1 /* 2 * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "compiler/compileLog.hpp" 27 #include "interpreter/linkResolver.hpp" 28 #include "memory/resourceArea.hpp" 29 #include "oops/method.hpp" 30 #include "opto/addnode.hpp" 31 #include "opto/c2compiler.hpp" 32 #include "opto/castnode.hpp" 33 #include "opto/idealGraphPrinter.hpp" 34 #include "opto/locknode.hpp" 35 #include "opto/memnode.hpp" 36 #include "opto/opaquenode.hpp" 37 #include "opto/parse.hpp" 38 #include "opto/rootnode.hpp" 39 #include "opto/runtime.hpp" 40 #include "runtime/arguments.hpp" 41 #include "runtime/handles.inline.hpp" 42 #include "runtime/safepointMechanism.hpp" 43 #include "runtime/sharedRuntime.hpp" 44 #include "utilities/copy.hpp" 45 46 // Static array so we can figure out which bytecodes stop us from compiling 47 // the most. Some of the non-static variables are needed in bytecodeInfo.cpp 48 // and eventually should be encapsulated in a proper class (gri 8/18/98). 49 50 #ifndef PRODUCT 51 int nodes_created = 0; 52 int methods_parsed = 0; 53 int methods_seen = 0; 54 int blocks_parsed = 0; 55 int blocks_seen = 0; 56 57 int explicit_null_checks_inserted = 0; 58 int explicit_null_checks_elided = 0; 59 int all_null_checks_found = 0; 60 int implicit_null_checks = 0; 61 62 bool Parse::BytecodeParseHistogram::_initialized = false; 63 uint Parse::BytecodeParseHistogram::_bytecodes_parsed [Bytecodes::number_of_codes]; 64 uint Parse::BytecodeParseHistogram::_nodes_constructed[Bytecodes::number_of_codes]; 65 uint Parse::BytecodeParseHistogram::_nodes_transformed[Bytecodes::number_of_codes]; 66 uint Parse::BytecodeParseHistogram::_new_values [Bytecodes::number_of_codes]; 67 68 //------------------------------print_statistics------------------------------- 69 void Parse::print_statistics() { 70 tty->print_cr("--- Compiler Statistics ---"); 71 tty->print("Methods seen: %d Methods parsed: %d", methods_seen, methods_parsed); 72 tty->print(" Nodes created: %d", nodes_created); 73 tty->cr(); 74 if (methods_seen != methods_parsed) { 75 tty->print_cr("Reasons for parse failures (NOT cumulative):"); 76 } 77 tty->print_cr("Blocks parsed: %d Blocks seen: %d", blocks_parsed, blocks_seen); 78 79 if (explicit_null_checks_inserted) { 80 tty->print_cr("%d original NULL checks - %d elided (%2d%%); optimizer leaves %d,", 81 explicit_null_checks_inserted, explicit_null_checks_elided, 82 (100*explicit_null_checks_elided)/explicit_null_checks_inserted, 83 all_null_checks_found); 84 } 85 if (all_null_checks_found) { 86 tty->print_cr("%d made implicit (%2d%%)", implicit_null_checks, 87 (100*implicit_null_checks)/all_null_checks_found); 88 } 89 if (SharedRuntime::_implicit_null_throws) { 90 tty->print_cr("%d implicit null exceptions at runtime", 91 SharedRuntime::_implicit_null_throws); 92 } 93 94 if (PrintParseStatistics && BytecodeParseHistogram::initialized()) { 95 BytecodeParseHistogram::print(); 96 } 97 } 98 #endif 99 100 //------------------------------ON STACK REPLACEMENT--------------------------- 101 102 // Construct a node which can be used to get incoming state for 103 // on stack replacement. 104 Node *Parse::fetch_interpreter_state(int index, 105 BasicType bt, 106 Node *local_addrs, 107 Node *local_addrs_base) { 108 Node *mem = memory(Compile::AliasIdxRaw); 109 Node *adr = basic_plus_adr( local_addrs_base, local_addrs, -index*wordSize ); 110 Node *ctl = control(); 111 112 // Very similar to LoadNode::make, except we handle un-aligned longs and 113 // doubles on Sparc. Intel can handle them just fine directly. 114 Node *l = NULL; 115 switch (bt) { // Signature is flattened 116 case T_INT: l = new LoadINode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInt::INT, MemNode::unordered); break; 117 case T_FLOAT: l = new LoadFNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::FLOAT, MemNode::unordered); break; 118 case T_ADDRESS: l = new LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM, MemNode::unordered); break; 119 case T_OBJECT: l = new LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInstPtr::BOTTOM, MemNode::unordered); break; 120 case T_LONG: 121 case T_DOUBLE: { 122 // Since arguments are in reverse order, the argument address 'adr' 123 // refers to the back half of the long/double. Recompute adr. 124 adr = basic_plus_adr(local_addrs_base, local_addrs, -(index+1)*wordSize); 125 if (Matcher::misaligned_doubles_ok) { 126 l = (bt == T_DOUBLE) 127 ? (Node*)new LoadDNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::DOUBLE, MemNode::unordered) 128 : (Node*)new LoadLNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeLong::LONG, MemNode::unordered); 129 } else { 130 l = (bt == T_DOUBLE) 131 ? (Node*)new LoadD_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered) 132 : (Node*)new LoadL_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered); 133 } 134 break; 135 } 136 default: ShouldNotReachHere(); 137 } 138 return _gvn.transform(l); 139 } 140 141 // Helper routine to prevent the interpreter from handing 142 // unexpected typestate to an OSR method. 143 // The Node l is a value newly dug out of the interpreter frame. 144 // The type is the type predicted by ciTypeFlow. Note that it is 145 // not a general type, but can only come from Type::get_typeflow_type. 146 // The safepoint is a map which will feed an uncommon trap. 147 Node* Parse::check_interpreter_type(Node* l, const Type* type, 148 SafePointNode* &bad_type_exit) { 149 150 const TypeOopPtr* tp = type->isa_oopptr(); 151 152 // TypeFlow may assert null-ness if a type appears unloaded. 153 if (type == TypePtr::NULL_PTR || 154 (tp != NULL && !tp->klass()->is_loaded())) { 155 // Value must be null, not a real oop. 156 Node* chk = _gvn.transform( new CmpPNode(l, null()) ); 157 Node* tst = _gvn.transform( new BoolNode(chk, BoolTest::eq) ); 158 IfNode* iff = create_and_map_if(control(), tst, PROB_MAX, COUNT_UNKNOWN); 159 set_control(_gvn.transform( new IfTrueNode(iff) )); 160 Node* bad_type = _gvn.transform( new IfFalseNode(iff) ); 161 bad_type_exit->control()->add_req(bad_type); 162 l = null(); 163 } 164 165 // Typeflow can also cut off paths from the CFG, based on 166 // types which appear unloaded, or call sites which appear unlinked. 167 // When paths are cut off, values at later merge points can rise 168 // toward more specific classes. Make sure these specific classes 169 // are still in effect. 170 if (tp != NULL && tp->klass() != C->env()->Object_klass()) { 171 // TypeFlow asserted a specific object type. Value must have that type. 172 Node* bad_type_ctrl = NULL; 173 l = gen_checkcast(l, makecon(TypeKlassPtr::make(tp->klass())), &bad_type_ctrl); 174 bad_type_exit->control()->add_req(bad_type_ctrl); 175 } 176 177 BasicType bt_l = _gvn.type(l)->basic_type(); 178 BasicType bt_t = type->basic_type(); 179 assert(_gvn.type(l)->higher_equal(type), "must constrain OSR typestate"); 180 return l; 181 } 182 183 // Helper routine which sets up elements of the initial parser map when 184 // performing a parse for on stack replacement. Add values into map. 185 // The only parameter contains the address of a interpreter arguments. 186 void Parse::load_interpreter_state(Node* osr_buf) { 187 int index; 188 int max_locals = jvms()->loc_size(); 189 int max_stack = jvms()->stk_size(); 190 191 192 // Mismatch between method and jvms can occur since map briefly held 193 // an OSR entry state (which takes up one RawPtr word). 194 assert(max_locals == method()->max_locals(), "sanity"); 195 assert(max_stack >= method()->max_stack(), "sanity"); 196 assert((int)jvms()->endoff() == TypeFunc::Parms + max_locals + max_stack, "sanity"); 197 assert((int)jvms()->endoff() == (int)map()->req(), "sanity"); 198 199 // Find the start block. 200 Block* osr_block = start_block(); 201 assert(osr_block->start() == osr_bci(), "sanity"); 202 203 // Set initial BCI. 204 set_parse_bci(osr_block->start()); 205 206 // Set initial stack depth. 207 set_sp(osr_block->start_sp()); 208 209 // Check bailouts. We currently do not perform on stack replacement 210 // of loops in catch blocks or loops which branch with a non-empty stack. 211 if (sp() != 0) { 212 C->record_method_not_compilable("OSR starts with non-empty stack"); 213 return; 214 } 215 // Do not OSR inside finally clauses: 216 if (osr_block->has_trap_at(osr_block->start())) { 217 C->record_method_not_compilable("OSR starts with an immediate trap"); 218 return; 219 } 220 221 // Commute monitors from interpreter frame to compiler frame. 222 assert(jvms()->monitor_depth() == 0, "should be no active locks at beginning of osr"); 223 int mcnt = osr_block->flow()->monitor_count(); 224 Node *monitors_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals+mcnt*2-1)*wordSize); 225 for (index = 0; index < mcnt; index++) { 226 // Make a BoxLockNode for the monitor. 227 Node *box = _gvn.transform(new BoxLockNode(next_monitor())); 228 229 230 // Displaced headers and locked objects are interleaved in the 231 // temp OSR buffer. We only copy the locked objects out here. 232 // Fetch the locked object from the OSR temp buffer and copy to our fastlock node. 233 Node *lock_object = fetch_interpreter_state(index*2, T_OBJECT, monitors_addr, osr_buf); 234 // Try and copy the displaced header to the BoxNode 235 Node *displaced_hdr = fetch_interpreter_state((index*2) + 1, T_ADDRESS, monitors_addr, osr_buf); 236 237 238 store_to_memory(control(), box, displaced_hdr, T_ADDRESS, Compile::AliasIdxRaw, MemNode::unordered); 239 240 // Build a bogus FastLockNode (no code will be generated) and push the 241 // monitor into our debug info. 242 const FastLockNode *flock = _gvn.transform(new FastLockNode( 0, lock_object, box ))->as_FastLock(); 243 map()->push_monitor(flock); 244 245 // If the lock is our method synchronization lock, tuck it away in 246 // _sync_lock for return and rethrow exit paths. 247 if (index == 0 && method()->is_synchronized()) { 248 _synch_lock = flock; 249 } 250 } 251 252 // Use the raw liveness computation to make sure that unexpected 253 // values don't propagate into the OSR frame. 254 MethodLivenessResult live_locals = method()->liveness_at_bci(osr_bci()); 255 if (!live_locals.is_valid()) { 256 // Degenerate or breakpointed method. 257 C->record_method_not_compilable("OSR in empty or breakpointed method"); 258 return; 259 } 260 261 // Extract the needed locals from the interpreter frame. 262 Node *locals_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals-1)*wordSize); 263 264 // find all the locals that the interpreter thinks contain live oops 265 const ResourceBitMap live_oops = method()->live_local_oops_at_bci(osr_bci()); 266 for (index = 0; index < max_locals; index++) { 267 268 if (!live_locals.at(index)) { 269 continue; 270 } 271 272 const Type *type = osr_block->local_type_at(index); 273 274 if (type->isa_oopptr() != NULL) { 275 276 // 6403625: Verify that the interpreter oopMap thinks that the oop is live 277 // else we might load a stale oop if the MethodLiveness disagrees with the 278 // result of the interpreter. If the interpreter says it is dead we agree 279 // by making the value go to top. 280 // 281 282 if (!live_oops.at(index)) { 283 if (C->log() != NULL) { 284 C->log()->elem("OSR_mismatch local_index='%d'",index); 285 } 286 set_local(index, null()); 287 // and ignore it for the loads 288 continue; 289 } 290 } 291 292 // Filter out TOP, HALF, and BOTTOM. (Cf. ensure_phi.) 293 if (type == Type::TOP || type == Type::HALF) { 294 continue; 295 } 296 // If the type falls to bottom, then this must be a local that 297 // is mixing ints and oops or some such. Forcing it to top 298 // makes it go dead. 299 if (type == Type::BOTTOM) { 300 continue; 301 } 302 // Construct code to access the appropriate local. 303 BasicType bt = type->basic_type(); 304 if (type == TypePtr::NULL_PTR) { 305 // Ptr types are mixed together with T_ADDRESS but NULL is 306 // really for T_OBJECT types so correct it. 307 bt = T_OBJECT; 308 } 309 Node *value = fetch_interpreter_state(index, bt, locals_addr, osr_buf); 310 set_local(index, value); 311 } 312 313 // Extract the needed stack entries from the interpreter frame. 314 for (index = 0; index < sp(); index++) { 315 const Type *type = osr_block->stack_type_at(index); 316 if (type != Type::TOP) { 317 // Currently the compiler bails out when attempting to on stack replace 318 // at a bci with a non-empty stack. We should not reach here. 319 ShouldNotReachHere(); 320 } 321 } 322 323 // End the OSR migration 324 make_runtime_call(RC_LEAF, OptoRuntime::osr_end_Type(), 325 CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end), 326 "OSR_migration_end", TypeRawPtr::BOTTOM, 327 osr_buf); 328 329 // Now that the interpreter state is loaded, make sure it will match 330 // at execution time what the compiler is expecting now: 331 SafePointNode* bad_type_exit = clone_map(); 332 bad_type_exit->set_control(new RegionNode(1)); 333 334 assert(osr_block->flow()->jsrs()->size() == 0, "should be no jsrs live at osr point"); 335 for (index = 0; index < max_locals; index++) { 336 if (stopped()) break; 337 Node* l = local(index); 338 if (l->is_top()) continue; // nothing here 339 const Type *type = osr_block->local_type_at(index); 340 if (type->isa_oopptr() != NULL) { 341 if (!live_oops.at(index)) { 342 // skip type check for dead oops 343 continue; 344 } 345 } 346 if (osr_block->flow()->local_type_at(index)->is_return_address()) { 347 // In our current system it's illegal for jsr addresses to be 348 // live into an OSR entry point because the compiler performs 349 // inlining of jsrs. ciTypeFlow has a bailout that detect this 350 // case and aborts the compile if addresses are live into an OSR 351 // entry point. Because of that we can assume that any address 352 // locals at the OSR entry point are dead. Method liveness 353 // isn't precise enought to figure out that they are dead in all 354 // cases so simply skip checking address locals all 355 // together. Any type check is guaranteed to fail since the 356 // interpreter type is the result of a load which might have any 357 // value and the expected type is a constant. 358 continue; 359 } 360 set_local(index, check_interpreter_type(l, type, bad_type_exit)); 361 } 362 363 for (index = 0; index < sp(); index++) { 364 if (stopped()) break; 365 Node* l = stack(index); 366 if (l->is_top()) continue; // nothing here 367 const Type *type = osr_block->stack_type_at(index); 368 set_stack(index, check_interpreter_type(l, type, bad_type_exit)); 369 } 370 371 if (bad_type_exit->control()->req() > 1) { 372 // Build an uncommon trap here, if any inputs can be unexpected. 373 bad_type_exit->set_control(_gvn.transform( bad_type_exit->control() )); 374 record_for_igvn(bad_type_exit->control()); 375 SafePointNode* types_are_good = map(); 376 set_map(bad_type_exit); 377 // The unexpected type happens because a new edge is active 378 // in the CFG, which typeflow had previously ignored. 379 // E.g., Object x = coldAtFirst() && notReached()? "str": new Integer(123). 380 // This x will be typed as Integer if notReached is not yet linked. 381 // It could also happen due to a problem in ciTypeFlow analysis. 382 uncommon_trap(Deoptimization::Reason_constraint, 383 Deoptimization::Action_reinterpret); 384 set_map(types_are_good); 385 } 386 } 387 388 //------------------------------Parse------------------------------------------ 389 // Main parser constructor. 390 Parse::Parse(JVMState* caller, ciMethod* parse_method, float expected_uses) 391 : _exits(caller) 392 { 393 // Init some variables 394 _caller = caller; 395 _method = parse_method; 396 _expected_uses = expected_uses; 397 _depth = 1 + (caller->has_method() ? caller->depth() : 0); 398 _wrote_final = false; 399 _wrote_volatile = false; 400 _wrote_stable = false; 401 _wrote_fields = false; 402 _alloc_with_final = NULL; 403 _entry_bci = InvocationEntryBci; 404 _tf = NULL; 405 _block = NULL; 406 _first_return = true; 407 _replaced_nodes_for_exceptions = false; 408 _new_idx = C->unique(); 409 debug_only(_block_count = -1); 410 debug_only(_blocks = (Block*)-1); 411 #ifndef PRODUCT 412 if (PrintCompilation || PrintOpto) { 413 // Make sure I have an inline tree, so I can print messages about it. 414 JVMState* ilt_caller = is_osr_parse() ? caller->caller() : caller; 415 InlineTree::find_subtree_from_root(C->ilt(), ilt_caller, parse_method); 416 } 417 _max_switch_depth = 0; 418 _est_switch_depth = 0; 419 #endif 420 421 if (parse_method->has_reserved_stack_access()) { 422 C->set_has_reserved_stack_access(true); 423 } 424 425 _tf = TypeFunc::make(method()); 426 _iter.reset_to_method(method()); 427 _flow = method()->get_flow_analysis(); 428 if (_flow->failing()) { 429 C->record_method_not_compilable(_flow->failure_reason()); 430 } 431 432 #ifndef PRODUCT 433 if (_flow->has_irreducible_entry()) { 434 C->set_parsed_irreducible_loop(true); 435 } 436 #endif 437 438 if (_expected_uses <= 0) { 439 _prof_factor = 1; 440 } else { 441 float prof_total = parse_method->interpreter_invocation_count(); 442 if (prof_total <= _expected_uses) { 443 _prof_factor = 1; 444 } else { 445 _prof_factor = _expected_uses / prof_total; 446 } 447 } 448 449 CompileLog* log = C->log(); 450 if (log != NULL) { 451 log->begin_head("parse method='%d' uses='%f'", 452 log->identify(parse_method), expected_uses); 453 if (depth() == 1 && C->is_osr_compilation()) { 454 log->print(" osr_bci='%d'", C->entry_bci()); 455 } 456 log->stamp(); 457 log->end_head(); 458 } 459 460 // Accumulate deoptimization counts. 461 // (The range_check and store_check counts are checked elsewhere.) 462 ciMethodData* md = method()->method_data(); 463 for (uint reason = 0; reason < md->trap_reason_limit(); reason++) { 464 uint md_count = md->trap_count(reason); 465 if (md_count != 0) { 466 if (md_count == md->trap_count_limit()) 467 md_count += md->overflow_trap_count(); 468 uint total_count = C->trap_count(reason); 469 uint old_count = total_count; 470 total_count += md_count; 471 // Saturate the add if it overflows. 472 if (total_count < old_count || total_count < md_count) 473 total_count = (uint)-1; 474 C->set_trap_count(reason, total_count); 475 if (log != NULL) 476 log->elem("observe trap='%s' count='%d' total='%d'", 477 Deoptimization::trap_reason_name(reason), 478 md_count, total_count); 479 } 480 } 481 // Accumulate total sum of decompilations, also. 482 C->set_decompile_count(C->decompile_count() + md->decompile_count()); 483 484 _count_invocations = C->do_count_invocations(); 485 _method_data_update = C->do_method_data_update(); 486 487 if (log != NULL && method()->has_exception_handlers()) { 488 log->elem("observe that='has_exception_handlers'"); 489 } 490 491 assert(InlineTree::check_can_parse(method()) == NULL, "Can not parse this method, cutout earlier"); 492 assert(method()->has_balanced_monitors(), "Can not parse unbalanced monitors, cutout earlier"); 493 494 // Always register dependence if JVMTI is enabled, because 495 // either breakpoint setting or hotswapping of methods may 496 // cause deoptimization. 497 if (C->env()->jvmti_can_hotswap_or_post_breakpoint()) { 498 C->dependencies()->assert_evol_method(method()); 499 } 500 501 NOT_PRODUCT(methods_seen++); 502 503 // Do some special top-level things. 504 if (depth() == 1 && C->is_osr_compilation()) { 505 _entry_bci = C->entry_bci(); 506 _flow = method()->get_osr_flow_analysis(osr_bci()); 507 if (_flow->failing()) { 508 C->record_method_not_compilable(_flow->failure_reason()); 509 #ifndef PRODUCT 510 if (PrintOpto && (Verbose || WizardMode)) { 511 tty->print_cr("OSR @%d type flow bailout: %s", _entry_bci, _flow->failure_reason()); 512 if (Verbose) { 513 method()->print(); 514 method()->print_codes(); 515 _flow->print(); 516 } 517 } 518 #endif 519 } 520 _tf = C->tf(); // the OSR entry type is different 521 } 522 523 #ifdef ASSERT 524 if (depth() == 1) { 525 assert(C->is_osr_compilation() == this->is_osr_parse(), "OSR in sync"); 526 if (C->tf() != tf()) { 527 MutexLockerEx ml(Compile_lock, Mutex::_no_safepoint_check_flag); 528 assert(C->env()->system_dictionary_modification_counter_changed(), 529 "Must invalidate if TypeFuncs differ"); 530 } 531 } else { 532 assert(!this->is_osr_parse(), "no recursive OSR"); 533 } 534 #endif 535 536 #ifndef PRODUCT 537 methods_parsed++; 538 // add method size here to guarantee that inlined methods are added too 539 if (CITime) 540 _total_bytes_compiled += method()->code_size(); 541 542 show_parse_info(); 543 #endif 544 545 if (failing()) { 546 if (log) log->done("parse"); 547 return; 548 } 549 550 gvn().set_type(root(), root()->bottom_type()); 551 gvn().transform(top()); 552 553 // Import the results of the ciTypeFlow. 554 init_blocks(); 555 556 // Merge point for all normal exits 557 build_exits(); 558 559 // Setup the initial JVM state map. 560 SafePointNode* entry_map = create_entry_map(); 561 562 // Check for bailouts during map initialization 563 if (failing() || entry_map == NULL) { 564 if (log) log->done("parse"); 565 return; 566 } 567 568 Node_Notes* caller_nn = C->default_node_notes(); 569 // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls. 570 if (DebugInlinedCalls || depth() == 1) { 571 C->set_default_node_notes(make_node_notes(caller_nn)); 572 } 573 574 if (is_osr_parse()) { 575 Node* osr_buf = entry_map->in(TypeFunc::Parms+0); 576 entry_map->set_req(TypeFunc::Parms+0, top()); 577 set_map(entry_map); 578 load_interpreter_state(osr_buf); 579 } else { 580 set_map(entry_map); 581 do_method_entry(); 582 if (depth() == 1 && C->age_code()) { 583 decrement_age(); 584 } 585 } 586 587 if (depth() == 1 && !failing()) { 588 // Add check to deoptimize the nmethod if RTM state was changed 589 rtm_deopt(); 590 } 591 592 // Check for bailouts during method entry or RTM state check setup. 593 if (failing()) { 594 if (log) log->done("parse"); 595 C->set_default_node_notes(caller_nn); 596 return; 597 } 598 599 entry_map = map(); // capture any changes performed by method setup code 600 assert(jvms()->endoff() == map()->req(), "map matches JVMS layout"); 601 602 // We begin parsing as if we have just encountered a jump to the 603 // method entry. 604 Block* entry_block = start_block(); 605 assert(entry_block->start() == (is_osr_parse() ? osr_bci() : 0), ""); 606 set_map_clone(entry_map); 607 merge_common(entry_block, entry_block->next_path_num()); 608 609 #ifndef PRODUCT 610 BytecodeParseHistogram *parse_histogram_obj = new (C->env()->arena()) BytecodeParseHistogram(this, C); 611 set_parse_histogram( parse_histogram_obj ); 612 #endif 613 614 // Parse all the basic blocks. 615 do_all_blocks(); 616 617 C->set_default_node_notes(caller_nn); 618 619 // Check for bailouts during conversion to graph 620 if (failing()) { 621 if (log) log->done("parse"); 622 return; 623 } 624 625 // Fix up all exiting control flow. 626 set_map(entry_map); 627 do_exits(); 628 629 if (log) log->done("parse nodes='%d' live='%d' memory='" SIZE_FORMAT "'", 630 C->unique(), C->live_nodes(), C->node_arena()->used()); 631 } 632 633 //---------------------------do_all_blocks------------------------------------- 634 void Parse::do_all_blocks() { 635 bool has_irreducible = flow()->has_irreducible_entry(); 636 637 // Walk over all blocks in Reverse Post-Order. 638 while (true) { 639 bool progress = false; 640 for (int rpo = 0; rpo < block_count(); rpo++) { 641 Block* block = rpo_at(rpo); 642 643 if (block->is_parsed()) continue; 644 645 if (!block->is_merged()) { 646 // Dead block, no state reaches this block 647 continue; 648 } 649 650 // Prepare to parse this block. 651 load_state_from(block); 652 653 if (stopped()) { 654 // Block is dead. 655 continue; 656 } 657 658 NOT_PRODUCT(blocks_parsed++); 659 660 progress = true; 661 if (block->is_loop_head() || block->is_handler() || (has_irreducible && !block->is_ready())) { 662 // Not all preds have been parsed. We must build phis everywhere. 663 // (Note that dead locals do not get phis built, ever.) 664 ensure_phis_everywhere(); 665 666 if (block->is_SEL_head()) { 667 // Add predicate to single entry (not irreducible) loop head. 668 assert(!block->has_merged_backedge(), "only entry paths should be merged for now"); 669 // Predicates may have been added after a dominating if 670 if (!block->has_predicates()) { 671 // Need correct bci for predicate. 672 // It is fine to set it here since do_one_block() will set it anyway. 673 set_parse_bci(block->start()); 674 add_predicate(); 675 } 676 // Add new region for back branches. 677 int edges = block->pred_count() - block->preds_parsed() + 1; // +1 for original region 678 RegionNode *r = new RegionNode(edges+1); 679 _gvn.set_type(r, Type::CONTROL); 680 record_for_igvn(r); 681 r->init_req(edges, control()); 682 set_control(r); 683 // Add new phis. 684 ensure_phis_everywhere(); 685 } 686 687 // Leave behind an undisturbed copy of the map, for future merges. 688 set_map(clone_map()); 689 } 690 691 if (control()->is_Region() && !block->is_loop_head() && !has_irreducible && !block->is_handler()) { 692 // In the absence of irreducible loops, the Region and Phis 693 // associated with a merge that doesn't involve a backedge can 694 // be simplified now since the RPO parsing order guarantees 695 // that any path which was supposed to reach here has already 696 // been parsed or must be dead. 697 Node* c = control(); 698 Node* result = _gvn.transform_no_reclaim(control()); 699 if (c != result && TraceOptoParse) { 700 tty->print_cr("Block #%d replace %d with %d", block->rpo(), c->_idx, result->_idx); 701 } 702 if (result != top()) { 703 record_for_igvn(result); 704 } 705 } 706 707 // Parse the block. 708 do_one_block(); 709 710 // Check for bailouts. 711 if (failing()) return; 712 } 713 714 // with irreducible loops multiple passes might be necessary to parse everything 715 if (!has_irreducible || !progress) { 716 break; 717 } 718 } 719 720 #ifndef PRODUCT 721 blocks_seen += block_count(); 722 723 // Make sure there are no half-processed blocks remaining. 724 // Every remaining unprocessed block is dead and may be ignored now. 725 for (int rpo = 0; rpo < block_count(); rpo++) { 726 Block* block = rpo_at(rpo); 727 if (!block->is_parsed()) { 728 if (TraceOptoParse) { 729 tty->print_cr("Skipped dead block %d at bci:%d", rpo, block->start()); 730 } 731 assert(!block->is_merged(), "no half-processed blocks"); 732 } 733 } 734 #endif 735 } 736 737 static Node* mask_int_value(Node* v, BasicType bt, PhaseGVN* gvn) { 738 switch (bt) { 739 case T_BYTE: 740 v = gvn->transform(new LShiftINode(v, gvn->intcon(24))); 741 v = gvn->transform(new RShiftINode(v, gvn->intcon(24))); 742 break; 743 case T_SHORT: 744 v = gvn->transform(new LShiftINode(v, gvn->intcon(16))); 745 v = gvn->transform(new RShiftINode(v, gvn->intcon(16))); 746 break; 747 case T_CHAR: 748 v = gvn->transform(new AndINode(v, gvn->intcon(0xFFFF))); 749 break; 750 case T_BOOLEAN: 751 v = gvn->transform(new AndINode(v, gvn->intcon(0x1))); 752 break; 753 default: 754 break; 755 } 756 return v; 757 } 758 759 //-------------------------------build_exits---------------------------------- 760 // Build normal and exceptional exit merge points. 761 void Parse::build_exits() { 762 // make a clone of caller to prevent sharing of side-effects 763 _exits.set_map(_exits.clone_map()); 764 _exits.clean_stack(_exits.sp()); 765 _exits.sync_jvms(); 766 767 RegionNode* region = new RegionNode(1); 768 record_for_igvn(region); 769 gvn().set_type_bottom(region); 770 _exits.set_control(region); 771 772 // Note: iophi and memphi are not transformed until do_exits. 773 Node* iophi = new PhiNode(region, Type::ABIO); 774 Node* memphi = new PhiNode(region, Type::MEMORY, TypePtr::BOTTOM); 775 gvn().set_type_bottom(iophi); 776 gvn().set_type_bottom(memphi); 777 _exits.set_i_o(iophi); 778 _exits.set_all_memory(memphi); 779 780 // Add a return value to the exit state. (Do not push it yet.) 781 if (tf()->range()->cnt() > TypeFunc::Parms) { 782 const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms); 783 if (ret_type->isa_int()) { 784 BasicType ret_bt = method()->return_type()->basic_type(); 785 if (ret_bt == T_BOOLEAN || 786 ret_bt == T_CHAR || 787 ret_bt == T_BYTE || 788 ret_bt == T_SHORT) { 789 ret_type = TypeInt::INT; 790 } 791 } 792 793 // Don't "bind" an unloaded return klass to the ret_phi. If the klass 794 // becomes loaded during the subsequent parsing, the loaded and unloaded 795 // types will not join when we transform and push in do_exits(). 796 const TypeOopPtr* ret_oop_type = ret_type->isa_oopptr(); 797 if (ret_oop_type && !ret_oop_type->klass()->is_loaded()) { 798 ret_type = TypeOopPtr::BOTTOM; 799 } 800 int ret_size = type2size[ret_type->basic_type()]; 801 Node* ret_phi = new PhiNode(region, ret_type); 802 gvn().set_type_bottom(ret_phi); 803 _exits.ensure_stack(ret_size); 804 assert((int)(tf()->range()->cnt() - TypeFunc::Parms) == ret_size, "good tf range"); 805 assert(method()->return_type()->size() == ret_size, "tf agrees w/ method"); 806 _exits.set_argument(0, ret_phi); // here is where the parser finds it 807 // Note: ret_phi is not yet pushed, until do_exits. 808 } 809 } 810 811 812 //----------------------------build_start_state------------------------------- 813 // Construct a state which contains only the incoming arguments from an 814 // unknown caller. The method & bci will be NULL & InvocationEntryBci. 815 JVMState* Compile::build_start_state(StartNode* start, const TypeFunc* tf) { 816 int arg_size = tf->domain()->cnt(); 817 int max_size = MAX2(arg_size, (int)tf->range()->cnt()); 818 JVMState* jvms = new (this) JVMState(max_size - TypeFunc::Parms); 819 SafePointNode* map = new SafePointNode(max_size, NULL); 820 record_for_igvn(map); 821 assert(arg_size == TypeFunc::Parms + (is_osr_compilation() ? 1 : method()->arg_size()), "correct arg_size"); 822 Node_Notes* old_nn = default_node_notes(); 823 if (old_nn != NULL && has_method()) { 824 Node_Notes* entry_nn = old_nn->clone(this); 825 JVMState* entry_jvms = new(this) JVMState(method(), old_nn->jvms()); 826 entry_jvms->set_offsets(0); 827 entry_jvms->set_bci(entry_bci()); 828 entry_nn->set_jvms(entry_jvms); 829 set_default_node_notes(entry_nn); 830 } 831 uint i; 832 for (i = 0; i < (uint)arg_size; i++) { 833 Node* parm = initial_gvn()->transform(new ParmNode(start, i)); 834 map->init_req(i, parm); 835 // Record all these guys for later GVN. 836 record_for_igvn(parm); 837 } 838 for (; i < map->req(); i++) { 839 map->init_req(i, top()); 840 } 841 assert(jvms->argoff() == TypeFunc::Parms, "parser gets arguments here"); 842 set_default_node_notes(old_nn); 843 map->set_jvms(jvms); 844 jvms->set_map(map); 845 return jvms; 846 } 847 848 //-----------------------------make_node_notes--------------------------------- 849 Node_Notes* Parse::make_node_notes(Node_Notes* caller_nn) { 850 if (caller_nn == NULL) return NULL; 851 Node_Notes* nn = caller_nn->clone(C); 852 JVMState* caller_jvms = nn->jvms(); 853 JVMState* jvms = new (C) JVMState(method(), caller_jvms); 854 jvms->set_offsets(0); 855 jvms->set_bci(_entry_bci); 856 nn->set_jvms(jvms); 857 return nn; 858 } 859 860 861 //--------------------------return_values-------------------------------------- 862 void Compile::return_values(JVMState* jvms) { 863 GraphKit kit(jvms); 864 Node* ret = new ReturnNode(TypeFunc::Parms, 865 kit.control(), 866 kit.i_o(), 867 kit.reset_memory(), 868 kit.frameptr(), 869 kit.returnadr()); 870 // Add zero or 1 return values 871 int ret_size = tf()->range()->cnt() - TypeFunc::Parms; 872 if (ret_size > 0) { 873 kit.inc_sp(-ret_size); // pop the return value(s) 874 kit.sync_jvms(); 875 ret->add_req(kit.argument(0)); 876 // Note: The second dummy edge is not needed by a ReturnNode. 877 } 878 // bind it to root 879 root()->add_req(ret); 880 record_for_igvn(ret); 881 initial_gvn()->transform_no_reclaim(ret); 882 } 883 884 //------------------------rethrow_exceptions----------------------------------- 885 // Bind all exception states in the list into a single RethrowNode. 886 void Compile::rethrow_exceptions(JVMState* jvms) { 887 GraphKit kit(jvms); 888 if (!kit.has_exceptions()) return; // nothing to generate 889 // Load my combined exception state into the kit, with all phis transformed: 890 SafePointNode* ex_map = kit.combine_and_pop_all_exception_states(); 891 Node* ex_oop = kit.use_exception_state(ex_map); 892 RethrowNode* exit = new RethrowNode(kit.control(), 893 kit.i_o(), kit.reset_memory(), 894 kit.frameptr(), kit.returnadr(), 895 // like a return but with exception input 896 ex_oop); 897 // bind to root 898 root()->add_req(exit); 899 record_for_igvn(exit); 900 initial_gvn()->transform_no_reclaim(exit); 901 } 902 903 //---------------------------do_exceptions------------------------------------- 904 // Process exceptions arising from the current bytecode. 905 // Send caught exceptions to the proper handler within this method. 906 // Unhandled exceptions feed into _exit. 907 void Parse::do_exceptions() { 908 if (!has_exceptions()) return; 909 910 if (failing()) { 911 // Pop them all off and throw them away. 912 while (pop_exception_state() != NULL) ; 913 return; 914 } 915 916 PreserveJVMState pjvms(this, false); 917 918 SafePointNode* ex_map; 919 while ((ex_map = pop_exception_state()) != NULL) { 920 if (!method()->has_exception_handlers()) { 921 // Common case: Transfer control outward. 922 // Doing it this early allows the exceptions to common up 923 // even between adjacent method calls. 924 throw_to_exit(ex_map); 925 } else { 926 // Have to look at the exception first. 927 assert(stopped(), "catch_inline_exceptions trashes the map"); 928 catch_inline_exceptions(ex_map); 929 stop_and_kill_map(); // we used up this exception state; kill it 930 } 931 } 932 933 // We now return to our regularly scheduled program: 934 } 935 936 //---------------------------throw_to_exit------------------------------------- 937 // Merge the given map into an exception exit from this method. 938 // The exception exit will handle any unlocking of receiver. 939 // The ex_oop must be saved within the ex_map, unlike merge_exception. 940 void Parse::throw_to_exit(SafePointNode* ex_map) { 941 // Pop the JVMS to (a copy of) the caller. 942 GraphKit caller; 943 caller.set_map_clone(_caller->map()); 944 caller.set_bci(_caller->bci()); 945 caller.set_sp(_caller->sp()); 946 // Copy out the standard machine state: 947 for (uint i = 0; i < TypeFunc::Parms; i++) { 948 caller.map()->set_req(i, ex_map->in(i)); 949 } 950 if (ex_map->has_replaced_nodes()) { 951 _replaced_nodes_for_exceptions = true; 952 } 953 caller.map()->transfer_replaced_nodes_from(ex_map, _new_idx); 954 // ...and the exception: 955 Node* ex_oop = saved_ex_oop(ex_map); 956 SafePointNode* caller_ex_map = caller.make_exception_state(ex_oop); 957 // Finally, collect the new exception state in my exits: 958 _exits.add_exception_state(caller_ex_map); 959 } 960 961 //------------------------------do_exits--------------------------------------- 962 void Parse::do_exits() { 963 set_parse_bci(InvocationEntryBci); 964 965 // Now peephole on the return bits 966 Node* region = _exits.control(); 967 _exits.set_control(gvn().transform(region)); 968 969 Node* iophi = _exits.i_o(); 970 _exits.set_i_o(gvn().transform(iophi)); 971 972 // Figure out if we need to emit the trailing barrier. The barrier is only 973 // needed in the constructors, and only in three cases: 974 // 975 // 1. The constructor wrote a final. The effects of all initializations 976 // must be committed to memory before any code after the constructor 977 // publishes the reference to the newly constructed object. Rather 978 // than wait for the publication, we simply block the writes here. 979 // Rather than put a barrier on only those writes which are required 980 // to complete, we force all writes to complete. 981 // 982 // 2. On PPC64, also add MemBarRelease for constructors which write 983 // volatile fields. As support_IRIW_for_not_multiple_copy_atomic_cpu 984 // is set on PPC64, no sync instruction is issued after volatile 985 // stores. We want to guarantee the same behavior as on platforms 986 // with total store order, although this is not required by the Java 987 // memory model. So as with finals, we add a barrier here. 988 // 989 // 3. Experimental VM option is used to force the barrier if any field 990 // was written out in the constructor. 991 // 992 // "All bets are off" unless the first publication occurs after a 993 // normal return from the constructor. We do not attempt to detect 994 // such unusual early publications. But no barrier is needed on 995 // exceptional returns, since they cannot publish normally. 996 // 997 if (method()->is_initializer() && 998 (wrote_final() || 999 PPC64_ONLY(wrote_volatile() ||) 1000 (AlwaysSafeConstructors && wrote_fields()))) { 1001 _exits.insert_mem_bar(Op_MemBarRelease, alloc_with_final()); 1002 1003 // If Memory barrier is created for final fields write 1004 // and allocation node does not escape the initialize method, 1005 // then barrier introduced by allocation node can be removed. 1006 if (DoEscapeAnalysis && alloc_with_final()) { 1007 AllocateNode *alloc = AllocateNode::Ideal_allocation(alloc_with_final(), &_gvn); 1008 alloc->compute_MemBar_redundancy(method()); 1009 } 1010 if (PrintOpto && (Verbose || WizardMode)) { 1011 method()->print_name(); 1012 tty->print_cr(" writes finals and needs a memory barrier"); 1013 } 1014 } 1015 1016 // Any method can write a @Stable field; insert memory barriers 1017 // after those also. Can't bind predecessor allocation node (if any) 1018 // with barrier because allocation doesn't always dominate 1019 // MemBarRelease. 1020 if (wrote_stable()) { 1021 _exits.insert_mem_bar(Op_MemBarRelease); 1022 if (PrintOpto && (Verbose || WizardMode)) { 1023 method()->print_name(); 1024 tty->print_cr(" writes @Stable and needs a memory barrier"); 1025 } 1026 } 1027 1028 for (MergeMemStream mms(_exits.merged_memory()); mms.next_non_empty(); ) { 1029 // transform each slice of the original memphi: 1030 mms.set_memory(_gvn.transform(mms.memory())); 1031 } 1032 1033 if (tf()->range()->cnt() > TypeFunc::Parms) { 1034 const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms); 1035 Node* ret_phi = _gvn.transform( _exits.argument(0) ); 1036 if (!_exits.control()->is_top() && _gvn.type(ret_phi)->empty()) { 1037 // In case of concurrent class loading, the type we set for the 1038 // ret_phi in build_exits() may have been too optimistic and the 1039 // ret_phi may be top now. 1040 // Otherwise, we've encountered an error and have to mark the method as 1041 // not compilable. Just using an assertion instead would be dangerous 1042 // as this could lead to an infinite compile loop in non-debug builds. 1043 { 1044 MutexLockerEx ml(Compile_lock, Mutex::_no_safepoint_check_flag); 1045 if (C->env()->system_dictionary_modification_counter_changed()) { 1046 C->record_failure(C2Compiler::retry_class_loading_during_parsing()); 1047 } else { 1048 C->record_method_not_compilable("Can't determine return type."); 1049 } 1050 } 1051 return; 1052 } 1053 if (ret_type->isa_int()) { 1054 BasicType ret_bt = method()->return_type()->basic_type(); 1055 ret_phi = mask_int_value(ret_phi, ret_bt, &_gvn); 1056 } 1057 _exits.push_node(ret_type->basic_type(), ret_phi); 1058 } 1059 1060 // Note: Logic for creating and optimizing the ReturnNode is in Compile. 1061 1062 // Unlock along the exceptional paths. 1063 // This is done late so that we can common up equivalent exceptions 1064 // (e.g., null checks) arising from multiple points within this method. 1065 // See GraphKit::add_exception_state, which performs the commoning. 1066 bool do_synch = method()->is_synchronized() && GenerateSynchronizationCode; 1067 1068 // record exit from a method if compiled while Dtrace is turned on. 1069 if (do_synch || C->env()->dtrace_method_probes() || _replaced_nodes_for_exceptions) { 1070 // First move the exception list out of _exits: 1071 GraphKit kit(_exits.transfer_exceptions_into_jvms()); 1072 SafePointNode* normal_map = kit.map(); // keep this guy safe 1073 // Now re-collect the exceptions into _exits: 1074 SafePointNode* ex_map; 1075 while ((ex_map = kit.pop_exception_state()) != NULL) { 1076 Node* ex_oop = kit.use_exception_state(ex_map); 1077 // Force the exiting JVM state to have this method at InvocationEntryBci. 1078 // The exiting JVM state is otherwise a copy of the calling JVMS. 1079 JVMState* caller = kit.jvms(); 1080 JVMState* ex_jvms = caller->clone_shallow(C); 1081 ex_jvms->set_map(kit.clone_map()); 1082 ex_jvms->map()->set_jvms(ex_jvms); 1083 ex_jvms->set_bci( InvocationEntryBci); 1084 kit.set_jvms(ex_jvms); 1085 if (do_synch) { 1086 // Add on the synchronized-method box/object combo 1087 kit.map()->push_monitor(_synch_lock); 1088 // Unlock! 1089 kit.shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node()); 1090 } 1091 if (C->env()->dtrace_method_probes()) { 1092 kit.make_dtrace_method_exit(method()); 1093 } 1094 if (_replaced_nodes_for_exceptions) { 1095 kit.map()->apply_replaced_nodes(_new_idx); 1096 } 1097 // Done with exception-path processing. 1098 ex_map = kit.make_exception_state(ex_oop); 1099 assert(ex_jvms->same_calls_as(ex_map->jvms()), "sanity"); 1100 // Pop the last vestige of this method: 1101 ex_map->set_jvms(caller->clone_shallow(C)); 1102 ex_map->jvms()->set_map(ex_map); 1103 _exits.push_exception_state(ex_map); 1104 } 1105 assert(_exits.map() == normal_map, "keep the same return state"); 1106 } 1107 1108 { 1109 // Capture very early exceptions (receiver null checks) from caller JVMS 1110 GraphKit caller(_caller); 1111 SafePointNode* ex_map; 1112 while ((ex_map = caller.pop_exception_state()) != NULL) { 1113 _exits.add_exception_state(ex_map); 1114 } 1115 } 1116 _exits.map()->apply_replaced_nodes(_new_idx); 1117 } 1118 1119 //-----------------------------create_entry_map------------------------------- 1120 // Initialize our parser map to contain the types at method entry. 1121 // For OSR, the map contains a single RawPtr parameter. 1122 // Initial monitor locking for sync. methods is performed by do_method_entry. 1123 SafePointNode* Parse::create_entry_map() { 1124 // Check for really stupid bail-out cases. 1125 uint len = TypeFunc::Parms + method()->max_locals() + method()->max_stack(); 1126 if (len >= 32760) { 1127 C->record_method_not_compilable("too many local variables"); 1128 return NULL; 1129 } 1130 1131 // clear current replaced nodes that are of no use from here on (map was cloned in build_exits). 1132 _caller->map()->delete_replaced_nodes(); 1133 1134 // If this is an inlined method, we may have to do a receiver null check. 1135 if (_caller->has_method() && is_normal_parse() && !method()->is_static()) { 1136 GraphKit kit(_caller); 1137 kit.null_check_receiver_before_call(method()); 1138 _caller = kit.transfer_exceptions_into_jvms(); 1139 if (kit.stopped()) { 1140 _exits.add_exception_states_from(_caller); 1141 _exits.set_jvms(_caller); 1142 return NULL; 1143 } 1144 } 1145 1146 assert(method() != NULL, "parser must have a method"); 1147 1148 // Create an initial safepoint to hold JVM state during parsing 1149 JVMState* jvms = new (C) JVMState(method(), _caller->has_method() ? _caller : NULL); 1150 set_map(new SafePointNode(len, jvms)); 1151 jvms->set_map(map()); 1152 record_for_igvn(map()); 1153 assert(jvms->endoff() == len, "correct jvms sizing"); 1154 1155 SafePointNode* inmap = _caller->map(); 1156 assert(inmap != NULL, "must have inmap"); 1157 // In case of null check on receiver above 1158 map()->transfer_replaced_nodes_from(inmap, _new_idx); 1159 1160 uint i; 1161 1162 // Pass thru the predefined input parameters. 1163 for (i = 0; i < TypeFunc::Parms; i++) { 1164 map()->init_req(i, inmap->in(i)); 1165 } 1166 1167 if (depth() == 1) { 1168 assert(map()->memory()->Opcode() == Op_Parm, ""); 1169 // Insert the memory aliasing node 1170 set_all_memory(reset_memory()); 1171 } 1172 assert(merged_memory(), ""); 1173 1174 // Now add the locals which are initially bound to arguments: 1175 uint arg_size = tf()->domain()->cnt(); 1176 ensure_stack(arg_size - TypeFunc::Parms); // OSR methods have funny args 1177 for (i = TypeFunc::Parms; i < arg_size; i++) { 1178 map()->init_req(i, inmap->argument(_caller, i - TypeFunc::Parms)); 1179 } 1180 1181 // Clear out the rest of the map (locals and stack) 1182 for (i = arg_size; i < len; i++) { 1183 map()->init_req(i, top()); 1184 } 1185 1186 SafePointNode* entry_map = stop(); 1187 return entry_map; 1188 } 1189 1190 //-----------------------------do_method_entry-------------------------------- 1191 // Emit any code needed in the pseudo-block before BCI zero. 1192 // The main thing to do is lock the receiver of a synchronized method. 1193 void Parse::do_method_entry() { 1194 set_parse_bci(InvocationEntryBci); // Pseudo-BCP 1195 set_sp(0); // Java Stack Pointer 1196 1197 NOT_PRODUCT( count_compiled_calls(true/*at_method_entry*/, false/*is_inline*/); ) 1198 1199 if (C->env()->dtrace_method_probes()) { 1200 make_dtrace_method_entry(method()); 1201 } 1202 1203 // If the method is synchronized, we need to construct a lock node, attach 1204 // it to the Start node, and pin it there. 1205 if (method()->is_synchronized()) { 1206 // Insert a FastLockNode right after the Start which takes as arguments 1207 // the current thread pointer, the "this" pointer & the address of the 1208 // stack slot pair used for the lock. The "this" pointer is a projection 1209 // off the start node, but the locking spot has to be constructed by 1210 // creating a ConLNode of 0, and boxing it with a BoxLockNode. The BoxLockNode 1211 // becomes the second argument to the FastLockNode call. The 1212 // FastLockNode becomes the new control parent to pin it to the start. 1213 1214 // Setup Object Pointer 1215 Node *lock_obj = NULL; 1216 if(method()->is_static()) { 1217 ciInstance* mirror = _method->holder()->java_mirror(); 1218 const TypeInstPtr *t_lock = TypeInstPtr::make(mirror); 1219 lock_obj = makecon(t_lock); 1220 } else { // Else pass the "this" pointer, 1221 lock_obj = local(0); // which is Parm0 from StartNode 1222 } 1223 // Clear out dead values from the debug info. 1224 kill_dead_locals(); 1225 // Build the FastLockNode 1226 _synch_lock = shared_lock(lock_obj); 1227 } 1228 1229 // Feed profiling data for parameters to the type system so it can 1230 // propagate it as speculative types 1231 record_profiled_parameters_for_speculation(); 1232 1233 if (depth() == 1) { 1234 increment_and_test_invocation_counter(Tier2CompileThreshold); 1235 } 1236 } 1237 1238 //------------------------------init_blocks------------------------------------ 1239 // Initialize our parser map to contain the types/monitors at method entry. 1240 void Parse::init_blocks() { 1241 // Create the blocks. 1242 _block_count = flow()->block_count(); 1243 _blocks = NEW_RESOURCE_ARRAY(Block, _block_count); 1244 1245 // Initialize the structs. 1246 for (int rpo = 0; rpo < block_count(); rpo++) { 1247 Block* block = rpo_at(rpo); 1248 new(block) Block(this, rpo); 1249 } 1250 1251 // Collect predecessor and successor information. 1252 for (int rpo = 0; rpo < block_count(); rpo++) { 1253 Block* block = rpo_at(rpo); 1254 block->init_graph(this); 1255 } 1256 } 1257 1258 //-------------------------------init_node------------------------------------- 1259 Parse::Block::Block(Parse* outer, int rpo) : _live_locals() { 1260 _flow = outer->flow()->rpo_at(rpo); 1261 _pred_count = 0; 1262 _preds_parsed = 0; 1263 _count = 0; 1264 _is_parsed = false; 1265 _is_handler = false; 1266 _has_merged_backedge = false; 1267 _start_map = NULL; 1268 _has_predicates = false; 1269 _num_successors = 0; 1270 _all_successors = 0; 1271 _successors = NULL; 1272 assert(pred_count() == 0 && preds_parsed() == 0, "sanity"); 1273 assert(!(is_merged() || is_parsed() || is_handler() || has_merged_backedge()), "sanity"); 1274 assert(_live_locals.size() == 0, "sanity"); 1275 1276 // entry point has additional predecessor 1277 if (flow()->is_start()) _pred_count++; 1278 assert(flow()->is_start() == (this == outer->start_block()), ""); 1279 } 1280 1281 //-------------------------------init_graph------------------------------------ 1282 void Parse::Block::init_graph(Parse* outer) { 1283 // Create the successor list for this parser block. 1284 GrowableArray<ciTypeFlow::Block*>* tfs = flow()->successors(); 1285 GrowableArray<ciTypeFlow::Block*>* tfe = flow()->exceptions(); 1286 int ns = tfs->length(); 1287 int ne = tfe->length(); 1288 _num_successors = ns; 1289 _all_successors = ns+ne; 1290 _successors = (ns+ne == 0) ? NULL : NEW_RESOURCE_ARRAY(Block*, ns+ne); 1291 int p = 0; 1292 for (int i = 0; i < ns+ne; i++) { 1293 ciTypeFlow::Block* tf2 = (i < ns) ? tfs->at(i) : tfe->at(i-ns); 1294 Block* block2 = outer->rpo_at(tf2->rpo()); 1295 _successors[i] = block2; 1296 1297 // Accumulate pred info for the other block, too. 1298 if (i < ns) { 1299 block2->_pred_count++; 1300 } else { 1301 block2->_is_handler = true; 1302 } 1303 1304 #ifdef ASSERT 1305 // A block's successors must be distinguishable by BCI. 1306 // That is, no bytecode is allowed to branch to two different 1307 // clones of the same code location. 1308 for (int j = 0; j < i; j++) { 1309 Block* block1 = _successors[j]; 1310 if (block1 == block2) continue; // duplicates are OK 1311 assert(block1->start() != block2->start(), "successors have unique bcis"); 1312 } 1313 #endif 1314 } 1315 1316 // Note: We never call next_path_num along exception paths, so they 1317 // never get processed as "ready". Also, the input phis of exception 1318 // handlers get specially processed, so that 1319 } 1320 1321 //---------------------------successor_for_bci--------------------------------- 1322 Parse::Block* Parse::Block::successor_for_bci(int bci) { 1323 for (int i = 0; i < all_successors(); i++) { 1324 Block* block2 = successor_at(i); 1325 if (block2->start() == bci) return block2; 1326 } 1327 // We can actually reach here if ciTypeFlow traps out a block 1328 // due to an unloaded class, and concurrently with compilation the 1329 // class is then loaded, so that a later phase of the parser is 1330 // able to see more of the bytecode CFG. Or, the flow pass and 1331 // the parser can have a minor difference of opinion about executability 1332 // of bytecodes. For example, "obj.field = null" is executable even 1333 // if the field's type is an unloaded class; the flow pass used to 1334 // make a trap for such code. 1335 return NULL; 1336 } 1337 1338 1339 //-----------------------------stack_type_at----------------------------------- 1340 const Type* Parse::Block::stack_type_at(int i) const { 1341 return get_type(flow()->stack_type_at(i)); 1342 } 1343 1344 1345 //-----------------------------local_type_at----------------------------------- 1346 const Type* Parse::Block::local_type_at(int i) const { 1347 // Make dead locals fall to bottom. 1348 if (_live_locals.size() == 0) { 1349 MethodLivenessResult live_locals = flow()->outer()->method()->liveness_at_bci(start()); 1350 // This bitmap can be zero length if we saw a breakpoint. 1351 // In such cases, pretend they are all live. 1352 ((Block*)this)->_live_locals = live_locals; 1353 } 1354 if (_live_locals.size() > 0 && !_live_locals.at(i)) 1355 return Type::BOTTOM; 1356 1357 return get_type(flow()->local_type_at(i)); 1358 } 1359 1360 1361 #ifndef PRODUCT 1362 1363 //----------------------------name_for_bc-------------------------------------- 1364 // helper method for BytecodeParseHistogram 1365 static const char* name_for_bc(int i) { 1366 return Bytecodes::is_defined(i) ? Bytecodes::name(Bytecodes::cast(i)) : "xxxunusedxxx"; 1367 } 1368 1369 //----------------------------BytecodeParseHistogram------------------------------------ 1370 Parse::BytecodeParseHistogram::BytecodeParseHistogram(Parse *p, Compile *c) { 1371 _parser = p; 1372 _compiler = c; 1373 if( ! _initialized ) { _initialized = true; reset(); } 1374 } 1375 1376 //----------------------------current_count------------------------------------ 1377 int Parse::BytecodeParseHistogram::current_count(BPHType bph_type) { 1378 switch( bph_type ) { 1379 case BPH_transforms: { return _parser->gvn().made_progress(); } 1380 case BPH_values: { return _parser->gvn().made_new_values(); } 1381 default: { ShouldNotReachHere(); return 0; } 1382 } 1383 } 1384 1385 //----------------------------initialized-------------------------------------- 1386 bool Parse::BytecodeParseHistogram::initialized() { return _initialized; } 1387 1388 //----------------------------reset-------------------------------------------- 1389 void Parse::BytecodeParseHistogram::reset() { 1390 int i = Bytecodes::number_of_codes; 1391 while (i-- > 0) { _bytecodes_parsed[i] = 0; _nodes_constructed[i] = 0; _nodes_transformed[i] = 0; _new_values[i] = 0; } 1392 } 1393 1394 //----------------------------set_initial_state-------------------------------- 1395 // Record info when starting to parse one bytecode 1396 void Parse::BytecodeParseHistogram::set_initial_state( Bytecodes::Code bc ) { 1397 if( PrintParseStatistics && !_parser->is_osr_parse() ) { 1398 _initial_bytecode = bc; 1399 _initial_node_count = _compiler->unique(); 1400 _initial_transforms = current_count(BPH_transforms); 1401 _initial_values = current_count(BPH_values); 1402 } 1403 } 1404 1405 //----------------------------record_change-------------------------------- 1406 // Record results of parsing one bytecode 1407 void Parse::BytecodeParseHistogram::record_change() { 1408 if( PrintParseStatistics && !_parser->is_osr_parse() ) { 1409 ++_bytecodes_parsed[_initial_bytecode]; 1410 _nodes_constructed [_initial_bytecode] += (_compiler->unique() - _initial_node_count); 1411 _nodes_transformed [_initial_bytecode] += (current_count(BPH_transforms) - _initial_transforms); 1412 _new_values [_initial_bytecode] += (current_count(BPH_values) - _initial_values); 1413 } 1414 } 1415 1416 1417 //----------------------------print-------------------------------------------- 1418 void Parse::BytecodeParseHistogram::print(float cutoff) { 1419 ResourceMark rm; 1420 // print profile 1421 int total = 0; 1422 int i = 0; 1423 for( i = 0; i < Bytecodes::number_of_codes; ++i ) { total += _bytecodes_parsed[i]; } 1424 int abs_sum = 0; 1425 tty->cr(); //0123456789012345678901234567890123456789012345678901234567890123456789 1426 tty->print_cr("Histogram of %d parsed bytecodes:", total); 1427 if( total == 0 ) { return; } 1428 tty->cr(); 1429 tty->print_cr("absolute: count of compiled bytecodes of this type"); 1430 tty->print_cr("relative: percentage contribution to compiled nodes"); 1431 tty->print_cr("nodes : Average number of nodes constructed per bytecode"); 1432 tty->print_cr("rnodes : Significance towards total nodes constructed, (nodes*relative)"); 1433 tty->print_cr("transforms: Average amount of tranform progress per bytecode compiled"); 1434 tty->print_cr("values : Average number of node values improved per bytecode"); 1435 tty->print_cr("name : Bytecode name"); 1436 tty->cr(); 1437 tty->print_cr(" absolute relative nodes rnodes transforms values name"); 1438 tty->print_cr("----------------------------------------------------------------------"); 1439 while (--i > 0) { 1440 int abs = _bytecodes_parsed[i]; 1441 float rel = abs * 100.0F / total; 1442 float nodes = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_constructed[i])/_bytecodes_parsed[i]; 1443 float rnodes = _bytecodes_parsed[i] == 0 ? 0 : rel * nodes; 1444 float xforms = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_transformed[i])/_bytecodes_parsed[i]; 1445 float values = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _new_values [i])/_bytecodes_parsed[i]; 1446 if (cutoff <= rel) { 1447 tty->print_cr("%10d %7.2f%% %6.1f %6.2f %6.1f %6.1f %s", abs, rel, nodes, rnodes, xforms, values, name_for_bc(i)); 1448 abs_sum += abs; 1449 } 1450 } 1451 tty->print_cr("----------------------------------------------------------------------"); 1452 float rel_sum = abs_sum * 100.0F / total; 1453 tty->print_cr("%10d %7.2f%% (cutoff = %.2f%%)", abs_sum, rel_sum, cutoff); 1454 tty->print_cr("----------------------------------------------------------------------"); 1455 tty->cr(); 1456 } 1457 #endif 1458 1459 //----------------------------load_state_from---------------------------------- 1460 // Load block/map/sp. But not do not touch iter/bci. 1461 void Parse::load_state_from(Block* block) { 1462 set_block(block); 1463 // load the block's JVM state: 1464 set_map(block->start_map()); 1465 set_sp( block->start_sp()); 1466 } 1467 1468 1469 //-----------------------------record_state------------------------------------ 1470 void Parse::Block::record_state(Parse* p) { 1471 assert(!is_merged(), "can only record state once, on 1st inflow"); 1472 assert(start_sp() == p->sp(), "stack pointer must agree with ciTypeFlow"); 1473 set_start_map(p->stop()); 1474 } 1475 1476 1477 //------------------------------do_one_block----------------------------------- 1478 void Parse::do_one_block() { 1479 if (TraceOptoParse) { 1480 Block *b = block(); 1481 int ns = b->num_successors(); 1482 int nt = b->all_successors(); 1483 1484 tty->print("Parsing block #%d at bci [%d,%d), successors: ", 1485 block()->rpo(), block()->start(), block()->limit()); 1486 for (int i = 0; i < nt; i++) { 1487 tty->print((( i < ns) ? " %d" : " %d(e)"), b->successor_at(i)->rpo()); 1488 } 1489 if (b->is_loop_head()) tty->print(" lphd"); 1490 tty->cr(); 1491 } 1492 1493 assert(block()->is_merged(), "must be merged before being parsed"); 1494 block()->mark_parsed(); 1495 1496 // Set iterator to start of block. 1497 iter().reset_to_bci(block()->start()); 1498 1499 CompileLog* log = C->log(); 1500 1501 // Parse bytecodes 1502 while (!stopped() && !failing()) { 1503 iter().next(); 1504 1505 // Learn the current bci from the iterator: 1506 set_parse_bci(iter().cur_bci()); 1507 1508 if (bci() == block()->limit()) { 1509 // Do not walk into the next block until directed by do_all_blocks. 1510 merge(bci()); 1511 break; 1512 } 1513 assert(bci() < block()->limit(), "bci still in block"); 1514 1515 if (log != NULL) { 1516 // Output an optional context marker, to help place actions 1517 // that occur during parsing of this BC. If there is no log 1518 // output until the next context string, this context string 1519 // will be silently ignored. 1520 log->set_context("bc code='%d' bci='%d'", (int)bc(), bci()); 1521 } 1522 1523 if (block()->has_trap_at(bci())) { 1524 // We must respect the flow pass's traps, because it will refuse 1525 // to produce successors for trapping blocks. 1526 int trap_index = block()->flow()->trap_index(); 1527 assert(trap_index != 0, "trap index must be valid"); 1528 uncommon_trap(trap_index); 1529 break; 1530 } 1531 1532 NOT_PRODUCT( parse_histogram()->set_initial_state(bc()); ); 1533 1534 #ifdef ASSERT 1535 int pre_bc_sp = sp(); 1536 int inputs, depth; 1537 bool have_se = !stopped() && compute_stack_effects(inputs, depth); 1538 assert(!have_se || pre_bc_sp >= inputs, "have enough stack to execute this BC: pre_bc_sp=%d, inputs=%d", pre_bc_sp, inputs); 1539 #endif //ASSERT 1540 1541 do_one_bytecode(); 1542 1543 assert(!have_se || stopped() || failing() || (sp() - pre_bc_sp) == depth, 1544 "incorrect depth prediction: sp=%d, pre_bc_sp=%d, depth=%d", sp(), pre_bc_sp, depth); 1545 1546 do_exceptions(); 1547 1548 NOT_PRODUCT( parse_histogram()->record_change(); ); 1549 1550 if (log != NULL) 1551 log->clear_context(); // skip marker if nothing was printed 1552 1553 // Fall into next bytecode. Each bytecode normally has 1 sequential 1554 // successor which is typically made ready by visiting this bytecode. 1555 // If the successor has several predecessors, then it is a merge 1556 // point, starts a new basic block, and is handled like other basic blocks. 1557 } 1558 } 1559 1560 1561 //------------------------------merge------------------------------------------ 1562 void Parse::set_parse_bci(int bci) { 1563 set_bci(bci); 1564 Node_Notes* nn = C->default_node_notes(); 1565 if (nn == NULL) return; 1566 1567 // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls. 1568 if (!DebugInlinedCalls && depth() > 1) { 1569 return; 1570 } 1571 1572 // Update the JVMS annotation, if present. 1573 JVMState* jvms = nn->jvms(); 1574 if (jvms != NULL && jvms->bci() != bci) { 1575 // Update the JVMS. 1576 jvms = jvms->clone_shallow(C); 1577 jvms->set_bci(bci); 1578 nn->set_jvms(jvms); 1579 } 1580 } 1581 1582 //------------------------------merge------------------------------------------ 1583 // Merge the current mapping into the basic block starting at bci 1584 void Parse::merge(int target_bci) { 1585 Block* target = successor_for_bci(target_bci); 1586 if (target == NULL) { handle_missing_successor(target_bci); return; } 1587 assert(!target->is_ready(), "our arrival must be expected"); 1588 int pnum = target->next_path_num(); 1589 merge_common(target, pnum); 1590 } 1591 1592 //-------------------------merge_new_path-------------------------------------- 1593 // Merge the current mapping into the basic block, using a new path 1594 void Parse::merge_new_path(int target_bci) { 1595 Block* target = successor_for_bci(target_bci); 1596 if (target == NULL) { handle_missing_successor(target_bci); return; } 1597 assert(!target->is_ready(), "new path into frozen graph"); 1598 int pnum = target->add_new_path(); 1599 merge_common(target, pnum); 1600 } 1601 1602 //-------------------------merge_exception------------------------------------- 1603 // Merge the current mapping into the basic block starting at bci 1604 // The ex_oop must be pushed on the stack, unlike throw_to_exit. 1605 void Parse::merge_exception(int target_bci) { 1606 assert(sp() == 1, "must have only the throw exception on the stack"); 1607 Block* target = successor_for_bci(target_bci); 1608 if (target == NULL) { handle_missing_successor(target_bci); return; } 1609 assert(target->is_handler(), "exceptions are handled by special blocks"); 1610 int pnum = target->add_new_path(); 1611 merge_common(target, pnum); 1612 } 1613 1614 //--------------------handle_missing_successor--------------------------------- 1615 void Parse::handle_missing_successor(int target_bci) { 1616 #ifndef PRODUCT 1617 Block* b = block(); 1618 int trap_bci = b->flow()->has_trap()? b->flow()->trap_bci(): -1; 1619 tty->print_cr("### Missing successor at bci:%d for block #%d (trap_bci:%d)", target_bci, b->rpo(), trap_bci); 1620 #endif 1621 ShouldNotReachHere(); 1622 } 1623 1624 //--------------------------merge_common--------------------------------------- 1625 void Parse::merge_common(Parse::Block* target, int pnum) { 1626 if (TraceOptoParse) { 1627 tty->print("Merging state at block #%d bci:%d", target->rpo(), target->start()); 1628 } 1629 1630 // Zap extra stack slots to top 1631 assert(sp() == target->start_sp(), ""); 1632 clean_stack(sp()); 1633 1634 if (!target->is_merged()) { // No prior mapping at this bci 1635 if (TraceOptoParse) { tty->print(" with empty state"); } 1636 1637 // If this path is dead, do not bother capturing it as a merge. 1638 // It is "as if" we had 1 fewer predecessors from the beginning. 1639 if (stopped()) { 1640 if (TraceOptoParse) tty->print_cr(", but path is dead and doesn't count"); 1641 return; 1642 } 1643 1644 // Make a region if we know there are multiple or unpredictable inputs. 1645 // (Also, if this is a plain fall-through, we might see another region, 1646 // which must not be allowed into this block's map.) 1647 if (pnum > PhiNode::Input // Known multiple inputs. 1648 || target->is_handler() // These have unpredictable inputs. 1649 || target->is_loop_head() // Known multiple inputs 1650 || control()->is_Region()) { // We must hide this guy. 1651 1652 int current_bci = bci(); 1653 set_parse_bci(target->start()); // Set target bci 1654 if (target->is_SEL_head()) { 1655 DEBUG_ONLY( target->mark_merged_backedge(block()); ) 1656 if (target->start() == 0) { 1657 // Add loop predicate for the special case when 1658 // there are backbranches to the method entry. 1659 add_predicate(); 1660 } 1661 } 1662 // Add a Region to start the new basic block. Phis will be added 1663 // later lazily. 1664 int edges = target->pred_count(); 1665 if (edges < pnum) edges = pnum; // might be a new path! 1666 RegionNode *r = new RegionNode(edges+1); 1667 gvn().set_type(r, Type::CONTROL); 1668 record_for_igvn(r); 1669 // zap all inputs to NULL for debugging (done in Node(uint) constructor) 1670 // for (int j = 1; j < edges+1; j++) { r->init_req(j, NULL); } 1671 r->init_req(pnum, control()); 1672 set_control(r); 1673 set_parse_bci(current_bci); // Restore bci 1674 } 1675 1676 // Convert the existing Parser mapping into a mapping at this bci. 1677 store_state_to(target); 1678 assert(target->is_merged(), "do not come here twice"); 1679 1680 } else { // Prior mapping at this bci 1681 if (TraceOptoParse) { tty->print(" with previous state"); } 1682 #ifdef ASSERT 1683 if (target->is_SEL_head()) { 1684 target->mark_merged_backedge(block()); 1685 } 1686 #endif 1687 // We must not manufacture more phis if the target is already parsed. 1688 bool nophi = target->is_parsed(); 1689 1690 SafePointNode* newin = map();// Hang on to incoming mapping 1691 Block* save_block = block(); // Hang on to incoming block; 1692 load_state_from(target); // Get prior mapping 1693 1694 assert(newin->jvms()->locoff() == jvms()->locoff(), "JVMS layouts agree"); 1695 assert(newin->jvms()->stkoff() == jvms()->stkoff(), "JVMS layouts agree"); 1696 assert(newin->jvms()->monoff() == jvms()->monoff(), "JVMS layouts agree"); 1697 assert(newin->jvms()->endoff() == jvms()->endoff(), "JVMS layouts agree"); 1698 1699 // Iterate over my current mapping and the old mapping. 1700 // Where different, insert Phi functions. 1701 // Use any existing Phi functions. 1702 assert(control()->is_Region(), "must be merging to a region"); 1703 RegionNode* r = control()->as_Region(); 1704 1705 // Compute where to merge into 1706 // Merge incoming control path 1707 r->init_req(pnum, newin->control()); 1708 1709 if (pnum == 1) { // Last merge for this Region? 1710 if (!block()->flow()->is_irreducible_entry()) { 1711 Node* result = _gvn.transform_no_reclaim(r); 1712 if (r != result && TraceOptoParse) { 1713 tty->print_cr("Block #%d replace %d with %d", block()->rpo(), r->_idx, result->_idx); 1714 } 1715 } 1716 record_for_igvn(r); 1717 } 1718 1719 // Update all the non-control inputs to map: 1720 assert(TypeFunc::Parms == newin->jvms()->locoff(), "parser map should contain only youngest jvms"); 1721 bool check_elide_phi = target->is_SEL_backedge(save_block); 1722 for (uint j = 1; j < newin->req(); j++) { 1723 Node* m = map()->in(j); // Current state of target. 1724 Node* n = newin->in(j); // Incoming change to target state. 1725 PhiNode* phi; 1726 if (m->is_Phi() && m->as_Phi()->region() == r) 1727 phi = m->as_Phi(); 1728 else 1729 phi = NULL; 1730 if (m != n) { // Different; must merge 1731 switch (j) { 1732 // Frame pointer and Return Address never changes 1733 case TypeFunc::FramePtr:// Drop m, use the original value 1734 case TypeFunc::ReturnAdr: 1735 break; 1736 case TypeFunc::Memory: // Merge inputs to the MergeMem node 1737 assert(phi == NULL, "the merge contains phis, not vice versa"); 1738 merge_memory_edges(n->as_MergeMem(), pnum, nophi); 1739 continue; 1740 default: // All normal stuff 1741 if (phi == NULL) { 1742 const JVMState* jvms = map()->jvms(); 1743 if (EliminateNestedLocks && 1744 jvms->is_mon(j) && jvms->is_monitor_box(j)) { 1745 // BoxLock nodes are not commoning. 1746 // Use old BoxLock node as merged box. 1747 assert(newin->jvms()->is_monitor_box(j), "sanity"); 1748 // This assert also tests that nodes are BoxLock. 1749 assert(BoxLockNode::same_slot(n, m), "sanity"); 1750 C->gvn_replace_by(n, m); 1751 } else if (!check_elide_phi || !target->can_elide_SEL_phi(j)) { 1752 phi = ensure_phi(j, nophi); 1753 } 1754 } 1755 break; 1756 } 1757 } 1758 // At this point, n might be top if: 1759 // - there is no phi (because TypeFlow detected a conflict), or 1760 // - the corresponding control edges is top (a dead incoming path) 1761 // It is a bug if we create a phi which sees a garbage value on a live path. 1762 1763 if (phi != NULL) { 1764 assert(n != top() || r->in(pnum) == top(), "live value must not be garbage"); 1765 assert(phi->region() == r, ""); 1766 phi->set_req(pnum, n); // Then add 'n' to the merge 1767 if (pnum == PhiNode::Input) { 1768 // Last merge for this Phi. 1769 // So far, Phis have had a reasonable type from ciTypeFlow. 1770 // Now _gvn will join that with the meet of current inputs. 1771 // BOTTOM is never permissible here, 'cause pessimistically 1772 // Phis of pointers cannot lose the basic pointer type. 1773 debug_only(const Type* bt1 = phi->bottom_type()); 1774 assert(bt1 != Type::BOTTOM, "should not be building conflict phis"); 1775 map()->set_req(j, _gvn.transform_no_reclaim(phi)); 1776 debug_only(const Type* bt2 = phi->bottom_type()); 1777 assert(bt2->higher_equal_speculative(bt1), "must be consistent with type-flow"); 1778 record_for_igvn(phi); 1779 } 1780 } 1781 } // End of for all values to be merged 1782 1783 if (pnum == PhiNode::Input && 1784 !r->in(0)) { // The occasional useless Region 1785 assert(control() == r, ""); 1786 set_control(r->nonnull_req()); 1787 } 1788 1789 map()->merge_replaced_nodes_with(newin); 1790 1791 // newin has been subsumed into the lazy merge, and is now dead. 1792 set_block(save_block); 1793 1794 stop(); // done with this guy, for now 1795 } 1796 1797 if (TraceOptoParse) { 1798 tty->print_cr(" on path %d", pnum); 1799 } 1800 1801 // Done with this parser state. 1802 assert(stopped(), ""); 1803 } 1804 1805 1806 //--------------------------merge_memory_edges--------------------------------- 1807 void Parse::merge_memory_edges(MergeMemNode* n, int pnum, bool nophi) { 1808 // (nophi means we must not create phis, because we already parsed here) 1809 assert(n != NULL, ""); 1810 // Merge the inputs to the MergeMems 1811 MergeMemNode* m = merged_memory(); 1812 1813 assert(control()->is_Region(), "must be merging to a region"); 1814 RegionNode* r = control()->as_Region(); 1815 1816 PhiNode* base = NULL; 1817 MergeMemNode* remerge = NULL; 1818 for (MergeMemStream mms(m, n); mms.next_non_empty2(); ) { 1819 Node *p = mms.force_memory(); 1820 Node *q = mms.memory2(); 1821 if (mms.is_empty() && nophi) { 1822 // Trouble: No new splits allowed after a loop body is parsed. 1823 // Instead, wire the new split into a MergeMem on the backedge. 1824 // The optimizer will sort it out, slicing the phi. 1825 if (remerge == NULL) { 1826 guarantee(base != NULL, ""); 1827 assert(base->in(0) != NULL, "should not be xformed away"); 1828 remerge = MergeMemNode::make(base->in(pnum)); 1829 gvn().set_type(remerge, Type::MEMORY); 1830 base->set_req(pnum, remerge); 1831 } 1832 remerge->set_memory_at(mms.alias_idx(), q); 1833 continue; 1834 } 1835 assert(!q->is_MergeMem(), ""); 1836 PhiNode* phi; 1837 if (p != q) { 1838 phi = ensure_memory_phi(mms.alias_idx(), nophi); 1839 } else { 1840 if (p->is_Phi() && p->as_Phi()->region() == r) 1841 phi = p->as_Phi(); 1842 else 1843 phi = NULL; 1844 } 1845 // Insert q into local phi 1846 if (phi != NULL) { 1847 assert(phi->region() == r, ""); 1848 p = phi; 1849 phi->set_req(pnum, q); 1850 if (mms.at_base_memory()) { 1851 base = phi; // delay transforming it 1852 } else if (pnum == 1) { 1853 record_for_igvn(phi); 1854 p = _gvn.transform_no_reclaim(phi); 1855 } 1856 mms.set_memory(p);// store back through the iterator 1857 } 1858 } 1859 // Transform base last, in case we must fiddle with remerging. 1860 if (base != NULL && pnum == 1) { 1861 record_for_igvn(base); 1862 m->set_base_memory( _gvn.transform_no_reclaim(base) ); 1863 } 1864 } 1865 1866 1867 //------------------------ensure_phis_everywhere------------------------------- 1868 void Parse::ensure_phis_everywhere() { 1869 ensure_phi(TypeFunc::I_O); 1870 1871 // Ensure a phi on all currently known memories. 1872 for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) { 1873 ensure_memory_phi(mms.alias_idx()); 1874 debug_only(mms.set_memory()); // keep the iterator happy 1875 } 1876 1877 // Note: This is our only chance to create phis for memory slices. 1878 // If we miss a slice that crops up later, it will have to be 1879 // merged into the base-memory phi that we are building here. 1880 // Later, the optimizer will comb out the knot, and build separate 1881 // phi-loops for each memory slice that matters. 1882 1883 // Monitors must nest nicely and not get confused amongst themselves. 1884 // Phi-ify everything up to the monitors, though. 1885 uint monoff = map()->jvms()->monoff(); 1886 uint nof_monitors = map()->jvms()->nof_monitors(); 1887 1888 assert(TypeFunc::Parms == map()->jvms()->locoff(), "parser map should contain only youngest jvms"); 1889 bool check_elide_phi = block()->is_SEL_head(); 1890 for (uint i = TypeFunc::Parms; i < monoff; i++) { 1891 if (!check_elide_phi || !block()->can_elide_SEL_phi(i)) { 1892 ensure_phi(i); 1893 } 1894 } 1895 1896 // Even monitors need Phis, though they are well-structured. 1897 // This is true for OSR methods, and also for the rare cases where 1898 // a monitor object is the subject of a replace_in_map operation. 1899 // See bugs 4426707 and 5043395. 1900 for (uint m = 0; m < nof_monitors; m++) { 1901 ensure_phi(map()->jvms()->monitor_obj_offset(m)); 1902 } 1903 } 1904 1905 1906 //-----------------------------add_new_path------------------------------------ 1907 // Add a previously unaccounted predecessor to this block. 1908 int Parse::Block::add_new_path() { 1909 // If there is no map, return the lowest unused path number. 1910 if (!is_merged()) return pred_count()+1; // there will be a map shortly 1911 1912 SafePointNode* map = start_map(); 1913 if (!map->control()->is_Region()) 1914 return pred_count()+1; // there may be a region some day 1915 RegionNode* r = map->control()->as_Region(); 1916 1917 // Add new path to the region. 1918 uint pnum = r->req(); 1919 r->add_req(NULL); 1920 1921 for (uint i = 1; i < map->req(); i++) { 1922 Node* n = map->in(i); 1923 if (i == TypeFunc::Memory) { 1924 // Ensure a phi on all currently known memories. 1925 for (MergeMemStream mms(n->as_MergeMem()); mms.next_non_empty(); ) { 1926 Node* phi = mms.memory(); 1927 if (phi->is_Phi() && phi->as_Phi()->region() == r) { 1928 assert(phi->req() == pnum, "must be same size as region"); 1929 phi->add_req(NULL); 1930 } 1931 } 1932 } else { 1933 if (n->is_Phi() && n->as_Phi()->region() == r) { 1934 assert(n->req() == pnum, "must be same size as region"); 1935 n->add_req(NULL); 1936 } 1937 } 1938 } 1939 1940 return pnum; 1941 } 1942 1943 //------------------------------ensure_phi------------------------------------- 1944 // Turn the idx'th entry of the current map into a Phi 1945 PhiNode *Parse::ensure_phi(int idx, bool nocreate) { 1946 SafePointNode* map = this->map(); 1947 Node* region = map->control(); 1948 assert(region->is_Region(), ""); 1949 1950 Node* o = map->in(idx); 1951 assert(o != NULL, ""); 1952 1953 if (o == top()) return NULL; // TOP always merges into TOP 1954 1955 if (o->is_Phi() && o->as_Phi()->region() == region) { 1956 return o->as_Phi(); 1957 } 1958 1959 // Now use a Phi here for merging 1960 assert(!nocreate, "Cannot build a phi for a block already parsed."); 1961 const JVMState* jvms = map->jvms(); 1962 const Type* t = NULL; 1963 if (jvms->is_loc(idx)) { 1964 t = block()->local_type_at(idx - jvms->locoff()); 1965 } else if (jvms->is_stk(idx)) { 1966 t = block()->stack_type_at(idx - jvms->stkoff()); 1967 } else if (jvms->is_mon(idx)) { 1968 assert(!jvms->is_monitor_box(idx), "no phis for boxes"); 1969 t = TypeInstPtr::BOTTOM; // this is sufficient for a lock object 1970 } else if ((uint)idx < TypeFunc::Parms) { 1971 t = o->bottom_type(); // Type::RETURN_ADDRESS or such-like. 1972 } else { 1973 assert(false, "no type information for this phi"); 1974 } 1975 1976 // If the type falls to bottom, then this must be a local that 1977 // is mixing ints and oops or some such. Forcing it to top 1978 // makes it go dead. 1979 if (t == Type::BOTTOM) { 1980 map->set_req(idx, top()); 1981 return NULL; 1982 } 1983 1984 // Do not create phis for top either. 1985 // A top on a non-null control flow must be an unused even after the.phi. 1986 if (t == Type::TOP || t == Type::HALF) { 1987 map->set_req(idx, top()); 1988 return NULL; 1989 } 1990 1991 PhiNode* phi = PhiNode::make(region, o, t); 1992 gvn().set_type(phi, t); 1993 if (C->do_escape_analysis()) record_for_igvn(phi); 1994 map->set_req(idx, phi); 1995 return phi; 1996 } 1997 1998 //--------------------------ensure_memory_phi---------------------------------- 1999 // Turn the idx'th slice of the current memory into a Phi 2000 PhiNode *Parse::ensure_memory_phi(int idx, bool nocreate) { 2001 MergeMemNode* mem = merged_memory(); 2002 Node* region = control(); 2003 assert(region->is_Region(), ""); 2004 2005 Node *o = (idx == Compile::AliasIdxBot)? mem->base_memory(): mem->memory_at(idx); 2006 assert(o != NULL && o != top(), ""); 2007 2008 PhiNode* phi; 2009 if (o->is_Phi() && o->as_Phi()->region() == region) { 2010 phi = o->as_Phi(); 2011 if (phi == mem->base_memory() && idx >= Compile::AliasIdxRaw) { 2012 // clone the shared base memory phi to make a new memory split 2013 assert(!nocreate, "Cannot build a phi for a block already parsed."); 2014 const Type* t = phi->bottom_type(); 2015 const TypePtr* adr_type = C->get_adr_type(idx); 2016 phi = phi->slice_memory(adr_type); 2017 gvn().set_type(phi, t); 2018 } 2019 return phi; 2020 } 2021 2022 // Now use a Phi here for merging 2023 assert(!nocreate, "Cannot build a phi for a block already parsed."); 2024 const Type* t = o->bottom_type(); 2025 const TypePtr* adr_type = C->get_adr_type(idx); 2026 phi = PhiNode::make(region, o, t, adr_type); 2027 gvn().set_type(phi, t); 2028 if (idx == Compile::AliasIdxBot) 2029 mem->set_base_memory(phi); 2030 else 2031 mem->set_memory_at(idx, phi); 2032 return phi; 2033 } 2034 2035 //------------------------------call_register_finalizer----------------------- 2036 // Check the klass of the receiver and call register_finalizer if the 2037 // class need finalization. 2038 void Parse::call_register_finalizer() { 2039 Node* receiver = local(0); 2040 assert(receiver != NULL && receiver->bottom_type()->isa_instptr() != NULL, 2041 "must have non-null instance type"); 2042 2043 const TypeInstPtr *tinst = receiver->bottom_type()->isa_instptr(); 2044 if (tinst != NULL && tinst->klass()->is_loaded() && !tinst->klass_is_exact()) { 2045 // The type isn't known exactly so see if CHA tells us anything. 2046 ciInstanceKlass* ik = tinst->klass()->as_instance_klass(); 2047 if (!Dependencies::has_finalizable_subclass(ik)) { 2048 // No finalizable subclasses so skip the dynamic check. 2049 C->dependencies()->assert_has_no_finalizable_subclasses(ik); 2050 return; 2051 } 2052 } 2053 2054 // Insert a dynamic test for whether the instance needs 2055 // finalization. In general this will fold up since the concrete 2056 // class is often visible so the access flags are constant. 2057 Node* klass_addr = basic_plus_adr( receiver, receiver, oopDesc::klass_offset_in_bytes() ); 2058 Node* klass = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), klass_addr, TypeInstPtr::KLASS)); 2059 2060 Node* access_flags_addr = basic_plus_adr(klass, klass, in_bytes(Klass::access_flags_offset())); 2061 Node* access_flags = make_load(NULL, access_flags_addr, TypeInt::INT, T_INT, MemNode::unordered); 2062 2063 Node* mask = _gvn.transform(new AndINode(access_flags, intcon(JVM_ACC_HAS_FINALIZER))); 2064 Node* check = _gvn.transform(new CmpINode(mask, intcon(0))); 2065 Node* test = _gvn.transform(new BoolNode(check, BoolTest::ne)); 2066 2067 IfNode* iff = create_and_map_if(control(), test, PROB_MAX, COUNT_UNKNOWN); 2068 2069 RegionNode* result_rgn = new RegionNode(3); 2070 record_for_igvn(result_rgn); 2071 2072 Node *skip_register = _gvn.transform(new IfFalseNode(iff)); 2073 result_rgn->init_req(1, skip_register); 2074 2075 Node *needs_register = _gvn.transform(new IfTrueNode(iff)); 2076 set_control(needs_register); 2077 if (stopped()) { 2078 // There is no slow path. 2079 result_rgn->init_req(2, top()); 2080 } else { 2081 Node *call = make_runtime_call(RC_NO_LEAF, 2082 OptoRuntime::register_finalizer_Type(), 2083 OptoRuntime::register_finalizer_Java(), 2084 NULL, TypePtr::BOTTOM, 2085 receiver); 2086 make_slow_call_ex(call, env()->Throwable_klass(), true); 2087 2088 Node* fast_io = call->in(TypeFunc::I_O); 2089 Node* fast_mem = call->in(TypeFunc::Memory); 2090 // These two phis are pre-filled with copies of of the fast IO and Memory 2091 Node* io_phi = PhiNode::make(result_rgn, fast_io, Type::ABIO); 2092 Node* mem_phi = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM); 2093 2094 result_rgn->init_req(2, control()); 2095 io_phi ->init_req(2, i_o()); 2096 mem_phi ->init_req(2, reset_memory()); 2097 2098 set_all_memory( _gvn.transform(mem_phi) ); 2099 set_i_o( _gvn.transform(io_phi) ); 2100 } 2101 2102 set_control( _gvn.transform(result_rgn) ); 2103 } 2104 2105 // Add check to deoptimize if RTM state is not ProfileRTM 2106 void Parse::rtm_deopt() { 2107 #if INCLUDE_RTM_OPT 2108 if (C->profile_rtm()) { 2109 assert(C->method() != NULL, "only for normal compilations"); 2110 assert(!C->method()->method_data()->is_empty(), "MDO is needed to record RTM state"); 2111 assert(depth() == 1, "generate check only for main compiled method"); 2112 2113 // Set starting bci for uncommon trap. 2114 set_parse_bci(is_osr_parse() ? osr_bci() : 0); 2115 2116 // Load the rtm_state from the MethodData. 2117 const TypePtr* adr_type = TypeMetadataPtr::make(C->method()->method_data()); 2118 Node* mdo = makecon(adr_type); 2119 int offset = MethodData::rtm_state_offset_in_bytes(); 2120 Node* adr_node = basic_plus_adr(mdo, mdo, offset); 2121 Node* rtm_state = make_load(control(), adr_node, TypeInt::INT, T_INT, adr_type, MemNode::unordered); 2122 2123 // Separate Load from Cmp by Opaque. 2124 // In expand_macro_nodes() it will be replaced either 2125 // with this load when there are locks in the code 2126 // or with ProfileRTM (cmp->in(2)) otherwise so that 2127 // the check will fold. 2128 Node* profile_state = makecon(TypeInt::make(ProfileRTM)); 2129 Node* opq = _gvn.transform( new Opaque3Node(C, rtm_state, Opaque3Node::RTM_OPT) ); 2130 Node* chk = _gvn.transform( new CmpINode(opq, profile_state) ); 2131 Node* tst = _gvn.transform( new BoolNode(chk, BoolTest::eq) ); 2132 // Branch to failure if state was changed 2133 { BuildCutout unless(this, tst, PROB_ALWAYS); 2134 uncommon_trap(Deoptimization::Reason_rtm_state_change, 2135 Deoptimization::Action_make_not_entrant); 2136 } 2137 } 2138 #endif 2139 } 2140 2141 void Parse::decrement_age() { 2142 MethodCounters* mc = method()->ensure_method_counters(); 2143 if (mc == NULL) { 2144 C->record_failure("Must have MCs"); 2145 return; 2146 } 2147 assert(!is_osr_parse(), "Not doing this for OSRs"); 2148 2149 // Set starting bci for uncommon trap. 2150 set_parse_bci(0); 2151 2152 const TypePtr* adr_type = TypeRawPtr::make((address)mc); 2153 Node* mc_adr = makecon(adr_type); 2154 Node* cnt_adr = basic_plus_adr(mc_adr, mc_adr, in_bytes(MethodCounters::nmethod_age_offset())); 2155 Node* cnt = make_load(control(), cnt_adr, TypeInt::INT, T_INT, adr_type, MemNode::unordered); 2156 Node* decr = _gvn.transform(new SubINode(cnt, makecon(TypeInt::ONE))); 2157 store_to_memory(control(), cnt_adr, decr, T_INT, adr_type, MemNode::unordered); 2158 Node *chk = _gvn.transform(new CmpINode(decr, makecon(TypeInt::ZERO))); 2159 Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::gt)); 2160 { BuildCutout unless(this, tst, PROB_ALWAYS); 2161 uncommon_trap(Deoptimization::Reason_tenured, 2162 Deoptimization::Action_make_not_entrant); 2163 } 2164 } 2165 2166 //------------------------------return_current--------------------------------- 2167 // Append current _map to _exit_return 2168 void Parse::return_current(Node* value) { 2169 if (RegisterFinalizersAtInit && 2170 method()->intrinsic_id() == vmIntrinsics::_Object_init) { 2171 call_register_finalizer(); 2172 } 2173 2174 // Do not set_parse_bci, so that return goo is credited to the return insn. 2175 set_bci(InvocationEntryBci); 2176 if (method()->is_synchronized() && GenerateSynchronizationCode) { 2177 shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node()); 2178 } 2179 if (C->env()->dtrace_method_probes()) { 2180 make_dtrace_method_exit(method()); 2181 } 2182 SafePointNode* exit_return = _exits.map(); 2183 exit_return->in( TypeFunc::Control )->add_req( control() ); 2184 exit_return->in( TypeFunc::I_O )->add_req( i_o () ); 2185 Node *mem = exit_return->in( TypeFunc::Memory ); 2186 for (MergeMemStream mms(mem->as_MergeMem(), merged_memory()); mms.next_non_empty2(); ) { 2187 if (mms.is_empty()) { 2188 // get a copy of the base memory, and patch just this one input 2189 const TypePtr* adr_type = mms.adr_type(C); 2190 Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type); 2191 assert(phi->as_Phi()->region() == mms.base_memory()->in(0), ""); 2192 gvn().set_type_bottom(phi); 2193 phi->del_req(phi->req()-1); // prepare to re-patch 2194 mms.set_memory(phi); 2195 } 2196 mms.memory()->add_req(mms.memory2()); 2197 } 2198 2199 // frame pointer is always same, already captured 2200 if (value != NULL) { 2201 // If returning oops to an interface-return, there is a silent free 2202 // cast from oop to interface allowed by the Verifier. Make it explicit 2203 // here. 2204 Node* phi = _exits.argument(0); 2205 const TypeInstPtr *tr = phi->bottom_type()->isa_instptr(); 2206 if (tr && tr->klass()->is_loaded() && 2207 tr->klass()->is_interface()) { 2208 const TypeInstPtr *tp = value->bottom_type()->isa_instptr(); 2209 if (tp && tp->klass()->is_loaded() && 2210 !tp->klass()->is_interface()) { 2211 // sharpen the type eagerly; this eases certain assert checking 2212 if (tp->higher_equal(TypeInstPtr::NOTNULL)) 2213 tr = tr->join_speculative(TypeInstPtr::NOTNULL)->is_instptr(); 2214 value = _gvn.transform(new CheckCastPPNode(0, value, tr)); 2215 } 2216 } else { 2217 // Also handle returns of oop-arrays to an arrays-of-interface return 2218 const TypeInstPtr* phi_tip; 2219 const TypeInstPtr* val_tip; 2220 Type::get_arrays_base_elements(phi->bottom_type(), value->bottom_type(), &phi_tip, &val_tip); 2221 if (phi_tip != NULL && phi_tip->is_loaded() && phi_tip->klass()->is_interface() && 2222 val_tip != NULL && val_tip->is_loaded() && !val_tip->klass()->is_interface()) { 2223 value = _gvn.transform(new CheckCastPPNode(0, value, phi->bottom_type())); 2224 } 2225 } 2226 phi->add_req(value); 2227 } 2228 2229 if (_first_return) { 2230 _exits.map()->transfer_replaced_nodes_from(map(), _new_idx); 2231 _first_return = false; 2232 } else { 2233 _exits.map()->merge_replaced_nodes_with(map()); 2234 } 2235 2236 stop_and_kill_map(); // This CFG path dies here 2237 } 2238 2239 2240 //------------------------------add_safepoint---------------------------------- 2241 void Parse::add_safepoint() { 2242 // See if we can avoid this safepoint. No need for a SafePoint immediately 2243 // after a Call (except Leaf Call) or another SafePoint. 2244 Node *proj = control(); 2245 bool add_poll_param = SafePointNode::needs_polling_address_input(); 2246 uint parms = add_poll_param ? TypeFunc::Parms+1 : TypeFunc::Parms; 2247 if( proj->is_Proj() ) { 2248 Node *n0 = proj->in(0); 2249 if( n0->is_Catch() ) { 2250 n0 = n0->in(0)->in(0); 2251 assert( n0->is_Call(), "expect a call here" ); 2252 } 2253 if( n0->is_Call() ) { 2254 if( n0->as_Call()->guaranteed_safepoint() ) 2255 return; 2256 } else if( n0->is_SafePoint() && n0->req() >= parms ) { 2257 return; 2258 } 2259 } 2260 2261 // Clear out dead values from the debug info. 2262 kill_dead_locals(); 2263 2264 // Clone the JVM State 2265 SafePointNode *sfpnt = new SafePointNode(parms, NULL); 2266 2267 // Capture memory state BEFORE a SafePoint. Since we can block at a 2268 // SafePoint we need our GC state to be safe; i.e. we need all our current 2269 // write barriers (card marks) to not float down after the SafePoint so we 2270 // must read raw memory. Likewise we need all oop stores to match the card 2271 // marks. If deopt can happen, we need ALL stores (we need the correct JVM 2272 // state on a deopt). 2273 2274 // We do not need to WRITE the memory state after a SafePoint. The control 2275 // edge will keep card-marks and oop-stores from floating up from below a 2276 // SafePoint and our true dependency added here will keep them from floating 2277 // down below a SafePoint. 2278 2279 // Clone the current memory state 2280 Node* mem = MergeMemNode::make(map()->memory()); 2281 2282 mem = _gvn.transform(mem); 2283 2284 // Pass control through the safepoint 2285 sfpnt->init_req(TypeFunc::Control , control()); 2286 // Fix edges normally used by a call 2287 sfpnt->init_req(TypeFunc::I_O , top() ); 2288 sfpnt->init_req(TypeFunc::Memory , mem ); 2289 sfpnt->init_req(TypeFunc::ReturnAdr, top() ); 2290 sfpnt->init_req(TypeFunc::FramePtr , top() ); 2291 2292 // Create a node for the polling address 2293 if( add_poll_param ) { 2294 Node *polladr; 2295 if (SafepointMechanism::uses_thread_local_poll()) { 2296 Node *thread = _gvn.transform(new ThreadLocalNode()); 2297 Node *polling_page_load_addr = _gvn.transform(basic_plus_adr(top(), thread, in_bytes(Thread::polling_page_offset()))); 2298 polladr = make_load(control(), polling_page_load_addr, TypeRawPtr::BOTTOM, T_ADDRESS, Compile::AliasIdxRaw, MemNode::unordered); 2299 } else { 2300 polladr = ConPNode::make((address)os::get_polling_page()); 2301 } 2302 sfpnt->init_req(TypeFunc::Parms+0, _gvn.transform(polladr)); 2303 } 2304 2305 // Fix up the JVM State edges 2306 add_safepoint_edges(sfpnt); 2307 Node *transformed_sfpnt = _gvn.transform(sfpnt); 2308 set_control(transformed_sfpnt); 2309 2310 // Provide an edge from root to safepoint. This makes the safepoint 2311 // appear useful until the parse has completed. 2312 if( OptoRemoveUseless && transformed_sfpnt->is_SafePoint() ) { 2313 assert(C->root() != NULL, "Expect parse is still valid"); 2314 C->root()->add_prec(transformed_sfpnt); 2315 } 2316 } 2317 2318 #ifndef PRODUCT 2319 //------------------------show_parse_info-------------------------------------- 2320 void Parse::show_parse_info() { 2321 InlineTree* ilt = NULL; 2322 if (C->ilt() != NULL) { 2323 JVMState* caller_jvms = is_osr_parse() ? caller()->caller() : caller(); 2324 ilt = InlineTree::find_subtree_from_root(C->ilt(), caller_jvms, method()); 2325 } 2326 if (PrintCompilation && Verbose) { 2327 if (depth() == 1) { 2328 if( ilt->count_inlines() ) { 2329 tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(), 2330 ilt->count_inline_bcs()); 2331 tty->cr(); 2332 } 2333 } else { 2334 if (method()->is_synchronized()) tty->print("s"); 2335 if (method()->has_exception_handlers()) tty->print("!"); 2336 // Check this is not the final compiled version 2337 if (C->trap_can_recompile()) { 2338 tty->print("-"); 2339 } else { 2340 tty->print(" "); 2341 } 2342 method()->print_short_name(); 2343 if (is_osr_parse()) { 2344 tty->print(" @ %d", osr_bci()); 2345 } 2346 tty->print(" (%d bytes)",method()->code_size()); 2347 if (ilt->count_inlines()) { 2348 tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(), 2349 ilt->count_inline_bcs()); 2350 } 2351 tty->cr(); 2352 } 2353 } 2354 if (PrintOpto && (depth() == 1 || PrintOptoInlining)) { 2355 // Print that we succeeded; suppress this message on the first osr parse. 2356 2357 if (method()->is_synchronized()) tty->print("s"); 2358 if (method()->has_exception_handlers()) tty->print("!"); 2359 // Check this is not the final compiled version 2360 if (C->trap_can_recompile() && depth() == 1) { 2361 tty->print("-"); 2362 } else { 2363 tty->print(" "); 2364 } 2365 if( depth() != 1 ) { tty->print(" "); } // missing compile count 2366 for (int i = 1; i < depth(); ++i) { tty->print(" "); } 2367 method()->print_short_name(); 2368 if (is_osr_parse()) { 2369 tty->print(" @ %d", osr_bci()); 2370 } 2371 if (ilt->caller_bci() != -1) { 2372 tty->print(" @ %d", ilt->caller_bci()); 2373 } 2374 tty->print(" (%d bytes)",method()->code_size()); 2375 if (ilt->count_inlines()) { 2376 tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(), 2377 ilt->count_inline_bcs()); 2378 } 2379 tty->cr(); 2380 } 2381 } 2382 2383 2384 //------------------------------dump------------------------------------------- 2385 // Dump information associated with the bytecodes of current _method 2386 void Parse::dump() { 2387 if( method() != NULL ) { 2388 // Iterate over bytecodes 2389 ciBytecodeStream iter(method()); 2390 for( Bytecodes::Code bc = iter.next(); bc != ciBytecodeStream::EOBC() ; bc = iter.next() ) { 2391 dump_bci( iter.cur_bci() ); 2392 tty->cr(); 2393 } 2394 } 2395 } 2396 2397 // Dump information associated with a byte code index, 'bci' 2398 void Parse::dump_bci(int bci) { 2399 // Output info on merge-points, cloning, and within _jsr..._ret 2400 // NYI 2401 tty->print(" bci:%d", bci); 2402 } 2403 2404 #endif --- EOF ---