--- old/src/cpu/sparc/vm/cppInterpreter_sparc.cpp 2015-12-17 17:52:24.098889568 -0500 +++ /dev/null 2015-12-07 13:23:20.441261681 -0500 @@ -1,2201 +0,0 @@ -/* - * Copyright (c) 2007, 2014, Oracle and/or its affiliates. All rights reserved. - * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. - * - * This code is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License version 2 only, as - * published by the Free Software Foundation. - * - * This code is distributed in the hope that it will be useful, but WITHOUT - * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or - * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License - * version 2 for more details (a copy is included in the LICENSE file that - * accompanied this code). - * - * You should have received a copy of the GNU General Public License version - * 2 along with this work; if not, write to the Free Software Foundation, - * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. - * - * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA - * or visit www.oracle.com if you need additional information or have any - * questions. - * - */ - -#include "precompiled.hpp" -#include "asm/assembler.hpp" -#include "interpreter/bytecodeHistogram.hpp" -#include "interpreter/cppInterpreter.hpp" -#include "interpreter/interpreter.hpp" -#include "interpreter/interpreterGenerator.hpp" -#include "interpreter/interpreterRuntime.hpp" -#include "interpreter/interp_masm.hpp" -#include "oops/arrayOop.hpp" -#include "oops/methodData.hpp" -#include "oops/method.hpp" -#include "oops/oop.inline.hpp" -#include "prims/jvmtiExport.hpp" -#include "prims/jvmtiThreadState.hpp" -#include "runtime/arguments.hpp" -#include "runtime/deoptimization.hpp" -#include "runtime/frame.inline.hpp" -#include "runtime/interfaceSupport.hpp" -#include "runtime/sharedRuntime.hpp" -#include "runtime/stubRoutines.hpp" -#include "runtime/synchronizer.hpp" -#include "runtime/timer.hpp" -#include "runtime/vframeArray.hpp" -#include "utilities/debug.hpp" -#include "utilities/macros.hpp" -#ifdef SHARK -#include "shark/shark_globals.hpp" -#endif - -#ifdef CC_INTERP - -// Routine exists to make tracebacks look decent in debugger -// while "shadow" interpreter frames are on stack. It is also -// used to distinguish interpreter frames. - -extern "C" void RecursiveInterpreterActivation(interpreterState istate) { - ShouldNotReachHere(); -} - -bool CppInterpreter::contains(address pc) { - return ( _code->contains(pc) || - ( pc == (CAST_FROM_FN_PTR(address, RecursiveInterpreterActivation) + frame::pc_return_offset))); -} - -#define STATE(field_name) Lstate, in_bytes(byte_offset_of(BytecodeInterpreter, field_name)) -#define __ _masm-> - -Label frame_manager_entry; // c++ interpreter entry point this holds that entry point label. - -static address unctrap_frame_manager_entry = NULL; - -static address interpreter_return_address = NULL; -static address deopt_frame_manager_return_atos = NULL; -static address deopt_frame_manager_return_btos = NULL; -static address deopt_frame_manager_return_itos = NULL; -static address deopt_frame_manager_return_ltos = NULL; -static address deopt_frame_manager_return_ftos = NULL; -static address deopt_frame_manager_return_dtos = NULL; -static address deopt_frame_manager_return_vtos = NULL; - -const Register prevState = G1_scratch; - -void InterpreterGenerator::save_native_result(void) { - // result potentially in O0/O1: save it across calls - __ stf(FloatRegisterImpl::D, F0, STATE(_native_fresult)); -#ifdef _LP64 - __ stx(O0, STATE(_native_lresult)); -#else - __ std(O0, STATE(_native_lresult)); -#endif -} - -void InterpreterGenerator::restore_native_result(void) { - - // Restore any method result value - __ ldf(FloatRegisterImpl::D, STATE(_native_fresult), F0); -#ifdef _LP64 - __ ldx(STATE(_native_lresult), O0); -#else - __ ldd(STATE(_native_lresult), O0); -#endif -} - -// A result handler converts/unboxes a native call result into -// a java interpreter/compiler result. The current frame is an -// interpreter frame. The activation frame unwind code must be -// consistent with that of TemplateTable::_return(...). In the -// case of native methods, the caller's SP was not modified. -address CppInterpreterGenerator::generate_result_handler_for(BasicType type) { - address entry = __ pc(); - Register Itos_i = Otos_i ->after_save(); - Register Itos_l = Otos_l ->after_save(); - Register Itos_l1 = Otos_l1->after_save(); - Register Itos_l2 = Otos_l2->after_save(); - switch (type) { - case T_BOOLEAN: __ subcc(G0, O0, G0); __ addc(G0, 0, Itos_i); break; // !0 => true; 0 => false - case T_CHAR : __ sll(O0, 16, O0); __ srl(O0, 16, Itos_i); break; // cannot use and3, 0xFFFF too big as immediate value! - case T_BYTE : __ sll(O0, 24, O0); __ sra(O0, 24, Itos_i); break; - case T_SHORT : __ sll(O0, 16, O0); __ sra(O0, 16, Itos_i); break; - case T_LONG : -#ifndef _LP64 - __ mov(O1, Itos_l2); // move other half of long -#endif // ifdef or no ifdef, fall through to the T_INT case - case T_INT : __ mov(O0, Itos_i); break; - case T_VOID : /* nothing to do */ break; - case T_FLOAT : assert(F0 == Ftos_f, "fix this code" ); break; - case T_DOUBLE : assert(F0 == Ftos_d, "fix this code" ); break; - case T_OBJECT : - __ ld_ptr(STATE(_oop_temp), Itos_i); - __ verify_oop(Itos_i); - break; - default : ShouldNotReachHere(); - } - __ ret(); // return from interpreter activation - __ delayed()->restore(I5_savedSP, G0, SP); // remove interpreter frame - NOT_PRODUCT(__ emit_int32(0);) // marker for disassembly - return entry; -} - -// tosca based result to c++ interpreter stack based result. -// Result goes to address in L1_scratch - -address CppInterpreterGenerator::generate_tosca_to_stack_converter(BasicType type) { - // A result is in the native abi result register from a native method call. - // We need to return this result to the interpreter by pushing the result on the interpreter's - // stack. This is relatively simple the destination is in L1_scratch - // i.e. L1_scratch is the first free element on the stack. If we "push" a return value we must - // adjust L1_scratch - address entry = __ pc(); - switch (type) { - case T_BOOLEAN: - // !0 => true; 0 => false - __ subcc(G0, O0, G0); - __ addc(G0, 0, O0); - __ st(O0, L1_scratch, 0); - __ sub(L1_scratch, wordSize, L1_scratch); - break; - - // cannot use and3, 0xFFFF too big as immediate value! - case T_CHAR : - __ sll(O0, 16, O0); - __ srl(O0, 16, O0); - __ st(O0, L1_scratch, 0); - __ sub(L1_scratch, wordSize, L1_scratch); - break; - - case T_BYTE : - __ sll(O0, 24, O0); - __ sra(O0, 24, O0); - __ st(O0, L1_scratch, 0); - __ sub(L1_scratch, wordSize, L1_scratch); - break; - - case T_SHORT : - __ sll(O0, 16, O0); - __ sra(O0, 16, O0); - __ st(O0, L1_scratch, 0); - __ sub(L1_scratch, wordSize, L1_scratch); - break; - case T_LONG : -#ifndef _LP64 -#if defined(COMPILER2) - // All return values are where we want them, except for Longs. C2 returns - // longs in G1 in the 32-bit build whereas the interpreter wants them in O0/O1. - // Since the interpreter will return longs in G1 and O0/O1 in the 32bit - // build even if we are returning from interpreted we just do a little - // stupid shuffing. - // Note: I tried to make c2 return longs in O0/O1 and G1 so we wouldn't have to - // do this here. Unfortunately if we did a rethrow we'd see an machepilog node - // first which would move g1 -> O0/O1 and destroy the exception we were throwing. - __ stx(G1, L1_scratch, -wordSize); -#else - // native result is in O0, O1 - __ st(O1, L1_scratch, 0); // Low order - __ st(O0, L1_scratch, -wordSize); // High order -#endif /* COMPILER2 */ -#else - __ stx(O0, L1_scratch, -wordSize); -#endif - __ sub(L1_scratch, 2*wordSize, L1_scratch); - break; - - case T_INT : - __ st(O0, L1_scratch, 0); - __ sub(L1_scratch, wordSize, L1_scratch); - break; - - case T_VOID : /* nothing to do */ - break; - - case T_FLOAT : - __ stf(FloatRegisterImpl::S, F0, L1_scratch, 0); - __ sub(L1_scratch, wordSize, L1_scratch); - break; - - case T_DOUBLE : - // Every stack slot is aligned on 64 bit, However is this - // the correct stack slot on 64bit?? QQQ - __ stf(FloatRegisterImpl::D, F0, L1_scratch, -wordSize); - __ sub(L1_scratch, 2*wordSize, L1_scratch); - break; - case T_OBJECT : - __ verify_oop(O0); - __ st_ptr(O0, L1_scratch, 0); - __ sub(L1_scratch, wordSize, L1_scratch); - break; - default : ShouldNotReachHere(); - } - __ retl(); // return from interpreter activation - __ delayed()->nop(); // schedule this better - NOT_PRODUCT(__ emit_int32(0);) // marker for disassembly - return entry; -} - -address CppInterpreterGenerator::generate_stack_to_stack_converter(BasicType type) { - // A result is in the java expression stack of the interpreted method that has just - // returned. Place this result on the java expression stack of the caller. - // - // The current interpreter activation in Lstate is for the method just returning its - // result. So we know that the result of this method is on the top of the current - // execution stack (which is pre-pushed) and will be return to the top of the caller - // stack. The top of the callers stack is the bottom of the locals of the current - // activation. - // Because of the way activation are managed by the frame manager the value of esp is - // below both the stack top of the current activation and naturally the stack top - // of the calling activation. This enable this routine to leave the return address - // to the frame manager on the stack and do a vanilla return. - // - // On entry: O0 - points to source (callee stack top) - // O1 - points to destination (caller stack top [i.e. free location]) - // destroys O2, O3 - // - - address entry = __ pc(); - switch (type) { - case T_VOID: break; - break; - case T_FLOAT : - case T_BOOLEAN: - case T_CHAR : - case T_BYTE : - case T_SHORT : - case T_INT : - // 1 word result - __ ld(O0, 0, O2); - __ st(O2, O1, 0); - __ sub(O1, wordSize, O1); - break; - case T_DOUBLE : - case T_LONG : - // return top two words on current expression stack to caller's expression stack - // The caller's expression stack is adjacent to the current frame manager's intepretState - // except we allocated one extra word for this intepretState so we won't overwrite it - // when we return a two word result. -#ifdef _LP64 - __ ld_ptr(O0, 0, O2); - __ st_ptr(O2, O1, -wordSize); -#else - __ ld(O0, 0, O2); - __ ld(O0, wordSize, O3); - __ st(O3, O1, 0); - __ st(O2, O1, -wordSize); -#endif - __ sub(O1, 2*wordSize, O1); - break; - case T_OBJECT : - __ ld_ptr(O0, 0, O2); - __ verify_oop(O2); // verify it - __ st_ptr(O2, O1, 0); - __ sub(O1, wordSize, O1); - break; - default : ShouldNotReachHere(); - } - __ retl(); - __ delayed()->nop(); // QQ schedule this better - return entry; -} - -address CppInterpreterGenerator::generate_stack_to_native_abi_converter(BasicType type) { - // A result is in the java expression stack of the interpreted method that has just - // returned. Place this result in the native abi that the caller expects. - // We are in a new frame registers we set must be in caller (i.e. callstub) frame. - // - // Similar to generate_stack_to_stack_converter above. Called at a similar time from the - // frame manager execept in this situation the caller is native code (c1/c2/call_stub) - // and so rather than return result onto caller's java expression stack we return the - // result in the expected location based on the native abi. - // On entry: O0 - source (stack top) - // On exit result in expected output register - // QQQ schedule this better - - address entry = __ pc(); - switch (type) { - case T_VOID: break; - break; - case T_FLOAT : - __ ldf(FloatRegisterImpl::S, O0, 0, F0); - break; - case T_BOOLEAN: - case T_CHAR : - case T_BYTE : - case T_SHORT : - case T_INT : - // 1 word result - __ ld(O0, 0, O0->after_save()); - break; - case T_DOUBLE : - __ ldf(FloatRegisterImpl::D, O0, 0, F0); - break; - case T_LONG : - // return top two words on current expression stack to caller's expression stack - // The caller's expression stack is adjacent to the current frame manager's interpretState - // except we allocated one extra word for this intepretState so we won't overwrite it - // when we return a two word result. -#ifdef _LP64 - __ ld_ptr(O0, 0, O0->after_save()); -#else - __ ld(O0, wordSize, O1->after_save()); - __ ld(O0, 0, O0->after_save()); -#endif -#if defined(COMPILER2) && !defined(_LP64) - // C2 expects long results in G1 we can't tell if we're returning to interpreted - // or compiled so just be safe use G1 and O0/O1 - - // Shift bits into high (msb) of G1 - __ sllx(Otos_l1->after_save(), 32, G1); - // Zero extend low bits - __ srl (Otos_l2->after_save(), 0, Otos_l2->after_save()); - __ or3 (Otos_l2->after_save(), G1, G1); -#endif /* COMPILER2 */ - break; - case T_OBJECT : - __ ld_ptr(O0, 0, O0->after_save()); - __ verify_oop(O0->after_save()); // verify it - break; - default : ShouldNotReachHere(); - } - __ retl(); - __ delayed()->nop(); - return entry; -} - -address CppInterpreter::return_entry(TosState state, int length, Bytecodes::Code code) { - // make it look good in the debugger - return CAST_FROM_FN_PTR(address, RecursiveInterpreterActivation) + frame::pc_return_offset; -} - -address CppInterpreter::deopt_entry(TosState state, int length) { - address ret = NULL; - if (length != 0) { - switch (state) { - case atos: ret = deopt_frame_manager_return_atos; break; - case btos: ret = deopt_frame_manager_return_btos; break; - case ctos: - case stos: - case itos: ret = deopt_frame_manager_return_itos; break; - case ltos: ret = deopt_frame_manager_return_ltos; break; - case ftos: ret = deopt_frame_manager_return_ftos; break; - case dtos: ret = deopt_frame_manager_return_dtos; break; - case vtos: ret = deopt_frame_manager_return_vtos; break; - } - } else { - ret = unctrap_frame_manager_entry; // re-execute the bytecode ( e.g. uncommon trap) - } - assert(ret != NULL, "Not initialized"); - return ret; -} - -// -// Helpers for commoning out cases in the various type of method entries. -// - -// increment invocation count & check for overflow -// -// Note: checking for negative value instead of overflow -// so we have a 'sticky' overflow test -// -// Lmethod: method -// ??: invocation counter -// -void InterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) { - Label done; - const Register Rcounters = G3_scratch; - - __ ld_ptr(STATE(_method), G5_method); - __ get_method_counters(G5_method, Rcounters, done); - - // Update standard invocation counters - __ increment_invocation_counter(Rcounters, O0, G4_scratch); - if (ProfileInterpreter) { - Address interpreter_invocation_counter(Rcounters, - in_bytes(MethodCounters::interpreter_invocation_counter_offset())); - __ ld(interpreter_invocation_counter, G4_scratch); - __ inc(G4_scratch); - __ st(G4_scratch, interpreter_invocation_counter); - } - - AddressLiteral invocation_limit((address)&InvocationCounter::InterpreterInvocationLimit); - __ load_contents(invocation_limit, G3_scratch); - __ cmp(O0, G3_scratch); - __ br(Assembler::greaterEqualUnsigned, false, Assembler::pn, *overflow); - __ delayed()->nop(); - __ bind(done); -} - -address InterpreterGenerator::generate_empty_entry(void) { - - // A method that does nothing but return... - - address entry = __ pc(); - Label slow_path; - - // do nothing for empty methods (do not even increment invocation counter) - if ( UseFastEmptyMethods) { - // If we need a safepoint check, generate full interpreter entry. - AddressLiteral sync_state(SafepointSynchronize::address_of_state()); - __ load_contents(sync_state, G3_scratch); - __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized); - __ br(Assembler::notEqual, false, Assembler::pn, frame_manager_entry); - __ delayed()->nop(); - - // Code: _return - __ retl(); - __ delayed()->mov(O5_savedSP, SP); - return entry; - } - return NULL; -} - -address InterpreterGenerator::generate_Reference_get_entry(void) { -#if INCLUDE_ALL_GCS - if (UseG1GC) { - // We need to generate have a routine that generates code to: - // * load the value in the referent field - // * passes that value to the pre-barrier. - // - // In the case of G1 this will record the value of the - // referent in an SATB buffer if marking is active. - // This will cause concurrent marking to mark the referent - // field as live. - Unimplemented(); - } -#endif // INCLUDE_ALL_GCS - - // If G1 is not enabled then attempt to go through the accessor entry point - // Reference.get is an accessor - return NULL; -} - -// -// Interpreter stub for calling a native method. (C++ interpreter) -// This sets up a somewhat different looking stack for calling the native method -// than the typical interpreter frame setup. -// - -address InterpreterGenerator::generate_native_entry(bool synchronized) { - address entry = __ pc(); - - // the following temporary registers are used during frame creation - const Register Gtmp1 = G3_scratch ; - const Register Gtmp2 = G1_scratch; - const Register RconstMethod = Gtmp1; - const Address constMethod(G5_method, in_bytes(Method::const_offset())); - const Address size_of_parameters(RconstMethod, in_bytes(ConstMethod::size_of_parameters_offset())); - - bool inc_counter = UseCompiler || CountCompiledCalls; - - // make sure registers are different! - assert_different_registers(G2_thread, G5_method, Gargs, Gtmp1, Gtmp2); - - const Address access_flags (G5_method, in_bytes(Method::access_flags_offset())); - - Label Lentry; - __ bind(Lentry); - - const Register Glocals_size = G3; - assert_different_registers(Glocals_size, G4_scratch, Gframe_size); - - // make sure method is native & not abstract - // rethink these assertions - they can be simplified and shared (gri 2/25/2000) -#ifdef ASSERT - __ ld(access_flags, Gtmp1); - { - Label L; - __ btst(JVM_ACC_NATIVE, Gtmp1); - __ br(Assembler::notZero, false, Assembler::pt, L); - __ delayed()->nop(); - __ stop("tried to execute non-native method as native"); - __ bind(L); - } - { Label L; - __ btst(JVM_ACC_ABSTRACT, Gtmp1); - __ br(Assembler::zero, false, Assembler::pt, L); - __ delayed()->nop(); - __ stop("tried to execute abstract method as non-abstract"); - __ bind(L); - } -#endif // ASSERT - - __ ld_ptr(constMethod, RconstMethod); - __ lduh(size_of_parameters, Gtmp1); - __ sll(Gtmp1, LogBytesPerWord, Gtmp2); // parameter size in bytes - __ add(Gargs, Gtmp2, Gargs); // points to first local + BytesPerWord - // NEW - __ add(Gargs, -wordSize, Gargs); // points to first local[0] - // generate the code to allocate the interpreter stack frame - // NEW FRAME ALLOCATED HERE - // save callers original sp - // __ mov(SP, I5_savedSP->after_restore()); - - generate_compute_interpreter_state(Lstate, G0, true); - - // At this point Lstate points to new interpreter state - // - - const Address do_not_unlock_if_synchronized(G2_thread, - in_bytes(JavaThread::do_not_unlock_if_synchronized_offset())); - // Since at this point in the method invocation the exception handler - // would try to exit the monitor of synchronized methods which hasn't - // been entered yet, we set the thread local variable - // _do_not_unlock_if_synchronized to true. If any exception was thrown by - // runtime, exception handling i.e. unlock_if_synchronized_method will - // check this thread local flag. - // This flag has two effects, one is to force an unwind in the topmost - // interpreter frame and not perform an unlock while doing so. - - __ movbool(true, G3_scratch); - __ stbool(G3_scratch, do_not_unlock_if_synchronized); - - - // increment invocation counter and check for overflow - // - // Note: checking for negative value instead of overflow - // so we have a 'sticky' overflow test (may be of - // importance as soon as we have true MT/MP) - Label invocation_counter_overflow; - if (inc_counter) { - generate_counter_incr(&invocation_counter_overflow, NULL, NULL); - } - Label Lcontinue; - __ bind(Lcontinue); - - bang_stack_shadow_pages(true); - // reset the _do_not_unlock_if_synchronized flag - __ stbool(G0, do_not_unlock_if_synchronized); - - // check for synchronized methods - // Must happen AFTER invocation_counter check, so method is not locked - // if counter overflows. - - if (synchronized) { - lock_method(); - // Don't see how G2_thread is preserved here... - // __ verify_thread(); QQQ destroys L0,L1 can't use - } else { -#ifdef ASSERT - { Label ok; - __ ld_ptr(STATE(_method), G5_method); - __ ld(access_flags, O0); - __ btst(JVM_ACC_SYNCHRONIZED, O0); - __ br( Assembler::zero, false, Assembler::pt, ok); - __ delayed()->nop(); - __ stop("method needs synchronization"); - __ bind(ok); - } -#endif // ASSERT - } - - // start execution - -// __ verify_thread(); kills L1,L2 can't use at the moment - - // jvmti/jvmpi support - __ notify_method_entry(); - - // native call - - // (note that O0 is never an oop--at most it is a handle) - // It is important not to smash any handles created by this call, - // until any oop handle in O0 is dereferenced. - - // (note that the space for outgoing params is preallocated) - - // get signature handler - - Label pending_exception_present; - - { Label L; - __ ld_ptr(STATE(_method), G5_method); - __ ld_ptr(Address(G5_method, in_bytes(Method::signature_handler_offset())), G3_scratch); - __ tst(G3_scratch); - __ brx(Assembler::notZero, false, Assembler::pt, L); - __ delayed()->nop(); - __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), G5_method, false); - __ ld_ptr(STATE(_method), G5_method); - - Address exception_addr(G2_thread, in_bytes(Thread::pending_exception_offset())); - __ ld_ptr(exception_addr, G3_scratch); - __ br_notnull_short(G3_scratch, Assembler::pn, pending_exception_present); - __ ld_ptr(Address(G5_method, in_bytes(Method::signature_handler_offset())), G3_scratch); - __ bind(L); - } - - // Push a new frame so that the args will really be stored in - // Copy a few locals across so the new frame has the variables - // we need but these values will be dead at the jni call and - // therefore not gc volatile like the values in the current - // frame (Lstate in particular) - - // Flush the state pointer to the register save area - // Which is the only register we need for a stack walk. - __ st_ptr(Lstate, SP, (Lstate->sp_offset_in_saved_window() * wordSize) + STACK_BIAS); - - __ mov(Lstate, O1); // Need to pass the state pointer across the frame - - // Calculate current frame size - __ sub(SP, FP, O3); // Calculate negative of current frame size - __ save(SP, O3, SP); // Allocate an identical sized frame - - __ mov(I1, Lstate); // In the "natural" register. - - // Note I7 has leftover trash. Slow signature handler will fill it in - // should we get there. Normal jni call will set reasonable last_Java_pc - // below (and fix I7 so the stack trace doesn't have a meaningless frame - // in it). - - - // call signature handler - __ ld_ptr(STATE(_method), Lmethod); - __ ld_ptr(STATE(_locals), Llocals); - - __ callr(G3_scratch, 0); - __ delayed()->nop(); - __ ld_ptr(STATE(_thread), G2_thread); // restore thread (shouldn't be needed) - - { Label not_static; - - __ ld_ptr(STATE(_method), G5_method); - __ ld(access_flags, O0); - __ btst(JVM_ACC_STATIC, O0); - __ br( Assembler::zero, false, Assembler::pt, not_static); - __ delayed()-> - // get native function entry point(O0 is a good temp until the very end) - ld_ptr(Address(G5_method, in_bytes(Method::native_function_offset())), O0); - // for static methods insert the mirror argument - const int mirror_offset = in_bytes(Klass::java_mirror_offset()); - - __ ld_ptr(Address(G5_method, in_bytes(Method:: const_offset())), O1); - __ ld_ptr(Address(O1, in_bytes(ConstMethod::constants_offset())), O1); - __ ld_ptr(Address(O1, ConstantPool::pool_holder_offset_in_bytes()), O1); - __ ld_ptr(O1, mirror_offset, O1); - // where the mirror handle body is allocated: -#ifdef ASSERT - if (!PrintSignatureHandlers) // do not dirty the output with this - { Label L; - __ tst(O1); - __ brx(Assembler::notZero, false, Assembler::pt, L); - __ delayed()->nop(); - __ stop("mirror is missing"); - __ bind(L); - } -#endif // ASSERT - __ st_ptr(O1, STATE(_oop_temp)); - __ add(STATE(_oop_temp), O1); // this is really an LEA not an add - __ bind(not_static); - } - - // At this point, arguments have been copied off of stack into - // their JNI positions, which are O1..O5 and SP[68..]. - // Oops are boxed in-place on the stack, with handles copied to arguments. - // The result handler is in Lscratch. O0 will shortly hold the JNIEnv*. - -#ifdef ASSERT - { Label L; - __ tst(O0); - __ brx(Assembler::notZero, false, Assembler::pt, L); - __ delayed()->nop(); - __ stop("native entry point is missing"); - __ bind(L); - } -#endif // ASSERT - - // - // setup the java frame anchor - // - // The scavenge function only needs to know that the PC of this frame is - // in the interpreter method entry code, it doesn't need to know the exact - // PC and hence we can use O7 which points to the return address from the - // previous call in the code stream (signature handler function) - // - // The other trick is we set last_Java_sp to FP instead of the usual SP because - // we have pushed the extra frame in order to protect the volatile register(s) - // in that frame when we return from the jni call - // - - - __ set_last_Java_frame(FP, O7); - __ mov(O7, I7); // make dummy interpreter frame look like one above, - // not meaningless information that'll confuse me. - - // flush the windows now. We don't care about the current (protection) frame - // only the outer frames - - __ flushw(); - - // mark windows as flushed - Address flags(G2_thread, - in_bytes(JavaThread::frame_anchor_offset()) + in_bytes(JavaFrameAnchor::flags_offset())); - __ set(JavaFrameAnchor::flushed, G3_scratch); - __ st(G3_scratch, flags); - - // Transition from _thread_in_Java to _thread_in_native. We are already safepoint ready. - - Address thread_state(G2_thread, in_bytes(JavaThread::thread_state_offset())); -#ifdef ASSERT - { Label L; - __ ld(thread_state, G3_scratch); - __ cmp(G3_scratch, _thread_in_Java); - __ br(Assembler::equal, false, Assembler::pt, L); - __ delayed()->nop(); - __ stop("Wrong thread state in native stub"); - __ bind(L); - } -#endif // ASSERT - __ set(_thread_in_native, G3_scratch); - __ st(G3_scratch, thread_state); - - // Call the jni method, using the delay slot to set the JNIEnv* argument. - __ callr(O0, 0); - __ delayed()-> - add(G2_thread, in_bytes(JavaThread::jni_environment_offset()), O0); - __ ld_ptr(STATE(_thread), G2_thread); // restore thread - - // must we block? - - // Block, if necessary, before resuming in _thread_in_Java state. - // In order for GC to work, don't clear the last_Java_sp until after blocking. - { Label no_block; - AddressLiteral sync_state(SafepointSynchronize::address_of_state()); - - // Switch thread to "native transition" state before reading the synchronization state. - // This additional state is necessary because reading and testing the synchronization - // state is not atomic w.r.t. GC, as this scenario demonstrates: - // Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted. - // VM thread changes sync state to synchronizing and suspends threads for GC. - // Thread A is resumed to finish this native method, but doesn't block here since it - // didn't see any synchronization is progress, and escapes. - __ set(_thread_in_native_trans, G3_scratch); - __ st(G3_scratch, thread_state); - if(os::is_MP()) { - // Write serialization page so VM thread can do a pseudo remote membar. - // We use the current thread pointer to calculate a thread specific - // offset to write to within the page. This minimizes bus traffic - // due to cache line collision. - __ serialize_memory(G2_thread, G1_scratch, G3_scratch); - } - __ load_contents(sync_state, G3_scratch); - __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized); - - - Label L; - Address suspend_state(G2_thread, in_bytes(JavaThread::suspend_flags_offset())); - __ br(Assembler::notEqual, false, Assembler::pn, L); - __ delayed()-> - ld(suspend_state, G3_scratch); - __ cmp(G3_scratch, 0); - __ br(Assembler::equal, false, Assembler::pt, no_block); - __ delayed()->nop(); - __ bind(L); - - // Block. Save any potential method result value before the operation and - // use a leaf call to leave the last_Java_frame setup undisturbed. - save_native_result(); - __ call_VM_leaf(noreg, - CAST_FROM_FN_PTR(address, JavaThread::check_safepoint_and_suspend_for_native_trans), - G2_thread); - __ ld_ptr(STATE(_thread), G2_thread); // restore thread - // Restore any method result value - restore_native_result(); - __ bind(no_block); - } - - // Clear the frame anchor now - - __ reset_last_Java_frame(); - - // Move the result handler address - __ mov(Lscratch, G3_scratch); - // return possible result to the outer frame -#ifndef __LP64 - __ mov(O0, I0); - __ restore(O1, G0, O1); -#else - __ restore(O0, G0, O0); -#endif /* __LP64 */ - - // Move result handler to expected register - __ mov(G3_scratch, Lscratch); - - - // thread state is thread_in_native_trans. Any safepoint blocking has - // happened in the trampoline we are ready to switch to thread_in_Java. - - __ set(_thread_in_Java, G3_scratch); - __ st(G3_scratch, thread_state); - - // If we have an oop result store it where it will be safe for any further gc - // until we return now that we've released the handle it might be protected by - - { - Label no_oop, store_result; - - __ set((intptr_t)AbstractInterpreter::result_handler(T_OBJECT), G3_scratch); - __ cmp(G3_scratch, Lscratch); - __ brx(Assembler::notEqual, false, Assembler::pt, no_oop); - __ delayed()->nop(); - __ addcc(G0, O0, O0); - __ brx(Assembler::notZero, true, Assembler::pt, store_result); // if result is not NULL: - __ delayed()->ld_ptr(O0, 0, O0); // unbox it - __ mov(G0, O0); - - __ bind(store_result); - // Store it where gc will look for it and result handler expects it. - __ st_ptr(O0, STATE(_oop_temp)); - - __ bind(no_oop); - - } - - // reset handle block - __ ld_ptr(G2_thread, in_bytes(JavaThread::active_handles_offset()), G3_scratch); - __ st(G0, G3_scratch, JNIHandleBlock::top_offset_in_bytes()); - - - // handle exceptions (exception handling will handle unlocking!) - { Label L; - Address exception_addr (G2_thread, in_bytes(Thread::pending_exception_offset())); - - __ ld_ptr(exception_addr, Gtemp); - __ tst(Gtemp); - __ brx(Assembler::equal, false, Assembler::pt, L); - __ delayed()->nop(); - __ bind(pending_exception_present); - // With c++ interpreter we just leave it pending caller will do the correct thing. However... - // Like x86 we ignore the result of the native call and leave the method locked. This - // seems wrong to leave things locked. - - __ br(Assembler::always, false, Assembler::pt, StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type); - __ delayed()->restore(I5_savedSP, G0, SP); // remove interpreter frame - - __ bind(L); - } - - // jvmdi/jvmpi support (preserves thread register) - __ notify_method_exit(true, ilgl, InterpreterMacroAssembler::NotifyJVMTI); - - if (synchronized) { - // save and restore any potential method result value around the unlocking operation - save_native_result(); - - const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; - // Get the initial monitor we allocated - __ sub(Lstate, entry_size, O1); // initial monitor - __ unlock_object(O1); - restore_native_result(); - } - -#if defined(COMPILER2) && !defined(_LP64) - - // C2 expects long results in G1 we can't tell if we're returning to interpreted - // or compiled so just be safe. - - __ sllx(O0, 32, G1); // Shift bits into high G1 - __ srl (O1, 0, O1); // Zero extend O1 - __ or3 (O1, G1, G1); // OR 64 bits into G1 - -#endif /* COMPILER2 && !_LP64 */ - -#ifdef ASSERT - { - Label ok; - __ cmp(I5_savedSP, FP); - __ brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, ok); - __ delayed()->nop(); - __ stop("bad I5_savedSP value"); - __ should_not_reach_here(); - __ bind(ok); - } -#endif - // Calls result handler which POPS FRAME - if (TraceJumps) { - // Move target to register that is recordable - __ mov(Lscratch, G3_scratch); - __ JMP(G3_scratch, 0); - } else { - __ jmp(Lscratch, 0); - } - __ delayed()->nop(); - - if (inc_counter) { - // handle invocation counter overflow - __ bind(invocation_counter_overflow); - generate_counter_overflow(Lcontinue); - } - - - return entry; -} - -void CppInterpreterGenerator::generate_compute_interpreter_state(const Register state, - const Register prev_state, - bool native) { - - // On entry - // G5_method - caller's method - // Gargs - points to initial parameters (i.e. locals[0]) - // G2_thread - valid? (C1 only??) - // "prev_state" - contains any previous frame manager state which we must save a link - // - // On return - // "state" is a pointer to the newly allocated state object. We must allocate and initialize - // a new interpretState object and the method expression stack. - - assert_different_registers(state, prev_state); - assert_different_registers(prev_state, G3_scratch); - const Register Gtmp = G3_scratch; - const Address constMethod (G5_method, in_bytes(Method::const_offset())); - const Address access_flags (G5_method, in_bytes(Method::access_flags_offset())); - - // slop factor is two extra slots on the expression stack so that - // we always have room to store a result when returning from a call without parameters - // that returns a result. - - const int slop_factor = 2*wordSize; - - const int fixed_size = ((sizeof(BytecodeInterpreter) + slop_factor) >> LogBytesPerWord) + // what is the slop factor? - Method::extra_stack_entries() + // extra stack for jsr 292 - frame::memory_parameter_word_sp_offset + // register save area + param window - (native ? frame::interpreter_frame_extra_outgoing_argument_words : 0); // JNI, class - - // XXX G5_method valid - - // Now compute new frame size - - if (native) { - const Register RconstMethod = Gtmp; - const Address size_of_parameters(RconstMethod, in_bytes(ConstMethod::size_of_parameters_offset())); - __ ld_ptr(constMethod, RconstMethod); - __ lduh( size_of_parameters, Gtmp ); - __ calc_mem_param_words(Gtmp, Gtmp); // space for native call parameters passed on the stack in words - } else { - // Full size expression stack - __ ld_ptr(constMethod, Gtmp); - __ lduh(Gtmp, in_bytes(ConstMethod::max_stack_offset()), Gtmp); - } - __ add(Gtmp, fixed_size, Gtmp); // plus the fixed portion - - __ neg(Gtmp); // negative space for stack/parameters in words - __ and3(Gtmp, -WordsPerLong, Gtmp); // make multiple of 2 (SP must be 2-word aligned) - __ sll(Gtmp, LogBytesPerWord, Gtmp); // negative space for frame in bytes - - // Need to do stack size check here before we fault on large frames - - Label stack_ok; - - const int max_pages = StackShadowPages > (StackRedPages+StackYellowPages) ? StackShadowPages : - (StackRedPages+StackYellowPages); - - - __ ld_ptr(G2_thread, in_bytes(Thread::stack_base_offset()), O0); - __ ld_ptr(G2_thread, in_bytes(Thread::stack_size_offset()), O1); - // compute stack bottom - __ sub(O0, O1, O0); - - // Avoid touching the guard pages - // Also a fudge for frame size of BytecodeInterpreter::run - // It varies from 1k->4k depending on build type - const int fudge = 6 * K; - - __ set(fudge + (max_pages * os::vm_page_size()), O1); - - __ add(O0, O1, O0); - __ sub(O0, Gtmp, O0); - __ cmp(SP, O0); - __ brx(Assembler::greaterUnsigned, false, Assembler::pt, stack_ok); - __ delayed()->nop(); - - // throw exception return address becomes throwing pc - - __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError)); - __ stop("never reached"); - - __ bind(stack_ok); - - __ save(SP, Gtmp, SP); // setup new frame and register window - - // New window I7 call_stub or previous activation - // O6 - register save area, BytecodeInterpreter just below it, args/locals just above that - // - __ sub(FP, sizeof(BytecodeInterpreter), state); // Point to new Interpreter state - __ add(state, STACK_BIAS, state ); // Account for 64bit bias - -#define XXX_STATE(field_name) state, in_bytes(byte_offset_of(BytecodeInterpreter, field_name)) - - // Initialize a new Interpreter state - // orig_sp - caller's original sp - // G2_thread - thread - // Gargs - &locals[0] (unbiased?) - // G5_method - method - // SP (biased) - accounts for full size java stack, BytecodeInterpreter object, register save area, and register parameter save window - - - __ set(0xdead0004, O1); - - - __ st_ptr(Gargs, XXX_STATE(_locals)); - __ st_ptr(G0, XXX_STATE(_oop_temp)); - - __ st_ptr(state, XXX_STATE(_self_link)); // point to self - __ st_ptr(prev_state->after_save(), XXX_STATE(_prev_link)); // Chain interpreter states - __ st_ptr(G2_thread, XXX_STATE(_thread)); // Store javathread - - if (native) { - __ st_ptr(G0, XXX_STATE(_bcp)); - } else { - __ ld_ptr(G5_method, in_bytes(Method::const_offset()), O2); // get ConstMethod* - __ add(O2, in_bytes(ConstMethod::codes_offset()), O2); // get bcp - __ st_ptr(O2, XXX_STATE(_bcp)); - } - - __ st_ptr(G0, XXX_STATE(_mdx)); - __ st_ptr(G5_method, XXX_STATE(_method)); - - __ set((int) BytecodeInterpreter::method_entry, O1); - __ st(O1, XXX_STATE(_msg)); - - __ ld_ptr(constMethod, O3); - __ ld_ptr(O3, in_bytes(ConstMethod::constants_offset()), O3); - __ ld_ptr(O3, ConstantPool::cache_offset_in_bytes(), O2); - __ st_ptr(O2, XXX_STATE(_constants)); - - __ st_ptr(G0, XXX_STATE(_result._to_call._callee)); - - // Monitor base is just start of BytecodeInterpreter object; - __ mov(state, O2); - __ st_ptr(O2, XXX_STATE(_monitor_base)); - - // Do we need a monitor for synchonized method? - { - __ ld(access_flags, O1); - Label done; - Label got_obj; - __ btst(JVM_ACC_SYNCHRONIZED, O1); - __ br( Assembler::zero, false, Assembler::pt, done); - - const int mirror_offset = in_bytes(Klass::java_mirror_offset()); - __ delayed()->btst(JVM_ACC_STATIC, O1); - __ ld_ptr(XXX_STATE(_locals), O1); - __ br( Assembler::zero, true, Assembler::pt, got_obj); - __ delayed()->ld_ptr(O1, 0, O1); // get receiver for not-static case - __ ld_ptr(constMethod, O1); - __ ld_ptr( O1, in_bytes(ConstMethod::constants_offset()), O1); - __ ld_ptr( O1, ConstantPool::pool_holder_offset_in_bytes(), O1); - // lock the mirror, not the Klass* - __ ld_ptr( O1, mirror_offset, O1); - - __ bind(got_obj); - - #ifdef ASSERT - __ tst(O1); - __ breakpoint_trap(Assembler::zero, Assembler::ptr_cc); - #endif // ASSERT - - const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; - __ sub(SP, entry_size, SP); // account for initial monitor - __ sub(O2, entry_size, O2); // initial monitor - __ st_ptr(O1, O2, BasicObjectLock::obj_offset_in_bytes()); // and allocate it for interpreter use - __ bind(done); - } - - // Remember initial frame bottom - - __ st_ptr(SP, XXX_STATE(_frame_bottom)); - - __ st_ptr(O2, XXX_STATE(_stack_base)); - - __ sub(O2, wordSize, O2); // prepush - __ st_ptr(O2, XXX_STATE(_stack)); // PREPUSH - - // Full size expression stack - __ ld_ptr(constMethod, O3); - __ lduh(O3, in_bytes(ConstMethod::max_stack_offset()), O3); - __ inc(O3, Method::extra_stack_entries()); - __ sll(O3, LogBytesPerWord, O3); - __ sub(O2, O3, O3); -// __ sub(O3, wordSize, O3); // so prepush doesn't look out of bounds - __ st_ptr(O3, XXX_STATE(_stack_limit)); - - if (!native) { - // - // Code to initialize locals - // - Register init_value = noreg; // will be G0 if we must clear locals - // Now zero locals - if (true /* zerolocals */ || ClearInterpreterLocals) { - // explicitly initialize locals - init_value = G0; - } else { - #ifdef ASSERT - // initialize locals to a garbage pattern for better debugging - init_value = O3; - __ set( 0x0F0F0F0F, init_value ); - #endif // ASSERT - } - if (init_value != noreg) { - Label clear_loop; - const Register RconstMethod = O1; - const Address size_of_parameters(RconstMethod, in_bytes(ConstMethod::size_of_parameters_offset())); - const Address size_of_locals (RconstMethod, in_bytes(ConstMethod::size_of_locals_offset())); - - // NOTE: If you change the frame layout, this code will need to - // be updated! - __ ld_ptr( constMethod, RconstMethod ); - __ lduh( size_of_locals, O2 ); - __ lduh( size_of_parameters, O1 ); - __ sll( O2, LogBytesPerWord, O2); - __ sll( O1, LogBytesPerWord, O1 ); - __ ld_ptr(XXX_STATE(_locals), L2_scratch); - __ sub( L2_scratch, O2, O2 ); - __ sub( L2_scratch, O1, O1 ); - - __ bind( clear_loop ); - __ inc( O2, wordSize ); - - __ cmp( O2, O1 ); - __ br( Assembler::lessEqualUnsigned, true, Assembler::pt, clear_loop ); - __ delayed()->st_ptr( init_value, O2, 0 ); - } - } -} -// Find preallocated monitor and lock method (C++ interpreter) -// -void CppInterpreterGenerator::lock_method() { -// Lock the current method. -// Destroys registers L2_scratch, L3_scratch, O0 -// -// Find everything relative to Lstate - -#ifdef ASSERT - __ ld_ptr(STATE(_method), L2_scratch); - __ ld(L2_scratch, in_bytes(Method::access_flags_offset()), O0); - - { Label ok; - __ btst(JVM_ACC_SYNCHRONIZED, O0); - __ br( Assembler::notZero, false, Assembler::pt, ok); - __ delayed()->nop(); - __ stop("method doesn't need synchronization"); - __ bind(ok); - } -#endif // ASSERT - - // monitor is already allocated at stack base - // and the lockee is already present - __ ld_ptr(STATE(_stack_base), L2_scratch); - __ ld_ptr(L2_scratch, BasicObjectLock::obj_offset_in_bytes(), O0); // get object - __ lock_object(L2_scratch, O0); - -} - -// Generate code for handling resuming a deopted method -void CppInterpreterGenerator::generate_deopt_handling() { - - Label return_from_deopt_common; - - // deopt needs to jump to here to enter the interpreter (return a result) - deopt_frame_manager_return_atos = __ pc(); - - // O0/O1 live - __ ba(return_from_deopt_common); - __ delayed()->set(AbstractInterpreter::BasicType_as_index(T_OBJECT), L3_scratch); // Result stub address array index - - - // deopt needs to jump to here to enter the interpreter (return a result) - deopt_frame_manager_return_btos = __ pc(); - - // O0/O1 live - __ ba(return_from_deopt_common); - __ delayed()->set(AbstractInterpreter::BasicType_as_index(T_BOOLEAN), L3_scratch); // Result stub address array index - - // deopt needs to jump to here to enter the interpreter (return a result) - deopt_frame_manager_return_itos = __ pc(); - - // O0/O1 live - __ ba(return_from_deopt_common); - __ delayed()->set(AbstractInterpreter::BasicType_as_index(T_INT), L3_scratch); // Result stub address array index - - // deopt needs to jump to here to enter the interpreter (return a result) - - deopt_frame_manager_return_ltos = __ pc(); -#if !defined(_LP64) && defined(COMPILER2) - // All return values are where we want them, except for Longs. C2 returns - // longs in G1 in the 32-bit build whereas the interpreter wants them in O0/O1. - // Since the interpreter will return longs in G1 and O0/O1 in the 32bit - // build even if we are returning from interpreted we just do a little - // stupid shuffing. - // Note: I tried to make c2 return longs in O0/O1 and G1 so we wouldn't have to - // do this here. Unfortunately if we did a rethrow we'd see an machepilog node - // first which would move g1 -> O0/O1 and destroy the exception we were throwing. - - __ srl (G1, 0,O1); - __ srlx(G1,32,O0); -#endif /* !_LP64 && COMPILER2 */ - // O0/O1 live - __ ba(return_from_deopt_common); - __ delayed()->set(AbstractInterpreter::BasicType_as_index(T_LONG), L3_scratch); // Result stub address array index - - // deopt needs to jump to here to enter the interpreter (return a result) - - deopt_frame_manager_return_ftos = __ pc(); - // O0/O1 live - __ ba(return_from_deopt_common); - __ delayed()->set(AbstractInterpreter::BasicType_as_index(T_FLOAT), L3_scratch); // Result stub address array index - - // deopt needs to jump to here to enter the interpreter (return a result) - deopt_frame_manager_return_dtos = __ pc(); - - // O0/O1 live - __ ba(return_from_deopt_common); - __ delayed()->set(AbstractInterpreter::BasicType_as_index(T_DOUBLE), L3_scratch); // Result stub address array index - - // deopt needs to jump to here to enter the interpreter (return a result) - deopt_frame_manager_return_vtos = __ pc(); - - // O0/O1 live - __ set(AbstractInterpreter::BasicType_as_index(T_VOID), L3_scratch); - - // Deopt return common - // an index is present that lets us move any possible result being - // return to the interpreter's stack - // - __ bind(return_from_deopt_common); - - // Result if any is in native abi result (O0..O1/F0..F1). The java expression - // stack is in the state that the calling convention left it. - // Copy the result from native abi result and place it on java expression stack. - - // Current interpreter state is present in Lstate - - // Get current pre-pushed top of interpreter stack - // Any result (if any) is in native abi - // result type index is in L3_scratch - - __ ld_ptr(STATE(_stack), L1_scratch); // get top of java expr stack - - __ set((intptr_t)CppInterpreter::_tosca_to_stack, L4_scratch); - __ sll(L3_scratch, LogBytesPerWord, L3_scratch); - __ ld_ptr(L4_scratch, L3_scratch, Lscratch); // get typed result converter address - __ jmpl(Lscratch, G0, O7); // and convert it - __ delayed()->nop(); - - // L1_scratch points to top of stack (prepushed) - __ st_ptr(L1_scratch, STATE(_stack)); -} - -// Generate the code to handle a more_monitors message from the c++ interpreter -void CppInterpreterGenerator::generate_more_monitors() { - - Label entry, loop; - const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; - // 1. compute new pointers // esp: old expression stack top - __ delayed()->ld_ptr(STATE(_stack_base), L4_scratch); // current expression stack bottom - __ sub(L4_scratch, entry_size, L4_scratch); - __ st_ptr(L4_scratch, STATE(_stack_base)); - - __ sub(SP, entry_size, SP); // Grow stack - __ st_ptr(SP, STATE(_frame_bottom)); - - __ ld_ptr(STATE(_stack_limit), L2_scratch); - __ sub(L2_scratch, entry_size, L2_scratch); - __ st_ptr(L2_scratch, STATE(_stack_limit)); - - __ ld_ptr(STATE(_stack), L1_scratch); // Get current stack top - __ sub(L1_scratch, entry_size, L1_scratch); - __ st_ptr(L1_scratch, STATE(_stack)); - __ ba(entry); - __ delayed()->add(L1_scratch, wordSize, L1_scratch); // first real entry (undo prepush) - - // 2. move expression stack - - __ bind(loop); - __ st_ptr(L3_scratch, Address(L1_scratch, 0)); - __ add(L1_scratch, wordSize, L1_scratch); - __ bind(entry); - __ cmp(L1_scratch, L4_scratch); - __ br(Assembler::notEqual, false, Assembler::pt, loop); - __ delayed()->ld_ptr(L1_scratch, entry_size, L3_scratch); - - // now zero the slot so we can find it. - __ st_ptr(G0, L4_scratch, BasicObjectLock::obj_offset_in_bytes()); - -} - -// Initial entry to C++ interpreter from the call_stub. -// This entry point is called the frame manager since it handles the generation -// of interpreter activation frames via requests directly from the vm (via call_stub) -// and via requests from the interpreter. The requests from the call_stub happen -// directly thru the entry point. Requests from the interpreter happen via returning -// from the interpreter and examining the message the interpreter has returned to -// the frame manager. The frame manager can take the following requests: - -// NO_REQUEST - error, should never happen. -// MORE_MONITORS - need a new monitor. Shuffle the expression stack on down and -// allocate a new monitor. -// CALL_METHOD - setup a new activation to call a new method. Very similar to what -// happens during entry during the entry via the call stub. -// RETURN_FROM_METHOD - remove an activation. Return to interpreter or call stub. -// -// Arguments: -// -// ebx: Method* -// ecx: receiver - unused (retrieved from stack as needed) -// esi: previous frame manager state (NULL from the call_stub/c1/c2) -// -// -// Stack layout at entry -// -// [ return address ] <--- esp -// [ parameter n ] -// ... -// [ parameter 1 ] -// [ expression stack ] -// -// -// We are free to blow any registers we like because the call_stub which brought us here -// initially has preserved the callee save registers already. -// -// - -static address interpreter_frame_manager = NULL; - -#ifdef ASSERT - #define VALIDATE_STATE(scratch, marker) \ - { \ - Label skip; \ - __ ld_ptr(STATE(_self_link), scratch); \ - __ cmp(Lstate, scratch); \ - __ brx(Assembler::equal, false, Assembler::pt, skip); \ - __ delayed()->nop(); \ - __ breakpoint_trap(); \ - __ emit_int32(marker); \ - __ bind(skip); \ - } -#else - #define VALIDATE_STATE(scratch, marker) -#endif /* ASSERT */ - -void CppInterpreterGenerator::adjust_callers_stack(Register args) { -// -// Adjust caller's stack so that all the locals can be contiguous with -// the parameters. -// Worries about stack overflow make this a pain. -// -// Destroys args, G3_scratch, G3_scratch -// In/Out O5_savedSP (sender's original SP) -// -// assert_different_registers(state, prev_state); - const Register Gtmp = G3_scratch; - const Register RconstMethod = G3_scratch; - const Register tmp = O2; - const Address constMethod(G5_method, in_bytes(Method::const_offset())); - const Address size_of_parameters(RconstMethod, in_bytes(ConstMethod::size_of_parameters_offset())); - const Address size_of_locals (RconstMethod, in_bytes(ConstMethod::size_of_locals_offset())); - - __ ld_ptr(constMethod, RconstMethod); - __ lduh(size_of_parameters, tmp); - __ sll(tmp, LogBytesPerWord, Gargs); // parameter size in bytes - __ add(args, Gargs, Gargs); // points to first local + BytesPerWord - // NEW - __ add(Gargs, -wordSize, Gargs); // points to first local[0] - // determine extra space for non-argument locals & adjust caller's SP - // Gtmp1: parameter size in words - __ lduh(size_of_locals, Gtmp); - __ compute_extra_locals_size_in_bytes(tmp, Gtmp, Gtmp); - -#if 1 - // c2i adapters place the final interpreter argument in the register save area for O0/I0 - // the call_stub will place the final interpreter argument at - // frame::memory_parameter_word_sp_offset. This is mostly not noticable for either asm - // or c++ interpreter. However with the c++ interpreter when we do a recursive call - // and try to make it look good in the debugger we will store the argument to - // RecursiveInterpreterActivation in the register argument save area. Without allocating - // extra space for the compiler this will overwrite locals in the local array of the - // interpreter. - // QQQ still needed with frameless adapters??? - - const int c2i_adjust_words = frame::memory_parameter_word_sp_offset - frame::callee_register_argument_save_area_sp_offset; - - __ add(Gtmp, c2i_adjust_words*wordSize, Gtmp); -#endif // 1 - - - __ sub(SP, Gtmp, SP); // just caller's frame for the additional space we need. -} - -address InterpreterGenerator::generate_normal_entry(bool synchronized) { - - // G5_method: Method* - // G2_thread: thread (unused) - // Gargs: bottom of args (sender_sp) - // O5: sender's sp - - // A single frame manager is plenty as we don't specialize for synchronized. We could and - // the code is pretty much ready. Would need to change the test below and for good measure - // modify generate_interpreter_state to only do the (pre) sync stuff stuff for synchronized - // routines. Not clear this is worth it yet. - - if (interpreter_frame_manager) { - return interpreter_frame_manager; - } - - __ bind(frame_manager_entry); - - // the following temporary registers are used during frame creation - const Register Gtmp1 = G3_scratch; - // const Register Lmirror = L1; // native mirror (native calls only) - - const Address constMethod (G5_method, in_bytes(Method::const_offset())); - const Address access_flags (G5_method, in_bytes(Method::access_flags_offset())); - - address entry_point = __ pc(); - __ mov(G0, prevState); // no current activation - - - Label re_dispatch; - - __ bind(re_dispatch); - - // Interpreter needs to have locals completely contiguous. In order to do that - // We must adjust the caller's stack pointer for any locals beyond just the - // parameters - adjust_callers_stack(Gargs); - - // O5_savedSP still contains sender's sp - - // NEW FRAME - - generate_compute_interpreter_state(Lstate, prevState, false); - - // At this point a new interpreter frame and state object are created and initialized - // Lstate has the pointer to the new activation - // Any stack banging or limit check should already be done. - - Label call_interpreter; - - __ bind(call_interpreter); - - -#if 1 - __ set(0xdead002, Lmirror); - __ set(0xdead002, L2_scratch); - __ set(0xdead003, L3_scratch); - __ set(0xdead004, L4_scratch); - __ set(0xdead005, Lscratch); - __ set(0xdead006, Lscratch2); - __ set(0xdead007, L7_scratch); - - __ set(0xdeaf002, O2); - __ set(0xdeaf003, O3); - __ set(0xdeaf004, O4); - __ set(0xdeaf005, O5); -#endif - - // Call interpreter (stack bang complete) enter here if message is - // set and we know stack size is valid - - Label call_interpreter_2; - - __ bind(call_interpreter_2); - -#ifdef ASSERT - { - Label skip; - __ ld_ptr(STATE(_frame_bottom), G3_scratch); - __ cmp(G3_scratch, SP); - __ brx(Assembler::equal, false, Assembler::pt, skip); - __ delayed()->nop(); - __ stop("SP not restored to frame bottom"); - __ bind(skip); - } -#endif - - VALIDATE_STATE(G3_scratch, 4); - __ set_last_Java_frame(SP, noreg); - __ mov(Lstate, O0); // (arg) pointer to current state - - __ call(CAST_FROM_FN_PTR(address, - JvmtiExport::can_post_interpreter_events() ? - BytecodeInterpreter::runWithChecks - : BytecodeInterpreter::run), - relocInfo::runtime_call_type); - - __ delayed()->nop(); - - __ ld_ptr(STATE(_thread), G2_thread); - __ reset_last_Java_frame(); - - // examine msg from interpreter to determine next action - __ ld_ptr(STATE(_thread), G2_thread); // restore G2_thread - - __ ld(STATE(_msg), L1_scratch); // Get new message - - Label call_method; - Label return_from_interpreted_method; - Label throw_exception; - Label do_OSR; - Label bad_msg; - Label resume_interpreter; - - __ cmp(L1_scratch, (int)BytecodeInterpreter::call_method); - __ br(Assembler::equal, false, Assembler::pt, call_method); - __ delayed()->cmp(L1_scratch, (int)BytecodeInterpreter::return_from_method); - __ br(Assembler::equal, false, Assembler::pt, return_from_interpreted_method); - __ delayed()->cmp(L1_scratch, (int)BytecodeInterpreter::throwing_exception); - __ br(Assembler::equal, false, Assembler::pt, throw_exception); - __ delayed()->cmp(L1_scratch, (int)BytecodeInterpreter::do_osr); - __ br(Assembler::equal, false, Assembler::pt, do_OSR); - __ delayed()->cmp(L1_scratch, (int)BytecodeInterpreter::more_monitors); - __ br(Assembler::notEqual, false, Assembler::pt, bad_msg); - - // Allocate more monitor space, shuffle expression stack.... - - generate_more_monitors(); - - // new monitor slot allocated, resume the interpreter. - - __ set((int)BytecodeInterpreter::got_monitors, L1_scratch); - VALIDATE_STATE(G3_scratch, 5); - __ ba(call_interpreter); - __ delayed()->st(L1_scratch, STATE(_msg)); - - // uncommon trap needs to jump to here to enter the interpreter (re-execute current bytecode) - unctrap_frame_manager_entry = __ pc(); - - // QQQ what message do we send - - __ ba(call_interpreter); - __ delayed()->ld_ptr(STATE(_frame_bottom), SP); // restore to full stack frame - - //============================================================================= - // Returning from a compiled method into a deopted method. The bytecode at the - // bcp has completed. The result of the bytecode is in the native abi (the tosca - // for the template based interpreter). Any stack space that was used by the - // bytecode that has completed has been removed (e.g. parameters for an invoke) - // so all that we have to do is place any pending result on the expression stack - // and resume execution on the next bytecode. - - generate_deopt_handling(); - - // ready to resume the interpreter - - __ set((int)BytecodeInterpreter::deopt_resume, L1_scratch); - __ ba(call_interpreter); - __ delayed()->st(L1_scratch, STATE(_msg)); - - // Current frame has caught an exception we need to dispatch to the - // handler. We can get here because a native interpreter frame caught - // an exception in which case there is no handler and we must rethrow - // If it is a vanilla interpreted frame the we simply drop into the - // interpreter and let it do the lookup. - - Interpreter::_rethrow_exception_entry = __ pc(); - - Label return_with_exception; - Label unwind_and_forward; - - // O0: exception - // O7: throwing pc - - // We want exception in the thread no matter what we ultimately decide about frame type. - - Address exception_addr (G2_thread, in_bytes(Thread::pending_exception_offset())); - __ verify_thread(); - __ st_ptr(O0, exception_addr); - - // get the Method* - __ ld_ptr(STATE(_method), G5_method); - - // if this current frame vanilla or native? - - __ ld(access_flags, Gtmp1); - __ btst(JVM_ACC_NATIVE, Gtmp1); - __ br(Assembler::zero, false, Assembler::pt, return_with_exception); // vanilla interpreted frame handle directly - __ delayed()->nop(); - - // We drop thru to unwind a native interpreted frame with a pending exception - // We jump here for the initial interpreter frame with exception pending - // We unwind the current acivation and forward it to our caller. - - __ bind(unwind_and_forward); - - // Unwind frame and jump to forward exception. unwinding will place throwing pc in O7 - // as expected by forward_exception. - - __ restore(FP, G0, SP); // unwind interpreter state frame - __ br(Assembler::always, false, Assembler::pt, StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type); - __ delayed()->mov(I5_savedSP->after_restore(), SP); - - // Return point from a call which returns a result in the native abi - // (c1/c2/jni-native). This result must be processed onto the java - // expression stack. - // - // A pending exception may be present in which case there is no result present - - address return_from_native_method = __ pc(); - - VALIDATE_STATE(G3_scratch, 6); - - // Result if any is in native abi result (O0..O1/F0..F1). The java expression - // stack is in the state that the calling convention left it. - // Copy the result from native abi result and place it on java expression stack. - - // Current interpreter state is present in Lstate - - // Exception pending? - - __ ld_ptr(STATE(_frame_bottom), SP); // restore to full stack frame - __ ld_ptr(exception_addr, Lscratch); // get any pending exception - __ tst(Lscratch); // exception pending? - __ brx(Assembler::notZero, false, Assembler::pt, return_with_exception); - __ delayed()->nop(); - - // Process the native abi result to java expression stack - - __ ld_ptr(STATE(_result._to_call._callee), L4_scratch); // called method - __ ld_ptr(STATE(_stack), L1_scratch); // get top of java expr stack - // get parameter size - __ ld_ptr(L4_scratch, in_bytes(Method::const_offset()), L2_scratch); - __ lduh(L2_scratch, in_bytes(ConstMethod::size_of_parameters_offset()), L2_scratch); - __ sll(L2_scratch, LogBytesPerWord, L2_scratch ); // parameter size in bytes - __ add(L1_scratch, L2_scratch, L1_scratch); // stack destination for result - __ ld(L4_scratch, in_bytes(Method::result_index_offset()), L3_scratch); // called method result type index - - // tosca is really just native abi - __ set((intptr_t)CppInterpreter::_tosca_to_stack, L4_scratch); - __ sll(L3_scratch, LogBytesPerWord, L3_scratch); - __ ld_ptr(L4_scratch, L3_scratch, Lscratch); // get typed result converter address - __ jmpl(Lscratch, G0, O7); // and convert it - __ delayed()->nop(); - - // L1_scratch points to top of stack (prepushed) - - __ ba(resume_interpreter); - __ delayed()->mov(L1_scratch, O1); - - // An exception is being caught on return to a vanilla interpreter frame. - // Empty the stack and resume interpreter - - __ bind(return_with_exception); - - __ ld_ptr(STATE(_frame_bottom), SP); // restore to full stack frame - __ ld_ptr(STATE(_stack_base), O1); // empty java expression stack - __ ba(resume_interpreter); - __ delayed()->sub(O1, wordSize, O1); // account for prepush - - // Return from interpreted method we return result appropriate to the caller (i.e. "recursive" - // interpreter call, or native) and unwind this interpreter activation. - // All monitors should be unlocked. - - __ bind(return_from_interpreted_method); - - VALIDATE_STATE(G3_scratch, 7); - - Label return_to_initial_caller; - - // Interpreted result is on the top of the completed activation expression stack. - // We must return it to the top of the callers stack if caller was interpreted - // otherwise we convert to native abi result and return to call_stub/c1/c2 - // The caller's expression stack was truncated by the call however the current activation - // has enough stuff on the stack that we have usable space there no matter what. The - // other thing that makes it easy is that the top of the caller's stack is stored in STATE(_locals) - // for the current activation - - __ ld_ptr(STATE(_prev_link), L1_scratch); - __ ld_ptr(STATE(_method), L2_scratch); // get method just executed - __ ld(L2_scratch, in_bytes(Method::result_index_offset()), L2_scratch); - __ tst(L1_scratch); - __ brx(Assembler::zero, false, Assembler::pt, return_to_initial_caller); - __ delayed()->sll(L2_scratch, LogBytesPerWord, L2_scratch); - - // Copy result to callers java stack - - __ set((intptr_t)CppInterpreter::_stack_to_stack, L4_scratch); - __ ld_ptr(L4_scratch, L2_scratch, Lscratch); // get typed result converter address - __ ld_ptr(STATE(_stack), O0); // current top (prepushed) - __ ld_ptr(STATE(_locals), O1); // stack destination - - // O0 - will be source, O1 - will be destination (preserved) - __ jmpl(Lscratch, G0, O7); // and convert it - __ delayed()->add(O0, wordSize, O0); // get source (top of current expr stack) - - // O1 == &locals[0] - - // Result is now on caller's stack. Just unwind current activation and resume - - Label unwind_recursive_activation; - - - __ bind(unwind_recursive_activation); - - // O1 == &locals[0] (really callers stacktop) for activation now returning - // returning to interpreter method from "recursive" interpreter call - // result converter left O1 pointing to top of the( prepushed) java stack for method we are returning - // to. Now all we must do is unwind the state from the completed call - - // Must restore stack - VALIDATE_STATE(G3_scratch, 8); - - // Return to interpreter method after a method call (interpreted/native/c1/c2) has completed. - // Result if any is already on the caller's stack. All we must do now is remove the now dead - // frame and tell interpreter to resume. - - - __ mov(O1, I1); // pass back new stack top across activation - // POP FRAME HERE ================================== - __ restore(FP, G0, SP); // unwind interpreter state frame - __ ld_ptr(STATE(_frame_bottom), SP); // restore to full stack frame - - - // Resume the interpreter. The current frame contains the current interpreter - // state object. - // - // O1 == new java stack pointer - - __ bind(resume_interpreter); - VALIDATE_STATE(G3_scratch, 10); - - // A frame we have already used before so no need to bang stack so use call_interpreter_2 entry - - __ set((int)BytecodeInterpreter::method_resume, L1_scratch); - __ st(L1_scratch, STATE(_msg)); - __ ba(call_interpreter_2); - __ delayed()->st_ptr(O1, STATE(_stack)); - - // interpreter returning to native code (call_stub/c1/c2) - // convert result and unwind initial activation - // L2_scratch - scaled result type index - - __ bind(return_to_initial_caller); - - __ set((intptr_t)CppInterpreter::_stack_to_native_abi, L4_scratch); - __ ld_ptr(L4_scratch, L2_scratch, Lscratch); // get typed result converter address - __ ld_ptr(STATE(_stack), O0); // current top (prepushed) - __ jmpl(Lscratch, G0, O7); // and convert it - __ delayed()->add(O0, wordSize, O0); // get source (top of current expr stack) - - Label unwind_initial_activation; - __ bind(unwind_initial_activation); - - // RETURN TO CALL_STUB/C1/C2 code (result if any in I0..I1/(F0/..F1) - // we can return here with an exception that wasn't handled by interpreted code - // how does c1/c2 see it on return? - - // compute resulting sp before/after args popped depending upon calling convention - // __ ld_ptr(STATE(_saved_sp), Gtmp1); - // - // POP FRAME HERE ================================== - __ restore(FP, G0, SP); - __ retl(); - __ delayed()->mov(I5_savedSP->after_restore(), SP); - - // OSR request, unwind the current frame and transfer to the OSR entry - // and enter OSR nmethod - - __ bind(do_OSR); - Label remove_initial_frame; - __ ld_ptr(STATE(_prev_link), L1_scratch); - __ ld_ptr(STATE(_result._osr._osr_buf), G1_scratch); - - // We are going to pop this frame. Is there another interpreter frame underneath - // it or is it callstub/compiled? - - __ tst(L1_scratch); - __ brx(Assembler::zero, false, Assembler::pt, remove_initial_frame); - __ delayed()->ld_ptr(STATE(_result._osr._osr_entry), G3_scratch); - - // Frame underneath is an interpreter frame simply unwind - // POP FRAME HERE ================================== - __ restore(FP, G0, SP); // unwind interpreter state frame - __ mov(I5_savedSP->after_restore(), SP); - - // Since we are now calling native need to change our "return address" from the - // dummy RecursiveInterpreterActivation to a return from native - - __ set((intptr_t)return_from_native_method - 8, O7); - - __ jmpl(G3_scratch, G0, G0); - __ delayed()->mov(G1_scratch, O0); - - __ bind(remove_initial_frame); - - // POP FRAME HERE ================================== - __ restore(FP, G0, SP); - __ mov(I5_savedSP->after_restore(), SP); - __ jmpl(G3_scratch, G0, G0); - __ delayed()->mov(G1_scratch, O0); - - // Call a new method. All we do is (temporarily) trim the expression stack - // push a return address to bring us back to here and leap to the new entry. - // At this point we have a topmost frame that was allocated by the frame manager - // which contains the current method interpreted state. We trim this frame - // of excess java expression stack entries and then recurse. - - __ bind(call_method); - - // stack points to next free location and not top element on expression stack - // method expects sp to be pointing to topmost element - - __ ld_ptr(STATE(_thread), G2_thread); - __ ld_ptr(STATE(_result._to_call._callee), G5_method); - - - // SP already takes in to account the 2 extra words we use for slop - // when we call a "static long no_params()" method. So if - // we trim back sp by the amount of unused java expression stack - // there will be automagically the 2 extra words we need. - // We also have to worry about keeping SP aligned. - - __ ld_ptr(STATE(_stack), Gargs); - __ ld_ptr(STATE(_stack_limit), L1_scratch); - - // compute the unused java stack size - __ sub(Gargs, L1_scratch, L2_scratch); // compute unused space - - // Round down the unused space to that stack is always 16-byte aligned - // by making the unused space a multiple of the size of two longs. - - __ and3(L2_scratch, -2*BytesPerLong, L2_scratch); - - // Now trim the stack - __ add(SP, L2_scratch, SP); - - - // Now point to the final argument (account for prepush) - __ add(Gargs, wordSize, Gargs); -#ifdef ASSERT - // Make sure we have space for the window - __ sub(Gargs, SP, L1_scratch); - __ cmp(L1_scratch, 16*wordSize); - { - Label skip; - __ brx(Assembler::greaterEqual, false, Assembler::pt, skip); - __ delayed()->nop(); - __ stop("killed stack"); - __ bind(skip); - } -#endif // ASSERT - - // Create a new frame where we can store values that make it look like the interpreter - // really recursed. - - // prepare to recurse or call specialized entry - - // First link the registers we need - - // make the pc look good in debugger - __ set(CAST_FROM_FN_PTR(intptr_t, RecursiveInterpreterActivation), O7); - // argument too - __ mov(Lstate, I0); - - // Record our sending SP - __ mov(SP, O5_savedSP); - - __ ld_ptr(STATE(_result._to_call._callee_entry_point), L2_scratch); - __ set((intptr_t) entry_point, L1_scratch); - __ cmp(L1_scratch, L2_scratch); - __ brx(Assembler::equal, false, Assembler::pt, re_dispatch); - __ delayed()->mov(Lstate, prevState); // link activations - - // method uses specialized entry, push a return so we look like call stub setup - // this path will handle fact that result is returned in registers and not - // on the java stack. - - __ set((intptr_t)return_from_native_method - 8, O7); - __ jmpl(L2_scratch, G0, G0); // Do specialized entry - __ delayed()->nop(); - - // - // Bad Message from interpreter - // - __ bind(bad_msg); - __ stop("Bad message from interpreter"); - - // Interpreted method "returned" with an exception pass it on... - // Pass result, unwind activation and continue/return to interpreter/call_stub - // We handle result (if any) differently based on return to interpreter or call_stub - - __ bind(throw_exception); - __ ld_ptr(STATE(_prev_link), L1_scratch); - __ tst(L1_scratch); - __ brx(Assembler::zero, false, Assembler::pt, unwind_and_forward); - __ delayed()->nop(); - - __ ld_ptr(STATE(_locals), O1); // get result of popping callee's args - __ ba(unwind_recursive_activation); - __ delayed()->nop(); - - interpreter_frame_manager = entry_point; - return entry_point; -} - -InterpreterGenerator::InterpreterGenerator(StubQueue* code) - : CppInterpreterGenerator(code) { - generate_all(); // down here so it can be "virtual" -} - - -static int size_activation_helper(int callee_extra_locals, int max_stack, int monitor_size) { - - // Figure out the size of an interpreter frame (in words) given that we have a fully allocated - // expression stack, the callee will have callee_extra_locals (so we can account for - // frame extension) and monitor_size for monitors. Basically we need to calculate - // this exactly like generate_fixed_frame/generate_compute_interpreter_state. - // - // - // The big complicating thing here is that we must ensure that the stack stays properly - // aligned. This would be even uglier if monitor size wasn't modulo what the stack - // needs to be aligned for). We are given that the sp (fp) is already aligned by - // the caller so we must ensure that it is properly aligned for our callee. - // - // Ths c++ interpreter always makes sure that we have a enough extra space on the - // stack at all times to deal with the "stack long no_params()" method issue. This - // is "slop_factor" here. - const int slop_factor = 2; - - const int fixed_size = sizeof(BytecodeInterpreter)/wordSize + // interpreter state object - frame::memory_parameter_word_sp_offset; // register save area + param window - return (round_to(max_stack + - slop_factor + - fixed_size + - monitor_size + - (callee_extra_locals * Interpreter::stackElementWords), WordsPerLong)); - -} - -int AbstractInterpreter::size_top_interpreter_activation(Method* method) { - - // See call_stub code - int call_stub_size = round_to(7 + frame::memory_parameter_word_sp_offset, - WordsPerLong); // 7 + register save area - - // Save space for one monitor to get into the interpreted method in case - // the method is synchronized - int monitor_size = method->is_synchronized() ? - 1*frame::interpreter_frame_monitor_size() : 0; - return size_activation_helper(method->max_locals(), method->max_stack(), - monitor_size) + call_stub_size; -} - -void BytecodeInterpreter::layout_interpreterState(interpreterState to_fill, - frame* caller, - frame* current, - Method* method, - intptr_t* locals, - intptr_t* stack, - intptr_t* stack_base, - intptr_t* monitor_base, - intptr_t* frame_bottom, - bool is_top_frame - ) -{ - // What about any vtable? - // - to_fill->_thread = JavaThread::current(); - // This gets filled in later but make it something recognizable for now - to_fill->_bcp = method->code_base(); - to_fill->_locals = locals; - to_fill->_constants = method->constants()->cache(); - to_fill->_method = method; - to_fill->_mdx = NULL; - to_fill->_stack = stack; - if (is_top_frame && JavaThread::current()->popframe_forcing_deopt_reexecution() ) { - to_fill->_msg = deopt_resume2; - } else { - to_fill->_msg = method_resume; - } - to_fill->_result._to_call._bcp_advance = 0; - to_fill->_result._to_call._callee_entry_point = NULL; // doesn't matter to anyone - to_fill->_result._to_call._callee = NULL; // doesn't matter to anyone - to_fill->_prev_link = NULL; - - // Fill in the registers for the frame - - // Need to install _sender_sp. Actually not too hard in C++! - // When the skeletal frames are layed out we fill in a value - // for _sender_sp. That value is only correct for the oldest - // skeletal frame constructed (because there is only a single - // entry for "caller_adjustment". While the skeletal frames - // exist that is good enough. We correct that calculation - // here and get all the frames correct. - - // to_fill->_sender_sp = locals - (method->size_of_parameters() - 1); - - *current->register_addr(Lstate) = (intptr_t) to_fill; - // skeletal already places a useful value here and this doesn't account - // for alignment so don't bother. - // *current->register_addr(I5_savedSP) = (intptr_t) locals - (method->size_of_parameters() - 1); - - if (caller->is_interpreted_frame()) { - interpreterState prev = caller->get_interpreterState(); - to_fill->_prev_link = prev; - // Make the prev callee look proper - prev->_result._to_call._callee = method; - if (*prev->_bcp == Bytecodes::_invokeinterface) { - prev->_result._to_call._bcp_advance = 5; - } else { - prev->_result._to_call._bcp_advance = 3; - } - } - to_fill->_oop_temp = NULL; - to_fill->_stack_base = stack_base; - // Need +1 here because stack_base points to the word just above the first expr stack entry - // and stack_limit is supposed to point to the word just below the last expr stack entry. - // See generate_compute_interpreter_state. - to_fill->_stack_limit = stack_base - (method->max_stack() + 1); - to_fill->_monitor_base = (BasicObjectLock*) monitor_base; - - // sparc specific - to_fill->_frame_bottom = frame_bottom; - to_fill->_self_link = to_fill; -#ifdef ASSERT - to_fill->_native_fresult = 123456.789; - to_fill->_native_lresult = CONST64(0xdeadcafedeafcafe); -#endif -} - -void BytecodeInterpreter::pd_layout_interpreterState(interpreterState istate, address last_Java_pc, intptr_t* last_Java_fp) { - istate->_last_Java_pc = (intptr_t*) last_Java_pc; -} - -static int frame_size_helper(int max_stack, - int moncount, - int callee_param_size, - int callee_locals_size, - bool is_top_frame, - int& monitor_size, - int& full_frame_words) { - int extra_locals_size = callee_locals_size - callee_param_size; - monitor_size = (sizeof(BasicObjectLock) * moncount) / wordSize; - full_frame_words = size_activation_helper(extra_locals_size, max_stack, monitor_size); - int short_frame_words = size_activation_helper(extra_locals_size, max_stack, monitor_size); - int frame_words = is_top_frame ? full_frame_words : short_frame_words; - - return frame_words; -} - -int AbstractInterpreter::size_activation(int max_stack, - int tempcount, - int extra_args, - int moncount, - int callee_param_size, - int callee_locals_size, - bool is_top_frame) { - assert(extra_args == 0, "NEED TO FIX"); - // NOTE: return size is in words not bytes - // Calculate the amount our frame will be adjust by the callee. For top frame - // this is zero. - - // NOTE: ia64 seems to do this wrong (or at least backwards) in that it - // calculates the extra locals based on itself. Not what the callee does - // to it. So it ignores last_frame_adjust value. Seems suspicious as far - // as getting sender_sp correct. - - int unused_monitor_size = 0; - int unused_full_frame_words = 0; - return frame_size_helper(max_stack, moncount, callee_param_size, callee_locals_size, is_top_frame, - unused_monitor_size, unused_full_frame_words); -} -void AbstractInterpreter::layout_activation(Method* method, - int tempcount, // Number of slots on java expression stack in use - int popframe_extra_args, - int moncount, // Number of active monitors - int caller_actual_parameters, - int callee_param_size, - int callee_locals_size, - frame* caller, - frame* interpreter_frame, - bool is_top_frame, - bool is_bottom_frame) { - assert(popframe_extra_args == 0, "NEED TO FIX"); - // NOTE this code must exactly mimic what InterpreterGenerator::generate_compute_interpreter_state() - // does as far as allocating an interpreter frame. - // Set up the method, locals, and monitors. - // The frame interpreter_frame is guaranteed to be the right size, - // as determined by a previous call to the size_activation() method. - // It is also guaranteed to be walkable even though it is in a skeletal state - // NOTE: tempcount is the current size of the java expression stack. For top most - // frames we will allocate a full sized expression stack and not the curback - // version that non-top frames have. - - int monitor_size = 0; - int full_frame_words = 0; - int frame_words = frame_size_helper(method->max_stack(), moncount, callee_param_size, callee_locals_size, - is_top_frame, monitor_size, full_frame_words); - - /* - We must now fill in all the pieces of the frame. This means both - the interpreterState and the registers. - */ - - // MUCHO HACK - - intptr_t* frame_bottom = interpreter_frame->sp() - (full_frame_words - frame_words); - // 'interpreter_frame->sp()' is unbiased while 'frame_bottom' must be a biased value in 64bit mode. - assert(((intptr_t)frame_bottom & 0xf) == 0, "SP biased in layout_activation"); - frame_bottom = (intptr_t*)((intptr_t)frame_bottom - STACK_BIAS); - - /* Now fillin the interpreterState object */ - - interpreterState cur_state = (interpreterState) ((intptr_t)interpreter_frame->fp() - sizeof(BytecodeInterpreter)); - - - intptr_t* locals; - - // Calculate the postion of locals[0]. This is painful because of - // stack alignment (same as ia64). The problem is that we can - // not compute the location of locals from fp(). fp() will account - // for the extra locals but it also accounts for aligning the stack - // and we can't determine if the locals[0] was misaligned but max_locals - // was enough to have the - // calculate postion of locals. fp already accounts for extra locals. - // +2 for the static long no_params() issue. - - if (caller->is_interpreted_frame()) { - // locals must agree with the caller because it will be used to set the - // caller's tos when we return. - interpreterState prev = caller->get_interpreterState(); - // stack() is prepushed. - locals = prev->stack() + method->size_of_parameters(); - } else { - // Lay out locals block in the caller adjacent to the register window save area. - // - // Compiled frames do not allocate a varargs area which is why this if - // statement is needed. - // - intptr_t* fp = interpreter_frame->fp(); - int local_words = method->max_locals() * Interpreter::stackElementWords; - - if (caller->is_compiled_frame()) { - locals = fp + frame::register_save_words + local_words - 1; - } else { - locals = fp + frame::memory_parameter_word_sp_offset + local_words - 1; - } - - } - // END MUCHO HACK - - intptr_t* monitor_base = (intptr_t*) cur_state; - intptr_t* stack_base = monitor_base - monitor_size; - /* +1 because stack is always prepushed */ - intptr_t* stack = stack_base - (tempcount + 1); - - - BytecodeInterpreter::layout_interpreterState(cur_state, - caller, - interpreter_frame, - method, - locals, - stack, - stack_base, - monitor_base, - frame_bottom, - is_top_frame); - - BytecodeInterpreter::pd_layout_interpreterState(cur_state, interpreter_return_address, interpreter_frame->fp()); -} - -#endif // CC_INTERP