1 /*
   2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, 2015, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #ifndef CPU_AARCH64_VM_MACROASSEMBLER_AARCH64_HPP
  27 #define CPU_AARCH64_VM_MACROASSEMBLER_AARCH64_HPP
  28 
  29 #include "asm/assembler.hpp"
  30 
  31 // MacroAssembler extends Assembler by frequently used macros.
  32 //
  33 // Instructions for which a 'better' code sequence exists depending
  34 // on arguments should also go in here.
  35 
  36 class MacroAssembler: public Assembler {
  37   friend class LIR_Assembler;
  38 
  39  public:
  40   using Assembler::mov;
  41   using Assembler::movi;
  42 
  43  protected:
  44 
  45   // Support for VM calls
  46   //
  47   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  48   // may customize this version by overriding it for its purposes (e.g., to save/restore
  49   // additional registers when doing a VM call).
  50 #ifdef CC_INTERP
  51   // c++ interpreter never wants to use interp_masm version of call_VM
  52   #define VIRTUAL
  53 #else
  54   #define VIRTUAL virtual
  55 #endif
  56 
  57   VIRTUAL void call_VM_leaf_base(
  58     address entry_point,               // the entry point
  59     int     number_of_arguments,        // the number of arguments to pop after the call
  60     Label *retaddr = NULL
  61   );
  62 
  63   VIRTUAL void call_VM_leaf_base(
  64     address entry_point,               // the entry point
  65     int     number_of_arguments,        // the number of arguments to pop after the call
  66     Label &retaddr) {
  67     call_VM_leaf_base(entry_point, number_of_arguments, &retaddr);
  68   }
  69 
  70   // This is the base routine called by the different versions of call_VM. The interpreter
  71   // may customize this version by overriding it for its purposes (e.g., to save/restore
  72   // additional registers when doing a VM call).
  73   //
  74   // If no java_thread register is specified (noreg) than rthread will be used instead. call_VM_base
  75   // returns the register which contains the thread upon return. If a thread register has been
  76   // specified, the return value will correspond to that register. If no last_java_sp is specified
  77   // (noreg) than rsp will be used instead.
  78   VIRTUAL void call_VM_base(           // returns the register containing the thread upon return
  79     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  80     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  81     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  82     address  entry_point,              // the entry point
  83     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  84     bool     check_exceptions          // whether to check for pending exceptions after return
  85   );
  86 
  87   // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
  88   // The implementation is only non-empty for the InterpreterMacroAssembler,
  89   // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
  90   virtual void check_and_handle_popframe(Register java_thread);
  91   virtual void check_and_handle_earlyret(Register java_thread);
  92 
  93   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  94 
  95   // Maximum size of class area in Metaspace when compressed
  96   uint64_t use_XOR_for_compressed_class_base;
  97 
  98  public:
  99   MacroAssembler(CodeBuffer* code) : Assembler(code) {
 100     use_XOR_for_compressed_class_base
 101       = (operand_valid_for_logical_immediate(false /*is32*/,
 102                                              (uint64_t)Universe::narrow_klass_base())
 103          && ((uint64_t)Universe::narrow_klass_base()
 104              > (1u << log2_intptr(CompressedClassSpaceSize))));
 105   }
 106 
 107   // Biased locking support
 108   // lock_reg and obj_reg must be loaded up with the appropriate values.
 109   // swap_reg is killed.
 110   // tmp_reg must be supplied and must not be rscratch1 or rscratch2
 111   // Optional slow case is for implementations (interpreter and C1) which branch to
 112   // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
 113   // Returns offset of first potentially-faulting instruction for null
 114   // check info (currently consumed only by C1). If
 115   // swap_reg_contains_mark is true then returns -1 as it is assumed
 116   // the calling code has already passed any potential faults.
 117   int biased_locking_enter(Register lock_reg, Register obj_reg,
 118                            Register swap_reg, Register tmp_reg,
 119                            bool swap_reg_contains_mark,
 120                            Label& done, Label* slow_case = NULL,
 121                            BiasedLockingCounters* counters = NULL);
 122   void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
 123 
 124 
 125   // Helper functions for statistics gathering.
 126   // Unconditional atomic increment.
 127   void atomic_incw(Register counter_addr, Register tmp, Register tmp2);
 128   void atomic_incw(Address counter_addr, Register tmp1, Register tmp2, Register tmp3) {
 129     lea(tmp1, counter_addr);
 130     atomic_incw(tmp1, tmp2, tmp3);
 131   }
 132   // Load Effective Address
 133   void lea(Register r, const Address &a) {
 134     InstructionMark im(this);
 135     code_section()->relocate(inst_mark(), a.rspec());
 136     a.lea(this, r);
 137   }
 138 
 139   void addmw(Address a, Register incr, Register scratch) {
 140     ldrw(scratch, a);
 141     addw(scratch, scratch, incr);
 142     strw(scratch, a);
 143   }
 144 
 145   // Add constant to memory word
 146   void addmw(Address a, int imm, Register scratch) {
 147     ldrw(scratch, a);
 148     if (imm > 0)
 149       addw(scratch, scratch, (unsigned)imm);
 150     else
 151       subw(scratch, scratch, (unsigned)-imm);
 152     strw(scratch, a);
 153   }
 154 
 155   void bind(Label& L) {
 156     Assembler::bind(L);
 157     code()->clear_last_membar();
 158   }
 159 
 160   void membar(Membar_mask_bits order_constraint);
 161 
 162   // Frame creation and destruction shared between JITs.
 163   void build_frame(int framesize);
 164   void remove_frame(int framesize);
 165 
 166   virtual void _call_Unimplemented(address call_site) {
 167     mov(rscratch2, call_site);
 168     haltsim();
 169   }
 170 
 171 #define call_Unimplemented() _call_Unimplemented((address)__PRETTY_FUNCTION__)
 172 
 173   virtual void notify(int type);
 174 
 175   // aliases defined in AARCH64 spec
 176 
 177   template<class T>
 178   inline void cmpw(Register Rd, T imm)  { subsw(zr, Rd, imm); }
 179   inline void cmp(Register Rd, unsigned imm)  { subs(zr, Rd, imm); }
 180 
 181   inline void cmnw(Register Rd, unsigned imm) { addsw(zr, Rd, imm); }
 182   inline void cmn(Register Rd, unsigned imm) { adds(zr, Rd, imm); }
 183 
 184   void cset(Register Rd, Assembler::Condition cond) {
 185     csinc(Rd, zr, zr, ~cond);
 186   }
 187   void csetw(Register Rd, Assembler::Condition cond) {
 188     csincw(Rd, zr, zr, ~cond);
 189   }
 190 
 191   void cneg(Register Rd, Register Rn, Assembler::Condition cond) {
 192     csneg(Rd, Rn, Rn, ~cond);
 193   }
 194   void cnegw(Register Rd, Register Rn, Assembler::Condition cond) {
 195     csnegw(Rd, Rn, Rn, ~cond);
 196   }
 197 
 198   inline void movw(Register Rd, Register Rn) {
 199     if (Rd == sp || Rn == sp) {
 200       addw(Rd, Rn, 0U);
 201     } else {
 202       orrw(Rd, zr, Rn);
 203     }
 204   }
 205   inline void mov(Register Rd, Register Rn) {
 206     assert(Rd != r31_sp && Rn != r31_sp, "should be");
 207     if (Rd == Rn) {
 208     } else if (Rd == sp || Rn == sp) {
 209       add(Rd, Rn, 0U);
 210     } else {
 211       orr(Rd, zr, Rn);
 212     }
 213   }
 214 
 215   inline void moviw(Register Rd, unsigned imm) { orrw(Rd, zr, imm); }
 216   inline void movi(Register Rd, unsigned imm) { orr(Rd, zr, imm); }
 217 
 218   inline void tstw(Register Rd, Register Rn) { andsw(zr, Rd, Rn); }
 219   inline void tst(Register Rd, Register Rn) { ands(zr, Rd, Rn); }
 220 
 221   inline void tstw(Register Rd, uint64_t imm) { andsw(zr, Rd, imm); }
 222   inline void tst(Register Rd, uint64_t imm) { ands(zr, Rd, imm); }
 223 
 224   inline void bfiw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 225     bfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
 226   }
 227   inline void bfi(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 228     bfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
 229   }
 230 
 231   inline void bfxilw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 232     bfmw(Rd, Rn, lsb, (lsb + width - 1));
 233   }
 234   inline void bfxil(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 235     bfm(Rd, Rn, lsb , (lsb + width - 1));
 236   }
 237 
 238   inline void sbfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 239     sbfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
 240   }
 241   inline void sbfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 242     sbfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
 243   }
 244 
 245   inline void sbfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 246     sbfmw(Rd, Rn, lsb, (lsb + width - 1));
 247   }
 248   inline void sbfx(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 249     sbfm(Rd, Rn, lsb , (lsb + width - 1));
 250   }
 251 
 252   inline void ubfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 253     ubfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
 254   }
 255   inline void ubfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 256     ubfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
 257   }
 258 
 259   inline void ubfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 260     ubfmw(Rd, Rn, lsb, (lsb + width - 1));
 261   }
 262   inline void ubfx(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 263     ubfm(Rd, Rn, lsb , (lsb + width - 1));
 264   }
 265 
 266   inline void asrw(Register Rd, Register Rn, unsigned imm) {
 267     sbfmw(Rd, Rn, imm, 31);
 268   }
 269 
 270   inline void asr(Register Rd, Register Rn, unsigned imm) {
 271     sbfm(Rd, Rn, imm, 63);
 272   }
 273 
 274   inline void lslw(Register Rd, Register Rn, unsigned imm) {
 275     ubfmw(Rd, Rn, ((32 - imm) & 31), (31 - imm));
 276   }
 277 
 278   inline void lsl(Register Rd, Register Rn, unsigned imm) {
 279     ubfm(Rd, Rn, ((64 - imm) & 63), (63 - imm));
 280   }
 281 
 282   inline void lsrw(Register Rd, Register Rn, unsigned imm) {
 283     ubfmw(Rd, Rn, imm, 31);
 284   }
 285 
 286   inline void lsr(Register Rd, Register Rn, unsigned imm) {
 287     ubfm(Rd, Rn, imm, 63);
 288   }
 289 
 290   inline void rorw(Register Rd, Register Rn, unsigned imm) {
 291     extrw(Rd, Rn, Rn, imm);
 292   }
 293 
 294   inline void ror(Register Rd, Register Rn, unsigned imm) {
 295     extr(Rd, Rn, Rn, imm);
 296   }
 297 
 298   inline void sxtbw(Register Rd, Register Rn) {
 299     sbfmw(Rd, Rn, 0, 7);
 300   }
 301   inline void sxthw(Register Rd, Register Rn) {
 302     sbfmw(Rd, Rn, 0, 15);
 303   }
 304   inline void sxtb(Register Rd, Register Rn) {
 305     sbfm(Rd, Rn, 0, 7);
 306   }
 307   inline void sxth(Register Rd, Register Rn) {
 308     sbfm(Rd, Rn, 0, 15);
 309   }
 310   inline void sxtw(Register Rd, Register Rn) {
 311     sbfm(Rd, Rn, 0, 31);
 312   }
 313 
 314   inline void uxtbw(Register Rd, Register Rn) {
 315     ubfmw(Rd, Rn, 0, 7);
 316   }
 317   inline void uxthw(Register Rd, Register Rn) {
 318     ubfmw(Rd, Rn, 0, 15);
 319   }
 320   inline void uxtb(Register Rd, Register Rn) {
 321     ubfm(Rd, Rn, 0, 7);
 322   }
 323   inline void uxth(Register Rd, Register Rn) {
 324     ubfm(Rd, Rn, 0, 15);
 325   }
 326   inline void uxtw(Register Rd, Register Rn) {
 327     ubfm(Rd, Rn, 0, 31);
 328   }
 329 
 330   inline void cmnw(Register Rn, Register Rm) {
 331     addsw(zr, Rn, Rm);
 332   }
 333   inline void cmn(Register Rn, Register Rm) {
 334     adds(zr, Rn, Rm);
 335   }
 336 
 337   inline void cmpw(Register Rn, Register Rm) {
 338     subsw(zr, Rn, Rm);
 339   }
 340   inline void cmp(Register Rn, Register Rm) {
 341     subs(zr, Rn, Rm);
 342   }
 343 
 344   inline void negw(Register Rd, Register Rn) {
 345     subw(Rd, zr, Rn);
 346   }
 347 
 348   inline void neg(Register Rd, Register Rn) {
 349     sub(Rd, zr, Rn);
 350   }
 351 
 352   inline void negsw(Register Rd, Register Rn) {
 353     subsw(Rd, zr, Rn);
 354   }
 355 
 356   inline void negs(Register Rd, Register Rn) {
 357     subs(Rd, zr, Rn);
 358   }
 359 
 360   inline void cmnw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 361     addsw(zr, Rn, Rm, kind, shift);
 362   }
 363   inline void cmn(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 364     adds(zr, Rn, Rm, kind, shift);
 365   }
 366 
 367   inline void cmpw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 368     subsw(zr, Rn, Rm, kind, shift);
 369   }
 370   inline void cmp(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 371     subs(zr, Rn, Rm, kind, shift);
 372   }
 373 
 374   inline void negw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 375     subw(Rd, zr, Rn, kind, shift);
 376   }
 377 
 378   inline void neg(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 379     sub(Rd, zr, Rn, kind, shift);
 380   }
 381 
 382   inline void negsw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 383     subsw(Rd, zr, Rn, kind, shift);
 384   }
 385 
 386   inline void negs(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 387     subs(Rd, zr, Rn, kind, shift);
 388   }
 389 
 390   inline void mnegw(Register Rd, Register Rn, Register Rm) {
 391     msubw(Rd, Rn, Rm, zr);
 392   }
 393   inline void mneg(Register Rd, Register Rn, Register Rm) {
 394     msub(Rd, Rn, Rm, zr);
 395   }
 396 
 397   inline void mulw(Register Rd, Register Rn, Register Rm) {
 398     maddw(Rd, Rn, Rm, zr);
 399   }
 400   inline void mul(Register Rd, Register Rn, Register Rm) {
 401     madd(Rd, Rn, Rm, zr);
 402   }
 403 
 404   inline void smnegl(Register Rd, Register Rn, Register Rm) {
 405     smsubl(Rd, Rn, Rm, zr);
 406   }
 407   inline void smull(Register Rd, Register Rn, Register Rm) {
 408     smaddl(Rd, Rn, Rm, zr);
 409   }
 410 
 411   inline void umnegl(Register Rd, Register Rn, Register Rm) {
 412     umsubl(Rd, Rn, Rm, zr);
 413   }
 414   inline void umull(Register Rd, Register Rn, Register Rm) {
 415     umaddl(Rd, Rn, Rm, zr);
 416   }
 417 
 418 #define WRAP(INSN)                                                            \
 419   void INSN(Register Rd, Register Rn, Register Rm, Register Ra) {             \
 420     if ((VM_Version::cpu_cpuFeatures() & VM_Version::CPU_A53MAC) && Ra != zr) \
 421       nop();                                                                  \
 422     Assembler::INSN(Rd, Rn, Rm, Ra);                                          \
 423   }
 424 
 425   WRAP(madd) WRAP(msub) WRAP(maddw) WRAP(msubw)
 426   WRAP(smaddl) WRAP(smsubl) WRAP(umaddl) WRAP(umsubl)
 427 #undef WRAP
 428 
 429 
 430   // macro assembly operations needed for aarch64
 431 
 432   // first two private routines for loading 32 bit or 64 bit constants
 433 private:
 434 
 435   void mov_immediate64(Register dst, u_int64_t imm64);
 436   void mov_immediate32(Register dst, u_int32_t imm32);
 437 
 438   int push(unsigned int bitset, Register stack);
 439   int pop(unsigned int bitset, Register stack);
 440 
 441   void mov(Register dst, Address a);
 442 
 443 public:
 444   void push(RegSet regs, Register stack) { if (regs.bits()) push(regs.bits(), stack); }
 445   void pop(RegSet regs, Register stack) { if (regs.bits()) pop(regs.bits(), stack); }
 446 
 447   // now mov instructions for loading absolute addresses and 32 or
 448   // 64 bit integers
 449 
 450   inline void mov(Register dst, address addr)
 451   {
 452     mov_immediate64(dst, (u_int64_t)addr);
 453   }
 454 
 455   inline void mov(Register dst, u_int64_t imm64)
 456   {
 457     mov_immediate64(dst, imm64);
 458   }
 459 
 460   inline void movw(Register dst, u_int32_t imm32)
 461   {
 462     mov_immediate32(dst, imm32);
 463   }
 464 
 465   inline void mov(Register dst, long l)
 466   {
 467     mov(dst, (u_int64_t)l);
 468   }
 469 
 470   inline void mov(Register dst, int i)
 471   {
 472     mov(dst, (long)i);
 473   }
 474 
 475   void mov(Register dst, RegisterOrConstant src) {
 476     if (src.is_register())
 477       mov(dst, src.as_register());
 478     else
 479       mov(dst, src.as_constant());
 480   }
 481 
 482   void movptr(Register r, uintptr_t imm64);
 483 
 484   void mov(FloatRegister Vd, SIMD_Arrangement T, u_int32_t imm32);
 485 
 486   void mov(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {
 487     orr(Vd, T, Vn, Vn);
 488   }
 489 
 490   // macro instructions for accessing and updating floating point
 491   // status register
 492   //
 493   // FPSR : op1 == 011
 494   //        CRn == 0100
 495   //        CRm == 0100
 496   //        op2 == 001
 497 
 498   inline void get_fpsr(Register reg)
 499   {
 500     mrs(0b11, 0b0100, 0b0100, 0b001, reg);
 501   }
 502 
 503   inline void set_fpsr(Register reg)
 504   {
 505     msr(0b011, 0b0100, 0b0100, 0b001, reg);
 506   }
 507 
 508   inline void clear_fpsr()
 509   {
 510     msr(0b011, 0b0100, 0b0100, 0b001, zr);
 511   }
 512 
 513   // idiv variant which deals with MINLONG as dividend and -1 as divisor
 514   int corrected_idivl(Register result, Register ra, Register rb,
 515                       bool want_remainder, Register tmp = rscratch1);
 516   int corrected_idivq(Register result, Register ra, Register rb,
 517                       bool want_remainder, Register tmp = rscratch1);
 518 
 519   // Support for NULL-checks
 520   //
 521   // Generates code that causes a NULL OS exception if the content of reg is NULL.
 522   // If the accessed location is M[reg + offset] and the offset is known, provide the
 523   // offset. No explicit code generation is needed if the offset is within a certain
 524   // range (0 <= offset <= page_size).
 525 
 526   virtual void null_check(Register reg, int offset = -1);
 527   static bool needs_explicit_null_check(intptr_t offset);
 528 
 529   static address target_addr_for_insn(address insn_addr, unsigned insn);
 530   static address target_addr_for_insn(address insn_addr) {
 531     unsigned insn = *(unsigned*)insn_addr;
 532     return target_addr_for_insn(insn_addr, insn);
 533   }
 534 
 535   // Required platform-specific helpers for Label::patch_instructions.
 536   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
 537   static int pd_patch_instruction_size(address branch, address target);
 538   static void pd_patch_instruction(address branch, address target) {
 539     pd_patch_instruction_size(branch, target);
 540   }
 541   static address pd_call_destination(address branch) {
 542     return target_addr_for_insn(branch);
 543   }
 544 #ifndef PRODUCT
 545   static void pd_print_patched_instruction(address branch);
 546 #endif
 547 
 548   static int patch_oop(address insn_addr, address o);
 549 
 550   address emit_trampoline_stub(int insts_call_instruction_offset, address target);
 551 
 552   // The following 4 methods return the offset of the appropriate move instruction
 553 
 554   // Support for fast byte/short loading with zero extension (depending on particular CPU)
 555   int load_unsigned_byte(Register dst, Address src);
 556   int load_unsigned_short(Register dst, Address src);
 557 
 558   // Support for fast byte/short loading with sign extension (depending on particular CPU)
 559   int load_signed_byte(Register dst, Address src);
 560   int load_signed_short(Register dst, Address src);
 561 
 562   int load_signed_byte32(Register dst, Address src);
 563   int load_signed_short32(Register dst, Address src);
 564 
 565   // Support for sign-extension (hi:lo = extend_sign(lo))
 566   void extend_sign(Register hi, Register lo);
 567 
 568   // Load and store values by size and signed-ness
 569   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
 570   void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
 571 
 572   // Support for inc/dec with optimal instruction selection depending on value
 573 
 574   // x86_64 aliases an unqualified register/address increment and
 575   // decrement to call incrementq and decrementq but also supports
 576   // explicitly sized calls to incrementq/decrementq or
 577   // incrementl/decrementl
 578 
 579   // for aarch64 the proper convention would be to use
 580   // increment/decrement for 64 bit operatons and
 581   // incrementw/decrementw for 32 bit operations. so when porting
 582   // x86_64 code we can leave calls to increment/decrement as is,
 583   // replace incrementq/decrementq with increment/decrement and
 584   // replace incrementl/decrementl with incrementw/decrementw.
 585 
 586   // n.b. increment/decrement calls with an Address destination will
 587   // need to use a scratch register to load the value to be
 588   // incremented. increment/decrement calls which add or subtract a
 589   // constant value greater than 2^12 will need to use a 2nd scratch
 590   // register to hold the constant. so, a register increment/decrement
 591   // may trash rscratch2 and an address increment/decrement trash
 592   // rscratch and rscratch2
 593 
 594   void decrementw(Address dst, int value = 1);
 595   void decrementw(Register reg, int value = 1);
 596 
 597   void decrement(Register reg, int value = 1);
 598   void decrement(Address dst, int value = 1);
 599 
 600   void incrementw(Address dst, int value = 1);
 601   void incrementw(Register reg, int value = 1);
 602 
 603   void increment(Register reg, int value = 1);
 604   void increment(Address dst, int value = 1);
 605 
 606 
 607   // Alignment
 608   void align(int modulus);
 609 
 610   // Stack frame creation/removal
 611   void enter()
 612   {
 613     stp(rfp, lr, Address(pre(sp, -2 * wordSize)));
 614     mov(rfp, sp);
 615   }
 616   void leave()
 617   {
 618     mov(sp, rfp);
 619     ldp(rfp, lr, Address(post(sp, 2 * wordSize)));
 620   }
 621 
 622   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
 623   // The pointer will be loaded into the thread register.
 624   void get_thread(Register thread);
 625 
 626 
 627   // Support for VM calls
 628   //
 629   // It is imperative that all calls into the VM are handled via the call_VM macros.
 630   // They make sure that the stack linkage is setup correctly. call_VM's correspond
 631   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
 632 
 633 
 634   void call_VM(Register oop_result,
 635                address entry_point,
 636                bool check_exceptions = true);
 637   void call_VM(Register oop_result,
 638                address entry_point,
 639                Register arg_1,
 640                bool check_exceptions = true);
 641   void call_VM(Register oop_result,
 642                address entry_point,
 643                Register arg_1, Register arg_2,
 644                bool check_exceptions = true);
 645   void call_VM(Register oop_result,
 646                address entry_point,
 647                Register arg_1, Register arg_2, Register arg_3,
 648                bool check_exceptions = true);
 649 
 650   // Overloadings with last_Java_sp
 651   void call_VM(Register oop_result,
 652                Register last_java_sp,
 653                address entry_point,
 654                int number_of_arguments = 0,
 655                bool check_exceptions = true);
 656   void call_VM(Register oop_result,
 657                Register last_java_sp,
 658                address entry_point,
 659                Register arg_1, bool
 660                check_exceptions = true);
 661   void call_VM(Register oop_result,
 662                Register last_java_sp,
 663                address entry_point,
 664                Register arg_1, Register arg_2,
 665                bool check_exceptions = true);
 666   void call_VM(Register oop_result,
 667                Register last_java_sp,
 668                address entry_point,
 669                Register arg_1, Register arg_2, Register arg_3,
 670                bool check_exceptions = true);
 671 
 672   void get_vm_result  (Register oop_result, Register thread);
 673   void get_vm_result_2(Register metadata_result, Register thread);
 674 
 675   // These always tightly bind to MacroAssembler::call_VM_base
 676   // bypassing the virtual implementation
 677   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
 678   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
 679   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 680   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
 681   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
 682 
 683   void call_VM_leaf(address entry_point,
 684                     int number_of_arguments = 0);
 685   void call_VM_leaf(address entry_point,
 686                     Register arg_1);
 687   void call_VM_leaf(address entry_point,
 688                     Register arg_1, Register arg_2);
 689   void call_VM_leaf(address entry_point,
 690                     Register arg_1, Register arg_2, Register arg_3);
 691 
 692   // These always tightly bind to MacroAssembler::call_VM_leaf_base
 693   // bypassing the virtual implementation
 694   void super_call_VM_leaf(address entry_point);
 695   void super_call_VM_leaf(address entry_point, Register arg_1);
 696   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
 697   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
 698   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 699 
 700   // last Java Frame (fills frame anchor)
 701   void set_last_Java_frame(Register last_java_sp,
 702                            Register last_java_fp,
 703                            address last_java_pc,
 704                            Register scratch);
 705 
 706   void set_last_Java_frame(Register last_java_sp,
 707                            Register last_java_fp,
 708                            Label &last_java_pc,
 709                            Register scratch);
 710 
 711   void set_last_Java_frame(Register last_java_sp,
 712                            Register last_java_fp,
 713                            Register last_java_pc,
 714                            Register scratch);
 715 
 716   void reset_last_Java_frame(Register thread, bool clearfp, bool clear_pc);
 717 
 718   // thread in the default location (r15_thread on 64bit)
 719   void reset_last_Java_frame(bool clear_fp, bool clear_pc);
 720 
 721   // Stores
 722   void store_check(Register obj);                // store check for obj - register is destroyed afterwards
 723   void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)
 724 
 725 #if INCLUDE_ALL_GCS
 726 
 727   void g1_write_barrier_pre(Register obj,
 728                             Register pre_val,
 729                             Register thread,
 730                             Register tmp,
 731                             bool tosca_live,
 732                             bool expand_call);
 733 
 734   void g1_write_barrier_post(Register store_addr,
 735                              Register new_val,
 736                              Register thread,
 737                              Register tmp,
 738                              Register tmp2);
 739 
 740 #endif // INCLUDE_ALL_GCS
 741 
 742   // oop manipulations
 743   void load_klass(Register dst, Register src);
 744   void store_klass(Register dst, Register src);
 745   void cmp_klass(Register oop, Register trial_klass, Register tmp);
 746 
 747   void load_heap_oop(Register dst, Address src);
 748 
 749   void load_heap_oop_not_null(Register dst, Address src);
 750   void store_heap_oop(Address dst, Register src);
 751 
 752   // currently unimplemented
 753   // Used for storing NULL. All other oop constants should be
 754   // stored using routines that take a jobject.
 755   void store_heap_oop_null(Address dst);
 756 
 757   void load_prototype_header(Register dst, Register src);
 758 
 759   void store_klass_gap(Register dst, Register src);
 760 
 761   // This dummy is to prevent a call to store_heap_oop from
 762   // converting a zero (like NULL) into a Register by giving
 763   // the compiler two choices it can't resolve
 764 
 765   void store_heap_oop(Address dst, void* dummy);
 766 
 767   void encode_heap_oop(Register d, Register s);
 768   void encode_heap_oop(Register r) { encode_heap_oop(r, r); }
 769   void decode_heap_oop(Register d, Register s);
 770   void decode_heap_oop(Register r) { decode_heap_oop(r, r); }
 771   void encode_heap_oop_not_null(Register r);
 772   void decode_heap_oop_not_null(Register r);
 773   void encode_heap_oop_not_null(Register dst, Register src);
 774   void decode_heap_oop_not_null(Register dst, Register src);
 775 
 776   void set_narrow_oop(Register dst, jobject obj);
 777 
 778   void encode_klass_not_null(Register r);
 779   void decode_klass_not_null(Register r);
 780   void encode_klass_not_null(Register dst, Register src);
 781   void decode_klass_not_null(Register dst, Register src);
 782 
 783   void set_narrow_klass(Register dst, Klass* k);
 784 
 785   // if heap base register is used - reinit it with the correct value
 786   void reinit_heapbase();
 787 
 788   DEBUG_ONLY(void verify_heapbase(const char* msg);)
 789 
 790   void push_CPU_state(bool save_vectors = false);
 791   void pop_CPU_state(bool restore_vectors = false) ;
 792 
 793   // Round up to a power of two
 794   void round_to(Register reg, int modulus);
 795 
 796   // allocation
 797   void eden_allocate(
 798     Register obj,                      // result: pointer to object after successful allocation
 799     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 800     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 801     Register t1,                       // temp register
 802     Label&   slow_case                 // continuation point if fast allocation fails
 803   );
 804   void tlab_allocate(
 805     Register obj,                      // result: pointer to object after successful allocation
 806     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 807     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 808     Register t1,                       // temp register
 809     Register t2,                       // temp register
 810     Label&   slow_case                 // continuation point if fast allocation fails
 811   );
 812   Register tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case); // returns TLS address
 813   void verify_tlab();
 814 
 815   void incr_allocated_bytes(Register thread,
 816                             Register var_size_in_bytes, int con_size_in_bytes,
 817                             Register t1 = noreg);
 818 
 819   // interface method calling
 820   void lookup_interface_method(Register recv_klass,
 821                                Register intf_klass,
 822                                RegisterOrConstant itable_index,
 823                                Register method_result,
 824                                Register scan_temp,
 825                                Label& no_such_interface);
 826 
 827   // virtual method calling
 828   // n.b. x86 allows RegisterOrConstant for vtable_index
 829   void lookup_virtual_method(Register recv_klass,
 830                              RegisterOrConstant vtable_index,
 831                              Register method_result);
 832 
 833   // Test sub_klass against super_klass, with fast and slow paths.
 834 
 835   // The fast path produces a tri-state answer: yes / no / maybe-slow.
 836   // One of the three labels can be NULL, meaning take the fall-through.
 837   // If super_check_offset is -1, the value is loaded up from super_klass.
 838   // No registers are killed, except temp_reg.
 839   void check_klass_subtype_fast_path(Register sub_klass,
 840                                      Register super_klass,
 841                                      Register temp_reg,
 842                                      Label* L_success,
 843                                      Label* L_failure,
 844                                      Label* L_slow_path,
 845                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
 846 
 847   // The rest of the type check; must be wired to a corresponding fast path.
 848   // It does not repeat the fast path logic, so don't use it standalone.
 849   // The temp_reg and temp2_reg can be noreg, if no temps are available.
 850   // Updates the sub's secondary super cache as necessary.
 851   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
 852   void check_klass_subtype_slow_path(Register sub_klass,
 853                                      Register super_klass,
 854                                      Register temp_reg,
 855                                      Register temp2_reg,
 856                                      Label* L_success,
 857                                      Label* L_failure,
 858                                      bool set_cond_codes = false);
 859 
 860   // Simplified, combined version, good for typical uses.
 861   // Falls through on failure.
 862   void check_klass_subtype(Register sub_klass,
 863                            Register super_klass,
 864                            Register temp_reg,
 865                            Label& L_success);
 866 
 867   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
 868 
 869 
 870   // Debugging
 871 
 872   // only if +VerifyOops
 873   void verify_oop(Register reg, const char* s = "broken oop");
 874   void verify_oop_addr(Address addr, const char * s = "broken oop addr");
 875 
 876 // TODO: verify method and klass metadata (compare against vptr?)
 877   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
 878   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
 879 
 880 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
 881 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
 882 
 883   // only if +VerifyFPU
 884   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
 885 
 886   // prints msg, dumps registers and stops execution
 887   void stop(const char* msg);
 888 
 889   // prints msg and continues
 890   void warn(const char* msg);
 891 
 892   static void debug64(char* msg, int64_t pc, int64_t regs[]);
 893 
 894   void untested()                                { stop("untested"); }
 895 
 896   void unimplemented(const char* what = "")      { char* b = new char[1024];  jio_snprintf(b, 1024, "unimplemented: %s", what);  stop(b); }
 897 
 898   void should_not_reach_here()                   { stop("should not reach here"); }
 899 
 900   // Stack overflow checking
 901   void bang_stack_with_offset(int offset) {
 902     // stack grows down, caller passes positive offset
 903     assert(offset > 0, "must bang with negative offset");
 904     mov(rscratch2, -offset);
 905     str(zr, Address(sp, rscratch2));
 906   }
 907 
 908   // Writes to stack successive pages until offset reached to check for
 909   // stack overflow + shadow pages.  Also, clobbers tmp
 910   void bang_stack_size(Register size, Register tmp);
 911 
 912   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
 913                                                 Register tmp,
 914                                                 int offset);
 915 
 916   // Support for serializing memory accesses between threads
 917   void serialize_memory(Register thread, Register tmp);
 918 
 919   // Arithmetics
 920 
 921   void addptr(const Address &dst, int32_t src);
 922   void cmpptr(Register src1, Address src2);
 923 
 924   // Various forms of CAS
 925 
 926   void cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp,
 927                   Label &suceed, Label *fail);
 928 
 929   void cmpxchgw(Register oldv, Register newv, Register addr, Register tmp,
 930                   Label &suceed, Label *fail);
 931 
 932   void atomic_add(Register prev, RegisterOrConstant incr, Register addr);
 933   void atomic_addw(Register prev, RegisterOrConstant incr, Register addr);
 934 
 935   void atomic_xchg(Register prev, Register newv, Register addr);
 936   void atomic_xchgw(Register prev, Register newv, Register addr);
 937 
 938   void orptr(Address adr, RegisterOrConstant src) {
 939     ldr(rscratch2, adr);
 940     if (src.is_register())
 941       orr(rscratch2, rscratch2, src.as_register());
 942     else
 943       orr(rscratch2, rscratch2, src.as_constant());
 944     str(rscratch2, adr);
 945   }
 946 
 947   // A generic CAS; success or failure is in the EQ flag.
 948   template <typename T1, typename T2>
 949   void cmpxchg(Register addr, Register expected, Register new_val,
 950                T1 load_insn,
 951                void (MacroAssembler::*cmp_insn)(Register, Register),
 952                T2 store_insn,
 953                Register tmp = rscratch1) {
 954     Label retry_load, done;
 955     bind(retry_load);
 956     (this->*load_insn)(tmp, addr);
 957     (this->*cmp_insn)(tmp, expected);
 958     br(Assembler::NE, done);
 959     (this->*store_insn)(tmp, new_val, addr);
 960     cbnzw(tmp, retry_load);
 961     bind(done);
 962   }
 963 
 964   // Calls
 965 
 966   address trampoline_call(Address entry, CodeBuffer *cbuf = NULL);
 967 
 968   static bool far_branches() {
 969     return ReservedCodeCacheSize > branch_range;
 970   }
 971 
 972   // Jumps that can reach anywhere in the code cache.
 973   // Trashes tmp.
 974   void far_call(Address entry, CodeBuffer *cbuf = NULL, Register tmp = rscratch1);
 975   void far_jump(Address entry, CodeBuffer *cbuf = NULL, Register tmp = rscratch1);
 976 
 977   static int far_branch_size() {
 978     if (far_branches()) {
 979       return 3 * 4;  // adrp, add, br
 980     } else {
 981       return 4;
 982     }
 983   }
 984 
 985   // Emit the CompiledIC call idiom
 986   address ic_call(address entry);
 987 
 988 public:
 989 
 990   // Data
 991 
 992   void mov_metadata(Register dst, Metadata* obj);
 993   Address allocate_metadata_address(Metadata* obj);
 994   Address constant_oop_address(jobject obj);
 995 
 996   void movoop(Register dst, jobject obj, bool immediate = false);
 997 
 998   // CRC32 code for java.util.zip.CRC32::updateBytes() instrinsic.
 999   void kernel_crc32(Register crc, Register buf, Register len,
1000         Register table0, Register table1, Register table2, Register table3,
1001         Register tmp, Register tmp2, Register tmp3);
1002   // CRC32 code for java.util.zip.CRC32C::updateBytes() instrinsic.
1003   void kernel_crc32c(Register crc, Register buf, Register len,
1004         Register table0, Register table1, Register table2, Register table3,
1005         Register tmp, Register tmp2, Register tmp3);
1006 
1007 #undef VIRTUAL
1008 
1009   // Stack push and pop individual 64 bit registers
1010   void push(Register src);
1011   void pop(Register dst);
1012 
1013   // push all registers onto the stack
1014   void pusha();
1015   void popa();
1016 
1017   void repne_scan(Register addr, Register value, Register count,
1018                   Register scratch);
1019   void repne_scanw(Register addr, Register value, Register count,
1020                    Register scratch);
1021 
1022   typedef void (MacroAssembler::* add_sub_imm_insn)(Register Rd, Register Rn, unsigned imm);
1023   typedef void (MacroAssembler::* add_sub_reg_insn)(Register Rd, Register Rn, Register Rm, enum shift_kind kind, unsigned shift);
1024 
1025   // If a constant does not fit in an immediate field, generate some
1026   // number of MOV instructions and then perform the operation
1027   void wrap_add_sub_imm_insn(Register Rd, Register Rn, unsigned imm,
1028                              add_sub_imm_insn insn1,
1029                              add_sub_reg_insn insn2);
1030   // Seperate vsn which sets the flags
1031   void wrap_adds_subs_imm_insn(Register Rd, Register Rn, unsigned imm,
1032                              add_sub_imm_insn insn1,
1033                              add_sub_reg_insn insn2);
1034 
1035 #define WRAP(INSN)                                                      \
1036   void INSN(Register Rd, Register Rn, unsigned imm) {                   \
1037     wrap_add_sub_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN); \
1038   }                                                                     \
1039                                                                         \
1040   void INSN(Register Rd, Register Rn, Register Rm,                      \
1041              enum shift_kind kind, unsigned shift = 0) {                \
1042     Assembler::INSN(Rd, Rn, Rm, kind, shift);                           \
1043   }                                                                     \
1044                                                                         \
1045   void INSN(Register Rd, Register Rn, Register Rm) {                    \
1046     Assembler::INSN(Rd, Rn, Rm);                                        \
1047   }                                                                     \
1048                                                                         \
1049   void INSN(Register Rd, Register Rn, Register Rm,                      \
1050            ext::operation option, int amount = 0) {                     \
1051     Assembler::INSN(Rd, Rn, Rm, option, amount);                        \
1052   }
1053 
1054   WRAP(add) WRAP(addw) WRAP(sub) WRAP(subw)
1055 
1056 #undef WRAP
1057 #define WRAP(INSN)                                                      \
1058   void INSN(Register Rd, Register Rn, unsigned imm) {                   \
1059     wrap_adds_subs_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN); \
1060   }                                                                     \
1061                                                                         \
1062   void INSN(Register Rd, Register Rn, Register Rm,                      \
1063              enum shift_kind kind, unsigned shift = 0) {                \
1064     Assembler::INSN(Rd, Rn, Rm, kind, shift);                           \
1065   }                                                                     \
1066                                                                         \
1067   void INSN(Register Rd, Register Rn, Register Rm) {                    \
1068     Assembler::INSN(Rd, Rn, Rm);                                        \
1069   }                                                                     \
1070                                                                         \
1071   void INSN(Register Rd, Register Rn, Register Rm,                      \
1072            ext::operation option, int amount = 0) {                     \
1073     Assembler::INSN(Rd, Rn, Rm, option, amount);                        \
1074   }
1075 
1076   WRAP(adds) WRAP(addsw) WRAP(subs) WRAP(subsw)
1077 
1078   void add(Register Rd, Register Rn, RegisterOrConstant increment);
1079   void addw(Register Rd, Register Rn, RegisterOrConstant increment);
1080   void sub(Register Rd, Register Rn, RegisterOrConstant decrement);
1081   void subw(Register Rd, Register Rn, RegisterOrConstant decrement);
1082 
1083   void adrp(Register reg1, const Address &dest, unsigned long &byte_offset);
1084 
1085   void tableswitch(Register index, jint lowbound, jint highbound,
1086                    Label &jumptable, Label &jumptable_end, int stride = 1) {
1087     adr(rscratch1, jumptable);
1088     subsw(rscratch2, index, lowbound);
1089     subsw(zr, rscratch2, highbound - lowbound);
1090     br(Assembler::HS, jumptable_end);
1091     add(rscratch1, rscratch1, rscratch2,
1092         ext::sxtw, exact_log2(stride * Assembler::instruction_size));
1093     br(rscratch1);
1094   }
1095 
1096   // Form an address from base + offset in Rd.  Rd may or may not
1097   // actually be used: you must use the Address that is returned.  It
1098   // is up to you to ensure that the shift provided matches the size
1099   // of your data.
1100   Address form_address(Register Rd, Register base, long byte_offset, int shift);
1101 
1102   // Prolog generator routines to support switch between x86 code and
1103   // generated ARM code
1104 
1105   // routine to generate an x86 prolog for a stub function which
1106   // bootstraps into the generated ARM code which directly follows the
1107   // stub
1108   //
1109 
1110   public:
1111   // enum used for aarch64--x86 linkage to define return type of x86 function
1112   enum ret_type { ret_type_void, ret_type_integral, ret_type_float, ret_type_double};
1113 
1114 #ifdef BUILTIN_SIM
1115   void c_stub_prolog(int gp_arg_count, int fp_arg_count, int ret_type, address *prolog_ptr = NULL);
1116 #else
1117   void c_stub_prolog(int gp_arg_count, int fp_arg_count, int ret_type) { }
1118 #endif
1119 
1120   // special version of call_VM_leaf_base needed for aarch64 simulator
1121   // where we need to specify both the gp and fp arg counts and the
1122   // return type so that the linkage routine from aarch64 to x86 and
1123   // back knows which aarch64 registers to copy to x86 registers and
1124   // which x86 result register to copy back to an aarch64 register
1125 
1126   void call_VM_leaf_base1(
1127     address  entry_point,             // the entry point
1128     int      number_of_gp_arguments,  // the number of gp reg arguments to pass
1129     int      number_of_fp_arguments,  // the number of fp reg arguments to pass
1130     ret_type type,                    // the return type for the call
1131     Label*   retaddr = NULL
1132   );
1133 
1134   void ldr_constant(Register dest, const Address &const_addr) {
1135     if (NearCpool) {
1136       ldr(dest, const_addr);
1137     } else {
1138       unsigned long offset;
1139       adrp(dest, InternalAddress(const_addr.target()), offset);
1140       ldr(dest, Address(dest, offset));
1141     }
1142   }
1143 
1144   address read_polling_page(Register r, address page, relocInfo::relocType rtype);
1145   address read_polling_page(Register r, relocInfo::relocType rtype);
1146 
1147   // CRC32 code for java.util.zip.CRC32::updateBytes() instrinsic.
1148   void update_byte_crc32(Register crc, Register val, Register table);
1149   void update_word_crc32(Register crc, Register v, Register tmp,
1150         Register table0, Register table1, Register table2, Register table3,
1151         bool upper = false);
1152 
1153   void string_compare(Register str1, Register str2,
1154                       Register cnt1, Register cnt2, Register result,
1155                       Register tmp1);
1156   void string_equals(Register str1, Register str2,
1157                      Register cnt, Register result,
1158                      Register tmp1);
1159   void char_arrays_equals(Register ary1, Register ary2,
1160                           Register result, Register tmp1);
1161   void encode_iso_array(Register src, Register dst,
1162                         Register len, Register result,
1163                         FloatRegister Vtmp1, FloatRegister Vtmp2,
1164                         FloatRegister Vtmp3, FloatRegister Vtmp4);
1165   void string_indexof(Register str1, Register str2,
1166                       Register cnt1, Register cnt2,
1167                       Register tmp1, Register tmp2,
1168                       Register tmp3, Register tmp4,
1169                       int int_cnt1, Register result);
1170 private:
1171   void add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo,
1172                        Register src1, Register src2);
1173   void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) {
1174     add2_with_carry(dest_hi, dest_hi, dest_lo, src1, src2);
1175   }
1176   void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
1177                              Register y, Register y_idx, Register z,
1178                              Register carry, Register product,
1179                              Register idx, Register kdx);
1180   void multiply_128_x_128_loop(Register y, Register z,
1181                                Register carry, Register carry2,
1182                                Register idx, Register jdx,
1183                                Register yz_idx1, Register yz_idx2,
1184                                Register tmp, Register tmp3, Register tmp4,
1185                                Register tmp7, Register product_hi);
1186 public:
1187   void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z,
1188                        Register zlen, Register tmp1, Register tmp2, Register tmp3,
1189                        Register tmp4, Register tmp5, Register tmp6, Register tmp7);
1190   // ISB may be needed because of a safepoint
1191   void maybe_isb() { isb(); }
1192 
1193 private:
1194   // Return the effective address r + (r1 << ext) + offset.
1195   // Uses rscratch2.
1196   Address offsetted_address(Register r, Register r1, Address::extend ext,
1197                             int offset, int size);
1198 
1199 private:
1200   // Returns an address on the stack which is reachable with a ldr/str of size
1201   // Uses rscratch2 if the address is not directly reachable
1202   Address spill_address(int size, int offset, Register tmp=rscratch2);
1203 
1204 public:
1205   void spill(Register Rx, bool is64, int offset) {
1206     if (is64) {
1207       str(Rx, spill_address(8, offset));
1208     } else {
1209       strw(Rx, spill_address(4, offset));
1210     }
1211   }
1212   void spill(FloatRegister Vx, SIMD_RegVariant T, int offset) {
1213     str(Vx, T, spill_address(1 << (int)T, offset));
1214   }
1215   void unspill(Register Rx, bool is64, int offset) {
1216     if (is64) {
1217       ldr(Rx, spill_address(8, offset));
1218     } else {
1219       ldrw(Rx, spill_address(4, offset));
1220     }
1221   }
1222   void unspill(FloatRegister Vx, SIMD_RegVariant T, int offset) {
1223     ldr(Vx, T, spill_address(1 << (int)T, offset));
1224   }
1225   void spill_copy128(int src_offset, int dst_offset,
1226                      Register tmp1=rscratch1, Register tmp2=rscratch2) {
1227     if (src_offset < 512 && (src_offset & 7) == 0 &&
1228         dst_offset < 512 && (dst_offset & 7) == 0) {
1229       ldp(tmp1, tmp2, Address(sp, src_offset));
1230       stp(tmp1, tmp2, Address(sp, dst_offset));
1231     } else {
1232       unspill(tmp1, true, src_offset);
1233       spill(tmp1, true, dst_offset);
1234       unspill(tmp1, true, src_offset+8);
1235       spill(tmp1, true, dst_offset+8);
1236     }
1237   }
1238 };
1239 
1240 #ifdef ASSERT
1241 inline bool AbstractAssembler::pd_check_instruction_mark() { return false; }
1242 #endif
1243 
1244 /**
1245  * class SkipIfEqual:
1246  *
1247  * Instantiating this class will result in assembly code being output that will
1248  * jump around any code emitted between the creation of the instance and it's
1249  * automatic destruction at the end of a scope block, depending on the value of
1250  * the flag passed to the constructor, which will be checked at run-time.
1251  */
1252 class SkipIfEqual {
1253  private:
1254   MacroAssembler* _masm;
1255   Label _label;
1256 
1257  public:
1258    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
1259    ~SkipIfEqual();
1260 };
1261 
1262 struct tableswitch {
1263   Register _reg;
1264   int _insn_index; jint _first_key; jint _last_key;
1265   Label _after;
1266   Label _branches;
1267 };
1268 
1269 #endif // CPU_AARCH64_VM_MACROASSEMBLER_AARCH64_HPP