1 /*
   2  * Copyright (c) 2007, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "interpreter/bytecodeHistogram.hpp"
  28 #include "interpreter/cppInterpreter.hpp"
  29 #include "interpreter/interpreter.hpp"
  30 #include "interpreter/interpreterGenerator.hpp"
  31 #include "interpreter/interpreterRuntime.hpp"
  32 #include "oops/arrayOop.hpp"
  33 #include "oops/methodData.hpp"
  34 #include "oops/method.hpp"
  35 #include "oops/oop.inline.hpp"
  36 #include "prims/jvmtiExport.hpp"
  37 #include "prims/jvmtiThreadState.hpp"
  38 #include "runtime/arguments.hpp"
  39 #include "runtime/deoptimization.hpp"
  40 #include "runtime/frame.inline.hpp"
  41 #include "runtime/interfaceSupport.hpp"
  42 #include "runtime/sharedRuntime.hpp"
  43 #include "runtime/stubRoutines.hpp"
  44 #include "runtime/synchronizer.hpp"
  45 #include "runtime/timer.hpp"
  46 #include "runtime/vframeArray.hpp"
  47 #include "utilities/debug.hpp"
  48 #include "utilities/macros.hpp"
  49 #ifdef SHARK
  50 #include "shark/shark_globals.hpp"
  51 #endif
  52 
  53 #ifdef CC_INTERP
  54 
  55 // Routine exists to make tracebacks look decent in debugger
  56 // while we are recursed in the frame manager/c++ interpreter.
  57 // We could use an address in the frame manager but having
  58 // frames look natural in the debugger is a plus.
  59 extern "C" void RecursiveInterpreterActivation(interpreterState istate )
  60 {
  61   //
  62   ShouldNotReachHere();
  63 }
  64 
  65 
  66 #define __ _masm->
  67 #define STATE(field_name) (Address(state, byte_offset_of(BytecodeInterpreter, field_name)))
  68 
  69 // default registers for state and sender_sp
  70 // state and sender_sp are the same on 32bit because we have no choice.
  71 // state could be rsi on 64bit but it is an arg reg and not callee save
  72 // so r13 is better choice.
  73 
  74 const Register state = NOT_LP64(rsi) LP64_ONLY(r13);
  75 const Register sender_sp_on_entry = NOT_LP64(rsi) LP64_ONLY(r13);
  76 
  77 // NEEDED for JVMTI?
  78 // address AbstractInterpreter::_remove_activation_preserving_args_entry;
  79 
  80 static address unctrap_frame_manager_entry  = NULL;
  81 
  82 static address deopt_frame_manager_return_atos  = NULL;
  83 static address deopt_frame_manager_return_btos  = NULL;
  84 static address deopt_frame_manager_return_itos  = NULL;
  85 static address deopt_frame_manager_return_ltos  = NULL;
  86 static address deopt_frame_manager_return_ftos  = NULL;
  87 static address deopt_frame_manager_return_dtos  = NULL;
  88 static address deopt_frame_manager_return_vtos  = NULL;
  89 
  90 int AbstractInterpreter::BasicType_as_index(BasicType type) {
  91   int i = 0;
  92   switch (type) {
  93     case T_BOOLEAN: i = 0; break;
  94     case T_CHAR   : i = 1; break;
  95     case T_BYTE   : i = 2; break;
  96     case T_SHORT  : i = 3; break;
  97     case T_INT    : i = 4; break;
  98     case T_VOID   : i = 5; break;
  99     case T_FLOAT  : i = 8; break;
 100     case T_LONG   : i = 9; break;
 101     case T_DOUBLE : i = 6; break;
 102     case T_OBJECT : // fall through
 103     case T_ARRAY  : i = 7; break;
 104     default       : ShouldNotReachHere();
 105   }
 106   assert(0 <= i && i < AbstractInterpreter::number_of_result_handlers, "index out of bounds");
 107   return i;
 108 }
 109 
 110 // Is this pc anywhere within code owned by the interpreter?
 111 // This only works for pc that might possibly be exposed to frame
 112 // walkers. It clearly misses all of the actual c++ interpreter
 113 // implementation
 114 bool CppInterpreter::contains(address pc)            {
 115     return (_code->contains(pc) ||
 116             pc == CAST_FROM_FN_PTR(address, RecursiveInterpreterActivation));
 117 }
 118 
 119 
 120 address CppInterpreterGenerator::generate_result_handler_for(BasicType type) {
 121   address entry = __ pc();
 122   switch (type) {
 123     case T_BOOLEAN: __ c2bool(rax);            break;
 124     case T_CHAR   : __ andl(rax, 0xFFFF);      break;
 125     case T_BYTE   : __ sign_extend_byte (rax); break;
 126     case T_SHORT  : __ sign_extend_short(rax); break;
 127     case T_VOID   : // fall thru
 128     case T_LONG   : // fall thru
 129     case T_INT    : /* nothing to do */        break;
 130 
 131     case T_DOUBLE :
 132     case T_FLOAT  :
 133       {
 134         const Register t = InterpreterRuntime::SignatureHandlerGenerator::temp();
 135         __ pop(t);                            // remove return address first
 136         // Must return a result for interpreter or compiler. In SSE
 137         // mode, results are returned in xmm0 and the FPU stack must
 138         // be empty.
 139         if (type == T_FLOAT && UseSSE >= 1) {
 140 #ifndef _LP64
 141           // Load ST0
 142           __ fld_d(Address(rsp, 0));
 143           // Store as float and empty fpu stack
 144           __ fstp_s(Address(rsp, 0));
 145 #endif // !_LP64
 146           // and reload
 147           __ movflt(xmm0, Address(rsp, 0));
 148         } else if (type == T_DOUBLE && UseSSE >= 2 ) {
 149           __ movdbl(xmm0, Address(rsp, 0));
 150         } else {
 151           // restore ST0
 152           __ fld_d(Address(rsp, 0));
 153         }
 154         // and pop the temp
 155         __ addptr(rsp, 2 * wordSize);
 156         __ push(t);                            // restore return address
 157       }
 158       break;
 159     case T_OBJECT :
 160       // retrieve result from frame
 161       __ movptr(rax, STATE(_oop_temp));
 162       // and verify it
 163       __ verify_oop(rax);
 164       break;
 165     default       : ShouldNotReachHere();
 166   }
 167   __ ret(0);                                   // return from result handler
 168   return entry;
 169 }
 170 
 171 // tosca based result to c++ interpreter stack based result.
 172 // Result goes to top of native stack.
 173 
 174 #undef EXTEND  // SHOULD NOT BE NEEDED
 175 address CppInterpreterGenerator::generate_tosca_to_stack_converter(BasicType type) {
 176   // A result is in the tosca (abi result) from either a native method call or compiled
 177   // code. Place this result on the java expression stack so C++ interpreter can use it.
 178   address entry = __ pc();
 179 
 180   const Register t = InterpreterRuntime::SignatureHandlerGenerator::temp();
 181   __ pop(t);                            // remove return address first
 182   switch (type) {
 183     case T_VOID:
 184        break;
 185     case T_BOOLEAN:
 186 #ifdef EXTEND
 187       __ c2bool(rax);
 188 #endif
 189       __ push(rax);
 190       break;
 191     case T_CHAR   :
 192 #ifdef EXTEND
 193       __ andl(rax, 0xFFFF);
 194 #endif
 195       __ push(rax);
 196       break;
 197     case T_BYTE   :
 198 #ifdef EXTEND
 199       __ sign_extend_byte (rax);
 200 #endif
 201       __ push(rax);
 202       break;
 203     case T_SHORT  :
 204 #ifdef EXTEND
 205       __ sign_extend_short(rax);
 206 #endif
 207       __ push(rax);
 208       break;
 209     case T_LONG    :
 210       __ push(rdx);                             // pushes useless junk on 64bit
 211       __ push(rax);
 212       break;
 213     case T_INT    :
 214       __ push(rax);
 215       break;
 216     case T_FLOAT  :
 217       // Result is in ST(0)/xmm0
 218       __ subptr(rsp, wordSize);
 219       if ( UseSSE < 1) {
 220         __ fstp_s(Address(rsp, 0));
 221       } else {
 222         __ movflt(Address(rsp, 0), xmm0);
 223       }
 224       break;
 225     case T_DOUBLE  :
 226       __ subptr(rsp, 2*wordSize);
 227       if ( UseSSE < 2 ) {
 228         __ fstp_d(Address(rsp, 0));
 229       } else {
 230         __ movdbl(Address(rsp, 0), xmm0);
 231       }
 232       break;
 233     case T_OBJECT :
 234       __ verify_oop(rax);                      // verify it
 235       __ push(rax);
 236       break;
 237     default       : ShouldNotReachHere();
 238   }
 239   __ jmp(t);                                   // return from result handler
 240   return entry;
 241 }
 242 
 243 address CppInterpreterGenerator::generate_stack_to_stack_converter(BasicType type) {
 244   // A result is in the java expression stack of the interpreted method that has just
 245   // returned. Place this result on the java expression stack of the caller.
 246   //
 247   // The current interpreter activation in rsi/r13 is for the method just returning its
 248   // result. So we know that the result of this method is on the top of the current
 249   // execution stack (which is pre-pushed) and will be return to the top of the caller
 250   // stack. The top of the callers stack is the bottom of the locals of the current
 251   // activation.
 252   // Because of the way activation are managed by the frame manager the value of rsp is
 253   // below both the stack top of the current activation and naturally the stack top
 254   // of the calling activation. This enable this routine to leave the return address
 255   // to the frame manager on the stack and do a vanilla return.
 256   //
 257   // On entry: rsi/r13 - interpreter state of activation returning a (potential) result
 258   // On Return: rsi/r13 - unchanged
 259   //            rax - new stack top for caller activation (i.e. activation in _prev_link)
 260   //
 261   // Can destroy rdx, rcx.
 262   //
 263 
 264   address entry = __ pc();
 265   const Register t = InterpreterRuntime::SignatureHandlerGenerator::temp();
 266   switch (type) {
 267     case T_VOID:
 268       __ movptr(rax, STATE(_locals));                                   // pop parameters get new stack value
 269       __ addptr(rax, wordSize);                                         // account for prepush before we return
 270       break;
 271     case T_FLOAT  :
 272     case T_BOOLEAN:
 273     case T_CHAR   :
 274     case T_BYTE   :
 275     case T_SHORT  :
 276     case T_INT    :
 277       // 1 word result
 278       __ movptr(rdx, STATE(_stack));
 279       __ movptr(rax, STATE(_locals));                                   // address for result
 280       __ movl(rdx, Address(rdx, wordSize));                             // get result
 281       __ movptr(Address(rax, 0), rdx);                                  // and store it
 282       break;
 283     case T_LONG    :
 284     case T_DOUBLE  :
 285       // return top two words on current expression stack to caller's expression stack
 286       // The caller's expression stack is adjacent to the current frame manager's intepretState
 287       // except we allocated one extra word for this intepretState so we won't overwrite it
 288       // when we return a two word result.
 289 
 290       __ movptr(rax, STATE(_locals));                                   // address for result
 291       __ movptr(rcx, STATE(_stack));
 292       __ subptr(rax, wordSize);                                         // need addition word besides locals[0]
 293       __ movptr(rdx, Address(rcx, 2*wordSize));                         // get result word (junk in 64bit)
 294       __ movptr(Address(rax, wordSize), rdx);                           // and store it
 295       __ movptr(rdx, Address(rcx, wordSize));                           // get result word
 296       __ movptr(Address(rax, 0), rdx);                                  // and store it
 297       break;
 298     case T_OBJECT :
 299       __ movptr(rdx, STATE(_stack));
 300       __ movptr(rax, STATE(_locals));                                   // address for result
 301       __ movptr(rdx, Address(rdx, wordSize));                           // get result
 302       __ verify_oop(rdx);                                               // verify it
 303       __ movptr(Address(rax, 0), rdx);                                  // and store it
 304       break;
 305     default       : ShouldNotReachHere();
 306   }
 307   __ ret(0);
 308   return entry;
 309 }
 310 
 311 address CppInterpreterGenerator::generate_stack_to_native_abi_converter(BasicType type) {
 312   // A result is in the java expression stack of the interpreted method that has just
 313   // returned. Place this result in the native abi that the caller expects.
 314   //
 315   // Similar to generate_stack_to_stack_converter above. Called at a similar time from the
 316   // frame manager execept in this situation the caller is native code (c1/c2/call_stub)
 317   // and so rather than return result onto caller's java expression stack we return the
 318   // result in the expected location based on the native abi.
 319   // On entry: rsi/r13 - interpreter state of activation returning a (potential) result
 320   // On Return: rsi/r13 - unchanged
 321   // Other registers changed [rax/rdx/ST(0) as needed for the result returned]
 322 
 323   address entry = __ pc();
 324   switch (type) {
 325     case T_VOID:
 326        break;
 327     case T_BOOLEAN:
 328     case T_CHAR   :
 329     case T_BYTE   :
 330     case T_SHORT  :
 331     case T_INT    :
 332       __ movptr(rdx, STATE(_stack));                                    // get top of stack
 333       __ movl(rax, Address(rdx, wordSize));                             // get result word 1
 334       break;
 335     case T_LONG    :
 336       __ movptr(rdx, STATE(_stack));                                    // get top of stack
 337       __ movptr(rax, Address(rdx, wordSize));                           // get result low word
 338       NOT_LP64(__ movl(rdx, Address(rdx, 2*wordSize));)                 // get result high word
 339       break;
 340     case T_FLOAT  :
 341       __ movptr(rdx, STATE(_stack));                                    // get top of stack
 342       if ( UseSSE >= 1) {
 343         __ movflt(xmm0, Address(rdx, wordSize));
 344       } else {
 345         __ fld_s(Address(rdx, wordSize));                               // pushd float result
 346       }
 347       break;
 348     case T_DOUBLE  :
 349       __ movptr(rdx, STATE(_stack));                                    // get top of stack
 350       if ( UseSSE > 1) {
 351         __ movdbl(xmm0, Address(rdx, wordSize));
 352       } else {
 353         __ fld_d(Address(rdx, wordSize));                               // push double result
 354       }
 355       break;
 356     case T_OBJECT :
 357       __ movptr(rdx, STATE(_stack));                                    // get top of stack
 358       __ movptr(rax, Address(rdx, wordSize));                           // get result word 1
 359       __ verify_oop(rax);                                               // verify it
 360       break;
 361     default       : ShouldNotReachHere();
 362   }
 363   __ ret(0);
 364   return entry;
 365 }
 366 
 367 address CppInterpreter::return_entry(TosState state, int length, Bytecodes::Code code) {
 368   // make it look good in the debugger
 369   return CAST_FROM_FN_PTR(address, RecursiveInterpreterActivation);
 370 }
 371 
 372 address CppInterpreter::deopt_entry(TosState state, int length) {
 373   address ret = NULL;
 374   if (length != 0) {
 375     switch (state) {
 376       case atos: ret = deopt_frame_manager_return_atos; break;
 377       case btos: ret = deopt_frame_manager_return_btos; break;
 378       case ctos:
 379       case stos:
 380       case itos: ret = deopt_frame_manager_return_itos; break;
 381       case ltos: ret = deopt_frame_manager_return_ltos; break;
 382       case ftos: ret = deopt_frame_manager_return_ftos; break;
 383       case dtos: ret = deopt_frame_manager_return_dtos; break;
 384       case vtos: ret = deopt_frame_manager_return_vtos; break;
 385     }
 386   } else {
 387     ret = unctrap_frame_manager_entry;  // re-execute the bytecode ( e.g. uncommon trap)
 388   }
 389   assert(ret != NULL, "Not initialized");
 390   return ret;
 391 }
 392 
 393 // C++ Interpreter
 394 void CppInterpreterGenerator::generate_compute_interpreter_state(const Register state,
 395                                                                  const Register locals,
 396                                                                  const Register sender_sp,
 397                                                                  bool native) {
 398 
 399   // On entry the "locals" argument points to locals[0] (or where it would be in case no locals in
 400   // a static method). "state" contains any previous frame manager state which we must save a link
 401   // to in the newly generated state object. On return "state" is a pointer to the newly allocated
 402   // state object. We must allocate and initialize a new interpretState object and the method
 403   // expression stack. Because the returned result (if any) of the method will be placed on the caller's
 404   // expression stack and this will overlap with locals[0] (and locals[1] if double/long) we must
 405   // be sure to leave space on the caller's stack so that this result will not overwrite values when
 406   // locals[0] and locals[1] do not exist (and in fact are return address and saved rbp). So when
 407   // we are non-native we in essence ensure that locals[0-1] exist. We play an extra trick in
 408   // non-product builds and initialize this last local with the previous interpreterState as
 409   // this makes things look real nice in the debugger.
 410 
 411   // State on entry
 412   // Assumes locals == &locals[0]
 413   // Assumes state == any previous frame manager state (assuming call path from c++ interpreter)
 414   // Assumes rax = return address
 415   // rcx == senders_sp
 416   // rbx == method
 417   // Modifies rcx, rdx, rax
 418   // Returns:
 419   // state == address of new interpreterState
 420   // rsp == bottom of method's expression stack.
 421 
 422   const Address const_offset      (rbx, Method::const_offset());
 423 
 424 
 425   // On entry sp is the sender's sp. This includes the space for the arguments
 426   // that the sender pushed. If the sender pushed no args (a static) and the
 427   // caller returns a long then we need two words on the sender's stack which
 428   // are not present (although when we return a restore full size stack the
 429   // space will be present). If we didn't allocate two words here then when
 430   // we "push" the result of the caller's stack we would overwrite the return
 431   // address and the saved rbp. Not good. So simply allocate 2 words now
 432   // just to be safe. This is the "static long no_params() method" issue.
 433   // See Lo.java for a testcase.
 434   // We don't need this for native calls because they return result in
 435   // register and the stack is expanded in the caller before we store
 436   // the results on the stack.
 437 
 438   if (!native) {
 439 #ifdef PRODUCT
 440     __ subptr(rsp, 2*wordSize);
 441 #else /* PRODUCT */
 442     __ push((int32_t)NULL_WORD);
 443     __ push(state);                         // make it look like a real argument
 444 #endif /* PRODUCT */
 445   }
 446 
 447   // Now that we are assure of space for stack result, setup typical linkage
 448 
 449   __ push(rax);
 450   __ enter();
 451 
 452   __ mov(rax, state);                                  // save current state
 453 
 454   __ lea(rsp, Address(rsp, -(int)sizeof(BytecodeInterpreter)));
 455   __ mov(state, rsp);
 456 
 457   // rsi/r13 == state/locals rax == prevstate
 458 
 459   // initialize the "shadow" frame so that use since C++ interpreter not directly
 460   // recursive. Simpler to recurse but we can't trim expression stack as we call
 461   // new methods.
 462   __ movptr(STATE(_locals), locals);                    // state->_locals = locals()
 463   __ movptr(STATE(_self_link), state);                  // point to self
 464   __ movptr(STATE(_prev_link), rax);                    // state->_link = state on entry (NULL or previous state)
 465   __ movptr(STATE(_sender_sp), sender_sp);              // state->_sender_sp = sender_sp
 466 #ifdef _LP64
 467   __ movptr(STATE(_thread), r15_thread);                // state->_bcp = codes()
 468 #else
 469   __ get_thread(rax);                                   // get vm's javathread*
 470   __ movptr(STATE(_thread), rax);                       // state->_bcp = codes()
 471 #endif // _LP64
 472   __ movptr(rdx, Address(rbx, Method::const_offset())); // get constantMethodOop
 473   __ lea(rdx, Address(rdx, ConstMethod::codes_offset())); // get code base
 474   if (native) {
 475     __ movptr(STATE(_bcp), (int32_t)NULL_WORD);         // state->_bcp = NULL
 476   } else {
 477     __ movptr(STATE(_bcp), rdx);                        // state->_bcp = codes()
 478   }
 479   __ xorptr(rdx, rdx);
 480   __ movptr(STATE(_oop_temp), rdx);                     // state->_oop_temp = NULL (only really needed for native)
 481   __ movptr(STATE(_mdx), rdx);                          // state->_mdx = NULL
 482   __ movptr(rdx, Address(rbx, Method::const_offset()));
 483   __ movptr(rdx, Address(rdx, ConstMethod::constants_offset()));
 484   __ movptr(rdx, Address(rdx, ConstantPool::cache_offset_in_bytes()));
 485   __ movptr(STATE(_constants), rdx);                    // state->_constants = constants()
 486 
 487   __ movptr(STATE(_method), rbx);                       // state->_method = method()
 488   __ movl(STATE(_msg), (int32_t) BytecodeInterpreter::method_entry);   // state->_msg = initial method entry
 489   __ movptr(STATE(_result._to_call._callee), (int32_t) NULL_WORD); // state->_result._to_call._callee_callee = NULL
 490 
 491 
 492   __ movptr(STATE(_monitor_base), rsp);                 // set monitor block bottom (grows down) this would point to entry [0]
 493                                                         // entries run from -1..x where &monitor[x] ==
 494 
 495   {
 496     // Must not attempt to lock method until we enter interpreter as gc won't be able to find the
 497     // initial frame. However we allocate a free monitor so we don't have to shuffle the expression stack
 498     // immediately.
 499 
 500     // synchronize method
 501     const Address access_flags      (rbx, Method::access_flags_offset());
 502     const int entry_size            = frame::interpreter_frame_monitor_size() * wordSize;
 503     Label not_synced;
 504 
 505     __ movl(rax, access_flags);
 506     __ testl(rax, JVM_ACC_SYNCHRONIZED);
 507     __ jcc(Assembler::zero, not_synced);
 508 
 509     // Allocate initial monitor and pre initialize it
 510     // get synchronization object
 511 
 512     Label done;
 513     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
 514     __ movl(rax, access_flags);
 515     __ testl(rax, JVM_ACC_STATIC);
 516     __ movptr(rax, Address(locals, 0));                   // get receiver (assume this is frequent case)
 517     __ jcc(Assembler::zero, done);
 518     __ movptr(rax, Address(rbx, Method::const_offset()));
 519     __ movptr(rax, Address(rax, ConstMethod::constants_offset()));
 520     __ movptr(rax, Address(rax, ConstantPool::pool_holder_offset_in_bytes()));
 521     __ movptr(rax, Address(rax, mirror_offset));
 522     __ bind(done);
 523     // add space for monitor & lock
 524     __ subptr(rsp, entry_size);                                           // add space for a monitor entry
 525     __ movptr(Address(rsp, BasicObjectLock::obj_offset_in_bytes()), rax); // store object
 526     __ bind(not_synced);
 527   }
 528 
 529   __ movptr(STATE(_stack_base), rsp);                                     // set expression stack base ( == &monitors[-count])
 530   if (native) {
 531     __ movptr(STATE(_stack), rsp);                                        // set current expression stack tos
 532     __ movptr(STATE(_stack_limit), rsp);
 533   } else {
 534     __ subptr(rsp, wordSize);                                             // pre-push stack
 535     __ movptr(STATE(_stack), rsp);                                        // set current expression stack tos
 536 
 537     // compute full expression stack limit
 538 
 539     __ movptr(rdx, Address(rbx, Method::const_offset()));
 540     __ load_unsigned_short(rdx, Address(rdx, ConstMethod::max_stack_offset())); // get size of expression stack in words
 541     __ negptr(rdx);                                                       // so we can subtract in next step
 542     // Allocate expression stack
 543     __ lea(rsp, Address(rsp, rdx, Address::times_ptr, -Method::extra_stack_words()));
 544     __ movptr(STATE(_stack_limit), rsp);
 545   }
 546 
 547 #ifdef _LP64
 548   // Make sure stack is properly aligned and sized for the abi
 549   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
 550   __ andptr(rsp, -16); // must be 16 byte boundary (see amd64 ABI)
 551 #endif // _LP64
 552 
 553 
 554 
 555 }
 556 
 557 // Helpers for commoning out cases in the various type of method entries.
 558 //
 559 
 560 // increment invocation count & check for overflow
 561 //
 562 // Note: checking for negative value instead of overflow
 563 //       so we have a 'sticky' overflow test
 564 //
 565 // rbx,: method
 566 // rcx: invocation counter
 567 //
 568 void InterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
 569   Label done;
 570   const Address invocation_counter(rax,
 571                 MethodCounters::invocation_counter_offset() +
 572                 InvocationCounter::counter_offset());
 573   const Address backedge_counter  (rax,
 574                 MethodCounters::backedge_counter_offset() +
 575                 InvocationCounter::counter_offset());
 576 
 577   __ get_method_counters(rbx, rax, done);
 578 
 579   if (ProfileInterpreter) {
 580     __ incrementl(Address(rax,
 581             MethodCounters::interpreter_invocation_counter_offset()));
 582   }
 583   // Update standard invocation counters
 584   __ movl(rcx, invocation_counter);
 585   __ increment(rcx, InvocationCounter::count_increment);
 586   __ movl(invocation_counter, rcx);             // save invocation count
 587 
 588   __ movl(rax, backedge_counter);               // load backedge counter
 589   __ andl(rax, InvocationCounter::count_mask_value);  // mask out the status bits
 590 
 591   __ addl(rcx, rax);                            // add both counters
 592 
 593   // profile_method is non-null only for interpreted method so
 594   // profile_method != NULL == !native_call
 595   // BytecodeInterpreter only calls for native so code is elided.
 596 
 597   __ cmp32(rcx,
 598            ExternalAddress((address)&InvocationCounter::InterpreterInvocationLimit));
 599   __ jcc(Assembler::aboveEqual, *overflow);
 600   __ bind(done);
 601 }
 602 
 603 void InterpreterGenerator::generate_counter_overflow(Label* do_continue) {
 604 
 605   // C++ interpreter on entry
 606   // rsi/r13 - new interpreter state pointer
 607   // rbp - interpreter frame pointer
 608   // rbx - method
 609 
 610   // On return (i.e. jump to entry_point) [ back to invocation of interpreter ]
 611   // rbx, - method
 612   // rcx - rcvr (assuming there is one)
 613   // top of stack return address of interpreter caller
 614   // rsp - sender_sp
 615 
 616   // C++ interpreter only
 617   // rsi/r13 - previous interpreter state pointer
 618 
 619   // InterpreterRuntime::frequency_counter_overflow takes one argument
 620   // indicating if the counter overflow occurs at a backwards branch (non-NULL bcp).
 621   // The call returns the address of the verified entry point for the method or NULL
 622   // if the compilation did not complete (either went background or bailed out).
 623   __ movptr(rax, (int32_t)false);
 624   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), rax);
 625 
 626   // for c++ interpreter can rsi really be munged?
 627   __ lea(state, Address(rbp, -(int)sizeof(BytecodeInterpreter)));                               // restore state
 628   __ movptr(rbx, Address(state, byte_offset_of(BytecodeInterpreter, _method)));            // restore method
 629   __ movptr(rdi, Address(state, byte_offset_of(BytecodeInterpreter, _locals)));            // get locals pointer
 630 
 631   __ jmp(*do_continue, relocInfo::none);
 632 
 633 }
 634 
 635 void InterpreterGenerator::generate_stack_overflow_check(void) {
 636   // see if we've got enough room on the stack for locals plus overhead.
 637   // the expression stack grows down incrementally, so the normal guard
 638   // page mechanism will work for that.
 639   //
 640   // Registers live on entry:
 641   //
 642   // Asm interpreter
 643   // rdx: number of additional locals this frame needs (what we must check)
 644   // rbx,: Method*
 645 
 646   // C++ Interpreter
 647   // rsi/r13: previous interpreter frame state object
 648   // rdi: &locals[0]
 649   // rcx: # of locals
 650   // rdx: number of additional locals this frame needs (what we must check)
 651   // rbx: Method*
 652 
 653   // destroyed on exit
 654   // rax,
 655 
 656   // NOTE:  since the additional locals are also always pushed (wasn't obvious in
 657   // generate_method_entry) so the guard should work for them too.
 658   //
 659 
 660   const int entry_size    = frame::interpreter_frame_monitor_size() * wordSize;
 661 
 662   // total overhead size: entry_size + (saved rbp, thru expr stack bottom).
 663   // be sure to change this if you add/subtract anything to/from the overhead area
 664   const int overhead_size = (int)sizeof(BytecodeInterpreter);
 665 
 666   const int page_size = os::vm_page_size();
 667 
 668   Label after_frame_check;
 669 
 670   // compute rsp as if this were going to be the last frame on
 671   // the stack before the red zone
 672 
 673   Label after_frame_check_pop;
 674 
 675   // save rsi == caller's bytecode ptr (c++ previous interp. state)
 676   // QQQ problem here?? rsi overload????
 677   __ push(state);
 678 
 679   const Register thread = LP64_ONLY(r15_thread) NOT_LP64(rsi);
 680 
 681   NOT_LP64(__ get_thread(thread));
 682 
 683   const Address stack_base(thread, Thread::stack_base_offset());
 684   const Address stack_size(thread, Thread::stack_size_offset());
 685 
 686   // locals + overhead, in bytes
 687   // Always give one monitor to allow us to start interp if sync method.
 688   // Any additional monitors need a check when moving the expression stack
 689   const int one_monitor = frame::interpreter_frame_monitor_size() * wordSize;
 690   __ movptr(rax, Address(rbx, Method::const_offset()));
 691   __ load_unsigned_short(rax, Address(rax, ConstMethod::max_stack_offset())); // get size of expression stack in words
 692   __ lea(rax, Address(noreg, rax, Interpreter::stackElementScale(), one_monitor+Method::extra_stack_words()));
 693   __ lea(rax, Address(rax, rdx, Interpreter::stackElementScale(), overhead_size));
 694 
 695 #ifdef ASSERT
 696   Label stack_base_okay, stack_size_okay;
 697   // verify that thread stack base is non-zero
 698   __ cmpptr(stack_base, (int32_t)0);
 699   __ jcc(Assembler::notEqual, stack_base_okay);
 700   __ stop("stack base is zero");
 701   __ bind(stack_base_okay);
 702   // verify that thread stack size is non-zero
 703   __ cmpptr(stack_size, (int32_t)0);
 704   __ jcc(Assembler::notEqual, stack_size_okay);
 705   __ stop("stack size is zero");
 706   __ bind(stack_size_okay);
 707 #endif
 708 
 709   // Add stack base to locals and subtract stack size
 710   __ addptr(rax, stack_base);
 711   __ subptr(rax, stack_size);
 712 
 713   // We should have a magic number here for the size of the c++ interpreter frame.
 714   // We can't actually tell this ahead of time. The debug version size is around 3k
 715   // product is 1k and fastdebug is 4k
 716   const int slop = 6 * K;
 717 
 718   // Use the maximum number of pages we might bang.
 719   const int max_pages = StackShadowPages > (StackRedPages+StackYellowPages) ? StackShadowPages :
 720                                                                               (StackRedPages+StackYellowPages);
 721   // Only need this if we are stack banging which is temporary while
 722   // we're debugging.
 723   __ addptr(rax, slop + 2*max_pages * page_size);
 724 
 725   // check against the current stack bottom
 726   __ cmpptr(rsp, rax);
 727   __ jcc(Assembler::above, after_frame_check_pop);
 728 
 729   __ pop(state);  //  get c++ prev state.
 730 
 731      // throw exception return address becomes throwing pc
 732   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
 733 
 734   // all done with frame size check
 735   __ bind(after_frame_check_pop);
 736   __ pop(state);
 737 
 738   __ bind(after_frame_check);
 739 }
 740 
 741 // Find preallocated  monitor and lock method (C++ interpreter)
 742 // rbx - Method*
 743 //
 744 void CppInterpreterGenerator::lock_method() {
 745   // assumes state == rsi/r13 == pointer to current interpreterState
 746   // minimally destroys rax, rdx|c_rarg1, rdi
 747   //
 748   // synchronize method
 749   const int entry_size            = frame::interpreter_frame_monitor_size() * wordSize;
 750   const Address access_flags      (rbx, Method::access_flags_offset());
 751 
 752   const Register monitor  = NOT_LP64(rdx) LP64_ONLY(c_rarg1);
 753 
 754   // find initial monitor i.e. monitors[-1]
 755   __ movptr(monitor, STATE(_monitor_base));                                   // get monitor bottom limit
 756   __ subptr(monitor, entry_size);                                             // point to initial monitor
 757 
 758 #ifdef ASSERT
 759   { Label L;
 760     __ movl(rax, access_flags);
 761     __ testl(rax, JVM_ACC_SYNCHRONIZED);
 762     __ jcc(Assembler::notZero, L);
 763     __ stop("method doesn't need synchronization");
 764     __ bind(L);
 765   }
 766 #endif // ASSERT
 767   // get synchronization object
 768   { Label done;
 769     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
 770     __ movl(rax, access_flags);
 771     __ movptr(rdi, STATE(_locals));                                     // prepare to get receiver (assume common case)
 772     __ testl(rax, JVM_ACC_STATIC);
 773     __ movptr(rax, Address(rdi, 0));                                    // get receiver (assume this is frequent case)
 774     __ jcc(Assembler::zero, done);
 775     __ movptr(rax, Address(rbx, Method::const_offset()));
 776     __ movptr(rax, Address(rax, ConstMethod::constants_offset()));
 777     __ movptr(rax, Address(rax, ConstantPool::pool_holder_offset_in_bytes()));
 778     __ movptr(rax, Address(rax, mirror_offset));
 779     __ bind(done);
 780   }
 781 #ifdef ASSERT
 782   { Label L;
 783     __ cmpptr(rax, Address(monitor, BasicObjectLock::obj_offset_in_bytes()));   // correct object?
 784     __ jcc(Assembler::equal, L);
 785     __ stop("wrong synchronization lobject");
 786     __ bind(L);
 787   }
 788 #endif // ASSERT
 789   // can destroy rax, rdx|c_rarg1, rcx, and (via call_VM) rdi!
 790   __ lock_object(monitor);
 791 }
 792 
 793 address InterpreterGenerator::generate_Reference_get_entry(void) {
 794 #if INCLUDE_ALL_GCS
 795   if (UseG1GC) {
 796     // We need to generate have a routine that generates code to:
 797     //   * load the value in the referent field
 798     //   * passes that value to the pre-barrier.
 799     //
 800     // In the case of G1 this will record the value of the
 801     // referent in an SATB buffer if marking is active.
 802     // This will cause concurrent marking to mark the referent
 803     // field as live.
 804     Unimplemented();
 805   }
 806 #endif // INCLUDE_ALL_GCS
 807 
 808   // If G1 is not enabled then attempt to go through the accessor entry point
 809   // Reference.get is an accessor
 810   return NULL;
 811 }
 812 
 813 //
 814 // C++ Interpreter stub for calling a native method.
 815 // This sets up a somewhat different looking stack for calling the native method
 816 // than the typical interpreter frame setup but still has the pointer to
 817 // an interpreter state.
 818 //
 819 
 820 address InterpreterGenerator::generate_native_entry(bool synchronized) {
 821   // determine code generation flags
 822   bool inc_counter  = UseCompiler || CountCompiledCalls;
 823 
 824   // rbx: Method*
 825   // rcx: receiver (unused)
 826   // rsi/r13: previous interpreter state (if called from C++ interpreter) must preserve
 827   //      in any case. If called via c1/c2/call_stub rsi/r13 is junk (to use) but harmless
 828   //      to save/restore.
 829   address entry_point = __ pc();
 830 
 831   const Address access_flags      (rbx, Method::access_flags_offset());
 832 
 833   // rsi/r13 == state/locals rdi == prevstate
 834   const Register locals = rdi;
 835 
 836   // get parameter size (always needed)
 837   {
 838     const Address constMethod       (rbx, Method::const_offset());
 839     const Address size_of_parameters(rcx, ConstMethod::size_of_parameters_offset());
 840     __ movptr(rcx, constMethod);
 841     __ load_unsigned_short(rcx, size_of_parameters);
 842   }
 843 
 844   // rbx: Method*
 845   // rcx: size of parameters
 846   __ pop(rax);                                       // get return address
 847   // for natives the size of locals is zero
 848 
 849   // compute beginning of parameters /locals
 850 
 851   __ lea(locals, Address(rsp, rcx, Address::times_ptr, -wordSize));
 852 
 853   // initialize fixed part of activation frame
 854 
 855   // Assumes rax = return address
 856 
 857   // allocate and initialize new interpreterState and method expression stack
 858   // IN(locals) ->  locals
 859   // IN(state) -> previous frame manager state (NULL from stub/c1/c2)
 860   // destroys rax, rcx, rdx
 861   // OUT (state) -> new interpreterState
 862   // OUT(rsp) -> bottom of methods expression stack
 863 
 864   // save sender_sp
 865   __ mov(rcx, sender_sp_on_entry);
 866   // start with NULL previous state
 867   __ movptr(state, (int32_t)NULL_WORD);
 868   generate_compute_interpreter_state(state, locals, rcx, true);
 869 
 870 #ifdef ASSERT
 871   { Label L;
 872     __ movptr(rax, STATE(_stack_base));
 873 #ifdef _LP64
 874     // duplicate the alignment rsp got after setting stack_base
 875     __ subptr(rax, frame::arg_reg_save_area_bytes); // windows
 876     __ andptr(rax, -16); // must be 16 byte boundary (see amd64 ABI)
 877 #endif // _LP64
 878     __ cmpptr(rax, rsp);
 879     __ jcc(Assembler::equal, L);
 880     __ stop("broken stack frame setup in interpreter");
 881     __ bind(L);
 882   }
 883 #endif
 884 
 885   const Register unlock_thread = LP64_ONLY(r15_thread) NOT_LP64(rax);
 886   NOT_LP64(__ movptr(unlock_thread, STATE(_thread));) // get thread
 887   // Since at this point in the method invocation the exception handler
 888   // would try to exit the monitor of synchronized methods which hasn't
 889   // been entered yet, we set the thread local variable
 890   // _do_not_unlock_if_synchronized to true. The remove_activation will
 891   // check this flag.
 892 
 893   const Address do_not_unlock_if_synchronized(unlock_thread,
 894         in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
 895   __ movbool(do_not_unlock_if_synchronized, true);
 896 
 897   // make sure method is native & not abstract
 898 #ifdef ASSERT
 899   __ movl(rax, access_flags);
 900   {
 901     Label L;
 902     __ testl(rax, JVM_ACC_NATIVE);
 903     __ jcc(Assembler::notZero, L);
 904     __ stop("tried to execute non-native method as native");
 905     __ bind(L);
 906   }
 907   { Label L;
 908     __ testl(rax, JVM_ACC_ABSTRACT);
 909     __ jcc(Assembler::zero, L);
 910     __ stop("tried to execute abstract method in interpreter");
 911     __ bind(L);
 912   }
 913 #endif
 914 
 915 
 916   // increment invocation count & check for overflow
 917   Label invocation_counter_overflow;
 918   if (inc_counter) {
 919     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
 920   }
 921 
 922   Label continue_after_compile;
 923 
 924   __ bind(continue_after_compile);
 925 
 926   bang_stack_shadow_pages(true);
 927 
 928   // reset the _do_not_unlock_if_synchronized flag
 929   NOT_LP64(__ movl(rax, STATE(_thread));)                       // get thread
 930   __ movbool(do_not_unlock_if_synchronized, false);
 931 
 932 
 933   // check for synchronized native methods
 934   //
 935   // Note: This must happen *after* invocation counter check, since
 936   //       when overflow happens, the method should not be locked.
 937   if (synchronized) {
 938     // potentially kills rax, rcx, rdx, rdi
 939     lock_method();
 940   } else {
 941     // no synchronization necessary
 942 #ifdef ASSERT
 943       { Label L;
 944         __ movl(rax, access_flags);
 945         __ testl(rax, JVM_ACC_SYNCHRONIZED);
 946         __ jcc(Assembler::zero, L);
 947         __ stop("method needs synchronization");
 948         __ bind(L);
 949       }
 950 #endif
 951   }
 952 
 953   // start execution
 954 
 955   // jvmti support
 956   __ notify_method_entry();
 957 
 958   // work registers
 959   const Register method = rbx;
 960   const Register thread = LP64_ONLY(r15_thread) NOT_LP64(rdi);
 961   const Register t      = InterpreterRuntime::SignatureHandlerGenerator::temp();    // rcx|rscratch1
 962 
 963  // allocate space for parameters
 964   __ movptr(method, STATE(_method));
 965   __ verify_method_ptr(method);
 966   {
 967     const Address constMethod       (method, Method::const_offset());
 968     const Address size_of_parameters(t, ConstMethod::size_of_parameters_offset());
 969     __ movptr(t, constMethod);
 970     __ load_unsigned_short(t, size_of_parameters);
 971   }
 972   __ shll(t, 2);
 973 #ifdef _LP64
 974   __ subptr(rsp, t);
 975   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
 976   __ andptr(rsp, -16); // must be 16 byte boundary (see amd64 ABI)
 977 #else
 978   __ addptr(t, 2*wordSize);     // allocate two more slots for JNIEnv and possible mirror
 979   __ subptr(rsp, t);
 980   __ andptr(rsp, -(StackAlignmentInBytes)); // gcc needs 16 byte aligned stacks to do XMM intrinsics
 981 #endif // _LP64
 982 
 983   // get signature handler
 984     Label pending_exception_present;
 985 
 986   { Label L;
 987     __ movptr(t, Address(method, Method::signature_handler_offset()));
 988     __ testptr(t, t);
 989     __ jcc(Assembler::notZero, L);
 990     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), method, false);
 991     __ movptr(method, STATE(_method));
 992     __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
 993     __ jcc(Assembler::notEqual, pending_exception_present);
 994     __ verify_method_ptr(method);
 995     __ movptr(t, Address(method, Method::signature_handler_offset()));
 996     __ bind(L);
 997   }
 998 #ifdef ASSERT
 999   {
1000     Label L;
1001     __ push(t);
1002     __ get_thread(t);                                   // get vm's javathread*
1003     __ cmpptr(t, STATE(_thread));
1004     __ jcc(Assembler::equal, L);
1005     __ int3();
1006     __ bind(L);
1007     __ pop(t);
1008   }
1009 #endif //
1010 
1011   const Register from_ptr = InterpreterRuntime::SignatureHandlerGenerator::from();
1012   // call signature handler
1013   assert(InterpreterRuntime::SignatureHandlerGenerator::to  () == rsp, "adjust this code");
1014 
1015   // The generated handlers do not touch RBX (the method oop).
1016   // However, large signatures cannot be cached and are generated
1017   // each time here.  The slow-path generator will blow RBX
1018   // sometime, so we must reload it after the call.
1019   __ movptr(from_ptr, STATE(_locals));  // get the from pointer
1020   __ call(t);
1021   __ movptr(method, STATE(_method));
1022   __ verify_method_ptr(method);
1023 
1024   // result handler is in rax
1025   // set result handler
1026   __ movptr(STATE(_result_handler), rax);
1027 
1028 
1029   // get native function entry point
1030   { Label L;
1031     __ movptr(rax, Address(method, Method::native_function_offset()));
1032     __ testptr(rax, rax);
1033     __ jcc(Assembler::notZero, L);
1034     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), method);
1035     __ movptr(method, STATE(_method));
1036     __ verify_method_ptr(method);
1037     __ movptr(rax, Address(method, Method::native_function_offset()));
1038     __ bind(L);
1039   }
1040 
1041   // pass mirror handle if static call
1042   { Label L;
1043     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
1044     __ movl(t, Address(method, Method::access_flags_offset()));
1045     __ testl(t, JVM_ACC_STATIC);
1046     __ jcc(Assembler::zero, L);
1047     // get mirror
1048     __ movptr(t, Address(method, Method:: const_offset()));
1049     __ movptr(t, Address(t, ConstMethod::constants_offset()));
1050     __ movptr(t, Address(t, ConstantPool::pool_holder_offset_in_bytes()));
1051     __ movptr(t, Address(t, mirror_offset));
1052     // copy mirror into activation object
1053     __ movptr(STATE(_oop_temp), t);
1054     // pass handle to mirror
1055 #ifdef _LP64
1056     __ lea(c_rarg1, STATE(_oop_temp));
1057 #else
1058     __ lea(t, STATE(_oop_temp));
1059     __ movptr(Address(rsp, wordSize), t);
1060 #endif // _LP64
1061     __ bind(L);
1062   }
1063 #ifdef ASSERT
1064   {
1065     Label L;
1066     __ push(t);
1067     __ get_thread(t);                                   // get vm's javathread*
1068     __ cmpptr(t, STATE(_thread));
1069     __ jcc(Assembler::equal, L);
1070     __ int3();
1071     __ bind(L);
1072     __ pop(t);
1073   }
1074 #endif //
1075 
1076   // pass JNIEnv
1077 #ifdef _LP64
1078   __ lea(c_rarg0, Address(thread, JavaThread::jni_environment_offset()));
1079 #else
1080   __ movptr(thread, STATE(_thread));          // get thread
1081   __ lea(t, Address(thread, JavaThread::jni_environment_offset()));
1082 
1083   __ movptr(Address(rsp, 0), t);
1084 #endif // _LP64
1085 
1086 #ifdef ASSERT
1087   {
1088     Label L;
1089     __ push(t);
1090     __ get_thread(t);                                   // get vm's javathread*
1091     __ cmpptr(t, STATE(_thread));
1092     __ jcc(Assembler::equal, L);
1093     __ int3();
1094     __ bind(L);
1095     __ pop(t);
1096   }
1097 #endif //
1098 
1099 #ifdef ASSERT
1100   { Label L;
1101     __ movl(t, Address(thread, JavaThread::thread_state_offset()));
1102     __ cmpl(t, _thread_in_Java);
1103     __ jcc(Assembler::equal, L);
1104     __ stop("Wrong thread state in native stub");
1105     __ bind(L);
1106   }
1107 #endif
1108 
1109   // Change state to native (we save the return address in the thread, since it might not
1110   // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
1111   // points into the right code segment. It does not have to be the correct return pc.
1112 
1113   __ set_last_Java_frame(thread, noreg, rbp, __ pc());
1114 
1115   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native);
1116 
1117   __ call(rax);
1118 
1119   // result potentially in rdx:rax or ST0
1120   __ movptr(method, STATE(_method));
1121   NOT_LP64(__ movptr(thread, STATE(_thread));)                  // get thread
1122 
1123   // The potential result is in ST(0) & rdx:rax
1124   // With C++ interpreter we leave any possible result in ST(0) until we are in result handler and then
1125   // we do the appropriate stuff for returning the result. rdx:rax must always be saved because just about
1126   // anything we do here will destroy it, st(0) is only saved if we re-enter the vm where it would
1127   // be destroyed.
1128   // It is safe to do these pushes because state is _thread_in_native and return address will be found
1129   // via _last_native_pc and not via _last_jave_sp
1130 
1131     // Must save the value of ST(0)/xmm0 since it could be destroyed before we get to result handler
1132     { Label Lpush, Lskip;
1133       ExternalAddress float_handler(AbstractInterpreter::result_handler(T_FLOAT));
1134       ExternalAddress double_handler(AbstractInterpreter::result_handler(T_DOUBLE));
1135       __ cmpptr(STATE(_result_handler), float_handler.addr());
1136       __ jcc(Assembler::equal, Lpush);
1137       __ cmpptr(STATE(_result_handler), double_handler.addr());
1138       __ jcc(Assembler::notEqual, Lskip);
1139       __ bind(Lpush);
1140       __ subptr(rsp, 2*wordSize);
1141       if ( UseSSE < 2 ) {
1142         __ fstp_d(Address(rsp, 0));
1143       } else {
1144         __ movdbl(Address(rsp, 0), xmm0);
1145       }
1146       __ bind(Lskip);
1147     }
1148 
1149   // save rax:rdx for potential use by result handler.
1150   __ push(rax);
1151 #ifndef _LP64
1152   __ push(rdx);
1153 #endif // _LP64
1154 
1155   // Verify or restore cpu control state after JNI call
1156   __ restore_cpu_control_state_after_jni();
1157 
1158   // change thread state
1159   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
1160   if(os::is_MP()) {
1161     // Write serialization page so VM thread can do a pseudo remote membar.
1162     // We use the current thread pointer to calculate a thread specific
1163     // offset to write to within the page. This minimizes bus traffic
1164     // due to cache line collision.
1165     __ serialize_memory(thread, rcx);
1166   }
1167 
1168   // check for safepoint operation in progress and/or pending suspend requests
1169   { Label Continue;
1170 
1171     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
1172              SafepointSynchronize::_not_synchronized);
1173 
1174     // threads running native code and they are expected to self-suspend
1175     // when leaving the _thread_in_native state. We need to check for
1176     // pending suspend requests here.
1177     Label L;
1178     __ jcc(Assembler::notEqual, L);
1179     __ cmpl(Address(thread, JavaThread::suspend_flags_offset()), 0);
1180     __ jcc(Assembler::equal, Continue);
1181     __ bind(L);
1182 
1183     // Don't use call_VM as it will see a possible pending exception and forward it
1184     // and never return here preventing us from clearing _last_native_pc down below.
1185     // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
1186     // preserved and correspond to the bcp/locals pointers.
1187     //
1188 
1189     ((MacroAssembler*)_masm)->call_VM_leaf(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans),
1190                           thread);
1191     __ increment(rsp, wordSize);
1192 
1193     __ movptr(method, STATE(_method));
1194     __ verify_method_ptr(method);
1195     __ movptr(thread, STATE(_thread));                       // get thread
1196 
1197     __ bind(Continue);
1198   }
1199 
1200   // change thread state
1201   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_Java);
1202 
1203   __ reset_last_Java_frame(thread, true, true);
1204 
1205   // reset handle block
1206   __ movptr(t, Address(thread, JavaThread::active_handles_offset()));
1207   __ movl(Address(t, JNIHandleBlock::top_offset_in_bytes()), (int32_t)NULL_WORD);
1208 
1209   // If result was an oop then unbox and save it in the frame
1210   { Label L;
1211     Label no_oop, store_result;
1212       ExternalAddress oop_handler(AbstractInterpreter::result_handler(T_OBJECT));
1213     __ cmpptr(STATE(_result_handler), oop_handler.addr());
1214     __ jcc(Assembler::notEqual, no_oop);
1215 #ifndef _LP64
1216     __ pop(rdx);
1217 #endif // _LP64
1218     __ pop(rax);
1219     __ testptr(rax, rax);
1220     __ jcc(Assembler::zero, store_result);
1221     // unbox
1222     __ movptr(rax, Address(rax, 0));
1223     __ bind(store_result);
1224     __ movptr(STATE(_oop_temp), rax);
1225     // keep stack depth as expected by pushing oop which will eventually be discarded
1226     __ push(rax);
1227 #ifndef _LP64
1228     __ push(rdx);
1229 #endif // _LP64
1230     __ bind(no_oop);
1231   }
1232 
1233   {
1234      Label no_reguard;
1235      __ cmpl(Address(thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled);
1236      __ jcc(Assembler::notEqual, no_reguard);
1237 
1238      __ pusha();
1239      __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
1240      __ popa();
1241 
1242      __ bind(no_reguard);
1243    }
1244 
1245 
1246   // QQQ Seems like for native methods we simply return and the caller will see the pending
1247   // exception and do the right thing. Certainly the interpreter will, don't know about
1248   // compiled methods.
1249   // Seems that the answer to above is no this is wrong. The old code would see the exception
1250   // and forward it before doing the unlocking and notifying jvmdi that method has exited.
1251   // This seems wrong need to investigate the spec.
1252 
1253   // handle exceptions (exception handling will handle unlocking!)
1254   { Label L;
1255     __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
1256     __ jcc(Assembler::zero, L);
1257     __ bind(pending_exception_present);
1258 
1259     // There are potential results on the stack (rax/rdx, ST(0)) we ignore these and simply
1260     // return and let caller deal with exception. This skips the unlocking here which
1261     // seems wrong but seems to be what asm interpreter did. Can't find this in the spec.
1262     // Note: must preverve method in rbx
1263     //
1264 
1265     // remove activation
1266 
1267     __ movptr(t, STATE(_sender_sp));
1268     __ leave();                                  // remove frame anchor
1269     __ pop(rdi);                                 // get return address
1270     __ movptr(state, STATE(_prev_link));         // get previous state for return
1271     __ mov(rsp, t);                              // set sp to sender sp
1272     __ push(rdi);                                // push throwing pc
1273     // The skips unlocking!! This seems to be what asm interpreter does but seems
1274     // very wrong. Not clear if this violates the spec.
1275     __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
1276     __ bind(L);
1277   }
1278 
1279   // do unlocking if necessary
1280   { Label L;
1281     __ movl(t, Address(method, Method::access_flags_offset()));
1282     __ testl(t, JVM_ACC_SYNCHRONIZED);
1283     __ jcc(Assembler::zero, L);
1284     // the code below should be shared with interpreter macro assembler implementation
1285     { Label unlock;
1286     const Register monitor = NOT_LP64(rdx) LP64_ONLY(c_rarg1);
1287       // BasicObjectLock will be first in list, since this is a synchronized method. However, need
1288       // to check that the object has not been unlocked by an explicit monitorexit bytecode.
1289       __ movptr(monitor, STATE(_monitor_base));
1290       __ subptr(monitor, frame::interpreter_frame_monitor_size() * wordSize);  // address of initial monitor
1291 
1292       __ movptr(t, Address(monitor, BasicObjectLock::obj_offset_in_bytes()));
1293       __ testptr(t, t);
1294       __ jcc(Assembler::notZero, unlock);
1295 
1296       // Entry already unlocked, need to throw exception
1297       __ MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
1298       __ should_not_reach_here();
1299 
1300       __ bind(unlock);
1301       __ unlock_object(monitor);
1302       // unlock can blow rbx so restore it for path that needs it below
1303       __ movptr(method, STATE(_method));
1304     }
1305     __ bind(L);
1306   }
1307 
1308   // jvmti support
1309   // Note: This must happen _after_ handling/throwing any exceptions since
1310   //       the exception handler code notifies the runtime of method exits
1311   //       too. If this happens before, method entry/exit notifications are
1312   //       not properly paired (was bug - gri 11/22/99).
1313   __ notify_method_exit(vtos, InterpreterMacroAssembler::NotifyJVMTI);
1314 
1315   // restore potential result in rdx:rax, call result handler to restore potential result in ST0 & handle result
1316 #ifndef _LP64
1317   __ pop(rdx);
1318 #endif // _LP64
1319   __ pop(rax);
1320   __ movptr(t, STATE(_result_handler));       // get result handler
1321   __ call(t);                                 // call result handler to convert to tosca form
1322 
1323   // remove activation
1324 
1325   __ movptr(t, STATE(_sender_sp));
1326 
1327   __ leave();                                  // remove frame anchor
1328   __ pop(rdi);                                 // get return address
1329   __ movptr(state, STATE(_prev_link));         // get previous state for return (if c++ interpreter was caller)
1330   __ mov(rsp, t);                              // set sp to sender sp
1331   __ jmp(rdi);
1332 
1333   // invocation counter overflow
1334   if (inc_counter) {
1335     // Handle overflow of counter and compile method
1336     __ bind(invocation_counter_overflow);
1337     generate_counter_overflow(&continue_after_compile);
1338   }
1339 
1340   return entry_point;
1341 }
1342 
1343 // Generate entries that will put a result type index into rcx
1344 void CppInterpreterGenerator::generate_deopt_handling() {
1345 
1346   Label return_from_deopt_common;
1347 
1348   // Generate entries that will put a result type index into rcx
1349   // deopt needs to jump to here to enter the interpreter (return a result)
1350   deopt_frame_manager_return_atos  = __ pc();
1351 
1352   // rax is live here
1353   __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_OBJECT));    // Result stub address array index
1354   __ jmp(return_from_deopt_common);
1355 
1356 
1357   // deopt needs to jump to here to enter the interpreter (return a result)
1358   deopt_frame_manager_return_btos  = __ pc();
1359 
1360   // rax is live here
1361   __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_BOOLEAN));    // Result stub address array index
1362   __ jmp(return_from_deopt_common);
1363 
1364   // deopt needs to jump to here to enter the interpreter (return a result)
1365   deopt_frame_manager_return_itos  = __ pc();
1366 
1367   // rax is live here
1368   __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_INT));    // Result stub address array index
1369   __ jmp(return_from_deopt_common);
1370 
1371   // deopt needs to jump to here to enter the interpreter (return a result)
1372 
1373   deopt_frame_manager_return_ltos  = __ pc();
1374   // rax,rdx are live here
1375   __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_LONG));    // Result stub address array index
1376   __ jmp(return_from_deopt_common);
1377 
1378   // deopt needs to jump to here to enter the interpreter (return a result)
1379 
1380   deopt_frame_manager_return_ftos  = __ pc();
1381   // st(0) is live here
1382   __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_FLOAT));    // Result stub address array index
1383   __ jmp(return_from_deopt_common);
1384 
1385   // deopt needs to jump to here to enter the interpreter (return a result)
1386   deopt_frame_manager_return_dtos  = __ pc();
1387 
1388   // st(0) is live here
1389   __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_DOUBLE));    // Result stub address array index
1390   __ jmp(return_from_deopt_common);
1391 
1392   // deopt needs to jump to here to enter the interpreter (return a result)
1393   deopt_frame_manager_return_vtos  = __ pc();
1394 
1395   __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_VOID));
1396 
1397   // Deopt return common
1398   // an index is present in rcx that lets us move any possible result being
1399   // return to the interpreter's stack
1400   //
1401   // Because we have a full sized interpreter frame on the youngest
1402   // activation the stack is pushed too deep to share the tosca to
1403   // stack converters directly. We shrink the stack to the desired
1404   // amount and then push result and then re-extend the stack.
1405   // We could have the code in size_activation layout a short
1406   // frame for the top activation but that would look different
1407   // than say sparc (which needs a full size activation because
1408   // the windows are in the way. Really it could be short? QQQ
1409   //
1410   __ bind(return_from_deopt_common);
1411 
1412   __ lea(state, Address(rbp, -(int)sizeof(BytecodeInterpreter)));
1413 
1414   // setup rsp so we can push the "result" as needed.
1415   __ movptr(rsp, STATE(_stack));                                   // trim stack (is prepushed)
1416   __ addptr(rsp, wordSize);                                        // undo prepush
1417 
1418   ExternalAddress tosca_to_stack((address)CppInterpreter::_tosca_to_stack);
1419   // Address index(noreg, rcx, Address::times_ptr);
1420   __ movptr(rcx, ArrayAddress(tosca_to_stack, Address(noreg, rcx, Address::times_ptr)));
1421   // __ movl(rcx, Address(noreg, rcx, Address::times_ptr, int(AbstractInterpreter::_tosca_to_stack)));
1422   __ call(rcx);                                                   // call result converter
1423 
1424   __ movl(STATE(_msg), (int)BytecodeInterpreter::deopt_resume);
1425   __ lea(rsp, Address(rsp, -wordSize));                            // prepush stack (result if any already present)
1426   __ movptr(STATE(_stack), rsp);                                   // inform interpreter of new stack depth (parameters removed,
1427                                                                    // result if any on stack already )
1428   __ movptr(rsp, STATE(_stack_limit));                             // restore expression stack to full depth
1429 }
1430 
1431 // Generate the code to handle a more_monitors message from the c++ interpreter
1432 void CppInterpreterGenerator::generate_more_monitors() {
1433 
1434 
1435   Label entry, loop;
1436   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
1437   // 1. compute new pointers                     // rsp: old expression stack top
1438   __ movptr(rdx, STATE(_stack_base));            // rdx: old expression stack bottom
1439   __ subptr(rsp, entry_size);                    // move expression stack top limit
1440   __ subptr(STATE(_stack), entry_size);          // update interpreter stack top
1441   __ subptr(STATE(_stack_limit), entry_size);    // inform interpreter
1442   __ subptr(rdx, entry_size);                    // move expression stack bottom
1443   __ movptr(STATE(_stack_base), rdx);            // inform interpreter
1444   __ movptr(rcx, STATE(_stack));                 // set start value for copy loop
1445   __ jmp(entry);
1446   // 2. move expression stack contents
1447   __ bind(loop);
1448   __ movptr(rbx, Address(rcx, entry_size));      // load expression stack word from old location
1449   __ movptr(Address(rcx, 0), rbx);               // and store it at new location
1450   __ addptr(rcx, wordSize);                      // advance to next word
1451   __ bind(entry);
1452   __ cmpptr(rcx, rdx);                           // check if bottom reached
1453   __ jcc(Assembler::notEqual, loop);             // if not at bottom then copy next word
1454   // now zero the slot so we can find it.
1455   __ movptr(Address(rdx, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL_WORD);
1456   __ movl(STATE(_msg), (int)BytecodeInterpreter::got_monitors);
1457 }
1458 
1459 
1460 // Initial entry to C++ interpreter from the call_stub.
1461 // This entry point is called the frame manager since it handles the generation
1462 // of interpreter activation frames via requests directly from the vm (via call_stub)
1463 // and via requests from the interpreter. The requests from the call_stub happen
1464 // directly thru the entry point. Requests from the interpreter happen via returning
1465 // from the interpreter and examining the message the interpreter has returned to
1466 // the frame manager. The frame manager can take the following requests:
1467 
1468 // NO_REQUEST - error, should never happen.
1469 // MORE_MONITORS - need a new monitor. Shuffle the expression stack on down and
1470 //                 allocate a new monitor.
1471 // CALL_METHOD - setup a new activation to call a new method. Very similar to what
1472 //               happens during entry during the entry via the call stub.
1473 // RETURN_FROM_METHOD - remove an activation. Return to interpreter or call stub.
1474 //
1475 // Arguments:
1476 //
1477 // rbx: Method*
1478 // rcx: receiver - unused (retrieved from stack as needed)
1479 // rsi/r13: previous frame manager state (NULL from the call_stub/c1/c2)
1480 //
1481 //
1482 // Stack layout at entry
1483 //
1484 // [ return address     ] <--- rsp
1485 // [ parameter n        ]
1486 //   ...
1487 // [ parameter 1        ]
1488 // [ expression stack   ]
1489 //
1490 //
1491 // We are free to blow any registers we like because the call_stub which brought us here
1492 // initially has preserved the callee save registers already.
1493 //
1494 //
1495 
1496 static address interpreter_frame_manager = NULL;
1497 
1498 address InterpreterGenerator::generate_normal_entry(bool synchronized) {
1499 
1500   // rbx: Method*
1501   // rsi/r13: sender sp
1502 
1503   // Because we redispatch "recursive" interpreter entries thru this same entry point
1504   // the "input" register usage is a little strange and not what you expect coming
1505   // from the call_stub. From the call stub rsi/rdi (current/previous) interpreter
1506   // state are NULL but on "recursive" dispatches they are what you'd expect.
1507   // rsi: current interpreter state (C++ interpreter) must preserve (null from call_stub/c1/c2)
1508 
1509 
1510   // A single frame manager is plenty as we don't specialize for synchronized. We could and
1511   // the code is pretty much ready. Would need to change the test below and for good measure
1512   // modify generate_interpreter_state to only do the (pre) sync stuff stuff for synchronized
1513   // routines. Not clear this is worth it yet.
1514 
1515   if (interpreter_frame_manager) return interpreter_frame_manager;
1516 
1517   address entry_point = __ pc();
1518 
1519   Label dispatch_entry_2;
1520   __ movptr(rcx, sender_sp_on_entry);
1521   __ movptr(state, (int32_t)NULL_WORD);                              // no current activation
1522 
1523   __ jmp(dispatch_entry_2);
1524 
1525   const Register locals  = rdi;
1526 
1527   Label re_dispatch;
1528 
1529   __ bind(re_dispatch);
1530 
1531   // save sender sp (doesn't include return address
1532   __ lea(rcx, Address(rsp, wordSize));
1533 
1534   __ bind(dispatch_entry_2);
1535 
1536   // save sender sp
1537   __ push(rcx);
1538 
1539   const Address constMethod       (rbx, Method::const_offset());
1540   const Address access_flags      (rbx, Method::access_flags_offset());
1541   const Address size_of_parameters(rdx, ConstMethod::size_of_parameters_offset());
1542   const Address size_of_locals    (rdx, ConstMethod::size_of_locals_offset());
1543 
1544   // const Address monitor_block_top (rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
1545   // const Address monitor_block_bot (rbp, frame::interpreter_frame_initial_sp_offset        * wordSize);
1546   // const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset * wordSize - (int)sizeof(BasicObjectLock));
1547 
1548   // get parameter size (always needed)
1549   __ movptr(rdx, constMethod);
1550   __ load_unsigned_short(rcx, size_of_parameters);
1551 
1552   // rbx: Method*
1553   // rcx: size of parameters
1554   __ load_unsigned_short(rdx, size_of_locals);                     // get size of locals in words
1555 
1556   __ subptr(rdx, rcx);                                             // rdx = no. of additional locals
1557 
1558   // see if we've got enough room on the stack for locals plus overhead.
1559   generate_stack_overflow_check();                                 // C++
1560 
1561   // c++ interpreter does not use stack banging or any implicit exceptions
1562   // leave for now to verify that check is proper.
1563   bang_stack_shadow_pages(false);
1564 
1565 
1566 
1567   // compute beginning of parameters (rdi)
1568   __ lea(locals, Address(rsp, rcx, Address::times_ptr, wordSize));
1569 
1570   // save sender's sp
1571   // __ movl(rcx, rsp);
1572 
1573   // get sender's sp
1574   __ pop(rcx);
1575 
1576   // get return address
1577   __ pop(rax);
1578 
1579   // rdx - # of additional locals
1580   // allocate space for locals
1581   // explicitly initialize locals
1582   {
1583     Label exit, loop;
1584     __ testl(rdx, rdx);                               // (32bit ok)
1585     __ jcc(Assembler::lessEqual, exit);               // do nothing if rdx <= 0
1586     __ bind(loop);
1587     __ push((int32_t)NULL_WORD);                      // initialize local variables
1588     __ decrement(rdx);                                // until everything initialized
1589     __ jcc(Assembler::greater, loop);
1590     __ bind(exit);
1591   }
1592 
1593 
1594   // Assumes rax = return address
1595 
1596   // allocate and initialize new interpreterState and method expression stack
1597   // IN(locals) ->  locals
1598   // IN(state) -> any current interpreter activation
1599   // destroys rax, rcx, rdx, rdi
1600   // OUT (state) -> new interpreterState
1601   // OUT(rsp) -> bottom of methods expression stack
1602 
1603   generate_compute_interpreter_state(state, locals, rcx, false);
1604 
1605   // Call interpreter
1606 
1607   Label call_interpreter;
1608   __ bind(call_interpreter);
1609 
1610   // c++ interpreter does not use stack banging or any implicit exceptions
1611   // leave for now to verify that check is proper.
1612   bang_stack_shadow_pages(false);
1613 
1614 
1615   // Call interpreter enter here if message is
1616   // set and we know stack size is valid
1617 
1618   Label call_interpreter_2;
1619 
1620   __ bind(call_interpreter_2);
1621 
1622   {
1623     const Register thread  = NOT_LP64(rcx) LP64_ONLY(r15_thread);
1624 
1625 #ifdef _LP64
1626     __ mov(c_rarg0, state);
1627 #else
1628     __ push(state);                                                 // push arg to interpreter
1629     __ movptr(thread, STATE(_thread));
1630 #endif // _LP64
1631 
1632     // We can setup the frame anchor with everything we want at this point
1633     // as we are thread_in_Java and no safepoints can occur until we go to
1634     // vm mode. We do have to clear flags on return from vm but that is it
1635     //
1636     __ movptr(Address(thread, JavaThread::last_Java_fp_offset()), rbp);
1637     __ movptr(Address(thread, JavaThread::last_Java_sp_offset()), rsp);
1638 
1639     // Call the interpreter
1640 
1641     RuntimeAddress normal(CAST_FROM_FN_PTR(address, BytecodeInterpreter::run));
1642     RuntimeAddress checking(CAST_FROM_FN_PTR(address, BytecodeInterpreter::runWithChecks));
1643 
1644     __ call(JvmtiExport::can_post_interpreter_events() ? checking : normal);
1645     NOT_LP64(__ pop(rax);)                                          // discard parameter to run
1646     //
1647     // state is preserved since it is callee saved
1648     //
1649 
1650     // reset_last_Java_frame
1651 
1652     NOT_LP64(__ movl(thread, STATE(_thread));)
1653     __ reset_last_Java_frame(thread, true, true);
1654   }
1655 
1656   // examine msg from interpreter to determine next action
1657 
1658   __ movl(rdx, STATE(_msg));                                       // Get new message
1659 
1660   Label call_method;
1661   Label return_from_interpreted_method;
1662   Label throw_exception;
1663   Label bad_msg;
1664   Label do_OSR;
1665 
1666   __ cmpl(rdx, (int32_t)BytecodeInterpreter::call_method);
1667   __ jcc(Assembler::equal, call_method);
1668   __ cmpl(rdx, (int32_t)BytecodeInterpreter::return_from_method);
1669   __ jcc(Assembler::equal, return_from_interpreted_method);
1670   __ cmpl(rdx, (int32_t)BytecodeInterpreter::do_osr);
1671   __ jcc(Assembler::equal, do_OSR);
1672   __ cmpl(rdx, (int32_t)BytecodeInterpreter::throwing_exception);
1673   __ jcc(Assembler::equal, throw_exception);
1674   __ cmpl(rdx, (int32_t)BytecodeInterpreter::more_monitors);
1675   __ jcc(Assembler::notEqual, bad_msg);
1676 
1677   // Allocate more monitor space, shuffle expression stack....
1678 
1679   generate_more_monitors();
1680 
1681   __ jmp(call_interpreter);
1682 
1683   // uncommon trap needs to jump to here to enter the interpreter (re-execute current bytecode)
1684   unctrap_frame_manager_entry  = __ pc();
1685   //
1686   // Load the registers we need.
1687   __ lea(state, Address(rbp, -(int)sizeof(BytecodeInterpreter)));
1688   __ movptr(rsp, STATE(_stack_limit));                             // restore expression stack to full depth
1689   __ jmp(call_interpreter_2);
1690 
1691 
1692 
1693   //=============================================================================
1694   // Returning from a compiled method into a deopted method. The bytecode at the
1695   // bcp has completed. The result of the bytecode is in the native abi (the tosca
1696   // for the template based interpreter). Any stack space that was used by the
1697   // bytecode that has completed has been removed (e.g. parameters for an invoke)
1698   // so all that we have to do is place any pending result on the expression stack
1699   // and resume execution on the next bytecode.
1700 
1701 
1702   generate_deopt_handling();
1703   __ jmp(call_interpreter);
1704 
1705 
1706   // Current frame has caught an exception we need to dispatch to the
1707   // handler. We can get here because a native interpreter frame caught
1708   // an exception in which case there is no handler and we must rethrow
1709   // If it is a vanilla interpreted frame the we simply drop into the
1710   // interpreter and let it do the lookup.
1711 
1712   Interpreter::_rethrow_exception_entry = __ pc();
1713   // rax: exception
1714   // rdx: return address/pc that threw exception
1715 
1716   Label return_with_exception;
1717   Label unwind_and_forward;
1718 
1719   // restore state pointer.
1720   __ lea(state, Address(rbp,  -(int)sizeof(BytecodeInterpreter)));
1721 
1722   __ movptr(rbx, STATE(_method));                       // get method
1723 #ifdef _LP64
1724   __ movptr(Address(r15_thread, Thread::pending_exception_offset()), rax);
1725 #else
1726   __ movl(rcx, STATE(_thread));                       // get thread
1727 
1728   // Store exception with interpreter will expect it
1729   __ movptr(Address(rcx, Thread::pending_exception_offset()), rax);
1730 #endif // _LP64
1731 
1732   // is current frame vanilla or native?
1733 
1734   __ movl(rdx, access_flags);
1735   __ testl(rdx, JVM_ACC_NATIVE);
1736   __ jcc(Assembler::zero, return_with_exception);     // vanilla interpreted frame, handle directly
1737 
1738   // We drop thru to unwind a native interpreted frame with a pending exception
1739   // We jump here for the initial interpreter frame with exception pending
1740   // We unwind the current acivation and forward it to our caller.
1741 
1742   __ bind(unwind_and_forward);
1743 
1744   // unwind rbp, return stack to unextended value and re-push return address
1745 
1746   __ movptr(rcx, STATE(_sender_sp));
1747   __ leave();
1748   __ pop(rdx);
1749   __ mov(rsp, rcx);
1750   __ push(rdx);
1751   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
1752 
1753   // Return point from a call which returns a result in the native abi
1754   // (c1/c2/jni-native). This result must be processed onto the java
1755   // expression stack.
1756   //
1757   // A pending exception may be present in which case there is no result present
1758 
1759   Label resume_interpreter;
1760   Label do_float;
1761   Label do_double;
1762   Label done_conv;
1763 
1764   // The FPU stack is clean if UseSSE >= 2 but must be cleaned in other cases
1765   if (UseSSE < 2) {
1766     __ lea(state, Address(rbp,  -(int)sizeof(BytecodeInterpreter)));
1767     __ movptr(rbx, STATE(_result._to_call._callee));                   // get method just executed
1768     __ movl(rcx, Address(rbx, Method::result_index_offset()));
1769     __ cmpl(rcx, AbstractInterpreter::BasicType_as_index(T_FLOAT));    // Result stub address array index
1770     __ jcc(Assembler::equal, do_float);
1771     __ cmpl(rcx, AbstractInterpreter::BasicType_as_index(T_DOUBLE));    // Result stub address array index
1772     __ jcc(Assembler::equal, do_double);
1773 #if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2)
1774     __ empty_FPU_stack();
1775 #endif // COMPILER2
1776     __ jmp(done_conv);
1777 
1778     __ bind(do_float);
1779 #ifdef COMPILER2
1780     for (int i = 1; i < 8; i++) {
1781       __ ffree(i);
1782     }
1783 #endif // COMPILER2
1784     __ jmp(done_conv);
1785     __ bind(do_double);
1786 #ifdef COMPILER2
1787     for (int i = 1; i < 8; i++) {
1788       __ ffree(i);
1789     }
1790 #endif // COMPILER2
1791     __ jmp(done_conv);
1792   } else {
1793     __ MacroAssembler::verify_FPU(0, "generate_return_entry_for compiled");
1794     __ jmp(done_conv);
1795   }
1796 
1797   // Return point to interpreter from compiled/native method
1798   InternalAddress return_from_native_method(__ pc());
1799 
1800   __ bind(done_conv);
1801 
1802 
1803   // Result if any is in tosca. The java expression stack is in the state that the
1804   // calling convention left it (i.e. params may or may not be present)
1805   // Copy the result from tosca and place it on java expression stack.
1806 
1807   // Restore rsi/r13 as compiled code may not preserve it
1808 
1809   __ lea(state, Address(rbp,  -(int)sizeof(BytecodeInterpreter)));
1810 
1811   // restore stack to what we had when we left (in case i2c extended it)
1812 
1813   __ movptr(rsp, STATE(_stack));
1814   __ lea(rsp, Address(rsp, wordSize));
1815 
1816   // If there is a pending exception then we don't really have a result to process
1817 
1818 #ifdef _LP64
1819   __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
1820 #else
1821   __ movptr(rcx, STATE(_thread));                       // get thread
1822   __ cmpptr(Address(rcx, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
1823 #endif // _LP64
1824   __ jcc(Assembler::notZero, return_with_exception);
1825 
1826   // get method just executed
1827   __ movptr(rbx, STATE(_result._to_call._callee));
1828 
1829   // callee left args on top of expression stack, remove them
1830   __ movptr(rcx, constMethod);
1831   __ load_unsigned_short(rcx, Address(rcx, ConstMethod::size_of_parameters_offset()));
1832 
1833   __ lea(rsp, Address(rsp, rcx, Address::times_ptr));
1834 
1835   __ movl(rcx, Address(rbx, Method::result_index_offset()));
1836   ExternalAddress tosca_to_stack((address)CppInterpreter::_tosca_to_stack);
1837   // Address index(noreg, rax, Address::times_ptr);
1838   __ movptr(rcx, ArrayAddress(tosca_to_stack, Address(noreg, rcx, Address::times_ptr)));
1839   // __ movl(rcx, Address(noreg, rcx, Address::times_ptr, int(AbstractInterpreter::_tosca_to_stack)));
1840   __ call(rcx);                                               // call result converter
1841   __ jmp(resume_interpreter);
1842 
1843   // An exception is being caught on return to a vanilla interpreter frame.
1844   // Empty the stack and resume interpreter
1845 
1846   __ bind(return_with_exception);
1847 
1848   // Exception present, empty stack
1849   __ movptr(rsp, STATE(_stack_base));
1850   __ jmp(resume_interpreter);
1851 
1852   // Return from interpreted method we return result appropriate to the caller (i.e. "recursive"
1853   // interpreter call, or native) and unwind this interpreter activation.
1854   // All monitors should be unlocked.
1855 
1856   __ bind(return_from_interpreted_method);
1857 
1858   Label return_to_initial_caller;
1859 
1860   __ movptr(rbx, STATE(_method));                                   // get method just executed
1861   __ cmpptr(STATE(_prev_link), (int32_t)NULL_WORD);                 // returning from "recursive" interpreter call?
1862   __ movl(rax, Address(rbx, Method::result_index_offset())); // get result type index
1863   __ jcc(Assembler::equal, return_to_initial_caller);               // back to native code (call_stub/c1/c2)
1864 
1865   // Copy result to callers java stack
1866   ExternalAddress stack_to_stack((address)CppInterpreter::_stack_to_stack);
1867   // Address index(noreg, rax, Address::times_ptr);
1868 
1869   __ movptr(rax, ArrayAddress(stack_to_stack, Address(noreg, rax, Address::times_ptr)));
1870   // __ movl(rax, Address(noreg, rax, Address::times_ptr, int(AbstractInterpreter::_stack_to_stack)));
1871   __ call(rax);                                                     // call result converter
1872 
1873   Label unwind_recursive_activation;
1874   __ bind(unwind_recursive_activation);
1875 
1876   // returning to interpreter method from "recursive" interpreter call
1877   // result converter left rax pointing to top of the java stack for method we are returning
1878   // to. Now all we must do is unwind the state from the completed call
1879 
1880   __ movptr(state, STATE(_prev_link));                              // unwind state
1881   __ leave();                                                       // pop the frame
1882   __ mov(rsp, rax);                                                 // unwind stack to remove args
1883 
1884   // Resume the interpreter. The current frame contains the current interpreter
1885   // state object.
1886   //
1887 
1888   __ bind(resume_interpreter);
1889 
1890   // state == interpreterState object for method we are resuming
1891 
1892   __ movl(STATE(_msg), (int)BytecodeInterpreter::method_resume);
1893   __ lea(rsp, Address(rsp, -wordSize));                            // prepush stack (result if any already present)
1894   __ movptr(STATE(_stack), rsp);                                   // inform interpreter of new stack depth (parameters removed,
1895                                                                    // result if any on stack already )
1896   __ movptr(rsp, STATE(_stack_limit));                             // restore expression stack to full depth
1897   __ jmp(call_interpreter_2);                                      // No need to bang
1898 
1899   // interpreter returning to native code (call_stub/c1/c2)
1900   // convert result and unwind initial activation
1901   // rax - result index
1902 
1903   __ bind(return_to_initial_caller);
1904   ExternalAddress stack_to_native((address)CppInterpreter::_stack_to_native_abi);
1905   // Address index(noreg, rax, Address::times_ptr);
1906 
1907   __ movptr(rax, ArrayAddress(stack_to_native, Address(noreg, rax, Address::times_ptr)));
1908   __ call(rax);                                                    // call result converter
1909 
1910   Label unwind_initial_activation;
1911   __ bind(unwind_initial_activation);
1912 
1913   // RETURN TO CALL_STUB/C1/C2 code (result if any in rax/rdx ST(0))
1914 
1915   /* Current stack picture
1916 
1917         [ incoming parameters ]
1918         [ extra locals ]
1919         [ return address to CALL_STUB/C1/C2]
1920   fp -> [ CALL_STUB/C1/C2 fp ]
1921         BytecodeInterpreter object
1922         expression stack
1923   sp ->
1924 
1925   */
1926 
1927   // return restoring the stack to the original sender_sp value
1928 
1929   __ movptr(rcx, STATE(_sender_sp));
1930   __ leave();
1931   __ pop(rdi);                                                        // get return address
1932   // set stack to sender's sp
1933   __ mov(rsp, rcx);
1934   __ jmp(rdi);                                                        // return to call_stub
1935 
1936   // OSR request, adjust return address to make current frame into adapter frame
1937   // and enter OSR nmethod
1938 
1939   __ bind(do_OSR);
1940 
1941   Label remove_initial_frame;
1942 
1943   // We are going to pop this frame. Is there another interpreter frame underneath
1944   // it or is it callstub/compiled?
1945 
1946   // Move buffer to the expected parameter location
1947   __ movptr(rcx, STATE(_result._osr._osr_buf));
1948 
1949   __ movptr(rax, STATE(_result._osr._osr_entry));
1950 
1951   __ cmpptr(STATE(_prev_link), (int32_t)NULL_WORD);            // returning from "recursive" interpreter call?
1952   __ jcc(Assembler::equal, remove_initial_frame);              // back to native code (call_stub/c1/c2)
1953 
1954   __ movptr(sender_sp_on_entry, STATE(_sender_sp));            // get sender's sp in expected register
1955   __ leave();                                                  // pop the frame
1956   __ mov(rsp, sender_sp_on_entry);                             // trim any stack expansion
1957 
1958 
1959   // We know we are calling compiled so push specialized return
1960   // method uses specialized entry, push a return so we look like call stub setup
1961   // this path will handle fact that result is returned in registers and not
1962   // on the java stack.
1963 
1964   __ pushptr(return_from_native_method.addr());
1965 
1966   __ jmp(rax);
1967 
1968   __ bind(remove_initial_frame);
1969 
1970   __ movptr(rdx, STATE(_sender_sp));
1971   __ leave();
1972   // get real return
1973   __ pop(rsi);
1974   // set stack to sender's sp
1975   __ mov(rsp, rdx);
1976   // repush real return
1977   __ push(rsi);
1978   // Enter OSR nmethod
1979   __ jmp(rax);
1980 
1981 
1982 
1983 
1984   // Call a new method. All we do is (temporarily) trim the expression stack
1985   // push a return address to bring us back to here and leap to the new entry.
1986 
1987   __ bind(call_method);
1988 
1989   // stack points to next free location and not top element on expression stack
1990   // method expects sp to be pointing to topmost element
1991 
1992   __ movptr(rsp, STATE(_stack));                                     // pop args to c++ interpreter, set sp to java stack top
1993   __ lea(rsp, Address(rsp, wordSize));
1994 
1995   __ movptr(rbx, STATE(_result._to_call._callee));                   // get method to execute
1996 
1997   // don't need a return address if reinvoking interpreter
1998 
1999   // Make it look like call_stub calling conventions
2000 
2001   // Get (potential) receiver
2002   // get size of parameters in words
2003   __ movptr(rcx, constMethod);
2004   __ load_unsigned_short(rcx, Address(rcx, ConstMethod::size_of_parameters_offset()));
2005 
2006   ExternalAddress recursive(CAST_FROM_FN_PTR(address, RecursiveInterpreterActivation));
2007   __ pushptr(recursive.addr());                                      // make it look good in the debugger
2008 
2009   InternalAddress entry(entry_point);
2010   __ cmpptr(STATE(_result._to_call._callee_entry_point), entry.addr()); // returning to interpreter?
2011   __ jcc(Assembler::equal, re_dispatch);                             // yes
2012 
2013   __ pop(rax);                                                       // pop dummy address
2014 
2015 
2016   // get specialized entry
2017   __ movptr(rax, STATE(_result._to_call._callee_entry_point));
2018   // set sender SP
2019   __ mov(sender_sp_on_entry, rsp);
2020 
2021   // method uses specialized entry, push a return so we look like call stub setup
2022   // this path will handle fact that result is returned in registers and not
2023   // on the java stack.
2024 
2025   __ pushptr(return_from_native_method.addr());
2026 
2027   __ jmp(rax);
2028 
2029   __ bind(bad_msg);
2030   __ stop("Bad message from interpreter");
2031 
2032   // Interpreted method "returned" with an exception pass it on...
2033   // Pass result, unwind activation and continue/return to interpreter/call_stub
2034   // We handle result (if any) differently based on return to interpreter or call_stub
2035 
2036   Label unwind_initial_with_pending_exception;
2037 
2038   __ bind(throw_exception);
2039   __ cmpptr(STATE(_prev_link), (int32_t)NULL_WORD);                 // returning from recursive interpreter call?
2040   __ jcc(Assembler::equal, unwind_initial_with_pending_exception);  // no, back to native code (call_stub/c1/c2)
2041   __ movptr(rax, STATE(_locals));                                   // pop parameters get new stack value
2042   __ addptr(rax, wordSize);                                         // account for prepush before we return
2043   __ jmp(unwind_recursive_activation);
2044 
2045   __ bind(unwind_initial_with_pending_exception);
2046 
2047   // We will unwind the current (initial) interpreter frame and forward
2048   // the exception to the caller. We must put the exception in the
2049   // expected register and clear pending exception and then forward.
2050 
2051   __ jmp(unwind_and_forward);
2052 
2053   interpreter_frame_manager = entry_point;
2054   return entry_point;
2055 }
2056 
2057 
2058 InterpreterGenerator::InterpreterGenerator(StubQueue* code)
2059  : CppInterpreterGenerator(code) {
2060    generate_all(); // down here so it can be "virtual"
2061 }
2062 
2063 // Deoptimization helpers for C++ interpreter
2064 
2065 // How much stack a method activation needs in words.
2066 int AbstractInterpreter::size_top_interpreter_activation(Method* method) {
2067 
2068   const int stub_code = 4;  // see generate_call_stub
2069   // Save space for one monitor to get into the interpreted method in case
2070   // the method is synchronized
2071   int monitor_size    = method->is_synchronized() ?
2072                                 1*frame::interpreter_frame_monitor_size() : 0;
2073 
2074   // total static overhead size. Account for interpreter state object, return
2075   // address, saved rbp and 2 words for a "static long no_params() method" issue.
2076 
2077   const int overhead_size = sizeof(BytecodeInterpreter)/wordSize +
2078     ( frame::sender_sp_offset - frame::link_offset) + 2;
2079 
2080   const int method_stack = (method->max_locals() + method->max_stack()) *
2081                            Interpreter::stackElementWords;
2082   return overhead_size + method_stack + stub_code;
2083 }
2084 
2085 // returns the activation size.
2086 static int size_activation_helper(int extra_locals_size, int monitor_size) {
2087   return (extra_locals_size +                  // the addition space for locals
2088           2*BytesPerWord +                     // return address and saved rbp
2089           2*BytesPerWord +                     // "static long no_params() method" issue
2090           sizeof(BytecodeInterpreter) +               // interpreterState
2091           monitor_size);                       // monitors
2092 }
2093 
2094 void BytecodeInterpreter::layout_interpreterState(interpreterState to_fill,
2095                                            frame* caller,
2096                                            frame* current,
2097                                            Method* method,
2098                                            intptr_t* locals,
2099                                            intptr_t* stack,
2100                                            intptr_t* stack_base,
2101                                            intptr_t* monitor_base,
2102                                            intptr_t* frame_bottom,
2103                                            bool is_top_frame
2104                                            )
2105 {
2106   // What about any vtable?
2107   //
2108   to_fill->_thread = JavaThread::current();
2109   // This gets filled in later but make it something recognizable for now
2110   to_fill->_bcp = method->code_base();
2111   to_fill->_locals = locals;
2112   to_fill->_constants = method->constants()->cache();
2113   to_fill->_method = method;
2114   to_fill->_mdx = NULL;
2115   to_fill->_stack = stack;
2116   if (is_top_frame && JavaThread::current()->popframe_forcing_deopt_reexecution() ) {
2117     to_fill->_msg = deopt_resume2;
2118   } else {
2119     to_fill->_msg = method_resume;
2120   }
2121   to_fill->_result._to_call._bcp_advance = 0;
2122   to_fill->_result._to_call._callee_entry_point = NULL; // doesn't matter to anyone
2123   to_fill->_result._to_call._callee = NULL; // doesn't matter to anyone
2124   to_fill->_prev_link = NULL;
2125 
2126   to_fill->_sender_sp = caller->unextended_sp();
2127 
2128   if (caller->is_interpreted_frame()) {
2129     interpreterState prev  = caller->get_interpreterState();
2130     to_fill->_prev_link = prev;
2131     // *current->register_addr(GR_Iprev_state) = (intptr_t) prev;
2132     // Make the prev callee look proper
2133     prev->_result._to_call._callee = method;
2134     if (*prev->_bcp == Bytecodes::_invokeinterface) {
2135       prev->_result._to_call._bcp_advance = 5;
2136     } else {
2137       prev->_result._to_call._bcp_advance = 3;
2138     }
2139   }
2140   to_fill->_oop_temp = NULL;
2141   to_fill->_stack_base = stack_base;
2142   // Need +1 here because stack_base points to the word just above the first expr stack entry
2143   // and stack_limit is supposed to point to the word just below the last expr stack entry.
2144   // See generate_compute_interpreter_state.
2145   to_fill->_stack_limit = stack_base - (method->max_stack() + 1);
2146   to_fill->_monitor_base = (BasicObjectLock*) monitor_base;
2147 
2148   to_fill->_self_link = to_fill;
2149   assert(stack >= to_fill->_stack_limit && stack < to_fill->_stack_base,
2150          "Stack top out of range");
2151 }
2152 
2153 
2154 static int frame_size_helper(int max_stack,
2155                              int tempcount,
2156                              int moncount,
2157                              int callee_param_count,
2158                              int callee_locals,
2159                              bool is_top_frame,
2160                              int& monitor_size,
2161                              int& full_frame_size) {
2162   int extra_locals_size = (callee_locals - callee_param_count) * BytesPerWord;
2163   monitor_size = sizeof(BasicObjectLock) * moncount;
2164 
2165   // First calculate the frame size without any java expression stack
2166   int short_frame_size = size_activation_helper(extra_locals_size,
2167                                                 monitor_size);
2168 
2169   // Now with full size expression stack
2170   full_frame_size = short_frame_size + max_stack * BytesPerWord;
2171 
2172   // and now with only live portion of the expression stack
2173   short_frame_size = short_frame_size + tempcount * BytesPerWord;
2174 
2175   // the size the activation is right now. Only top frame is full size
2176   int frame_size = (is_top_frame ? full_frame_size : short_frame_size);
2177   return frame_size;
2178 }
2179 
2180 int AbstractInterpreter::size_activation(int max_stack,
2181                                          int tempcount,
2182                                          int extra_args,
2183                                          int moncount,
2184                                          int callee_param_count,
2185                                          int callee_locals,
2186                                          bool is_top_frame) {
2187   assert(extra_args == 0, "FIX ME");
2188   // NOTE: return size is in words not bytes
2189 
2190   // Calculate the amount our frame will be adjust by the callee. For top frame
2191   // this is zero.
2192 
2193   // NOTE: ia64 seems to do this wrong (or at least backwards) in that it
2194   // calculates the extra locals based on itself. Not what the callee does
2195   // to it. So it ignores last_frame_adjust value. Seems suspicious as far
2196   // as getting sender_sp correct.
2197 
2198   int unused_monitor_size = 0;
2199   int unused_full_frame_size = 0;
2200   return frame_size_helper(max_stack, tempcount, moncount, callee_param_count, callee_locals,
2201                            is_top_frame, unused_monitor_size, unused_full_frame_size)/BytesPerWord;
2202 }
2203 
2204 void AbstractInterpreter::layout_activation(Method* method,
2205                                             int tempcount,  //
2206                                             int popframe_extra_args,
2207                                             int moncount,
2208                                             int caller_actual_parameters,
2209                                             int callee_param_count,
2210                                             int callee_locals,
2211                                             frame* caller,
2212                                             frame* interpreter_frame,
2213                                             bool is_top_frame,
2214                                             bool is_bottom_frame) {
2215 
2216   assert(popframe_extra_args == 0, "FIX ME");
2217   // NOTE this code must exactly mimic what InterpreterGenerator::generate_compute_interpreter_state()
2218   // does as far as allocating an interpreter frame.
2219   // Set up the method, locals, and monitors.
2220   // The frame interpreter_frame is guaranteed to be the right size,
2221   // as determined by a previous call to the size_activation() method.
2222   // It is also guaranteed to be walkable even though it is in a skeletal state
2223   // NOTE: tempcount is the current size of the java expression stack. For top most
2224   //       frames we will allocate a full sized expression stack and not the curback
2225   //       version that non-top frames have.
2226 
2227   int monitor_size = 0;
2228   int full_frame_size = 0;
2229   int frame_size = frame_size_helper(method->max_stack(), tempcount, moncount, callee_param_count, callee_locals,
2230                                      is_top_frame, monitor_size, full_frame_size);
2231 
2232 #ifdef ASSERT
2233   assert(caller->unextended_sp() == interpreter_frame->interpreter_frame_sender_sp(), "Frame not properly walkable");
2234 #endif
2235 
2236   // MUCHO HACK
2237 
2238   intptr_t* frame_bottom = (intptr_t*) ((intptr_t)interpreter_frame->sp() - (full_frame_size - frame_size));
2239 
2240   /* Now fillin the interpreterState object */
2241 
2242   // The state object is the first thing on the frame and easily located
2243 
2244   interpreterState cur_state = (interpreterState) ((intptr_t)interpreter_frame->fp() - sizeof(BytecodeInterpreter));
2245 
2246 
2247   // Find the locals pointer. This is rather simple on x86 because there is no
2248   // confusing rounding at the callee to account for. We can trivially locate
2249   // our locals based on the current fp().
2250   // Note: the + 2 is for handling the "static long no_params() method" issue.
2251   // (too bad I don't really remember that issue well...)
2252 
2253   intptr_t* locals;
2254   // If the caller is interpreted we need to make sure that locals points to the first
2255   // argument that the caller passed and not in an area where the stack might have been extended.
2256   // because the stack to stack to converter needs a proper locals value in order to remove the
2257   // arguments from the caller and place the result in the proper location. Hmm maybe it'd be
2258   // simpler if we simply stored the result in the BytecodeInterpreter object and let the c++ code
2259   // adjust the stack?? HMMM QQQ
2260   //
2261   if (caller->is_interpreted_frame()) {
2262     // locals must agree with the caller because it will be used to set the
2263     // caller's tos when we return.
2264     interpreterState prev  = caller->get_interpreterState();
2265     // stack() is prepushed.
2266     locals = prev->stack() + method->size_of_parameters();
2267     // locals = caller->unextended_sp() + (method->size_of_parameters() - 1);
2268     if (locals != interpreter_frame->fp() + frame::sender_sp_offset + (method->max_locals() - 1) + 2) {
2269       // os::breakpoint();
2270     }
2271   } else {
2272     // this is where a c2i would have placed locals (except for the +2)
2273     locals = interpreter_frame->fp() + frame::sender_sp_offset + (method->max_locals() - 1) + 2;
2274   }
2275 
2276   intptr_t* monitor_base = (intptr_t*) cur_state;
2277   intptr_t* stack_base = (intptr_t*) ((intptr_t) monitor_base - monitor_size);
2278   /* +1 because stack is always prepushed */
2279   intptr_t* stack = (intptr_t*) ((intptr_t) stack_base - (tempcount + 1) * BytesPerWord);
2280 
2281 
2282   BytecodeInterpreter::layout_interpreterState(cur_state,
2283                                                caller,
2284                                                interpreter_frame,
2285                                                method,
2286                                                locals,
2287                                                stack,
2288                                                stack_base,
2289                                                monitor_base,
2290                                                frame_bottom,
2291                                                is_top_frame);
2292 
2293   // BytecodeInterpreter::pd_layout_interpreterState(cur_state, interpreter_return_address, interpreter_frame->fp());
2294 }
2295 
2296 bool AbstractInterpreter::can_be_compiled(methodHandle m) {
2297   switch (method_kind(m)) {
2298     case Interpreter::java_lang_math_sin     : // fall thru
2299     case Interpreter::java_lang_math_cos     : // fall thru
2300     case Interpreter::java_lang_math_tan     : // fall thru
2301     case Interpreter::java_lang_math_abs     : // fall thru
2302     case Interpreter::java_lang_math_log     : // fall thru
2303     case Interpreter::java_lang_math_log10   : // fall thru
2304     case Interpreter::java_lang_math_sqrt    : // fall thru
2305     case Interpreter::java_lang_math_pow     : // fall thru
2306     case Interpreter::java_lang_math_exp     :
2307       return false;
2308     default:
2309       return true;
2310   }
2311 }
2312 
2313 
2314 #endif // CC_INTERP (all)