1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/javaClasses.inline.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "compiler/compileBroker.hpp"
  30 #include "compiler/disassembler.hpp"
  31 #include "gc/shared/collectedHeap.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "interpreter/interpreterRuntime.hpp"
  34 #include "interpreter/linkResolver.hpp"
  35 #include "interpreter/templateTable.hpp"
  36 #include "memory/oopFactory.hpp"
  37 #include "memory/universe.inline.hpp"
  38 #include "oops/constantPool.hpp"
  39 #include "oops/instanceKlass.hpp"
  40 #include "oops/methodData.hpp"
  41 #include "oops/objArrayKlass.hpp"
  42 #include "oops/objArrayOop.inline.hpp"
  43 #include "oops/oop.inline.hpp"
  44 #include "oops/symbol.hpp"
  45 #include "prims/jvmtiExport.hpp"
  46 #include "prims/nativeLookup.hpp"
  47 #include "runtime/atomic.inline.hpp"
  48 #include "runtime/biasedLocking.hpp"
  49 #include "runtime/compilationPolicy.hpp"
  50 #include "runtime/deoptimization.hpp"
  51 #include "runtime/fieldDescriptor.hpp"
  52 #include "runtime/handles.inline.hpp"
  53 #include "runtime/icache.hpp"
  54 #include "runtime/interfaceSupport.hpp"
  55 #include "runtime/java.hpp"
  56 #include "runtime/jfieldIDWorkaround.hpp"
  57 #include "runtime/osThread.hpp"
  58 #include "runtime/sharedRuntime.hpp"
  59 #include "runtime/stubRoutines.hpp"
  60 #include "runtime/synchronizer.hpp"
  61 #include "runtime/threadCritical.hpp"
  62 #include "utilities/events.hpp"
  63 #ifdef COMPILER2
  64 #include "opto/runtime.hpp"
  65 #endif
  66 
  67 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  68 
  69 class UnlockFlagSaver {
  70   private:
  71     JavaThread* _thread;
  72     bool _do_not_unlock;
  73   public:
  74     UnlockFlagSaver(JavaThread* t) {
  75       _thread = t;
  76       _do_not_unlock = t->do_not_unlock_if_synchronized();
  77       t->set_do_not_unlock_if_synchronized(false);
  78     }
  79     ~UnlockFlagSaver() {
  80       _thread->set_do_not_unlock_if_synchronized(_do_not_unlock);
  81     }
  82 };
  83 
  84 //------------------------------------------------------------------------------------------------------------------------
  85 // State accessors
  86 
  87 void InterpreterRuntime::set_bcp_and_mdp(address bcp, JavaThread *thread) {
  88   last_frame(thread).interpreter_frame_set_bcp(bcp);
  89   if (ProfileInterpreter) {
  90     // ProfileTraps uses MDOs independently of ProfileInterpreter.
  91     // That is why we must check both ProfileInterpreter and mdo != NULL.
  92     MethodData* mdo = last_frame(thread).interpreter_frame_method()->method_data();
  93     if (mdo != NULL) {
  94       NEEDS_CLEANUP;
  95       last_frame(thread).interpreter_frame_set_mdp(mdo->bci_to_dp(last_frame(thread).interpreter_frame_bci()));
  96     }
  97   }
  98 }
  99 
 100 //------------------------------------------------------------------------------------------------------------------------
 101 // Constants
 102 
 103 
 104 IRT_ENTRY(void, InterpreterRuntime::ldc(JavaThread* thread, bool wide))
 105   // access constant pool
 106   ConstantPool* pool = method(thread)->constants();
 107   int index = wide ? get_index_u2(thread, Bytecodes::_ldc_w) : get_index_u1(thread, Bytecodes::_ldc);
 108   constantTag tag = pool->tag_at(index);
 109 
 110   assert (tag.is_unresolved_klass() || tag.is_klass(), "wrong ldc call");
 111   Klass* klass = pool->klass_at(index, CHECK);
 112     oop java_class = klass->java_mirror();
 113     thread->set_vm_result(java_class);
 114 IRT_END
 115 
 116 IRT_ENTRY(void, InterpreterRuntime::resolve_ldc(JavaThread* thread, Bytecodes::Code bytecode)) {
 117   assert(bytecode == Bytecodes::_fast_aldc ||
 118          bytecode == Bytecodes::_fast_aldc_w, "wrong bc");
 119   ResourceMark rm(thread);
 120   methodHandle m (thread, method(thread));
 121   Bytecode_loadconstant ldc(m, bci(thread));
 122   oop result = ldc.resolve_constant(CHECK);
 123 #ifdef ASSERT
 124   {
 125     // The bytecode wrappers aren't GC-safe so construct a new one
 126     Bytecode_loadconstant ldc2(m, bci(thread));
 127     oop coop = m->constants()->resolved_references()->obj_at(ldc2.cache_index());
 128     assert(result == coop, "expected result for assembly code");
 129   }
 130 #endif
 131   thread->set_vm_result(result);
 132 }
 133 IRT_END
 134 
 135 
 136 //------------------------------------------------------------------------------------------------------------------------
 137 // Allocation
 138 
 139 IRT_ENTRY(void, InterpreterRuntime::_new(JavaThread* thread, ConstantPool* pool, int index))
 140   Klass* k_oop = pool->klass_at(index, CHECK);
 141   instanceKlassHandle klass (THREAD, k_oop);
 142 
 143   // Make sure we are not instantiating an abstract klass
 144   klass->check_valid_for_instantiation(true, CHECK);
 145 
 146   // Make sure klass is initialized
 147   klass->initialize(CHECK);
 148 
 149   // At this point the class may not be fully initialized
 150   // because of recursive initialization. If it is fully
 151   // initialized & has_finalized is not set, we rewrite
 152   // it into its fast version (Note: no locking is needed
 153   // here since this is an atomic byte write and can be
 154   // done more than once).
 155   //
 156   // Note: In case of classes with has_finalized we don't
 157   //       rewrite since that saves us an extra check in
 158   //       the fast version which then would call the
 159   //       slow version anyway (and do a call back into
 160   //       Java).
 161   //       If we have a breakpoint, then we don't rewrite
 162   //       because the _breakpoint bytecode would be lost.
 163   oop obj = klass->allocate_instance(CHECK);
 164   thread->set_vm_result(obj);
 165 IRT_END
 166 
 167 
 168 IRT_ENTRY(void, InterpreterRuntime::newarray(JavaThread* thread, BasicType type, jint size))
 169   oop obj = oopFactory::new_typeArray(type, size, CHECK);
 170   thread->set_vm_result(obj);
 171 IRT_END
 172 
 173 
 174 IRT_ENTRY(void, InterpreterRuntime::anewarray(JavaThread* thread, ConstantPool* pool, int index, jint size))
 175   // Note: no oopHandle for pool & klass needed since they are not used
 176   //       anymore after new_objArray() and no GC can happen before.
 177   //       (This may have to change if this code changes!)
 178   Klass*    klass = pool->klass_at(index, CHECK);
 179   objArrayOop obj = oopFactory::new_objArray(klass, size, CHECK);
 180   thread->set_vm_result(obj);
 181 IRT_END
 182 
 183 
 184 IRT_ENTRY(void, InterpreterRuntime::multianewarray(JavaThread* thread, jint* first_size_address))
 185   // We may want to pass in more arguments - could make this slightly faster
 186   ConstantPool* constants = method(thread)->constants();
 187   int          i = get_index_u2(thread, Bytecodes::_multianewarray);
 188   Klass* klass = constants->klass_at(i, CHECK);
 189   int   nof_dims = number_of_dimensions(thread);
 190   assert(klass->is_klass(), "not a class");
 191   assert(nof_dims >= 1, "multianewarray rank must be nonzero");
 192 
 193   // We must create an array of jints to pass to multi_allocate.
 194   ResourceMark rm(thread);
 195   const int small_dims = 10;
 196   jint dim_array[small_dims];
 197   jint *dims = &dim_array[0];
 198   if (nof_dims > small_dims) {
 199     dims = (jint*) NEW_RESOURCE_ARRAY(jint, nof_dims);
 200   }
 201   for (int index = 0; index < nof_dims; index++) {
 202     // offset from first_size_address is addressed as local[index]
 203     int n = Interpreter::local_offset_in_bytes(index)/jintSize;
 204     dims[index] = first_size_address[n];
 205   }
 206   oop obj = ArrayKlass::cast(klass)->multi_allocate(nof_dims, dims, CHECK);
 207   thread->set_vm_result(obj);
 208 IRT_END
 209 
 210 
 211 IRT_ENTRY(void, InterpreterRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 212   assert(obj->is_oop(), "must be a valid oop");
 213   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
 214   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
 215 IRT_END
 216 
 217 
 218 // Quicken instance-of and check-cast bytecodes
 219 IRT_ENTRY(void, InterpreterRuntime::quicken_io_cc(JavaThread* thread))
 220   // Force resolving; quicken the bytecode
 221   int which = get_index_u2(thread, Bytecodes::_checkcast);
 222   ConstantPool* cpool = method(thread)->constants();
 223   // We'd expect to assert that we're only here to quicken bytecodes, but in a multithreaded
 224   // program we might have seen an unquick'd bytecode in the interpreter but have another
 225   // thread quicken the bytecode before we get here.
 226   // assert( cpool->tag_at(which).is_unresolved_klass(), "should only come here to quicken bytecodes" );
 227   Klass* klass = cpool->klass_at(which, CHECK);
 228   thread->set_vm_result_2(klass);
 229 IRT_END
 230 
 231 
 232 //------------------------------------------------------------------------------------------------------------------------
 233 // Exceptions
 234 
 235 void InterpreterRuntime::note_trap_inner(JavaThread* thread, int reason,
 236                                          methodHandle trap_method, int trap_bci, TRAPS) {
 237   if (trap_method.not_null()) {
 238     MethodData* trap_mdo = trap_method->method_data();
 239     if (trap_mdo == NULL) {
 240       Method::build_interpreter_method_data(trap_method, THREAD);
 241       if (HAS_PENDING_EXCEPTION) {
 242         assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())),
 243                "we expect only an OOM error here");
 244         CLEAR_PENDING_EXCEPTION;
 245       }
 246       trap_mdo = trap_method->method_data();
 247       // and fall through...
 248     }
 249     if (trap_mdo != NULL) {
 250       // Update per-method count of trap events.  The interpreter
 251       // is updating the MDO to simulate the effect of compiler traps.
 252       Deoptimization::update_method_data_from_interpreter(trap_mdo, trap_bci, reason);
 253     }
 254   }
 255 }
 256 
 257 // Assume the compiler is (or will be) interested in this event.
 258 // If necessary, create an MDO to hold the information, and record it.
 259 void InterpreterRuntime::note_trap(JavaThread* thread, int reason, TRAPS) {
 260   assert(ProfileTraps, "call me only if profiling");
 261   methodHandle trap_method(thread, method(thread));
 262   int trap_bci = trap_method->bci_from(bcp(thread));
 263   note_trap_inner(thread, reason, trap_method, trap_bci, THREAD);
 264 }
 265 
 266 #ifdef CC_INTERP
 267 // As legacy note_trap, but we have more arguments.
 268 IRT_ENTRY(void, InterpreterRuntime::note_trap(JavaThread* thread, int reason, Method *method, int trap_bci))
 269   methodHandle trap_method(method);
 270   note_trap_inner(thread, reason, trap_method, trap_bci, THREAD);
 271 IRT_END
 272 
 273 // Class Deoptimization is not visible in BytecodeInterpreter, so we need a wrapper
 274 // for each exception.
 275 void InterpreterRuntime::note_nullCheck_trap(JavaThread* thread, Method *method, int trap_bci)
 276   { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_null_check, method, trap_bci); }
 277 void InterpreterRuntime::note_div0Check_trap(JavaThread* thread, Method *method, int trap_bci)
 278   { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_div0_check, method, trap_bci); }
 279 void InterpreterRuntime::note_rangeCheck_trap(JavaThread* thread, Method *method, int trap_bci)
 280   { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_range_check, method, trap_bci); }
 281 void InterpreterRuntime::note_classCheck_trap(JavaThread* thread, Method *method, int trap_bci)
 282   { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_class_check, method, trap_bci); }
 283 void InterpreterRuntime::note_arrayCheck_trap(JavaThread* thread, Method *method, int trap_bci)
 284   { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_array_check, method, trap_bci); }
 285 #endif // CC_INTERP
 286 
 287 
 288 static Handle get_preinitialized_exception(Klass* k, TRAPS) {
 289   // get klass
 290   InstanceKlass* klass = InstanceKlass::cast(k);
 291   assert(klass->is_initialized(),
 292          "this klass should have been initialized during VM initialization");
 293   // create instance - do not call constructor since we may have no
 294   // (java) stack space left (should assert constructor is empty)
 295   Handle exception;
 296   oop exception_oop = klass->allocate_instance(CHECK_(exception));
 297   exception = Handle(THREAD, exception_oop);
 298   if (StackTraceInThrowable) {
 299     java_lang_Throwable::fill_in_stack_trace(exception);
 300   }
 301   return exception;
 302 }
 303 
 304 // Special handling for stack overflow: since we don't have any (java) stack
 305 // space left we use the pre-allocated & pre-initialized StackOverflowError
 306 // klass to create an stack overflow error instance.  We do not call its
 307 // constructor for the same reason (it is empty, anyway).
 308 IRT_ENTRY(void, InterpreterRuntime::throw_StackOverflowError(JavaThread* thread))
 309   Handle exception = get_preinitialized_exception(
 310                                  SystemDictionary::StackOverflowError_klass(),
 311                                  CHECK);
 312   // Increment counter for hs_err file reporting
 313   Atomic::inc(&Exceptions::_stack_overflow_errors);
 314   THROW_HANDLE(exception);
 315 IRT_END
 316 
 317 
 318 IRT_ENTRY(void, InterpreterRuntime::create_exception(JavaThread* thread, char* name, char* message))
 319   // lookup exception klass
 320   TempNewSymbol s = SymbolTable::new_symbol(name, CHECK);
 321   if (ProfileTraps) {
 322     if (s == vmSymbols::java_lang_ArithmeticException()) {
 323       note_trap(thread, Deoptimization::Reason_div0_check, CHECK);
 324     } else if (s == vmSymbols::java_lang_NullPointerException()) {
 325       note_trap(thread, Deoptimization::Reason_null_check, CHECK);
 326     }
 327   }
 328   // create exception
 329   Handle exception = Exceptions::new_exception(thread, s, message);
 330   thread->set_vm_result(exception());
 331 IRT_END
 332 
 333 
 334 IRT_ENTRY(void, InterpreterRuntime::create_klass_exception(JavaThread* thread, char* name, oopDesc* obj))
 335   ResourceMark rm(thread);
 336   const char* klass_name = obj->klass()->external_name();
 337   // lookup exception klass
 338   TempNewSymbol s = SymbolTable::new_symbol(name, CHECK);
 339   if (ProfileTraps) {
 340     note_trap(thread, Deoptimization::Reason_class_check, CHECK);
 341   }
 342   // create exception, with klass name as detail message
 343   Handle exception = Exceptions::new_exception(thread, s, klass_name);
 344   thread->set_vm_result(exception());
 345 IRT_END
 346 
 347 
 348 IRT_ENTRY(void, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException(JavaThread* thread, char* name, jint index))
 349   char message[jintAsStringSize];
 350   // lookup exception klass
 351   TempNewSymbol s = SymbolTable::new_symbol(name, CHECK);
 352   if (ProfileTraps) {
 353     note_trap(thread, Deoptimization::Reason_range_check, CHECK);
 354   }
 355   // create exception
 356   sprintf(message, "%d", index);
 357   THROW_MSG(s, message);
 358 IRT_END
 359 
 360 IRT_ENTRY(void, InterpreterRuntime::throw_ClassCastException(
 361   JavaThread* thread, oopDesc* obj))
 362 
 363   ResourceMark rm(thread);
 364   char* message = SharedRuntime::generate_class_cast_message(
 365     thread, obj->klass()->external_name());
 366 
 367   if (ProfileTraps) {
 368     note_trap(thread, Deoptimization::Reason_class_check, CHECK);
 369   }
 370 
 371   // create exception
 372   THROW_MSG(vmSymbols::java_lang_ClassCastException(), message);
 373 IRT_END
 374 
 375 // exception_handler_for_exception(...) returns the continuation address,
 376 // the exception oop (via TLS) and sets the bci/bcp for the continuation.
 377 // The exception oop is returned to make sure it is preserved over GC (it
 378 // is only on the stack if the exception was thrown explicitly via athrow).
 379 // During this operation, the expression stack contains the values for the
 380 // bci where the exception happened. If the exception was propagated back
 381 // from a call, the expression stack contains the values for the bci at the
 382 // invoke w/o arguments (i.e., as if one were inside the call).
 383 IRT_ENTRY(address, InterpreterRuntime::exception_handler_for_exception(JavaThread* thread, oopDesc* exception))
 384 
 385   Handle             h_exception(thread, exception);
 386   methodHandle       h_method   (thread, method(thread));
 387   constantPoolHandle h_constants(thread, h_method->constants());
 388   bool               should_repeat;
 389   int                handler_bci;
 390   int                current_bci = bci(thread);
 391 
 392   if (thread->frames_to_pop_failed_realloc() > 0) {
 393     // Allocation of scalar replaced object used in this frame
 394     // failed. Unconditionally pop the frame.
 395     thread->dec_frames_to_pop_failed_realloc();
 396     thread->set_vm_result(h_exception());
 397     // If the method is synchronized we already unlocked the monitor
 398     // during deoptimization so the interpreter needs to skip it when
 399     // the frame is popped.
 400     thread->set_do_not_unlock_if_synchronized(true);
 401 #ifdef CC_INTERP
 402     return (address) -1;
 403 #else
 404     return Interpreter::remove_activation_entry();
 405 #endif
 406   }
 407 
 408   // Need to do this check first since when _do_not_unlock_if_synchronized
 409   // is set, we don't want to trigger any classloading which may make calls
 410   // into java, or surprisingly find a matching exception handler for bci 0
 411   // since at this moment the method hasn't been "officially" entered yet.
 412   if (thread->do_not_unlock_if_synchronized()) {
 413     ResourceMark rm;
 414     assert(current_bci == 0,  "bci isn't zero for do_not_unlock_if_synchronized");
 415     thread->set_vm_result(exception);
 416 #ifdef CC_INTERP
 417     return (address) -1;
 418 #else
 419     return Interpreter::remove_activation_entry();
 420 #endif
 421   }
 422 
 423   do {
 424     should_repeat = false;
 425 
 426     // assertions
 427 #ifdef ASSERT
 428     assert(h_exception.not_null(), "NULL exceptions should be handled by athrow");
 429     assert(h_exception->is_oop(), "just checking");
 430     // Check that exception is a subclass of Throwable, otherwise we have a VerifyError
 431     if (!(h_exception->is_a(SystemDictionary::Throwable_klass()))) {
 432       if (ExitVMOnVerifyError) vm_exit(-1);
 433       ShouldNotReachHere();
 434     }
 435 #endif
 436 
 437     // tracing
 438     if (TraceExceptions) {
 439       ResourceMark rm(thread);
 440       Symbol* message = java_lang_Throwable::detail_message(h_exception());
 441       ttyLocker ttyl;  // Lock after getting the detail message
 442       if (message != NULL) {
 443         tty->print_cr("Exception <%s: %s> (" INTPTR_FORMAT ")",
 444                       h_exception->print_value_string(), message->as_C_string(),
 445                       (address)h_exception());
 446       } else {
 447         tty->print_cr("Exception <%s> (" INTPTR_FORMAT ")",
 448                       h_exception->print_value_string(),
 449                       (address)h_exception());
 450       }
 451       tty->print_cr(" thrown in interpreter method <%s>", h_method->print_value_string());
 452       tty->print_cr(" at bci %d for thread " INTPTR_FORMAT, current_bci, thread);
 453     }
 454 // Don't go paging in something which won't be used.
 455 //     else if (extable->length() == 0) {
 456 //       // disabled for now - interpreter is not using shortcut yet
 457 //       // (shortcut is not to call runtime if we have no exception handlers)
 458 //       // warning("performance bug: should not call runtime if method has no exception handlers");
 459 //     }
 460     // for AbortVMOnException flag
 461     NOT_PRODUCT(Exceptions::debug_check_abort(h_exception));
 462 
 463     // exception handler lookup
 464     KlassHandle h_klass(THREAD, h_exception->klass());
 465     handler_bci = Method::fast_exception_handler_bci_for(h_method, h_klass, current_bci, THREAD);
 466     if (HAS_PENDING_EXCEPTION) {
 467       // We threw an exception while trying to find the exception handler.
 468       // Transfer the new exception to the exception handle which will
 469       // be set into thread local storage, and do another lookup for an
 470       // exception handler for this exception, this time starting at the
 471       // BCI of the exception handler which caused the exception to be
 472       // thrown (bug 4307310).
 473       h_exception = Handle(THREAD, PENDING_EXCEPTION);
 474       CLEAR_PENDING_EXCEPTION;
 475       if (handler_bci >= 0) {
 476         current_bci = handler_bci;
 477         should_repeat = true;
 478       }
 479     }
 480   } while (should_repeat == true);
 481 
 482   // notify JVMTI of an exception throw; JVMTI will detect if this is a first
 483   // time throw or a stack unwinding throw and accordingly notify the debugger
 484   if (JvmtiExport::can_post_on_exceptions()) {
 485     JvmtiExport::post_exception_throw(thread, h_method(), bcp(thread), h_exception());
 486   }
 487 
 488 #ifdef CC_INTERP
 489   address continuation = (address)(intptr_t) handler_bci;
 490 #else
 491   address continuation = NULL;
 492 #endif
 493   address handler_pc = NULL;
 494   if (handler_bci < 0 || !thread->reguard_stack((address) &continuation)) {
 495     // Forward exception to callee (leaving bci/bcp untouched) because (a) no
 496     // handler in this method, or (b) after a stack overflow there is not yet
 497     // enough stack space available to reprotect the stack.
 498 #ifndef CC_INTERP
 499     continuation = Interpreter::remove_activation_entry();
 500 #endif
 501     // Count this for compilation purposes
 502     h_method->interpreter_throwout_increment(THREAD);
 503   } else {
 504     // handler in this method => change bci/bcp to handler bci/bcp and continue there
 505     handler_pc = h_method->code_base() + handler_bci;
 506 #ifndef CC_INTERP
 507     set_bcp_and_mdp(handler_pc, thread);
 508     continuation = Interpreter::dispatch_table(vtos)[*handler_pc];
 509 #endif
 510   }
 511   // notify debugger of an exception catch
 512   // (this is good for exceptions caught in native methods as well)
 513   if (JvmtiExport::can_post_on_exceptions()) {
 514     JvmtiExport::notice_unwind_due_to_exception(thread, h_method(), handler_pc, h_exception(), (handler_pc != NULL));
 515   }
 516 
 517   thread->set_vm_result(h_exception());
 518   return continuation;
 519 IRT_END
 520 
 521 
 522 IRT_ENTRY(void, InterpreterRuntime::throw_pending_exception(JavaThread* thread))
 523   assert(thread->has_pending_exception(), "must only ne called if there's an exception pending");
 524   // nothing to do - eventually we should remove this code entirely (see comments @ call sites)
 525 IRT_END
 526 
 527 
 528 IRT_ENTRY(void, InterpreterRuntime::throw_AbstractMethodError(JavaThread* thread))
 529   THROW(vmSymbols::java_lang_AbstractMethodError());
 530 IRT_END
 531 
 532 
 533 IRT_ENTRY(void, InterpreterRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 534   THROW(vmSymbols::java_lang_IncompatibleClassChangeError());
 535 IRT_END
 536 
 537 
 538 //------------------------------------------------------------------------------------------------------------------------
 539 // Fields
 540 //
 541 
 542 void InterpreterRuntime::resolve_get_put(JavaThread* thread, Bytecodes::Code bytecode) {
 543   Thread* THREAD = thread;
 544   // resolve field
 545   fieldDescriptor info;
 546   constantPoolHandle pool(thread, method(thread)->constants());
 547   bool is_put    = (bytecode == Bytecodes::_putfield  || bytecode == Bytecodes::_nofast_putfield ||
 548                     bytecode == Bytecodes::_putstatic);
 549   bool is_static = (bytecode == Bytecodes::_getstatic || bytecode == Bytecodes::_putstatic);
 550 
 551   {
 552     JvmtiHideSingleStepping jhss(thread);
 553     LinkResolver::resolve_field_access(info, pool, get_index_u2_cpcache(thread, bytecode),
 554                                        bytecode, CHECK);
 555   } // end JvmtiHideSingleStepping
 556 
 557   // check if link resolution caused cpCache to be updated
 558   ConstantPoolCacheEntry* cp_cache_entry = cache_entry(thread);
 559   if (cp_cache_entry->is_resolved(bytecode)) return;
 560 
 561   // compute auxiliary field attributes
 562   TosState state  = as_TosState(info.field_type());
 563 
 564   // We need to delay resolving put instructions on final fields
 565   // until we actually invoke one. This is required so we throw
 566   // exceptions at the correct place. If we do not resolve completely
 567   // in the current pass, leaving the put_code set to zero will
 568   // cause the next put instruction to reresolve.
 569   Bytecodes::Code put_code = (Bytecodes::Code)0;
 570 
 571   // We also need to delay resolving getstatic instructions until the
 572   // class is intitialized.  This is required so that access to the static
 573   // field will call the initialization function every time until the class
 574   // is completely initialized ala. in 2.17.5 in JVM Specification.
 575   InstanceKlass* klass = InstanceKlass::cast(info.field_holder());
 576   bool uninitialized_static = ((bytecode == Bytecodes::_getstatic || bytecode == Bytecodes::_putstatic) &&
 577                                !klass->is_initialized());
 578   Bytecodes::Code get_code = (Bytecodes::Code)0;
 579 
 580   if (!uninitialized_static) {
 581     get_code = ((is_static) ? Bytecodes::_getstatic : Bytecodes::_getfield);
 582     if (is_put || !info.access_flags().is_final()) {
 583       put_code = ((is_static) ? Bytecodes::_putstatic : Bytecodes::_putfield);
 584     }
 585   }
 586 
 587   cp_cache_entry->set_field(
 588     get_code,
 589     put_code,
 590     info.field_holder(),
 591     info.index(),
 592     info.offset(),
 593     state,
 594     info.access_flags().is_final(),
 595     info.access_flags().is_volatile(),
 596     pool->pool_holder()
 597   );
 598 }
 599 
 600 
 601 //------------------------------------------------------------------------------------------------------------------------
 602 // Synchronization
 603 //
 604 // The interpreter's synchronization code is factored out so that it can
 605 // be shared by method invocation and synchronized blocks.
 606 //%note synchronization_3
 607 
 608 //%note monitor_1
 609 IRT_ENTRY_NO_ASYNC(void, InterpreterRuntime::monitorenter(JavaThread* thread, BasicObjectLock* elem))
 610 #ifdef ASSERT
 611   thread->last_frame().interpreter_frame_verify_monitor(elem);
 612 #endif
 613   if (PrintBiasedLockingStatistics) {
 614     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
 615   }
 616   Handle h_obj(thread, elem->obj());
 617   assert(Universe::heap()->is_in_reserved_or_null(h_obj()),
 618          "must be NULL or an object");
 619   if (UseBiasedLocking) {
 620     // Retry fast entry if bias is revoked to avoid unnecessary inflation
 621     ObjectSynchronizer::fast_enter(h_obj, elem->lock(), true, CHECK);
 622   } else {
 623     ObjectSynchronizer::slow_enter(h_obj, elem->lock(), CHECK);
 624   }
 625   assert(Universe::heap()->is_in_reserved_or_null(elem->obj()),
 626          "must be NULL or an object");
 627 #ifdef ASSERT
 628   thread->last_frame().interpreter_frame_verify_monitor(elem);
 629 #endif
 630 IRT_END
 631 
 632 
 633 //%note monitor_1
 634 IRT_ENTRY_NO_ASYNC(void, InterpreterRuntime::monitorexit(JavaThread* thread, BasicObjectLock* elem))
 635 #ifdef ASSERT
 636   thread->last_frame().interpreter_frame_verify_monitor(elem);
 637 #endif
 638   Handle h_obj(thread, elem->obj());
 639   assert(Universe::heap()->is_in_reserved_or_null(h_obj()),
 640          "must be NULL or an object");
 641   if (elem == NULL || h_obj()->is_unlocked()) {
 642     THROW(vmSymbols::java_lang_IllegalMonitorStateException());
 643   }
 644   ObjectSynchronizer::slow_exit(h_obj(), elem->lock(), thread);
 645   // Free entry. This must be done here, since a pending exception might be installed on
 646   // exit. If it is not cleared, the exception handling code will try to unlock the monitor again.
 647   elem->set_obj(NULL);
 648 #ifdef ASSERT
 649   thread->last_frame().interpreter_frame_verify_monitor(elem);
 650 #endif
 651 IRT_END
 652 
 653 
 654 IRT_ENTRY(void, InterpreterRuntime::throw_illegal_monitor_state_exception(JavaThread* thread))
 655   THROW(vmSymbols::java_lang_IllegalMonitorStateException());
 656 IRT_END
 657 
 658 
 659 IRT_ENTRY(void, InterpreterRuntime::new_illegal_monitor_state_exception(JavaThread* thread))
 660   // Returns an illegal exception to install into the current thread. The
 661   // pending_exception flag is cleared so normal exception handling does not
 662   // trigger. Any current installed exception will be overwritten. This
 663   // method will be called during an exception unwind.
 664 
 665   assert(!HAS_PENDING_EXCEPTION, "no pending exception");
 666   Handle exception(thread, thread->vm_result());
 667   assert(exception() != NULL, "vm result should be set");
 668   thread->set_vm_result(NULL); // clear vm result before continuing (may cause memory leaks and assert failures)
 669   if (!exception->is_a(SystemDictionary::ThreadDeath_klass())) {
 670     exception = get_preinitialized_exception(
 671                        SystemDictionary::IllegalMonitorStateException_klass(),
 672                        CATCH);
 673   }
 674   thread->set_vm_result(exception());
 675 IRT_END
 676 
 677 
 678 //------------------------------------------------------------------------------------------------------------------------
 679 // Invokes
 680 
 681 IRT_ENTRY(Bytecodes::Code, InterpreterRuntime::get_original_bytecode_at(JavaThread* thread, Method* method, address bcp))
 682   return method->orig_bytecode_at(method->bci_from(bcp));
 683 IRT_END
 684 
 685 IRT_ENTRY(void, InterpreterRuntime::set_original_bytecode_at(JavaThread* thread, Method* method, address bcp, Bytecodes::Code new_code))
 686   method->set_orig_bytecode_at(method->bci_from(bcp), new_code);
 687 IRT_END
 688 
 689 IRT_ENTRY(void, InterpreterRuntime::_breakpoint(JavaThread* thread, Method* method, address bcp))
 690   JvmtiExport::post_raw_breakpoint(thread, method, bcp);
 691 IRT_END
 692 
 693 void InterpreterRuntime::resolve_invoke(JavaThread* thread, Bytecodes::Code bytecode) {
 694   Thread* THREAD = thread;
 695   // extract receiver from the outgoing argument list if necessary
 696   Handle receiver(thread, NULL);
 697   if (bytecode == Bytecodes::_invokevirtual || bytecode == Bytecodes::_invokeinterface) {
 698     ResourceMark rm(thread);
 699     methodHandle m (thread, method(thread));
 700     Bytecode_invoke call(m, bci(thread));
 701     Symbol* signature = call.signature();
 702     receiver = Handle(thread,
 703                   thread->last_frame().interpreter_callee_receiver(signature));
 704     assert(Universe::heap()->is_in_reserved_or_null(receiver()),
 705            "sanity check");
 706     assert(receiver.is_null() ||
 707            !Universe::heap()->is_in_reserved(receiver->klass()),
 708            "sanity check");
 709   }
 710 
 711   // resolve method
 712   CallInfo info;
 713   constantPoolHandle pool(thread, method(thread)->constants());
 714 
 715   {
 716     JvmtiHideSingleStepping jhss(thread);
 717     LinkResolver::resolve_invoke(info, receiver, pool,
 718                                  get_index_u2_cpcache(thread, bytecode), bytecode,
 719                                  CHECK);
 720     if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
 721       int retry_count = 0;
 722       while (info.resolved_method()->is_old()) {
 723         // It is very unlikely that method is redefined more than 100 times
 724         // in the middle of resolve. If it is looping here more than 100 times
 725         // means then there could be a bug here.
 726         guarantee((retry_count++ < 100),
 727                   "Could not resolve to latest version of redefined method");
 728         // method is redefined in the middle of resolve so re-try.
 729         LinkResolver::resolve_invoke(info, receiver, pool,
 730                                      get_index_u2_cpcache(thread, bytecode), bytecode,
 731                                      CHECK);
 732       }
 733     }
 734   } // end JvmtiHideSingleStepping
 735 
 736   // check if link resolution caused cpCache to be updated
 737   ConstantPoolCacheEntry* cp_cache_entry = cache_entry(thread);
 738   if (cp_cache_entry->is_resolved(bytecode)) return;
 739 
 740   if (bytecode == Bytecodes::_invokeinterface) {
 741     if (TraceItables && Verbose) {
 742       ResourceMark rm(thread);
 743       tty->print_cr("Resolving: klass: %s to method: %s", info.resolved_klass()->name()->as_C_string(), info.resolved_method()->name()->as_C_string());
 744     }
 745   }
 746 #ifdef ASSERT
 747   if (bytecode == Bytecodes::_invokeinterface) {
 748     if (info.resolved_method()->method_holder() ==
 749                                             SystemDictionary::Object_klass()) {
 750       // NOTE: THIS IS A FIX FOR A CORNER CASE in the JVM spec
 751       // (see also CallInfo::set_interface for details)
 752       assert(info.call_kind() == CallInfo::vtable_call ||
 753              info.call_kind() == CallInfo::direct_call, "");
 754       methodHandle rm = info.resolved_method();
 755       assert(rm->is_final() || info.has_vtable_index(),
 756              "should have been set already");
 757     } else if (!info.resolved_method()->has_itable_index()) {
 758       // Resolved something like CharSequence.toString.  Use vtable not itable.
 759       assert(info.call_kind() != CallInfo::itable_call, "");
 760     } else {
 761       // Setup itable entry
 762       assert(info.call_kind() == CallInfo::itable_call, "");
 763       int index = info.resolved_method()->itable_index();
 764       assert(info.itable_index() == index, "");
 765     }
 766   } else {
 767     assert(info.call_kind() == CallInfo::direct_call ||
 768            info.call_kind() == CallInfo::vtable_call, "");
 769   }
 770 #endif
 771   switch (info.call_kind()) {
 772   case CallInfo::direct_call:
 773     cp_cache_entry->set_direct_call(
 774       bytecode,
 775       info.resolved_method());
 776     break;
 777   case CallInfo::vtable_call:
 778     cp_cache_entry->set_vtable_call(
 779       bytecode,
 780       info.resolved_method(),
 781       info.vtable_index());
 782     break;
 783   case CallInfo::itable_call:
 784     cp_cache_entry->set_itable_call(
 785       bytecode,
 786       info.resolved_method(),
 787       info.itable_index());
 788     break;
 789   default:  ShouldNotReachHere();
 790   }
 791 }
 792 
 793 
 794 // First time execution:  Resolve symbols, create a permanent MethodType object.
 795 void InterpreterRuntime::resolve_invokehandle(JavaThread* thread) {
 796   Thread* THREAD = thread;
 797   const Bytecodes::Code bytecode = Bytecodes::_invokehandle;
 798 
 799   // resolve method
 800   CallInfo info;
 801   constantPoolHandle pool(thread, method(thread)->constants());
 802   {
 803     JvmtiHideSingleStepping jhss(thread);
 804     LinkResolver::resolve_invoke(info, Handle(), pool,
 805                                  get_index_u2_cpcache(thread, bytecode), bytecode,
 806                                  CHECK);
 807   } // end JvmtiHideSingleStepping
 808 
 809   ConstantPoolCacheEntry* cp_cache_entry = cache_entry(thread);
 810   cp_cache_entry->set_method_handle(pool, info);
 811 }
 812 
 813 // First time execution:  Resolve symbols, create a permanent CallSite object.
 814 void InterpreterRuntime::resolve_invokedynamic(JavaThread* thread) {
 815   Thread* THREAD = thread;
 816   const Bytecodes::Code bytecode = Bytecodes::_invokedynamic;
 817 
 818   //TO DO: consider passing BCI to Java.
 819   //  int caller_bci = method(thread)->bci_from(bcp(thread));
 820 
 821   // resolve method
 822   CallInfo info;
 823   constantPoolHandle pool(thread, method(thread)->constants());
 824   int index = get_index_u4(thread, bytecode);
 825   {
 826     JvmtiHideSingleStepping jhss(thread);
 827     LinkResolver::resolve_invoke(info, Handle(), pool,
 828                                  index, bytecode, CHECK);
 829   } // end JvmtiHideSingleStepping
 830 
 831   ConstantPoolCacheEntry* cp_cache_entry = pool->invokedynamic_cp_cache_entry_at(index);
 832   cp_cache_entry->set_dynamic_call(pool, info);
 833 }
 834 
 835 // This function is the interface to the assembly code. It returns the resolved
 836 // cpCache entry.  This doesn't safepoint, but the helper routines safepoint.
 837 // This function will check for redefinition!
 838 IRT_ENTRY(void, InterpreterRuntime::resolve_from_cache(JavaThread* thread, Bytecodes::Code bytecode)) {
 839   switch (bytecode) {
 840   case Bytecodes::_getstatic:
 841   case Bytecodes::_putstatic:
 842   case Bytecodes::_getfield:
 843   case Bytecodes::_putfield:
 844     resolve_get_put(thread, bytecode);
 845     break;
 846   case Bytecodes::_invokevirtual:
 847   case Bytecodes::_invokespecial:
 848   case Bytecodes::_invokestatic:
 849   case Bytecodes::_invokeinterface:
 850     resolve_invoke(thread, bytecode);
 851     break;
 852   case Bytecodes::_invokehandle:
 853     resolve_invokehandle(thread);
 854     break;
 855   case Bytecodes::_invokedynamic:
 856     resolve_invokedynamic(thread);
 857     break;
 858   default:
 859     fatal(err_msg("unexpected bytecode: %s", Bytecodes::name(bytecode)));
 860     break;
 861   }
 862 }
 863 IRT_END
 864 
 865 //------------------------------------------------------------------------------------------------------------------------
 866 // Miscellaneous
 867 
 868 
 869 nmethod* InterpreterRuntime::frequency_counter_overflow(JavaThread* thread, address branch_bcp) {
 870   nmethod* nm = frequency_counter_overflow_inner(thread, branch_bcp);
 871   assert(branch_bcp != NULL || nm == NULL, "always returns null for non OSR requests");
 872   if (branch_bcp != NULL && nm != NULL) {
 873     // This was a successful request for an OSR nmethod.  Because
 874     // frequency_counter_overflow_inner ends with a safepoint check,
 875     // nm could have been unloaded so look it up again.  It's unsafe
 876     // to examine nm directly since it might have been freed and used
 877     // for something else.
 878     frame fr = thread->last_frame();
 879     Method* method =  fr.interpreter_frame_method();
 880     int bci = method->bci_from(fr.interpreter_frame_bcp());
 881     nm = method->lookup_osr_nmethod_for(bci, CompLevel_none, false);
 882   }
 883 #ifndef PRODUCT
 884   if (TraceOnStackReplacement) {
 885     if (nm != NULL) {
 886       tty->print("OSR entry @ pc: " INTPTR_FORMAT ": ", nm->osr_entry());
 887       nm->print();
 888     }
 889   }
 890 #endif
 891   return nm;
 892 }
 893 
 894 IRT_ENTRY(nmethod*,
 895           InterpreterRuntime::frequency_counter_overflow_inner(JavaThread* thread, address branch_bcp))
 896   // use UnlockFlagSaver to clear and restore the _do_not_unlock_if_synchronized
 897   // flag, in case this method triggers classloading which will call into Java.
 898   UnlockFlagSaver fs(thread);
 899 
 900   frame fr = thread->last_frame();
 901   assert(fr.is_interpreted_frame(), "must come from interpreter");
 902   methodHandle method(thread, fr.interpreter_frame_method());
 903   const int branch_bci = branch_bcp != NULL ? method->bci_from(branch_bcp) : InvocationEntryBci;
 904   const int bci = branch_bcp != NULL ? method->bci_from(fr.interpreter_frame_bcp()) : InvocationEntryBci;
 905 
 906   assert(!HAS_PENDING_EXCEPTION, "Should not have any exceptions pending");
 907   nmethod* osr_nm = CompilationPolicy::policy()->event(method, method, branch_bci, bci, CompLevel_none, NULL, thread);
 908   assert(!HAS_PENDING_EXCEPTION, "Event handler should not throw any exceptions");
 909 
 910   if (osr_nm != NULL) {
 911     // We may need to do on-stack replacement which requires that no
 912     // monitors in the activation are biased because their
 913     // BasicObjectLocks will need to migrate during OSR. Force
 914     // unbiasing of all monitors in the activation now (even though
 915     // the OSR nmethod might be invalidated) because we don't have a
 916     // safepoint opportunity later once the migration begins.
 917     if (UseBiasedLocking) {
 918       ResourceMark rm;
 919       GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
 920       for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
 921            kptr < fr.interpreter_frame_monitor_begin();
 922            kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
 923         if( kptr->obj() != NULL ) {
 924           objects_to_revoke->append(Handle(THREAD, kptr->obj()));
 925         }
 926       }
 927       BiasedLocking::revoke(objects_to_revoke);
 928     }
 929   }
 930   return osr_nm;
 931 IRT_END
 932 
 933 IRT_LEAF(jint, InterpreterRuntime::bcp_to_di(Method* method, address cur_bcp))
 934   assert(ProfileInterpreter, "must be profiling interpreter");
 935   int bci = method->bci_from(cur_bcp);
 936   MethodData* mdo = method->method_data();
 937   if (mdo == NULL)  return 0;
 938   return mdo->bci_to_di(bci);
 939 IRT_END
 940 
 941 IRT_ENTRY(void, InterpreterRuntime::profile_method(JavaThread* thread))
 942   // use UnlockFlagSaver to clear and restore the _do_not_unlock_if_synchronized
 943   // flag, in case this method triggers classloading which will call into Java.
 944   UnlockFlagSaver fs(thread);
 945 
 946   assert(ProfileInterpreter, "must be profiling interpreter");
 947   frame fr = thread->last_frame();
 948   assert(fr.is_interpreted_frame(), "must come from interpreter");
 949   methodHandle method(thread, fr.interpreter_frame_method());
 950   Method::build_interpreter_method_data(method, THREAD);
 951   if (HAS_PENDING_EXCEPTION) {
 952     assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
 953     CLEAR_PENDING_EXCEPTION;
 954     // and fall through...
 955   }
 956 IRT_END
 957 
 958 
 959 #ifdef ASSERT
 960 IRT_LEAF(void, InterpreterRuntime::verify_mdp(Method* method, address bcp, address mdp))
 961   assert(ProfileInterpreter, "must be profiling interpreter");
 962 
 963   MethodData* mdo = method->method_data();
 964   assert(mdo != NULL, "must not be null");
 965 
 966   int bci = method->bci_from(bcp);
 967 
 968   address mdp2 = mdo->bci_to_dp(bci);
 969   if (mdp != mdp2) {
 970     ResourceMark rm;
 971     ResetNoHandleMark rnm; // In a LEAF entry.
 972     HandleMark hm;
 973     tty->print_cr("FAILED verify : actual mdp %p   expected mdp %p @ bci %d", mdp, mdp2, bci);
 974     int current_di = mdo->dp_to_di(mdp);
 975     int expected_di  = mdo->dp_to_di(mdp2);
 976     tty->print_cr("  actual di %d   expected di %d", current_di, expected_di);
 977     int expected_approx_bci = mdo->data_at(expected_di)->bci();
 978     int approx_bci = -1;
 979     if (current_di >= 0) {
 980       approx_bci = mdo->data_at(current_di)->bci();
 981     }
 982     tty->print_cr("  actual bci is %d  expected bci %d", approx_bci, expected_approx_bci);
 983     mdo->print_on(tty);
 984     method->print_codes();
 985   }
 986   assert(mdp == mdp2, "wrong mdp");
 987 IRT_END
 988 #endif // ASSERT
 989 
 990 IRT_ENTRY(void, InterpreterRuntime::update_mdp_for_ret(JavaThread* thread, int return_bci))
 991   assert(ProfileInterpreter, "must be profiling interpreter");
 992   ResourceMark rm(thread);
 993   HandleMark hm(thread);
 994   frame fr = thread->last_frame();
 995   assert(fr.is_interpreted_frame(), "must come from interpreter");
 996   MethodData* h_mdo = fr.interpreter_frame_method()->method_data();
 997 
 998   // Grab a lock to ensure atomic access to setting the return bci and
 999   // the displacement.  This can block and GC, invalidating all naked oops.
1000   MutexLocker ml(RetData_lock);
1001 
1002   // ProfileData is essentially a wrapper around a derived oop, so we
1003   // need to take the lock before making any ProfileData structures.
1004   ProfileData* data = h_mdo->data_at(h_mdo->dp_to_di(fr.interpreter_frame_mdp()));
1005   RetData* rdata = data->as_RetData();
1006   address new_mdp = rdata->fixup_ret(return_bci, h_mdo);
1007   fr.interpreter_frame_set_mdp(new_mdp);
1008 IRT_END
1009 
1010 IRT_ENTRY(MethodCounters*, InterpreterRuntime::build_method_counters(JavaThread* thread, Method* m))
1011   MethodCounters* mcs = Method::build_method_counters(m, thread);
1012   if (HAS_PENDING_EXCEPTION) {
1013     assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
1014     CLEAR_PENDING_EXCEPTION;
1015   }
1016   return mcs;
1017 IRT_END
1018 
1019 
1020 IRT_ENTRY(void, InterpreterRuntime::at_safepoint(JavaThread* thread))
1021   // We used to need an explict preserve_arguments here for invoke bytecodes. However,
1022   // stack traversal automatically takes care of preserving arguments for invoke, so
1023   // this is no longer needed.
1024 
1025   // IRT_END does an implicit safepoint check, hence we are guaranteed to block
1026   // if this is called during a safepoint
1027 
1028   if (JvmtiExport::should_post_single_step()) {
1029     // We are called during regular safepoints and when the VM is
1030     // single stepping. If any thread is marked for single stepping,
1031     // then we may have JVMTI work to do.
1032     JvmtiExport::at_single_stepping_point(thread, method(thread), bcp(thread));
1033   }
1034 IRT_END
1035 
1036 IRT_ENTRY(void, InterpreterRuntime::post_field_access(JavaThread *thread, oopDesc* obj,
1037 ConstantPoolCacheEntry *cp_entry))
1038 
1039   // check the access_flags for the field in the klass
1040 
1041   InstanceKlass* ik = InstanceKlass::cast(cp_entry->f1_as_klass());
1042   int index = cp_entry->field_index();
1043   if ((ik->field_access_flags(index) & JVM_ACC_FIELD_ACCESS_WATCHED) == 0) return;
1044 
1045   bool is_static = (obj == NULL);
1046   HandleMark hm(thread);
1047 
1048   Handle h_obj;
1049   if (!is_static) {
1050     // non-static field accessors have an object, but we need a handle
1051     h_obj = Handle(thread, obj);
1052   }
1053   instanceKlassHandle h_cp_entry_f1(thread, (Klass*)cp_entry->f1_as_klass());
1054   jfieldID fid = jfieldIDWorkaround::to_jfieldID(h_cp_entry_f1, cp_entry->f2_as_index(), is_static);
1055   JvmtiExport::post_field_access(thread, method(thread), bcp(thread), h_cp_entry_f1, h_obj, fid);
1056 IRT_END
1057 
1058 IRT_ENTRY(void, InterpreterRuntime::post_field_modification(JavaThread *thread,
1059   oopDesc* obj, ConstantPoolCacheEntry *cp_entry, jvalue *value))
1060 
1061   Klass* k = (Klass*)cp_entry->f1_as_klass();
1062 
1063   // check the access_flags for the field in the klass
1064   InstanceKlass* ik = InstanceKlass::cast(k);
1065   int index = cp_entry->field_index();
1066   // bail out if field modifications are not watched
1067   if ((ik->field_access_flags(index) & JVM_ACC_FIELD_MODIFICATION_WATCHED) == 0) return;
1068 
1069   char sig_type = '\0';
1070 
1071   switch(cp_entry->flag_state()) {
1072     case btos: sig_type = 'Z'; break;
1073     case ctos: sig_type = 'C'; break;
1074     case stos: sig_type = 'S'; break;
1075     case itos: sig_type = 'I'; break;
1076     case ftos: sig_type = 'F'; break;
1077     case atos: sig_type = 'L'; break;
1078     case ltos: sig_type = 'J'; break;
1079     case dtos: sig_type = 'D'; break;
1080     default:  ShouldNotReachHere(); return;
1081   }
1082   bool is_static = (obj == NULL);
1083 
1084   HandleMark hm(thread);
1085   instanceKlassHandle h_klass(thread, k);
1086   jfieldID fid = jfieldIDWorkaround::to_jfieldID(h_klass, cp_entry->f2_as_index(), is_static);
1087   jvalue fvalue;
1088 #ifdef _LP64
1089   fvalue = *value;
1090 #else
1091   // Long/double values are stored unaligned and also noncontiguously with
1092   // tagged stacks.  We can't just do a simple assignment even in the non-
1093   // J/D cases because a C++ compiler is allowed to assume that a jvalue is
1094   // 8-byte aligned, and interpreter stack slots are only 4-byte aligned.
1095   // We assume that the two halves of longs/doubles are stored in interpreter
1096   // stack slots in platform-endian order.
1097   jlong_accessor u;
1098   jint* newval = (jint*)value;
1099   u.words[0] = newval[0];
1100   u.words[1] = newval[Interpreter::stackElementWords]; // skip if tag
1101   fvalue.j = u.long_value;
1102 #endif // _LP64
1103 
1104   Handle h_obj;
1105   if (!is_static) {
1106     // non-static field accessors have an object, but we need a handle
1107     h_obj = Handle(thread, obj);
1108   }
1109 
1110   JvmtiExport::post_raw_field_modification(thread, method(thread), bcp(thread), h_klass, h_obj,
1111                                            fid, sig_type, &fvalue);
1112 IRT_END
1113 
1114 IRT_ENTRY(void, InterpreterRuntime::post_method_entry(JavaThread *thread))
1115   JvmtiExport::post_method_entry(thread, InterpreterRuntime::method(thread), InterpreterRuntime::last_frame(thread));
1116 IRT_END
1117 
1118 
1119 IRT_ENTRY(void, InterpreterRuntime::post_method_exit(JavaThread *thread))
1120   JvmtiExport::post_method_exit(thread, InterpreterRuntime::method(thread), InterpreterRuntime::last_frame(thread));
1121 IRT_END
1122 
1123 IRT_LEAF(int, InterpreterRuntime::interpreter_contains(address pc))
1124 {
1125   return (Interpreter::contains(pc) ? 1 : 0);
1126 }
1127 IRT_END
1128 
1129 
1130 // Implementation of SignatureHandlerLibrary
1131 
1132 address SignatureHandlerLibrary::set_handler_blob() {
1133   BufferBlob* handler_blob = BufferBlob::create("native signature handlers", blob_size);
1134   if (handler_blob == NULL) {
1135     return NULL;
1136   }
1137   address handler = handler_blob->code_begin();
1138   _handler_blob = handler_blob;
1139   _handler = handler;
1140   return handler;
1141 }
1142 
1143 void SignatureHandlerLibrary::initialize() {
1144   if (_fingerprints != NULL) {
1145     return;
1146   }
1147   if (set_handler_blob() == NULL) {
1148     vm_exit_out_of_memory(blob_size, OOM_MALLOC_ERROR, "native signature handlers");
1149   }
1150 
1151   BufferBlob* bb = BufferBlob::create("Signature Handler Temp Buffer",
1152                                       SignatureHandlerLibrary::buffer_size);
1153   _buffer = bb->code_begin();
1154 
1155   _fingerprints = new(ResourceObj::C_HEAP, mtCode)GrowableArray<uint64_t>(32, true);
1156   _handlers     = new(ResourceObj::C_HEAP, mtCode)GrowableArray<address>(32, true);
1157 }
1158 
1159 address SignatureHandlerLibrary::set_handler(CodeBuffer* buffer) {
1160   address handler   = _handler;
1161   int     insts_size = buffer->pure_insts_size();
1162   if (handler + insts_size > _handler_blob->code_end()) {
1163     // get a new handler blob
1164     handler = set_handler_blob();
1165   }
1166   if (handler != NULL) {
1167     memcpy(handler, buffer->insts_begin(), insts_size);
1168     pd_set_handler(handler);
1169     ICache::invalidate_range(handler, insts_size);
1170     _handler = handler + insts_size;
1171   }
1172   return handler;
1173 }
1174 
1175 void SignatureHandlerLibrary::add(methodHandle method) {
1176   if (method->signature_handler() == NULL) {
1177     // use slow signature handler if we can't do better
1178     int handler_index = -1;
1179     // check if we can use customized (fast) signature handler
1180     if (UseFastSignatureHandlers && method->size_of_parameters() <= Fingerprinter::max_size_of_parameters) {
1181       // use customized signature handler
1182       MutexLocker mu(SignatureHandlerLibrary_lock);
1183       // make sure data structure is initialized
1184       initialize();
1185       // lookup method signature's fingerprint
1186       uint64_t fingerprint = Fingerprinter(method).fingerprint();
1187       handler_index = _fingerprints->find(fingerprint);
1188       // create handler if necessary
1189       if (handler_index < 0) {
1190         ResourceMark rm;
1191         ptrdiff_t align_offset = (address)
1192           round_to((intptr_t)_buffer, CodeEntryAlignment) - (address)_buffer;
1193         CodeBuffer buffer((address)(_buffer + align_offset),
1194                           SignatureHandlerLibrary::buffer_size - align_offset);
1195         InterpreterRuntime::SignatureHandlerGenerator(method, &buffer).generate(fingerprint);
1196         // copy into code heap
1197         address handler = set_handler(&buffer);
1198         if (handler == NULL) {
1199           // use slow signature handler
1200         } else {
1201           // debugging suppport
1202           if (PrintSignatureHandlers) {
1203             tty->cr();
1204             tty->print_cr("argument handler #%d for: %s %s (fingerprint = " UINT64_FORMAT ", %d bytes generated)",
1205                           _handlers->length(),
1206                           (method->is_static() ? "static" : "receiver"),
1207                           method->name_and_sig_as_C_string(),
1208                           fingerprint,
1209                           buffer.insts_size());
1210             Disassembler::decode(handler, handler + buffer.insts_size());
1211 #ifndef PRODUCT
1212             tty->print_cr(" --- associated result handler ---");
1213             address rh_begin = Interpreter::result_handler(method()->result_type());
1214             address rh_end = rh_begin;
1215             while (*(int*)rh_end != 0) {
1216               rh_end += sizeof(int);
1217             }
1218             Disassembler::decode(rh_begin, rh_end);
1219 #endif
1220           }
1221           // add handler to library
1222           _fingerprints->append(fingerprint);
1223           _handlers->append(handler);
1224           // set handler index
1225           assert(_fingerprints->length() == _handlers->length(), "sanity check");
1226           handler_index = _fingerprints->length() - 1;
1227         }
1228       }
1229       // Set handler under SignatureHandlerLibrary_lock
1230     if (handler_index < 0) {
1231       // use generic signature handler
1232       method->set_signature_handler(Interpreter::slow_signature_handler());
1233     } else {
1234       // set handler
1235       method->set_signature_handler(_handlers->at(handler_index));
1236     }
1237     } else {
1238       CHECK_UNHANDLED_OOPS_ONLY(Thread::current()->clear_unhandled_oops());
1239       // use generic signature handler
1240       method->set_signature_handler(Interpreter::slow_signature_handler());
1241     }
1242   }
1243 #ifdef ASSERT
1244   int handler_index = -1;
1245   int fingerprint_index = -2;
1246   {
1247     // '_handlers' and '_fingerprints' are 'GrowableArray's and are NOT synchronized
1248     // in any way if accessed from multiple threads. To avoid races with another
1249     // thread which may change the arrays in the above, mutex protected block, we
1250     // have to protect this read access here with the same mutex as well!
1251     MutexLocker mu(SignatureHandlerLibrary_lock);
1252     if (_handlers != NULL) {
1253     handler_index = _handlers->find(method->signature_handler());
1254     fingerprint_index = _fingerprints->find(Fingerprinter(method).fingerprint());
1255   }
1256   }
1257   assert(method->signature_handler() == Interpreter::slow_signature_handler() ||
1258          handler_index == fingerprint_index, "sanity check");
1259 #endif // ASSERT
1260 }
1261 
1262 
1263 BufferBlob*              SignatureHandlerLibrary::_handler_blob = NULL;
1264 address                  SignatureHandlerLibrary::_handler      = NULL;
1265 GrowableArray<uint64_t>* SignatureHandlerLibrary::_fingerprints = NULL;
1266 GrowableArray<address>*  SignatureHandlerLibrary::_handlers     = NULL;
1267 address                  SignatureHandlerLibrary::_buffer       = NULL;
1268 
1269 
1270 IRT_ENTRY(void, InterpreterRuntime::prepare_native_call(JavaThread* thread, Method* method))
1271   methodHandle m(thread, method);
1272   assert(m->is_native(), "sanity check");
1273   // lookup native function entry point if it doesn't exist
1274   bool in_base_library;
1275   if (!m->has_native_function()) {
1276     NativeLookup::lookup(m, in_base_library, CHECK);
1277   }
1278   // make sure signature handler is installed
1279   SignatureHandlerLibrary::add(m);
1280   // The interpreter entry point checks the signature handler first,
1281   // before trying to fetch the native entry point and klass mirror.
1282   // We must set the signature handler last, so that multiple processors
1283   // preparing the same method will be sure to see non-null entry & mirror.
1284 IRT_END
1285 
1286 #if defined(IA32) || defined(AMD64) || defined(ARM)
1287 IRT_LEAF(void, InterpreterRuntime::popframe_move_outgoing_args(JavaThread* thread, void* src_address, void* dest_address))
1288   if (src_address == dest_address) {
1289     return;
1290   }
1291   ResetNoHandleMark rnm; // In a LEAF entry.
1292   HandleMark hm;
1293   ResourceMark rm;
1294   frame fr = thread->last_frame();
1295   assert(fr.is_interpreted_frame(), "");
1296   jint bci = fr.interpreter_frame_bci();
1297   methodHandle mh(thread, fr.interpreter_frame_method());
1298   Bytecode_invoke invoke(mh, bci);
1299   ArgumentSizeComputer asc(invoke.signature());
1300   int size_of_arguments = (asc.size() + (invoke.has_receiver() ? 1 : 0)); // receiver
1301   Copy::conjoint_jbytes(src_address, dest_address,
1302                        size_of_arguments * Interpreter::stackElementSize);
1303 IRT_END
1304 #endif
1305 
1306 #if INCLUDE_JVMTI
1307 // This is a support of the JVMTI PopFrame interface.
1308 // Make sure it is an invokestatic of a polymorphic intrinsic that has a member_name argument
1309 // and return it as a vm_result so that it can be reloaded in the list of invokestatic parameters.
1310 // The member_name argument is a saved reference (in local#0) to the member_name.
1311 // For backward compatibility with some JDK versions (7, 8) it can also be a direct method handle.
1312 // FIXME: remove DMH case after j.l.i.InvokerBytecodeGenerator code shape is updated.
1313 IRT_ENTRY(void, InterpreterRuntime::member_name_arg_or_null(JavaThread* thread, address member_name,
1314                                                             Method* method, address bcp))
1315   Bytecodes::Code code = Bytecodes::code_at(method, bcp);
1316   if (code != Bytecodes::_invokestatic) {
1317     return;
1318   }
1319   ConstantPool* cpool = method->constants();
1320   int cp_index = Bytes::get_native_u2(bcp + 1) + ConstantPool::CPCACHE_INDEX_TAG;
1321   Symbol* cname = cpool->klass_name_at(cpool->klass_ref_index_at(cp_index));
1322   Symbol* mname = cpool->name_ref_at(cp_index);
1323 
1324   if (MethodHandles::has_member_arg(cname, mname)) {
1325     oop member_name_oop = (oop) member_name;
1326     if (java_lang_invoke_DirectMethodHandle::is_instance(member_name_oop)) {
1327       // FIXME: remove after j.l.i.InvokerBytecodeGenerator code shape is updated.
1328       member_name_oop = java_lang_invoke_DirectMethodHandle::member(member_name_oop);
1329     }
1330     thread->set_vm_result(member_name_oop);
1331   } else {
1332     thread->set_vm_result(NULL);
1333   }
1334 IRT_END
1335 #endif // INCLUDE_JVMTI