1 /*
   2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_CONCURRENTMARKSWEEPGENERATION_HPP
  26 #define SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_CONCURRENTMARKSWEEPGENERATION_HPP
  27 
  28 #include "gc_implementation/shared/gcHeapSummary.hpp"
  29 #include "gc_implementation/shared/gSpaceCounters.hpp"
  30 #include "gc_implementation/shared/gcStats.hpp"
  31 #include "gc_implementation/shared/gcWhen.hpp"
  32 #include "gc_implementation/shared/generationCounters.hpp"
  33 #include "memory/freeBlockDictionary.hpp"
  34 #include "memory/generation.hpp"
  35 #include "memory/iterator.hpp"
  36 #include "runtime/mutexLocker.hpp"
  37 #include "runtime/virtualspace.hpp"
  38 #include "services/memoryService.hpp"
  39 #include "utilities/bitMap.inline.hpp"
  40 #include "utilities/stack.inline.hpp"
  41 #include "utilities/taskqueue.hpp"
  42 #include "utilities/yieldingWorkgroup.hpp"
  43 
  44 // ConcurrentMarkSweepGeneration is in support of a concurrent
  45 // mark-sweep old generation in the Detlefs-Printezis--Boehm-Demers-Schenker
  46 // style. We assume, for now, that this generation is always the
  47 // seniormost generation and for simplicity
  48 // in the first implementation, that this generation is a single compactible
  49 // space. Neither of these restrictions appears essential, and will be
  50 // relaxed in the future when more time is available to implement the
  51 // greater generality (and there's a need for it).
  52 //
  53 // Concurrent mode failures are currently handled by
  54 // means of a sliding mark-compact.
  55 
  56 class AdaptiveSizePolicy;
  57 class CMSConcMarkingTask;
  58 class CMSGCAdaptivePolicyCounters;
  59 class CMSTracer;
  60 class ConcurrentGCTimer;
  61 class ConcurrentMarkSweepGeneration;
  62 class ConcurrentMarkSweepPolicy;
  63 class ConcurrentMarkSweepThread;
  64 class CompactibleFreeListSpace;
  65 class FreeChunk;
  66 class PromotionInfo;
  67 class ScanMarkedObjectsAgainCarefullyClosure;
  68 class TenuredGeneration;
  69 class SerialOldTracer;
  70 
  71 // A generic CMS bit map. It's the basis for both the CMS marking bit map
  72 // as well as for the mod union table (in each case only a subset of the
  73 // methods are used). This is essentially a wrapper around the BitMap class,
  74 // with one bit per (1<<_shifter) HeapWords. (i.e. for the marking bit map,
  75 // we have _shifter == 0. and for the mod union table we have
  76 // shifter == CardTableModRefBS::card_shift - LogHeapWordSize.)
  77 // XXX 64-bit issues in BitMap?
  78 class CMSBitMap VALUE_OBJ_CLASS_SPEC {
  79   friend class VMStructs;
  80 
  81   HeapWord* _bmStartWord;   // base address of range covered by map
  82   size_t    _bmWordSize;    // map size (in #HeapWords covered)
  83   const int _shifter;       // shifts to convert HeapWord to bit position
  84   VirtualSpace _virtual_space; // underlying the bit map
  85   BitMap    _bm;            // the bit map itself
  86  public:
  87   Mutex* const _lock;       // mutex protecting _bm;
  88 
  89  public:
  90   // constructor
  91   CMSBitMap(int shifter, int mutex_rank, const char* mutex_name);
  92 
  93   // allocates the actual storage for the map
  94   bool allocate(MemRegion mr);
  95   // field getter
  96   Mutex* lock() const { return _lock; }
  97   // locking verifier convenience function
  98   void assert_locked() const PRODUCT_RETURN;
  99 
 100   // inquiries
 101   HeapWord* startWord()   const { return _bmStartWord; }
 102   size_t    sizeInWords() const { return _bmWordSize;  }
 103   size_t    sizeInBits()  const { return _bm.size();   }
 104   // the following is one past the last word in space
 105   HeapWord* endWord()     const { return _bmStartWord + _bmWordSize; }
 106 
 107   // reading marks
 108   bool isMarked(HeapWord* addr) const;
 109   bool par_isMarked(HeapWord* addr) const; // do not lock checks
 110   bool isUnmarked(HeapWord* addr) const;
 111   bool isAllClear() const;
 112 
 113   // writing marks
 114   void mark(HeapWord* addr);
 115   // For marking by parallel GC threads;
 116   // returns true if we did, false if another thread did
 117   bool par_mark(HeapWord* addr);
 118 
 119   void mark_range(MemRegion mr);
 120   void par_mark_range(MemRegion mr);
 121   void mark_large_range(MemRegion mr);
 122   void par_mark_large_range(MemRegion mr);
 123   void par_clear(HeapWord* addr); // For unmarking by parallel GC threads.
 124   void clear_range(MemRegion mr);
 125   void par_clear_range(MemRegion mr);
 126   void clear_large_range(MemRegion mr);
 127   void par_clear_large_range(MemRegion mr);
 128   void clear_all();
 129   void clear_all_incrementally();  // Not yet implemented!!
 130 
 131   NOT_PRODUCT(
 132     // checks the memory region for validity
 133     void region_invariant(MemRegion mr);
 134   )
 135 
 136   // iteration
 137   void iterate(BitMapClosure* cl) {
 138     _bm.iterate(cl);
 139   }
 140   void iterate(BitMapClosure* cl, HeapWord* left, HeapWord* right);
 141   void dirty_range_iterate_clear(MemRegionClosure* cl);
 142   void dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl);
 143 
 144   // auxiliary support for iteration
 145   HeapWord* getNextMarkedWordAddress(HeapWord* addr) const;
 146   HeapWord* getNextMarkedWordAddress(HeapWord* start_addr,
 147                                             HeapWord* end_addr) const;
 148   HeapWord* getNextUnmarkedWordAddress(HeapWord* addr) const;
 149   HeapWord* getNextUnmarkedWordAddress(HeapWord* start_addr,
 150                                               HeapWord* end_addr) const;
 151   MemRegion getAndClearMarkedRegion(HeapWord* addr);
 152   MemRegion getAndClearMarkedRegion(HeapWord* start_addr,
 153                                            HeapWord* end_addr);
 154 
 155   // conversion utilities
 156   HeapWord* offsetToHeapWord(size_t offset) const;
 157   size_t    heapWordToOffset(HeapWord* addr) const;
 158   size_t    heapWordDiffToOffsetDiff(size_t diff) const;
 159 
 160   void print_on_error(outputStream* st, const char* prefix) const;
 161 
 162   // debugging
 163   // is this address range covered by the bit-map?
 164   NOT_PRODUCT(
 165     bool covers(MemRegion mr) const;
 166     bool covers(HeapWord* start, size_t size = 0) const;
 167   )
 168   void verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) PRODUCT_RETURN;
 169 };
 170 
 171 // Represents a marking stack used by the CMS collector.
 172 // Ideally this should be GrowableArray<> just like MSC's marking stack(s).
 173 class CMSMarkStack: public CHeapObj<mtGC>  {
 174   //
 175   friend class CMSCollector;   // To get at expansion stats further below.
 176   //
 177 
 178   VirtualSpace _virtual_space;  // Space for the stack
 179   oop*   _base;      // Bottom of stack
 180   size_t _index;     // One more than last occupied index
 181   size_t _capacity;  // Max #elements
 182   Mutex  _par_lock;  // An advisory lock used in case of parallel access
 183   NOT_PRODUCT(size_t _max_depth;)  // Max depth plumbed during run
 184 
 185  protected:
 186   size_t _hit_limit;      // We hit max stack size limit
 187   size_t _failed_double;  // We failed expansion before hitting limit
 188 
 189  public:
 190   CMSMarkStack():
 191     _par_lock(Mutex::event, "CMSMarkStack._par_lock", true,
 192               Monitor::_safepoint_check_never),
 193     _hit_limit(0),
 194     _failed_double(0) {}
 195 
 196   bool allocate(size_t size);
 197 
 198   size_t capacity() const { return _capacity; }
 199 
 200   oop pop() {
 201     if (!isEmpty()) {
 202       return _base[--_index] ;
 203     }
 204     return NULL;
 205   }
 206 
 207   bool push(oop ptr) {
 208     if (isFull()) {
 209       return false;
 210     } else {
 211       _base[_index++] = ptr;
 212       NOT_PRODUCT(_max_depth = MAX2(_max_depth, _index));
 213       return true;
 214     }
 215   }
 216 
 217   bool isEmpty() const { return _index == 0; }
 218   bool isFull()  const {
 219     assert(_index <= _capacity, "buffer overflow");
 220     return _index == _capacity;
 221   }
 222 
 223   size_t length() { return _index; }
 224 
 225   // "Parallel versions" of some of the above
 226   oop par_pop() {
 227     // lock and pop
 228     MutexLockerEx x(&_par_lock, Mutex::_no_safepoint_check_flag);
 229     return pop();
 230   }
 231 
 232   bool par_push(oop ptr) {
 233     // lock and push
 234     MutexLockerEx x(&_par_lock, Mutex::_no_safepoint_check_flag);
 235     return push(ptr);
 236   }
 237 
 238   // Forcibly reset the stack, losing all of its contents.
 239   void reset() {
 240     _index = 0;
 241   }
 242 
 243   // Expand the stack, typically in response to an overflow condition.
 244   void expand();
 245 
 246   // Compute the least valued stack element.
 247   oop least_value(HeapWord* low) {
 248      oop least = (oop)low;
 249      for (size_t i = 0; i < _index; i++) {
 250        least = MIN2(least, _base[i]);
 251      }
 252      return least;
 253   }
 254 
 255   // Exposed here to allow stack expansion in || case.
 256   Mutex* par_lock() { return &_par_lock; }
 257 };
 258 
 259 class CardTableRS;
 260 class CMSParGCThreadState;
 261 
 262 class ModUnionClosure: public MemRegionClosure {
 263  protected:
 264   CMSBitMap* _t;
 265  public:
 266   ModUnionClosure(CMSBitMap* t): _t(t) { }
 267   void do_MemRegion(MemRegion mr);
 268 };
 269 
 270 class ModUnionClosurePar: public ModUnionClosure {
 271  public:
 272   ModUnionClosurePar(CMSBitMap* t): ModUnionClosure(t) { }
 273   void do_MemRegion(MemRegion mr);
 274 };
 275 
 276 // Survivor Chunk Array in support of parallelization of
 277 // Survivor Space rescan.
 278 class ChunkArray: public CHeapObj<mtGC> {
 279   size_t _index;
 280   size_t _capacity;
 281   size_t _overflows;
 282   HeapWord** _array;   // storage for array
 283 
 284  public:
 285   ChunkArray() : _index(0), _capacity(0), _overflows(0), _array(NULL) {}
 286   ChunkArray(HeapWord** a, size_t c):
 287     _index(0), _capacity(c), _overflows(0), _array(a) {}
 288 
 289   HeapWord** array() { return _array; }
 290   void set_array(HeapWord** a) { _array = a; }
 291 
 292   size_t capacity() { return _capacity; }
 293   void set_capacity(size_t c) { _capacity = c; }
 294 
 295   size_t end() {
 296     assert(_index <= capacity(),
 297            err_msg("_index (" SIZE_FORMAT ") > _capacity (" SIZE_FORMAT "): out of bounds",
 298                    _index, _capacity));
 299     return _index;
 300   }  // exclusive
 301 
 302   HeapWord* nth(size_t n) {
 303     assert(n < end(), "Out of bounds access");
 304     return _array[n];
 305   }
 306 
 307   void reset() {
 308     _index = 0;
 309     if (_overflows > 0 && PrintCMSStatistics > 1) {
 310       warning("CMS: ChunkArray[" SIZE_FORMAT "] overflowed " SIZE_FORMAT " times",
 311               _capacity, _overflows);
 312     }
 313     _overflows = 0;
 314   }
 315 
 316   void record_sample(HeapWord* p, size_t sz) {
 317     // For now we do not do anything with the size
 318     if (_index < _capacity) {
 319       _array[_index++] = p;
 320     } else {
 321       ++_overflows;
 322       assert(_index == _capacity,
 323              err_msg("_index (" SIZE_FORMAT ") > _capacity (" SIZE_FORMAT
 324                      "): out of bounds at overflow#" SIZE_FORMAT,
 325                      _index, _capacity, _overflows));
 326     }
 327   }
 328 };
 329 
 330 //
 331 // Timing, allocation and promotion statistics for gc scheduling and incremental
 332 // mode pacing.  Most statistics are exponential averages.
 333 //
 334 class CMSStats VALUE_OBJ_CLASS_SPEC {
 335  private:
 336   ConcurrentMarkSweepGeneration* const _cms_gen;   // The cms (old) gen.
 337 
 338   // The following are exponential averages with factor alpha:
 339   //   avg = (100 - alpha) * avg + alpha * cur_sample
 340   //
 341   //   The durations measure:  end_time[n] - start_time[n]
 342   //   The periods measure:    start_time[n] - start_time[n-1]
 343   //
 344   // The cms period and duration include only concurrent collections; time spent
 345   // in foreground cms collections due to System.gc() or because of a failure to
 346   // keep up are not included.
 347   //
 348   // There are 3 alphas to "bootstrap" the statistics.  The _saved_alpha is the
 349   // real value, but is used only after the first period.  A value of 100 is
 350   // used for the first sample so it gets the entire weight.
 351   unsigned int _saved_alpha; // 0-100
 352   unsigned int _gc0_alpha;
 353   unsigned int _cms_alpha;
 354 
 355   double _gc0_duration;
 356   double _gc0_period;
 357   size_t _gc0_promoted;         // bytes promoted per gc0
 358   double _cms_duration;
 359   double _cms_duration_pre_sweep; // time from initiation to start of sweep
 360   double _cms_period;
 361   size_t _cms_allocated;        // bytes of direct allocation per gc0 period
 362 
 363   // Timers.
 364   elapsedTimer _cms_timer;
 365   TimeStamp    _gc0_begin_time;
 366   TimeStamp    _cms_begin_time;
 367   TimeStamp    _cms_end_time;
 368 
 369   // Snapshots of the amount used in the CMS generation.
 370   size_t _cms_used_at_gc0_begin;
 371   size_t _cms_used_at_gc0_end;
 372   size_t _cms_used_at_cms_begin;
 373 
 374   // Used to prevent the duty cycle from being reduced in the middle of a cms
 375   // cycle.
 376   bool _allow_duty_cycle_reduction;
 377 
 378   enum {
 379     _GC0_VALID = 0x1,
 380     _CMS_VALID = 0x2,
 381     _ALL_VALID = _GC0_VALID | _CMS_VALID
 382   };
 383 
 384   unsigned int _valid_bits;
 385 
 386  protected:
 387   // In support of adjusting of cms trigger ratios based on history
 388   // of concurrent mode failure.
 389   double cms_free_adjustment_factor(size_t free) const;
 390   void   adjust_cms_free_adjustment_factor(bool fail, size_t free);
 391 
 392  public:
 393   CMSStats(ConcurrentMarkSweepGeneration* cms_gen,
 394            unsigned int alpha = CMSExpAvgFactor);
 395 
 396   // Whether or not the statistics contain valid data; higher level statistics
 397   // cannot be called until this returns true (they require at least one young
 398   // gen and one cms cycle to have completed).
 399   bool valid() const;
 400 
 401   // Record statistics.
 402   void record_gc0_begin();
 403   void record_gc0_end(size_t cms_gen_bytes_used);
 404   void record_cms_begin();
 405   void record_cms_end();
 406 
 407   // Allow management of the cms timer, which must be stopped/started around
 408   // yield points.
 409   elapsedTimer& cms_timer()     { return _cms_timer; }
 410   void start_cms_timer()        { _cms_timer.start(); }
 411   void stop_cms_timer()         { _cms_timer.stop(); }
 412 
 413   // Basic statistics; units are seconds or bytes.
 414   double gc0_period() const     { return _gc0_period; }
 415   double gc0_duration() const   { return _gc0_duration; }
 416   size_t gc0_promoted() const   { return _gc0_promoted; }
 417   double cms_period() const          { return _cms_period; }
 418   double cms_duration() const        { return _cms_duration; }
 419   size_t cms_allocated() const       { return _cms_allocated; }
 420 
 421   size_t cms_used_at_gc0_end() const { return _cms_used_at_gc0_end;}
 422 
 423   // Seconds since the last background cms cycle began or ended.
 424   double cms_time_since_begin() const;
 425   double cms_time_since_end() const;
 426 
 427   // Higher level statistics--caller must check that valid() returns true before
 428   // calling.
 429 
 430   // Returns bytes promoted per second of wall clock time.
 431   double promotion_rate() const;
 432 
 433   // Returns bytes directly allocated per second of wall clock time.
 434   double cms_allocation_rate() const;
 435 
 436   // Rate at which space in the cms generation is being consumed (sum of the
 437   // above two).
 438   double cms_consumption_rate() const;
 439 
 440   // Returns an estimate of the number of seconds until the cms generation will
 441   // fill up, assuming no collection work is done.
 442   double time_until_cms_gen_full() const;
 443 
 444   // Returns an estimate of the number of seconds remaining until
 445   // the cms generation collection should start.
 446   double time_until_cms_start() const;
 447 
 448   // End of higher level statistics.
 449 
 450   // Debugging.
 451   void print_on(outputStream* st) const PRODUCT_RETURN;
 452   void print() const { print_on(gclog_or_tty); }
 453 };
 454 
 455 // A closure related to weak references processing which
 456 // we embed in the CMSCollector, since we need to pass
 457 // it to the reference processor for secondary filtering
 458 // of references based on reachability of referent;
 459 // see role of _is_alive_non_header closure in the
 460 // ReferenceProcessor class.
 461 // For objects in the CMS generation, this closure checks
 462 // if the object is "live" (reachable). Used in weak
 463 // reference processing.
 464 class CMSIsAliveClosure: public BoolObjectClosure {
 465   const MemRegion  _span;
 466   const CMSBitMap* _bit_map;
 467 
 468   friend class CMSCollector;
 469  public:
 470   CMSIsAliveClosure(MemRegion span,
 471                     CMSBitMap* bit_map):
 472     _span(span),
 473     _bit_map(bit_map) {
 474     assert(!span.is_empty(), "Empty span could spell trouble");
 475   }
 476 
 477   bool do_object_b(oop obj);
 478 };
 479 
 480 
 481 // Implements AbstractRefProcTaskExecutor for CMS.
 482 class CMSRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
 483 public:
 484 
 485   CMSRefProcTaskExecutor(CMSCollector& collector)
 486     : _collector(collector)
 487   { }
 488 
 489   // Executes a task using worker threads.
 490   virtual void execute(ProcessTask& task);
 491   virtual void execute(EnqueueTask& task);
 492 private:
 493   CMSCollector& _collector;
 494 };
 495 
 496 
 497 class CMSCollector: public CHeapObj<mtGC> {
 498   friend class VMStructs;
 499   friend class ConcurrentMarkSweepThread;
 500   friend class ConcurrentMarkSweepGeneration;
 501   friend class CompactibleFreeListSpace;
 502   friend class CMSParMarkTask;
 503   friend class CMSParInitialMarkTask;
 504   friend class CMSParRemarkTask;
 505   friend class CMSConcMarkingTask;
 506   friend class CMSRefProcTaskProxy;
 507   friend class CMSRefProcTaskExecutor;
 508   friend class ScanMarkedObjectsAgainCarefullyClosure;  // for sampling eden
 509   friend class SurvivorSpacePrecleanClosure;            // --- ditto -------
 510   friend class PushOrMarkClosure;             // to access _restart_addr
 511   friend class Par_PushOrMarkClosure;             // to access _restart_addr
 512   friend class MarkFromRootsClosure;          //  -- ditto --
 513                                               // ... and for clearing cards
 514   friend class Par_MarkFromRootsClosure;      //  to access _restart_addr
 515                                               // ... and for clearing cards
 516   friend class Par_ConcMarkingClosure;        //  to access _restart_addr etc.
 517   friend class MarkFromRootsVerifyClosure;    // to access _restart_addr
 518   friend class PushAndMarkVerifyClosure;      //  -- ditto --
 519   friend class MarkRefsIntoAndScanClosure;    // to access _overflow_list
 520   friend class PushAndMarkClosure;            //  -- ditto --
 521   friend class Par_PushAndMarkClosure;        //  -- ditto --
 522   friend class CMSKeepAliveClosure;           //  -- ditto --
 523   friend class CMSDrainMarkingStackClosure;   //  -- ditto --
 524   friend class CMSInnerParMarkAndPushClosure; //  -- ditto --
 525   NOT_PRODUCT(friend class ScanMarkedObjectsAgainClosure;) //  assertion on _overflow_list
 526   friend class ReleaseForegroundGC;  // to access _foregroundGCShouldWait
 527   friend class VM_CMS_Operation;
 528   friend class VM_CMS_Initial_Mark;
 529   friend class VM_CMS_Final_Remark;
 530   friend class TraceCMSMemoryManagerStats;
 531 
 532  private:
 533   jlong _time_of_last_gc;
 534   void update_time_of_last_gc(jlong now) {
 535     _time_of_last_gc = now;
 536   }
 537 
 538   OopTaskQueueSet* _task_queues;
 539 
 540   // Overflow list of grey objects, threaded through mark-word
 541   // Manipulated with CAS in the parallel/multi-threaded case.
 542   oop _overflow_list;
 543   // The following array-pair keeps track of mark words
 544   // displaced for accommodating overflow list above.
 545   // This code will likely be revisited under RFE#4922830.
 546   Stack<oop, mtGC>     _preserved_oop_stack;
 547   Stack<markOop, mtGC> _preserved_mark_stack;
 548 
 549   int*             _hash_seed;
 550 
 551   // In support of multi-threaded concurrent phases
 552   YieldingFlexibleWorkGang* _conc_workers;
 553 
 554   // Performance Counters
 555   CollectorCounters* _gc_counters;
 556 
 557   // Initialization Errors
 558   bool _completed_initialization;
 559 
 560   // In support of ExplicitGCInvokesConcurrent
 561   static bool _full_gc_requested;
 562   static GCCause::Cause _full_gc_cause;
 563   unsigned int _collection_count_start;
 564 
 565   // Should we unload classes this concurrent cycle?
 566   bool _should_unload_classes;
 567   unsigned int  _concurrent_cycles_since_last_unload;
 568   unsigned int concurrent_cycles_since_last_unload() const {
 569     return _concurrent_cycles_since_last_unload;
 570   }
 571   // Did we (allow) unload classes in the previous concurrent cycle?
 572   bool unloaded_classes_last_cycle() const {
 573     return concurrent_cycles_since_last_unload() == 0;
 574   }
 575   // Root scanning options for perm gen
 576   int _roots_scanning_options;
 577   int roots_scanning_options() const      { return _roots_scanning_options; }
 578   void add_root_scanning_option(int o)    { _roots_scanning_options |= o;   }
 579   void remove_root_scanning_option(int o) { _roots_scanning_options &= ~o;  }
 580 
 581   // Verification support
 582   CMSBitMap     _verification_mark_bm;
 583   void verify_after_remark_work_1();
 584   void verify_after_remark_work_2();
 585 
 586   // True if any verification flag is on.
 587   bool _verifying;
 588   bool verifying() const { return _verifying; }
 589   void set_verifying(bool v) { _verifying = v; }
 590 
 591   // Collector policy
 592   ConcurrentMarkSweepPolicy* _collector_policy;
 593   ConcurrentMarkSweepPolicy* collector_policy() { return _collector_policy; }
 594 
 595   void set_did_compact(bool v);
 596 
 597   // XXX Move these to CMSStats ??? FIX ME !!!
 598   elapsedTimer _inter_sweep_timer;   // Time between sweeps
 599   elapsedTimer _intra_sweep_timer;   // Time _in_ sweeps
 600   // Padded decaying average estimates of the above
 601   AdaptivePaddedAverage _inter_sweep_estimate;
 602   AdaptivePaddedAverage _intra_sweep_estimate;
 603 
 604   CMSTracer* _gc_tracer_cm;
 605   ConcurrentGCTimer* _gc_timer_cm;
 606 
 607   bool _cms_start_registered;
 608 
 609   GCHeapSummary _last_heap_summary;
 610   MetaspaceSummary _last_metaspace_summary;
 611 
 612   void register_foreground_gc_start(GCCause::Cause cause);
 613   void register_gc_start(GCCause::Cause cause);
 614   void register_gc_end();
 615   void save_heap_summary();
 616   void report_heap_summary(GCWhen::Type when);
 617 
 618  protected:
 619   ConcurrentMarkSweepGeneration* _cmsGen;  // Old gen (CMS)
 620   MemRegion                      _span;    // Span covering above two
 621   CardTableRS*                   _ct;      // Card table
 622 
 623   // CMS marking support structures
 624   CMSBitMap     _markBitMap;
 625   CMSBitMap     _modUnionTable;
 626   CMSMarkStack  _markStack;
 627 
 628   HeapWord*     _restart_addr; // In support of marking stack overflow
 629   void          lower_restart_addr(HeapWord* low);
 630 
 631   // Counters in support of marking stack / work queue overflow handling:
 632   // a non-zero value indicates certain types of overflow events during
 633   // the current CMS cycle and could lead to stack resizing efforts at
 634   // an opportune future time.
 635   size_t        _ser_pmc_preclean_ovflw;
 636   size_t        _ser_pmc_remark_ovflw;
 637   size_t        _par_pmc_remark_ovflw;
 638   size_t        _ser_kac_preclean_ovflw;
 639   size_t        _ser_kac_ovflw;
 640   size_t        _par_kac_ovflw;
 641   NOT_PRODUCT(ssize_t _num_par_pushes;)
 642 
 643   // ("Weak") Reference processing support.
 644   ReferenceProcessor*            _ref_processor;
 645   CMSIsAliveClosure              _is_alive_closure;
 646   // Keep this textually after _markBitMap and _span; c'tor dependency.
 647 
 648   ConcurrentMarkSweepThread*     _cmsThread;   // The thread doing the work
 649   ModUnionClosure    _modUnionClosure;
 650   ModUnionClosurePar _modUnionClosurePar;
 651 
 652   // CMS abstract state machine
 653   // initial_state: Idling
 654   // next_state(Idling)            = {Marking}
 655   // next_state(Marking)           = {Precleaning, Sweeping}
 656   // next_state(Precleaning)       = {AbortablePreclean, FinalMarking}
 657   // next_state(AbortablePreclean) = {FinalMarking}
 658   // next_state(FinalMarking)      = {Sweeping}
 659   // next_state(Sweeping)          = {Resizing}
 660   // next_state(Resizing)          = {Resetting}
 661   // next_state(Resetting)         = {Idling}
 662   // The numeric values below are chosen so that:
 663   // . _collectorState <= Idling ==  post-sweep && pre-mark
 664   // . _collectorState in (Idling, Sweeping) == {initial,final}marking ||
 665   //                                            precleaning || abortablePrecleanb
 666  public:
 667   enum CollectorState {
 668     Resizing            = 0,
 669     Resetting           = 1,
 670     Idling              = 2,
 671     InitialMarking      = 3,
 672     Marking             = 4,
 673     Precleaning         = 5,
 674     AbortablePreclean   = 6,
 675     FinalMarking        = 7,
 676     Sweeping            = 8
 677   };
 678  protected:
 679   static CollectorState _collectorState;
 680 
 681   // State related to prologue/epilogue invocation for my generations
 682   bool _between_prologue_and_epilogue;
 683 
 684   // Signaling/State related to coordination between fore- and background GC
 685   // Note: When the baton has been passed from background GC to foreground GC,
 686   // _foregroundGCIsActive is true and _foregroundGCShouldWait is false.
 687   static bool _foregroundGCIsActive;    // true iff foreground collector is active or
 688                                  // wants to go active
 689   static bool _foregroundGCShouldWait;  // true iff background GC is active and has not
 690                                  // yet passed the baton to the foreground GC
 691 
 692   // Support for CMSScheduleRemark (abortable preclean)
 693   bool _abort_preclean;
 694   bool _start_sampling;
 695 
 696   int    _numYields;
 697   size_t _numDirtyCards;
 698   size_t _sweep_count;
 699   // Number of full gc's since the last concurrent gc.
 700   uint   _full_gcs_since_conc_gc;
 701 
 702   // Occupancy used for bootstrapping stats
 703   double _bootstrap_occupancy;
 704 
 705   // Timer
 706   elapsedTimer _timer;
 707 
 708   // Timing, allocation and promotion statistics, used for scheduling.
 709   CMSStats      _stats;
 710 
 711   enum CMS_op_type {
 712     CMS_op_checkpointRootsInitial,
 713     CMS_op_checkpointRootsFinal
 714   };
 715 
 716   void do_CMS_operation(CMS_op_type op, GCCause::Cause gc_cause);
 717   bool stop_world_and_do(CMS_op_type op);
 718 
 719   OopTaskQueueSet* task_queues() { return _task_queues; }
 720   int*             hash_seed(int i) { return &_hash_seed[i]; }
 721   YieldingFlexibleWorkGang* conc_workers() { return _conc_workers; }
 722 
 723   // Support for parallelizing Eden rescan in CMS remark phase
 724   void sample_eden(); // ... sample Eden space top
 725 
 726  private:
 727   // Support for parallelizing young gen rescan in CMS remark phase
 728   Generation* _young_gen;  // the younger gen
 729   HeapWord** _top_addr;    // ... Top of Eden
 730   HeapWord** _end_addr;    // ... End of Eden
 731   Mutex*     _eden_chunk_lock;
 732   HeapWord** _eden_chunk_array; // ... Eden partitioning array
 733   size_t     _eden_chunk_index; // ... top (exclusive) of array
 734   size_t     _eden_chunk_capacity;  // ... max entries in array
 735 
 736   // Support for parallelizing survivor space rescan
 737   HeapWord** _survivor_chunk_array;
 738   size_t     _survivor_chunk_index;
 739   size_t     _survivor_chunk_capacity;
 740   size_t*    _cursor;
 741   ChunkArray* _survivor_plab_array;
 742 
 743   // Support for marking stack overflow handling
 744   bool take_from_overflow_list(size_t num, CMSMarkStack* to_stack);
 745   bool par_take_from_overflow_list(size_t num,
 746                                    OopTaskQueue* to_work_q,
 747                                    int no_of_gc_threads);
 748   void push_on_overflow_list(oop p);
 749   void par_push_on_overflow_list(oop p);
 750   // The following is, obviously, not, in general, "MT-stable"
 751   bool overflow_list_is_empty() const;
 752 
 753   void preserve_mark_if_necessary(oop p);
 754   void par_preserve_mark_if_necessary(oop p);
 755   void preserve_mark_work(oop p, markOop m);
 756   void restore_preserved_marks_if_any();
 757   NOT_PRODUCT(bool no_preserved_marks() const;)
 758   // In support of testing overflow code
 759   NOT_PRODUCT(int _overflow_counter;)
 760   NOT_PRODUCT(bool simulate_overflow();)       // Sequential
 761   NOT_PRODUCT(bool par_simulate_overflow();)   // MT version
 762 
 763   // CMS work methods
 764   void checkpointRootsInitialWork(bool asynch); // Initial checkpoint work
 765 
 766   // A return value of false indicates failure due to stack overflow
 767   bool markFromRootsWork(bool asynch);  // Concurrent marking work
 768 
 769  public:   // FIX ME!!! only for testing
 770   bool do_marking_st(bool asynch);      // Single-threaded marking
 771   bool do_marking_mt(bool asynch);      // Multi-threaded  marking
 772 
 773  private:
 774 
 775   // Concurrent precleaning work
 776   size_t preclean_mod_union_table(ConcurrentMarkSweepGeneration* gen,
 777                                   ScanMarkedObjectsAgainCarefullyClosure* cl);
 778   size_t preclean_card_table(ConcurrentMarkSweepGeneration* gen,
 779                              ScanMarkedObjectsAgainCarefullyClosure* cl);
 780   // Does precleaning work, returning a quantity indicative of
 781   // the amount of "useful work" done.
 782   size_t preclean_work(bool clean_refs, bool clean_survivors);
 783   void preclean_klasses(MarkRefsIntoAndScanClosure* cl, Mutex* freelistLock);
 784   void abortable_preclean(); // Preclean while looking for possible abort
 785   void initialize_sequential_subtasks_for_young_gen_rescan(int i);
 786   // Helper function for above; merge-sorts the per-thread plab samples
 787   void merge_survivor_plab_arrays(ContiguousSpace* surv, int no_of_gc_threads);
 788   // Resets (i.e. clears) the per-thread plab sample vectors
 789   void reset_survivor_plab_arrays();
 790 
 791   // Final (second) checkpoint work
 792   void checkpointRootsFinalWork(bool asynch, bool clear_all_soft_refs,
 793                                 bool init_mark_was_synchronous);
 794   // Work routine for parallel version of remark
 795   void do_remark_parallel();
 796   // Work routine for non-parallel version of remark
 797   void do_remark_non_parallel();
 798   // Reference processing work routine (during second checkpoint)
 799   void refProcessingWork(bool asynch, bool clear_all_soft_refs);
 800 
 801   // Concurrent sweeping work
 802   void sweepWork(ConcurrentMarkSweepGeneration* gen, bool asynch);
 803 
 804   // (Concurrent) resetting of support data structures
 805   void reset(bool asynch);
 806 
 807   // Clear _expansion_cause fields of constituent generations
 808   void clear_expansion_cause();
 809 
 810   // An auxiliary method used to record the ends of
 811   // used regions of each generation to limit the extent of sweep
 812   void save_sweep_limits();
 813 
 814   // A work method used by foreground collection to determine
 815   // what type of collection (compacting or not, continuing or fresh)
 816   // it should do.
 817   void decide_foreground_collection_type(bool clear_all_soft_refs,
 818     bool* should_compact, bool* should_start_over);
 819 
 820   // A work method used by the foreground collector to do
 821   // a mark-sweep-compact.
 822   void do_compaction_work(bool clear_all_soft_refs);
 823 
 824   // A work method used by the foreground collector to do
 825   // a mark-sweep, after taking over from a possibly on-going
 826   // concurrent mark-sweep collection.
 827   void do_mark_sweep_work(bool clear_all_soft_refs,
 828     CollectorState first_state, bool should_start_over);
 829 
 830   // Work methods for reporting concurrent mode interruption or failure
 831   bool is_external_interruption();
 832   void report_concurrent_mode_interruption();
 833 
 834   // If the background GC is active, acquire control from the background
 835   // GC and do the collection.
 836   void acquire_control_and_collect(bool   full, bool clear_all_soft_refs);
 837 
 838   // For synchronizing passing of control from background to foreground
 839   // GC.  waitForForegroundGC() is called by the background
 840   // collector.  It if had to wait for a foreground collection,
 841   // it returns true and the background collection should assume
 842   // that the collection was finished by the foreground
 843   // collector.
 844   bool waitForForegroundGC();
 845 
 846   size_t block_size_using_printezis_bits(HeapWord* addr) const;
 847   size_t block_size_if_printezis_bits(HeapWord* addr) const;
 848   HeapWord* next_card_start_after_block(HeapWord* addr) const;
 849 
 850   void setup_cms_unloading_and_verification_state();
 851  public:
 852   CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
 853                CardTableRS*                   ct,
 854                ConcurrentMarkSweepPolicy*     cp);
 855   ConcurrentMarkSweepThread* cmsThread() { return _cmsThread; }
 856 
 857   ReferenceProcessor* ref_processor() { return _ref_processor; }
 858   void ref_processor_init();
 859 
 860   Mutex* bitMapLock()        const { return _markBitMap.lock();    }
 861   static CollectorState abstract_state() { return _collectorState;  }
 862 
 863   bool should_abort_preclean() const; // Whether preclean should be aborted.
 864   size_t get_eden_used() const;
 865   size_t get_eden_capacity() const;
 866 
 867   ConcurrentMarkSweepGeneration* cmsGen() { return _cmsGen; }
 868 
 869   // Locking checks
 870   NOT_PRODUCT(static bool have_cms_token();)
 871 
 872   // XXXPERM bool should_collect(bool full, size_t size, bool tlab);
 873   bool shouldConcurrentCollect();
 874 
 875   void collect(bool   full,
 876                bool   clear_all_soft_refs,
 877                size_t size,
 878                bool   tlab);
 879   void collect_in_background(bool clear_all_soft_refs, GCCause::Cause cause);
 880   void collect_in_foreground(bool clear_all_soft_refs, GCCause::Cause cause);
 881 
 882   // In support of ExplicitGCInvokesConcurrent
 883   static void request_full_gc(unsigned int full_gc_count, GCCause::Cause cause);
 884   // Should we unload classes in a particular concurrent cycle?
 885   bool should_unload_classes() const {
 886     return _should_unload_classes;
 887   }
 888   void update_should_unload_classes();
 889 
 890   void direct_allocated(HeapWord* start, size_t size);
 891 
 892   // Object is dead if not marked and current phase is sweeping.
 893   bool is_dead_obj(oop obj) const;
 894 
 895   // After a promotion (of "start"), do any necessary marking.
 896   // If "par", then it's being done by a parallel GC thread.
 897   // The last two args indicate if we need precise marking
 898   // and if so the size of the object so it can be dirtied
 899   // in its entirety.
 900   void promoted(bool par, HeapWord* start,
 901                 bool is_obj_array, size_t obj_size);
 902 
 903   void getFreelistLocks() const;
 904   void releaseFreelistLocks() const;
 905   bool haveFreelistLocks() const;
 906 
 907   // Adjust size of underlying generation
 908   void compute_new_size();
 909 
 910   // GC prologue and epilogue
 911   void gc_prologue(bool full);
 912   void gc_epilogue(bool full);
 913 
 914   jlong time_of_last_gc(jlong now) {
 915     if (_collectorState <= Idling) {
 916       // gc not in progress
 917       return _time_of_last_gc;
 918     } else {
 919       // collection in progress
 920       return now;
 921     }
 922   }
 923 
 924   // Support for parallel remark of survivor space
 925   void* get_data_recorder(int thr_num);
 926   void sample_eden_chunk();
 927 
 928   CMSBitMap* markBitMap()  { return &_markBitMap; }
 929   void directAllocated(HeapWord* start, size_t size);
 930 
 931   // Main CMS steps and related support
 932   void checkpointRootsInitial(bool asynch);
 933   bool markFromRoots(bool asynch);  // a return value of false indicates failure
 934                                     // due to stack overflow
 935   void preclean();
 936   void checkpointRootsFinal(bool asynch, bool clear_all_soft_refs,
 937                             bool init_mark_was_synchronous);
 938   void sweep(bool asynch);
 939 
 940   // Check that the currently executing thread is the expected
 941   // one (foreground collector or background collector).
 942   static void check_correct_thread_executing() PRODUCT_RETURN;
 943   // XXXPERM void print_statistics()           PRODUCT_RETURN;
 944 
 945   bool is_cms_reachable(HeapWord* addr);
 946 
 947   // Performance Counter Support
 948   CollectorCounters* counters()    { return _gc_counters; }
 949 
 950   // Timer stuff
 951   void    startTimer() { assert(!_timer.is_active(), "Error"); _timer.start();   }
 952   void    stopTimer()  { assert( _timer.is_active(), "Error"); _timer.stop();    }
 953   void    resetTimer() { assert(!_timer.is_active(), "Error"); _timer.reset();   }
 954   double  timerValue() { assert(!_timer.is_active(), "Error"); return _timer.seconds(); }
 955 
 956   int  yields()          { return _numYields; }
 957   void resetYields()     { _numYields = 0;    }
 958   void incrementYields() { _numYields++;      }
 959   void resetNumDirtyCards()               { _numDirtyCards = 0; }
 960   void incrementNumDirtyCards(size_t num) { _numDirtyCards += num; }
 961   size_t  numDirtyCards()                 { return _numDirtyCards; }
 962 
 963   static bool foregroundGCShouldWait() { return _foregroundGCShouldWait; }
 964   static void set_foregroundGCShouldWait(bool v) { _foregroundGCShouldWait = v; }
 965   static bool foregroundGCIsActive() { return _foregroundGCIsActive; }
 966   static void set_foregroundGCIsActive(bool v) { _foregroundGCIsActive = v; }
 967   size_t sweep_count() const             { return _sweep_count; }
 968   void   increment_sweep_count()         { _sweep_count++; }
 969 
 970   // Timers/stats for gc scheduling and incremental mode pacing.
 971   CMSStats& stats() { return _stats; }
 972 
 973   // Adaptive size policy
 974   AdaptiveSizePolicy* size_policy();
 975 
 976   static void print_on_error(outputStream* st);
 977 
 978   // Debugging
 979   void verify();
 980   bool verify_after_remark(bool silent = VerifySilently);
 981   void verify_ok_to_terminate() const PRODUCT_RETURN;
 982   void verify_work_stacks_empty() const PRODUCT_RETURN;
 983   void verify_overflow_empty() const PRODUCT_RETURN;
 984 
 985   // Convenience methods in support of debugging
 986   static const size_t skip_header_HeapWords() PRODUCT_RETURN0;
 987   HeapWord* block_start(const void* p) const PRODUCT_RETURN0;
 988 
 989   // Accessors
 990   CMSMarkStack* verification_mark_stack() { return &_markStack; }
 991   CMSBitMap*    verification_mark_bm()    { return &_verification_mark_bm; }
 992 
 993   // Initialization errors
 994   bool completed_initialization() { return _completed_initialization; }
 995 
 996   void print_eden_and_survivor_chunk_arrays();
 997 };
 998 
 999 class CMSExpansionCause : public AllStatic  {
1000  public:
1001   enum Cause {
1002     _no_expansion,
1003     _satisfy_free_ratio,
1004     _satisfy_promotion,
1005     _satisfy_allocation,
1006     _allocate_par_lab,
1007     _allocate_par_spooling_space,
1008     _adaptive_size_policy
1009   };
1010   // Return a string describing the cause of the expansion.
1011   static const char* to_string(CMSExpansionCause::Cause cause);
1012 };
1013 
1014 class ConcurrentMarkSweepGeneration: public CardGeneration {
1015   friend class VMStructs;
1016   friend class ConcurrentMarkSweepThread;
1017   friend class ConcurrentMarkSweep;
1018   friend class CMSCollector;
1019  protected:
1020   static CMSCollector*       _collector; // the collector that collects us
1021   CompactibleFreeListSpace*  _cmsSpace;  // underlying space (only one for now)
1022 
1023   // Performance Counters
1024   GenerationCounters*      _gen_counters;
1025   GSpaceCounters*          _space_counters;
1026 
1027   // Words directly allocated, used by CMSStats.
1028   size_t _direct_allocated_words;
1029 
1030   // Non-product stat counters
1031   NOT_PRODUCT(
1032     size_t _numObjectsPromoted;
1033     size_t _numWordsPromoted;
1034     size_t _numObjectsAllocated;
1035     size_t _numWordsAllocated;
1036   )
1037 
1038   // Used for sizing decisions
1039   bool _incremental_collection_failed;
1040   bool incremental_collection_failed() {
1041     return _incremental_collection_failed;
1042   }
1043   void set_incremental_collection_failed() {
1044     _incremental_collection_failed = true;
1045   }
1046   void clear_incremental_collection_failed() {
1047     _incremental_collection_failed = false;
1048   }
1049 
1050   // accessors
1051   void set_expansion_cause(CMSExpansionCause::Cause v) { _expansion_cause = v;}
1052   CMSExpansionCause::Cause expansion_cause() const { return _expansion_cause; }
1053 
1054  private:
1055   // For parallel young-gen GC support.
1056   CMSParGCThreadState** _par_gc_thread_states;
1057 
1058   // Reason generation was expanded
1059   CMSExpansionCause::Cause _expansion_cause;
1060 
1061   // In support of MinChunkSize being larger than min object size
1062   const double _dilatation_factor;
1063 
1064   enum CollectionTypes {
1065     Concurrent_collection_type          = 0,
1066     MS_foreground_collection_type       = 1,
1067     MSC_foreground_collection_type      = 2,
1068     Unknown_collection_type             = 3
1069   };
1070 
1071   CollectionTypes _debug_collection_type;
1072 
1073   // True if a compacting collection was done.
1074   bool _did_compact;
1075   bool did_compact() { return _did_compact; }
1076 
1077   // Fraction of current occupancy at which to start a CMS collection which
1078   // will collect this generation (at least).
1079   double _initiating_occupancy;
1080 
1081  protected:
1082   // Shrink generation by specified size (returns false if unable to shrink)
1083   void shrink_free_list_by(size_t bytes);
1084 
1085   // Update statistics for GC
1086   virtual void update_gc_stats(int level, bool full);
1087 
1088   // Maximum available space in the generation (including uncommitted)
1089   // space.
1090   size_t max_available() const;
1091 
1092   // getter and initializer for _initiating_occupancy field.
1093   double initiating_occupancy() const { return _initiating_occupancy; }
1094   void   init_initiating_occupancy(intx io, uintx tr);
1095 
1096  public:
1097   ConcurrentMarkSweepGeneration(ReservedSpace rs, size_t initial_byte_size,
1098                                 int level, CardTableRS* ct,
1099                                 bool use_adaptive_freelists,
1100                                 FreeBlockDictionary<FreeChunk>::DictionaryChoice);
1101 
1102   // Accessors
1103   CMSCollector* collector() const { return _collector; }
1104   static void set_collector(CMSCollector* collector) {
1105     assert(_collector == NULL, "already set");
1106     _collector = collector;
1107   }
1108   CompactibleFreeListSpace*  cmsSpace() const { return _cmsSpace;  }
1109 
1110   Mutex* freelistLock() const;
1111 
1112   virtual Generation::Name kind() { return Generation::ConcurrentMarkSweep; }
1113 
1114   void set_did_compact(bool v) { _did_compact = v; }
1115 
1116   bool refs_discovery_is_atomic() const { return false; }
1117   bool refs_discovery_is_mt()     const {
1118     // Note: CMS does MT-discovery during the parallel-remark
1119     // phases. Use ReferenceProcessorMTMutator to make refs
1120     // discovery MT-safe during such phases or other parallel
1121     // discovery phases in the future. This may all go away
1122     // if/when we decide that refs discovery is sufficiently
1123     // rare that the cost of the CAS's involved is in the
1124     // noise. That's a measurement that should be done, and
1125     // the code simplified if that turns out to be the case.
1126     return ConcGCThreads > 1;
1127   }
1128 
1129   // Override
1130   virtual void ref_processor_init();
1131 
1132   // Grow generation by specified size (returns false if unable to grow)
1133   bool grow_by(size_t bytes);
1134   // Grow generation to reserved size.
1135   bool grow_to_reserved();
1136 
1137   void clear_expansion_cause() { _expansion_cause = CMSExpansionCause::_no_expansion; }
1138 
1139   // Space enquiries
1140   size_t capacity() const;
1141   size_t used() const;
1142   size_t free() const;
1143   double occupancy() const { return ((double)used())/((double)capacity()); }
1144   size_t contiguous_available() const;
1145   size_t unsafe_max_alloc_nogc() const;
1146 
1147   // over-rides
1148   MemRegion used_region() const;
1149   MemRegion used_region_at_save_marks() const;
1150 
1151   // Does a "full" (forced) collection invoked on this generation collect
1152   // all younger generations as well? Note that the second conjunct is a
1153   // hack to allow the collection of the younger gen first if the flag is
1154   // set.
1155   virtual bool full_collects_younger_generations() const {
1156     return UseCMSCompactAtFullCollection && !ScavengeBeforeFullGC;
1157   }
1158 
1159   void space_iterate(SpaceClosure* blk, bool usedOnly = false);
1160 
1161   // Support for compaction
1162   CompactibleSpace* first_compaction_space() const;
1163   // Adjust quantities in the generation affected by
1164   // the compaction.
1165   void reset_after_compaction();
1166 
1167   // Allocation support
1168   HeapWord* allocate(size_t size, bool tlab);
1169   HeapWord* have_lock_and_allocate(size_t size, bool tlab);
1170   oop       promote(oop obj, size_t obj_size);
1171   HeapWord* par_allocate(size_t size, bool tlab) {
1172     return allocate(size, tlab);
1173   }
1174 
1175 
1176   // Used by CMSStats to track direct allocation.  The value is sampled and
1177   // reset after each young gen collection.
1178   size_t direct_allocated_words() const { return _direct_allocated_words; }
1179   void reset_direct_allocated_words()   { _direct_allocated_words = 0; }
1180 
1181   // Overrides for parallel promotion.
1182   virtual oop par_promote(int thread_num,
1183                           oop obj, markOop m, size_t word_sz);
1184   // This one should not be called for CMS.
1185   virtual void par_promote_alloc_undo(int thread_num,
1186                                       HeapWord* obj, size_t word_sz);
1187   virtual void par_promote_alloc_done(int thread_num);
1188   virtual void par_oop_since_save_marks_iterate_done(int thread_num);
1189 
1190   virtual bool promotion_attempt_is_safe(size_t promotion_in_bytes) const;
1191 
1192   // Inform this (non-young) generation that a promotion failure was
1193   // encountered during a collection of a younger generation that
1194   // promotes into this generation.
1195   virtual void promotion_failure_occurred();
1196 
1197   bool should_collect(bool full, size_t size, bool tlab);
1198   virtual bool should_concurrent_collect() const;
1199   virtual bool is_too_full() const;
1200   void collect(bool   full,
1201                bool   clear_all_soft_refs,
1202                size_t size,
1203                bool   tlab);
1204 
1205   HeapWord* expand_and_allocate(size_t word_size,
1206                                 bool tlab,
1207                                 bool parallel = false);
1208 
1209   // GC prologue and epilogue
1210   void gc_prologue(bool full);
1211   void gc_prologue_work(bool full, bool registerClosure,
1212                         ModUnionClosure* modUnionClosure);
1213   void gc_epilogue(bool full);
1214   void gc_epilogue_work(bool full);
1215 
1216   // Time since last GC of this generation
1217   jlong time_of_last_gc(jlong now) {
1218     return collector()->time_of_last_gc(now);
1219   }
1220   void update_time_of_last_gc(jlong now) {
1221     collector()-> update_time_of_last_gc(now);
1222   }
1223 
1224   // Allocation failure
1225   void expand(size_t bytes, size_t expand_bytes,
1226     CMSExpansionCause::Cause cause);
1227   virtual bool expand(size_t bytes, size_t expand_bytes);
1228   void shrink(size_t bytes);
1229   void shrink_by(size_t bytes);
1230   HeapWord* expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz);
1231   bool expand_and_ensure_spooling_space(PromotionInfo* promo);
1232 
1233   // Iteration support and related enquiries
1234   void save_marks();
1235   bool no_allocs_since_save_marks();
1236   void younger_refs_iterate(OopsInGenClosure* cl);
1237 
1238   // Iteration support specific to CMS generations
1239   void save_sweep_limit();
1240 
1241   // More iteration support
1242   virtual void oop_iterate(ExtendedOopClosure* cl);
1243   virtual void safe_object_iterate(ObjectClosure* cl);
1244   virtual void object_iterate(ObjectClosure* cl);
1245 
1246   // Need to declare the full complement of closures, whether we'll
1247   // override them or not, or get message from the compiler:
1248   //   oop_since_save_marks_iterate_nv hides virtual function...
1249   #define CMS_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix) \
1250     void oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl);
1251   ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DECL)
1252 
1253   // Smart allocation  XXX -- move to CFLSpace?
1254   void setNearLargestChunk();
1255   bool isNearLargestChunk(HeapWord* addr);
1256 
1257   // Get the chunk at the end of the space.  Delegates to
1258   // the space.
1259   FreeChunk* find_chunk_at_end();
1260 
1261   void post_compact();
1262 
1263   // Debugging
1264   void prepare_for_verify();
1265   void verify();
1266   void print_statistics()               PRODUCT_RETURN;
1267 
1268   // Performance Counters support
1269   virtual void update_counters();
1270   virtual void update_counters(size_t used);
1271   void initialize_performance_counters();
1272   CollectorCounters* counters()  { return collector()->counters(); }
1273 
1274   // Support for parallel remark of survivor space
1275   void* get_data_recorder(int thr_num) {
1276     //Delegate to collector
1277     return collector()->get_data_recorder(thr_num);
1278   }
1279   void sample_eden_chunk() {
1280     //Delegate to collector
1281     return collector()->sample_eden_chunk();
1282   }
1283 
1284   // Printing
1285   const char* name() const;
1286   virtual const char* short_name() const { return "CMS"; }
1287   void        print() const;
1288   void printOccupancy(const char* s);
1289   bool must_be_youngest() const { return false; }
1290   bool must_be_oldest()   const { return true; }
1291 
1292   // Resize the generation after a compacting GC.  The
1293   // generation can be treated as a contiguous space
1294   // after the compaction.
1295   virtual void compute_new_size();
1296   // Resize the generation after a non-compacting
1297   // collection.
1298   void compute_new_size_free_list();
1299 
1300   CollectionTypes debug_collection_type() { return _debug_collection_type; }
1301   void rotate_debug_collection_type();
1302 };
1303 
1304 //
1305 // Closures of various sorts used by CMS to accomplish its work
1306 //
1307 
1308 // This closure is used to do concurrent marking from the roots
1309 // following the first checkpoint.
1310 class MarkFromRootsClosure: public BitMapClosure {
1311   CMSCollector*  _collector;
1312   MemRegion      _span;
1313   CMSBitMap*     _bitMap;
1314   CMSBitMap*     _mut;
1315   CMSMarkStack*  _markStack;
1316   bool           _yield;
1317   int            _skipBits;
1318   HeapWord*      _finger;
1319   HeapWord*      _threshold;
1320   DEBUG_ONLY(bool _verifying;)
1321 
1322  public:
1323   MarkFromRootsClosure(CMSCollector* collector, MemRegion span,
1324                        CMSBitMap* bitMap,
1325                        CMSMarkStack*  markStack,
1326                        bool should_yield, bool verifying = false);
1327   bool do_bit(size_t offset);
1328   void reset(HeapWord* addr);
1329   inline void do_yield_check();
1330 
1331  private:
1332   void scanOopsInOop(HeapWord* ptr);
1333   void do_yield_work();
1334 };
1335 
1336 // This closure is used to do concurrent multi-threaded
1337 // marking from the roots following the first checkpoint.
1338 // XXX This should really be a subclass of The serial version
1339 // above, but i have not had the time to refactor things cleanly.
1340 class Par_MarkFromRootsClosure: public BitMapClosure {
1341   CMSCollector*  _collector;
1342   MemRegion      _whole_span;
1343   MemRegion      _span;
1344   CMSBitMap*     _bit_map;
1345   CMSBitMap*     _mut;
1346   OopTaskQueue*  _work_queue;
1347   CMSMarkStack*  _overflow_stack;
1348   bool           _yield;
1349   int            _skip_bits;
1350   HeapWord*      _finger;
1351   HeapWord*      _threshold;
1352   CMSConcMarkingTask* _task;
1353  public:
1354   Par_MarkFromRootsClosure(CMSConcMarkingTask* task, CMSCollector* collector,
1355                        MemRegion span,
1356                        CMSBitMap* bit_map,
1357                        OopTaskQueue* work_queue,
1358                        CMSMarkStack*  overflow_stack,
1359                        bool should_yield);
1360   bool do_bit(size_t offset);
1361   inline void do_yield_check();
1362 
1363  private:
1364   void scan_oops_in_oop(HeapWord* ptr);
1365   void do_yield_work();
1366   bool get_work_from_overflow_stack();
1367 };
1368 
1369 // The following closures are used to do certain kinds of verification of
1370 // CMS marking.
1371 class PushAndMarkVerifyClosure: public MetadataAwareOopClosure {
1372   CMSCollector*    _collector;
1373   MemRegion        _span;
1374   CMSBitMap*       _verification_bm;
1375   CMSBitMap*       _cms_bm;
1376   CMSMarkStack*    _mark_stack;
1377  protected:
1378   void do_oop(oop p);
1379   template <class T> inline void do_oop_work(T *p) {
1380     oop obj = oopDesc::load_decode_heap_oop(p);
1381     do_oop(obj);
1382   }
1383  public:
1384   PushAndMarkVerifyClosure(CMSCollector* cms_collector,
1385                            MemRegion span,
1386                            CMSBitMap* verification_bm,
1387                            CMSBitMap* cms_bm,
1388                            CMSMarkStack*  mark_stack);
1389   void do_oop(oop* p);
1390   void do_oop(narrowOop* p);
1391 
1392   // Deal with a stack overflow condition
1393   void handle_stack_overflow(HeapWord* lost);
1394 };
1395 
1396 class MarkFromRootsVerifyClosure: public BitMapClosure {
1397   CMSCollector*  _collector;
1398   MemRegion      _span;
1399   CMSBitMap*     _verification_bm;
1400   CMSBitMap*     _cms_bm;
1401   CMSMarkStack*  _mark_stack;
1402   HeapWord*      _finger;
1403   PushAndMarkVerifyClosure _pam_verify_closure;
1404  public:
1405   MarkFromRootsVerifyClosure(CMSCollector* collector, MemRegion span,
1406                              CMSBitMap* verification_bm,
1407                              CMSBitMap* cms_bm,
1408                              CMSMarkStack*  mark_stack);
1409   bool do_bit(size_t offset);
1410   void reset(HeapWord* addr);
1411 };
1412 
1413 
1414 // This closure is used to check that a certain set of bits is
1415 // "empty" (i.e. the bit vector doesn't have any 1-bits).
1416 class FalseBitMapClosure: public BitMapClosure {
1417  public:
1418   bool do_bit(size_t offset) {
1419     guarantee(false, "Should not have a 1 bit");
1420     return true;
1421   }
1422 };
1423 
1424 // A version of ObjectClosure with "memory" (see _previous_address below)
1425 class UpwardsObjectClosure: public BoolObjectClosure {
1426   HeapWord* _previous_address;
1427  public:
1428   UpwardsObjectClosure() : _previous_address(NULL) { }
1429   void set_previous(HeapWord* addr) { _previous_address = addr; }
1430   HeapWord* previous()              { return _previous_address; }
1431   // A return value of "true" can be used by the caller to decide
1432   // if this object's end should *NOT* be recorded in
1433   // _previous_address above.
1434   virtual bool do_object_bm(oop obj, MemRegion mr) = 0;
1435 };
1436 
1437 // This closure is used during the second checkpointing phase
1438 // to rescan the marked objects on the dirty cards in the mod
1439 // union table and the card table proper. It's invoked via
1440 // MarkFromDirtyCardsClosure below. It uses either
1441 // [Par_]MarkRefsIntoAndScanClosure (Par_ in the parallel case)
1442 // declared in genOopClosures.hpp to accomplish some of its work.
1443 // In the parallel case the bitMap is shared, so access to
1444 // it needs to be suitably synchronized for updates by embedded
1445 // closures that update it; however, this closure itself only
1446 // reads the bit_map and because it is idempotent, is immune to
1447 // reading stale values.
1448 class ScanMarkedObjectsAgainClosure: public UpwardsObjectClosure {
1449   #ifdef ASSERT
1450     CMSCollector*          _collector;
1451     MemRegion              _span;
1452     union {
1453       CMSMarkStack*        _mark_stack;
1454       OopTaskQueue*        _work_queue;
1455     };
1456   #endif // ASSERT
1457   bool                       _parallel;
1458   CMSBitMap*                 _bit_map;
1459   union {
1460     MarkRefsIntoAndScanClosure*     _scan_closure;
1461     Par_MarkRefsIntoAndScanClosure* _par_scan_closure;
1462   };
1463 
1464  public:
1465   ScanMarkedObjectsAgainClosure(CMSCollector* collector,
1466                                 MemRegion span,
1467                                 ReferenceProcessor* rp,
1468                                 CMSBitMap* bit_map,
1469                                 CMSMarkStack*  mark_stack,
1470                                 MarkRefsIntoAndScanClosure* cl):
1471     #ifdef ASSERT
1472       _collector(collector),
1473       _span(span),
1474       _mark_stack(mark_stack),
1475     #endif // ASSERT
1476     _parallel(false),
1477     _bit_map(bit_map),
1478     _scan_closure(cl) { }
1479 
1480   ScanMarkedObjectsAgainClosure(CMSCollector* collector,
1481                                 MemRegion span,
1482                                 ReferenceProcessor* rp,
1483                                 CMSBitMap* bit_map,
1484                                 OopTaskQueue* work_queue,
1485                                 Par_MarkRefsIntoAndScanClosure* cl):
1486     #ifdef ASSERT
1487       _collector(collector),
1488       _span(span),
1489       _work_queue(work_queue),
1490     #endif // ASSERT
1491     _parallel(true),
1492     _bit_map(bit_map),
1493     _par_scan_closure(cl) { }
1494 
1495   bool do_object_b(oop obj) {
1496     guarantee(false, "Call do_object_b(oop, MemRegion) form instead");
1497     return false;
1498   }
1499   bool do_object_bm(oop p, MemRegion mr);
1500 };
1501 
1502 // This closure is used during the second checkpointing phase
1503 // to rescan the marked objects on the dirty cards in the mod
1504 // union table and the card table proper. It invokes
1505 // ScanMarkedObjectsAgainClosure above to accomplish much of its work.
1506 // In the parallel case, the bit map is shared and requires
1507 // synchronized access.
1508 class MarkFromDirtyCardsClosure: public MemRegionClosure {
1509   CompactibleFreeListSpace*      _space;
1510   ScanMarkedObjectsAgainClosure  _scan_cl;
1511   size_t                         _num_dirty_cards;
1512 
1513  public:
1514   MarkFromDirtyCardsClosure(CMSCollector* collector,
1515                             MemRegion span,
1516                             CompactibleFreeListSpace* space,
1517                             CMSBitMap* bit_map,
1518                             CMSMarkStack* mark_stack,
1519                             MarkRefsIntoAndScanClosure* cl):
1520     _space(space),
1521     _num_dirty_cards(0),
1522     _scan_cl(collector, span, collector->ref_processor(), bit_map,
1523                  mark_stack, cl) { }
1524 
1525   MarkFromDirtyCardsClosure(CMSCollector* collector,
1526                             MemRegion span,
1527                             CompactibleFreeListSpace* space,
1528                             CMSBitMap* bit_map,
1529                             OopTaskQueue* work_queue,
1530                             Par_MarkRefsIntoAndScanClosure* cl):
1531     _space(space),
1532     _num_dirty_cards(0),
1533     _scan_cl(collector, span, collector->ref_processor(), bit_map,
1534              work_queue, cl) { }
1535 
1536   void do_MemRegion(MemRegion mr);
1537   void set_space(CompactibleFreeListSpace* space) { _space = space; }
1538   size_t num_dirty_cards() { return _num_dirty_cards; }
1539 };
1540 
1541 // This closure is used in the non-product build to check
1542 // that there are no MemRegions with a certain property.
1543 class FalseMemRegionClosure: public MemRegionClosure {
1544   void do_MemRegion(MemRegion mr) {
1545     guarantee(!mr.is_empty(), "Shouldn't be empty");
1546     guarantee(false, "Should never be here");
1547   }
1548 };
1549 
1550 // This closure is used during the precleaning phase
1551 // to "carefully" rescan marked objects on dirty cards.
1552 // It uses MarkRefsIntoAndScanClosure declared in genOopClosures.hpp
1553 // to accomplish some of its work.
1554 class ScanMarkedObjectsAgainCarefullyClosure: public ObjectClosureCareful {
1555   CMSCollector*                  _collector;
1556   MemRegion                      _span;
1557   bool                           _yield;
1558   Mutex*                         _freelistLock;
1559   CMSBitMap*                     _bitMap;
1560   CMSMarkStack*                  _markStack;
1561   MarkRefsIntoAndScanClosure*    _scanningClosure;
1562 
1563  public:
1564   ScanMarkedObjectsAgainCarefullyClosure(CMSCollector* collector,
1565                                          MemRegion     span,
1566                                          CMSBitMap* bitMap,
1567                                          CMSMarkStack*  markStack,
1568                                          MarkRefsIntoAndScanClosure* cl,
1569                                          bool should_yield):
1570     _collector(collector),
1571     _span(span),
1572     _yield(should_yield),
1573     _bitMap(bitMap),
1574     _markStack(markStack),
1575     _scanningClosure(cl) {
1576   }
1577 
1578   void do_object(oop p) {
1579     guarantee(false, "call do_object_careful instead");
1580   }
1581 
1582   size_t      do_object_careful(oop p) {
1583     guarantee(false, "Unexpected caller");
1584     return 0;
1585   }
1586 
1587   size_t      do_object_careful_m(oop p, MemRegion mr);
1588 
1589   void setFreelistLock(Mutex* m) {
1590     _freelistLock = m;
1591     _scanningClosure->set_freelistLock(m);
1592   }
1593 
1594  private:
1595   inline bool do_yield_check();
1596 
1597   void do_yield_work();
1598 };
1599 
1600 class SurvivorSpacePrecleanClosure: public ObjectClosureCareful {
1601   CMSCollector*                  _collector;
1602   MemRegion                      _span;
1603   bool                           _yield;
1604   CMSBitMap*                     _bit_map;
1605   CMSMarkStack*                  _mark_stack;
1606   PushAndMarkClosure*            _scanning_closure;
1607   unsigned int                   _before_count;
1608 
1609  public:
1610   SurvivorSpacePrecleanClosure(CMSCollector* collector,
1611                                MemRegion     span,
1612                                CMSBitMap*    bit_map,
1613                                CMSMarkStack* mark_stack,
1614                                PushAndMarkClosure* cl,
1615                                unsigned int  before_count,
1616                                bool          should_yield):
1617     _collector(collector),
1618     _span(span),
1619     _yield(should_yield),
1620     _bit_map(bit_map),
1621     _mark_stack(mark_stack),
1622     _scanning_closure(cl),
1623     _before_count(before_count)
1624   { }
1625 
1626   void do_object(oop p) {
1627     guarantee(false, "call do_object_careful instead");
1628   }
1629 
1630   size_t      do_object_careful(oop p);
1631 
1632   size_t      do_object_careful_m(oop p, MemRegion mr) {
1633     guarantee(false, "Unexpected caller");
1634     return 0;
1635   }
1636 
1637  private:
1638   inline void do_yield_check();
1639   void do_yield_work();
1640 };
1641 
1642 // This closure is used to accomplish the sweeping work
1643 // after the second checkpoint but before the concurrent reset
1644 // phase.
1645 //
1646 // Terminology
1647 //   left hand chunk (LHC) - block of one or more chunks currently being
1648 //     coalesced.  The LHC is available for coalescing with a new chunk.
1649 //   right hand chunk (RHC) - block that is currently being swept that is
1650 //     free or garbage that can be coalesced with the LHC.
1651 // _inFreeRange is true if there is currently a LHC
1652 // _lastFreeRangeCoalesced is true if the LHC consists of more than one chunk.
1653 // _freeRangeInFreeLists is true if the LHC is in the free lists.
1654 // _freeFinger is the address of the current LHC
1655 class SweepClosure: public BlkClosureCareful {
1656   CMSCollector*                  _collector;  // collector doing the work
1657   ConcurrentMarkSweepGeneration* _g;    // Generation being swept
1658   CompactibleFreeListSpace*      _sp;   // Space being swept
1659   HeapWord*                      _limit;// the address at or above which the sweep should stop
1660                                         // because we do not expect newly garbage blocks
1661                                         // eligible for sweeping past that address.
1662   Mutex*                         _freelistLock; // Free list lock (in space)
1663   CMSBitMap*                     _bitMap;       // Marking bit map (in
1664                                                 // generation)
1665   bool                           _inFreeRange;  // Indicates if we are in the
1666                                                 // midst of a free run
1667   bool                           _freeRangeInFreeLists;
1668                                         // Often, we have just found
1669                                         // a free chunk and started
1670                                         // a new free range; we do not
1671                                         // eagerly remove this chunk from
1672                                         // the free lists unless there is
1673                                         // a possibility of coalescing.
1674                                         // When true, this flag indicates
1675                                         // that the _freeFinger below
1676                                         // points to a potentially free chunk
1677                                         // that may still be in the free lists
1678   bool                           _lastFreeRangeCoalesced;
1679                                         // free range contains chunks
1680                                         // coalesced
1681   bool                           _yield;
1682                                         // Whether sweeping should be
1683                                         // done with yields. For instance
1684                                         // when done by the foreground
1685                                         // collector we shouldn't yield.
1686   HeapWord*                      _freeFinger;   // When _inFreeRange is set, the
1687                                                 // pointer to the "left hand
1688                                                 // chunk"
1689   size_t                         _freeRangeSize;
1690                                         // When _inFreeRange is set, this
1691                                         // indicates the accumulated size
1692                                         // of the "left hand chunk"
1693   NOT_PRODUCT(
1694     size_t                       _numObjectsFreed;
1695     size_t                       _numWordsFreed;
1696     size_t                       _numObjectsLive;
1697     size_t                       _numWordsLive;
1698     size_t                       _numObjectsAlreadyFree;
1699     size_t                       _numWordsAlreadyFree;
1700     FreeChunk*                   _last_fc;
1701   )
1702  private:
1703   // Code that is common to a free chunk or garbage when
1704   // encountered during sweeping.
1705   void do_post_free_or_garbage_chunk(FreeChunk *fc, size_t chunkSize);
1706   // Process a free chunk during sweeping.
1707   void do_already_free_chunk(FreeChunk *fc);
1708   // Work method called when processing an already free or a
1709   // freshly garbage chunk to do a lookahead and possibly a
1710   // preemptive flush if crossing over _limit.
1711   void lookahead_and_flush(FreeChunk* fc, size_t chunkSize);
1712   // Process a garbage chunk during sweeping.
1713   size_t do_garbage_chunk(FreeChunk *fc);
1714   // Process a live chunk during sweeping.
1715   size_t do_live_chunk(FreeChunk* fc);
1716 
1717   // Accessors.
1718   HeapWord* freeFinger() const          { return _freeFinger; }
1719   void set_freeFinger(HeapWord* v)      { _freeFinger = v; }
1720   bool inFreeRange()    const           { return _inFreeRange; }
1721   void set_inFreeRange(bool v)          { _inFreeRange = v; }
1722   bool lastFreeRangeCoalesced() const    { return _lastFreeRangeCoalesced; }
1723   void set_lastFreeRangeCoalesced(bool v) { _lastFreeRangeCoalesced = v; }
1724   bool freeRangeInFreeLists() const     { return _freeRangeInFreeLists; }
1725   void set_freeRangeInFreeLists(bool v) { _freeRangeInFreeLists = v; }
1726 
1727   // Initialize a free range.
1728   void initialize_free_range(HeapWord* freeFinger, bool freeRangeInFreeLists);
1729   // Return this chunk to the free lists.
1730   void flush_cur_free_chunk(HeapWord* chunk, size_t size);
1731 
1732   // Check if we should yield and do so when necessary.
1733   inline void do_yield_check(HeapWord* addr);
1734 
1735   // Yield
1736   void do_yield_work(HeapWord* addr);
1737 
1738   // Debugging/Printing
1739   void print_free_block_coalesced(FreeChunk* fc) const;
1740 
1741  public:
1742   SweepClosure(CMSCollector* collector, ConcurrentMarkSweepGeneration* g,
1743                CMSBitMap* bitMap, bool should_yield);
1744   ~SweepClosure() PRODUCT_RETURN;
1745 
1746   size_t       do_blk_careful(HeapWord* addr);
1747   void         print() const { print_on(tty); }
1748   void         print_on(outputStream *st) const;
1749 };
1750 
1751 // Closures related to weak references processing
1752 
1753 // During CMS' weak reference processing, this is a
1754 // work-routine/closure used to complete transitive
1755 // marking of objects as live after a certain point
1756 // in which an initial set has been completely accumulated.
1757 // This closure is currently used both during the final
1758 // remark stop-world phase, as well as during the concurrent
1759 // precleaning of the discovered reference lists.
1760 class CMSDrainMarkingStackClosure: public VoidClosure {
1761   CMSCollector*        _collector;
1762   MemRegion            _span;
1763   CMSMarkStack*        _mark_stack;
1764   CMSBitMap*           _bit_map;
1765   CMSKeepAliveClosure* _keep_alive;
1766   bool                 _concurrent_precleaning;
1767  public:
1768   CMSDrainMarkingStackClosure(CMSCollector* collector, MemRegion span,
1769                       CMSBitMap* bit_map, CMSMarkStack* mark_stack,
1770                       CMSKeepAliveClosure* keep_alive,
1771                       bool cpc):
1772     _collector(collector),
1773     _span(span),
1774     _bit_map(bit_map),
1775     _mark_stack(mark_stack),
1776     _keep_alive(keep_alive),
1777     _concurrent_precleaning(cpc) {
1778     assert(_concurrent_precleaning == _keep_alive->concurrent_precleaning(),
1779            "Mismatch");
1780   }
1781 
1782   void do_void();
1783 };
1784 
1785 // A parallel version of CMSDrainMarkingStackClosure above.
1786 class CMSParDrainMarkingStackClosure: public VoidClosure {
1787   CMSCollector*           _collector;
1788   MemRegion               _span;
1789   OopTaskQueue*           _work_queue;
1790   CMSBitMap*              _bit_map;
1791   CMSInnerParMarkAndPushClosure _mark_and_push;
1792 
1793  public:
1794   CMSParDrainMarkingStackClosure(CMSCollector* collector,
1795                                  MemRegion span, CMSBitMap* bit_map,
1796                                  OopTaskQueue* work_queue):
1797     _collector(collector),
1798     _span(span),
1799     _bit_map(bit_map),
1800     _work_queue(work_queue),
1801     _mark_and_push(collector, span, bit_map, work_queue) { }
1802 
1803  public:
1804   void trim_queue(uint max);
1805   void do_void();
1806 };
1807 
1808 // Allow yielding or short-circuiting of reference list
1809 // precleaning work.
1810 class CMSPrecleanRefsYieldClosure: public YieldClosure {
1811   CMSCollector* _collector;
1812   void do_yield_work();
1813  public:
1814   CMSPrecleanRefsYieldClosure(CMSCollector* collector):
1815     _collector(collector) {}
1816   virtual bool should_return();
1817 };
1818 
1819 
1820 // Convenience class that locks free list locks for given CMS collector
1821 class FreelistLocker: public StackObj {
1822  private:
1823   CMSCollector* _collector;
1824  public:
1825   FreelistLocker(CMSCollector* collector):
1826     _collector(collector) {
1827     _collector->getFreelistLocks();
1828   }
1829 
1830   ~FreelistLocker() {
1831     _collector->releaseFreelistLocks();
1832   }
1833 };
1834 
1835 // Mark all dead objects in a given space.
1836 class MarkDeadObjectsClosure: public BlkClosure {
1837   const CMSCollector*             _collector;
1838   const CompactibleFreeListSpace* _sp;
1839   CMSBitMap*                      _live_bit_map;
1840   CMSBitMap*                      _dead_bit_map;
1841 public:
1842   MarkDeadObjectsClosure(const CMSCollector* collector,
1843                          const CompactibleFreeListSpace* sp,
1844                          CMSBitMap *live_bit_map,
1845                          CMSBitMap *dead_bit_map) :
1846     _collector(collector),
1847     _sp(sp),
1848     _live_bit_map(live_bit_map),
1849     _dead_bit_map(dead_bit_map) {}
1850   size_t do_blk(HeapWord* addr);
1851 };
1852 
1853 class TraceCMSMemoryManagerStats : public TraceMemoryManagerStats {
1854 
1855  public:
1856   TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase, GCCause::Cause cause);
1857 };
1858 
1859 
1860 #endif // SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_CONCURRENTMARKSWEEPGENERATION_HPP