1 /*
   2  * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright 2012, 2015 SAP AG. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 // According to the AIX OS doc #pragma alloca must be used
  27 // with C++ compiler before referencing the function alloca()
  28 #pragma alloca
  29 
  30 // no precompiled headers
  31 #include "classfile/classLoader.hpp"
  32 #include "classfile/systemDictionary.hpp"
  33 #include "classfile/vmSymbols.hpp"
  34 #include "code/icBuffer.hpp"
  35 #include "code/vtableStubs.hpp"
  36 #include "compiler/compileBroker.hpp"
  37 #include "interpreter/interpreter.hpp"
  38 #include "jvm_aix.h"
  39 #include "libperfstat_aix.hpp"
  40 #include "loadlib_aix.hpp"
  41 #include "memory/allocation.inline.hpp"
  42 #include "memory/filemap.hpp"
  43 #include "mutex_aix.inline.hpp"
  44 #include "oops/oop.inline.hpp"
  45 #include "os_aix.inline.hpp"
  46 #include "os_share_aix.hpp"
  47 #include "porting_aix.hpp"
  48 #include "prims/jniFastGetField.hpp"
  49 #include "prims/jvm.h"
  50 #include "prims/jvm_misc.hpp"
  51 #include "runtime/arguments.hpp"
  52 #include "runtime/atomic.inline.hpp"
  53 #include "runtime/extendedPC.hpp"
  54 #include "runtime/globals.hpp"
  55 #include "runtime/interfaceSupport.hpp"
  56 #include "runtime/java.hpp"
  57 #include "runtime/javaCalls.hpp"
  58 #include "runtime/mutexLocker.hpp"
  59 #include "runtime/objectMonitor.hpp"
  60 #include "runtime/orderAccess.inline.hpp"
  61 #include "runtime/os.hpp"
  62 #include "runtime/osThread.hpp"
  63 #include "runtime/perfMemory.hpp"
  64 #include "runtime/sharedRuntime.hpp"
  65 #include "runtime/statSampler.hpp"
  66 #include "runtime/stubRoutines.hpp"
  67 #include "runtime/thread.inline.hpp"
  68 #include "runtime/threadCritical.hpp"
  69 #include "runtime/timer.hpp"
  70 #include "runtime/vm_version.hpp"
  71 #include "services/attachListener.hpp"
  72 #include "services/runtimeService.hpp"
  73 #include "utilities/decoder.hpp"
  74 #include "utilities/defaultStream.hpp"
  75 #include "utilities/events.hpp"
  76 #include "utilities/growableArray.hpp"
  77 #include "utilities/vmError.hpp"
  78 
  79 // put OS-includes here (sorted alphabetically)
  80 #include <errno.h>
  81 #include <fcntl.h>
  82 #include <inttypes.h>
  83 #include <poll.h>
  84 #include <procinfo.h>
  85 #include <pthread.h>
  86 #include <pwd.h>
  87 #include <semaphore.h>
  88 #include <signal.h>
  89 #include <stdint.h>
  90 #include <stdio.h>
  91 #include <string.h>
  92 #include <unistd.h>
  93 #include <sys/ioctl.h>
  94 #include <sys/ipc.h>
  95 #include <sys/mman.h>
  96 #include <sys/resource.h>
  97 #include <sys/select.h>
  98 #include <sys/shm.h>
  99 #include <sys/socket.h>
 100 #include <sys/stat.h>
 101 #include <sys/sysinfo.h>
 102 #include <sys/systemcfg.h>
 103 #include <sys/time.h>
 104 #include <sys/times.h>
 105 #include <sys/types.h>
 106 #include <sys/utsname.h>
 107 #include <sys/vminfo.h>
 108 #include <sys/wait.h>
 109 
 110 // If RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 111 // getrusage() is prepared to handle the associated failure.
 112 #ifndef RUSAGE_THREAD
 113 #define RUSAGE_THREAD   (1)               /* only the calling thread */
 114 #endif
 115 
 116 // PPC port
 117 static const uintx Use64KPagesThreshold       = 1*M;
 118 static const uintx MaxExpectedDataSegmentSize = SIZE_4G*2;
 119 
 120 // Add missing declarations (should be in procinfo.h but isn't until AIX 6.1).
 121 #if !defined(_AIXVERSION_610)
 122 extern "C" {
 123   int getthrds64(pid_t ProcessIdentifier,
 124                  struct thrdentry64* ThreadBuffer,
 125                  int ThreadSize,
 126                  tid64_t* IndexPointer,
 127                  int Count);
 128 }
 129 #endif
 130 
 131 #define MAX_PATH (2 * K)
 132 
 133 // for timer info max values which include all bits
 134 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 135 // for multipage initialization error analysis (in 'g_multipage_error')
 136 #define ERROR_MP_OS_TOO_OLD                          100
 137 #define ERROR_MP_EXTSHM_ACTIVE                       101
 138 #define ERROR_MP_VMGETINFO_FAILED                    102
 139 #define ERROR_MP_VMGETINFO_CLAIMS_NO_SUPPORT_FOR_64K 103
 140 
 141 // The semantics in this file are thus that codeptr_t is a *real code ptr*.
 142 // This means that any function taking codeptr_t as arguments will assume
 143 // a real codeptr and won't handle function descriptors (eg getFuncName),
 144 // whereas functions taking address as args will deal with function
 145 // descriptors (eg os::dll_address_to_library_name).
 146 typedef unsigned int* codeptr_t;
 147 
 148 // Typedefs for stackslots, stack pointers, pointers to op codes.
 149 typedef unsigned long stackslot_t;
 150 typedef stackslot_t* stackptr_t;
 151 
 152 // Excerpts from systemcfg.h definitions newer than AIX 5.3.
 153 #ifndef PV_7
 154 #define PV_7 0x200000          /* Power PC 7 */
 155 #define PV_7_Compat 0x208000   /* Power PC 7 */
 156 #endif
 157 #ifndef PV_8
 158 #define PV_8 0x300000          /* Power PC 8 */
 159 #define PV_8_Compat 0x308000   /* Power PC 8 */
 160 #endif
 161 
 162 #define trcVerbose(fmt, ...) { /* PPC port */  \
 163   if (Verbose) { \
 164     fprintf(stderr, fmt, ##__VA_ARGS__); \
 165     fputc('\n', stderr); fflush(stderr); \
 166   } \
 167 }
 168 #define trc(fmt, ...)        /* PPC port */
 169 
 170 #define ERRBYE(s) { \
 171     trcVerbose(s); \
 172     return -1; \
 173 }
 174 
 175 // Query dimensions of the stack of the calling thread.
 176 static bool query_stack_dimensions(address* p_stack_base, size_t* p_stack_size);
 177 
 178 // function to check a given stack pointer against given stack limits
 179 inline bool is_valid_stackpointer(stackptr_t sp, stackptr_t stack_base, size_t stack_size) {
 180   if (((uintptr_t)sp) & 0x7) {
 181     return false;
 182   }
 183   if (sp > stack_base) {
 184     return false;
 185   }
 186   if (sp < (stackptr_t) ((address)stack_base - stack_size)) {
 187     return false;
 188   }
 189   return true;
 190 }
 191 
 192 // returns true if function is a valid codepointer
 193 inline bool is_valid_codepointer(codeptr_t p) {
 194   if (!p) {
 195     return false;
 196   }
 197   if (((uintptr_t)p) & 0x3) {
 198     return false;
 199   }
 200   if (LoadedLibraries::find_for_text_address((address)p) == NULL) {
 201     return false;
 202   }
 203   return true;
 204 }
 205 
 206 // Macro to check a given stack pointer against given stack limits and to die if test fails.
 207 #define CHECK_STACK_PTR(sp, stack_base, stack_size) { \
 208     guarantee(is_valid_stackpointer((stackptr_t)(sp), (stackptr_t)(stack_base), stack_size), "Stack Pointer Invalid"); \
 209 }
 210 
 211 // Macro to check the current stack pointer against given stacklimits.
 212 #define CHECK_CURRENT_STACK_PTR(stack_base, stack_size) { \
 213   address sp; \
 214   sp = os::current_stack_pointer(); \
 215   CHECK_STACK_PTR(sp, stack_base, stack_size); \
 216 }
 217 
 218 ////////////////////////////////////////////////////////////////////////////////
 219 // global variables (for a description see os_aix.hpp)
 220 
 221 julong    os::Aix::_physical_memory = 0;
 222 pthread_t os::Aix::_main_thread = ((pthread_t)0);
 223 int       os::Aix::_page_size = -1;
 224 int       os::Aix::_on_pase = -1;
 225 int       os::Aix::_os_version = -1;
 226 int       os::Aix::_stack_page_size = -1;
 227 int       os::Aix::_xpg_sus_mode = -1;
 228 int       os::Aix::_extshm = -1;
 229 int       os::Aix::_logical_cpus = -1;
 230 
 231 ////////////////////////////////////////////////////////////////////////////////
 232 // local variables
 233 
 234 static int      g_multipage_error  = -1;   // error analysis for multipage initialization
 235 static jlong    initial_time_count = 0;
 236 static int      clock_tics_per_sec = 100;
 237 static sigset_t check_signal_done;         // For diagnostics to print a message once (see run_periodic_checks)
 238 static bool     check_signals      = true;
 239 static pid_t    _initial_pid       = 0;
 240 static int      SR_signum          = SIGUSR2; // Signal used to suspend/resume a thread (must be > SIGSEGV, see 4355769)
 241 static sigset_t SR_sigset;
 242 
 243 // This describes the state of multipage support of the underlying
 244 // OS. Note that this is of no interest to the outsize world and
 245 // therefore should not be defined in AIX class.
 246 //
 247 // AIX supports four different page sizes - 4K, 64K, 16MB, 16GB. The
 248 // latter two (16M "large" resp. 16G "huge" pages) require special
 249 // setup and are normally not available.
 250 //
 251 // AIX supports multiple page sizes per process, for:
 252 //  - Stack (of the primordial thread, so not relevant for us)
 253 //  - Data - data, bss, heap, for us also pthread stacks
 254 //  - Text - text code
 255 //  - shared memory
 256 //
 257 // Default page sizes can be set via linker options (-bdatapsize, -bstacksize, ...)
 258 // and via environment variable LDR_CNTRL (DATAPSIZE, STACKPSIZE, ...).
 259 //
 260 // For shared memory, page size can be set dynamically via
 261 // shmctl(). Different shared memory regions can have different page
 262 // sizes.
 263 //
 264 // More information can be found at AIBM info center:
 265 //   http://publib.boulder.ibm.com/infocenter/aix/v6r1/index.jsp?topic=/com.ibm.aix.prftungd/doc/prftungd/multiple_page_size_app_support.htm
 266 //
 267 static struct {
 268   size_t pagesize;            // sysconf _SC_PAGESIZE (4K)
 269   size_t datapsize;           // default data page size (LDR_CNTRL DATAPSIZE)
 270   size_t shmpsize;            // default shared memory page size (LDR_CNTRL SHMPSIZE)
 271   size_t pthr_stack_pagesize; // stack page size of pthread threads
 272   size_t textpsize;           // default text page size (LDR_CNTRL STACKPSIZE)
 273   bool can_use_64K_pages;     // True if we can alloc 64K pages dynamically with Sys V shm.
 274   bool can_use_16M_pages;     // True if we can alloc 16M pages dynamically with Sys V shm.
 275   int error;                  // Error describing if something went wrong at multipage init.
 276 } g_multipage_support = {
 277   (size_t) -1,
 278   (size_t) -1,
 279   (size_t) -1,
 280   (size_t) -1,
 281   (size_t) -1,
 282   false, false,
 283   0
 284 };
 285 
 286 // We must not accidentally allocate memory close to the BRK - even if
 287 // that would work - because then we prevent the BRK segment from
 288 // growing which may result in a malloc OOM even though there is
 289 // enough memory. The problem only arises if we shmat() or mmap() at
 290 // a specific wish address, e.g. to place the heap in a
 291 // compressed-oops-friendly way.
 292 static bool is_close_to_brk(address a) {
 293   address a1 = (address) sbrk(0);
 294   if (a >= a1 && a < (a1 + MaxExpectedDataSegmentSize)) {
 295     return true;
 296   }
 297   return false;
 298 }
 299 
 300 julong os::available_memory() {
 301   return Aix::available_memory();
 302 }
 303 
 304 julong os::Aix::available_memory() {
 305   os::Aix::meminfo_t mi;
 306   if (os::Aix::get_meminfo(&mi)) {
 307     return mi.real_free;
 308   } else {
 309     return 0xFFFFFFFFFFFFFFFFLL;
 310   }
 311 }
 312 
 313 julong os::physical_memory() {
 314   return Aix::physical_memory();
 315 }
 316 
 317 // Return true if user is running as root.
 318 
 319 bool os::have_special_privileges() {
 320   static bool init = false;
 321   static bool privileges = false;
 322   if (!init) {
 323     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 324     init = true;
 325   }
 326   return privileges;
 327 }
 328 
 329 // Helper function, emulates disclaim64 using multiple 32bit disclaims
 330 // because we cannot use disclaim64() on AS/400 and old AIX releases.
 331 static bool my_disclaim64(char* addr, size_t size) {
 332 
 333   if (size == 0) {
 334     return true;
 335   }
 336 
 337   // Maximum size 32bit disclaim() accepts. (Theoretically 4GB, but I just do not trust that.)
 338   const unsigned int maxDisclaimSize = 0x40000000;
 339 
 340   const unsigned int numFullDisclaimsNeeded = (size / maxDisclaimSize);
 341   const unsigned int lastDisclaimSize = (size % maxDisclaimSize);
 342 
 343   char* p = addr;
 344 
 345   for (int i = 0; i < numFullDisclaimsNeeded; i ++) {
 346     if (::disclaim(p, maxDisclaimSize, DISCLAIM_ZEROMEM) != 0) {
 347       trc("Cannot disclaim %p - %p (errno %d)\n", p, p + maxDisclaimSize, errno);
 348       return false;
 349     }
 350     p += maxDisclaimSize;
 351   }
 352 
 353   if (lastDisclaimSize > 0) {
 354     if (::disclaim(p, lastDisclaimSize, DISCLAIM_ZEROMEM) != 0) {
 355       trc("Cannot disclaim %p - %p (errno %d)\n", p, p + lastDisclaimSize, errno);
 356       return false;
 357     }
 358   }
 359 
 360   return true;
 361 }
 362 
 363 // Cpu architecture string
 364 #if defined(PPC32)
 365 static char cpu_arch[] = "ppc";
 366 #elif defined(PPC64)
 367 static char cpu_arch[] = "ppc64";
 368 #else
 369 #error Add appropriate cpu_arch setting
 370 #endif
 371 
 372 
 373 // Given an address, returns the size of the page backing that address.
 374 size_t os::Aix::query_pagesize(void* addr) {
 375 
 376   vm_page_info pi;
 377   pi.addr = (uint64_t)addr;
 378   if (::vmgetinfo(&pi, VM_PAGE_INFO, sizeof(pi)) == 0) {
 379     return pi.pagesize;
 380   } else {
 381     fprintf(stderr, "vmgetinfo failed to retrieve page size for address %p (errno %d).\n", addr, errno);
 382     assert(false, "vmgetinfo failed to retrieve page size");
 383     return SIZE_4K;
 384   }
 385 
 386 }
 387 
 388 // Returns the kernel thread id of the currently running thread.
 389 pid_t os::Aix::gettid() {
 390   return (pid_t) thread_self();
 391 }
 392 
 393 void os::Aix::initialize_system_info() {
 394 
 395   // Get the number of online(logical) cpus instead of configured.
 396   os::_processor_count = sysconf(_SC_NPROCESSORS_ONLN);
 397   assert(_processor_count > 0, "_processor_count must be > 0");
 398 
 399   // Retrieve total physical storage.
 400   os::Aix::meminfo_t mi;
 401   if (!os::Aix::get_meminfo(&mi)) {
 402     fprintf(stderr, "os::Aix::get_meminfo failed.\n"); fflush(stderr);
 403     assert(false, "os::Aix::get_meminfo failed.");
 404   }
 405   _physical_memory = (julong) mi.real_total;
 406 }
 407 
 408 // Helper function for tracing page sizes.
 409 static const char* describe_pagesize(size_t pagesize) {
 410   switch (pagesize) {
 411     case SIZE_4K : return "4K";
 412     case SIZE_64K: return "64K";
 413     case SIZE_16M: return "16M";
 414     case SIZE_16G: return "16G";
 415     case -1:       return "not set";
 416     default:
 417       assert(false, "surprise");
 418       return "??";
 419   }
 420 }
 421 
 422 // Probe OS for multipage support.
 423 // Will fill the global g_multipage_support structure.
 424 // Must be called before calling os::large_page_init().
 425 static void query_multipage_support() {
 426 
 427   guarantee(g_multipage_support.pagesize == -1,
 428             "do not call twice");
 429 
 430   g_multipage_support.pagesize = ::sysconf(_SC_PAGESIZE);
 431 
 432   // This really would surprise me.
 433   assert(g_multipage_support.pagesize == SIZE_4K, "surprise!");
 434 
 435   // Query default data page size (default page size for C-Heap, pthread stacks and .bss).
 436   // Default data page size is defined either by linker options (-bdatapsize)
 437   // or by environment variable LDR_CNTRL (suboption DATAPSIZE). If none is given,
 438   // default should be 4K.
 439   {
 440     void* p = ::malloc(SIZE_16M);
 441     g_multipage_support.datapsize = os::Aix::query_pagesize(p);
 442     ::free(p);
 443   }
 444 
 445   // Query default shm page size (LDR_CNTRL SHMPSIZE).
 446   {
 447     const int shmid = ::shmget(IPC_PRIVATE, 1, IPC_CREAT | S_IRUSR | S_IWUSR);
 448     guarantee(shmid != -1, "shmget failed");
 449     void* p = ::shmat(shmid, NULL, 0);
 450     ::shmctl(shmid, IPC_RMID, NULL);
 451     guarantee(p != (void*) -1, "shmat failed");
 452     g_multipage_support.shmpsize = os::Aix::query_pagesize(p);
 453     ::shmdt(p);
 454   }
 455 
 456   // Before querying the stack page size, make sure we are not running as primordial
 457   // thread (because primordial thread's stack may have different page size than
 458   // pthread thread stacks). Running a VM on the primordial thread won't work for a
 459   // number of reasons so we may just as well guarantee it here.
 460   guarantee0(!os::Aix::is_primordial_thread());
 461 
 462   // Query pthread stack page size.
 463   {
 464     int dummy = 0;
 465     g_multipage_support.pthr_stack_pagesize = os::Aix::query_pagesize(&dummy);
 466   }
 467 
 468   // Query default text page size (LDR_CNTRL TEXTPSIZE).
 469   /* PPC port: so far unused.
 470   {
 471     address any_function =
 472       (address) resolve_function_descriptor_to_code_pointer((address)describe_pagesize);
 473     g_multipage_support.textpsize = os::Aix::query_pagesize(any_function);
 474   }
 475   */
 476 
 477   // Now probe for support of 64K pages and 16M pages.
 478 
 479   // Before OS/400 V6R1, there is no support for pages other than 4K.
 480   if (os::Aix::on_pase_V5R4_or_older()) {
 481     Unimplemented();
 482     goto query_multipage_support_end;
 483   }
 484 
 485   // Now check which page sizes the OS claims it supports, and of those, which actually can be used.
 486   {
 487     const int MAX_PAGE_SIZES = 4;
 488     psize_t sizes[MAX_PAGE_SIZES];
 489     const int num_psizes = ::vmgetinfo(sizes, VMINFO_GETPSIZES, MAX_PAGE_SIZES);
 490     if (num_psizes == -1) {
 491       trc("vmgetinfo(VMINFO_GETPSIZES) failed (errno: %d)\n", errno);
 492       trc("disabling multipage support.\n");
 493       g_multipage_support.error = ERROR_MP_VMGETINFO_FAILED;
 494       goto query_multipage_support_end;
 495     }
 496     guarantee(num_psizes > 0, "vmgetinfo(.., VMINFO_GETPSIZES, ...) failed.");
 497     assert(num_psizes <= MAX_PAGE_SIZES, "Surprise! more than 4 page sizes?");
 498     trcVerbose("vmgetinfo(.., VMINFO_GETPSIZES, ...) returns %d supported page sizes: ", num_psizes);
 499     for (int i = 0; i < num_psizes; i ++) {
 500       trcVerbose(" %s ", describe_pagesize(sizes[i]));
 501     }
 502 
 503     // Can we use 64K, 16M pages?
 504     for (int i = 0; i < num_psizes; i ++) {
 505       const size_t pagesize = sizes[i];
 506       if (pagesize != SIZE_64K && pagesize != SIZE_16M) {
 507         continue;
 508       }
 509       bool can_use = false;
 510       trcVerbose("Probing support for %s pages...", describe_pagesize(pagesize));
 511       const int shmid = ::shmget(IPC_PRIVATE, pagesize,
 512         IPC_CREAT | S_IRUSR | S_IWUSR);
 513       guarantee0(shmid != -1); // Should always work.
 514       // Try to set pagesize.
 515       struct shmid_ds shm_buf = { 0 };
 516       shm_buf.shm_pagesize = pagesize;
 517       if (::shmctl(shmid, SHM_PAGESIZE, &shm_buf) != 0) {
 518         const int en = errno;
 519         ::shmctl(shmid, IPC_RMID, NULL); // As early as possible!
 520         // PPC port trcVerbose("shmctl(SHM_PAGESIZE) failed with %s",
 521         // PPC port  MiscUtils::describe_errno(en));
 522       } else {
 523         // Attach and double check pageisze.
 524         void* p = ::shmat(shmid, NULL, 0);
 525         ::shmctl(shmid, IPC_RMID, NULL); // As early as possible!
 526         guarantee0(p != (void*) -1); // Should always work.
 527         const size_t real_pagesize = os::Aix::query_pagesize(p);
 528         if (real_pagesize != pagesize) {
 529           trcVerbose("real page size (0x%llX) differs.", real_pagesize);
 530         } else {
 531           can_use = true;
 532         }
 533         ::shmdt(p);
 534       }
 535       trcVerbose("Can use: %s", (can_use ? "yes" : "no"));
 536       if (pagesize == SIZE_64K) {
 537         g_multipage_support.can_use_64K_pages = can_use;
 538       } else if (pagesize == SIZE_16M) {
 539         g_multipage_support.can_use_16M_pages = can_use;
 540       }
 541     }
 542 
 543   } // end: check which pages can be used for shared memory
 544 
 545 query_multipage_support_end:
 546 
 547   trcVerbose("base page size (sysconf _SC_PAGESIZE): %s\n",
 548       describe_pagesize(g_multipage_support.pagesize));
 549   trcVerbose("Data page size (C-Heap, bss, etc): %s\n",
 550       describe_pagesize(g_multipage_support.datapsize));
 551   trcVerbose("Text page size: %s\n",
 552       describe_pagesize(g_multipage_support.textpsize));
 553   trcVerbose("Thread stack page size (pthread): %s\n",
 554       describe_pagesize(g_multipage_support.pthr_stack_pagesize));
 555   trcVerbose("Default shared memory page size: %s\n",
 556       describe_pagesize(g_multipage_support.shmpsize));
 557   trcVerbose("Can use 64K pages dynamically with shared meory: %s\n",
 558       (g_multipage_support.can_use_64K_pages ? "yes" :"no"));
 559   trcVerbose("Can use 16M pages dynamically with shared memory: %s\n",
 560       (g_multipage_support.can_use_16M_pages ? "yes" :"no"));
 561   trcVerbose("Multipage error details: %d\n",
 562       g_multipage_support.error);
 563 
 564   // sanity checks
 565   assert0(g_multipage_support.pagesize == SIZE_4K);
 566   assert0(g_multipage_support.datapsize == SIZE_4K || g_multipage_support.datapsize == SIZE_64K);
 567   // PPC port: so far unused.assert0(g_multipage_support.textpsize == SIZE_4K || g_multipage_support.textpsize == SIZE_64K);
 568   assert0(g_multipage_support.pthr_stack_pagesize == g_multipage_support.datapsize);
 569   assert0(g_multipage_support.shmpsize == SIZE_4K || g_multipage_support.shmpsize == SIZE_64K);
 570 
 571 } // end os::Aix::query_multipage_support()
 572 
 573 void os::init_system_properties_values() {
 574 
 575 #define DEFAULT_LIBPATH "/usr/lib:/lib"
 576 #define EXTENSIONS_DIR  "/lib/ext"
 577 
 578   // Buffer that fits several sprintfs.
 579   // Note that the space for the trailing null is provided
 580   // by the nulls included by the sizeof operator.
 581   const size_t bufsize =
 582     MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
 583          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR)); // extensions dir
 584   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 585 
 586   // sysclasspath, java_home, dll_dir
 587   {
 588     char *pslash;
 589     os::jvm_path(buf, bufsize);
 590 
 591     // Found the full path to libjvm.so.
 592     // Now cut the path to <java_home>/jre if we can.
 593     *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
 594     pslash = strrchr(buf, '/');
 595     if (pslash != NULL) {
 596       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 597     }
 598     Arguments::set_dll_dir(buf);
 599 
 600     if (pslash != NULL) {
 601       pslash = strrchr(buf, '/');
 602       if (pslash != NULL) {
 603         *pslash = '\0';          // Get rid of /<arch>.
 604         pslash = strrchr(buf, '/');
 605         if (pslash != NULL) {
 606           *pslash = '\0';        // Get rid of /lib.
 607         }
 608       }
 609     }
 610     Arguments::set_java_home(buf);
 611     set_boot_path('/', ':');
 612   }
 613 
 614   // Where to look for native libraries.
 615 
 616   // On Aix we get the user setting of LIBPATH.
 617   // Eventually, all the library path setting will be done here.
 618   // Get the user setting of LIBPATH.
 619   const char *v = ::getenv("LIBPATH");
 620   const char *v_colon = ":";
 621   if (v == NULL) { v = ""; v_colon = ""; }
 622 
 623   // Concatenate user and invariant part of ld_library_path.
 624   // That's +1 for the colon and +1 for the trailing '\0'.
 625   char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char, strlen(v) + 1 + sizeof(DEFAULT_LIBPATH) + 1, mtInternal);
 626   sprintf(ld_library_path, "%s%s" DEFAULT_LIBPATH, v, v_colon);
 627   Arguments::set_library_path(ld_library_path);
 628   FREE_C_HEAP_ARRAY(char, ld_library_path);
 629 
 630   // Extensions directories.
 631   sprintf(buf, "%s" EXTENSIONS_DIR, Arguments::get_java_home());
 632   Arguments::set_ext_dirs(buf);
 633 
 634   FREE_C_HEAP_ARRAY(char, buf);
 635 
 636 #undef DEFAULT_LIBPATH
 637 #undef EXTENSIONS_DIR
 638 }
 639 
 640 ////////////////////////////////////////////////////////////////////////////////
 641 // breakpoint support
 642 
 643 void os::breakpoint() {
 644   BREAKPOINT;
 645 }
 646 
 647 extern "C" void breakpoint() {
 648   // use debugger to set breakpoint here
 649 }
 650 
 651 ////////////////////////////////////////////////////////////////////////////////
 652 // signal support
 653 
 654 debug_only(static bool signal_sets_initialized = false);
 655 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
 656 
 657 bool os::Aix::is_sig_ignored(int sig) {
 658   struct sigaction oact;
 659   sigaction(sig, (struct sigaction*)NULL, &oact);
 660   void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*, oact.sa_sigaction)
 661     : CAST_FROM_FN_PTR(void*, oact.sa_handler);
 662   if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
 663     return true;
 664   } else {
 665     return false;
 666   }
 667 }
 668 
 669 void os::Aix::signal_sets_init() {
 670   // Should also have an assertion stating we are still single-threaded.
 671   assert(!signal_sets_initialized, "Already initialized");
 672   // Fill in signals that are necessarily unblocked for all threads in
 673   // the VM. Currently, we unblock the following signals:
 674   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 675   //                         by -Xrs (=ReduceSignalUsage));
 676   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 677   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 678   // the dispositions or masks wrt these signals.
 679   // Programs embedding the VM that want to use the above signals for their
 680   // own purposes must, at this time, use the "-Xrs" option to prevent
 681   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 682   // (See bug 4345157, and other related bugs).
 683   // In reality, though, unblocking these signals is really a nop, since
 684   // these signals are not blocked by default.
 685   sigemptyset(&unblocked_sigs);
 686   sigemptyset(&allowdebug_blocked_sigs);
 687   sigaddset(&unblocked_sigs, SIGILL);
 688   sigaddset(&unblocked_sigs, SIGSEGV);
 689   sigaddset(&unblocked_sigs, SIGBUS);
 690   sigaddset(&unblocked_sigs, SIGFPE);
 691   sigaddset(&unblocked_sigs, SIGTRAP);
 692   sigaddset(&unblocked_sigs, SIGDANGER);
 693   sigaddset(&unblocked_sigs, SR_signum);
 694 
 695   if (!ReduceSignalUsage) {
 696    if (!os::Aix::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 697      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 698      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
 699    }
 700    if (!os::Aix::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 701      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 702      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
 703    }
 704    if (!os::Aix::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 705      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 706      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
 707    }
 708   }
 709   // Fill in signals that are blocked by all but the VM thread.
 710   sigemptyset(&vm_sigs);
 711   if (!ReduceSignalUsage)
 712     sigaddset(&vm_sigs, BREAK_SIGNAL);
 713   debug_only(signal_sets_initialized = true);
 714 }
 715 
 716 // These are signals that are unblocked while a thread is running Java.
 717 // (For some reason, they get blocked by default.)
 718 sigset_t* os::Aix::unblocked_signals() {
 719   assert(signal_sets_initialized, "Not initialized");
 720   return &unblocked_sigs;
 721 }
 722 
 723 // These are the signals that are blocked while a (non-VM) thread is
 724 // running Java. Only the VM thread handles these signals.
 725 sigset_t* os::Aix::vm_signals() {
 726   assert(signal_sets_initialized, "Not initialized");
 727   return &vm_sigs;
 728 }
 729 
 730 // These are signals that are blocked during cond_wait to allow debugger in
 731 sigset_t* os::Aix::allowdebug_blocked_signals() {
 732   assert(signal_sets_initialized, "Not initialized");
 733   return &allowdebug_blocked_sigs;
 734 }
 735 
 736 void os::Aix::hotspot_sigmask(Thread* thread) {
 737 
 738   //Save caller's signal mask before setting VM signal mask
 739   sigset_t caller_sigmask;
 740   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 741 
 742   OSThread* osthread = thread->osthread();
 743   osthread->set_caller_sigmask(caller_sigmask);
 744 
 745   pthread_sigmask(SIG_UNBLOCK, os::Aix::unblocked_signals(), NULL);
 746 
 747   if (!ReduceSignalUsage) {
 748     if (thread->is_VM_thread()) {
 749       // Only the VM thread handles BREAK_SIGNAL ...
 750       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 751     } else {
 752       // ... all other threads block BREAK_SIGNAL
 753       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 754     }
 755   }
 756 }
 757 
 758 // retrieve memory information.
 759 // Returns false if something went wrong;
 760 // content of pmi undefined in this case.
 761 bool os::Aix::get_meminfo(meminfo_t* pmi) {
 762 
 763   assert(pmi, "get_meminfo: invalid parameter");
 764 
 765   memset(pmi, 0, sizeof(meminfo_t));
 766 
 767   if (os::Aix::on_pase()) {
 768 
 769     Unimplemented();
 770     return false;
 771 
 772   } else {
 773 
 774     // On AIX, I use the (dynamically loaded) perfstat library to retrieve memory statistics
 775     // See:
 776     // http://publib.boulder.ibm.com/infocenter/systems/index.jsp
 777     //        ?topic=/com.ibm.aix.basetechref/doc/basetrf1/perfstat_memtot.htm
 778     // http://publib.boulder.ibm.com/infocenter/systems/index.jsp
 779     //        ?topic=/com.ibm.aix.files/doc/aixfiles/libperfstat.h.htm
 780 
 781     perfstat_memory_total_t psmt;
 782     memset (&psmt, '\0', sizeof(psmt));
 783     const int rc = libperfstat::perfstat_memory_total(NULL, &psmt, sizeof(psmt), 1);
 784     if (rc == -1) {
 785       fprintf(stderr, "perfstat_memory_total() failed (errno=%d)\n", errno);
 786       assert(0, "perfstat_memory_total() failed");
 787       return false;
 788     }
 789 
 790     assert(rc == 1, "perfstat_memory_total() - weird return code");
 791 
 792     // excerpt from
 793     // http://publib.boulder.ibm.com/infocenter/systems/index.jsp
 794     //        ?topic=/com.ibm.aix.files/doc/aixfiles/libperfstat.h.htm
 795     // The fields of perfstat_memory_total_t:
 796     // u_longlong_t virt_total         Total virtual memory (in 4 KB pages).
 797     // u_longlong_t real_total         Total real memory (in 4 KB pages).
 798     // u_longlong_t real_free          Free real memory (in 4 KB pages).
 799     // u_longlong_t pgsp_total         Total paging space (in 4 KB pages).
 800     // u_longlong_t pgsp_free          Free paging space (in 4 KB pages).
 801 
 802     pmi->virt_total = psmt.virt_total * 4096;
 803     pmi->real_total = psmt.real_total * 4096;
 804     pmi->real_free = psmt.real_free * 4096;
 805     pmi->pgsp_total = psmt.pgsp_total * 4096;
 806     pmi->pgsp_free = psmt.pgsp_free * 4096;
 807 
 808     return true;
 809 
 810   }
 811 } // end os::Aix::get_meminfo
 812 
 813 // Retrieve global cpu information.
 814 // Returns false if something went wrong;
 815 // the content of pci is undefined in this case.
 816 bool os::Aix::get_cpuinfo(cpuinfo_t* pci) {
 817   assert(pci, "get_cpuinfo: invalid parameter");
 818   memset(pci, 0, sizeof(cpuinfo_t));
 819 
 820   perfstat_cpu_total_t psct;
 821   memset (&psct, '\0', sizeof(psct));
 822 
 823   if (-1 == libperfstat::perfstat_cpu_total(NULL, &psct, sizeof(perfstat_cpu_total_t), 1)) {
 824     fprintf(stderr, "perfstat_cpu_total() failed (errno=%d)\n", errno);
 825     assert(0, "perfstat_cpu_total() failed");
 826     return false;
 827   }
 828 
 829   // global cpu information
 830   strcpy (pci->description, psct.description);
 831   pci->processorHZ = psct.processorHZ;
 832   pci->ncpus = psct.ncpus;
 833   os::Aix::_logical_cpus = psct.ncpus;
 834   for (int i = 0; i < 3; i++) {
 835     pci->loadavg[i] = (double) psct.loadavg[i] / (1 << SBITS);
 836   }
 837 
 838   // get the processor version from _system_configuration
 839   switch (_system_configuration.version) {
 840   case PV_8:
 841     strcpy(pci->version, "Power PC 8");
 842     break;
 843   case PV_7:
 844     strcpy(pci->version, "Power PC 7");
 845     break;
 846   case PV_6_1:
 847     strcpy(pci->version, "Power PC 6 DD1.x");
 848     break;
 849   case PV_6:
 850     strcpy(pci->version, "Power PC 6");
 851     break;
 852   case PV_5:
 853     strcpy(pci->version, "Power PC 5");
 854     break;
 855   case PV_5_2:
 856     strcpy(pci->version, "Power PC 5_2");
 857     break;
 858   case PV_5_3:
 859     strcpy(pci->version, "Power PC 5_3");
 860     break;
 861   case PV_5_Compat:
 862     strcpy(pci->version, "PV_5_Compat");
 863     break;
 864   case PV_6_Compat:
 865     strcpy(pci->version, "PV_6_Compat");
 866     break;
 867   case PV_7_Compat:
 868     strcpy(pci->version, "PV_7_Compat");
 869     break;
 870   case PV_8_Compat:
 871     strcpy(pci->version, "PV_8_Compat");
 872     break;
 873   default:
 874     strcpy(pci->version, "unknown");
 875   }
 876 
 877   return true;
 878 
 879 } //end os::Aix::get_cpuinfo
 880 
 881 //////////////////////////////////////////////////////////////////////////////
 882 // detecting pthread library
 883 
 884 void os::Aix::libpthread_init() {
 885   return;
 886 }
 887 
 888 //////////////////////////////////////////////////////////////////////////////
 889 // create new thread
 890 
 891 // Thread start routine for all newly created threads
 892 static void *java_start(Thread *thread) {
 893 
 894   // find out my own stack dimensions
 895   {
 896     // actually, this should do exactly the same as thread->record_stack_base_and_size...
 897     address base = 0;
 898     size_t size = 0;
 899     query_stack_dimensions(&base, &size);
 900     thread->set_stack_base(base);
 901     thread->set_stack_size(size);
 902   }
 903 
 904   // Do some sanity checks.
 905   CHECK_CURRENT_STACK_PTR(thread->stack_base(), thread->stack_size());
 906 
 907   // Try to randomize the cache line index of hot stack frames.
 908   // This helps when threads of the same stack traces evict each other's
 909   // cache lines. The threads can be either from the same JVM instance, or
 910   // from different JVM instances. The benefit is especially true for
 911   // processors with hyperthreading technology.
 912 
 913   static int counter = 0;
 914   int pid = os::current_process_id();
 915   alloca(((pid ^ counter++) & 7) * 128);
 916 
 917   ThreadLocalStorage::set_thread(thread);
 918 
 919   OSThread* osthread = thread->osthread();
 920 
 921   // thread_id is kernel thread id (similar to Solaris LWP id)
 922   osthread->set_thread_id(os::Aix::gettid());
 923 
 924   // initialize signal mask for this thread
 925   os::Aix::hotspot_sigmask(thread);
 926 
 927   // initialize floating point control register
 928   os::Aix::init_thread_fpu_state();
 929 
 930   assert(osthread->get_state() == RUNNABLE, "invalid os thread state");
 931 
 932   // call one more level start routine
 933   thread->run();
 934 
 935   return 0;
 936 }
 937 
 938 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
 939 
 940   // We want the whole function to be synchronized.
 941   ThreadCritical cs;
 942 
 943   assert(thread->osthread() == NULL, "caller responsible");
 944 
 945   // Allocate the OSThread object
 946   OSThread* osthread = new OSThread(NULL, NULL);
 947   if (osthread == NULL) {
 948     return false;
 949   }
 950 
 951   // set the correct thread state
 952   osthread->set_thread_type(thr_type);
 953 
 954   // Initial state is ALLOCATED but not INITIALIZED
 955   osthread->set_state(ALLOCATED);
 956 
 957   thread->set_osthread(osthread);
 958 
 959   // init thread attributes
 960   pthread_attr_t attr;
 961   pthread_attr_init(&attr);
 962   guarantee(pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED) == 0, "???");
 963 
 964   // Make sure we run in 1:1 kernel-user-thread mode.
 965   if (os::Aix::on_aix()) {
 966     guarantee(pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM) == 0, "???");
 967     guarantee(pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED) == 0, "???");
 968   } // end: aix
 969 
 970   // Start in suspended state, and in os::thread_start, wake the thread up.
 971   guarantee(pthread_attr_setsuspendstate_np(&attr, PTHREAD_CREATE_SUSPENDED_NP) == 0, "???");
 972 
 973   // calculate stack size if it's not specified by caller
 974   if (os::Aix::supports_variable_stack_size()) {
 975     if (stack_size == 0) {
 976       stack_size = os::Aix::default_stack_size(thr_type);
 977 
 978       switch (thr_type) {
 979       case os::java_thread:
 980         // Java threads use ThreadStackSize whose default value can be changed with the flag -Xss.
 981         assert(JavaThread::stack_size_at_create() > 0, "this should be set");
 982         stack_size = JavaThread::stack_size_at_create();
 983         break;
 984       case os::compiler_thread:
 985         if (CompilerThreadStackSize > 0) {
 986           stack_size = (size_t)(CompilerThreadStackSize * K);
 987           break;
 988         } // else fall through:
 989           // use VMThreadStackSize if CompilerThreadStackSize is not defined
 990       case os::vm_thread:
 991       case os::pgc_thread:
 992       case os::cgc_thread:
 993       case os::watcher_thread:
 994         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 995         break;
 996       }
 997     }
 998 
 999     stack_size = MAX2(stack_size, os::Aix::min_stack_allowed);
1000     pthread_attr_setstacksize(&attr, stack_size);
1001   } //else let thread_create() pick the default value (96 K on AIX)
1002 
1003   pthread_t tid;
1004   int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
1005 
1006   pthread_attr_destroy(&attr);
1007 
1008   if (ret == 0) {
1009     // PPC port traceOsMisc(("Created New Thread : pthread-id %u", tid));
1010   } else {
1011     if (PrintMiscellaneous && (Verbose || WizardMode)) {
1012       perror("pthread_create()");
1013     }
1014     // Need to clean up stuff we've allocated so far
1015     thread->set_osthread(NULL);
1016     delete osthread;
1017     return false;
1018   }
1019 
1020   // Store pthread info into the OSThread
1021   osthread->set_pthread_id(tid);
1022 
1023   return true;
1024 }
1025 
1026 /////////////////////////////////////////////////////////////////////////////
1027 // attach existing thread
1028 
1029 // bootstrap the main thread
1030 bool os::create_main_thread(JavaThread* thread) {
1031   assert(os::Aix::_main_thread == pthread_self(), "should be called inside main thread");
1032   return create_attached_thread(thread);
1033 }
1034 
1035 bool os::create_attached_thread(JavaThread* thread) {
1036 #ifdef ASSERT
1037     thread->verify_not_published();
1038 #endif
1039 
1040   // Allocate the OSThread object
1041   OSThread* osthread = new OSThread(NULL, NULL);
1042 
1043   if (osthread == NULL) {
1044     return false;
1045   }
1046 
1047   // Store pthread info into the OSThread
1048   osthread->set_thread_id(os::Aix::gettid());
1049   osthread->set_pthread_id(::pthread_self());
1050 
1051   // initialize floating point control register
1052   os::Aix::init_thread_fpu_state();
1053 
1054   // some sanity checks
1055   CHECK_CURRENT_STACK_PTR(thread->stack_base(), thread->stack_size());
1056 
1057   // Initial thread state is RUNNABLE
1058   osthread->set_state(RUNNABLE);
1059 
1060   thread->set_osthread(osthread);
1061 
1062   if (UseNUMA) {
1063     int lgrp_id = os::numa_get_group_id();
1064     if (lgrp_id != -1) {
1065       thread->set_lgrp_id(lgrp_id);
1066     }
1067   }
1068 
1069   // initialize signal mask for this thread
1070   // and save the caller's signal mask
1071   os::Aix::hotspot_sigmask(thread);
1072 
1073   return true;
1074 }
1075 
1076 void os::pd_start_thread(Thread* thread) {
1077   int status = pthread_continue_np(thread->osthread()->pthread_id());
1078   assert(status == 0, "thr_continue failed");
1079 }
1080 
1081 // Free OS resources related to the OSThread
1082 void os::free_thread(OSThread* osthread) {
1083   assert(osthread != NULL, "osthread not set");
1084 
1085   if (Thread::current()->osthread() == osthread) {
1086     // Restore caller's signal mask
1087     sigset_t sigmask = osthread->caller_sigmask();
1088     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1089    }
1090 
1091   delete osthread;
1092 }
1093 
1094 //////////////////////////////////////////////////////////////////////////////
1095 // thread local storage
1096 
1097 int os::allocate_thread_local_storage() {
1098   pthread_key_t key;
1099   int rslt = pthread_key_create(&key, NULL);
1100   assert(rslt == 0, "cannot allocate thread local storage");
1101   return (int)key;
1102 }
1103 
1104 // Note: This is currently not used by VM, as we don't destroy TLS key
1105 // on VM exit.
1106 void os::free_thread_local_storage(int index) {
1107   int rslt = pthread_key_delete((pthread_key_t)index);
1108   assert(rslt == 0, "invalid index");
1109 }
1110 
1111 void os::thread_local_storage_at_put(int index, void* value) {
1112   int rslt = pthread_setspecific((pthread_key_t)index, value);
1113   assert(rslt == 0, "pthread_setspecific failed");
1114 }
1115 
1116 extern "C" Thread* get_thread() {
1117   return ThreadLocalStorage::thread();
1118 }
1119 
1120 ////////////////////////////////////////////////////////////////////////////////
1121 // time support
1122 
1123 // Time since start-up in seconds to a fine granularity.
1124 // Used by VMSelfDestructTimer and the MemProfiler.
1125 double os::elapsedTime() {
1126   return (double)(os::elapsed_counter()) * 0.000001;
1127 }
1128 
1129 jlong os::elapsed_counter() {
1130   timeval time;
1131   int status = gettimeofday(&time, NULL);
1132   return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
1133 }
1134 
1135 jlong os::elapsed_frequency() {
1136   return (1000 * 1000);
1137 }
1138 
1139 bool os::supports_vtime() { return true; }
1140 bool os::enable_vtime()   { return false; }
1141 bool os::vtime_enabled()  { return false; }
1142 
1143 double os::elapsedVTime() {
1144   struct rusage usage;
1145   int retval = getrusage(RUSAGE_THREAD, &usage);
1146   if (retval == 0) {
1147     return usage.ru_utime.tv_sec + usage.ru_stime.tv_sec + (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000.0 * 1000);
1148   } else {
1149     // better than nothing, but not much
1150     return elapsedTime();
1151   }
1152 }
1153 
1154 jlong os::javaTimeMillis() {
1155   timeval time;
1156   int status = gettimeofday(&time, NULL);
1157   assert(status != -1, "aix error at gettimeofday()");
1158   return jlong(time.tv_sec) * 1000 + jlong(time.tv_usec / 1000);
1159 }
1160 
1161 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1162   timeval time;
1163   int status = gettimeofday(&time, NULL);
1164   assert(status != -1, "aix error at gettimeofday()");
1165   seconds = jlong(time.tv_sec);
1166   nanos = jlong(time.tv_usec) * 1000;
1167 }
1168 
1169 
1170 // We need to manually declare mread_real_time,
1171 // because IBM didn't provide a prototype in time.h.
1172 // (they probably only ever tested in C, not C++)
1173 extern "C"
1174 int mread_real_time(timebasestruct_t *t, size_t size_of_timebasestruct_t);
1175 
1176 jlong os::javaTimeNanos() {
1177   if (os::Aix::on_pase()) {
1178     Unimplemented();
1179     return 0;
1180   } else {
1181     // On AIX use the precision of processors real time clock
1182     // or time base registers.
1183     timebasestruct_t time;
1184     int rc;
1185 
1186     // If the CPU has a time register, it will be used and
1187     // we have to convert to real time first. After convertion we have following data:
1188     // time.tb_high [seconds since 00:00:00 UTC on 1.1.1970]
1189     // time.tb_low  [nanoseconds after the last full second above]
1190     // We better use mread_real_time here instead of read_real_time
1191     // to ensure that we will get a monotonic increasing time.
1192     if (mread_real_time(&time, TIMEBASE_SZ) != RTC_POWER) {
1193       rc = time_base_to_time(&time, TIMEBASE_SZ);
1194       assert(rc != -1, "aix error at time_base_to_time()");
1195     }
1196     return jlong(time.tb_high) * (1000 * 1000 * 1000) + jlong(time.tb_low);
1197   }
1198 }
1199 
1200 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1201   info_ptr->max_value = ALL_64_BITS;
1202   // mread_real_time() is monotonic (see 'os::javaTimeNanos()')
1203   info_ptr->may_skip_backward = false;
1204   info_ptr->may_skip_forward = false;
1205   info_ptr->kind = JVMTI_TIMER_ELAPSED;    // elapsed not CPU time
1206 }
1207 
1208 // Return the real, user, and system times in seconds from an
1209 // arbitrary fixed point in the past.
1210 bool os::getTimesSecs(double* process_real_time,
1211                       double* process_user_time,
1212                       double* process_system_time) {
1213   struct tms ticks;
1214   clock_t real_ticks = times(&ticks);
1215 
1216   if (real_ticks == (clock_t) (-1)) {
1217     return false;
1218   } else {
1219     double ticks_per_second = (double) clock_tics_per_sec;
1220     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1221     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1222     *process_real_time = ((double) real_ticks) / ticks_per_second;
1223 
1224     return true;
1225   }
1226 }
1227 
1228 char * os::local_time_string(char *buf, size_t buflen) {
1229   struct tm t;
1230   time_t long_time;
1231   time(&long_time);
1232   localtime_r(&long_time, &t);
1233   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1234                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1235                t.tm_hour, t.tm_min, t.tm_sec);
1236   return buf;
1237 }
1238 
1239 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
1240   return localtime_r(clock, res);
1241 }
1242 
1243 ////////////////////////////////////////////////////////////////////////////////
1244 // runtime exit support
1245 
1246 // Note: os::shutdown() might be called very early during initialization, or
1247 // called from signal handler. Before adding something to os::shutdown(), make
1248 // sure it is async-safe and can handle partially initialized VM.
1249 void os::shutdown() {
1250 
1251   // allow PerfMemory to attempt cleanup of any persistent resources
1252   perfMemory_exit();
1253 
1254   // needs to remove object in file system
1255   AttachListener::abort();
1256 
1257   // flush buffered output, finish log files
1258   ostream_abort();
1259 
1260   // Check for abort hook
1261   abort_hook_t abort_hook = Arguments::abort_hook();
1262   if (abort_hook != NULL) {
1263     abort_hook();
1264   }
1265 }
1266 
1267 // Note: os::abort() might be called very early during initialization, or
1268 // called from signal handler. Before adding something to os::abort(), make
1269 // sure it is async-safe and can handle partially initialized VM.
1270 void os::abort(bool dump_core, void* siginfo, void* context) {
1271   os::shutdown();
1272   if (dump_core) {
1273 #ifndef PRODUCT
1274     fdStream out(defaultStream::output_fd());
1275     out.print_raw("Current thread is ");
1276     char buf[16];
1277     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1278     out.print_raw_cr(buf);
1279     out.print_raw_cr("Dumping core ...");
1280 #endif
1281     ::abort(); // dump core
1282   }
1283 
1284   ::exit(1);
1285 }
1286 
1287 // Die immediately, no exit hook, no abort hook, no cleanup.
1288 void os::die() {
1289   ::abort();
1290 }
1291 
1292 // This method is a copy of JDK's sysGetLastErrorString
1293 // from src/solaris/hpi/src/system_md.c
1294 
1295 size_t os::lasterror(char *buf, size_t len) {
1296   if (errno == 0) return 0;
1297 
1298   const char *s = ::strerror(errno);
1299   size_t n = ::strlen(s);
1300   if (n >= len) {
1301     n = len - 1;
1302   }
1303   ::strncpy(buf, s, n);
1304   buf[n] = '\0';
1305   return n;
1306 }
1307 
1308 intx os::current_thread_id() { return (intx)pthread_self(); }
1309 
1310 int os::current_process_id() {
1311 
1312   // This implementation returns a unique pid, the pid of the
1313   // launcher thread that starts the vm 'process'.
1314 
1315   // Under POSIX, getpid() returns the same pid as the
1316   // launcher thread rather than a unique pid per thread.
1317   // Use gettid() if you want the old pre NPTL behaviour.
1318 
1319   // if you are looking for the result of a call to getpid() that
1320   // returns a unique pid for the calling thread, then look at the
1321   // OSThread::thread_id() method in osThread_linux.hpp file
1322 
1323   return (int)(_initial_pid ? _initial_pid : getpid());
1324 }
1325 
1326 // DLL functions
1327 
1328 const char* os::dll_file_extension() { return ".so"; }
1329 
1330 // This must be hard coded because it's the system's temporary
1331 // directory not the java application's temp directory, ala java.io.tmpdir.
1332 const char* os::get_temp_directory() { return "/tmp"; }
1333 
1334 static bool file_exists(const char* filename) {
1335   struct stat statbuf;
1336   if (filename == NULL || strlen(filename) == 0) {
1337     return false;
1338   }
1339   return os::stat(filename, &statbuf) == 0;
1340 }
1341 
1342 bool os::dll_build_name(char* buffer, size_t buflen,
1343                         const char* pname, const char* fname) {
1344   bool retval = false;
1345   // Copied from libhpi
1346   const size_t pnamelen = pname ? strlen(pname) : 0;
1347 
1348   // Return error on buffer overflow.
1349   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1350     *buffer = '\0';
1351     return retval;
1352   }
1353 
1354   if (pnamelen == 0) {
1355     snprintf(buffer, buflen, "lib%s.so", fname);
1356     retval = true;
1357   } else if (strchr(pname, *os::path_separator()) != NULL) {
1358     int n;
1359     char** pelements = split_path(pname, &n);
1360     for (int i = 0; i < n; i++) {
1361       // Really shouldn't be NULL, but check can't hurt
1362       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1363         continue; // skip the empty path values
1364       }
1365       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1366       if (file_exists(buffer)) {
1367         retval = true;
1368         break;
1369       }
1370     }
1371     // release the storage
1372     for (int i = 0; i < n; i++) {
1373       if (pelements[i] != NULL) {
1374         FREE_C_HEAP_ARRAY(char, pelements[i]);
1375       }
1376     }
1377     if (pelements != NULL) {
1378       FREE_C_HEAP_ARRAY(char*, pelements);
1379     }
1380   } else {
1381     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1382     retval = true;
1383   }
1384   return retval;
1385 }
1386 
1387 // Check if addr is inside libjvm.so.
1388 bool os::address_is_in_vm(address addr) {
1389 
1390   // Input could be a real pc or a function pointer literal. The latter
1391   // would be a function descriptor residing in the data segment of a module.
1392 
1393   const LoadedLibraryModule* lib = LoadedLibraries::find_for_text_address(addr);
1394   if (lib) {
1395     if (strcmp(lib->get_shortname(), "libjvm.so") == 0) {
1396       return true;
1397     } else {
1398       return false;
1399     }
1400   } else {
1401     lib = LoadedLibraries::find_for_data_address(addr);
1402     if (lib) {
1403       if (strcmp(lib->get_shortname(), "libjvm.so") == 0) {
1404         return true;
1405       } else {
1406         return false;
1407       }
1408     } else {
1409       return false;
1410     }
1411   }
1412 }
1413 
1414 // Resolve an AIX function descriptor literal to a code pointer.
1415 // If the input is a valid code pointer to a text segment of a loaded module,
1416 //   it is returned unchanged.
1417 // If the input is a valid AIX function descriptor, it is resolved to the
1418 //   code entry point.
1419 // If the input is neither a valid function descriptor nor a valid code pointer,
1420 //   NULL is returned.
1421 static address resolve_function_descriptor_to_code_pointer(address p) {
1422 
1423   const LoadedLibraryModule* lib = LoadedLibraries::find_for_text_address(p);
1424   if (lib) {
1425     // its a real code pointer
1426     return p;
1427   } else {
1428     lib = LoadedLibraries::find_for_data_address(p);
1429     if (lib) {
1430       // pointer to data segment, potential function descriptor
1431       address code_entry = (address)(((FunctionDescriptor*)p)->entry());
1432       if (LoadedLibraries::find_for_text_address(code_entry)) {
1433         // Its a function descriptor
1434         return code_entry;
1435       }
1436     }
1437   }
1438   return NULL;
1439 }
1440 
1441 bool os::dll_address_to_function_name(address addr, char *buf,
1442                                       int buflen, int *offset,
1443                                       bool demangle) {
1444   if (offset) {
1445     *offset = -1;
1446   }
1447   // Buf is not optional, but offset is optional.
1448   assert(buf != NULL, "sanity check");
1449   buf[0] = '\0';
1450 
1451   // Resolve function ptr literals first.
1452   addr = resolve_function_descriptor_to_code_pointer(addr);
1453   if (!addr) {
1454     return false;
1455   }
1456 
1457   // Go through Decoder::decode to call getFuncName which reads the name from the traceback table.
1458   return Decoder::decode(addr, buf, buflen, offset, demangle);
1459 }
1460 
1461 static int getModuleName(codeptr_t pc,                    // [in] program counter
1462                          char* p_name, size_t namelen,    // [out] optional: function name
1463                          char* p_errmsg, size_t errmsglen // [out] optional: user provided buffer for error messages
1464                          ) {
1465 
1466   // initialize output parameters
1467   if (p_name && namelen > 0) {
1468     *p_name = '\0';
1469   }
1470   if (p_errmsg && errmsglen > 0) {
1471     *p_errmsg = '\0';
1472   }
1473 
1474   const LoadedLibraryModule* const lib = LoadedLibraries::find_for_text_address((address)pc);
1475   if (lib) {
1476     if (p_name && namelen > 0) {
1477       sprintf(p_name, "%.*s", namelen, lib->get_shortname());
1478     }
1479     return 0;
1480   }
1481 
1482   trcVerbose("pc outside any module");
1483 
1484   return -1;
1485 }
1486 
1487 bool os::dll_address_to_library_name(address addr, char* buf,
1488                                      int buflen, int* offset) {
1489   if (offset) {
1490     *offset = -1;
1491   }
1492   // Buf is not optional, but offset is optional.
1493   assert(buf != NULL, "sanity check");
1494   buf[0] = '\0';
1495 
1496   // Resolve function ptr literals first.
1497   addr = resolve_function_descriptor_to_code_pointer(addr);
1498   if (!addr) {
1499     return false;
1500   }
1501 
1502   if (::getModuleName((codeptr_t) addr, buf, buflen, 0, 0) == 0) {
1503     return true;
1504   }
1505   return false;
1506 }
1507 
1508 // Loads .dll/.so and in case of error it checks if .dll/.so was built
1509 // for the same architecture as Hotspot is running on.
1510 void *os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1511 
1512   if (ebuf && ebuflen > 0) {
1513     ebuf[0] = '\0';
1514     ebuf[ebuflen - 1] = '\0';
1515   }
1516 
1517   if (!filename || strlen(filename) == 0) {
1518     ::strncpy(ebuf, "dll_load: empty filename specified", ebuflen - 1);
1519     return NULL;
1520   }
1521 
1522   // RTLD_LAZY is currently not implemented. The dl is loaded immediately with all its dependants.
1523   void * result= ::dlopen(filename, RTLD_LAZY);
1524   if (result != NULL) {
1525     // Reload dll cache. Don't do this in signal handling.
1526     LoadedLibraries::reload();
1527     return result;
1528   } else {
1529     // error analysis when dlopen fails
1530     const char* const error_report = ::dlerror();
1531     if (error_report && ebuf && ebuflen > 0) {
1532       snprintf(ebuf, ebuflen - 1, "%s, LIBPATH=%s, LD_LIBRARY_PATH=%s : %s",
1533                filename, ::getenv("LIBPATH"), ::getenv("LD_LIBRARY_PATH"), error_report);
1534     }
1535   }
1536   return NULL;
1537 }
1538 
1539 void* os::dll_lookup(void* handle, const char* name) {
1540   void* res = dlsym(handle, name);
1541   return res;
1542 }
1543 
1544 void* os::get_default_process_handle() {
1545   return (void*)::dlopen(NULL, RTLD_LAZY);
1546 }
1547 
1548 void os::print_dll_info(outputStream *st) {
1549   st->print_cr("Dynamic libraries:");
1550   LoadedLibraries::print(st);
1551 }
1552 
1553 void os::print_os_info(outputStream* st) {
1554   st->print("OS:");
1555 
1556   st->print("uname:");
1557   struct utsname name;
1558   uname(&name);
1559   st->print(name.sysname); st->print(" ");
1560   st->print(name.nodename); st->print(" ");
1561   st->print(name.release); st->print(" ");
1562   st->print(name.version); st->print(" ");
1563   st->print(name.machine);
1564   st->cr();
1565 
1566   // rlimit
1567   st->print("rlimit:");
1568   struct rlimit rlim;
1569 
1570   st->print(" STACK ");
1571   getrlimit(RLIMIT_STACK, &rlim);
1572   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
1573   else st->print("%uk", rlim.rlim_cur >> 10);
1574 
1575   st->print(", CORE ");
1576   getrlimit(RLIMIT_CORE, &rlim);
1577   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
1578   else st->print("%uk", rlim.rlim_cur >> 10);
1579 
1580   st->print(", NPROC ");
1581   st->print("%d", sysconf(_SC_CHILD_MAX));
1582 
1583   st->print(", NOFILE ");
1584   getrlimit(RLIMIT_NOFILE, &rlim);
1585   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
1586   else st->print("%d", rlim.rlim_cur);
1587 
1588   st->print(", AS ");
1589   getrlimit(RLIMIT_AS, &rlim);
1590   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
1591   else st->print("%uk", rlim.rlim_cur >> 10);
1592 
1593   // Print limits on DATA, because it limits the C-heap.
1594   st->print(", DATA ");
1595   getrlimit(RLIMIT_DATA, &rlim);
1596   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
1597   else st->print("%uk", rlim.rlim_cur >> 10);
1598   st->cr();
1599 
1600   // load average
1601   st->print("load average:");
1602   double loadavg[3] = {-1.L, -1.L, -1.L};
1603   os::loadavg(loadavg, 3);
1604   st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
1605   st->cr();
1606 }
1607 
1608 void os::print_memory_info(outputStream* st) {
1609 
1610   st->print_cr("Memory:");
1611 
1612   st->print_cr("  default page size: %s", describe_pagesize(os::vm_page_size()));
1613   st->print_cr("  default stack page size: %s", describe_pagesize(os::vm_page_size()));
1614   st->print_cr("  Default shared memory page size:        %s",
1615     describe_pagesize(g_multipage_support.shmpsize));
1616   st->print_cr("  Can use 64K pages dynamically with shared meory:  %s",
1617     (g_multipage_support.can_use_64K_pages ? "yes" :"no"));
1618   st->print_cr("  Can use 16M pages dynamically with shared memory: %s",
1619     (g_multipage_support.can_use_16M_pages ? "yes" :"no"));
1620   if (g_multipage_error != 0) {
1621     st->print_cr("  multipage error: %d", g_multipage_error);
1622   }
1623 
1624   // print out LDR_CNTRL because it affects the default page sizes
1625   const char* const ldr_cntrl = ::getenv("LDR_CNTRL");
1626   st->print_cr("  LDR_CNTRL=%s.", ldr_cntrl ? ldr_cntrl : "<unset>");
1627 
1628   const char* const extshm = ::getenv("EXTSHM");
1629   st->print_cr("  EXTSHM=%s.", extshm ? extshm : "<unset>");
1630   if ( (strcmp(extshm, "on") == 0) || (strcmp(extshm, "ON") == 0) ) {
1631     st->print_cr("  *** Unsupported! Please remove EXTSHM from your environment! ***");
1632   }
1633 
1634   // Call os::Aix::get_meminfo() to retrieve memory statistics.
1635   os::Aix::meminfo_t mi;
1636   if (os::Aix::get_meminfo(&mi)) {
1637     char buffer[256];
1638     if (os::Aix::on_aix()) {
1639       jio_snprintf(buffer, sizeof(buffer),
1640                    "  physical total : %llu\n"
1641                    "  physical free  : %llu\n"
1642                    "  swap total     : %llu\n"
1643                    "  swap free      : %llu\n",
1644                    mi.real_total,
1645                    mi.real_free,
1646                    mi.pgsp_total,
1647                    mi.pgsp_free);
1648     } else {
1649       Unimplemented();
1650     }
1651     st->print_raw(buffer);
1652   } else {
1653     st->print_cr("  (no more information available)");
1654   }
1655 }
1656 
1657 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
1658 }
1659 
1660 void os::print_siginfo(outputStream* st, void* siginfo) {
1661   // Use common posix version.
1662   os::Posix::print_siginfo_brief(st, (const siginfo_t*) siginfo);
1663   st->cr();
1664 }
1665 
1666 static void print_signal_handler(outputStream* st, int sig,
1667                                  char* buf, size_t buflen);
1668 
1669 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1670   st->print_cr("Signal Handlers:");
1671   print_signal_handler(st, SIGSEGV, buf, buflen);
1672   print_signal_handler(st, SIGBUS , buf, buflen);
1673   print_signal_handler(st, SIGFPE , buf, buflen);
1674   print_signal_handler(st, SIGPIPE, buf, buflen);
1675   print_signal_handler(st, SIGXFSZ, buf, buflen);
1676   print_signal_handler(st, SIGILL , buf, buflen);
1677   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
1678   print_signal_handler(st, SR_signum, buf, buflen);
1679   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
1680   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
1681   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
1682   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
1683   print_signal_handler(st, SIGTRAP, buf, buflen);
1684   print_signal_handler(st, SIGDANGER, buf, buflen);
1685 }
1686 
1687 static char saved_jvm_path[MAXPATHLEN] = {0};
1688 
1689 // Find the full path to the current module, libjvm.so.
1690 void os::jvm_path(char *buf, jint buflen) {
1691   // Error checking.
1692   if (buflen < MAXPATHLEN) {
1693     assert(false, "must use a large-enough buffer");
1694     buf[0] = '\0';
1695     return;
1696   }
1697   // Lazy resolve the path to current module.
1698   if (saved_jvm_path[0] != 0) {
1699     strcpy(buf, saved_jvm_path);
1700     return;
1701   }
1702 
1703   Dl_info dlinfo;
1704   int ret = dladdr(CAST_FROM_FN_PTR(void *, os::jvm_path), &dlinfo);
1705   assert(ret != 0, "cannot locate libjvm");
1706   char* rp = realpath((char *)dlinfo.dli_fname, buf);
1707   assert(rp != NULL, "error in realpath(): maybe the 'path' argument is too long?");
1708 
1709   strncpy(saved_jvm_path, buf, sizeof(saved_jvm_path));
1710   saved_jvm_path[sizeof(saved_jvm_path) - 1] = '\0';
1711 }
1712 
1713 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1714   // no prefix required, not even "_"
1715 }
1716 
1717 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1718   // no suffix required
1719 }
1720 
1721 ////////////////////////////////////////////////////////////////////////////////
1722 // sun.misc.Signal support
1723 
1724 static volatile jint sigint_count = 0;
1725 
1726 static void
1727 UserHandler(int sig, void *siginfo, void *context) {
1728   // 4511530 - sem_post is serialized and handled by the manager thread. When
1729   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
1730   // don't want to flood the manager thread with sem_post requests.
1731   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
1732     return;
1733 
1734   // Ctrl-C is pressed during error reporting, likely because the error
1735   // handler fails to abort. Let VM die immediately.
1736   if (sig == SIGINT && is_error_reported()) {
1737     os::die();
1738   }
1739 
1740   os::signal_notify(sig);
1741 }
1742 
1743 void* os::user_handler() {
1744   return CAST_FROM_FN_PTR(void*, UserHandler);
1745 }
1746 
1747 extern "C" {
1748   typedef void (*sa_handler_t)(int);
1749   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
1750 }
1751 
1752 void* os::signal(int signal_number, void* handler) {
1753   struct sigaction sigAct, oldSigAct;
1754 
1755   sigfillset(&(sigAct.sa_mask));
1756 
1757   // Do not block out synchronous signals in the signal handler.
1758   // Blocking synchronous signals only makes sense if you can really
1759   // be sure that those signals won't happen during signal handling,
1760   // when the blocking applies. Normal signal handlers are lean and
1761   // do not cause signals. But our signal handlers tend to be "risky"
1762   // - secondary SIGSEGV, SIGILL, SIGBUS' may and do happen.
1763   // On AIX, PASE there was a case where a SIGSEGV happened, followed
1764   // by a SIGILL, which was blocked due to the signal mask. The process
1765   // just hung forever. Better to crash from a secondary signal than to hang.
1766   sigdelset(&(sigAct.sa_mask), SIGSEGV);
1767   sigdelset(&(sigAct.sa_mask), SIGBUS);
1768   sigdelset(&(sigAct.sa_mask), SIGILL);
1769   sigdelset(&(sigAct.sa_mask), SIGFPE);
1770   sigdelset(&(sigAct.sa_mask), SIGTRAP);
1771 
1772   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
1773 
1774   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
1775 
1776   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
1777     // -1 means registration failed
1778     return (void *)-1;
1779   }
1780 
1781   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
1782 }
1783 
1784 void os::signal_raise(int signal_number) {
1785   ::raise(signal_number);
1786 }
1787 
1788 //
1789 // The following code is moved from os.cpp for making this
1790 // code platform specific, which it is by its very nature.
1791 //
1792 
1793 // Will be modified when max signal is changed to be dynamic
1794 int os::sigexitnum_pd() {
1795   return NSIG;
1796 }
1797 
1798 // a counter for each possible signal value
1799 static volatile jint pending_signals[NSIG+1] = { 0 };
1800 
1801 // Linux(POSIX) specific hand shaking semaphore.
1802 static sem_t sig_sem;
1803 
1804 void os::signal_init_pd() {
1805   // Initialize signal structures
1806   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
1807 
1808   // Initialize signal semaphore
1809   int rc = ::sem_init(&sig_sem, 0, 0);
1810   guarantee(rc != -1, "sem_init failed");
1811 }
1812 
1813 void os::signal_notify(int sig) {
1814   Atomic::inc(&pending_signals[sig]);
1815   ::sem_post(&sig_sem);
1816 }
1817 
1818 static int check_pending_signals(bool wait) {
1819   Atomic::store(0, &sigint_count);
1820   for (;;) {
1821     for (int i = 0; i < NSIG + 1; i++) {
1822       jint n = pending_signals[i];
1823       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
1824         return i;
1825       }
1826     }
1827     if (!wait) {
1828       return -1;
1829     }
1830     JavaThread *thread = JavaThread::current();
1831     ThreadBlockInVM tbivm(thread);
1832 
1833     bool threadIsSuspended;
1834     do {
1835       thread->set_suspend_equivalent();
1836       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
1837 
1838       ::sem_wait(&sig_sem);
1839 
1840       // were we externally suspended while we were waiting?
1841       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
1842       if (threadIsSuspended) {
1843         //
1844         // The semaphore has been incremented, but while we were waiting
1845         // another thread suspended us. We don't want to continue running
1846         // while suspended because that would surprise the thread that
1847         // suspended us.
1848         //
1849         ::sem_post(&sig_sem);
1850 
1851         thread->java_suspend_self();
1852       }
1853     } while (threadIsSuspended);
1854   }
1855 }
1856 
1857 int os::signal_lookup() {
1858   return check_pending_signals(false);
1859 }
1860 
1861 int os::signal_wait() {
1862   return check_pending_signals(true);
1863 }
1864 
1865 ////////////////////////////////////////////////////////////////////////////////
1866 // Virtual Memory
1867 
1868 // We need to keep small simple bookkeeping for os::reserve_memory and friends.
1869 
1870 #define VMEM_MAPPED  1
1871 #define VMEM_SHMATED 2
1872 
1873 struct vmembk_t {
1874   int type;         // 1 - mmap, 2 - shmat
1875   char* addr;
1876   size_t size;      // Real size, may be larger than usersize.
1877   size_t pagesize;  // page size of area
1878   vmembk_t* next;
1879 
1880   bool contains_addr(char* p) const {
1881     return p >= addr && p < (addr + size);
1882   }
1883 
1884   bool contains_range(char* p, size_t s) const {
1885     return contains_addr(p) && contains_addr(p + s - 1);
1886   }
1887 
1888   void print_on(outputStream* os) const {
1889     os->print("[" PTR_FORMAT " - " PTR_FORMAT "] (" UINTX_FORMAT
1890       " bytes, %d %s pages), %s",
1891       addr, addr + size - 1, size, size / pagesize, describe_pagesize(pagesize),
1892       (type == VMEM_SHMATED ? "shmat" : "mmap")
1893     );
1894   }
1895 
1896   // Check that range is a sub range of memory block (or equal to memory block);
1897   // also check that range is fully page aligned to the page size if the block.
1898   void assert_is_valid_subrange(char* p, size_t s) const {
1899     if (!contains_range(p, s)) {
1900       fprintf(stderr, "[" PTR_FORMAT " - " PTR_FORMAT "] is not a sub "
1901               "range of [" PTR_FORMAT " - " PTR_FORMAT "].\n",
1902               p, p + s - 1, addr, addr + size - 1);
1903       guarantee0(false);
1904     }
1905     if (!is_aligned_to(p, pagesize) || !is_aligned_to(p + s, pagesize)) {
1906       fprintf(stderr, "range [" PTR_FORMAT " - " PTR_FORMAT "] is not"
1907               " aligned to pagesize (%s)\n", p, p + s);
1908       guarantee0(false);
1909     }
1910   }
1911 };
1912 
1913 static struct {
1914   vmembk_t* first;
1915   MiscUtils::CritSect cs;
1916 } vmem;
1917 
1918 static void vmembk_add(char* addr, size_t size, size_t pagesize, int type) {
1919   vmembk_t* p = (vmembk_t*) ::malloc(sizeof(vmembk_t));
1920   assert0(p);
1921   if (p) {
1922     MiscUtils::AutoCritSect lck(&vmem.cs);
1923     p->addr = addr; p->size = size;
1924     p->pagesize = pagesize;
1925     p->type = type;
1926     p->next = vmem.first;
1927     vmem.first = p;
1928   }
1929 }
1930 
1931 static vmembk_t* vmembk_find(char* addr) {
1932   MiscUtils::AutoCritSect lck(&vmem.cs);
1933   for (vmembk_t* p = vmem.first; p; p = p->next) {
1934     if (p->addr <= addr && (p->addr + p->size) > addr) {
1935       return p;
1936     }
1937   }
1938   return NULL;
1939 }
1940 
1941 static void vmembk_remove(vmembk_t* p0) {
1942   MiscUtils::AutoCritSect lck(&vmem.cs);
1943   assert0(p0);
1944   assert0(vmem.first); // List should not be empty.
1945   for (vmembk_t** pp = &(vmem.first); *pp; pp = &((*pp)->next)) {
1946     if (*pp == p0) {
1947       *pp = p0->next;
1948       ::free(p0);
1949       return;
1950     }
1951   }
1952   assert0(false); // Not found?
1953 }
1954 
1955 static void vmembk_print_on(outputStream* os) {
1956   MiscUtils::AutoCritSect lck(&vmem.cs);
1957   for (vmembk_t* vmi = vmem.first; vmi; vmi = vmi->next) {
1958     vmi->print_on(os);
1959     os->cr();
1960   }
1961 }
1962 
1963 // Reserve and attach a section of System V memory.
1964 // If <requested_addr> is not NULL, function will attempt to attach the memory at the given
1965 // address. Failing that, it will attach the memory anywhere.
1966 // If <requested_addr> is NULL, function will attach the memory anywhere.
1967 //
1968 // <alignment_hint> is being ignored by this function. It is very probable however that the
1969 // alignment requirements are met anyway, because shmat() attaches at 256M boundaries.
1970 // Should this be not enogh, we can put more work into it.
1971 static char* reserve_shmated_memory (
1972   size_t bytes,
1973   char* requested_addr,
1974   size_t alignment_hint) {
1975 
1976   trcVerbose("reserve_shmated_memory " UINTX_FORMAT " bytes, wishaddress "
1977     PTR_FORMAT ", alignment_hint " UINTX_FORMAT "...",
1978     bytes, requested_addr, alignment_hint);
1979 
1980   // Either give me wish address or wish alignment but not both.
1981   assert0(!(requested_addr != NULL && alignment_hint != 0));
1982 
1983   // We must prevent anyone from attaching too close to the
1984   // BRK because that may cause malloc OOM.
1985   if (requested_addr != NULL && is_close_to_brk((address)requested_addr)) {
1986     trcVerbose("Wish address " PTR_FORMAT " is too close to the BRK segment. "
1987       "Will attach anywhere.", requested_addr);
1988     // Act like the OS refused to attach there.
1989     requested_addr = NULL;
1990   }
1991 
1992   // For old AS/400's (V5R4 and older) we should not even be here - System V shared memory is not
1993   // really supported (max size 4GB), so reserve_mmapped_memory should have been used instead.
1994   if (os::Aix::on_pase_V5R4_or_older()) {
1995     ShouldNotReachHere();
1996   }
1997 
1998   // Align size of shm up to 64K to avoid errors if we later try to change the page size.
1999   const size_t size = align_size_up(bytes, SIZE_64K);
2000 
2001   // Reserve the shared segment.
2002   int shmid = shmget(IPC_PRIVATE, size, IPC_CREAT | S_IRUSR | S_IWUSR);
2003   if (shmid == -1) {
2004     trc("shmget(.., " UINTX_FORMAT ", ..) failed (errno: %d).", size, errno);
2005     return NULL;
2006   }
2007 
2008   // Important note:
2009   // It is very important that we, upon leaving this function, do not leave a shm segment alive.
2010   // We must right after attaching it remove it from the system. System V shm segments are global and
2011   // survive the process.
2012   // So, from here on: Do not assert, do not return, until we have called shmctl(IPC_RMID) (A).
2013 
2014   struct shmid_ds shmbuf;
2015   memset(&shmbuf, 0, sizeof(shmbuf));
2016   shmbuf.shm_pagesize = SIZE_64K;
2017   if (shmctl(shmid, SHM_PAGESIZE, &shmbuf) != 0) {
2018     trcVerbose("Failed to set page size (need " UINTX_FORMAT " 64K pages) - shmctl failed with %d.",
2019                size / SIZE_64K, errno);
2020     // I want to know if this ever happens.
2021     assert(false, "failed to set page size for shmat");
2022   }
2023 
2024   // Now attach the shared segment.
2025   // Note that I attach with SHM_RND - which means that the requested address is rounded down, if
2026   // needed, to the next lowest segment boundary. Otherwise the attach would fail if the address
2027   // were not a segment boundary.
2028   char* const addr = (char*) shmat(shmid, requested_addr, SHM_RND);
2029   const int errno_shmat = errno;
2030 
2031   // (A) Right after shmat and before handing shmat errors delete the shm segment.
2032   if (::shmctl(shmid, IPC_RMID, NULL) == -1) {
2033     trc("shmctl(%u, IPC_RMID) failed (%d)\n", shmid, errno);
2034     assert(false, "failed to remove shared memory segment!");
2035   }
2036 
2037   // Handle shmat error. If we failed to attach, just return.
2038   if (addr == (char*)-1) {
2039     trcVerbose("Failed to attach segment at " PTR_FORMAT " (%d).", requested_addr, errno_shmat);
2040     return NULL;
2041   }
2042 
2043   // Just for info: query the real page size. In case setting the page size did not
2044   // work (see above), the system may have given us something other then 4K (LDR_CNTRL).
2045   const size_t real_pagesize = os::Aix::query_pagesize(addr);
2046   if (real_pagesize != shmbuf.shm_pagesize) {
2047     trcVerbose("pagesize is, surprisingly, %h.", real_pagesize);
2048   }
2049 
2050   if (addr) {
2051     trcVerbose("shm-allocated " PTR_FORMAT " .. " PTR_FORMAT " (" UINTX_FORMAT " bytes, " UINTX_FORMAT " %s pages)",
2052       addr, addr + size - 1, size, size/real_pagesize, describe_pagesize(real_pagesize));
2053   } else {
2054     if (requested_addr != NULL) {
2055       trcVerbose("failed to shm-allocate " UINTX_FORMAT " bytes at with address " PTR_FORMAT ".", size, requested_addr);
2056     } else {
2057       trcVerbose("failed to shm-allocate " UINTX_FORMAT " bytes at any address.", size);
2058     }
2059   }
2060 
2061   // book-keeping
2062   vmembk_add(addr, size, real_pagesize, VMEM_SHMATED);
2063   assert0(is_aligned_to(addr, os::vm_page_size()));
2064 
2065   return addr;
2066 }
2067 
2068 static bool release_shmated_memory(char* addr, size_t size) {
2069 
2070   trcVerbose("release_shmated_memory [" PTR_FORMAT " - " PTR_FORMAT "].",
2071     addr, addr + size - 1);
2072 
2073   bool rc = false;
2074 
2075   // TODO: is there a way to verify shm size without doing bookkeeping?
2076   if (::shmdt(addr) != 0) {
2077     trcVerbose("error (%d).", errno);
2078   } else {
2079     trcVerbose("ok.");
2080     rc = true;
2081   }
2082   return rc;
2083 }
2084 
2085 static bool uncommit_shmated_memory(char* addr, size_t size) {
2086   trcVerbose("uncommit_shmated_memory [" PTR_FORMAT " - " PTR_FORMAT "].",
2087     addr, addr + size - 1);
2088 
2089   const bool rc = my_disclaim64(addr, size);
2090 
2091   if (!rc) {
2092     trcVerbose("my_disclaim64(" PTR_FORMAT ", " UINTX_FORMAT ") failed.\n", addr, size);
2093     return false;
2094   }
2095   return true;
2096 }
2097 
2098 // Reserve memory via mmap.
2099 // If <requested_addr> is given, an attempt is made to attach at the given address.
2100 // Failing that, memory is allocated at any address.
2101 // If <alignment_hint> is given and <requested_addr> is NULL, an attempt is made to
2102 // allocate at an address aligned with the given alignment. Failing that, memory
2103 // is aligned anywhere.
2104 static char* reserve_mmaped_memory(size_t bytes, char* requested_addr, size_t alignment_hint) {
2105   trcVerbose("reserve_mmaped_memory " UINTX_FORMAT " bytes, wishaddress " PTR_FORMAT ", "
2106     "alignment_hint " UINTX_FORMAT "...",
2107     bytes, requested_addr, alignment_hint);
2108 
2109   // If a wish address is given, but not aligned to 4K page boundary, mmap will fail.
2110   if (requested_addr && !is_aligned_to(requested_addr, os::vm_page_size()) != 0) {
2111     trcVerbose("Wish address " PTR_FORMAT " not aligned to page boundary.", requested_addr);
2112     return NULL;
2113   }
2114 
2115   // We must prevent anyone from attaching too close to the
2116   // BRK because that may cause malloc OOM.
2117   if (requested_addr != NULL && is_close_to_brk((address)requested_addr)) {
2118     trcVerbose("Wish address " PTR_FORMAT " is too close to the BRK segment. "
2119       "Will attach anywhere.", requested_addr);
2120     // Act like the OS refused to attach there.
2121     requested_addr = NULL;
2122   }
2123 
2124   // Specify one or the other but not both.
2125   assert0(!(requested_addr != NULL && alignment_hint > 0));
2126 
2127   // In 64K mode, we claim the global page size (os::vm_page_size())
2128   // is 64K. This is one of the few points where that illusion may
2129   // break, because mmap() will always return memory aligned to 4K. So
2130   // we must ensure we only ever return memory aligned to 64k.
2131   if (alignment_hint) {
2132     alignment_hint = lcm(alignment_hint, os::vm_page_size());
2133   } else {
2134     alignment_hint = os::vm_page_size();
2135   }
2136 
2137   // Size shall always be a multiple of os::vm_page_size (esp. in 64K mode).
2138   const size_t size = align_size_up(bytes, os::vm_page_size());
2139 
2140   // alignment: Allocate memory large enough to include an aligned range of the right size and
2141   // cut off the leading and trailing waste pages.
2142   assert0(alignment_hint != 0 && is_aligned_to(alignment_hint, os::vm_page_size())); // see above
2143   const size_t extra_size = size + alignment_hint;
2144 
2145   // Note: MAP_SHARED (instead of MAP_PRIVATE) needed to be able to
2146   // later use msync(MS_INVALIDATE) (see os::uncommit_memory).
2147   int flags = MAP_ANONYMOUS | MAP_SHARED;
2148 
2149   // MAP_FIXED is needed to enforce requested_addr - manpage is vague about what
2150   // it means if wishaddress is given but MAP_FIXED is not set.
2151   //
2152   // Important! Behaviour differs depending on whether SPEC1170 mode is active or not.
2153   // SPEC1170 mode active: behaviour like POSIX, MAP_FIXED will clobber existing mappings.
2154   // SPEC1170 mode not active: behaviour, unlike POSIX, is that no existing mappings will
2155   // get clobbered.
2156   if (requested_addr != NULL) {
2157     if (!os::Aix::xpg_sus_mode()) {  // not SPEC1170 Behaviour
2158       flags |= MAP_FIXED;
2159     }
2160   }
2161 
2162   char* addr = (char*)::mmap(requested_addr, extra_size,
2163       PROT_READ|PROT_WRITE|PROT_EXEC, flags, -1, 0);
2164 
2165   if (addr == MAP_FAILED) {
2166     trcVerbose("mmap(" PTR_FORMAT ", " UINTX_FORMAT ", ..) failed (%d)", requested_addr, size, errno);
2167     return NULL;
2168   }
2169 
2170   // Handle alignment.
2171   char* const addr_aligned = (char *)align_ptr_up(addr, alignment_hint);
2172   const size_t waste_pre = addr_aligned - addr;
2173   char* const addr_aligned_end = addr_aligned + size;
2174   const size_t waste_post = extra_size - waste_pre - size;
2175   if (waste_pre > 0) {
2176     ::munmap(addr, waste_pre);
2177   }
2178   if (waste_post > 0) {
2179     ::munmap(addr_aligned_end, waste_post);
2180   }
2181   addr = addr_aligned;
2182 
2183   if (addr) {
2184     trcVerbose("mmap-allocated " PTR_FORMAT " .. " PTR_FORMAT " (" UINTX_FORMAT " bytes)",
2185       addr, addr + bytes, bytes);
2186   } else {
2187     if (requested_addr != NULL) {
2188       trcVerbose("failed to mmap-allocate " UINTX_FORMAT " bytes at wish address " PTR_FORMAT ".", bytes, requested_addr);
2189     } else {
2190       trcVerbose("failed to mmap-allocate " UINTX_FORMAT " bytes at any address.", bytes);
2191     }
2192   }
2193 
2194   // bookkeeping
2195   vmembk_add(addr, size, SIZE_4K, VMEM_MAPPED);
2196 
2197   // Test alignment, see above.
2198   assert0(is_aligned_to(addr, os::vm_page_size()));
2199 
2200   return addr;
2201 }
2202 
2203 static bool release_mmaped_memory(char* addr, size_t size) {
2204   assert0(is_aligned_to(addr, os::vm_page_size()));
2205   assert0(is_aligned_to(size, os::vm_page_size()));
2206 
2207   trcVerbose("release_mmaped_memory [" PTR_FORMAT " - " PTR_FORMAT "].",
2208     addr, addr + size - 1);
2209   bool rc = false;
2210 
2211   if (::munmap(addr, size) != 0) {
2212     trcVerbose("failed (%d)\n", errno);
2213     rc = false;
2214   } else {
2215     trcVerbose("ok.");
2216     rc = true;
2217   }
2218 
2219   return rc;
2220 }
2221 
2222 static bool uncommit_mmaped_memory(char* addr, size_t size) {
2223 
2224   assert0(is_aligned_to(addr, os::vm_page_size()));
2225   assert0(is_aligned_to(size, os::vm_page_size()));
2226 
2227   trcVerbose("uncommit_mmaped_memory [" PTR_FORMAT " - " PTR_FORMAT "].",
2228     addr, addr + size - 1);
2229   bool rc = false;
2230 
2231   // Uncommit mmap memory with msync MS_INVALIDATE.
2232   if (::msync(addr, size, MS_INVALIDATE) != 0) {
2233     trcVerbose("failed (%d)\n", errno);
2234     rc = false;
2235   } else {
2236     trcVerbose("ok.");
2237     rc = true;
2238   }
2239 
2240   return rc;
2241 }
2242 
2243 // End: shared memory bookkeeping
2244 ////////////////////////////////////////////////////////////////////////////////////////////////////
2245 
2246 int os::vm_page_size() {
2247   // Seems redundant as all get out.
2248   assert(os::Aix::page_size() != -1, "must call os::init");
2249   return os::Aix::page_size();
2250 }
2251 
2252 // Aix allocates memory by pages.
2253 int os::vm_allocation_granularity() {
2254   assert(os::Aix::page_size() != -1, "must call os::init");
2255   return os::Aix::page_size();
2256 }
2257 
2258 #ifdef PRODUCT
2259 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2260                                     int err) {
2261   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2262           ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2263           strerror(err), err);
2264 }
2265 #endif
2266 
2267 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2268                                   const char* mesg) {
2269   assert(mesg != NULL, "mesg must be specified");
2270   if (!pd_commit_memory(addr, size, exec)) {
2271     // Add extra info in product mode for vm_exit_out_of_memory():
2272     PRODUCT_ONLY(warn_fail_commit_memory(addr, size, exec, errno);)
2273     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2274   }
2275 }
2276 
2277 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2278 
2279   assert0(is_aligned_to(addr, os::vm_page_size()));
2280   assert0(is_aligned_to(size, os::vm_page_size()));
2281 
2282   vmembk_t* const vmi = vmembk_find(addr);
2283   assert0(vmi);
2284   vmi->assert_is_valid_subrange(addr, size);
2285 
2286   trcVerbose("commit_memory [" PTR_FORMAT " - " PTR_FORMAT "].", addr, addr + size - 1);
2287 
2288   return true;
2289 }
2290 
2291 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint, bool exec) {
2292   return pd_commit_memory(addr, size, exec);
2293 }
2294 
2295 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2296                                   size_t alignment_hint, bool exec,
2297                                   const char* mesg) {
2298   // Alignment_hint is ignored on this OS.
2299   pd_commit_memory_or_exit(addr, size, exec, mesg);
2300 }
2301 
2302 bool os::pd_uncommit_memory(char* addr, size_t size) {
2303   assert0(is_aligned_to(addr, os::vm_page_size()));
2304   assert0(is_aligned_to(size, os::vm_page_size()));
2305 
2306   // Dynamically do different things for mmap/shmat.
2307   const vmembk_t* const vmi = vmembk_find(addr);
2308   assert0(vmi);
2309   vmi->assert_is_valid_subrange(addr, size);
2310 
2311   if (vmi->type == VMEM_SHMATED) {
2312     return uncommit_shmated_memory(addr, size);
2313   } else {
2314     return uncommit_mmaped_memory(addr, size);
2315   }
2316 }
2317 
2318 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2319   // Do not call this; no need to commit stack pages on AIX.
2320   ShouldNotReachHere();
2321   return true;
2322 }
2323 
2324 bool os::remove_stack_guard_pages(char* addr, size_t size) {
2325   // Do not call this; no need to commit stack pages on AIX.
2326   ShouldNotReachHere();
2327   return true;
2328 }
2329 
2330 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2331 }
2332 
2333 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2334 }
2335 
2336 void os::numa_make_global(char *addr, size_t bytes) {
2337 }
2338 
2339 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2340 }
2341 
2342 bool os::numa_topology_changed() {
2343   return false;
2344 }
2345 
2346 size_t os::numa_get_groups_num() {
2347   return 1;
2348 }
2349 
2350 int os::numa_get_group_id() {
2351   return 0;
2352 }
2353 
2354 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2355   if (size > 0) {
2356     ids[0] = 0;
2357     return 1;
2358   }
2359   return 0;
2360 }
2361 
2362 bool os::get_page_info(char *start, page_info* info) {
2363   return false;
2364 }
2365 
2366 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2367   return end;
2368 }
2369 
2370 // Reserves and attaches a shared memory segment.
2371 // Will assert if a wish address is given and could not be obtained.
2372 char* os::pd_reserve_memory(size_t bytes, char* requested_addr, size_t alignment_hint) {
2373 
2374   // All other Unices do a mmap(MAP_FIXED) if the addr is given,
2375   // thereby clobbering old mappings at that place. That is probably
2376   // not intended, never used and almost certainly an error were it
2377   // ever be used this way (to try attaching at a specified address
2378   // without clobbering old mappings an alternate API exists,
2379   // os::attempt_reserve_memory_at()).
2380   // Instead of mimicking the dangerous coding of the other platforms, here I
2381   // just ignore the request address (release) or assert(debug).
2382   assert0(requested_addr == NULL);
2383 
2384   // Always round to os::vm_page_size(), which may be larger than 4K.
2385   bytes = align_size_up(bytes, os::vm_page_size());
2386   const size_t alignment_hint0 =
2387     alignment_hint ? align_size_up(alignment_hint, os::vm_page_size()) : 0;
2388 
2389   // In 4K mode always use mmap.
2390   // In 64K mode allocate small sizes with mmap, large ones with 64K shmatted.
2391   if (os::vm_page_size() == SIZE_4K) {
2392     return reserve_mmaped_memory(bytes, requested_addr, alignment_hint);
2393   } else {
2394     if (bytes >= Use64KPagesThreshold) {
2395       return reserve_shmated_memory(bytes, requested_addr, alignment_hint);
2396     } else {
2397       return reserve_mmaped_memory(bytes, requested_addr, alignment_hint);
2398     }
2399   }
2400 }
2401 
2402 bool os::pd_release_memory(char* addr, size_t size) {
2403 
2404   // Dynamically do different things for mmap/shmat.
2405   vmembk_t* const vmi = vmembk_find(addr);
2406   assert0(vmi);
2407 
2408   // Always round to os::vm_page_size(), which may be larger than 4K.
2409   size = align_size_up(size, os::vm_page_size());
2410   addr = (char *)align_ptr_up(addr, os::vm_page_size());
2411 
2412   bool rc = false;
2413   bool remove_bookkeeping = false;
2414   if (vmi->type == VMEM_SHMATED) {
2415     // For shmatted memory, we do:
2416     // - If user wants to release the whole range, release the memory (shmdt).
2417     // - If user only wants to release a partial range, uncommit (disclaim) that
2418     //   range. That way, at least, we do not use memory anymore (bust still page
2419     //   table space).
2420     vmi->assert_is_valid_subrange(addr, size);
2421     if (addr == vmi->addr && size == vmi->size) {
2422       rc = release_shmated_memory(addr, size);
2423       remove_bookkeeping = true;
2424     } else {
2425       rc = uncommit_shmated_memory(addr, size);
2426     }
2427   } else {
2428     // User may unmap partial regions but region has to be fully contained.
2429 #ifdef ASSERT
2430     vmi->assert_is_valid_subrange(addr, size);
2431 #endif
2432     rc = release_mmaped_memory(addr, size);
2433     remove_bookkeeping = true;
2434   }
2435 
2436   // update bookkeeping
2437   if (rc && remove_bookkeeping) {
2438     vmembk_remove(vmi);
2439   }
2440 
2441   return rc;
2442 }
2443 
2444 static bool checked_mprotect(char* addr, size_t size, int prot) {
2445 
2446   // Little problem here: if SPEC1170 behaviour is off, mprotect() on AIX will
2447   // not tell me if protection failed when trying to protect an un-protectable range.
2448   //
2449   // This means if the memory was allocated using shmget/shmat, protection wont work
2450   // but mprotect will still return 0:
2451   //
2452   // See http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.aix.basetechref/doc/basetrf1/mprotect.htm
2453 
2454   bool rc = ::mprotect(addr, size, prot) == 0 ? true : false;
2455 
2456   if (!rc) {
2457     const char* const s_errno = strerror(errno);
2458     warning("mprotect(" PTR_FORMAT "-" PTR_FORMAT ", 0x%X) failed (%s).", addr, addr + size, prot, s_errno);
2459     return false;
2460   }
2461 
2462   // mprotect success check
2463   //
2464   // Mprotect said it changed the protection but can I believe it?
2465   //
2466   // To be sure I need to check the protection afterwards. Try to
2467   // read from protected memory and check whether that causes a segfault.
2468   //
2469   if (!os::Aix::xpg_sus_mode()) {
2470 
2471     if (CanUseSafeFetch32()) {
2472 
2473       const bool read_protected =
2474         (SafeFetch32((int*)addr, 0x12345678) == 0x12345678 &&
2475          SafeFetch32((int*)addr, 0x76543210) == 0x76543210) ? true : false;
2476 
2477       if (prot & PROT_READ) {
2478         rc = !read_protected;
2479       } else {
2480         rc = read_protected;
2481       }
2482     }
2483   }
2484   if (!rc) {
2485     assert(false, "mprotect failed.");
2486   }
2487   return rc;
2488 }
2489 
2490 // Set protections specified
2491 bool os::protect_memory(char* addr, size_t size, ProtType prot, bool is_committed) {
2492   unsigned int p = 0;
2493   switch (prot) {
2494   case MEM_PROT_NONE: p = PROT_NONE; break;
2495   case MEM_PROT_READ: p = PROT_READ; break;
2496   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2497   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2498   default:
2499     ShouldNotReachHere();
2500   }
2501   // is_committed is unused.
2502   return checked_mprotect(addr, size, p);
2503 }
2504 
2505 bool os::guard_memory(char* addr, size_t size) {
2506   return checked_mprotect(addr, size, PROT_NONE);
2507 }
2508 
2509 bool os::unguard_memory(char* addr, size_t size) {
2510   return checked_mprotect(addr, size, PROT_READ|PROT_WRITE|PROT_EXEC);
2511 }
2512 
2513 // Large page support
2514 
2515 static size_t _large_page_size = 0;
2516 
2517 // Enable large page support if OS allows that.
2518 void os::large_page_init() {
2519   return; // Nothing to do. See query_multipage_support and friends.
2520 }
2521 
2522 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
2523   // "exec" is passed in but not used. Creating the shared image for
2524   // the code cache doesn't have an SHM_X executable permission to check.
2525   Unimplemented();
2526   return 0;
2527 }
2528 
2529 bool os::release_memory_special(char* base, size_t bytes) {
2530   // Detaching the SHM segment will also delete it, see reserve_memory_special().
2531   Unimplemented();
2532   return false;
2533 }
2534 
2535 size_t os::large_page_size() {
2536   return _large_page_size;
2537 }
2538 
2539 bool os::can_commit_large_page_memory() {
2540   // Does not matter, we do not support huge pages.
2541   return false;
2542 }
2543 
2544 bool os::can_execute_large_page_memory() {
2545   // Does not matter, we do not support huge pages.
2546   return false;
2547 }
2548 
2549 // Reserve memory at an arbitrary address, only if that area is
2550 // available (and not reserved for something else).
2551 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2552   char* addr = NULL;
2553 
2554   // Always round to os::vm_page_size(), which may be larger than 4K.
2555   bytes = align_size_up(bytes, os::vm_page_size());
2556 
2557   // In 4K mode always use mmap.
2558   // In 64K mode allocate small sizes with mmap, large ones with 64K shmatted.
2559   if (os::vm_page_size() == SIZE_4K) {
2560     return reserve_mmaped_memory(bytes, requested_addr, 0);
2561   } else {
2562     if (bytes >= Use64KPagesThreshold) {
2563       return reserve_shmated_memory(bytes, requested_addr, 0);
2564     } else {
2565       return reserve_mmaped_memory(bytes, requested_addr, 0);
2566     }
2567   }
2568 
2569   return addr;
2570 }
2571 
2572 size_t os::read(int fd, void *buf, unsigned int nBytes) {
2573   return ::read(fd, buf, nBytes);
2574 }
2575 
2576 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
2577   return ::pread(fd, buf, nBytes, offset);
2578 }
2579 
2580 void os::naked_short_sleep(jlong ms) {
2581   struct timespec req;
2582 
2583   assert(ms < 1000, "Un-interruptable sleep, short time use only");
2584   req.tv_sec = 0;
2585   if (ms > 0) {
2586     req.tv_nsec = (ms % 1000) * 1000000;
2587   }
2588   else {
2589     req.tv_nsec = 1;
2590   }
2591 
2592   nanosleep(&req, NULL);
2593 
2594   return;
2595 }
2596 
2597 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
2598 void os::infinite_sleep() {
2599   while (true) {    // sleep forever ...
2600     ::sleep(100);   // ... 100 seconds at a time
2601   }
2602 }
2603 
2604 // Used to convert frequent JVM_Yield() to nops
2605 bool os::dont_yield() {
2606   return DontYieldALot;
2607 }
2608 
2609 void os::naked_yield() {
2610   sched_yield();
2611 }
2612 
2613 ////////////////////////////////////////////////////////////////////////////////
2614 // thread priority support
2615 
2616 // From AIX manpage to pthread_setschedparam
2617 // (see: http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?
2618 //    topic=/com.ibm.aix.basetechref/doc/basetrf1/pthread_setschedparam.htm):
2619 //
2620 // "If schedpolicy is SCHED_OTHER, then sched_priority must be in the
2621 // range from 40 to 80, where 40 is the least favored priority and 80
2622 // is the most favored."
2623 //
2624 // (Actually, I doubt this even has an impact on AIX, as we do kernel
2625 // scheduling there; however, this still leaves iSeries.)
2626 //
2627 // We use the same values for AIX and PASE.
2628 int os::java_to_os_priority[CriticalPriority + 1] = {
2629   54,             // 0 Entry should never be used
2630 
2631   55,             // 1 MinPriority
2632   55,             // 2
2633   56,             // 3
2634 
2635   56,             // 4
2636   57,             // 5 NormPriority
2637   57,             // 6
2638 
2639   58,             // 7
2640   58,             // 8
2641   59,             // 9 NearMaxPriority
2642 
2643   60,             // 10 MaxPriority
2644 
2645   60              // 11 CriticalPriority
2646 };
2647 
2648 OSReturn os::set_native_priority(Thread* thread, int newpri) {
2649   if (!UseThreadPriorities) return OS_OK;
2650   pthread_t thr = thread->osthread()->pthread_id();
2651   int policy = SCHED_OTHER;
2652   struct sched_param param;
2653   param.sched_priority = newpri;
2654   int ret = pthread_setschedparam(thr, policy, &param);
2655 
2656   if (ret != 0) {
2657     trcVerbose("Could not change priority for thread %d to %d (error %d, %s)",
2658         (int)thr, newpri, ret, strerror(ret));
2659   }
2660   return (ret == 0) ? OS_OK : OS_ERR;
2661 }
2662 
2663 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
2664   if (!UseThreadPriorities) {
2665     *priority_ptr = java_to_os_priority[NormPriority];
2666     return OS_OK;
2667   }
2668   pthread_t thr = thread->osthread()->pthread_id();
2669   int policy = SCHED_OTHER;
2670   struct sched_param param;
2671   int ret = pthread_getschedparam(thr, &policy, &param);
2672   *priority_ptr = param.sched_priority;
2673 
2674   return (ret == 0) ? OS_OK : OS_ERR;
2675 }
2676 
2677 // Hint to the underlying OS that a task switch would not be good.
2678 // Void return because it's a hint and can fail.
2679 void os::hint_no_preempt() {}
2680 
2681 ////////////////////////////////////////////////////////////////////////////////
2682 // suspend/resume support
2683 
2684 //  the low-level signal-based suspend/resume support is a remnant from the
2685 //  old VM-suspension that used to be for java-suspension, safepoints etc,
2686 //  within hotspot. Now there is a single use-case for this:
2687 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
2688 //      that runs in the watcher thread.
2689 //  The remaining code is greatly simplified from the more general suspension
2690 //  code that used to be used.
2691 //
2692 //  The protocol is quite simple:
2693 //  - suspend:
2694 //      - sends a signal to the target thread
2695 //      - polls the suspend state of the osthread using a yield loop
2696 //      - target thread signal handler (SR_handler) sets suspend state
2697 //        and blocks in sigsuspend until continued
2698 //  - resume:
2699 //      - sets target osthread state to continue
2700 //      - sends signal to end the sigsuspend loop in the SR_handler
2701 //
2702 //  Note that the SR_lock plays no role in this suspend/resume protocol.
2703 //
2704 
2705 static void resume_clear_context(OSThread *osthread) {
2706   osthread->set_ucontext(NULL);
2707   osthread->set_siginfo(NULL);
2708 }
2709 
2710 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
2711   osthread->set_ucontext(context);
2712   osthread->set_siginfo(siginfo);
2713 }
2714 
2715 //
2716 // Handler function invoked when a thread's execution is suspended or
2717 // resumed. We have to be careful that only async-safe functions are
2718 // called here (Note: most pthread functions are not async safe and
2719 // should be avoided.)
2720 //
2721 // Note: sigwait() is a more natural fit than sigsuspend() from an
2722 // interface point of view, but sigwait() prevents the signal hander
2723 // from being run. libpthread would get very confused by not having
2724 // its signal handlers run and prevents sigwait()'s use with the
2725 // mutex granting granting signal.
2726 //
2727 // Currently only ever called on the VMThread and JavaThreads (PC sampling).
2728 //
2729 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
2730   // Save and restore errno to avoid confusing native code with EINTR
2731   // after sigsuspend.
2732   int old_errno = errno;
2733 
2734   Thread* thread = Thread::current();
2735   OSThread* osthread = thread->osthread();
2736   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
2737 
2738   os::SuspendResume::State current = osthread->sr.state();
2739   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
2740     suspend_save_context(osthread, siginfo, context);
2741 
2742     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
2743     os::SuspendResume::State state = osthread->sr.suspended();
2744     if (state == os::SuspendResume::SR_SUSPENDED) {
2745       sigset_t suspend_set;  // signals for sigsuspend()
2746 
2747       // get current set of blocked signals and unblock resume signal
2748       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
2749       sigdelset(&suspend_set, SR_signum);
2750 
2751       // wait here until we are resumed
2752       while (1) {
2753         sigsuspend(&suspend_set);
2754 
2755         os::SuspendResume::State result = osthread->sr.running();
2756         if (result == os::SuspendResume::SR_RUNNING) {
2757           break;
2758         }
2759       }
2760 
2761     } else if (state == os::SuspendResume::SR_RUNNING) {
2762       // request was cancelled, continue
2763     } else {
2764       ShouldNotReachHere();
2765     }
2766 
2767     resume_clear_context(osthread);
2768   } else if (current == os::SuspendResume::SR_RUNNING) {
2769     // request was cancelled, continue
2770   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
2771     // ignore
2772   } else {
2773     ShouldNotReachHere();
2774   }
2775 
2776   errno = old_errno;
2777 }
2778 
2779 static int SR_initialize() {
2780   struct sigaction act;
2781   char *s;
2782   // Get signal number to use for suspend/resume
2783   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
2784     int sig = ::strtol(s, 0, 10);
2785     if (sig > 0 || sig < NSIG) {
2786       SR_signum = sig;
2787     }
2788   }
2789 
2790   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
2791         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
2792 
2793   sigemptyset(&SR_sigset);
2794   sigaddset(&SR_sigset, SR_signum);
2795 
2796   // Set up signal handler for suspend/resume.
2797   act.sa_flags = SA_RESTART|SA_SIGINFO;
2798   act.sa_handler = (void (*)(int)) SR_handler;
2799 
2800   // SR_signum is blocked by default.
2801   // 4528190 - We also need to block pthread restart signal (32 on all
2802   // supported Linux platforms). Note that LinuxThreads need to block
2803   // this signal for all threads to work properly. So we don't have
2804   // to use hard-coded signal number when setting up the mask.
2805   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
2806 
2807   if (sigaction(SR_signum, &act, 0) == -1) {
2808     return -1;
2809   }
2810 
2811   // Save signal flag
2812   os::Aix::set_our_sigflags(SR_signum, act.sa_flags);
2813   return 0;
2814 }
2815 
2816 static int SR_finalize() {
2817   return 0;
2818 }
2819 
2820 static int sr_notify(OSThread* osthread) {
2821   int status = pthread_kill(osthread->pthread_id(), SR_signum);
2822   assert_status(status == 0, status, "pthread_kill");
2823   return status;
2824 }
2825 
2826 // "Randomly" selected value for how long we want to spin
2827 // before bailing out on suspending a thread, also how often
2828 // we send a signal to a thread we want to resume
2829 static const int RANDOMLY_LARGE_INTEGER = 1000000;
2830 static const int RANDOMLY_LARGE_INTEGER2 = 100;
2831 
2832 // returns true on success and false on error - really an error is fatal
2833 // but this seems the normal response to library errors
2834 static bool do_suspend(OSThread* osthread) {
2835   assert(osthread->sr.is_running(), "thread should be running");
2836   // mark as suspended and send signal
2837 
2838   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
2839     // failed to switch, state wasn't running?
2840     ShouldNotReachHere();
2841     return false;
2842   }
2843 
2844   if (sr_notify(osthread) != 0) {
2845     // try to cancel, switch to running
2846 
2847     os::SuspendResume::State result = osthread->sr.cancel_suspend();
2848     if (result == os::SuspendResume::SR_RUNNING) {
2849       // cancelled
2850       return false;
2851     } else if (result == os::SuspendResume::SR_SUSPENDED) {
2852       // somehow managed to suspend
2853       return true;
2854     } else {
2855       ShouldNotReachHere();
2856       return false;
2857     }
2858   }
2859 
2860   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
2861 
2862   for (int n = 0; !osthread->sr.is_suspended(); n++) {
2863     for (int i = 0; i < RANDOMLY_LARGE_INTEGER2 && !osthread->sr.is_suspended(); i++) {
2864       os::naked_yield();
2865     }
2866 
2867     // timeout, try to cancel the request
2868     if (n >= RANDOMLY_LARGE_INTEGER) {
2869       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
2870       if (cancelled == os::SuspendResume::SR_RUNNING) {
2871         return false;
2872       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
2873         return true;
2874       } else {
2875         ShouldNotReachHere();
2876         return false;
2877       }
2878     }
2879   }
2880 
2881   guarantee(osthread->sr.is_suspended(), "Must be suspended");
2882   return true;
2883 }
2884 
2885 static void do_resume(OSThread* osthread) {
2886   //assert(osthread->sr.is_suspended(), "thread should be suspended");
2887 
2888   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
2889     // failed to switch to WAKEUP_REQUEST
2890     ShouldNotReachHere();
2891     return;
2892   }
2893 
2894   while (!osthread->sr.is_running()) {
2895     if (sr_notify(osthread) == 0) {
2896       for (int n = 0; n < RANDOMLY_LARGE_INTEGER && !osthread->sr.is_running(); n++) {
2897         for (int i = 0; i < 100 && !osthread->sr.is_running(); i++) {
2898           os::naked_yield();
2899         }
2900       }
2901     } else {
2902       ShouldNotReachHere();
2903     }
2904   }
2905 
2906   guarantee(osthread->sr.is_running(), "Must be running!");
2907 }
2908 
2909 ///////////////////////////////////////////////////////////////////////////////////
2910 // signal handling (except suspend/resume)
2911 
2912 // This routine may be used by user applications as a "hook" to catch signals.
2913 // The user-defined signal handler must pass unrecognized signals to this
2914 // routine, and if it returns true (non-zero), then the signal handler must
2915 // return immediately. If the flag "abort_if_unrecognized" is true, then this
2916 // routine will never retun false (zero), but instead will execute a VM panic
2917 // routine kill the process.
2918 //
2919 // If this routine returns false, it is OK to call it again. This allows
2920 // the user-defined signal handler to perform checks either before or after
2921 // the VM performs its own checks. Naturally, the user code would be making
2922 // a serious error if it tried to handle an exception (such as a null check
2923 // or breakpoint) that the VM was generating for its own correct operation.
2924 //
2925 // This routine may recognize any of the following kinds of signals:
2926 //   SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
2927 // It should be consulted by handlers for any of those signals.
2928 //
2929 // The caller of this routine must pass in the three arguments supplied
2930 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
2931 // field of the structure passed to sigaction(). This routine assumes that
2932 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
2933 //
2934 // Note that the VM will print warnings if it detects conflicting signal
2935 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
2936 //
2937 extern "C" JNIEXPORT int
2938 JVM_handle_aix_signal(int signo, siginfo_t* siginfo, void* ucontext, int abort_if_unrecognized);
2939 
2940 // Set thread signal mask (for some reason on AIX sigthreadmask() seems
2941 // to be the thing to call; documentation is not terribly clear about whether
2942 // pthread_sigmask also works, and if it does, whether it does the same.
2943 bool set_thread_signal_mask(int how, const sigset_t* set, sigset_t* oset) {
2944   const int rc = ::pthread_sigmask(how, set, oset);
2945   // return value semantics differ slightly for error case:
2946   // pthread_sigmask returns error number, sigthreadmask -1 and sets global errno
2947   // (so, pthread_sigmask is more theadsafe for error handling)
2948   // But success is always 0.
2949   return rc == 0 ? true : false;
2950 }
2951 
2952 // Function to unblock all signals which are, according
2953 // to POSIX, typical program error signals. If they happen while being blocked,
2954 // they typically will bring down the process immediately.
2955 bool unblock_program_error_signals() {
2956   sigset_t set;
2957   ::sigemptyset(&set);
2958   ::sigaddset(&set, SIGILL);
2959   ::sigaddset(&set, SIGBUS);
2960   ::sigaddset(&set, SIGFPE);
2961   ::sigaddset(&set, SIGSEGV);
2962   return set_thread_signal_mask(SIG_UNBLOCK, &set, NULL);
2963 }
2964 
2965 // Renamed from 'signalHandler' to avoid collision with other shared libs.
2966 void javaSignalHandler(int sig, siginfo_t* info, void* uc) {
2967   assert(info != NULL && uc != NULL, "it must be old kernel");
2968 
2969   // Never leave program error signals blocked;
2970   // on all our platforms they would bring down the process immediately when
2971   // getting raised while being blocked.
2972   unblock_program_error_signals();
2973 
2974   JVM_handle_aix_signal(sig, info, uc, true);
2975 }
2976 
2977 // This boolean allows users to forward their own non-matching signals
2978 // to JVM_handle_aix_signal, harmlessly.
2979 bool os::Aix::signal_handlers_are_installed = false;
2980 
2981 // For signal-chaining
2982 struct sigaction os::Aix::sigact[MAXSIGNUM];
2983 unsigned int os::Aix::sigs = 0;
2984 bool os::Aix::libjsig_is_loaded = false;
2985 typedef struct sigaction *(*get_signal_t)(int);
2986 get_signal_t os::Aix::get_signal_action = NULL;
2987 
2988 struct sigaction* os::Aix::get_chained_signal_action(int sig) {
2989   struct sigaction *actp = NULL;
2990 
2991   if (libjsig_is_loaded) {
2992     // Retrieve the old signal handler from libjsig
2993     actp = (*get_signal_action)(sig);
2994   }
2995   if (actp == NULL) {
2996     // Retrieve the preinstalled signal handler from jvm
2997     actp = get_preinstalled_handler(sig);
2998   }
2999 
3000   return actp;
3001 }
3002 
3003 static bool call_chained_handler(struct sigaction *actp, int sig,
3004                                  siginfo_t *siginfo, void *context) {
3005   // Call the old signal handler
3006   if (actp->sa_handler == SIG_DFL) {
3007     // It's more reasonable to let jvm treat it as an unexpected exception
3008     // instead of taking the default action.
3009     return false;
3010   } else if (actp->sa_handler != SIG_IGN) {
3011     if ((actp->sa_flags & SA_NODEFER) == 0) {
3012       // automaticlly block the signal
3013       sigaddset(&(actp->sa_mask), sig);
3014     }
3015 
3016     sa_handler_t hand = NULL;
3017     sa_sigaction_t sa = NULL;
3018     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3019     // retrieve the chained handler
3020     if (siginfo_flag_set) {
3021       sa = actp->sa_sigaction;
3022     } else {
3023       hand = actp->sa_handler;
3024     }
3025 
3026     if ((actp->sa_flags & SA_RESETHAND) != 0) {
3027       actp->sa_handler = SIG_DFL;
3028     }
3029 
3030     // try to honor the signal mask
3031     sigset_t oset;
3032     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3033 
3034     // call into the chained handler
3035     if (siginfo_flag_set) {
3036       (*sa)(sig, siginfo, context);
3037     } else {
3038       (*hand)(sig);
3039     }
3040 
3041     // restore the signal mask
3042     pthread_sigmask(SIG_SETMASK, &oset, 0);
3043   }
3044   // Tell jvm's signal handler the signal is taken care of.
3045   return true;
3046 }
3047 
3048 bool os::Aix::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3049   bool chained = false;
3050   // signal-chaining
3051   if (UseSignalChaining) {
3052     struct sigaction *actp = get_chained_signal_action(sig);
3053     if (actp != NULL) {
3054       chained = call_chained_handler(actp, sig, siginfo, context);
3055     }
3056   }
3057   return chained;
3058 }
3059 
3060 struct sigaction* os::Aix::get_preinstalled_handler(int sig) {
3061   if ((((unsigned int)1 << sig) & sigs) != 0) {
3062     return &sigact[sig];
3063   }
3064   return NULL;
3065 }
3066 
3067 void os::Aix::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3068   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3069   sigact[sig] = oldAct;
3070   sigs |= (unsigned int)1 << sig;
3071 }
3072 
3073 // for diagnostic
3074 int os::Aix::sigflags[MAXSIGNUM];
3075 
3076 int os::Aix::get_our_sigflags(int sig) {
3077   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3078   return sigflags[sig];
3079 }
3080 
3081 void os::Aix::set_our_sigflags(int sig, int flags) {
3082   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3083   sigflags[sig] = flags;
3084 }
3085 
3086 void os::Aix::set_signal_handler(int sig, bool set_installed) {
3087   // Check for overwrite.
3088   struct sigaction oldAct;
3089   sigaction(sig, (struct sigaction*)NULL, &oldAct);
3090 
3091   void* oldhand = oldAct.sa_sigaction
3092     ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3093     : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3094   // Renamed 'signalHandler' to avoid collision with other shared libs.
3095   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3096       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3097       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)javaSignalHandler)) {
3098     if (AllowUserSignalHandlers || !set_installed) {
3099       // Do not overwrite; user takes responsibility to forward to us.
3100       return;
3101     } else if (UseSignalChaining) {
3102       // save the old handler in jvm
3103       save_preinstalled_handler(sig, oldAct);
3104       // libjsig also interposes the sigaction() call below and saves the
3105       // old sigaction on it own.
3106     } else {
3107       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
3108                     "%#lx for signal %d.", (long)oldhand, sig));
3109     }
3110   }
3111 
3112   struct sigaction sigAct;
3113   sigfillset(&(sigAct.sa_mask));
3114   if (!set_installed) {
3115     sigAct.sa_handler = SIG_DFL;
3116     sigAct.sa_flags = SA_RESTART;
3117   } else {
3118     // Renamed 'signalHandler' to avoid collision with other shared libs.
3119     sigAct.sa_sigaction = javaSignalHandler;
3120     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3121   }
3122   // Save flags, which are set by ours
3123   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3124   sigflags[sig] = sigAct.sa_flags;
3125 
3126   int ret = sigaction(sig, &sigAct, &oldAct);
3127   assert(ret == 0, "check");
3128 
3129   void* oldhand2 = oldAct.sa_sigaction
3130                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3131                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3132   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3133 }
3134 
3135 // install signal handlers for signals that HotSpot needs to
3136 // handle in order to support Java-level exception handling.
3137 void os::Aix::install_signal_handlers() {
3138   if (!signal_handlers_are_installed) {
3139     signal_handlers_are_installed = true;
3140 
3141     // signal-chaining
3142     typedef void (*signal_setting_t)();
3143     signal_setting_t begin_signal_setting = NULL;
3144     signal_setting_t end_signal_setting = NULL;
3145     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3146                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3147     if (begin_signal_setting != NULL) {
3148       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3149                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3150       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3151                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3152       libjsig_is_loaded = true;
3153       assert(UseSignalChaining, "should enable signal-chaining");
3154     }
3155     if (libjsig_is_loaded) {
3156       // Tell libjsig jvm is setting signal handlers
3157       (*begin_signal_setting)();
3158     }
3159 
3160     set_signal_handler(SIGSEGV, true);
3161     set_signal_handler(SIGPIPE, true);
3162     set_signal_handler(SIGBUS, true);
3163     set_signal_handler(SIGILL, true);
3164     set_signal_handler(SIGFPE, true);
3165     set_signal_handler(SIGTRAP, true);
3166     set_signal_handler(SIGXFSZ, true);
3167     set_signal_handler(SIGDANGER, true);
3168 
3169     if (libjsig_is_loaded) {
3170       // Tell libjsig jvm finishes setting signal handlers.
3171       (*end_signal_setting)();
3172     }
3173 
3174     // We don't activate signal checker if libjsig is in place, we trust ourselves
3175     // and if UserSignalHandler is installed all bets are off.
3176     // Log that signal checking is off only if -verbose:jni is specified.
3177     if (CheckJNICalls) {
3178       if (libjsig_is_loaded) {
3179         tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3180         check_signals = false;
3181       }
3182       if (AllowUserSignalHandlers) {
3183         tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3184         check_signals = false;
3185       }
3186       // Need to initialize check_signal_done.
3187       ::sigemptyset(&check_signal_done);
3188     }
3189   }
3190 }
3191 
3192 static const char* get_signal_handler_name(address handler,
3193                                            char* buf, int buflen) {
3194   int offset;
3195   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3196   if (found) {
3197     // skip directory names
3198     const char *p1, *p2;
3199     p1 = buf;
3200     size_t len = strlen(os::file_separator());
3201     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3202     // The way os::dll_address_to_library_name is implemented on Aix
3203     // right now, it always returns -1 for the offset which is not
3204     // terribly informative.
3205     // Will fix that. For now, omit the offset.
3206     jio_snprintf(buf, buflen, "%s", p1);
3207   } else {
3208     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3209   }
3210   return buf;
3211 }
3212 
3213 static void print_signal_handler(outputStream* st, int sig,
3214                                  char* buf, size_t buflen) {
3215   struct sigaction sa;
3216   sigaction(sig, NULL, &sa);
3217 
3218   st->print("%s: ", os::exception_name(sig, buf, buflen));
3219 
3220   address handler = (sa.sa_flags & SA_SIGINFO)
3221     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3222     : CAST_FROM_FN_PTR(address, sa.sa_handler);
3223 
3224   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3225     st->print("SIG_DFL");
3226   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3227     st->print("SIG_IGN");
3228   } else {
3229     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3230   }
3231 
3232   // Print readable mask.
3233   st->print(", sa_mask[0]=");
3234   os::Posix::print_signal_set_short(st, &sa.sa_mask);
3235 
3236   address rh = VMError::get_resetted_sighandler(sig);
3237   // May be, handler was resetted by VMError?
3238   if (rh != NULL) {
3239     handler = rh;
3240     sa.sa_flags = VMError::get_resetted_sigflags(sig);
3241   }
3242 
3243   // Print textual representation of sa_flags.
3244   st->print(", sa_flags=");
3245   os::Posix::print_sa_flags(st, sa.sa_flags);
3246 
3247   // Check: is it our handler?
3248   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)javaSignalHandler) ||
3249       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3250     // It is our signal handler.
3251     // Check for flags, reset system-used one!
3252     if ((int)sa.sa_flags != os::Aix::get_our_sigflags(sig)) {
3253       st->print(", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3254                 os::Aix::get_our_sigflags(sig));
3255     }
3256   }
3257   st->cr();
3258 }
3259 
3260 #define DO_SIGNAL_CHECK(sig) \
3261   if (!sigismember(&check_signal_done, sig)) \
3262     os::Aix::check_signal_handler(sig)
3263 
3264 // This method is a periodic task to check for misbehaving JNI applications
3265 // under CheckJNI, we can add any periodic checks here
3266 
3267 void os::run_periodic_checks() {
3268 
3269   if (check_signals == false) return;
3270 
3271   // SEGV and BUS if overridden could potentially prevent
3272   // generation of hs*.log in the event of a crash, debugging
3273   // such a case can be very challenging, so we absolutely
3274   // check the following for a good measure:
3275   DO_SIGNAL_CHECK(SIGSEGV);
3276   DO_SIGNAL_CHECK(SIGILL);
3277   DO_SIGNAL_CHECK(SIGFPE);
3278   DO_SIGNAL_CHECK(SIGBUS);
3279   DO_SIGNAL_CHECK(SIGPIPE);
3280   DO_SIGNAL_CHECK(SIGXFSZ);
3281   if (UseSIGTRAP) {
3282     DO_SIGNAL_CHECK(SIGTRAP);
3283   }
3284   DO_SIGNAL_CHECK(SIGDANGER);
3285 
3286   // ReduceSignalUsage allows the user to override these handlers
3287   // see comments at the very top and jvm_solaris.h
3288   if (!ReduceSignalUsage) {
3289     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3290     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3291     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3292     DO_SIGNAL_CHECK(BREAK_SIGNAL);
3293   }
3294 
3295   DO_SIGNAL_CHECK(SR_signum);
3296   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
3297 }
3298 
3299 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3300 
3301 static os_sigaction_t os_sigaction = NULL;
3302 
3303 void os::Aix::check_signal_handler(int sig) {
3304   char buf[O_BUFLEN];
3305   address jvmHandler = NULL;
3306 
3307   struct sigaction act;
3308   if (os_sigaction == NULL) {
3309     // only trust the default sigaction, in case it has been interposed
3310     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
3311     if (os_sigaction == NULL) return;
3312   }
3313 
3314   os_sigaction(sig, (struct sigaction*)NULL, &act);
3315 
3316   address thisHandler = (act.sa_flags & SA_SIGINFO)
3317     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3318     : CAST_FROM_FN_PTR(address, act.sa_handler);
3319 
3320   switch(sig) {
3321   case SIGSEGV:
3322   case SIGBUS:
3323   case SIGFPE:
3324   case SIGPIPE:
3325   case SIGILL:
3326   case SIGXFSZ:
3327     // Renamed 'signalHandler' to avoid collision with other shared libs.
3328     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)javaSignalHandler);
3329     break;
3330 
3331   case SHUTDOWN1_SIGNAL:
3332   case SHUTDOWN2_SIGNAL:
3333   case SHUTDOWN3_SIGNAL:
3334   case BREAK_SIGNAL:
3335     jvmHandler = (address)user_handler();
3336     break;
3337 
3338   case INTERRUPT_SIGNAL:
3339     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
3340     break;
3341 
3342   default:
3343     if (sig == SR_signum) {
3344       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
3345     } else {
3346       return;
3347     }
3348     break;
3349   }
3350 
3351   if (thisHandler != jvmHandler) {
3352     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3353     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3354     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3355     // No need to check this sig any longer
3356     sigaddset(&check_signal_done, sig);
3357     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
3358     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
3359       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
3360                     exception_name(sig, buf, O_BUFLEN));
3361     }
3362   } else if (os::Aix::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Aix::get_our_sigflags(sig)) {
3363     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3364     tty->print("expected:" PTR32_FORMAT, os::Aix::get_our_sigflags(sig));
3365     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
3366     // No need to check this sig any longer
3367     sigaddset(&check_signal_done, sig);
3368   }
3369 
3370   // Dump all the signal
3371   if (sigismember(&check_signal_done, sig)) {
3372     print_signal_handlers(tty, buf, O_BUFLEN);
3373   }
3374 }
3375 
3376 extern bool signal_name(int signo, char* buf, size_t len);
3377 
3378 const char* os::exception_name(int exception_code, char* buf, size_t size) {
3379   if (0 < exception_code && exception_code <= SIGRTMAX) {
3380     // signal
3381     if (!signal_name(exception_code, buf, size)) {
3382       jio_snprintf(buf, size, "SIG%d", exception_code);
3383     }
3384     return buf;
3385   } else {
3386     return NULL;
3387   }
3388 }
3389 
3390 // To install functions for atexit system call
3391 extern "C" {
3392   static void perfMemory_exit_helper() {
3393     perfMemory_exit();
3394   }
3395 }
3396 
3397 // This is called _before_ the most of global arguments have been parsed.
3398 void os::init(void) {
3399   // This is basic, we want to know if that ever changes.
3400   // (Shared memory boundary is supposed to be a 256M aligned.)
3401   assert(SHMLBA == ((uint64_t)0x10000000ULL)/*256M*/, "unexpected");
3402 
3403   // First off, we need to know whether we run on AIX or PASE, and
3404   // the OS level we run on.
3405   os::Aix::initialize_os_info();
3406 
3407   // Scan environment (SPEC1170 behaviour, etc).
3408   os::Aix::scan_environment();
3409 
3410   // Check which pages are supported by AIX.
3411   query_multipage_support();
3412 
3413   // Act like we only have one page size by eliminating corner cases which
3414   // we did not support very well anyway.
3415   // We have two input conditions:
3416   // 1) Data segment page size. This is controlled by linker setting (datapsize) on the
3417   //    launcher, and/or by LDR_CNTRL environment variable. The latter overrules the linker
3418   //    setting.
3419   //    Data segment page size is important for us because it defines the thread stack page
3420   //    size, which is needed for guard page handling, stack banging etc.
3421   // 2) The ability to allocate 64k pages dynamically. If this is a given, java heap can
3422   //    and should be allocated with 64k pages.
3423   //
3424   // So, we do the following:
3425   // LDR_CNTRL    can_use_64K_pages_dynamically       what we do                      remarks
3426   // 4K           no                                  4K                              old systems (aix 5.2, as/400 v5r4) or new systems with AME activated
3427   // 4k           yes                                 64k (treat 4k stacks as 64k)    different loader than java and standard settings
3428   // 64k          no              --- AIX 5.2 ? ---
3429   // 64k          yes                                 64k                             new systems and standard java loader (we set datapsize=64k when linking)
3430 
3431   // We explicitly leave no option to change page size, because only upgrading would work,
3432   // not downgrading (if stack page size is 64k you cannot pretend its 4k).
3433 
3434   if (g_multipage_support.datapsize == SIZE_4K) {
3435     // datapsize = 4K. Data segment, thread stacks are 4K paged.
3436     if (g_multipage_support.can_use_64K_pages) {
3437       // .. but we are able to use 64K pages dynamically.
3438       // This would be typical for java launchers which are not linked
3439       // with datapsize=64K (like, any other launcher but our own).
3440       //
3441       // In this case it would be smart to allocate the java heap with 64K
3442       // to get the performance benefit, and to fake 64k pages for the
3443       // data segment (when dealing with thread stacks).
3444       //
3445       // However, leave a possibility to downgrade to 4K, using
3446       // -XX:-Use64KPages.
3447       if (Use64KPages) {
3448         trcVerbose("64K page mode (faked for data segment)");
3449         Aix::_page_size = SIZE_64K;
3450       } else {
3451         trcVerbose("4K page mode (Use64KPages=off)");
3452         Aix::_page_size = SIZE_4K;
3453       }
3454     } else {
3455       // .. and not able to allocate 64k pages dynamically. Here, just
3456       // fall back to 4K paged mode and use mmap for everything.
3457       trcVerbose("4K page mode");
3458       Aix::_page_size = SIZE_4K;
3459       FLAG_SET_ERGO(bool, Use64KPages, false);
3460     }
3461   } else {
3462     // datapsize = 64k. Data segment, thread stacks are 64k paged.
3463     //   This normally means that we can allocate 64k pages dynamically.
3464     //   (There is one special case where this may be false: EXTSHM=on.
3465     //    but we decided to not support that mode).
3466     assert0(g_multipage_support.can_use_64K_pages);
3467     Aix::_page_size = SIZE_64K;
3468     trcVerbose("64K page mode");
3469     FLAG_SET_ERGO(bool, Use64KPages, true);
3470   }
3471 
3472   // Short-wire stack page size to base page size; if that works, we just remove
3473   // that stack page size altogether.
3474   Aix::_stack_page_size = Aix::_page_size;
3475 
3476   // For now UseLargePages is just ignored.
3477   FLAG_SET_ERGO(bool, UseLargePages, false);
3478   _page_sizes[0] = 0;
3479 
3480   // debug trace
3481   trcVerbose("os::vm_page_size %s\n", describe_pagesize(os::vm_page_size()));
3482 
3483   // Next, we need to initialize libo4 and libperfstat libraries.
3484   if (os::Aix::on_pase()) {
3485     os::Aix::initialize_libo4();
3486   } else {
3487     os::Aix::initialize_libperfstat();
3488   }
3489 
3490   // Reset the perfstat information provided by ODM.
3491   if (os::Aix::on_aix()) {
3492     libperfstat::perfstat_reset();
3493   }
3494 
3495   // Now initialze basic system properties. Note that for some of the values we
3496   // need libperfstat etc.
3497   os::Aix::initialize_system_info();
3498 
3499   _initial_pid = getpid();
3500 
3501   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
3502 
3503   init_random(1234567);
3504 
3505   ThreadCritical::initialize();
3506 
3507   // Main_thread points to the aboriginal thread.
3508   Aix::_main_thread = pthread_self();
3509 
3510   initial_time_count = os::elapsed_counter();
3511 
3512   // If the pagesize of the VM is greater than 8K determine the appropriate
3513   // number of initial guard pages. The user can change this with the
3514   // command line arguments, if needed.
3515   if (vm_page_size() > (int)Aix::vm_default_page_size()) {
3516     StackYellowPages = 1;
3517     StackRedPages = 1;
3518     StackShadowPages = round_to((StackShadowPages*Aix::vm_default_page_size()), vm_page_size()) / vm_page_size();
3519   }
3520 }
3521 
3522 // This is called _after_ the global arguments have been parsed.
3523 jint os::init_2(void) {
3524 
3525   trcVerbose("processor count: %d", os::_processor_count);
3526   trcVerbose("physical memory: %lu", Aix::_physical_memory);
3527 
3528   // Initially build up the loaded dll map.
3529   LoadedLibraries::reload();
3530 
3531   const int page_size = Aix::page_size();
3532   const int map_size = page_size;
3533 
3534   address map_address = (address) MAP_FAILED;
3535   const int prot  = PROT_READ;
3536   const int flags = MAP_PRIVATE|MAP_ANONYMOUS;
3537 
3538   // Use optimized addresses for the polling page,
3539   // e.g. map it to a special 32-bit address.
3540   if (OptimizePollingPageLocation) {
3541     // architecture-specific list of address wishes:
3542     address address_wishes[] = {
3543       // AIX: addresses lower than 0x30000000 don't seem to work on AIX.
3544       // PPC64: all address wishes are non-negative 32 bit values where
3545       // the lower 16 bits are all zero. we can load these addresses
3546       // with a single ppc_lis instruction.
3547       (address) 0x30000000, (address) 0x31000000,
3548       (address) 0x32000000, (address) 0x33000000,
3549       (address) 0x40000000, (address) 0x41000000,
3550       (address) 0x42000000, (address) 0x43000000,
3551       (address) 0x50000000, (address) 0x51000000,
3552       (address) 0x52000000, (address) 0x53000000,
3553       (address) 0x60000000, (address) 0x61000000,
3554       (address) 0x62000000, (address) 0x63000000
3555     };
3556     int address_wishes_length = sizeof(address_wishes)/sizeof(address);
3557 
3558     // iterate over the list of address wishes:
3559     for (int i=0; i<address_wishes_length; i++) {
3560       // Try to map with current address wish.
3561       // AIX: AIX needs MAP_FIXED if we provide an address and mmap will
3562       // fail if the address is already mapped.
3563       map_address = (address) ::mmap(address_wishes[i] - (ssize_t)page_size,
3564                                      map_size, prot,
3565                                      flags | MAP_FIXED,
3566                                      -1, 0);
3567       if (Verbose) {
3568         fprintf(stderr, "SafePoint Polling Page address: %p (wish) => %p\n",
3569                 address_wishes[i], map_address + (ssize_t)page_size);
3570       }
3571 
3572       if (map_address + (ssize_t)page_size == address_wishes[i]) {
3573         // Map succeeded and map_address is at wished address, exit loop.
3574         break;
3575       }
3576 
3577       if (map_address != (address) MAP_FAILED) {
3578         // Map succeeded, but polling_page is not at wished address, unmap and continue.
3579         ::munmap(map_address, map_size);
3580         map_address = (address) MAP_FAILED;
3581       }
3582       // Map failed, continue loop.
3583     }
3584   } // end OptimizePollingPageLocation
3585 
3586   if (map_address == (address) MAP_FAILED) {
3587     map_address = (address) ::mmap(NULL, map_size, prot, flags, -1, 0);
3588   }
3589   guarantee(map_address != MAP_FAILED, "os::init_2: failed to allocate polling page");
3590   os::set_polling_page(map_address);
3591 
3592   if (!UseMembar) {
3593     address mem_serialize_page = (address) ::mmap(NULL, Aix::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3594     guarantee(mem_serialize_page != NULL, "mmap Failed for memory serialize page");
3595     os::set_memory_serialize_page(mem_serialize_page);
3596 
3597 #ifndef PRODUCT
3598     if (Verbose && PrintMiscellaneous) {
3599       tty->print("[Memory Serialize Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
3600     }
3601 #endif
3602   }
3603 
3604   // initialize suspend/resume support - must do this before signal_sets_init()
3605   if (SR_initialize() != 0) {
3606     perror("SR_initialize failed");
3607     return JNI_ERR;
3608   }
3609 
3610   Aix::signal_sets_init();
3611   Aix::install_signal_handlers();
3612 
3613   // Check minimum allowable stack size for thread creation and to initialize
3614   // the java system classes, including StackOverflowError - depends on page
3615   // size. Add a page for compiler2 recursion in main thread.
3616   // Add in 2*BytesPerWord times page size to account for VM stack during
3617   // class initialization depending on 32 or 64 bit VM.
3618   os::Aix::min_stack_allowed = MAX2(os::Aix::min_stack_allowed,
3619             (size_t)(StackYellowPages+StackRedPages+StackShadowPages) * Aix::page_size() +
3620                      (2*BytesPerWord COMPILER2_PRESENT(+1)) * Aix::vm_default_page_size());
3621 
3622   os::Aix::min_stack_allowed = align_size_up(os::Aix::min_stack_allowed, os::Aix::page_size());
3623 
3624   size_t threadStackSizeInBytes = ThreadStackSize * K;
3625   if (threadStackSizeInBytes != 0 &&
3626       threadStackSizeInBytes < os::Aix::min_stack_allowed) {
3627     tty->print_cr("\nThe stack size specified is too small, "
3628                   "Specify at least %dk",
3629                   os::Aix::min_stack_allowed / K);
3630     return JNI_ERR;
3631   }
3632 
3633   // Make the stack size a multiple of the page size so that
3634   // the yellow/red zones can be guarded.
3635   // Note that this can be 0, if no default stacksize was set.
3636   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes, vm_page_size()));
3637 
3638   Aix::libpthread_init();
3639 
3640   if (MaxFDLimit) {
3641     // Set the number of file descriptors to max. print out error
3642     // if getrlimit/setrlimit fails but continue regardless.
3643     struct rlimit nbr_files;
3644     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
3645     if (status != 0) {
3646       if (PrintMiscellaneous && (Verbose || WizardMode))
3647         perror("os::init_2 getrlimit failed");
3648     } else {
3649       nbr_files.rlim_cur = nbr_files.rlim_max;
3650       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
3651       if (status != 0) {
3652         if (PrintMiscellaneous && (Verbose || WizardMode))
3653           perror("os::init_2 setrlimit failed");
3654       }
3655     }
3656   }
3657 
3658   if (PerfAllowAtExitRegistration) {
3659     // Only register atexit functions if PerfAllowAtExitRegistration is set.
3660     // Atexit functions can be delayed until process exit time, which
3661     // can be problematic for embedded VM situations. Embedded VMs should
3662     // call DestroyJavaVM() to assure that VM resources are released.
3663 
3664     // Note: perfMemory_exit_helper atexit function may be removed in
3665     // the future if the appropriate cleanup code can be added to the
3666     // VM_Exit VMOperation's doit method.
3667     if (atexit(perfMemory_exit_helper) != 0) {
3668       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
3669     }
3670   }
3671 
3672   return JNI_OK;
3673 }
3674 
3675 // Mark the polling page as unreadable
3676 void os::make_polling_page_unreadable(void) {
3677   if (!guard_memory((char*)_polling_page, Aix::page_size())) {
3678     fatal("Could not disable polling page");
3679   }
3680 };
3681 
3682 // Mark the polling page as readable
3683 void os::make_polling_page_readable(void) {
3684   // Changed according to os_linux.cpp.
3685   if (!checked_mprotect((char *)_polling_page, Aix::page_size(), PROT_READ)) {
3686     fatal(err_msg("Could not enable polling page at " PTR_FORMAT, _polling_page));
3687   }
3688 };
3689 
3690 int os::active_processor_count() {
3691   int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
3692   assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
3693   return online_cpus;
3694 }
3695 
3696 void os::set_native_thread_name(const char *name) {
3697   // Not yet implemented.
3698   return;
3699 }
3700 
3701 bool os::distribute_processes(uint length, uint* distribution) {
3702   // Not yet implemented.
3703   return false;
3704 }
3705 
3706 bool os::bind_to_processor(uint processor_id) {
3707   // Not yet implemented.
3708   return false;
3709 }
3710 
3711 void os::SuspendedThreadTask::internal_do_task() {
3712   if (do_suspend(_thread->osthread())) {
3713     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
3714     do_task(context);
3715     do_resume(_thread->osthread());
3716   }
3717 }
3718 
3719 class PcFetcher : public os::SuspendedThreadTask {
3720 public:
3721   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
3722   ExtendedPC result();
3723 protected:
3724   void do_task(const os::SuspendedThreadTaskContext& context);
3725 private:
3726   ExtendedPC _epc;
3727 };
3728 
3729 ExtendedPC PcFetcher::result() {
3730   guarantee(is_done(), "task is not done yet.");
3731   return _epc;
3732 }
3733 
3734 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
3735   Thread* thread = context.thread();
3736   OSThread* osthread = thread->osthread();
3737   if (osthread->ucontext() != NULL) {
3738     _epc = os::Aix::ucontext_get_pc((ucontext_t *) context.ucontext());
3739   } else {
3740     // NULL context is unexpected, double-check this is the VMThread.
3741     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
3742   }
3743 }
3744 
3745 // Suspends the target using the signal mechanism and then grabs the PC before
3746 // resuming the target. Used by the flat-profiler only
3747 ExtendedPC os::get_thread_pc(Thread* thread) {
3748   // Make sure that it is called by the watcher for the VMThread.
3749   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
3750   assert(thread->is_VM_thread(), "Can only be called for VMThread");
3751 
3752   PcFetcher fetcher(thread);
3753   fetcher.run();
3754   return fetcher.result();
3755 }
3756 
3757 ////////////////////////////////////////////////////////////////////////////////
3758 // debug support
3759 
3760 static address same_page(address x, address y) {
3761   intptr_t page_bits = -os::vm_page_size();
3762   if ((intptr_t(x) & page_bits) == (intptr_t(y) & page_bits))
3763     return x;
3764   else if (x > y)
3765     return (address)(intptr_t(y) | ~page_bits) + 1;
3766   else
3767     return (address)(intptr_t(y) & page_bits);
3768 }
3769 
3770 bool os::find(address addr, outputStream* st) {
3771 
3772   st->print(PTR_FORMAT ": ", addr);
3773 
3774   const LoadedLibraryModule* lib = LoadedLibraries::find_for_text_address(addr);
3775   if (lib) {
3776     lib->print(st);
3777     return true;
3778   } else {
3779     lib = LoadedLibraries::find_for_data_address(addr);
3780     if (lib) {
3781       lib->print(st);
3782       return true;
3783     } else {
3784       st->print_cr("(outside any module)");
3785     }
3786   }
3787 
3788   return false;
3789 }
3790 
3791 ////////////////////////////////////////////////////////////////////////////////
3792 // misc
3793 
3794 // This does not do anything on Aix. This is basically a hook for being
3795 // able to use structured exception handling (thread-local exception filters)
3796 // on, e.g., Win32.
3797 void
3798 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
3799                          JavaCallArguments* args, Thread* thread) {
3800   f(value, method, args, thread);
3801 }
3802 
3803 void os::print_statistics() {
3804 }
3805 
3806 int os::message_box(const char* title, const char* message) {
3807   int i;
3808   fdStream err(defaultStream::error_fd());
3809   for (i = 0; i < 78; i++) err.print_raw("=");
3810   err.cr();
3811   err.print_raw_cr(title);
3812   for (i = 0; i < 78; i++) err.print_raw("-");
3813   err.cr();
3814   err.print_raw_cr(message);
3815   for (i = 0; i < 78; i++) err.print_raw("=");
3816   err.cr();
3817 
3818   char buf[16];
3819   // Prevent process from exiting upon "read error" without consuming all CPU
3820   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3821 
3822   return buf[0] == 'y' || buf[0] == 'Y';
3823 }
3824 
3825 int os::stat(const char *path, struct stat *sbuf) {
3826   char pathbuf[MAX_PATH];
3827   if (strlen(path) > MAX_PATH - 1) {
3828     errno = ENAMETOOLONG;
3829     return -1;
3830   }
3831   os::native_path(strcpy(pathbuf, path));
3832   return ::stat(pathbuf, sbuf);
3833 }
3834 
3835 bool os::check_heap(bool force) {
3836   return true;
3837 }
3838 
3839 // Is a (classpath) directory empty?
3840 bool os::dir_is_empty(const char* path) {
3841   DIR *dir = NULL;
3842   struct dirent *ptr;
3843 
3844   dir = opendir(path);
3845   if (dir == NULL) return true;
3846 
3847   /* Scan the directory */
3848   bool result = true;
3849   char buf[sizeof(struct dirent) + MAX_PATH];
3850   while (result && (ptr = ::readdir(dir)) != NULL) {
3851     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
3852       result = false;
3853     }
3854   }
3855   closedir(dir);
3856   return result;
3857 }
3858 
3859 // This code originates from JDK's sysOpen and open64_w
3860 // from src/solaris/hpi/src/system_md.c
3861 
3862 int os::open(const char *path, int oflag, int mode) {
3863 
3864   if (strlen(path) > MAX_PATH - 1) {
3865     errno = ENAMETOOLONG;
3866     return -1;
3867   }
3868   int fd;
3869 
3870   fd = ::open64(path, oflag, mode);
3871   if (fd == -1) return -1;
3872 
3873   // If the open succeeded, the file might still be a directory.
3874   {
3875     struct stat64 buf64;
3876     int ret = ::fstat64(fd, &buf64);
3877     int st_mode = buf64.st_mode;
3878 
3879     if (ret != -1) {
3880       if ((st_mode & S_IFMT) == S_IFDIR) {
3881         errno = EISDIR;
3882         ::close(fd);
3883         return -1;
3884       }
3885     } else {
3886       ::close(fd);
3887       return -1;
3888     }
3889   }
3890 
3891   // All file descriptors that are opened in the JVM and not
3892   // specifically destined for a subprocess should have the
3893   // close-on-exec flag set. If we don't set it, then careless 3rd
3894   // party native code might fork and exec without closing all
3895   // appropriate file descriptors (e.g. as we do in closeDescriptors in
3896   // UNIXProcess.c), and this in turn might:
3897   //
3898   // - cause end-of-file to fail to be detected on some file
3899   //   descriptors, resulting in mysterious hangs, or
3900   //
3901   // - might cause an fopen in the subprocess to fail on a system
3902   //   suffering from bug 1085341.
3903   //
3904   // (Yes, the default setting of the close-on-exec flag is a Unix
3905   // design flaw.)
3906   //
3907   // See:
3908   // 1085341: 32-bit stdio routines should support file descriptors >255
3909   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
3910   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
3911 #ifdef FD_CLOEXEC
3912   {
3913     int flags = ::fcntl(fd, F_GETFD);
3914     if (flags != -1)
3915       ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
3916   }
3917 #endif
3918 
3919   return fd;
3920 }
3921 
3922 // create binary file, rewriting existing file if required
3923 int os::create_binary_file(const char* path, bool rewrite_existing) {
3924   int oflags = O_WRONLY | O_CREAT;
3925   if (!rewrite_existing) {
3926     oflags |= O_EXCL;
3927   }
3928   return ::open64(path, oflags, S_IREAD | S_IWRITE);
3929 }
3930 
3931 // return current position of file pointer
3932 jlong os::current_file_offset(int fd) {
3933   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
3934 }
3935 
3936 // move file pointer to the specified offset
3937 jlong os::seek_to_file_offset(int fd, jlong offset) {
3938   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
3939 }
3940 
3941 // This code originates from JDK's sysAvailable
3942 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
3943 
3944 int os::available(int fd, jlong *bytes) {
3945   jlong cur, end;
3946   int mode;
3947   struct stat64 buf64;
3948 
3949   if (::fstat64(fd, &buf64) >= 0) {
3950     mode = buf64.st_mode;
3951     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
3952       // XXX: is the following call interruptible? If so, this might
3953       // need to go through the INTERRUPT_IO() wrapper as for other
3954       // blocking, interruptible calls in this file.
3955       int n;
3956       if (::ioctl(fd, FIONREAD, &n) >= 0) {
3957         *bytes = n;
3958         return 1;
3959       }
3960     }
3961   }
3962   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
3963     return 0;
3964   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
3965     return 0;
3966   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
3967     return 0;
3968   }
3969   *bytes = end - cur;
3970   return 1;
3971 }
3972 
3973 // Map a block of memory.
3974 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
3975                         char *addr, size_t bytes, bool read_only,
3976                         bool allow_exec) {
3977   int prot;
3978   int flags = MAP_PRIVATE;
3979 
3980   if (read_only) {
3981     prot = PROT_READ;
3982     flags = MAP_SHARED;
3983   } else {
3984     prot = PROT_READ | PROT_WRITE;
3985     flags = MAP_PRIVATE;
3986   }
3987 
3988   if (allow_exec) {
3989     prot |= PROT_EXEC;
3990   }
3991 
3992   if (addr != NULL) {
3993     flags |= MAP_FIXED;
3994   }
3995 
3996   // Allow anonymous mappings if 'fd' is -1.
3997   if (fd == -1) {
3998     flags |= MAP_ANONYMOUS;
3999   }
4000 
4001   char* mapped_address = (char*)::mmap(addr, (size_t)bytes, prot, flags,
4002                                      fd, file_offset);
4003   if (mapped_address == MAP_FAILED) {
4004     return NULL;
4005   }
4006   return mapped_address;
4007 }
4008 
4009 // Remap a block of memory.
4010 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4011                           char *addr, size_t bytes, bool read_only,
4012                           bool allow_exec) {
4013   // same as map_memory() on this OS
4014   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
4015                         allow_exec);
4016 }
4017 
4018 // Unmap a block of memory.
4019 bool os::pd_unmap_memory(char* addr, size_t bytes) {
4020   return munmap(addr, bytes) == 0;
4021 }
4022 
4023 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4024 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
4025 // of a thread.
4026 //
4027 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4028 // the fast estimate available on the platform.
4029 
4030 jlong os::current_thread_cpu_time() {
4031   // return user + sys since the cost is the same
4032   const jlong n = os::thread_cpu_time(Thread::current(), true /* user + sys */);
4033   assert(n >= 0, "negative CPU time");
4034   return n;
4035 }
4036 
4037 jlong os::thread_cpu_time(Thread* thread) {
4038   // consistent with what current_thread_cpu_time() returns
4039   const jlong n = os::thread_cpu_time(thread, true /* user + sys */);
4040   assert(n >= 0, "negative CPU time");
4041   return n;
4042 }
4043 
4044 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4045   const jlong n = os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4046   assert(n >= 0, "negative CPU time");
4047   return n;
4048 }
4049 
4050 static bool thread_cpu_time_unchecked(Thread* thread, jlong* p_sys_time, jlong* p_user_time) {
4051   bool error = false;
4052 
4053   jlong sys_time = 0;
4054   jlong user_time = 0;
4055 
4056   // Reimplemented using getthrds64().
4057   //
4058   // Works like this:
4059   // For the thread in question, get the kernel thread id. Then get the
4060   // kernel thread statistics using that id.
4061   //
4062   // This only works of course when no pthread scheduling is used,
4063   // i.e. there is a 1:1 relationship to kernel threads.
4064   // On AIX, see AIXTHREAD_SCOPE variable.
4065 
4066   pthread_t pthtid = thread->osthread()->pthread_id();
4067 
4068   // retrieve kernel thread id for the pthread:
4069   tid64_t tid = 0;
4070   struct __pthrdsinfo pinfo;
4071   // I just love those otherworldly IBM APIs which force me to hand down
4072   // dummy buffers for stuff I dont care for...
4073   char dummy[1];
4074   int dummy_size = sizeof(dummy);
4075   if (pthread_getthrds_np(&pthtid, PTHRDSINFO_QUERY_TID, &pinfo, sizeof(pinfo),
4076                           dummy, &dummy_size) == 0) {
4077     tid = pinfo.__pi_tid;
4078   } else {
4079     tty->print_cr("pthread_getthrds_np failed.");
4080     error = true;
4081   }
4082 
4083   // retrieve kernel timing info for that kernel thread
4084   if (!error) {
4085     struct thrdentry64 thrdentry;
4086     if (getthrds64(getpid(), &thrdentry, sizeof(thrdentry), &tid, 1) == 1) {
4087       sys_time = thrdentry.ti_ru.ru_stime.tv_sec * 1000000000LL + thrdentry.ti_ru.ru_stime.tv_usec * 1000LL;
4088       user_time = thrdentry.ti_ru.ru_utime.tv_sec * 1000000000LL + thrdentry.ti_ru.ru_utime.tv_usec * 1000LL;
4089     } else {
4090       tty->print_cr("pthread_getthrds_np failed.");
4091       error = true;
4092     }
4093   }
4094 
4095   if (p_sys_time) {
4096     *p_sys_time = sys_time;
4097   }
4098 
4099   if (p_user_time) {
4100     *p_user_time = user_time;
4101   }
4102 
4103   if (error) {
4104     return false;
4105   }
4106 
4107   return true;
4108 }
4109 
4110 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4111   jlong sys_time;
4112   jlong user_time;
4113 
4114   if (!thread_cpu_time_unchecked(thread, &sys_time, &user_time)) {
4115     return -1;
4116   }
4117 
4118   return user_sys_cpu_time ? sys_time + user_time : user_time;
4119 }
4120 
4121 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4122   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4123   info_ptr->may_skip_backward = false;     // elapsed time not wall time
4124   info_ptr->may_skip_forward = false;      // elapsed time not wall time
4125   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4126 }
4127 
4128 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4129   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4130   info_ptr->may_skip_backward = false;     // elapsed time not wall time
4131   info_ptr->may_skip_forward = false;      // elapsed time not wall time
4132   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4133 }
4134 
4135 bool os::is_thread_cpu_time_supported() {
4136   return true;
4137 }
4138 
4139 // System loadavg support. Returns -1 if load average cannot be obtained.
4140 // For now just return the system wide load average (no processor sets).
4141 int os::loadavg(double values[], int nelem) {
4142 
4143   // Implemented using libperfstat on AIX.
4144 
4145   guarantee(nelem >= 0 && nelem <= 3, "argument error");
4146   guarantee(values, "argument error");
4147 
4148   if (os::Aix::on_pase()) {
4149     Unimplemented();
4150     return -1;
4151   } else {
4152     // AIX: use libperfstat
4153     //
4154     // See also:
4155     // http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.aix.basetechref/doc/basetrf1/perfstat_cputot.htm
4156     // /usr/include/libperfstat.h:
4157 
4158     // Use the already AIX version independent get_cpuinfo.
4159     os::Aix::cpuinfo_t ci;
4160     if (os::Aix::get_cpuinfo(&ci)) {
4161       for (int i = 0; i < nelem; i++) {
4162         values[i] = ci.loadavg[i];
4163       }
4164     } else {
4165       return -1;
4166     }
4167     return nelem;
4168   }
4169 }
4170 
4171 void os::pause() {
4172   char filename[MAX_PATH];
4173   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4174     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4175   } else {
4176     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4177   }
4178 
4179   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4180   if (fd != -1) {
4181     struct stat buf;
4182     ::close(fd);
4183     while (::stat(filename, &buf) == 0) {
4184       (void)::poll(NULL, 0, 100);
4185     }
4186   } else {
4187     jio_fprintf(stderr,
4188       "Could not open pause file '%s', continuing immediately.\n", filename);
4189   }
4190 }
4191 
4192 bool os::Aix::is_primordial_thread() {
4193   if (pthread_self() == (pthread_t)1) {
4194     return true;
4195   } else {
4196     return false;
4197   }
4198 }
4199 
4200 // OS recognitions (PASE/AIX, OS level) call this before calling any
4201 // one of Aix::on_pase(), Aix::os_version() static
4202 void os::Aix::initialize_os_info() {
4203 
4204   assert(_on_pase == -1 && _os_version == -1, "already called.");
4205 
4206   struct utsname uts;
4207   memset(&uts, 0, sizeof(uts));
4208   strcpy(uts.sysname, "?");
4209   if (::uname(&uts) == -1) {
4210     trc("uname failed (%d)", errno);
4211     guarantee(0, "Could not determine whether we run on AIX or PASE");
4212   } else {
4213     trcVerbose("uname says: sysname \"%s\" version \"%s\" release \"%s\" "
4214                "node \"%s\" machine \"%s\"\n",
4215                uts.sysname, uts.version, uts.release, uts.nodename, uts.machine);
4216     const int major = atoi(uts.version);
4217     assert(major > 0, "invalid OS version");
4218     const int minor = atoi(uts.release);
4219     assert(minor > 0, "invalid OS release");
4220     _os_version = (major << 8) | minor;
4221     if (strcmp(uts.sysname, "OS400") == 0) {
4222       Unimplemented();
4223     } else if (strcmp(uts.sysname, "AIX") == 0) {
4224       // We run on AIX. We do not support versions older than AIX 5.3.
4225       _on_pase = 0;
4226       if (_os_version < 0x0503) {
4227         trc("AIX release older than AIX 5.3 not supported.");
4228         assert(false, "AIX release too old.");
4229       } else {
4230         trcVerbose("We run on AIX %d.%d\n", major, minor);
4231       }
4232     } else {
4233       assert(false, "unknown OS");
4234     }
4235   }
4236 
4237   guarantee(_on_pase != -1 && _os_version, "Could not determine AIX/OS400 release");
4238 } // end: os::Aix::initialize_os_info()
4239 
4240 // Scan environment for important settings which might effect the VM.
4241 // Trace out settings. Warn about invalid settings and/or correct them.
4242 //
4243 // Must run after os::Aix::initialue_os_info().
4244 void os::Aix::scan_environment() {
4245 
4246   char* p;
4247   int rc;
4248 
4249   // Warn explicity if EXTSHM=ON is used. That switch changes how
4250   // System V shared memory behaves. One effect is that page size of
4251   // shared memory cannot be change dynamically, effectivly preventing
4252   // large pages from working.
4253   // This switch was needed on AIX 32bit, but on AIX 64bit the general
4254   // recommendation is (in OSS notes) to switch it off.
4255   p = ::getenv("EXTSHM");
4256   if (Verbose) {
4257     fprintf(stderr, "EXTSHM=%s.\n", p ? p : "<unset>");
4258   }
4259   if (p && strcasecmp(p, "ON") == 0) {
4260     fprintf(stderr, "Unsupported setting: EXTSHM=ON. Large Page support will be disabled.\n");
4261     _extshm = 1;
4262   } else {
4263     _extshm = 0;
4264   }
4265 
4266   // SPEC1170 behaviour: will change the behaviour of a number of POSIX APIs.
4267   // Not tested, not supported.
4268   //
4269   // Note that it might be worth the trouble to test and to require it, if only to
4270   // get useful return codes for mprotect.
4271   //
4272   // Note: Setting XPG_SUS_ENV in the process is too late. Must be set earlier (before
4273   // exec() ? before loading the libjvm ? ....)
4274   p = ::getenv("XPG_SUS_ENV");
4275   trcVerbose("XPG_SUS_ENV=%s.", p ? p : "<unset>");
4276   if (p && strcmp(p, "ON") == 0) {
4277     _xpg_sus_mode = 1;
4278     trc("Unsupported setting: XPG_SUS_ENV=ON");
4279     // This is not supported. Worst of all, it changes behaviour of mmap MAP_FIXED to
4280     // clobber address ranges. If we ever want to support that, we have to do some
4281     // testing first.
4282     guarantee(false, "XPG_SUS_ENV=ON not supported");
4283   } else {
4284     _xpg_sus_mode = 0;
4285   }
4286 
4287   // Switch off AIX internal (pthread) guard pages. This has
4288   // immediate effect for any pthread_create calls which follow.
4289   p = ::getenv("AIXTHREAD_GUARDPAGES");
4290   trcVerbose("AIXTHREAD_GUARDPAGES=%s.", p ? p : "<unset>");
4291   rc = ::putenv("AIXTHREAD_GUARDPAGES=0");
4292   guarantee(rc == 0, "");
4293 
4294 } // end: os::Aix::scan_environment()
4295 
4296 // PASE: initialize the libo4 library (AS400 PASE porting library).
4297 void os::Aix::initialize_libo4() {
4298   Unimplemented();
4299 }
4300 
4301 // AIX: initialize the libperfstat library (we load this dynamically
4302 // because it is only available on AIX.
4303 void os::Aix::initialize_libperfstat() {
4304 
4305   assert(os::Aix::on_aix(), "AIX only");
4306 
4307   if (!libperfstat::init()) {
4308     trc("libperfstat initialization failed.");
4309     assert(false, "libperfstat initialization failed");
4310   } else {
4311     if (Verbose) {
4312       fprintf(stderr, "libperfstat initialized.\n");
4313     }
4314   }
4315 } // end: os::Aix::initialize_libperfstat
4316 
4317 /////////////////////////////////////////////////////////////////////////////
4318 // thread stack
4319 
4320 // Function to query the current stack size using pthread_getthrds_np.
4321 static bool query_stack_dimensions(address* p_stack_base, size_t* p_stack_size) {
4322   // This only works when invoked on a pthread. As we agreed not to use
4323   // primordial threads anyway, I assert here.
4324   guarantee(!os::Aix::is_primordial_thread(), "not allowed on the primordial thread");
4325 
4326   // Information about this api can be found (a) in the pthread.h header and
4327   // (b) in http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.aix.basetechref/doc/basetrf1/pthread_getthrds_np.htm
4328   //
4329   // The use of this API to find out the current stack is kind of undefined.
4330   // But after a lot of tries and asking IBM about it, I concluded that it is safe
4331   // enough for cases where I let the pthread library create its stacks. For cases
4332   // where I create an own stack and pass this to pthread_create, it seems not to
4333   // work (the returned stack size in that case is 0).
4334 
4335   pthread_t tid = pthread_self();
4336   struct __pthrdsinfo pinfo;
4337   char dummy[1]; // We only need this to satisfy the api and to not get E.
4338   int dummy_size = sizeof(dummy);
4339 
4340   memset(&pinfo, 0, sizeof(pinfo));
4341 
4342   const int rc = pthread_getthrds_np(&tid, PTHRDSINFO_QUERY_ALL, &pinfo,
4343                                      sizeof(pinfo), dummy, &dummy_size);
4344 
4345   if (rc != 0) {
4346     assert0(false);
4347     trcVerbose("pthread_getthrds_np failed (%d)", rc);
4348     return false;
4349   }
4350   guarantee0(pinfo.__pi_stackend);
4351 
4352   // The following can happen when invoking pthread_getthrds_np on a pthread running
4353   // on a user provided stack (when handing down a stack to pthread create, see
4354   // pthread_attr_setstackaddr).
4355   // Not sure what to do here - I feel inclined to forbid this use case completely.
4356   guarantee0(pinfo.__pi_stacksize);
4357 
4358   // Note: the pthread stack on AIX seems to look like this:
4359   //
4360   // ---------------------   real base ? at page border ?
4361   //
4362   //     pthread internal data, like ~2K, see also
4363   //     http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.aix.prftungd/doc/prftungd/thread_supp_tun_params.htm
4364   //
4365   // ---------------------   __pi_stackend - not page aligned, (xxxxF890)
4366   //
4367   //     stack
4368   //      ....
4369   //
4370   //     stack
4371   //
4372   // ---------------------   __pi_stackend  - __pi_stacksize
4373   //
4374   //     padding due to AIX guard pages (?) see AIXTHREAD_GUARDPAGES
4375   // ---------------------   __pi_stackaddr  (page aligned if AIXTHREAD_GUARDPAGES > 0)
4376   //
4377   //   AIX guard pages (?)
4378   //
4379 
4380   // So, the safe thing to do is to use the area from __pi_stackend to __pi_stackaddr;
4381   // __pi_stackend however is almost never page aligned.
4382   //
4383 
4384   if (p_stack_base) {
4385     (*p_stack_base) = (address) (pinfo.__pi_stackend);
4386   }
4387 
4388   if (p_stack_size) {
4389     (*p_stack_size) = pinfo.__pi_stackend - pinfo.__pi_stackaddr;
4390   }
4391 
4392   return true;
4393 }
4394 
4395 // Get the current stack base from the OS (actually, the pthread library).
4396 address os::current_stack_base() {
4397   address p;
4398   query_stack_dimensions(&p, 0);
4399   return p;
4400 }
4401 
4402 // Get the current stack size from the OS (actually, the pthread library).
4403 size_t os::current_stack_size() {
4404   size_t s;
4405   query_stack_dimensions(0, &s);
4406   return s;
4407 }
4408 
4409 // Refer to the comments in os_solaris.cpp park-unpark.
4410 //
4411 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
4412 // hang indefinitely. For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
4413 // For specifics regarding the bug see GLIBC BUGID 261237 :
4414 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
4415 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
4416 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
4417 // is used. (The simple C test-case provided in the GLIBC bug report manifests the
4418 // hang). The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
4419 // and monitorenter when we're using 1-0 locking. All those operations may result in
4420 // calls to pthread_cond_timedwait(). Using LD_ASSUME_KERNEL to use an older version
4421 // of libpthread avoids the problem, but isn't practical.
4422 //
4423 // Possible remedies:
4424 //
4425 // 1.   Establish a minimum relative wait time. 50 to 100 msecs seems to work.
4426 //      This is palliative and probabilistic, however. If the thread is preempted
4427 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
4428 //      than the minimum period may have passed, and the abstime may be stale (in the
4429 //      past) resultin in a hang. Using this technique reduces the odds of a hang
4430 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
4431 //
4432 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
4433 //      of the usual flag-condvar-mutex idiom. The write side of the pipe is set
4434 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
4435 //      reduces to poll()+read(). This works well, but consumes 2 FDs per extant
4436 //      thread.
4437 //
4438 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
4439 //      that manages timeouts. We'd emulate pthread_cond_timedwait() by enqueuing
4440 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
4441 //      This also works well. In fact it avoids kernel-level scalability impediments
4442 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
4443 //      timers in a graceful fashion.
4444 //
4445 // 4.   When the abstime value is in the past it appears that control returns
4446 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
4447 //      Subsequent timedwait/wait calls may hang indefinitely. Given that, we
4448 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
4449 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
4450 //      It may be possible to avoid reinitialization by checking the return
4451 //      value from pthread_cond_timedwait(). In addition to reinitializing the
4452 //      condvar we must establish the invariant that cond_signal() is only called
4453 //      within critical sections protected by the adjunct mutex. This prevents
4454 //      cond_signal() from "seeing" a condvar that's in the midst of being
4455 //      reinitialized or that is corrupt. Sadly, this invariant obviates the
4456 //      desirable signal-after-unlock optimization that avoids futile context switching.
4457 //
4458 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
4459 //      structure when a condvar is used or initialized. cond_destroy() would
4460 //      release the helper structure. Our reinitialize-after-timedwait fix
4461 //      put excessive stress on malloc/free and locks protecting the c-heap.
4462 //
4463 // We currently use (4). See the WorkAroundNTPLTimedWaitHang flag.
4464 // It may be possible to refine (4) by checking the kernel and NTPL verisons
4465 // and only enabling the work-around for vulnerable environments.
4466 
4467 // utility to compute the abstime argument to timedwait:
4468 // millis is the relative timeout time
4469 // abstime will be the absolute timeout time
4470 // TODO: replace compute_abstime() with unpackTime()
4471 
4472 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
4473   if (millis < 0) millis = 0;
4474   struct timeval now;
4475   int status = gettimeofday(&now, NULL);
4476   assert(status == 0, "gettimeofday");
4477   jlong seconds = millis / 1000;
4478   millis %= 1000;
4479   if (seconds > 50000000) { // see man cond_timedwait(3T)
4480     seconds = 50000000;
4481   }
4482   abstime->tv_sec = now.tv_sec  + seconds;
4483   long       usec = now.tv_usec + millis * 1000;
4484   if (usec >= 1000000) {
4485     abstime->tv_sec += 1;
4486     usec -= 1000000;
4487   }
4488   abstime->tv_nsec = usec * 1000;
4489   return abstime;
4490 }
4491 
4492 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
4493 // Conceptually TryPark() should be equivalent to park(0).
4494 
4495 int os::PlatformEvent::TryPark() {
4496   for (;;) {
4497     const int v = _Event;
4498     guarantee ((v == 0) || (v == 1), "invariant");
4499     if (Atomic::cmpxchg (0, &_Event, v) == v) return v;
4500   }
4501 }
4502 
4503 void os::PlatformEvent::park() {       // AKA "down()"
4504   // Invariant: Only the thread associated with the Event/PlatformEvent
4505   // may call park().
4506   // TODO: assert that _Assoc != NULL or _Assoc == Self
4507   int v;
4508   for (;;) {
4509     v = _Event;
4510     if (Atomic::cmpxchg (v-1, &_Event, v) == v) break;
4511   }
4512   guarantee (v >= 0, "invariant");
4513   if (v == 0) {
4514     // Do this the hard way by blocking ...
4515     int status = pthread_mutex_lock(_mutex);
4516     assert_status(status == 0, status, "mutex_lock");
4517     guarantee (_nParked == 0, "invariant");
4518     ++ _nParked;
4519     while (_Event < 0) {
4520       status = pthread_cond_wait(_cond, _mutex);
4521       assert_status(status == 0 || status == ETIMEDOUT, status, "cond_timedwait");
4522     }
4523     -- _nParked;
4524 
4525     // In theory we could move the ST of 0 into _Event past the unlock(),
4526     // but then we'd need a MEMBAR after the ST.
4527     _Event = 0;
4528     status = pthread_mutex_unlock(_mutex);
4529     assert_status(status == 0, status, "mutex_unlock");
4530   }
4531   guarantee (_Event >= 0, "invariant");
4532 }
4533 
4534 int os::PlatformEvent::park(jlong millis) {
4535   guarantee (_nParked == 0, "invariant");
4536 
4537   int v;
4538   for (;;) {
4539     v = _Event;
4540     if (Atomic::cmpxchg (v-1, &_Event, v) == v) break;
4541   }
4542   guarantee (v >= 0, "invariant");
4543   if (v != 0) return OS_OK;
4544 
4545   // We do this the hard way, by blocking the thread.
4546   // Consider enforcing a minimum timeout value.
4547   struct timespec abst;
4548   compute_abstime(&abst, millis);
4549 
4550   int ret = OS_TIMEOUT;
4551   int status = pthread_mutex_lock(_mutex);
4552   assert_status(status == 0, status, "mutex_lock");
4553   guarantee (_nParked == 0, "invariant");
4554   ++_nParked;
4555 
4556   // Object.wait(timo) will return because of
4557   // (a) notification
4558   // (b) timeout
4559   // (c) thread.interrupt
4560   //
4561   // Thread.interrupt and object.notify{All} both call Event::set.
4562   // That is, we treat thread.interrupt as a special case of notification.
4563   // We ignore spurious OS wakeups unless FilterSpuriousWakeups is false.
4564   // We assume all ETIME returns are valid.
4565   //
4566   // TODO: properly differentiate simultaneous notify+interrupt.
4567   // In that case, we should propagate the notify to another waiter.
4568 
4569   while (_Event < 0) {
4570     status = pthread_cond_timedwait(_cond, _mutex, &abst);
4571     assert_status(status == 0 || status == ETIMEDOUT,
4572                   status, "cond_timedwait");
4573     if (!FilterSpuriousWakeups) break;         // previous semantics
4574     if (status == ETIMEDOUT) break;
4575     // We consume and ignore EINTR and spurious wakeups.
4576   }
4577   --_nParked;
4578   if (_Event >= 0) {
4579      ret = OS_OK;
4580   }
4581   _Event = 0;
4582   status = pthread_mutex_unlock(_mutex);
4583   assert_status(status == 0, status, "mutex_unlock");
4584   assert (_nParked == 0, "invariant");
4585   return ret;
4586 }
4587 
4588 void os::PlatformEvent::unpark() {
4589   int v, AnyWaiters;
4590   for (;;) {
4591     v = _Event;
4592     if (v > 0) {
4593       // The LD of _Event could have reordered or be satisfied
4594       // by a read-aside from this processor's write buffer.
4595       // To avoid problems execute a barrier and then
4596       // ratify the value.
4597       OrderAccess::fence();
4598       if (_Event == v) return;
4599       continue;
4600     }
4601     if (Atomic::cmpxchg (v+1, &_Event, v) == v) break;
4602   }
4603   if (v < 0) {
4604     // Wait for the thread associated with the event to vacate
4605     int status = pthread_mutex_lock(_mutex);
4606     assert_status(status == 0, status, "mutex_lock");
4607     AnyWaiters = _nParked;
4608 
4609     if (AnyWaiters != 0) {
4610       // We intentional signal *after* dropping the lock
4611       // to avoid a common class of futile wakeups.
4612       status = pthread_cond_signal(_cond);
4613       assert_status(status == 0, status, "cond_signal");
4614     }
4615     // Mutex should be locked for pthread_cond_signal(_cond).
4616     status = pthread_mutex_unlock(_mutex);
4617     assert_status(status == 0, status, "mutex_unlock");
4618   }
4619 
4620   // Note that we signal() _after dropping the lock for "immortal" Events.
4621   // This is safe and avoids a common class of futile wakeups. In rare
4622   // circumstances this can cause a thread to return prematurely from
4623   // cond_{timed}wait() but the spurious wakeup is benign and the victim will
4624   // simply re-test the condition and re-park itself.
4625 }
4626 
4627 
4628 // JSR166
4629 // -------------------------------------------------------
4630 
4631 //
4632 // The solaris and linux implementations of park/unpark are fairly
4633 // conservative for now, but can be improved. They currently use a
4634 // mutex/condvar pair, plus a a count.
4635 // Park decrements count if > 0, else does a condvar wait. Unpark
4636 // sets count to 1 and signals condvar. Only one thread ever waits
4637 // on the condvar. Contention seen when trying to park implies that someone
4638 // is unparking you, so don't wait. And spurious returns are fine, so there
4639 // is no need to track notifications.
4640 //
4641 
4642 #define MAX_SECS 100000000
4643 //
4644 // This code is common to linux and solaris and will be moved to a
4645 // common place in dolphin.
4646 //
4647 // The passed in time value is either a relative time in nanoseconds
4648 // or an absolute time in milliseconds. Either way it has to be unpacked
4649 // into suitable seconds and nanoseconds components and stored in the
4650 // given timespec structure.
4651 // Given time is a 64-bit value and the time_t used in the timespec is only
4652 // a signed-32-bit value (except on 64-bit Linux) we have to watch for
4653 // overflow if times way in the future are given. Further on Solaris versions
4654 // prior to 10 there is a restriction (see cond_timedwait) that the specified
4655 // number of seconds, in abstime, is less than current_time + 100,000,000.
4656 // As it will be 28 years before "now + 100000000" will overflow we can
4657 // ignore overflow and just impose a hard-limit on seconds using the value
4658 // of "now + 100,000,000". This places a limit on the timeout of about 3.17
4659 // years from "now".
4660 //
4661 
4662 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
4663   assert (time > 0, "convertTime");
4664 
4665   struct timeval now;
4666   int status = gettimeofday(&now, NULL);
4667   assert(status == 0, "gettimeofday");
4668 
4669   time_t max_secs = now.tv_sec + MAX_SECS;
4670 
4671   if (isAbsolute) {
4672     jlong secs = time / 1000;
4673     if (secs > max_secs) {
4674       absTime->tv_sec = max_secs;
4675     }
4676     else {
4677       absTime->tv_sec = secs;
4678     }
4679     absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
4680   }
4681   else {
4682     jlong secs = time / NANOSECS_PER_SEC;
4683     if (secs >= MAX_SECS) {
4684       absTime->tv_sec = max_secs;
4685       absTime->tv_nsec = 0;
4686     }
4687     else {
4688       absTime->tv_sec = now.tv_sec + secs;
4689       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
4690       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
4691         absTime->tv_nsec -= NANOSECS_PER_SEC;
4692         ++absTime->tv_sec; // note: this must be <= max_secs
4693       }
4694     }
4695   }
4696   assert(absTime->tv_sec >= 0, "tv_sec < 0");
4697   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
4698   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
4699   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
4700 }
4701 
4702 void Parker::park(bool isAbsolute, jlong time) {
4703   // Optional fast-path check:
4704   // Return immediately if a permit is available.
4705   if (_counter > 0) {
4706     _counter = 0;
4707     OrderAccess::fence();
4708     return;
4709   }
4710 
4711   Thread* thread = Thread::current();
4712   assert(thread->is_Java_thread(), "Must be JavaThread");
4713   JavaThread *jt = (JavaThread *)thread;
4714 
4715   // Optional optimization -- avoid state transitions if there's an interrupt pending.
4716   // Check interrupt before trying to wait
4717   if (Thread::is_interrupted(thread, false)) {
4718     return;
4719   }
4720 
4721   // Next, demultiplex/decode time arguments
4722   timespec absTime;
4723   if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
4724     return;
4725   }
4726   if (time > 0) {
4727     unpackTime(&absTime, isAbsolute, time);
4728   }
4729 
4730   // Enter safepoint region
4731   // Beware of deadlocks such as 6317397.
4732   // The per-thread Parker:: mutex is a classic leaf-lock.
4733   // In particular a thread must never block on the Threads_lock while
4734   // holding the Parker:: mutex. If safepoints are pending both the
4735   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
4736   ThreadBlockInVM tbivm(jt);
4737 
4738   // Don't wait if cannot get lock since interference arises from
4739   // unblocking. Also. check interrupt before trying wait
4740   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
4741     return;
4742   }
4743 
4744   int status;
4745   if (_counter > 0) { // no wait needed
4746     _counter = 0;
4747     status = pthread_mutex_unlock(_mutex);
4748     assert (status == 0, "invariant");
4749     OrderAccess::fence();
4750     return;
4751   }
4752 
4753 #ifdef ASSERT
4754   // Don't catch signals while blocked; let the running threads have the signals.
4755   // (This allows a debugger to break into the running thread.)
4756   sigset_t oldsigs;
4757   sigset_t* allowdebug_blocked = os::Aix::allowdebug_blocked_signals();
4758   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
4759 #endif
4760 
4761   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4762   jt->set_suspend_equivalent();
4763   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
4764 
4765   if (time == 0) {
4766     status = pthread_cond_wait (_cond, _mutex);
4767   } else {
4768     status = pthread_cond_timedwait (_cond, _mutex, &absTime);
4769     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4770       pthread_cond_destroy (_cond);
4771       pthread_cond_init    (_cond, NULL);
4772     }
4773   }
4774   assert_status(status == 0 || status == EINTR ||
4775                 status == ETIME || status == ETIMEDOUT,
4776                 status, "cond_timedwait");
4777 
4778 #ifdef ASSERT
4779   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
4780 #endif
4781 
4782   _counter = 0;
4783   status = pthread_mutex_unlock(_mutex);
4784   assert_status(status == 0, status, "invariant");
4785   // If externally suspended while waiting, re-suspend
4786   if (jt->handle_special_suspend_equivalent_condition()) {
4787     jt->java_suspend_self();
4788   }
4789 
4790   OrderAccess::fence();
4791 }
4792 
4793 void Parker::unpark() {
4794   int s, status;
4795   status = pthread_mutex_lock(_mutex);
4796   assert (status == 0, "invariant");
4797   s = _counter;
4798   _counter = 1;
4799   if (s < 1) {
4800     if (WorkAroundNPTLTimedWaitHang) {
4801       status = pthread_cond_signal (_cond);
4802       assert (status == 0, "invariant");
4803       status = pthread_mutex_unlock(_mutex);
4804       assert (status == 0, "invariant");
4805     } else {
4806       status = pthread_mutex_unlock(_mutex);
4807       assert (status == 0, "invariant");
4808       status = pthread_cond_signal (_cond);
4809       assert (status == 0, "invariant");
4810     }
4811   } else {
4812     pthread_mutex_unlock(_mutex);
4813     assert (status == 0, "invariant");
4814   }
4815 }
4816 
4817 extern char** environ;
4818 
4819 // Run the specified command in a separate process. Return its exit value,
4820 // or -1 on failure (e.g. can't fork a new process).
4821 // Unlike system(), this function can be called from signal handler. It
4822 // doesn't block SIGINT et al.
4823 int os::fork_and_exec(char* cmd) {
4824   char * argv[4] = {"sh", "-c", cmd, NULL};
4825 
4826   pid_t pid = fork();
4827 
4828   if (pid < 0) {
4829     // fork failed
4830     return -1;
4831 
4832   } else if (pid == 0) {
4833     // child process
4834 
4835     // Try to be consistent with system(), which uses "/usr/bin/sh" on AIX.
4836     execve("/usr/bin/sh", argv, environ);
4837 
4838     // execve failed
4839     _exit(-1);
4840 
4841   } else {
4842     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
4843     // care about the actual exit code, for now.
4844 
4845     int status;
4846 
4847     // Wait for the child process to exit. This returns immediately if
4848     // the child has already exited. */
4849     while (waitpid(pid, &status, 0) < 0) {
4850       switch (errno) {
4851         case ECHILD: return 0;
4852         case EINTR: break;
4853         default: return -1;
4854       }
4855     }
4856 
4857     if (WIFEXITED(status)) {
4858       // The child exited normally; get its exit code.
4859       return WEXITSTATUS(status);
4860     } else if (WIFSIGNALED(status)) {
4861       // The child exited because of a signal.
4862       // The best value to return is 0x80 + signal number,
4863       // because that is what all Unix shells do, and because
4864       // it allows callers to distinguish between process exit and
4865       // process death by signal.
4866       return 0x80 + WTERMSIG(status);
4867     } else {
4868       // Unknown exit code; pass it through.
4869       return status;
4870     }
4871   }
4872   return -1;
4873 }
4874 
4875 // is_headless_jre()
4876 //
4877 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
4878 // in order to report if we are running in a headless jre.
4879 //
4880 // Since JDK8 xawt/libmawt.so is moved into the same directory
4881 // as libawt.so, and renamed libawt_xawt.so
4882 bool os::is_headless_jre() {
4883   struct stat statbuf;
4884   char buf[MAXPATHLEN];
4885   char libmawtpath[MAXPATHLEN];
4886   const char *xawtstr = "/xawt/libmawt.so";
4887   const char *new_xawtstr = "/libawt_xawt.so";
4888 
4889   char *p;
4890 
4891   // Get path to libjvm.so
4892   os::jvm_path(buf, sizeof(buf));
4893 
4894   // Get rid of libjvm.so
4895   p = strrchr(buf, '/');
4896   if (p == NULL) return false;
4897   else *p = '\0';
4898 
4899   // Get rid of client or server
4900   p = strrchr(buf, '/');
4901   if (p == NULL) return false;
4902   else *p = '\0';
4903 
4904   // check xawt/libmawt.so
4905   strcpy(libmawtpath, buf);
4906   strcat(libmawtpath, xawtstr);
4907   if (::stat(libmawtpath, &statbuf) == 0) return false;
4908 
4909   // check libawt_xawt.so
4910   strcpy(libmawtpath, buf);
4911   strcat(libmawtpath, new_xawtstr);
4912   if (::stat(libmawtpath, &statbuf) == 0) return false;
4913 
4914   return true;
4915 }
4916 
4917 // Get the default path to the core file
4918 // Returns the length of the string
4919 int os::get_core_path(char* buffer, size_t bufferSize) {
4920   const char* p = get_current_directory(buffer, bufferSize);
4921 
4922   if (p == NULL) {
4923     assert(p != NULL, "failed to get current directory");
4924     return 0;
4925   }
4926 
4927   jio_snprintf(buffer, bufferSize, "%s/core or core.%d",
4928                                                p, current_process_id());
4929 
4930   return strlen(buffer);
4931 }
4932 
4933 #ifndef PRODUCT
4934 void TestReserveMemorySpecial_test() {
4935   // No tests available for this platform
4936 }
4937 #endif