1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "interpreter/bytecodeHistogram.hpp"
  28 #include "interpreter/interpreter.hpp"
  29 #include "interpreter/interpreterRuntime.hpp"
  30 #include "interpreter/interp_masm.hpp"
  31 #include "interpreter/templateInterpreterGenerator.hpp"
  32 #include "interpreter/templateTable.hpp"
  33 #include "oops/arrayOop.hpp"
  34 #include "oops/methodData.hpp"
  35 #include "oops/method.hpp"
  36 #include "oops/oop.inline.hpp"
  37 #include "prims/jvmtiExport.hpp"
  38 #include "prims/jvmtiThreadState.hpp"
  39 #include "runtime/arguments.hpp"
  40 #include "runtime/deoptimization.hpp"
  41 #include "runtime/frame.inline.hpp"
  42 #include "runtime/sharedRuntime.hpp"
  43 #include "runtime/stubRoutines.hpp"
  44 #include "runtime/synchronizer.hpp"
  45 #include "runtime/timer.hpp"
  46 #include "runtime/vframeArray.hpp"
  47 #include "utilities/debug.hpp"
  48 #include "utilities/macros.hpp"
  49 
  50 #ifndef FAST_DISPATCH
  51 #define FAST_DISPATCH 1
  52 #endif
  53 #undef FAST_DISPATCH
  54 
  55 
  56 // Generation of Interpreter
  57 //
  58 // The TemplateInterpreterGenerator generates the interpreter into Interpreter::_code.
  59 
  60 
  61 #define __ _masm->
  62 
  63 
  64 //----------------------------------------------------------------------------------------------------
  65 
  66 
  67 void TemplateInterpreterGenerator::save_native_result(void) {
  68   // result potentially in O0/O1: save it across calls
  69   const Address& l_tmp = InterpreterMacroAssembler::l_tmp;
  70 
  71   // result potentially in F0/F1: save it across calls
  72   const Address& d_tmp = InterpreterMacroAssembler::d_tmp;
  73 
  74   // save and restore any potential method result value around the unlocking operation
  75   __ stf(FloatRegisterImpl::D, F0, d_tmp);
  76 #ifdef _LP64
  77   __ stx(O0, l_tmp);
  78 #else
  79   __ std(O0, l_tmp);
  80 #endif
  81 }
  82 
  83 void TemplateInterpreterGenerator::restore_native_result(void) {
  84   const Address& l_tmp = InterpreterMacroAssembler::l_tmp;
  85   const Address& d_tmp = InterpreterMacroAssembler::d_tmp;
  86 
  87   // Restore any method result value
  88   __ ldf(FloatRegisterImpl::D, d_tmp, F0);
  89 #ifdef _LP64
  90   __ ldx(l_tmp, O0);
  91 #else
  92   __ ldd(l_tmp, O0);
  93 #endif
  94 }
  95 
  96 address TemplateInterpreterGenerator::generate_exception_handler_common(const char* name, const char* message, bool pass_oop) {
  97   assert(!pass_oop || message == NULL, "either oop or message but not both");
  98   address entry = __ pc();
  99   // expression stack must be empty before entering the VM if an exception happened
 100   __ empty_expression_stack();
 101   // load exception object
 102   __ set((intptr_t)name, G3_scratch);
 103   if (pass_oop) {
 104     __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception), G3_scratch, Otos_i);
 105   } else {
 106     __ set((intptr_t)message, G4_scratch);
 107     __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), G3_scratch, G4_scratch);
 108   }
 109   // throw exception
 110   assert(Interpreter::throw_exception_entry() != NULL, "generate it first");
 111   AddressLiteral thrower(Interpreter::throw_exception_entry());
 112   __ jump_to(thrower, G3_scratch);
 113   __ delayed()->nop();
 114   return entry;
 115 }
 116 
 117 address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
 118   address entry = __ pc();
 119   // expression stack must be empty before entering the VM if an exception
 120   // happened
 121   __ empty_expression_stack();
 122   // load exception object
 123   __ call_VM(Oexception,
 124              CAST_FROM_FN_PTR(address,
 125                               InterpreterRuntime::throw_ClassCastException),
 126              Otos_i);
 127   __ should_not_reach_here();
 128   return entry;
 129 }
 130 
 131 
 132 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(const char* name) {
 133   address entry = __ pc();
 134   // expression stack must be empty before entering the VM if an exception happened
 135   __ empty_expression_stack();
 136   // convention: expect aberrant index in register G3_scratch, then shuffle the
 137   // index to G4_scratch for the VM call
 138   __ mov(G3_scratch, G4_scratch);
 139   __ set((intptr_t)name, G3_scratch);
 140   __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException), G3_scratch, G4_scratch);
 141   __ should_not_reach_here();
 142   return entry;
 143 }
 144 
 145 
 146 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
 147   address entry = __ pc();
 148   // expression stack must be empty before entering the VM if an exception happened
 149   __ empty_expression_stack();
 150   __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
 151   __ should_not_reach_here();
 152   return entry;
 153 }
 154 
 155 
 156 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step, size_t index_size) {
 157   address entry = __ pc();
 158 
 159   if (state == atos) {
 160     __ profile_return_type(O0, G3_scratch, G1_scratch);
 161   }
 162 
 163 #if !defined(_LP64) && defined(COMPILER2)
 164   // All return values are where we want them, except for Longs.  C2 returns
 165   // longs in G1 in the 32-bit build whereas the interpreter wants them in O0/O1.
 166   // Since the interpreter will return longs in G1 and O0/O1 in the 32bit
 167   // build even if we are returning from interpreted we just do a little
 168   // stupid shuffing.
 169   // Note: I tried to make c2 return longs in O0/O1 and G1 so we wouldn't have to
 170   // do this here. Unfortunately if we did a rethrow we'd see an machepilog node
 171   // first which would move g1 -> O0/O1 and destroy the exception we were throwing.
 172 
 173   if (state == ltos) {
 174     __ srl (G1,  0, O1);
 175     __ srlx(G1, 32, O0);
 176   }
 177 #endif // !_LP64 && COMPILER2
 178 
 179   // The callee returns with the stack possibly adjusted by adapter transition
 180   // We remove that possible adjustment here.
 181   // All interpreter local registers are untouched. Any result is passed back
 182   // in the O0/O1 or float registers. Before continuing, the arguments must be
 183   // popped from the java expression stack; i.e., Lesp must be adjusted.
 184 
 185   __ mov(Llast_SP, SP);   // Remove any adapter added stack space.
 186 
 187   const Register cache = G3_scratch;
 188   const Register index  = G1_scratch;
 189   __ get_cache_and_index_at_bcp(cache, index, 1, index_size);
 190 
 191   const Register flags = cache;
 192   __ ld_ptr(cache, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset(), flags);
 193   const Register parameter_size = flags;
 194   __ and3(flags, ConstantPoolCacheEntry::parameter_size_mask, parameter_size);  // argument size in words
 195   __ sll(parameter_size, Interpreter::logStackElementSize, parameter_size);     // each argument size in bytes
 196   __ add(Lesp, parameter_size, Lesp);                                           // pop arguments
 197   __ dispatch_next(state, step);
 198 
 199   return entry;
 200 }
 201 
 202 
 203 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, int step) {
 204   address entry = __ pc();
 205   __ get_constant_pool_cache(LcpoolCache); // load LcpoolCache
 206 #if INCLUDE_JVMCI
 207   // Check if we need to take lock at entry of synchronized method.
 208   if (UseJVMCICompiler) {
 209     Label L;
 210     Address pending_monitor_enter_addr(G2_thread, JavaThread::pending_monitorenter_offset());
 211     __ ldbool(pending_monitor_enter_addr, Gtemp);  // Load if pending monitor enter
 212     __ cmp_and_br_short(Gtemp, G0, Assembler::equal, Assembler::pn, L);
 213     // Clear flag.
 214     __ stbool(G0, pending_monitor_enter_addr);
 215     // Take lock.
 216     lock_method();
 217     __ bind(L);
 218   }
 219 #endif
 220   { Label L;
 221     Address exception_addr(G2_thread, Thread::pending_exception_offset());
 222     __ ld_ptr(exception_addr, Gtemp);  // Load pending exception.
 223     __ br_null_short(Gtemp, Assembler::pt, L);
 224     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception));
 225     __ should_not_reach_here();
 226     __ bind(L);
 227   }
 228   __ dispatch_next(state, step);
 229   return entry;
 230 }
 231 
 232 // A result handler converts/unboxes a native call result into
 233 // a java interpreter/compiler result. The current frame is an
 234 // interpreter frame. The activation frame unwind code must be
 235 // consistent with that of TemplateTable::_return(...). In the
 236 // case of native methods, the caller's SP was not modified.
 237 address TemplateInterpreterGenerator::generate_result_handler_for(BasicType type) {
 238   address entry = __ pc();
 239   Register Itos_i  = Otos_i ->after_save();
 240   Register Itos_l  = Otos_l ->after_save();
 241   Register Itos_l1 = Otos_l1->after_save();
 242   Register Itos_l2 = Otos_l2->after_save();
 243   switch (type) {
 244     case T_BOOLEAN: __ subcc(G0, O0, G0); __ addc(G0, 0, Itos_i); break; // !0 => true; 0 => false
 245     case T_CHAR   : __ sll(O0, 16, O0); __ srl(O0, 16, Itos_i);   break; // cannot use and3, 0xFFFF too big as immediate value!
 246     case T_BYTE   : __ sll(O0, 24, O0); __ sra(O0, 24, Itos_i);   break;
 247     case T_SHORT  : __ sll(O0, 16, O0); __ sra(O0, 16, Itos_i);   break;
 248     case T_LONG   :
 249 #ifndef _LP64
 250                     __ mov(O1, Itos_l2);  // move other half of long
 251 #endif              // ifdef or no ifdef, fall through to the T_INT case
 252     case T_INT    : __ mov(O0, Itos_i);                         break;
 253     case T_VOID   : /* nothing to do */                         break;
 254     case T_FLOAT  : assert(F0 == Ftos_f, "fix this code" );     break;
 255     case T_DOUBLE : assert(F0 == Ftos_d, "fix this code" );     break;
 256     case T_OBJECT :
 257       __ ld_ptr(FP, (frame::interpreter_frame_oop_temp_offset*wordSize) + STACK_BIAS, Itos_i);
 258       __ verify_oop(Itos_i);
 259       break;
 260     default       : ShouldNotReachHere();
 261   }
 262   __ ret();                           // return from interpreter activation
 263   __ delayed()->restore(I5_savedSP, G0, SP);  // remove interpreter frame
 264   NOT_PRODUCT(__ emit_int32(0);)       // marker for disassembly
 265   return entry;
 266 }
 267 
 268 address TemplateInterpreterGenerator::generate_safept_entry_for(TosState state, address runtime_entry) {
 269   address entry = __ pc();
 270   __ push(state);
 271   __ call_VM(noreg, runtime_entry);
 272   __ dispatch_via(vtos, Interpreter::normal_table(vtos));
 273   return entry;
 274 }
 275 
 276 
 277 address TemplateInterpreterGenerator::generate_continuation_for(TosState state) {
 278   address entry = __ pc();
 279   __ dispatch_next(state);
 280   return entry;
 281 }
 282 
 283 //
 284 // Helpers for commoning out cases in the various type of method entries.
 285 //
 286 
 287 // increment invocation count & check for overflow
 288 //
 289 // Note: checking for negative value instead of overflow
 290 //       so we have a 'sticky' overflow test
 291 //
 292 // Lmethod: method
 293 // ??: invocation counter
 294 //
 295 void TemplateInterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
 296   // Note: In tiered we increment either counters in MethodCounters* or in
 297   // MDO depending if we're profiling or not.
 298   const Register G3_method_counters = G3_scratch;
 299   Label done;
 300 
 301   if (TieredCompilation) {
 302     const int increment = InvocationCounter::count_increment;
 303     Label no_mdo;
 304     if (ProfileInterpreter) {
 305       // If no method data exists, go to profile_continue.
 306       __ ld_ptr(Lmethod, Method::method_data_offset(), G4_scratch);
 307       __ br_null_short(G4_scratch, Assembler::pn, no_mdo);
 308       // Increment counter
 309       Address mdo_invocation_counter(G4_scratch,
 310                                      in_bytes(MethodData::invocation_counter_offset()) +
 311                                      in_bytes(InvocationCounter::counter_offset()));
 312       Address mask(G4_scratch, in_bytes(MethodData::invoke_mask_offset()));
 313       __ increment_mask_and_jump(mdo_invocation_counter, increment, mask,
 314                                  G3_scratch, Lscratch,
 315                                  Assembler::zero, overflow);
 316       __ ba_short(done);
 317     }
 318 
 319     // Increment counter in MethodCounters*
 320     __ bind(no_mdo);
 321     Address invocation_counter(G3_method_counters,
 322             in_bytes(MethodCounters::invocation_counter_offset()) +
 323             in_bytes(InvocationCounter::counter_offset()));
 324     __ get_method_counters(Lmethod, G3_method_counters, done);
 325     Address mask(G3_method_counters, in_bytes(MethodCounters::invoke_mask_offset()));
 326     __ increment_mask_and_jump(invocation_counter, increment, mask,
 327                                G4_scratch, Lscratch,
 328                                Assembler::zero, overflow);
 329     __ bind(done);
 330   } else { // not TieredCompilation
 331     // Update standard invocation counters
 332     __ get_method_counters(Lmethod, G3_method_counters, done);
 333     __ increment_invocation_counter(G3_method_counters, O0, G4_scratch);
 334     if (ProfileInterpreter) {
 335       Address interpreter_invocation_counter(G3_method_counters,
 336             in_bytes(MethodCounters::interpreter_invocation_counter_offset()));
 337       __ ld(interpreter_invocation_counter, G4_scratch);
 338       __ inc(G4_scratch);
 339       __ st(G4_scratch, interpreter_invocation_counter);
 340     }
 341 
 342     if (ProfileInterpreter && profile_method != NULL) {
 343       // Test to see if we should create a method data oop
 344       Address profile_limit(G3_method_counters, in_bytes(MethodCounters::interpreter_profile_limit_offset()));
 345       __ ld(profile_limit, G1_scratch);
 346       __ cmp_and_br_short(O0, G1_scratch, Assembler::lessUnsigned, Assembler::pn, *profile_method_continue);
 347 
 348       // if no method data exists, go to profile_method
 349       __ test_method_data_pointer(*profile_method);
 350     }
 351 
 352     Address invocation_limit(G3_method_counters, in_bytes(MethodCounters::interpreter_invocation_limit_offset()));
 353     __ ld(invocation_limit, G3_scratch);
 354     __ cmp(O0, G3_scratch);
 355     __ br(Assembler::greaterEqualUnsigned, false, Assembler::pn, *overflow); // Far distance
 356     __ delayed()->nop();
 357     __ bind(done);
 358   }
 359 
 360 }
 361 
 362 // Allocate monitor and lock method (asm interpreter)
 363 // ebx - Method*
 364 //
 365 void TemplateInterpreterGenerator::lock_method() {
 366   __ ld(Lmethod, in_bytes(Method::access_flags_offset()), O0);  // Load access flags.
 367 
 368 #ifdef ASSERT
 369  { Label ok;
 370    __ btst(JVM_ACC_SYNCHRONIZED, O0);
 371    __ br( Assembler::notZero, false, Assembler::pt, ok);
 372    __ delayed()->nop();
 373    __ stop("method doesn't need synchronization");
 374    __ bind(ok);
 375   }
 376 #endif // ASSERT
 377 
 378   // get synchronization object to O0
 379   { Label done;
 380     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
 381     __ btst(JVM_ACC_STATIC, O0);
 382     __ br( Assembler::zero, true, Assembler::pt, done);
 383     __ delayed()->ld_ptr(Llocals, Interpreter::local_offset_in_bytes(0), O0); // get receiver for not-static case
 384 
 385     __ ld_ptr( Lmethod, in_bytes(Method::const_offset()), O0);
 386     __ ld_ptr( O0, in_bytes(ConstMethod::constants_offset()), O0);
 387     __ ld_ptr( O0, ConstantPool::pool_holder_offset_in_bytes(), O0);
 388 
 389     // lock the mirror, not the Klass*
 390     __ ld_ptr( O0, mirror_offset, O0);
 391 
 392 #ifdef ASSERT
 393     __ tst(O0);
 394     __ breakpoint_trap(Assembler::zero, Assembler::ptr_cc);
 395 #endif // ASSERT
 396 
 397     __ bind(done);
 398   }
 399 
 400   __ add_monitor_to_stack(true, noreg, noreg);  // allocate monitor elem
 401   __ st_ptr( O0, Lmonitors, BasicObjectLock::obj_offset_in_bytes());   // store object
 402   // __ untested("lock_object from method entry");
 403   __ lock_object(Lmonitors, O0);
 404 }
 405 
 406 
 407 void TemplateInterpreterGenerator::generate_stack_overflow_check(Register Rframe_size,
 408                                                          Register Rscratch,
 409                                                          Register Rscratch2) {
 410   const int page_size = os::vm_page_size();
 411   Label after_frame_check;
 412 
 413   assert_different_registers(Rframe_size, Rscratch, Rscratch2);
 414 
 415   __ set(page_size, Rscratch);
 416   __ cmp_and_br_short(Rframe_size, Rscratch, Assembler::lessEqual, Assembler::pt, after_frame_check);
 417 
 418   // get the stack base, and in debug, verify it is non-zero
 419   __ ld_ptr( G2_thread, Thread::stack_base_offset(), Rscratch );
 420 #ifdef ASSERT
 421   Label base_not_zero;
 422   __ br_notnull_short(Rscratch, Assembler::pn, base_not_zero);
 423   __ stop("stack base is zero in generate_stack_overflow_check");
 424   __ bind(base_not_zero);
 425 #endif
 426 
 427   // get the stack size, and in debug, verify it is non-zero
 428   assert( sizeof(size_t) == sizeof(intptr_t), "wrong load size" );
 429   __ ld_ptr( G2_thread, Thread::stack_size_offset(), Rscratch2 );
 430 #ifdef ASSERT
 431   Label size_not_zero;
 432   __ br_notnull_short(Rscratch2, Assembler::pn, size_not_zero);
 433   __ stop("stack size is zero in generate_stack_overflow_check");
 434   __ bind(size_not_zero);
 435 #endif
 436 
 437   // compute the beginning of the protected zone minus the requested frame size
 438   __ sub( Rscratch, Rscratch2,   Rscratch );
 439   __ set( (StackRedPages+StackYellowPages) * page_size, Rscratch2 );
 440   __ add( Rscratch, Rscratch2,   Rscratch );
 441 
 442   // Add in the size of the frame (which is the same as subtracting it from the
 443   // SP, which would take another register
 444   __ add( Rscratch, Rframe_size, Rscratch );
 445 
 446   // the frame is greater than one page in size, so check against
 447   // the bottom of the stack
 448   __ cmp_and_brx_short(SP, Rscratch, Assembler::greaterUnsigned, Assembler::pt, after_frame_check);
 449 
 450   // the stack will overflow, throw an exception
 451 
 452   // Note that SP is restored to sender's sp (in the delay slot). This
 453   // is necessary if the sender's frame is an extended compiled frame
 454   // (see gen_c2i_adapter()) and safer anyway in case of JSR292
 455   // adaptations.
 456 
 457   // Note also that the restored frame is not necessarily interpreted.
 458   // Use the shared runtime version of the StackOverflowError.
 459   assert(StubRoutines::throw_StackOverflowError_entry() != NULL, "stub not yet generated");
 460   AddressLiteral stub(StubRoutines::throw_StackOverflowError_entry());
 461   __ jump_to(stub, Rscratch);
 462   __ delayed()->mov(O5_savedSP, SP);
 463 
 464   // if you get to here, then there is enough stack space
 465   __ bind( after_frame_check );
 466 }
 467 
 468 
 469 //
 470 // Generate a fixed interpreter frame. This is identical setup for interpreted
 471 // methods and for native methods hence the shared code.
 472 
 473 
 474 //----------------------------------------------------------------------------------------------------
 475 // Stack frame layout
 476 //
 477 // When control flow reaches any of the entry types for the interpreter
 478 // the following holds ->
 479 //
 480 // C2 Calling Conventions:
 481 //
 482 // The entry code below assumes that the following registers are set
 483 // when coming in:
 484 //    G5_method: holds the Method* of the method to call
 485 //    Lesp:    points to the TOS of the callers expression stack
 486 //             after having pushed all the parameters
 487 //
 488 // The entry code does the following to setup an interpreter frame
 489 //   pop parameters from the callers stack by adjusting Lesp
 490 //   set O0 to Lesp
 491 //   compute X = (max_locals - num_parameters)
 492 //   bump SP up by X to accomadate the extra locals
 493 //   compute X = max_expression_stack
 494 //               + vm_local_words
 495 //               + 16 words of register save area
 496 //   save frame doing a save sp, -X, sp growing towards lower addresses
 497 //   set Lbcp, Lmethod, LcpoolCache
 498 //   set Llocals to i0
 499 //   set Lmonitors to FP - rounded_vm_local_words
 500 //   set Lesp to Lmonitors - 4
 501 //
 502 //  The frame has now been setup to do the rest of the entry code
 503 
 504 // Try this optimization:  Most method entries could live in a
 505 // "one size fits all" stack frame without all the dynamic size
 506 // calculations.  It might be profitable to do all this calculation
 507 // statically and approximately for "small enough" methods.
 508 
 509 //-----------------------------------------------------------------------------------------------
 510 
 511 // C1 Calling conventions
 512 //
 513 // Upon method entry, the following registers are setup:
 514 //
 515 // g2 G2_thread: current thread
 516 // g5 G5_method: method to activate
 517 // g4 Gargs  : pointer to last argument
 518 //
 519 //
 520 // Stack:
 521 //
 522 // +---------------+ <--- sp
 523 // |               |
 524 // : reg save area :
 525 // |               |
 526 // +---------------+ <--- sp + 0x40
 527 // |               |
 528 // : extra 7 slots :      note: these slots are not really needed for the interpreter (fix later)
 529 // |               |
 530 // +---------------+ <--- sp + 0x5c
 531 // |               |
 532 // :     free      :
 533 // |               |
 534 // +---------------+ <--- Gargs
 535 // |               |
 536 // :   arguments   :
 537 // |               |
 538 // +---------------+
 539 // |               |
 540 //
 541 //
 542 //
 543 // AFTER FRAME HAS BEEN SETUP for method interpretation the stack looks like:
 544 //
 545 // +---------------+ <--- sp
 546 // |               |
 547 // : reg save area :
 548 // |               |
 549 // +---------------+ <--- sp + 0x40
 550 // |               |
 551 // : extra 7 slots :      note: these slots are not really needed for the interpreter (fix later)
 552 // |               |
 553 // +---------------+ <--- sp + 0x5c
 554 // |               |
 555 // :               :
 556 // |               | <--- Lesp
 557 // +---------------+ <--- Lmonitors (fp - 0x18)
 558 // |   VM locals   |
 559 // +---------------+ <--- fp
 560 // |               |
 561 // : reg save area :
 562 // |               |
 563 // +---------------+ <--- fp + 0x40
 564 // |               |
 565 // : extra 7 slots :      note: these slots are not really needed for the interpreter (fix later)
 566 // |               |
 567 // +---------------+ <--- fp + 0x5c
 568 // |               |
 569 // :     free      :
 570 // |               |
 571 // +---------------+
 572 // |               |
 573 // : nonarg locals :
 574 // |               |
 575 // +---------------+
 576 // |               |
 577 // :   arguments   :
 578 // |               | <--- Llocals
 579 // +---------------+ <--- Gargs
 580 // |               |
 581 
 582 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
 583   //
 584   //
 585   // The entry code sets up a new interpreter frame in 4 steps:
 586   //
 587   // 1) Increase caller's SP by for the extra local space needed:
 588   //    (check for overflow)
 589   //    Efficient implementation of xload/xstore bytecodes requires
 590   //    that arguments and non-argument locals are in a contigously
 591   //    addressable memory block => non-argument locals must be
 592   //    allocated in the caller's frame.
 593   //
 594   // 2) Create a new stack frame and register window:
 595   //    The new stack frame must provide space for the standard
 596   //    register save area, the maximum java expression stack size,
 597   //    the monitor slots (0 slots initially), and some frame local
 598   //    scratch locations.
 599   //
 600   // 3) The following interpreter activation registers must be setup:
 601   //    Lesp       : expression stack pointer
 602   //    Lbcp       : bytecode pointer
 603   //    Lmethod    : method
 604   //    Llocals    : locals pointer
 605   //    Lmonitors  : monitor pointer
 606   //    LcpoolCache: constant pool cache
 607   //
 608   // 4) Initialize the non-argument locals if necessary:
 609   //    Non-argument locals may need to be initialized to NULL
 610   //    for GC to work. If the oop-map information is accurate
 611   //    (in the absence of the JSR problem), no initialization
 612   //    is necessary.
 613   //
 614   // (gri - 2/25/2000)
 615 
 616 
 617   int rounded_vm_local_words = round_to( frame::interpreter_frame_vm_local_words, WordsPerLong );
 618 
 619   const int extra_space =
 620     rounded_vm_local_words +                   // frame local scratch space
 621     Method::extra_stack_entries() +            // extra stack for jsr 292
 622     frame::memory_parameter_word_sp_offset +   // register save area
 623     (native_call ? frame::interpreter_frame_extra_outgoing_argument_words : 0);
 624 
 625   const Register Glocals_size = G3;
 626   const Register RconstMethod = Glocals_size;
 627   const Register Otmp1 = O3;
 628   const Register Otmp2 = O4;
 629   // Lscratch can't be used as a temporary because the call_stub uses
 630   // it to assert that the stack frame was setup correctly.
 631   const Address constMethod       (G5_method, Method::const_offset());
 632   const Address size_of_parameters(RconstMethod, ConstMethod::size_of_parameters_offset());
 633 
 634   __ ld_ptr( constMethod, RconstMethod );
 635   __ lduh( size_of_parameters, Glocals_size);
 636 
 637   // Gargs points to first local + BytesPerWord
 638   // Set the saved SP after the register window save
 639   //
 640   assert_different_registers(Gargs, Glocals_size, Gframe_size, O5_savedSP);
 641   __ sll(Glocals_size, Interpreter::logStackElementSize, Otmp1);
 642   __ add(Gargs, Otmp1, Gargs);
 643 
 644   if (native_call) {
 645     __ calc_mem_param_words( Glocals_size, Gframe_size );
 646     __ add( Gframe_size,  extra_space, Gframe_size);
 647     __ round_to( Gframe_size, WordsPerLong );
 648     __ sll( Gframe_size, LogBytesPerWord, Gframe_size );
 649   } else {
 650 
 651     //
 652     // Compute number of locals in method apart from incoming parameters
 653     //
 654     const Address size_of_locals    (Otmp1, ConstMethod::size_of_locals_offset());
 655     __ ld_ptr( constMethod, Otmp1 );
 656     __ lduh( size_of_locals, Otmp1 );
 657     __ sub( Otmp1, Glocals_size, Glocals_size );
 658     __ round_to( Glocals_size, WordsPerLong );
 659     __ sll( Glocals_size, Interpreter::logStackElementSize, Glocals_size );
 660 
 661     // see if the frame is greater than one page in size. If so,
 662     // then we need to verify there is enough stack space remaining
 663     // Frame_size = (max_stack + extra_space) * BytesPerWord;
 664     __ ld_ptr( constMethod, Gframe_size );
 665     __ lduh( Gframe_size, in_bytes(ConstMethod::max_stack_offset()), Gframe_size );
 666     __ add( Gframe_size, extra_space, Gframe_size );
 667     __ round_to( Gframe_size, WordsPerLong );
 668     __ sll( Gframe_size, Interpreter::logStackElementSize, Gframe_size);
 669 
 670     // Add in java locals size for stack overflow check only
 671     __ add( Gframe_size, Glocals_size, Gframe_size );
 672 
 673     const Register Otmp2 = O4;
 674     assert_different_registers(Otmp1, Otmp2, O5_savedSP);
 675     generate_stack_overflow_check(Gframe_size, Otmp1, Otmp2);
 676 
 677     __ sub( Gframe_size, Glocals_size, Gframe_size);
 678 
 679     //
 680     // bump SP to accomodate the extra locals
 681     //
 682     __ sub( SP, Glocals_size, SP );
 683   }
 684 
 685   //
 686   // now set up a stack frame with the size computed above
 687   //
 688   __ neg( Gframe_size );
 689   __ save( SP, Gframe_size, SP );
 690 
 691   //
 692   // now set up all the local cache registers
 693   //
 694   // NOTE: At this point, Lbyte_code/Lscratch has been modified. Note
 695   // that all present references to Lbyte_code initialize the register
 696   // immediately before use
 697   if (native_call) {
 698     __ mov(G0, Lbcp);
 699   } else {
 700     __ ld_ptr(G5_method, Method::const_offset(), Lbcp);
 701     __ add(Lbcp, in_bytes(ConstMethod::codes_offset()), Lbcp);
 702   }
 703   __ mov( G5_method, Lmethod);                 // set Lmethod
 704   __ get_constant_pool_cache( LcpoolCache );   // set LcpoolCache
 705   __ sub(FP, rounded_vm_local_words * BytesPerWord, Lmonitors ); // set Lmonitors
 706 #ifdef _LP64
 707   __ add( Lmonitors, STACK_BIAS, Lmonitors );   // Account for 64 bit stack bias
 708 #endif
 709   __ sub(Lmonitors, BytesPerWord, Lesp);       // set Lesp
 710 
 711   // setup interpreter activation registers
 712   __ sub(Gargs, BytesPerWord, Llocals);        // set Llocals
 713 
 714   if (ProfileInterpreter) {
 715 #ifdef FAST_DISPATCH
 716     // FAST_DISPATCH and ProfileInterpreter are mutually exclusive since
 717     // they both use I2.
 718     assert(0, "FAST_DISPATCH and +ProfileInterpreter are mutually exclusive");
 719 #endif // FAST_DISPATCH
 720     __ set_method_data_pointer();
 721   }
 722 
 723 }
 724 
 725 // Method entry for java.lang.ref.Reference.get.
 726 address TemplateInterpreterGenerator::generate_Reference_get_entry(void) {
 727 #if INCLUDE_ALL_GCS
 728   // Code: _aload_0, _getfield, _areturn
 729   // parameter size = 1
 730   //
 731   // The code that gets generated by this routine is split into 2 parts:
 732   //    1. The "intrinsified" code for G1 (or any SATB based GC),
 733   //    2. The slow path - which is an expansion of the regular method entry.
 734   //
 735   // Notes:-
 736   // * In the G1 code we do not check whether we need to block for
 737   //   a safepoint. If G1 is enabled then we must execute the specialized
 738   //   code for Reference.get (except when the Reference object is null)
 739   //   so that we can log the value in the referent field with an SATB
 740   //   update buffer.
 741   //   If the code for the getfield template is modified so that the
 742   //   G1 pre-barrier code is executed when the current method is
 743   //   Reference.get() then going through the normal method entry
 744   //   will be fine.
 745   // * The G1 code can, however, check the receiver object (the instance
 746   //   of java.lang.Reference) and jump to the slow path if null. If the
 747   //   Reference object is null then we obviously cannot fetch the referent
 748   //   and so we don't need to call the G1 pre-barrier. Thus we can use the
 749   //   regular method entry code to generate the NPE.
 750   //
 751   // This code is based on generate_accessor_enty.
 752 
 753   address entry = __ pc();
 754 
 755   const int referent_offset = java_lang_ref_Reference::referent_offset;
 756   guarantee(referent_offset > 0, "referent offset not initialized");
 757 
 758   if (UseG1GC) {
 759      Label slow_path;
 760 
 761     // In the G1 code we don't check if we need to reach a safepoint. We
 762     // continue and the thread will safepoint at the next bytecode dispatch.
 763 
 764     // Check if local 0 != NULL
 765     // If the receiver is null then it is OK to jump to the slow path.
 766     __ ld_ptr(Gargs, G0, Otos_i ); // get local 0
 767     // check if local 0 == NULL and go the slow path
 768     __ cmp_and_brx_short(Otos_i, 0, Assembler::equal, Assembler::pn, slow_path);
 769 
 770 
 771     // Load the value of the referent field.
 772     if (Assembler::is_simm13(referent_offset)) {
 773       __ load_heap_oop(Otos_i, referent_offset, Otos_i);
 774     } else {
 775       __ set(referent_offset, G3_scratch);
 776       __ load_heap_oop(Otos_i, G3_scratch, Otos_i);
 777     }
 778 
 779     // Generate the G1 pre-barrier code to log the value of
 780     // the referent field in an SATB buffer. Note with
 781     // these parameters the pre-barrier does not generate
 782     // the load of the previous value
 783 
 784     __ g1_write_barrier_pre(noreg /* obj */, noreg /* index */, 0 /* offset */,
 785                             Otos_i /* pre_val */,
 786                             G3_scratch /* tmp */,
 787                             true /* preserve_o_regs */);
 788 
 789     // _areturn
 790     __ retl();                      // return from leaf routine
 791     __ delayed()->mov(O5_savedSP, SP);
 792 
 793     // Generate regular method entry
 794     __ bind(slow_path);
 795     __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::zerolocals));
 796     return entry;
 797   }
 798 #endif // INCLUDE_ALL_GCS
 799 
 800   // If G1 is not enabled then attempt to go through the accessor entry point
 801   // Reference.get is an accessor
 802   return NULL;
 803 }
 804 
 805 /**
 806  * Method entry for static native methods:
 807  *   int java.util.zip.CRC32.update(int crc, int b)
 808  */
 809 address TemplateInterpreterGenerator::generate_CRC32_update_entry() {
 810 
 811   if (UseCRC32Intrinsics) {
 812     address entry = __ pc();
 813 
 814     Label L_slow_path;
 815     // If we need a safepoint check, generate full interpreter entry.
 816     ExternalAddress state(SafepointSynchronize::address_of_state());
 817     __ set(ExternalAddress(SafepointSynchronize::address_of_state()), O2);
 818     __ set(SafepointSynchronize::_not_synchronized, O3);
 819     __ cmp_and_br_short(O2, O3, Assembler::notEqual, Assembler::pt, L_slow_path);
 820 
 821     // Load parameters
 822     const Register crc   = O0; // initial crc
 823     const Register val   = O1; // byte to update with
 824     const Register table = O2; // address of 256-entry lookup table
 825 
 826     __ ldub(Gargs, 3, val);
 827     __ lduw(Gargs, 8, crc);
 828 
 829     __ set(ExternalAddress(StubRoutines::crc_table_addr()), table);
 830 
 831     __ not1(crc); // ~crc
 832     __ clruwu(crc);
 833     __ update_byte_crc32(crc, val, table);
 834     __ not1(crc); // ~crc
 835 
 836     // result in O0
 837     __ retl();
 838     __ delayed()->nop();
 839 
 840     // generate a vanilla native entry as the slow path
 841     __ bind(L_slow_path);
 842     __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native));
 843     return entry;
 844   }
 845   return NULL;
 846 }
 847 
 848 /**
 849  * Method entry for static native methods:
 850  *   int java.util.zip.CRC32.updateBytes(int crc, byte[] b, int off, int len)
 851  *   int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
 852  */
 853 address TemplateInterpreterGenerator::generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
 854 
 855   if (UseCRC32Intrinsics) {
 856     address entry = __ pc();
 857 
 858     Label L_slow_path;
 859     // If we need a safepoint check, generate full interpreter entry.
 860     ExternalAddress state(SafepointSynchronize::address_of_state());
 861     __ set(ExternalAddress(SafepointSynchronize::address_of_state()), O2);
 862     __ set(SafepointSynchronize::_not_synchronized, O3);
 863     __ cmp_and_br_short(O2, O3, Assembler::notEqual, Assembler::pt, L_slow_path);
 864 
 865     // Load parameters from the stack
 866     const Register crc    = O0; // initial crc
 867     const Register buf    = O1; // source java byte array address
 868     const Register len    = O2; // len
 869     const Register offset = O3; // offset
 870 
 871     // Arguments are reversed on java expression stack
 872     // Calculate address of start element
 873     if (kind == Interpreter::java_util_zip_CRC32_updateByteBuffer) {
 874       __ lduw(Gargs, 0,  len);
 875       __ lduw(Gargs, 8,  offset);
 876       __ ldx( Gargs, 16, buf);
 877       __ lduw(Gargs, 32, crc);
 878       __ add(buf, offset, buf);
 879     } else {
 880       __ lduw(Gargs, 0,  len);
 881       __ lduw(Gargs, 8,  offset);
 882       __ ldx( Gargs, 16, buf);
 883       __ lduw(Gargs, 24, crc);
 884       __ add(buf, arrayOopDesc::base_offset_in_bytes(T_BYTE), buf); // account for the header size
 885       __ add(buf ,offset, buf);
 886     }
 887 
 888     // Call the crc32 kernel
 889     __ MacroAssembler::save_thread(L7_thread_cache);
 890     __ kernel_crc32(crc, buf, len, O3);
 891     __ MacroAssembler::restore_thread(L7_thread_cache);
 892 
 893     // result in O0
 894     __ retl();
 895     __ delayed()->nop();
 896 
 897     // generate a vanilla native entry as the slow path
 898     __ bind(L_slow_path);
 899     __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native));
 900     return entry;
 901   }
 902   return NULL;
 903 }
 904  
 905 // Not supported
 906 address TemplateInterpreterGenerator::generate_CRC32C_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
 907   return NULL;
 908 }
 909 
 910 // Not supported
 911 address TemplateInterpreterGenerator::generate_math_entry(AbstractInterpreter::MethodKind kind) {
 912   return NULL;
 913 }
 914 //
 915 // Interpreter stub for calling a native method. (asm interpreter)
 916 // This sets up a somewhat different looking stack for calling the native method
 917 // than the typical interpreter frame setup.
 918 //
 919 
 920 address TemplateInterpreterGenerator::generate_native_entry(bool synchronized) {
 921   address entry = __ pc();
 922 
 923   // the following temporary registers are used during frame creation
 924   const Register Gtmp1 = G3_scratch ;
 925   const Register Gtmp2 = G1_scratch;
 926   bool inc_counter  = UseCompiler || CountCompiledCalls || LogTouchedMethods;
 927 
 928   // make sure registers are different!
 929   assert_different_registers(G2_thread, G5_method, Gargs, Gtmp1, Gtmp2);
 930 
 931   const Address Laccess_flags(Lmethod, Method::access_flags_offset());
 932 
 933   const Register Glocals_size = G3;
 934   assert_different_registers(Glocals_size, G4_scratch, Gframe_size);
 935 
 936   // make sure method is native & not abstract
 937   // rethink these assertions - they can be simplified and shared (gri 2/25/2000)
 938 #ifdef ASSERT
 939   __ ld(G5_method, Method::access_flags_offset(), Gtmp1);
 940   {
 941     Label L;
 942     __ btst(JVM_ACC_NATIVE, Gtmp1);
 943     __ br(Assembler::notZero, false, Assembler::pt, L);
 944     __ delayed()->nop();
 945     __ stop("tried to execute non-native method as native");
 946     __ bind(L);
 947   }
 948   { Label L;
 949     __ btst(JVM_ACC_ABSTRACT, Gtmp1);
 950     __ br(Assembler::zero, false, Assembler::pt, L);
 951     __ delayed()->nop();
 952     __ stop("tried to execute abstract method as non-abstract");
 953     __ bind(L);
 954   }
 955 #endif // ASSERT
 956 
 957  // generate the code to allocate the interpreter stack frame
 958   generate_fixed_frame(true);
 959 
 960   //
 961   // No locals to initialize for native method
 962   //
 963 
 964   // this slot will be set later, we initialize it to null here just in
 965   // case we get a GC before the actual value is stored later
 966   __ st_ptr(G0, FP, (frame::interpreter_frame_oop_temp_offset * wordSize) + STACK_BIAS);
 967 
 968   const Address do_not_unlock_if_synchronized(G2_thread,
 969     JavaThread::do_not_unlock_if_synchronized_offset());
 970   // Since at this point in the method invocation the exception handler
 971   // would try to exit the monitor of synchronized methods which hasn't
 972   // been entered yet, we set the thread local variable
 973   // _do_not_unlock_if_synchronized to true. If any exception was thrown by
 974   // runtime, exception handling i.e. unlock_if_synchronized_method will
 975   // check this thread local flag.
 976   // This flag has two effects, one is to force an unwind in the topmost
 977   // interpreter frame and not perform an unlock while doing so.
 978 
 979   __ movbool(true, G3_scratch);
 980   __ stbool(G3_scratch, do_not_unlock_if_synchronized);
 981 
 982   // increment invocation counter and check for overflow
 983   //
 984   // Note: checking for negative value instead of overflow
 985   //       so we have a 'sticky' overflow test (may be of
 986   //       importance as soon as we have true MT/MP)
 987   Label invocation_counter_overflow;
 988   Label Lcontinue;
 989   if (inc_counter) {
 990     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
 991 
 992   }
 993   __ bind(Lcontinue);
 994 
 995   bang_stack_shadow_pages(true);
 996 
 997   // reset the _do_not_unlock_if_synchronized flag
 998   __ stbool(G0, do_not_unlock_if_synchronized);
 999 
1000   // check for synchronized methods
1001   // Must happen AFTER invocation_counter check and stack overflow check,
1002   // so method is not locked if overflows.
1003 
1004   if (synchronized) {
1005     lock_method();
1006   } else {
1007 #ifdef ASSERT
1008     { Label ok;
1009       __ ld(Laccess_flags, O0);
1010       __ btst(JVM_ACC_SYNCHRONIZED, O0);
1011       __ br( Assembler::zero, false, Assembler::pt, ok);
1012       __ delayed()->nop();
1013       __ stop("method needs synchronization");
1014       __ bind(ok);
1015     }
1016 #endif // ASSERT
1017   }
1018 
1019 
1020   // start execution
1021   __ verify_thread();
1022 
1023   // JVMTI support
1024   __ notify_method_entry();
1025 
1026   // native call
1027 
1028   // (note that O0 is never an oop--at most it is a handle)
1029   // It is important not to smash any handles created by this call,
1030   // until any oop handle in O0 is dereferenced.
1031 
1032   // (note that the space for outgoing params is preallocated)
1033 
1034   // get signature handler
1035   { Label L;
1036     Address signature_handler(Lmethod, Method::signature_handler_offset());
1037     __ ld_ptr(signature_handler, G3_scratch);
1038     __ br_notnull_short(G3_scratch, Assembler::pt, L);
1039     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), Lmethod);
1040     __ ld_ptr(signature_handler, G3_scratch);
1041     __ bind(L);
1042   }
1043 
1044   // Push a new frame so that the args will really be stored in
1045   // Copy a few locals across so the new frame has the variables
1046   // we need but these values will be dead at the jni call and
1047   // therefore not gc volatile like the values in the current
1048   // frame (Lmethod in particular)
1049 
1050   // Flush the method pointer to the register save area
1051   __ st_ptr(Lmethod, SP, (Lmethod->sp_offset_in_saved_window() * wordSize) + STACK_BIAS);
1052   __ mov(Llocals, O1);
1053 
1054   // calculate where the mirror handle body is allocated in the interpreter frame:
1055   __ add(FP, (frame::interpreter_frame_oop_temp_offset * wordSize) + STACK_BIAS, O2);
1056 
1057   // Calculate current frame size
1058   __ sub(SP, FP, O3);         // Calculate negative of current frame size
1059   __ save(SP, O3, SP);        // Allocate an identical sized frame
1060 
1061   // Note I7 has leftover trash. Slow signature handler will fill it in
1062   // should we get there. Normal jni call will set reasonable last_Java_pc
1063   // below (and fix I7 so the stack trace doesn't have a meaningless frame
1064   // in it).
1065 
1066   // Load interpreter frame's Lmethod into same register here
1067 
1068   __ ld_ptr(FP, (Lmethod->sp_offset_in_saved_window() * wordSize) + STACK_BIAS, Lmethod);
1069 
1070   __ mov(I1, Llocals);
1071   __ mov(I2, Lscratch2);     // save the address of the mirror
1072 
1073 
1074   // ONLY Lmethod and Llocals are valid here!
1075 
1076   // call signature handler, It will move the arg properly since Llocals in current frame
1077   // matches that in outer frame
1078 
1079   __ callr(G3_scratch, 0);
1080   __ delayed()->nop();
1081 
1082   // Result handler is in Lscratch
1083 
1084   // Reload interpreter frame's Lmethod since slow signature handler may block
1085   __ ld_ptr(FP, (Lmethod->sp_offset_in_saved_window() * wordSize) + STACK_BIAS, Lmethod);
1086 
1087   { Label not_static;
1088 
1089     __ ld(Laccess_flags, O0);
1090     __ btst(JVM_ACC_STATIC, O0);
1091     __ br( Assembler::zero, false, Assembler::pt, not_static);
1092     // get native function entry point(O0 is a good temp until the very end)
1093     __ delayed()->ld_ptr(Lmethod, in_bytes(Method::native_function_offset()), O0);
1094     // for static methods insert the mirror argument
1095     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
1096 
1097     __ ld_ptr(Lmethod, Method:: const_offset(), O1);
1098     __ ld_ptr(O1, ConstMethod::constants_offset(), O1);
1099     __ ld_ptr(O1, ConstantPool::pool_holder_offset_in_bytes(), O1);
1100     __ ld_ptr(O1, mirror_offset, O1);
1101 #ifdef ASSERT
1102     if (!PrintSignatureHandlers)  // do not dirty the output with this
1103     { Label L;
1104       __ br_notnull_short(O1, Assembler::pt, L);
1105       __ stop("mirror is missing");
1106       __ bind(L);
1107     }
1108 #endif // ASSERT
1109     __ st_ptr(O1, Lscratch2, 0);
1110     __ mov(Lscratch2, O1);
1111     __ bind(not_static);
1112   }
1113 
1114   // At this point, arguments have been copied off of stack into
1115   // their JNI positions, which are O1..O5 and SP[68..].
1116   // Oops are boxed in-place on the stack, with handles copied to arguments.
1117   // The result handler is in Lscratch.  O0 will shortly hold the JNIEnv*.
1118 
1119 #ifdef ASSERT
1120   { Label L;
1121     __ br_notnull_short(O0, Assembler::pt, L);
1122     __ stop("native entry point is missing");
1123     __ bind(L);
1124   }
1125 #endif // ASSERT
1126 
1127   //
1128   // setup the frame anchor
1129   //
1130   // The scavenge function only needs to know that the PC of this frame is
1131   // in the interpreter method entry code, it doesn't need to know the exact
1132   // PC and hence we can use O7 which points to the return address from the
1133   // previous call in the code stream (signature handler function)
1134   //
1135   // The other trick is we set last_Java_sp to FP instead of the usual SP because
1136   // we have pushed the extra frame in order to protect the volatile register(s)
1137   // in that frame when we return from the jni call
1138   //
1139 
1140   __ set_last_Java_frame(FP, O7);
1141   __ mov(O7, I7);  // make dummy interpreter frame look like one above,
1142                    // not meaningless information that'll confuse me.
1143 
1144   // flush the windows now. We don't care about the current (protection) frame
1145   // only the outer frames
1146 
1147   __ flushw();
1148 
1149   // mark windows as flushed
1150   Address flags(G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::flags_offset());
1151   __ set(JavaFrameAnchor::flushed, G3_scratch);
1152   __ st(G3_scratch, flags);
1153 
1154   // Transition from _thread_in_Java to _thread_in_native. We are already safepoint ready.
1155 
1156   Address thread_state(G2_thread, JavaThread::thread_state_offset());
1157 #ifdef ASSERT
1158   { Label L;
1159     __ ld(thread_state, G3_scratch);
1160     __ cmp_and_br_short(G3_scratch, _thread_in_Java, Assembler::equal, Assembler::pt, L);
1161     __ stop("Wrong thread state in native stub");
1162     __ bind(L);
1163   }
1164 #endif // ASSERT
1165   __ set(_thread_in_native, G3_scratch);
1166   __ st(G3_scratch, thread_state);
1167 
1168   // Call the jni method, using the delay slot to set the JNIEnv* argument.
1169   __ save_thread(L7_thread_cache); // save Gthread
1170   __ callr(O0, 0);
1171   __ delayed()->
1172      add(L7_thread_cache, in_bytes(JavaThread::jni_environment_offset()), O0);
1173 
1174   // Back from jni method Lmethod in this frame is DEAD, DEAD, DEAD
1175 
1176   __ restore_thread(L7_thread_cache); // restore G2_thread
1177   __ reinit_heapbase();
1178 
1179   // must we block?
1180 
1181   // Block, if necessary, before resuming in _thread_in_Java state.
1182   // In order for GC to work, don't clear the last_Java_sp until after blocking.
1183   { Label no_block;
1184     AddressLiteral sync_state(SafepointSynchronize::address_of_state());
1185 
1186     // Switch thread to "native transition" state before reading the synchronization state.
1187     // This additional state is necessary because reading and testing the synchronization
1188     // state is not atomic w.r.t. GC, as this scenario demonstrates:
1189     //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
1190     //     VM thread changes sync state to synchronizing and suspends threads for GC.
1191     //     Thread A is resumed to finish this native method, but doesn't block here since it
1192     //     didn't see any synchronization is progress, and escapes.
1193     __ set(_thread_in_native_trans, G3_scratch);
1194     __ st(G3_scratch, thread_state);
1195     if(os::is_MP()) {
1196       if (UseMembar) {
1197         // Force this write out before the read below
1198         __ membar(Assembler::StoreLoad);
1199       } else {
1200         // Write serialization page so VM thread can do a pseudo remote membar.
1201         // We use the current thread pointer to calculate a thread specific
1202         // offset to write to within the page. This minimizes bus traffic
1203         // due to cache line collision.
1204         __ serialize_memory(G2_thread, G1_scratch, G3_scratch);
1205       }
1206     }
1207     __ load_contents(sync_state, G3_scratch);
1208     __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
1209 
1210     Label L;
1211     __ br(Assembler::notEqual, false, Assembler::pn, L);
1212     __ delayed()->ld(G2_thread, JavaThread::suspend_flags_offset(), G3_scratch);
1213     __ cmp_and_br_short(G3_scratch, 0, Assembler::equal, Assembler::pt, no_block);
1214     __ bind(L);
1215 
1216     // Block.  Save any potential method result value before the operation and
1217     // use a leaf call to leave the last_Java_frame setup undisturbed.
1218     save_native_result();
1219     __ call_VM_leaf(L7_thread_cache,
1220                     CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans),
1221                     G2_thread);
1222 
1223     // Restore any method result value
1224     restore_native_result();
1225     __ bind(no_block);
1226   }
1227 
1228   // Clear the frame anchor now
1229 
1230   __ reset_last_Java_frame();
1231 
1232   // Move the result handler address
1233   __ mov(Lscratch, G3_scratch);
1234   // return possible result to the outer frame
1235 #ifndef __LP64
1236   __ mov(O0, I0);
1237   __ restore(O1, G0, O1);
1238 #else
1239   __ restore(O0, G0, O0);
1240 #endif /* __LP64 */
1241 
1242   // Move result handler to expected register
1243   __ mov(G3_scratch, Lscratch);
1244 
1245   // Back in normal (native) interpreter frame. State is thread_in_native_trans
1246   // switch to thread_in_Java.
1247 
1248   __ set(_thread_in_Java, G3_scratch);
1249   __ st(G3_scratch, thread_state);
1250 
1251   // reset handle block
1252   __ ld_ptr(G2_thread, JavaThread::active_handles_offset(), G3_scratch);
1253   __ st(G0, G3_scratch, JNIHandleBlock::top_offset_in_bytes());
1254 
1255   // If we have an oop result store it where it will be safe for any further gc
1256   // until we return now that we've released the handle it might be protected by
1257 
1258   {
1259     Label no_oop, store_result;
1260 
1261     __ set((intptr_t)AbstractInterpreter::result_handler(T_OBJECT), G3_scratch);
1262     __ cmp_and_brx_short(G3_scratch, Lscratch, Assembler::notEqual, Assembler::pt, no_oop);
1263     __ addcc(G0, O0, O0);
1264     __ brx(Assembler::notZero, true, Assembler::pt, store_result);     // if result is not NULL:
1265     __ delayed()->ld_ptr(O0, 0, O0);                                   // unbox it
1266     __ mov(G0, O0);
1267 
1268     __ bind(store_result);
1269     // Store it where gc will look for it and result handler expects it.
1270     __ st_ptr(O0, FP, (frame::interpreter_frame_oop_temp_offset*wordSize) + STACK_BIAS);
1271 
1272     __ bind(no_oop);
1273 
1274   }
1275 
1276 
1277   // handle exceptions (exception handling will handle unlocking!)
1278   { Label L;
1279     Address exception_addr(G2_thread, Thread::pending_exception_offset());
1280     __ ld_ptr(exception_addr, Gtemp);
1281     __ br_null_short(Gtemp, Assembler::pt, L);
1282     // Note: This could be handled more efficiently since we know that the native
1283     //       method doesn't have an exception handler. We could directly return
1284     //       to the exception handler for the caller.
1285     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception));
1286     __ should_not_reach_here();
1287     __ bind(L);
1288   }
1289 
1290   // JVMTI support (preserves thread register)
1291   __ notify_method_exit(true, ilgl, InterpreterMacroAssembler::NotifyJVMTI);
1292 
1293   if (synchronized) {
1294     // save and restore any potential method result value around the unlocking operation
1295     save_native_result();
1296 
1297     __ add( __ top_most_monitor(), O1);
1298     __ unlock_object(O1);
1299 
1300     restore_native_result();
1301   }
1302 
1303 #if defined(COMPILER2) && !defined(_LP64)
1304 
1305   // C2 expects long results in G1 we can't tell if we're returning to interpreted
1306   // or compiled so just be safe.
1307 
1308   __ sllx(O0, 32, G1);          // Shift bits into high G1
1309   __ srl (O1, 0, O1);           // Zero extend O1
1310   __ or3 (O1, G1, G1);          // OR 64 bits into G1
1311 
1312 #endif /* COMPILER2 && !_LP64 */
1313 
1314   // dispose of return address and remove activation
1315 #ifdef ASSERT
1316   {
1317     Label ok;
1318     __ cmp_and_brx_short(I5_savedSP, FP, Assembler::greaterEqualUnsigned, Assembler::pt, ok);
1319     __ stop("bad I5_savedSP value");
1320     __ should_not_reach_here();
1321     __ bind(ok);
1322   }
1323 #endif
1324   if (TraceJumps) {
1325     // Move target to register that is recordable
1326     __ mov(Lscratch, G3_scratch);
1327     __ JMP(G3_scratch, 0);
1328   } else {
1329     __ jmp(Lscratch, 0);
1330   }
1331   __ delayed()->nop();
1332 
1333 
1334   if (inc_counter) {
1335     // handle invocation counter overflow
1336     __ bind(invocation_counter_overflow);
1337     generate_counter_overflow(Lcontinue);
1338   }
1339 
1340 
1341 
1342   return entry;
1343 }
1344 
1345 
1346 // Generic method entry to (asm) interpreter
1347 address TemplateInterpreterGenerator::generate_normal_entry(bool synchronized) {
1348   address entry = __ pc();
1349 
1350   bool inc_counter  = UseCompiler || CountCompiledCalls || LogTouchedMethods;
1351 
1352   // the following temporary registers are used during frame creation
1353   const Register Gtmp1 = G3_scratch ;
1354   const Register Gtmp2 = G1_scratch;
1355 
1356   // make sure registers are different!
1357   assert_different_registers(G2_thread, G5_method, Gargs, Gtmp1, Gtmp2);
1358 
1359   const Address constMethod       (G5_method, Method::const_offset());
1360   // Seems like G5_method is live at the point this is used. So we could make this look consistent
1361   // and use in the asserts.
1362   const Address access_flags      (Lmethod,   Method::access_flags_offset());
1363 
1364   const Register Glocals_size = G3;
1365   assert_different_registers(Glocals_size, G4_scratch, Gframe_size);
1366 
1367   // make sure method is not native & not abstract
1368   // rethink these assertions - they can be simplified and shared (gri 2/25/2000)
1369 #ifdef ASSERT
1370   __ ld(G5_method, Method::access_flags_offset(), Gtmp1);
1371   {
1372     Label L;
1373     __ btst(JVM_ACC_NATIVE, Gtmp1);
1374     __ br(Assembler::zero, false, Assembler::pt, L);
1375     __ delayed()->nop();
1376     __ stop("tried to execute native method as non-native");
1377     __ bind(L);
1378   }
1379   { Label L;
1380     __ btst(JVM_ACC_ABSTRACT, Gtmp1);
1381     __ br(Assembler::zero, false, Assembler::pt, L);
1382     __ delayed()->nop();
1383     __ stop("tried to execute abstract method as non-abstract");
1384     __ bind(L);
1385   }
1386 #endif // ASSERT
1387 
1388   // generate the code to allocate the interpreter stack frame
1389 
1390   generate_fixed_frame(false);
1391 
1392 #ifdef FAST_DISPATCH
1393   __ set((intptr_t)Interpreter::dispatch_table(), IdispatchTables);
1394                                           // set bytecode dispatch table base
1395 #endif
1396 
1397   //
1398   // Code to initialize the extra (i.e. non-parm) locals
1399   //
1400   Register init_value = noreg;    // will be G0 if we must clear locals
1401   // The way the code was setup before zerolocals was always true for vanilla java entries.
1402   // It could only be false for the specialized entries like accessor or empty which have
1403   // no extra locals so the testing was a waste of time and the extra locals were always
1404   // initialized. We removed this extra complication to already over complicated code.
1405 
1406   init_value = G0;
1407   Label clear_loop;
1408 
1409   const Register RconstMethod = O1;
1410   const Address size_of_parameters(RconstMethod, ConstMethod::size_of_parameters_offset());
1411   const Address size_of_locals    (RconstMethod, ConstMethod::size_of_locals_offset());
1412 
1413   // NOTE: If you change the frame layout, this code will need to
1414   // be updated!
1415   __ ld_ptr( constMethod, RconstMethod );
1416   __ lduh( size_of_locals, O2 );
1417   __ lduh( size_of_parameters, O1 );
1418   __ sll( O2, Interpreter::logStackElementSize, O2);
1419   __ sll( O1, Interpreter::logStackElementSize, O1 );
1420   __ sub( Llocals, O2, O2 );
1421   __ sub( Llocals, O1, O1 );
1422 
1423   __ bind( clear_loop );
1424   __ inc( O2, wordSize );
1425 
1426   __ cmp( O2, O1 );
1427   __ brx( Assembler::lessEqualUnsigned, true, Assembler::pt, clear_loop );
1428   __ delayed()->st_ptr( init_value, O2, 0 );
1429 
1430   const Address do_not_unlock_if_synchronized(G2_thread,
1431     JavaThread::do_not_unlock_if_synchronized_offset());
1432   // Since at this point in the method invocation the exception handler
1433   // would try to exit the monitor of synchronized methods which hasn't
1434   // been entered yet, we set the thread local variable
1435   // _do_not_unlock_if_synchronized to true. If any exception was thrown by
1436   // runtime, exception handling i.e. unlock_if_synchronized_method will
1437   // check this thread local flag.
1438   __ movbool(true, G3_scratch);
1439   __ stbool(G3_scratch, do_not_unlock_if_synchronized);
1440 
1441   __ profile_parameters_type(G1_scratch, G3_scratch, G4_scratch, Lscratch);
1442   // increment invocation counter and check for overflow
1443   //
1444   // Note: checking for negative value instead of overflow
1445   //       so we have a 'sticky' overflow test (may be of
1446   //       importance as soon as we have true MT/MP)
1447   Label invocation_counter_overflow;
1448   Label profile_method;
1449   Label profile_method_continue;
1450   Label Lcontinue;
1451   if (inc_counter) {
1452     generate_counter_incr(&invocation_counter_overflow, &profile_method, &profile_method_continue);
1453     if (ProfileInterpreter) {
1454       __ bind(profile_method_continue);
1455     }
1456   }
1457   __ bind(Lcontinue);
1458 
1459   bang_stack_shadow_pages(false);
1460 
1461   // reset the _do_not_unlock_if_synchronized flag
1462   __ stbool(G0, do_not_unlock_if_synchronized);
1463 
1464   // check for synchronized methods
1465   // Must happen AFTER invocation_counter check and stack overflow check,
1466   // so method is not locked if overflows.
1467 
1468   if (synchronized) {
1469     lock_method();
1470   } else {
1471 #ifdef ASSERT
1472     { Label ok;
1473       __ ld(access_flags, O0);
1474       __ btst(JVM_ACC_SYNCHRONIZED, O0);
1475       __ br( Assembler::zero, false, Assembler::pt, ok);
1476       __ delayed()->nop();
1477       __ stop("method needs synchronization");
1478       __ bind(ok);
1479     }
1480 #endif // ASSERT
1481   }
1482 
1483   // start execution
1484 
1485   __ verify_thread();
1486 
1487   // jvmti support
1488   __ notify_method_entry();
1489 
1490   // start executing instructions
1491   __ dispatch_next(vtos);
1492 
1493 
1494   if (inc_counter) {
1495     if (ProfileInterpreter) {
1496       // We have decided to profile this method in the interpreter
1497       __ bind(profile_method);
1498 
1499       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
1500       __ set_method_data_pointer_for_bcp();
1501       __ ba_short(profile_method_continue);
1502     }
1503 
1504     // handle invocation counter overflow
1505     __ bind(invocation_counter_overflow);
1506     generate_counter_overflow(Lcontinue);
1507   }
1508 
1509 
1510   return entry;
1511 }
1512 
1513 //----------------------------------------------------------------------------------------------------
1514 // Exceptions
1515 void TemplateInterpreterGenerator::generate_throw_exception() {
1516 
1517   // Entry point in previous activation (i.e., if the caller was interpreted)
1518   Interpreter::_rethrow_exception_entry = __ pc();
1519   // O0: exception
1520 
1521   // entry point for exceptions thrown within interpreter code
1522   Interpreter::_throw_exception_entry = __ pc();
1523   __ verify_thread();
1524   // expression stack is undefined here
1525   // O0: exception, i.e. Oexception
1526   // Lbcp: exception bcp
1527   __ verify_oop(Oexception);
1528 
1529 
1530   // expression stack must be empty before entering the VM in case of an exception
1531   __ empty_expression_stack();
1532   // find exception handler address and preserve exception oop
1533   // call C routine to find handler and jump to it
1534   __ call_VM(O1, CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception), Oexception);
1535   __ push_ptr(O1); // push exception for exception handler bytecodes
1536 
1537   __ JMP(O0, 0); // jump to exception handler (may be remove activation entry!)
1538   __ delayed()->nop();
1539 
1540 
1541   // if the exception is not handled in the current frame
1542   // the frame is removed and the exception is rethrown
1543   // (i.e. exception continuation is _rethrow_exception)
1544   //
1545   // Note: At this point the bci is still the bxi for the instruction which caused
1546   //       the exception and the expression stack is empty. Thus, for any VM calls
1547   //       at this point, GC will find a legal oop map (with empty expression stack).
1548 
1549   // in current activation
1550   // tos: exception
1551   // Lbcp: exception bcp
1552 
1553   //
1554   // JVMTI PopFrame support
1555   //
1556 
1557   Interpreter::_remove_activation_preserving_args_entry = __ pc();
1558   Address popframe_condition_addr(G2_thread, JavaThread::popframe_condition_offset());
1559   // Set the popframe_processing bit in popframe_condition indicating that we are
1560   // currently handling popframe, so that call_VMs that may happen later do not trigger new
1561   // popframe handling cycles.
1562 
1563   __ ld(popframe_condition_addr, G3_scratch);
1564   __ or3(G3_scratch, JavaThread::popframe_processing_bit, G3_scratch);
1565   __ stw(G3_scratch, popframe_condition_addr);
1566 
1567   // Empty the expression stack, as in normal exception handling
1568   __ empty_expression_stack();
1569   __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false, /* install_monitor_exception */ false);
1570 
1571   {
1572     // Check to see whether we are returning to a deoptimized frame.
1573     // (The PopFrame call ensures that the caller of the popped frame is
1574     // either interpreted or compiled and deoptimizes it if compiled.)
1575     // In this case, we can't call dispatch_next() after the frame is
1576     // popped, but instead must save the incoming arguments and restore
1577     // them after deoptimization has occurred.
1578     //
1579     // Note that we don't compare the return PC against the
1580     // deoptimization blob's unpack entry because of the presence of
1581     // adapter frames in C2.
1582     Label caller_not_deoptimized;
1583     __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), I7);
1584     __ br_notnull_short(O0, Assembler::pt, caller_not_deoptimized);
1585 
1586     const Register Gtmp1 = G3_scratch;
1587     const Register Gtmp2 = G1_scratch;
1588     const Register RconstMethod = Gtmp1;
1589     const Address constMethod(Lmethod, Method::const_offset());
1590     const Address size_of_parameters(RconstMethod, ConstMethod::size_of_parameters_offset());
1591 
1592     // Compute size of arguments for saving when returning to deoptimized caller
1593     __ ld_ptr(constMethod, RconstMethod);
1594     __ lduh(size_of_parameters, Gtmp1);
1595     __ sll(Gtmp1, Interpreter::logStackElementSize, Gtmp1);
1596     __ sub(Llocals, Gtmp1, Gtmp2);
1597     __ add(Gtmp2, wordSize, Gtmp2);
1598     // Save these arguments
1599     __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args), G2_thread, Gtmp1, Gtmp2);
1600     // Inform deoptimization that it is responsible for restoring these arguments
1601     __ set(JavaThread::popframe_force_deopt_reexecution_bit, Gtmp1);
1602     Address popframe_condition_addr(G2_thread, JavaThread::popframe_condition_offset());
1603     __ st(Gtmp1, popframe_condition_addr);
1604 
1605     // Return from the current method
1606     // The caller's SP was adjusted upon method entry to accomodate
1607     // the callee's non-argument locals. Undo that adjustment.
1608     __ ret();
1609     __ delayed()->restore(I5_savedSP, G0, SP);
1610 
1611     __ bind(caller_not_deoptimized);
1612   }
1613 
1614   // Clear the popframe condition flag
1615   __ stw(G0 /* popframe_inactive */, popframe_condition_addr);
1616 
1617   // Get out of the current method (how this is done depends on the particular compiler calling
1618   // convention that the interpreter currently follows)
1619   // The caller's SP was adjusted upon method entry to accomodate
1620   // the callee's non-argument locals. Undo that adjustment.
1621   __ restore(I5_savedSP, G0, SP);
1622   // The method data pointer was incremented already during
1623   // call profiling. We have to restore the mdp for the current bcp.
1624   if (ProfileInterpreter) {
1625     __ set_method_data_pointer_for_bcp();
1626   }
1627 
1628 #if INCLUDE_JVMTI
1629   {
1630     Label L_done;
1631 
1632     __ ldub(Address(Lbcp, 0), G1_scratch);  // Load current bytecode
1633     __ cmp_and_br_short(G1_scratch, Bytecodes::_invokestatic, Assembler::notEqual, Assembler::pn, L_done);
1634 
1635     // The member name argument must be restored if _invokestatic is re-executed after a PopFrame call.
1636     // Detect such a case in the InterpreterRuntime function and return the member name argument, or NULL.
1637 
1638     __ call_VM(G1_scratch, CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null), I0, Lmethod, Lbcp);
1639 
1640     __ br_null(G1_scratch, false, Assembler::pn, L_done);
1641     __ delayed()->nop();
1642 
1643     __ st_ptr(G1_scratch, Lesp, wordSize);
1644     __ bind(L_done);
1645   }
1646 #endif // INCLUDE_JVMTI
1647 
1648   // Resume bytecode interpretation at the current bcp
1649   __ dispatch_next(vtos);
1650   // end of JVMTI PopFrame support
1651 
1652   Interpreter::_remove_activation_entry = __ pc();
1653 
1654   // preserve exception over this code sequence (remove activation calls the vm, but oopmaps are not correct here)
1655   __ pop_ptr(Oexception);                                  // get exception
1656 
1657   // Intel has the following comment:
1658   //// remove the activation (without doing throws on illegalMonitorExceptions)
1659   // They remove the activation without checking for bad monitor state.
1660   // %%% We should make sure this is the right semantics before implementing.
1661 
1662   __ set_vm_result(Oexception);
1663   __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false);
1664 
1665   __ notify_method_exit(false, vtos, InterpreterMacroAssembler::SkipNotifyJVMTI);
1666 
1667   __ get_vm_result(Oexception);
1668   __ verify_oop(Oexception);
1669 
1670     const int return_reg_adjustment = frame::pc_return_offset;
1671   Address issuing_pc_addr(I7, return_reg_adjustment);
1672 
1673   // We are done with this activation frame; find out where to go next.
1674   // The continuation point will be an exception handler, which expects
1675   // the following registers set up:
1676   //
1677   // Oexception: exception
1678   // Oissuing_pc: the local call that threw exception
1679   // Other On: garbage
1680   // In/Ln:  the contents of the caller's register window
1681   //
1682   // We do the required restore at the last possible moment, because we
1683   // need to preserve some state across a runtime call.
1684   // (Remember that the caller activation is unknown--it might not be
1685   // interpreted, so things like Lscratch are useless in the caller.)
1686 
1687   // Although the Intel version uses call_C, we can use the more
1688   // compact call_VM.  (The only real difference on SPARC is a
1689   // harmlessly ignored [re]set_last_Java_frame, compared with
1690   // the Intel code which lacks this.)
1691   __ mov(Oexception,      Oexception ->after_save());  // get exception in I0 so it will be on O0 after restore
1692   __ add(issuing_pc_addr, Oissuing_pc->after_save());  // likewise set I1 to a value local to the caller
1693   __ super_call_VM_leaf(L7_thread_cache,
1694                         CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address),
1695                         G2_thread, Oissuing_pc->after_save());
1696 
1697   // The caller's SP was adjusted upon method entry to accomodate
1698   // the callee's non-argument locals. Undo that adjustment.
1699   __ JMP(O0, 0);                         // return exception handler in caller
1700   __ delayed()->restore(I5_savedSP, G0, SP);
1701 
1702   // (same old exception object is already in Oexception; see above)
1703   // Note that an "issuing PC" is actually the next PC after the call
1704 }
1705 
1706 
1707 //
1708 // JVMTI ForceEarlyReturn support
1709 //
1710 
1711 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
1712   address entry = __ pc();
1713 
1714   __ empty_expression_stack();
1715   __ load_earlyret_value(state);
1716 
1717   __ ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), G3_scratch);
1718   Address cond_addr(G3_scratch, JvmtiThreadState::earlyret_state_offset());
1719 
1720   // Clear the earlyret state
1721   __ stw(G0 /* JvmtiThreadState::earlyret_inactive */, cond_addr);
1722 
1723   __ remove_activation(state,
1724                        /* throw_monitor_exception */ false,
1725                        /* install_monitor_exception */ false);
1726 
1727   // The caller's SP was adjusted upon method entry to accomodate
1728   // the callee's non-argument locals. Undo that adjustment.
1729   __ ret();                             // return to caller
1730   __ delayed()->restore(I5_savedSP, G0, SP);
1731 
1732   return entry;
1733 } // end of JVMTI ForceEarlyReturn support
1734 
1735 
1736 //------------------------------------------------------------------------------------------------------------------------
1737 // Helper for vtos entry point generation
1738 
1739 void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t, address& bep, address& cep, address& sep, address& aep, address& iep, address& lep, address& fep, address& dep, address& vep) {
1740   assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
1741   Label L;
1742   aep = __ pc(); __ push_ptr(); __ ba_short(L);
1743   fep = __ pc(); __ push_f();   __ ba_short(L);
1744   dep = __ pc(); __ push_d();   __ ba_short(L);
1745   lep = __ pc(); __ push_l();   __ ba_short(L);
1746   iep = __ pc(); __ push_i();
1747   bep = cep = sep = iep;                        // there aren't any
1748   vep = __ pc(); __ bind(L);                    // fall through
1749   generate_and_dispatch(t);
1750 }
1751 
1752 // --------------------------------------------------------------------------------
1753 
1754 // Non-product code
1755 #ifndef PRODUCT
1756 address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
1757   address entry = __ pc();
1758 
1759   __ push(state);
1760   __ mov(O7, Lscratch); // protect return address within interpreter
1761 
1762   // Pass a 0 (not used in sparc) and the top of stack to the bytecode tracer
1763   __ mov( Otos_l2, G3_scratch );
1764   __ call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::trace_bytecode), G0, Otos_l1, G3_scratch);
1765   __ mov(Lscratch, O7); // restore return address
1766   __ pop(state);
1767   __ retl();
1768   __ delayed()->nop();
1769 
1770   return entry;
1771 }
1772 
1773 
1774 // helpers for generate_and_dispatch
1775 
1776 void TemplateInterpreterGenerator::count_bytecode() {
1777   __ inc_counter(&BytecodeCounter::_counter_value, G3_scratch, G4_scratch);
1778 }
1779 
1780 
1781 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) {
1782   __ inc_counter(&BytecodeHistogram::_counters[t->bytecode()], G3_scratch, G4_scratch);
1783 }
1784 
1785 
1786 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) {
1787   AddressLiteral index   (&BytecodePairHistogram::_index);
1788   AddressLiteral counters((address) &BytecodePairHistogram::_counters);
1789 
1790   // get index, shift out old bytecode, bring in new bytecode, and store it
1791   // _index = (_index >> log2_number_of_codes) |
1792   //          (bytecode << log2_number_of_codes);
1793 
1794   __ load_contents(index, G4_scratch);
1795   __ srl( G4_scratch, BytecodePairHistogram::log2_number_of_codes, G4_scratch );
1796   __ set( ((int)t->bytecode()) << BytecodePairHistogram::log2_number_of_codes,  G3_scratch );
1797   __ or3( G3_scratch,  G4_scratch, G4_scratch );
1798   __ store_contents(G4_scratch, index, G3_scratch);
1799 
1800   // bump bucket contents
1801   // _counters[_index] ++;
1802 
1803   __ set(counters, G3_scratch);                       // loads into G3_scratch
1804   __ sll( G4_scratch, LogBytesPerWord, G4_scratch );  // Index is word address
1805   __ add (G3_scratch, G4_scratch, G3_scratch);        // Add in index
1806   __ ld (G3_scratch, 0, G4_scratch);
1807   __ inc (G4_scratch);
1808   __ st (G4_scratch, 0, G3_scratch);
1809 }
1810 
1811 
1812 void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
1813   // Call a little run-time stub to avoid blow-up for each bytecode.
1814   // The run-time runtime saves the right registers, depending on
1815   // the tosca in-state for the given template.
1816   address entry = Interpreter::trace_code(t->tos_in());
1817   guarantee(entry != NULL, "entry must have been generated");
1818   __ call(entry, relocInfo::none);
1819   __ delayed()->nop();
1820 }
1821 
1822 
1823 void TemplateInterpreterGenerator::stop_interpreter_at() {
1824   AddressLiteral counter(&BytecodeCounter::_counter_value);
1825   __ load_contents(counter, G3_scratch);
1826   AddressLiteral stop_at(&StopInterpreterAt);
1827   __ load_ptr_contents(stop_at, G4_scratch);
1828   __ cmp(G3_scratch, G4_scratch);
1829   __ breakpoint_trap(Assembler::equal, Assembler::icc);
1830 }
1831 #endif // not PRODUCT