766     base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
4767                                 PAGE_READWRITE);
4768     if (base == NULL) {
4769       if (PrintMiscellaneous && Verbose) {
4770         DWORD err = GetLastError();
4771         tty->print_cr("VirtualAlloc() failed: GetLastError->%ld.", err);
4772       }
4773       CloseHandle(hFile);
4774       return NULL;
4775     }
4776 
4777     DWORD bytes_read;
4778     OVERLAPPED overlapped;
4779     overlapped.Offset = (DWORD)file_offset;
4780     overlapped.OffsetHigh = 0;
4781     overlapped.hEvent = NULL;
4782     // ReadFile guarantees that if the return value is true, the requested
4783     // number of bytes were read before returning.
4784     bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
4785     if (!res) {
4786       if (PrintMiscellaneous && Verbose) {
4787         DWORD err = GetLastError();
4788         tty->print_cr("ReadFile() failed: GetLastError->%ld.", err);
4789       }
4790       release_memory(base, bytes);
4791       CloseHandle(hFile);
4792       return NULL;
4793     }
4794   } else {
4795     HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
4796                                     NULL /* file_name */);
4797     if (hMap == NULL) {
4798       if (PrintMiscellaneous && Verbose) {
4799         DWORD err = GetLastError();
4800         tty->print_cr("CreateFileMapping() failed: GetLastError->%ld.", err);
4801       }
4802       CloseHandle(hFile);
4803       return NULL;
4804     }
4805 
4806     DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
4807     base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
4808                                   (DWORD)bytes, addr);
4809     if (base == NULL) {
4810       if (PrintMiscellaneous && Verbose) {
4811         DWORD err = GetLastError();
4812         tty->print_cr("MapViewOfFileEx() failed: GetLastError->%ld.", err);
4813       }
4814       CloseHandle(hMap);
4815       CloseHandle(hFile);
4816       return NULL;
4817     }
4818 
4819     if (CloseHandle(hMap) == 0) {
4820       if (PrintMiscellaneous && Verbose) {
4821         DWORD err = GetLastError();
4822         tty->print_cr("CloseHandle(hMap) failed: GetLastError->%ld.", err);
4823       }
4824       CloseHandle(hFile);
4825       return base;
4826     }
4827   }
4828 
4829   if (allow_exec) {
4830     DWORD old_protect;
4831     DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
4832     bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
4833 
4834     if (!res) {
4835       if (PrintMiscellaneous && Verbose) {
4836         DWORD err = GetLastError();
4837         tty->print_cr("VirtualProtect() failed: GetLastError->%ld.", err);
4838       }
4839       // Don't consider this a hard error, on IA32 even if the
4840       // VirtualProtect fails, we should still be able to execute
4841       CloseHandle(hFile);
4842       return base;
4843     }
4844   }
4845 
4846   if (CloseHandle(hFile) == 0) {
4847     if (PrintMiscellaneous && Verbose) {
4848       DWORD err = GetLastError();
4849       tty->print_cr("CloseHandle(hFile) failed: GetLastError->%ld.", err);
4850     }
4851     return base;
4852   }
4853 
4854   return base;
4855 }
4856 
4857 
4858 // Remap a block of memory.
4859 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4860                           char *addr, size_t bytes, bool read_only,
4861                           bool allow_exec) {
4862   // This OS does not allow existing memory maps to be remapped so we
4863   // have to unmap the memory before we remap it.
4864   if (!os::unmap_memory(addr, bytes)) {
4865     return NULL;
4866   }
4867 
4868   // There is a very small theoretical window between the unmap_memory()
4869   // call above and the map_memory() call below where a thread in native
4870   // code may be able to access an address that is no longer mapped.
4871 
4872   return os::map_memory(fd, file_name, file_offset, addr, bytes,
4873                         read_only, allow_exec);
4874 }
4875 
4876 
4877 // Unmap a block of memory.
4878 // Returns true=success, otherwise false.
4879 
4880 bool os::pd_unmap_memory(char* addr, size_t bytes) {
4881   BOOL result = UnmapViewOfFile(addr);
4882   if (result == 0) {
4883     if (PrintMiscellaneous && Verbose) {
4884       DWORD err = GetLastError();
4885       tty->print_cr("UnmapViewOfFile() failed: GetLastError->%ld.", err);
4886     }
4887     return false;
4888   }
4889   return true;
4890 }
4891 
4892 void os::pause() {
4893   char filename[MAX_PATH];
4894   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4895     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4896   } else {
4897     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4898   }
4899 
4900   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4901   if (fd != -1) {
4902     struct stat buf;
4903     ::close(fd);
4904     while (::stat(filename, &buf) == 0) {
4905       Sleep(100);
4906     }
4907   } else {
4908     jio_fprintf(stderr,
4909                 "Could not open pause file '%s', continuing immediately.\n", filename);
4910   }
4911 }
4912 
4913 os::WatcherThreadCrashProtection::WatcherThreadCrashProtection() {
4914   assert(Thread::current()->is_Watcher_thread(), "Must be WatcherThread");
4915 }
4916 
4917 // See the caveats for this class in os_windows.hpp
4918 // Protects the callback call so that raised OS EXCEPTIONS causes a jump back
4919 // into this method and returns false. If no OS EXCEPTION was raised, returns
4920 // true.
4921 // The callback is supposed to provide the method that should be protected.
4922 //
4923 bool os::WatcherThreadCrashProtection::call(os::CrashProtectionCallback& cb) {
4924   assert(Thread::current()->is_Watcher_thread(), "Only for WatcherThread");
4925   assert(!WatcherThread::watcher_thread()->has_crash_protection(),
4926          "crash_protection already set?");
4927 
4928   bool success = true;
4929   __try {
4930     WatcherThread::watcher_thread()->set_crash_protection(this);
4931     cb.call();
4932   } __except(EXCEPTION_EXECUTE_HANDLER) {
4933     // only for protection, nothing to do
4934     success = false;
4935   }
4936   WatcherThread::watcher_thread()->set_crash_protection(NULL);
4937   return success;
4938 }
4939 
4940 // An Event wraps a win32 "CreateEvent" kernel handle.
4941 //
4942 // We have a number of choices regarding "CreateEvent" win32 handle leakage:
4943 //
4944 // 1:  When a thread dies return the Event to the EventFreeList, clear the ParkHandle
4945 //     field, and call CloseHandle() on the win32 event handle.  Unpark() would
4946 //     need to be modified to tolerate finding a NULL (invalid) win32 event handle.
4947 //     In addition, an unpark() operation might fetch the handle field, but the
4948 //     event could recycle between the fetch and the SetEvent() operation.
4949 //     SetEvent() would either fail because the handle was invalid, or inadvertently work,
4950 //     as the win32 handle value had been recycled.  In an ideal world calling SetEvent()
4951 //     on an stale but recycled handle would be harmless, but in practice this might
4952 //     confuse other non-Sun code, so it's not a viable approach.
4953 //
4954 // 2:  Once a win32 event handle is associated with an Event, it remains associated
4955 //     with the Event.  The event handle is never closed.  This could be construed
4956 //     as handle leakage, but only up to the maximum # of threads that have been extant
4957 //     at any one time.  This shouldn't be an issue, as windows platforms typically
4958 //     permit a process to have hundreds of thousands of open handles.
4959 //
4960 // 3:  Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
4961 //     and release unused handles.
4962 //
4963 // 4:  Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
4964 //     It's not clear, however, that we wouldn't be trading one type of leak for another.
4965 //
4966 // 5.  Use an RCU-like mechanism (Read-Copy Update).
4967 //     Or perhaps something similar to Maged Michael's "Hazard pointers".
4968 //
4969 // We use (2).
4970 //
4971 // TODO-FIXME:
4972 // 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
4973 // 2.  Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
4974 //     to recover from (or at least detect) the dreaded Windows 841176 bug.
4975 // 3.  Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
4976 //     into a single win32 CreateEvent() handle.
4977 //
4978 // Assumption:
4979 //    Only one parker can exist on an event, which is why we allocate
4980 //    them per-thread. Multiple unparkers can coexist.
4981 //
4982 // _Event transitions in park()
4983 //   -1 => -1 : illegal
4984 //    1 =>  0 : pass - return immediately
4985 //    0 => -1 : block; then set _Event to 0 before returning
4986 //
4987 // _Event transitions in unpark()
4988 //    0 => 1 : just return
4989 //    1 => 1 : just return
4990 //   -1 => either 0 or 1; must signal target thread
4991 //         That is, we can safely transition _Event from -1 to either
4992 //         0 or 1.
4993 //
4994 // _Event serves as a restricted-range semaphore.
4995 //   -1 : thread is blocked, i.e. there is a waiter
4996 //    0 : neutral: thread is running or ready,
4997 //        could have been signaled after a wait started
4998 //    1 : signaled - thread is running or ready
4999 //
5000 // Another possible encoding of _Event would be with
5001 // explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
5002 //
5003 
5004 int os::PlatformEvent::park(jlong Millis) {
5005   // Transitions for _Event:
5006   //   -1 => -1 : illegal
5007   //    1 =>  0 : pass - return immediately
5008   //    0 => -1 : block; then set _Event to 0 before returning
5009 
5010   guarantee(_ParkHandle != NULL , "Invariant");
5011   guarantee(Millis > 0          , "Invariant");
5012 
5013   // CONSIDER: defer assigning a CreateEvent() handle to the Event until
5014   // the initial park() operation.
5015   // Consider: use atomic decrement instead of CAS-loop
5016 
5017   int v;
5018   for (;;) {
5019     v = _Event;
5020     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5021   }
5022   guarantee((v == 0) || (v == 1), "invariant");
5023   if (v != 0) return OS_OK;
5024 
5025   // Do this the hard way by blocking ...
5026   // TODO: consider a brief spin here, gated on the success of recent
5027   // spin attempts by this thread.
5028   //
5029   // We decompose long timeouts into series of shorter timed waits.
5030   // Evidently large timo values passed in WaitForSingleObject() are problematic on some
5031   // versions of Windows.  See EventWait() for details.  This may be superstition.  Or not.
5032   // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
5033   // with os::javaTimeNanos().  Furthermore, we assume that spurious returns from
5034   // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
5035   // to happen early in the wait interval.  Specifically, after a spurious wakeup (rv ==
5036   // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
5037   // for the already waited time.  This policy does not admit any new outcomes.
5038   // In the future, however, we might want to track the accumulated wait time and
5039   // adjust Millis accordingly if we encounter a spurious wakeup.
5040 
5041   const int MAXTIMEOUT = 0x10000000;
5042   DWORD rv = WAIT_TIMEOUT;
5043   while (_Event < 0 && Millis > 0) {
5044     DWORD prd = Millis;     // set prd = MAX (Millis, MAXTIMEOUT)
5045     if (Millis > MAXTIMEOUT) {
5046       prd = MAXTIMEOUT;
5047     }
5048     rv = ::WaitForSingleObject(_ParkHandle, prd);
5049     assert(rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed");
5050     if (rv == WAIT_TIMEOUT) {
5051       Millis -= prd;
5052     }
5053   }
5054   v = _Event;
5055   _Event = 0;
5056   // see comment at end of os::PlatformEvent::park() below:
5057   OrderAccess::fence();
5058   // If we encounter a nearly simultanous timeout expiry and unpark()
5059   // we return OS_OK indicating we awoke via unpark().
5060   // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
5061   return (v >= 0) ? OS_OK : OS_TIMEOUT;
5062 }
5063 
5064 void os::PlatformEvent::park() {
5065   // Transitions for _Event:
5066   //   -1 => -1 : illegal
5067   //    1 =>  0 : pass - return immediately
5068   //    0 => -1 : block; then set _Event to 0 before returning
5069 
5070   guarantee(_ParkHandle != NULL, "Invariant");
5071   // Invariant: Only the thread associated with the Event/PlatformEvent
5072   // may call park().
5073   // Consider: use atomic decrement instead of CAS-loop
5074   int v;
5075   for (;;) {
5076     v = _Event;
5077     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5078   }
5079   guarantee((v == 0) || (v == 1), "invariant");
5080   if (v != 0) return;
5081 
5082   // Do this the hard way by blocking ...
5083   // TODO: consider a brief spin here, gated on the success of recent
5084   // spin attempts by this thread.
5085   while (_Event < 0) {
5086     DWORD rv = ::WaitForSingleObject(_ParkHandle, INFINITE);
5087     assert(rv == WAIT_OBJECT_0, "WaitForSingleObject failed");
5088   }
5089 
5090   // Usually we'll find _Event == 0 at this point, but as
5091   // an optional optimization we clear it, just in case can
5092   // multiple unpark() operations drove _Event up to 1.
5093   _Event = 0;
5094   OrderAccess::fence();
5095   guarantee(_Event >= 0, "invariant");
5096 }
5097 
5098 void os::PlatformEvent::unpark() {
5099   guarantee(_ParkHandle != NULL, "Invariant");
5100 
5101   // Transitions for _Event:
5102   //    0 => 1 : just return
5103   //    1 => 1 : just return
5104   //   -1 => either 0 or 1; must signal target thread
5105   //         That is, we can safely transition _Event from -1 to either
5106   //         0 or 1.
5107   // See also: "Semaphores in Plan 9" by Mullender & Cox
5108   //
5109   // Note: Forcing a transition from "-1" to "1" on an unpark() means
5110   // that it will take two back-to-back park() calls for the owning
5111   // thread to block. This has the benefit of forcing a spurious return
5112   // from the first park() call after an unpark() call which will help
5113   // shake out uses of park() and unpark() without condition variables.
5114 
5115   if (Atomic::xchg(1, &_Event) >= 0) return;
5116 
5117   ::SetEvent(_ParkHandle);
5118 }
5119 
5120 
5121 // JSR166
5122 // -------------------------------------------------------
5123 
5124 // The Windows implementation of Park is very straightforward: Basic
5125 // operations on Win32 Events turn out to have the right semantics to
5126 // use them directly. We opportunistically resuse the event inherited
5127 // from Monitor.
5128 
5129 void Parker::park(bool isAbsolute, jlong time) {
5130   guarantee(_ParkEvent != NULL, "invariant");
5131   // First, demultiplex/decode time arguments
5132   if (time < 0) { // don't wait
5133     return;
5134   } else if (time == 0 && !isAbsolute) {
5135     time = INFINITE;
5136   } else if (isAbsolute) {
5137     time -= os::javaTimeMillis(); // convert to relative time
5138     if (time <= 0) {  // already elapsed
5139       return;
5140     }
5141   } else { // relative
5142     time /= 1000000;  // Must coarsen from nanos to millis
5143     if (time == 0) {  // Wait for the minimal time unit if zero
5144       time = 1;
5145     }
5146   }
5147 
5148   JavaThread* thread = (JavaThread*)(Thread::current());
5149   assert(thread->is_Java_thread(), "Must be JavaThread");
5150   JavaThread *jt = (JavaThread *)thread;
5151 
5152   // Don't wait if interrupted or already triggered
5153   if (Thread::is_interrupted(thread, false) ||
5154       WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
5155     ResetEvent(_ParkEvent);
5156     return;
5157   } else {
5158     ThreadBlockInVM tbivm(jt);
5159     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5160     jt->set_suspend_equivalent();
5161 
5162     WaitForSingleObject(_ParkEvent, time);
5163     ResetEvent(_ParkEvent);
5164 
5165     // If externally suspended while waiting, re-suspend
5166     if (jt->handle_special_suspend_equivalent_condition()) {
5167       jt->java_suspend_self();
5168     }
5169   }
5170 }
5171 
5172 void Parker::unpark() {
5173   guarantee(_ParkEvent != NULL, "invariant");
5174   SetEvent(_ParkEvent);
5175 }
5176 
5177 // Run the specified command in a separate process. Return its exit value,
5178 // or -1 on failure (e.g. can't create a new process).
5179 int os::fork_and_exec(char* cmd) {
5180   STARTUPINFO si;
5181   PROCESS_INFORMATION pi;
5182 
5183   memset(&si, 0, sizeof(si));
5184   si.cb = sizeof(si);
5185   memset(&pi, 0, sizeof(pi));
5186   BOOL rslt = CreateProcess(NULL,   // executable name - use command line
5187                             cmd,    // command line
5188                             NULL,   // process security attribute
5189                             NULL,   // thread security attribute
5190                             TRUE,   // inherits system handles
5191                             0,      // no creation flags
5192                             NULL,   // use parent's environment block
5193                             NULL,   // use parent's starting directory
5194                             &si,    // (in) startup information
5195                             &pi);   // (out) process information
5196 
5197   if (rslt) {
5198     // Wait until child process exits.
5199     WaitForSingleObject(pi.hProcess, INFINITE);
5200 
5201     DWORD exit_code;
5202     GetExitCodeProcess(pi.hProcess, &exit_code);
5203 
5204     // Close process and thread handles.
5205     CloseHandle(pi.hProcess);
5206     CloseHandle(pi.hThread);
5207 
5208     return (int)exit_code;
5209   } else {
5210     return -1;
5211   }
5212 }
5213 
5214 //--------------------------------------------------------------------------------------------------
5215 // Non-product code
5216 
5217 static int mallocDebugIntervalCounter = 0;
5218 static int mallocDebugCounter = 0;
5219 bool os::check_heap(bool force) {
5220   if (++mallocDebugCounter < MallocVerifyStart && !force) return true;
5221   if (++mallocDebugIntervalCounter >= MallocVerifyInterval || force) {
5222     // Note: HeapValidate executes two hardware breakpoints when it finds something
5223     // wrong; at these points, eax contains the address of the offending block (I think).
5224     // To get to the exlicit error message(s) below, just continue twice.
5225     HANDLE heap = GetProcessHeap();
5226 
5227     // If we fail to lock the heap, then gflags.exe has been used
5228     // or some other special heap flag has been set that prevents
5229     // locking. We don't try to walk a heap we can't lock.
5230     if (HeapLock(heap) != 0) {
5231       PROCESS_HEAP_ENTRY phe;
5232       phe.lpData = NULL;
5233       while (HeapWalk(heap, &phe) != 0) {
5234         if ((phe.wFlags & PROCESS_HEAP_ENTRY_BUSY) &&
5235             !HeapValidate(heap, 0, phe.lpData)) {
5236           tty->print_cr("C heap has been corrupted (time: %d allocations)", mallocDebugCounter);
5237           tty->print_cr("corrupted block near address %#x, length %d", phe.lpData, phe.cbData);
5238           fatal("corrupted C heap");
5239         }
5240       }
5241       DWORD err = GetLastError();
5242       if (err != ERROR_NO_MORE_ITEMS && err != ERROR_CALL_NOT_IMPLEMENTED) {
5243         fatal(err_msg("heap walk aborted with error %d", err));
5244       }
5245       HeapUnlock(heap);
5246     }
5247     mallocDebugIntervalCounter = 0;
5248   }
5249   return true;
5250 }
5251 
5252 
5253 bool os::find(address addr, outputStream* st) {
5254   // Nothing yet
5255   return false;
5256 }
5257 
5258 LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
5259   DWORD exception_code = e->ExceptionRecord->ExceptionCode;
5260 
5261   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
5262     JavaThread* thread = (JavaThread*)ThreadLocalStorage::get_thread_slow();
5263     PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
5264     address addr = (address) exceptionRecord->ExceptionInformation[1];
5265 
5266     if (os::is_memory_serialize_page(thread, addr)) {
5267       return EXCEPTION_CONTINUE_EXECUTION;
5268     }
5269   }
5270 
5271   return EXCEPTION_CONTINUE_SEARCH;
5272 }
5273 
5274 // We don't build a headless jre for Windows
5275 bool os::is_headless_jre() { return false; }
5276 
5277 static jint initSock() {
5278   WSADATA wsadata;
5279 
5280   if (!os::WinSock2Dll::WinSock2Available()) {
5281     jio_fprintf(stderr, "Could not load Winsock (error: %d)\n",
5282                 ::GetLastError());
5283     return JNI_ERR;
5284   }
5285 
5286   if (os::WinSock2Dll::WSAStartup(MAKEWORD(2,2), &wsadata) != 0) {
5287     jio_fprintf(stderr, "Could not initialize Winsock (error: %d)\n",
5288                 ::GetLastError());
5289     return JNI_ERR;
5290   }
5291   return JNI_OK;
5292 }
5293 
5294 struct hostent* os::get_host_by_name(char* name) {
5295   return (struct hostent*)os::WinSock2Dll::gethostbyname(name);
5296 }
5297 
5298 int os::socket_close(int fd) {
5299   return ::closesocket(fd);
5300 }
5301 
5302 int os::socket(int domain, int type, int protocol) {
5303   return ::socket(domain, type, protocol);
5304 }
5305 
5306 int os::connect(int fd, struct sockaddr* him, socklen_t len) {
5307   return ::connect(fd, him, len);
5308 }
5309 
5310 int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
5311   return ::recv(fd, buf, (int)nBytes, flags);
5312 }
5313 
5314 int os::send(int fd, char* buf, size_t nBytes, uint flags) {
5315   return ::send(fd, buf, (int)nBytes, flags);
5316 }
5317 
5318 int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
5319   return ::send(fd, buf, (int)nBytes, flags);
5320 }
5321 
5322 // WINDOWS CONTEXT Flags for THREAD_SAMPLING
5323 #if defined(IA32)
5324   #define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT | CONTEXT_EXTENDED_REGISTERS)
5325 #elif defined (AMD64)
5326   #define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT)
5327 #endif
5328 
5329 // returns true if thread could be suspended,
5330 // false otherwise
5331 static bool do_suspend(HANDLE* h) {
5332   if (h != NULL) {
5333     if (SuspendThread(*h) != ~0) {
5334       return true;
5335     }
5336   }
5337   return false;
5338 }
5339 
5340 // resume the thread
5341 // calling resume on an active thread is a no-op
5342 static void do_resume(HANDLE* h) {
5343   if (h != NULL) {
5344     ResumeThread(*h);
5345   }
5346 }
5347 
5348 // retrieve a suspend/resume context capable handle
5349 // from the tid. Caller validates handle return value.
5350 void get_thread_handle_for_extended_context(HANDLE* h,
5351                                             OSThread::thread_id_t tid) {
5352   if (h != NULL) {
5353     *h = OpenThread(THREAD_SUSPEND_RESUME | THREAD_GET_CONTEXT | THREAD_QUERY_INFORMATION, FALSE, tid);
5354   }
5355 }
5356 
5357 // Thread sampling implementation
5358 //
5359 void os::SuspendedThreadTask::internal_do_task() {
5360   CONTEXT    ctxt;
5361   HANDLE     h = NULL;
5362 
5363   // get context capable handle for thread
5364   get_thread_handle_for_extended_context(&h, _thread->osthread()->thread_id());
5365 
5366   // sanity
5367   if (h == NULL || h == INVALID_HANDLE_VALUE) {
5368     return;
5369   }
5370 
5371   // suspend the thread
5372   if (do_suspend(&h)) {
5373     ctxt.ContextFlags = sampling_context_flags;
5374     // get thread context
5375     GetThreadContext(h, &ctxt);
5376     SuspendedThreadTaskContext context(_thread, &ctxt);
5377     // pass context to Thread Sampling impl
5378     do_task(context);
5379     // resume thread
5380     do_resume(&h);
5381   }
5382 
5383   // close handle
5384   CloseHandle(h);
5385 }
5386 
5387 
5388 // Kernel32 API
5389 typedef SIZE_T (WINAPI* GetLargePageMinimum_Fn)(void);
5390 typedef LPVOID (WINAPI *VirtualAllocExNuma_Fn)(HANDLE, LPVOID, SIZE_T, DWORD, DWORD, DWORD);
5391 typedef BOOL (WINAPI *GetNumaHighestNodeNumber_Fn)(PULONG);
5392 typedef BOOL (WINAPI *GetNumaNodeProcessorMask_Fn)(UCHAR, PULONGLONG);
5393 typedef USHORT (WINAPI* RtlCaptureStackBackTrace_Fn)(ULONG, ULONG, PVOID*, PULONG);
5394 
5395 GetLargePageMinimum_Fn      os::Kernel32Dll::_GetLargePageMinimum = NULL;
5396 VirtualAllocExNuma_Fn       os::Kernel32Dll::_VirtualAllocExNuma = NULL;
5397 GetNumaHighestNodeNumber_Fn os::Kernel32Dll::_GetNumaHighestNodeNumber = NULL;
5398 GetNumaNodeProcessorMask_Fn os::Kernel32Dll::_GetNumaNodeProcessorMask = NULL;
5399 RtlCaptureStackBackTrace_Fn os::Kernel32Dll::_RtlCaptureStackBackTrace = NULL;
5400 
5401 
5402 BOOL                        os::Kernel32Dll::initialized = FALSE;
5403 SIZE_T os::Kernel32Dll::GetLargePageMinimum() {
5404   assert(initialized && _GetLargePageMinimum != NULL,
5405          "GetLargePageMinimumAvailable() not yet called");
5406   return _GetLargePageMinimum();
5407 }
5408 
5409 BOOL os::Kernel32Dll::GetLargePageMinimumAvailable() {
5410   if (!initialized) {
5411     initialize();
5412   }
5413   return _GetLargePageMinimum != NULL;
5414 }
5415 
5416 BOOL os::Kernel32Dll::NumaCallsAvailable() {
5417   if (!initialized) {
5418     initialize();
5419   }
5420   return _VirtualAllocExNuma != NULL;
5421 }
5422 
5423 LPVOID os::Kernel32Dll::VirtualAllocExNuma(HANDLE hProc, LPVOID addr,
5424                                            SIZE_T bytes, DWORD flags,
5425                                            DWORD prot, DWORD node) {
5426   assert(initialized && _VirtualAllocExNuma != NULL,
5427          "NUMACallsAvailable() not yet called");
5428 
5429   return _VirtualAllocExNuma(hProc, addr, bytes, flags, prot, node);
5430 }
5431 
5432 BOOL os::Kernel32Dll::GetNumaHighestNodeNumber(PULONG ptr_highest_node_number) {
5433   assert(initialized && _GetNumaHighestNodeNumber != NULL,
5434          "NUMACallsAvailable() not yet called");
5435 
5436   return _GetNumaHighestNodeNumber(ptr_highest_node_number);
5437 }
5438 
5439 BOOL os::Kernel32Dll::GetNumaNodeProcessorMask(UCHAR node,
5440                                                PULONGLONG proc_mask) {
5441   assert(initialized && _GetNumaNodeProcessorMask != NULL,
5442          "NUMACallsAvailable() not yet called");
5443 
5444   return _GetNumaNodeProcessorMask(node, proc_mask);
5445 }
5446 
5447 USHORT os::Kernel32Dll::RtlCaptureStackBackTrace(ULONG FrameToSkip,
5448                                                  ULONG FrameToCapture,
5449                                                  PVOID* BackTrace,
5450                                                  PULONG BackTraceHash) {
5451   if (!initialized) {
5452     initialize();
5453   }
5454 
5455   if (_RtlCaptureStackBackTrace != NULL) {
5456     return _RtlCaptureStackBackTrace(FrameToSkip, FrameToCapture,
5457                                      BackTrace, BackTraceHash);
5458   } else {
5459     return 0;
5460   }
5461 }
5462 
5463 void os::Kernel32Dll::initializeCommon() {
5464   if (!initialized) {
5465     HMODULE handle = ::GetModuleHandle("Kernel32.dll");
5466     assert(handle != NULL, "Just check");
5467     _GetLargePageMinimum = (GetLargePageMinimum_Fn)::GetProcAddress(handle, "GetLargePageMinimum");
5468     _VirtualAllocExNuma = (VirtualAllocExNuma_Fn)::GetProcAddress(handle, "VirtualAllocExNuma");
5469     _GetNumaHighestNodeNumber = (GetNumaHighestNodeNumber_Fn)::GetProcAddress(handle, "GetNumaHighestNodeNumber");
5470     _GetNumaNodeProcessorMask = (GetNumaNodeProcessorMask_Fn)::GetProcAddress(handle, "GetNumaNodeProcessorMask");
5471     _RtlCaptureStackBackTrace = (RtlCaptureStackBackTrace_Fn)::GetProcAddress(handle, "RtlCaptureStackBackTrace");
5472     initialized = TRUE;
5473   }
5474 }
5475 
5476 
5477 
5478 #ifndef JDK6_OR_EARLIER
5479 
5480 void os::Kernel32Dll::initialize() {
5481   initializeCommon();
5482 }
5483 
5484 
5485 // Kernel32 API
5486 inline BOOL os::Kernel32Dll::SwitchToThread() {
5487   return ::SwitchToThread();
5488 }
5489 
5490 inline BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
5491   return true;
5492 }
5493 
5494 // Help tools
5495 inline BOOL os::Kernel32Dll::HelpToolsAvailable() {
5496   return true;
5497 }
5498 
5499 inline HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,
5500                                                         DWORD th32ProcessId) {
5501   return ::CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
5502 }
5503 
5504 inline BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,
5505                                            LPMODULEENTRY32 lpme) {
5506   return ::Module32First(hSnapshot, lpme);
5507 }
5508 
5509 inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,
5510                                           LPMODULEENTRY32 lpme) {
5511   return ::Module32Next(hSnapshot, lpme);
5512 }
5513 
5514 inline void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
5515   ::GetNativeSystemInfo(lpSystemInfo);
5516 }
5517 
5518 // PSAPI API
5519 inline BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess,
5520                                              HMODULE *lpModule, DWORD cb,
5521                                              LPDWORD lpcbNeeded) {
5522   return ::EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
5523 }
5524 
5525 inline DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess,
5526                                                HMODULE hModule,
5527                                                LPTSTR lpFilename,
5528                                                DWORD nSize) {
5529   return ::GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
5530 }
5531 
5532 inline BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess,
5533                                                HMODULE hModule,
5534                                                LPMODULEINFO lpmodinfo,
5535                                                DWORD cb) {
5536   return ::GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
5537 }
5538 
5539 inline BOOL os::PSApiDll::PSApiAvailable() {
5540   return true;
5541 }
5542 
5543 
5544 // WinSock2 API
5545 inline BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested,
5546                                         LPWSADATA lpWSAData) {
5547   return ::WSAStartup(wVersionRequested, lpWSAData);
5548 }
5549 
5550 inline struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
5551   return ::gethostbyname(name);
5552 }
5553 
5554 inline BOOL os::WinSock2Dll::WinSock2Available() {
5555   return true;
5556 }
5557 
5558 // Advapi API
5559 inline BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
5560                                                    BOOL DisableAllPrivileges,
5561                                                    PTOKEN_PRIVILEGES NewState,
5562                                                    DWORD BufferLength,
5563                                                    PTOKEN_PRIVILEGES PreviousState,
5564                                                    PDWORD ReturnLength) {
5565   return ::AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
5566                                  BufferLength, PreviousState, ReturnLength);
5567 }
5568 
5569 inline BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle,
5570                                               DWORD DesiredAccess,
5571                                               PHANDLE TokenHandle) {
5572   return ::OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
5573 }
5574 
5575 inline BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName,
5576                                                   LPCTSTR lpName,
5577                                                   PLUID lpLuid) {
5578   return ::LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
5579 }
5580 
5581 inline BOOL os::Advapi32Dll::AdvapiAvailable() {
5582   return true;
5583 }
5584 
5585 void* os::get_default_process_handle() {
5586   return (void*)GetModuleHandle(NULL);
5587 }
5588 
5589 // Builds a platform dependent Agent_OnLoad_<lib_name> function name
5590 // which is used to find statically linked in agents.
5591 // Additionally for windows, takes into account __stdcall names.
5592 // Parameters:
5593 //            sym_name: Symbol in library we are looking for
5594 //            lib_name: Name of library to look in, NULL for shared libs.
5595 //            is_absolute_path == true if lib_name is absolute path to agent
5596 //                                     such as "C:/a/b/L.dll"
5597 //            == false if only the base name of the library is passed in
5598 //               such as "L"
5599 char* os::build_agent_function_name(const char *sym_name, const char *lib_name,
5600                                     bool is_absolute_path) {
5601   char *agent_entry_name;
5602   size_t len;
5603   size_t name_len;
5604   size_t prefix_len = strlen(JNI_LIB_PREFIX);
5605   size_t suffix_len = strlen(JNI_LIB_SUFFIX);
5606   const char *start;
5607 
5608   if (lib_name != NULL) {
5609     len = name_len = strlen(lib_name);
5610     if (is_absolute_path) {
5611       // Need to strip path, prefix and suffix
5612       if ((start = strrchr(lib_name, *os::file_separator())) != NULL) {
5613         lib_name = ++start;
5614       } else {
5615         // Need to check for drive prefix
5616         if ((start = strchr(lib_name, ':')) != NULL) {
5617           lib_name = ++start;
5618         }
5619       }
5620       if (len <= (prefix_len + suffix_len)) {
5621         return NULL;
5622       }
5623       lib_name += prefix_len;
5624       name_len = strlen(lib_name) - suffix_len;
5625     }
5626   }
5627   len = (lib_name != NULL ? name_len : 0) + strlen(sym_name) + 2;
5628   agent_entry_name = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len, mtThread);
5629   if (agent_entry_name == NULL) {
5630     return NULL;
5631   }
5632   if (lib_name != NULL) {
5633     const char *p = strrchr(sym_name, '@');
5634     if (p != NULL && p != sym_name) {
5635       // sym_name == _Agent_OnLoad@XX
5636       strncpy(agent_entry_name, sym_name, (p - sym_name));
5637       agent_entry_name[(p-sym_name)] = '\0';
5638       // agent_entry_name == _Agent_OnLoad
5639       strcat(agent_entry_name, "_");
5640       strncat(agent_entry_name, lib_name, name_len);
5641       strcat(agent_entry_name, p);
5642       // agent_entry_name == _Agent_OnLoad_lib_name@XX
5643     } else {
5644       strcpy(agent_entry_name, sym_name);
5645       strcat(agent_entry_name, "_");
5646       strncat(agent_entry_name, lib_name, name_len);
5647     }
5648   } else {
5649     strcpy(agent_entry_name, sym_name);
5650   }
5651   return agent_entry_name;
5652 }
5653 
5654 #else
5655 // Kernel32 API
5656 typedef BOOL (WINAPI* SwitchToThread_Fn)(void);
5657 typedef HANDLE (WINAPI* CreateToolhelp32Snapshot_Fn)(DWORD, DWORD);
5658 typedef BOOL (WINAPI* Module32First_Fn)(HANDLE, LPMODULEENTRY32);
5659 typedef BOOL (WINAPI* Module32Next_Fn)(HANDLE, LPMODULEENTRY32);
5660 typedef void (WINAPI* GetNativeSystemInfo_Fn)(LPSYSTEM_INFO);
5661 
5662 SwitchToThread_Fn           os::Kernel32Dll::_SwitchToThread = NULL;
5663 CreateToolhelp32Snapshot_Fn os::Kernel32Dll::_CreateToolhelp32Snapshot = NULL;
5664 Module32First_Fn            os::Kernel32Dll::_Module32First = NULL;
5665 Module32Next_Fn             os::Kernel32Dll::_Module32Next = NULL;
5666 GetNativeSystemInfo_Fn      os::Kernel32Dll::_GetNativeSystemInfo = NULL;
5667 
5668 void os::Kernel32Dll::initialize() {
5669   if (!initialized) {
5670     HMODULE handle = ::GetModuleHandle("Kernel32.dll");
5671     assert(handle != NULL, "Just check");
5672 
5673     _SwitchToThread = (SwitchToThread_Fn)::GetProcAddress(handle, "SwitchToThread");
5674     _CreateToolhelp32Snapshot = (CreateToolhelp32Snapshot_Fn)
5675       ::GetProcAddress(handle, "CreateToolhelp32Snapshot");
5676     _Module32First = (Module32First_Fn)::GetProcAddress(handle, "Module32First");
5677     _Module32Next = (Module32Next_Fn)::GetProcAddress(handle, "Module32Next");
5678     _GetNativeSystemInfo = (GetNativeSystemInfo_Fn)::GetProcAddress(handle, "GetNativeSystemInfo");
5679     initializeCommon();  // resolve the functions that always need resolving
5680 
5681     initialized = TRUE;
5682   }
5683 }
5684 
5685 BOOL os::Kernel32Dll::SwitchToThread() {
5686   assert(initialized && _SwitchToThread != NULL,
5687          "SwitchToThreadAvailable() not yet called");
5688   return _SwitchToThread();
5689 }
5690 
5691 
5692 BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
5693   if (!initialized) {
5694     initialize();
5695   }
5696   return _SwitchToThread != NULL;
5697 }
5698 
5699 // Help tools
5700 BOOL os::Kernel32Dll::HelpToolsAvailable() {
5701   if (!initialized) {
5702     initialize();
5703   }
5704   return _CreateToolhelp32Snapshot != NULL &&
5705          _Module32First != NULL &&
5706          _Module32Next != NULL;
5707 }
5708 
5709 HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,
5710                                                  DWORD th32ProcessId) {
5711   assert(initialized && _CreateToolhelp32Snapshot != NULL,
5712          "HelpToolsAvailable() not yet called");
5713 
5714   return _CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
5715 }
5716 
5717 BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
5718   assert(initialized && _Module32First != NULL,
5719          "HelpToolsAvailable() not yet called");
5720 
5721   return _Module32First(hSnapshot, lpme);
5722 }
5723 
5724 inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,
5725                                           LPMODULEENTRY32 lpme) {
5726   assert(initialized && _Module32Next != NULL,
5727          "HelpToolsAvailable() not yet called");
5728 
5729   return _Module32Next(hSnapshot, lpme);
5730 }
5731 
5732 
5733 BOOL os::Kernel32Dll::GetNativeSystemInfoAvailable() {
5734   if (!initialized) {
5735     initialize();
5736   }
5737   return _GetNativeSystemInfo != NULL;
5738 }
5739 
5740 void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
5741   assert(initialized && _GetNativeSystemInfo != NULL,
5742          "GetNativeSystemInfoAvailable() not yet called");
5743 
5744   _GetNativeSystemInfo(lpSystemInfo);
5745 }
5746 
5747 // PSAPI API
5748 
5749 
5750 typedef BOOL (WINAPI *EnumProcessModules_Fn)(HANDLE, HMODULE *, DWORD, LPDWORD);
5751 typedef BOOL (WINAPI *GetModuleFileNameEx_Fn)(HANDLE, HMODULE, LPTSTR, DWORD);
5752 typedef BOOL (WINAPI *GetModuleInformation_Fn)(HANDLE, HMODULE, LPMODULEINFO, DWORD);
5753 
5754 EnumProcessModules_Fn   os::PSApiDll::_EnumProcessModules = NULL;
5755 GetModuleFileNameEx_Fn  os::PSApiDll::_GetModuleFileNameEx = NULL;
5756 GetModuleInformation_Fn os::PSApiDll::_GetModuleInformation = NULL;
5757 BOOL                    os::PSApiDll::initialized = FALSE;
5758 
5759 void os::PSApiDll::initialize() {
5760   if (!initialized) {
5761     HMODULE handle = os::win32::load_Windows_dll("PSAPI.DLL", NULL, 0);
5762     if (handle != NULL) {
5763       _EnumProcessModules = (EnumProcessModules_Fn)::GetProcAddress(handle,
5764                                                                     "EnumProcessModules");
5765       _GetModuleFileNameEx = (GetModuleFileNameEx_Fn)::GetProcAddress(handle,
5766                                                                       "GetModuleFileNameExA");
5767       _GetModuleInformation = (GetModuleInformation_Fn)::GetProcAddress(handle,
5768                                                                         "GetModuleInformation");
5769     }
5770     initialized = TRUE;
5771   }
5772 }
5773 
5774 
5775 
5776 BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule,
5777                                       DWORD cb, LPDWORD lpcbNeeded) {
5778   assert(initialized && _EnumProcessModules != NULL,
5779          "PSApiAvailable() not yet called");
5780   return _EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
5781 }
5782 
5783 DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule,
5784                                         LPTSTR lpFilename, DWORD nSize) {
5785   assert(initialized && _GetModuleFileNameEx != NULL,
5786          "PSApiAvailable() not yet called");
5787   return _GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
5788 }
5789 
5790 BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule,
5791                                         LPMODULEINFO lpmodinfo, DWORD cb) {
5792   assert(initialized && _GetModuleInformation != NULL,
5793          "PSApiAvailable() not yet called");
5794   return _GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
5795 }
5796 
5797 BOOL os::PSApiDll::PSApiAvailable() {
5798   if (!initialized) {
5799     initialize();
5800   }
5801   return _EnumProcessModules != NULL &&
5802     _GetModuleFileNameEx != NULL &&
5803     _GetModuleInformation != NULL;
5804 }
5805 
5806 
5807 // WinSock2 API
5808 typedef int (PASCAL FAR* WSAStartup_Fn)(WORD, LPWSADATA);
5809 typedef struct hostent *(PASCAL FAR *gethostbyname_Fn)(...);
5810 
5811 WSAStartup_Fn    os::WinSock2Dll::_WSAStartup = NULL;
5812 gethostbyname_Fn os::WinSock2Dll::_gethostbyname = NULL;
5813 BOOL             os::WinSock2Dll::initialized = FALSE;
5814 
5815 void os::WinSock2Dll::initialize() {
5816   if (!initialized) {
5817     HMODULE handle = os::win32::load_Windows_dll("ws2_32.dll", NULL, 0);
5818     if (handle != NULL) {
5819       _WSAStartup = (WSAStartup_Fn)::GetProcAddress(handle, "WSAStartup");
5820       _gethostbyname = (gethostbyname_Fn)::GetProcAddress(handle, "gethostbyname");
5821     }
5822     initialized = TRUE;
5823   }
5824 }
5825 
5826 
5827 BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) {
5828   assert(initialized && _WSAStartup != NULL,
5829          "WinSock2Available() not yet called");
5830   return _WSAStartup(wVersionRequested, lpWSAData);
5831 }
5832 
5833 struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
5834   assert(initialized && _gethostbyname != NULL,
5835          "WinSock2Available() not yet called");
5836   return _gethostbyname(name);
5837 }
5838 
5839 BOOL os::WinSock2Dll::WinSock2Available() {
5840   if (!initialized) {
5841     initialize();
5842   }
5843   return _WSAStartup != NULL &&
5844     _gethostbyname != NULL;
5845 }
5846 
5847 typedef BOOL (WINAPI *AdjustTokenPrivileges_Fn)(HANDLE, BOOL, PTOKEN_PRIVILEGES, DWORD, PTOKEN_PRIVILEGES, PDWORD);
5848 typedef BOOL (WINAPI *OpenProcessToken_Fn)(HANDLE, DWORD, PHANDLE);
5849 typedef BOOL (WINAPI *LookupPrivilegeValue_Fn)(LPCTSTR, LPCTSTR, PLUID);
5850 
5851 AdjustTokenPrivileges_Fn os::Advapi32Dll::_AdjustTokenPrivileges = NULL;
5852 OpenProcessToken_Fn      os::Advapi32Dll::_OpenProcessToken = NULL;
5853 LookupPrivilegeValue_Fn  os::Advapi32Dll::_LookupPrivilegeValue = NULL;
5854 BOOL                     os::Advapi32Dll::initialized = FALSE;
5855 
5856 void os::Advapi32Dll::initialize() {
5857   if (!initialized) {
5858     HMODULE handle = os::win32::load_Windows_dll("advapi32.dll", NULL, 0);
5859     if (handle != NULL) {
5860       _AdjustTokenPrivileges = (AdjustTokenPrivileges_Fn)::GetProcAddress(handle,
5861                                                                           "AdjustTokenPrivileges");
5862       _OpenProcessToken = (OpenProcessToken_Fn)::GetProcAddress(handle,
5863                                                                 "OpenProcessToken");
5864       _LookupPrivilegeValue = (LookupPrivilegeValue_Fn)::GetProcAddress(handle,
5865                                                                         "LookupPrivilegeValueA");
5866     }
5867     initialized = TRUE;
5868   }
5869 }
5870 
5871 BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
5872                                             BOOL DisableAllPrivileges,
5873                                             PTOKEN_PRIVILEGES NewState,
5874                                             DWORD BufferLength,
5875                                             PTOKEN_PRIVILEGES PreviousState,
5876                                             PDWORD ReturnLength) {
5877   assert(initialized && _AdjustTokenPrivileges != NULL,
5878          "AdvapiAvailable() not yet called");
5879   return _AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
5880                                 BufferLength, PreviousState, ReturnLength);
5881 }
5882 
5883 BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle,
5884                                        DWORD DesiredAccess,
5885                                        PHANDLE TokenHandle) {
5886   assert(initialized && _OpenProcessToken != NULL,
5887          "AdvapiAvailable() not yet called");
5888   return _OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
5889 }
5890 
5891 BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName,
5892                                            LPCTSTR lpName, PLUID lpLuid) {
5893   assert(initialized && _LookupPrivilegeValue != NULL,
5894          "AdvapiAvailable() not yet called");
5895   return _LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
5896 }
5897 
5898 BOOL os::Advapi32Dll::AdvapiAvailable() {
5899   if (!initialized) {
5900     initialize();
5901   }
5902   return _AdjustTokenPrivileges != NULL &&
5903     _OpenProcessToken != NULL &&
5904     _LookupPrivilegeValue != NULL;
5905 }
5906 
5907 #endif
5908 
5909 #ifndef PRODUCT
5910 
5911 // test the code path in reserve_memory_special() that tries to allocate memory in a single
5912 // contiguous memory block at a particular address.
5913 // The test first tries to find a good approximate address to allocate at by using the same
5914 // method to allocate some memory at any address. The test then tries to allocate memory in
5915 // the vicinity (not directly after it to avoid possible by-chance use of that location)
5916 // This is of course only some dodgy assumption, there is no guarantee that the vicinity of
5917 // the previously allocated memory is available for allocation. The only actual failure
5918 // that is reported is when the test tries to allocate at a particular location but gets a
5919 // different valid one. A NULL return value at this point is not considered an error but may
5920 // be legitimate.
5921 // If -XX:+VerboseInternalVMTests is enabled, print some explanatory messages.
5922 void TestReserveMemorySpecial_test() {
5923   if (!UseLargePages) {
5924     if (VerboseInternalVMTests) {
5925       gclog_or_tty->print("Skipping test because large pages are disabled");
5926     }
5927     return;
5928   }
5929   // save current value of globals
5930   bool old_use_large_pages_individual_allocation = UseLargePagesIndividualAllocation;
5931   bool old_use_numa_interleaving = UseNUMAInterleaving;
5932 
5933   // set globals to make sure we hit the correct code path
5934   UseLargePagesIndividualAllocation = UseNUMAInterleaving = false;
5935 
5936   // do an allocation at an address selected by the OS to get a good one.
5937   const size_t large_allocation_size = os::large_page_size() * 4;
5938   char* result = os::reserve_memory_special(large_allocation_size, os::large_page_size(), NULL, false);
5939   if (result == NULL) {
5940     if (VerboseInternalVMTests) {
5941       gclog_or_tty->print("Failed to allocate control block with size " SIZE_FORMAT ". Skipping remainder of test.",
5942                           large_allocation_size);
5943     }
5944   } else {
5945     os::release_memory_special(result, large_allocation_size);
5946 
5947     // allocate another page within the recently allocated memory area which seems to be a good location. At least
5948     // we managed to get it once.
5949     const size_t expected_allocation_size = os::large_page_size();
5950     char* expected_location = result + os::large_page_size();
5951     char* actual_location = os::reserve_memory_special(expected_allocation_size, os::large_page_size(), expected_location, false);
5952     if (actual_location == NULL) {
5953       if (VerboseInternalVMTests) {
5954         gclog_or_tty->print("Failed to allocate any memory at " PTR_FORMAT " size " SIZE_FORMAT ". Skipping remainder of test.",
5955                             expected_location, large_allocation_size);
5956       }
5957     } else {
5958       // release memory
5959       os::release_memory_special(actual_location, expected_allocation_size);
5960       // only now check, after releasing any memory to avoid any leaks.
5961       assert(actual_location == expected_location,
5962              err_msg("Failed to allocate memory at requested location " PTR_FORMAT " of size " SIZE_FORMAT ", is " PTR_FORMAT " instead",
5963              expected_location, expected_allocation_size, actual_location));
5964     }
5965   }
5966 
5967   // restore globals
5968   UseLargePagesIndividualAllocation = old_use_large_pages_individual_allocation;
5969   UseNUMAInterleaving = old_use_numa_interleaving;
5970 }
5971 #endif // PRODUCT