1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "interp_masm_x86.hpp"
  27 #include "interpreter/interpreter.hpp"
  28 #include "interpreter/interpreterRuntime.hpp"
  29 #include "oops/arrayOop.hpp"
  30 #include "oops/markOop.hpp"
  31 #include "oops/methodData.hpp"
  32 #include "oops/method.hpp"
  33 #include "prims/jvmtiExport.hpp"
  34 #include "prims/jvmtiRedefineClassesTrace.hpp"
  35 #include "prims/jvmtiThreadState.hpp"
  36 #include "runtime/basicLock.hpp"
  37 #include "runtime/biasedLocking.hpp"
  38 #include "runtime/sharedRuntime.hpp"
  39 #include "runtime/thread.inline.hpp"
  40 
  41 // Implementation of InterpreterMacroAssembler
  42 
  43 void InterpreterMacroAssembler::jump_to_entry(address entry) {
  44   assert(entry, "Entry must have been generated by now");
  45   jump(RuntimeAddress(entry));
  46 }
  47 
  48 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr) {
  49   Label update, next, none;
  50 
  51   verify_oop(obj);
  52 
  53   testptr(obj, obj);
  54   jccb(Assembler::notZero, update);
  55   orptr(mdo_addr, TypeEntries::null_seen);
  56   jmpb(next);
  57 
  58   bind(update);
  59   load_klass(obj, obj);
  60 
  61   xorptr(obj, mdo_addr);
  62   testptr(obj, TypeEntries::type_klass_mask);
  63   jccb(Assembler::zero, next); // klass seen before, nothing to
  64                                // do. The unknown bit may have been
  65                                // set already but no need to check.
  66 
  67   testptr(obj, TypeEntries::type_unknown);
  68   jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
  69 
  70   cmpptr(mdo_addr, 0);
  71   jccb(Assembler::equal, none);
  72   cmpptr(mdo_addr, TypeEntries::null_seen);
  73   jccb(Assembler::equal, none);
  74   // There is a chance that the checks above (re-reading profiling
  75   // data from memory) fail if another thread has just set the
  76   // profiling to this obj's klass
  77   xorptr(obj, mdo_addr);
  78   testptr(obj, TypeEntries::type_klass_mask);
  79   jccb(Assembler::zero, next);
  80 
  81   // different than before. Cannot keep accurate profile.
  82   orptr(mdo_addr, TypeEntries::type_unknown);
  83   jmpb(next);
  84 
  85   bind(none);
  86   // first time here. Set profile type.
  87   movptr(mdo_addr, obj);
  88 
  89   bind(next);
  90 }
  91 
  92 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) {
  93   if (!ProfileInterpreter) {
  94     return;
  95   }
  96 
  97   if (MethodData::profile_arguments() || MethodData::profile_return()) {
  98     Label profile_continue;
  99 
 100     test_method_data_pointer(mdp, profile_continue);
 101 
 102     int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size());
 103 
 104     cmpb(Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start), is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag);
 105     jcc(Assembler::notEqual, profile_continue);
 106 
 107     if (MethodData::profile_arguments()) {
 108       Label done;
 109       int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset());
 110       addptr(mdp, off_to_args);
 111 
 112       for (int i = 0; i < TypeProfileArgsLimit; i++) {
 113         if (i > 0 || MethodData::profile_return()) {
 114           // If return value type is profiled we may have no argument to profile
 115           movptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args));
 116           subl(tmp, i*TypeStackSlotEntries::per_arg_count());
 117           cmpl(tmp, TypeStackSlotEntries::per_arg_count());
 118           jcc(Assembler::less, done);
 119         }
 120         movptr(tmp, Address(callee, Method::const_offset()));
 121         load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset()));
 122         // stack offset o (zero based) from the start of the argument
 123         // list, for n arguments translates into offset n - o - 1 from
 124         // the end of the argument list
 125         subptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))-off_to_args));
 126         subl(tmp, 1);
 127         Address arg_addr = argument_address(tmp);
 128         movptr(tmp, arg_addr);
 129 
 130         Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i))-off_to_args);
 131         profile_obj_type(tmp, mdo_arg_addr);
 132 
 133         int to_add = in_bytes(TypeStackSlotEntries::per_arg_size());
 134         addptr(mdp, to_add);
 135         off_to_args += to_add;
 136       }
 137 
 138       if (MethodData::profile_return()) {
 139         movptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args));
 140         subl(tmp, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count());
 141       }
 142 
 143       bind(done);
 144 
 145       if (MethodData::profile_return()) {
 146         // We're right after the type profile for the last
 147         // argument. tmp is the number of cells left in the
 148         // CallTypeData/VirtualCallTypeData to reach its end. Non null
 149         // if there's a return to profile.
 150         assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type");
 151         shll(tmp, exact_log2(DataLayout::cell_size));
 152         addptr(mdp, tmp);
 153       }
 154       movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp);
 155     } else {
 156       assert(MethodData::profile_return(), "either profile call args or call ret");
 157       update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size()));
 158     }
 159 
 160     // mdp points right after the end of the
 161     // CallTypeData/VirtualCallTypeData, right after the cells for the
 162     // return value type if there's one
 163 
 164     bind(profile_continue);
 165   }
 166 }
 167 
 168 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) {
 169   assert_different_registers(mdp, ret, tmp, _bcp_register);
 170   if (ProfileInterpreter && MethodData::profile_return()) {
 171     Label profile_continue, done;
 172 
 173     test_method_data_pointer(mdp, profile_continue);
 174 
 175     if (MethodData::profile_return_jsr292_only()) {
 176       assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2");
 177 
 178       // If we don't profile all invoke bytecodes we must make sure
 179       // it's a bytecode we indeed profile. We can't go back to the
 180       // begining of the ProfileData we intend to update to check its
 181       // type because we're right after it and we don't known its
 182       // length
 183       Label do_profile;
 184       cmpb(Address(_bcp_register, 0), Bytecodes::_invokedynamic);
 185       jcc(Assembler::equal, do_profile);
 186       cmpb(Address(_bcp_register, 0), Bytecodes::_invokehandle);
 187       jcc(Assembler::equal, do_profile);
 188       get_method(tmp);
 189       cmpw(Address(tmp, Method::intrinsic_id_offset_in_bytes()), vmIntrinsics::_compiledLambdaForm);
 190       jcc(Assembler::notEqual, profile_continue);
 191 
 192       bind(do_profile);
 193     }
 194 
 195     Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size()));
 196     mov(tmp, ret);
 197     profile_obj_type(tmp, mdo_ret_addr);
 198 
 199     bind(profile_continue);
 200   }
 201 }
 202 
 203 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) {
 204   if (ProfileInterpreter && MethodData::profile_parameters()) {
 205     Label profile_continue, done;
 206 
 207     test_method_data_pointer(mdp, profile_continue);
 208 
 209     // Load the offset of the area within the MDO used for
 210     // parameters. If it's negative we're not profiling any parameters
 211     movl(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset())));
 212     testl(tmp1, tmp1);
 213     jcc(Assembler::negative, profile_continue);
 214 
 215     // Compute a pointer to the area for parameters from the offset
 216     // and move the pointer to the slot for the last
 217     // parameters. Collect profiling from last parameter down.
 218     // mdo start + parameters offset + array length - 1
 219     addptr(mdp, tmp1);
 220     movptr(tmp1, Address(mdp, ArrayData::array_len_offset()));
 221     decrement(tmp1, TypeStackSlotEntries::per_arg_count());
 222 
 223     Label loop;
 224     bind(loop);
 225 
 226     int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0));
 227     int type_base = in_bytes(ParametersTypeData::type_offset(0));
 228     Address::ScaleFactor per_arg_scale = Address::times(DataLayout::cell_size);
 229     Address arg_off(mdp, tmp1, per_arg_scale, off_base);
 230     Address arg_type(mdp, tmp1, per_arg_scale, type_base);
 231 
 232     // load offset on the stack from the slot for this parameter
 233     movptr(tmp2, arg_off);
 234     negptr(tmp2);
 235     // read the parameter from the local area
 236     movptr(tmp2, Address(_locals_register, tmp2, Interpreter::stackElementScale()));
 237 
 238     // profile the parameter
 239     profile_obj_type(tmp2, arg_type);
 240 
 241     // go to next parameter
 242     decrement(tmp1, TypeStackSlotEntries::per_arg_count());
 243     jcc(Assembler::positive, loop);
 244 
 245     bind(profile_continue);
 246   }
 247 }
 248 
 249 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point,
 250                                                   int number_of_arguments) {
 251   // interpreter specific
 252   //
 253   // Note: No need to save/restore bcp & locals registers
 254   //       since these are callee saved registers and no blocking/
 255   //       GC can happen in leaf calls.
 256   // Further Note: DO NOT save/restore bcp/locals. If a caller has
 257   // already saved them so that it can use rsi/rdi as temporaries
 258   // then a save/restore here will DESTROY the copy the caller
 259   // saved! There used to be a save_bcp() that only happened in
 260   // the ASSERT path (no restore_bcp). Which caused bizarre failures
 261   // when jvm built with ASSERTs.
 262 #ifdef ASSERT
 263   {
 264     Label L;
 265     cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
 266     jcc(Assembler::equal, L);
 267     stop("InterpreterMacroAssembler::call_VM_leaf_base:"
 268          " last_sp != NULL");
 269     bind(L);
 270   }
 271 #endif
 272   // super call
 273   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
 274   // interpreter specific
 275   // LP64: Used to ASSERT that r13/r14 were equal to frame's bcp/locals
 276   // but since they may not have been saved (and we don't want to
 277   // save them here (see note above) the assert is invalid.
 278 }
 279 
 280 void InterpreterMacroAssembler::call_VM_base(Register oop_result,
 281                                              Register java_thread,
 282                                              Register last_java_sp,
 283                                              address  entry_point,
 284                                              int      number_of_arguments,
 285                                              bool     check_exceptions) {
 286   // interpreter specific
 287   //
 288   // Note: Could avoid restoring locals ptr (callee saved) - however doesn't
 289   //       really make a difference for these runtime calls, since they are
 290   //       slow anyway. Btw., bcp must be saved/restored since it may change
 291   //       due to GC.
 292   NOT_LP64(assert(java_thread == noreg , "not expecting a precomputed java thread");)
 293   save_bcp();
 294 #ifdef ASSERT
 295   {
 296     Label L;
 297     cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
 298     jcc(Assembler::equal, L);
 299     stop("InterpreterMacroAssembler::call_VM_leaf_base:"
 300          " last_sp != NULL");
 301     bind(L);
 302   }
 303 #endif /* ASSERT */
 304   // super call
 305   MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp,
 306                                entry_point, number_of_arguments,
 307                                check_exceptions);
 308   // interpreter specific
 309   restore_bcp();
 310   restore_locals();
 311 }
 312 
 313 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) {
 314   if (JvmtiExport::can_pop_frame()) {
 315     Label L;
 316     // Initiate popframe handling only if it is not already being
 317     // processed.  If the flag has the popframe_processing bit set, it
 318     // means that this code is called *during* popframe handling - we
 319     // don't want to reenter.
 320     // This method is only called just after the call into the vm in
 321     // call_VM_base, so the arg registers are available.
 322     Register pop_cond = NOT_LP64(java_thread) // Not clear if any other register is available on 32 bit
 323                         LP64_ONLY(c_rarg0);
 324     movl(pop_cond, Address(java_thread, JavaThread::popframe_condition_offset()));
 325     testl(pop_cond, JavaThread::popframe_pending_bit);
 326     jcc(Assembler::zero, L);
 327     testl(pop_cond, JavaThread::popframe_processing_bit);
 328     jcc(Assembler::notZero, L);
 329     // Call Interpreter::remove_activation_preserving_args_entry() to get the
 330     // address of the same-named entrypoint in the generated interpreter code.
 331     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
 332     jmp(rax);
 333     bind(L);
 334     NOT_LP64(get_thread(java_thread);)
 335   }
 336 }
 337 
 338 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
 339   Register thread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
 340   NOT_LP64(get_thread(thread);)
 341   movptr(rcx, Address(thread, JavaThread::jvmti_thread_state_offset()));
 342   const Address tos_addr(rcx, JvmtiThreadState::earlyret_tos_offset());
 343   const Address oop_addr(rcx, JvmtiThreadState::earlyret_oop_offset());
 344   const Address val_addr(rcx, JvmtiThreadState::earlyret_value_offset());
 345 #ifdef _LP64
 346   switch (state) {
 347     case atos: movptr(rax, oop_addr);
 348                movptr(oop_addr, (int32_t)NULL_WORD);
 349                verify_oop(rax, state);              break;
 350     case ltos: movptr(rax, val_addr);                 break;
 351     case btos:                                   // fall through
 352     case ctos:                                   // fall through
 353     case stos:                                   // fall through
 354     case itos: movl(rax, val_addr);                 break;
 355     case ftos: load_float(val_addr);                break;
 356     case dtos: load_double(val_addr);               break;
 357     case vtos: /* nothing to do */                  break;
 358     default  : ShouldNotReachHere();
 359   }
 360   // Clean up tos value in the thread object
 361   movl(tos_addr,  (int) ilgl);
 362   movl(val_addr,  (int32_t) NULL_WORD);
 363 #else
 364   const Address val_addr1(rcx, JvmtiThreadState::earlyret_value_offset()
 365                              + in_ByteSize(wordSize));
 366   switch (state) {
 367     case atos: movptr(rax, oop_addr);
 368                movptr(oop_addr, NULL_WORD);
 369                verify_oop(rax, state);                break;
 370     case ltos:
 371                movl(rdx, val_addr1);               // fall through
 372     case btos:                                     // fall through
 373     case ctos:                                     // fall through
 374     case stos:                                     // fall through
 375     case itos: movl(rax, val_addr);                   break;
 376     case ftos: load_float(val_addr);                  break;
 377     case dtos: load_double(val_addr);                 break;
 378     case vtos: /* nothing to do */                    break;
 379     default  : ShouldNotReachHere();
 380   }
 381 #endif // _LP64
 382   // Clean up tos value in the thread object
 383   movl(tos_addr,  (int32_t) ilgl);
 384   movptr(val_addr,  NULL_WORD);
 385   NOT_LP64(movptr(val_addr1, NULL_WORD);)
 386 }
 387 
 388 
 389 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) {
 390   if (JvmtiExport::can_force_early_return()) {
 391     Label L;
 392     Register tmp = LP64_ONLY(c_rarg0) NOT_LP64(java_thread);
 393     Register rthread = LP64_ONLY(r15_thread) NOT_LP64(java_thread);
 394 
 395     movptr(tmp, Address(rthread, JavaThread::jvmti_thread_state_offset()));
 396     testptr(tmp, tmp);
 397     jcc(Assembler::zero, L); // if (thread->jvmti_thread_state() == NULL) exit;
 398 
 399     // Initiate earlyret handling only if it is not already being processed.
 400     // If the flag has the earlyret_processing bit set, it means that this code
 401     // is called *during* earlyret handling - we don't want to reenter.
 402     movl(tmp, Address(tmp, JvmtiThreadState::earlyret_state_offset()));
 403     cmpl(tmp, JvmtiThreadState::earlyret_pending);
 404     jcc(Assembler::notEqual, L);
 405 
 406     // Call Interpreter::remove_activation_early_entry() to get the address of the
 407     // same-named entrypoint in the generated interpreter code.
 408     NOT_LP64(get_thread(java_thread);)
 409     movptr(tmp, Address(rthread, JavaThread::jvmti_thread_state_offset()));
 410 #ifdef _LP64
 411     movl(tmp, Address(tmp, JvmtiThreadState::earlyret_tos_offset()));
 412     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), tmp);
 413 #else
 414     pushl(Address(tmp, JvmtiThreadState::earlyret_tos_offset()));
 415     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), 1);
 416 #endif // _LP64
 417     jmp(rax);
 418     bind(L);
 419     NOT_LP64(get_thread(java_thread);)
 420   }
 421 }
 422 
 423 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(Register reg, int bcp_offset) {
 424   assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
 425   load_unsigned_short(reg, Address(_bcp_register, bcp_offset));
 426   bswapl(reg);
 427   shrl(reg, 16);
 428 }
 429 
 430 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index,
 431                                                        int bcp_offset,
 432                                                        size_t index_size) {
 433   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
 434   if (index_size == sizeof(u2)) {
 435     load_unsigned_short(index, Address(_bcp_register, bcp_offset));
 436   } else if (index_size == sizeof(u4)) {
 437     movl(index, Address(_bcp_register, bcp_offset));
 438     // Check if the secondary index definition is still ~x, otherwise
 439     // we have to change the following assembler code to calculate the
 440     // plain index.
 441     assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line");
 442     notl(index);  // convert to plain index
 443   } else if (index_size == sizeof(u1)) {
 444     load_unsigned_byte(index, Address(_bcp_register, bcp_offset));
 445   } else {
 446     ShouldNotReachHere();
 447   }
 448 }
 449 
 450 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache,
 451                                                            Register index,
 452                                                            int bcp_offset,
 453                                                            size_t index_size) {
 454   assert_different_registers(cache, index);
 455   get_cache_index_at_bcp(index, bcp_offset, index_size);
 456   movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
 457   assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
 458   // convert from field index to ConstantPoolCacheEntry index
 459   assert(exact_log2(in_words(ConstantPoolCacheEntry::size())) == 2, "else change next line");
 460   shll(index, 2);
 461 }
 462 
 463 void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache,
 464                                                                         Register index,
 465                                                                         Register bytecode,
 466                                                                         int byte_no,
 467                                                                         int bcp_offset,
 468                                                                         size_t index_size) {
 469   get_cache_and_index_at_bcp(cache, index, bcp_offset, index_size);
 470   // We use a 32-bit load here since the layout of 64-bit words on
 471   // little-endian machines allow us that.
 472   movl(bytecode, Address(cache, index, Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()));
 473   const int shift_count = (1 + byte_no) * BitsPerByte;
 474   assert((byte_no == TemplateTable::f1_byte && shift_count == ConstantPoolCacheEntry::bytecode_1_shift) ||
 475          (byte_no == TemplateTable::f2_byte && shift_count == ConstantPoolCacheEntry::bytecode_2_shift),
 476          "correct shift count");
 477   shrl(bytecode, shift_count);
 478   assert(ConstantPoolCacheEntry::bytecode_1_mask == ConstantPoolCacheEntry::bytecode_2_mask, "common mask");
 479   andl(bytecode, ConstantPoolCacheEntry::bytecode_1_mask);
 480 }
 481 
 482 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache,
 483                                                                Register tmp,
 484                                                                int bcp_offset,
 485                                                                size_t index_size) {
 486   assert(cache != tmp, "must use different register");
 487   get_cache_index_at_bcp(tmp, bcp_offset, index_size);
 488   assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
 489   // convert from field index to ConstantPoolCacheEntry index
 490   // and from word offset to byte offset
 491   assert(exact_log2(in_bytes(ConstantPoolCacheEntry::size_in_bytes())) == 2 + LogBytesPerWord, "else change next line");
 492   shll(tmp, 2 + LogBytesPerWord);
 493   movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
 494   // skip past the header
 495   addptr(cache, in_bytes(ConstantPoolCache::base_offset()));
 496   addptr(cache, tmp);  // construct pointer to cache entry
 497 }
 498 
 499 // Load object from cpool->resolved_references(index)
 500 void InterpreterMacroAssembler::load_resolved_reference_at_index(
 501                                            Register result, Register index) {
 502   assert_different_registers(result, index);
 503   // convert from field index to resolved_references() index and from
 504   // word index to byte offset. Since this is a java object, it can be compressed
 505   Register tmp = index;  // reuse
 506   shll(tmp, LogBytesPerHeapOop);
 507 
 508   get_constant_pool(result);
 509   // load pointer for resolved_references[] objArray
 510   movptr(result, Address(result, ConstantPool::resolved_references_offset_in_bytes()));
 511   // JNIHandles::resolve(obj);
 512   movptr(result, Address(result, 0));
 513   // Add in the index
 514   addptr(result, tmp);
 515   load_heap_oop(result, Address(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
 516 }
 517 
 518 
 519 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a
 520 // subtype of super_klass.
 521 //
 522 // Args:
 523 //      rax: superklass
 524 //      Rsub_klass: subklass
 525 //
 526 // Kills:
 527 //      rcx, rdi
 528 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
 529                                                   Label& ok_is_subtype) {
 530   assert(Rsub_klass != rax, "rax holds superklass");
 531   LP64_ONLY(assert(Rsub_klass != r14, "r14 holds locals");)
 532   LP64_ONLY(assert(Rsub_klass != r13, "r13 holds bcp");)
 533   assert(Rsub_klass != rcx, "rcx holds 2ndary super array length");
 534   assert(Rsub_klass != rdi, "rdi holds 2ndary super array scan ptr");
 535 
 536   // Profile the not-null value's klass.
 537   profile_typecheck(rcx, Rsub_klass, rdi); // blows rcx, reloads rdi
 538 
 539   // Do the check.
 540   check_klass_subtype(Rsub_klass, rax, rcx, ok_is_subtype); // blows rcx
 541 
 542   // Profile the failure of the check.
 543   profile_typecheck_failed(rcx); // blows rcx
 544 }
 545 
 546 
 547 #ifndef _LP64
 548 void InterpreterMacroAssembler::f2ieee() {
 549   if (IEEEPrecision) {
 550     fstp_s(Address(rsp, 0));
 551     fld_s(Address(rsp, 0));
 552   }
 553 }
 554 
 555 
 556 void InterpreterMacroAssembler::d2ieee() {
 557   if (IEEEPrecision) {
 558     fstp_d(Address(rsp, 0));
 559     fld_d(Address(rsp, 0));
 560   }
 561 }
 562 #endif // _LP64
 563 
 564 // Java Expression Stack
 565 
 566 void InterpreterMacroAssembler::pop_ptr(Register r) {
 567   pop(r);
 568 }
 569 
 570 void InterpreterMacroAssembler::push_ptr(Register r) {
 571   push(r);
 572 }
 573 
 574 void InterpreterMacroAssembler::push_i(Register r) {
 575   push(r);
 576 }
 577 
 578 void InterpreterMacroAssembler::push_f(XMMRegister r) {
 579   subptr(rsp, wordSize);
 580   movflt(Address(rsp, 0), r);
 581 }
 582 
 583 void InterpreterMacroAssembler::pop_f(XMMRegister r) {
 584   movflt(r, Address(rsp, 0));
 585   addptr(rsp, wordSize);
 586 }
 587 
 588 void InterpreterMacroAssembler::push_d(XMMRegister r) {
 589   subptr(rsp, 2 * wordSize);
 590   movdbl(Address(rsp, 0), r);
 591 }
 592 
 593 void InterpreterMacroAssembler::pop_d(XMMRegister r) {
 594   movdbl(r, Address(rsp, 0));
 595   addptr(rsp, 2 * Interpreter::stackElementSize);
 596 }
 597 
 598 #ifdef _LP64
 599 void InterpreterMacroAssembler::pop_i(Register r) {
 600   // XXX can't use pop currently, upper half non clean
 601   movl(r, Address(rsp, 0));
 602   addptr(rsp, wordSize);
 603 }
 604 
 605 void InterpreterMacroAssembler::pop_l(Register r) {
 606   movq(r, Address(rsp, 0));
 607   addptr(rsp, 2 * Interpreter::stackElementSize);
 608 }
 609 
 610 void InterpreterMacroAssembler::push_l(Register r) {
 611   subptr(rsp, 2 * wordSize);
 612   movq(Address(rsp, 0), r);
 613 }
 614 
 615 void InterpreterMacroAssembler::pop(TosState state) {
 616   switch (state) {
 617   case atos: pop_ptr();                 break;
 618   case btos:
 619   case ctos:
 620   case stos:
 621   case itos: pop_i();                   break;
 622   case ltos: pop_l();                   break;
 623   case ftos: pop_f(xmm0);               break;
 624   case dtos: pop_d(xmm0);               break;
 625   case vtos: /* nothing to do */        break;
 626   default:   ShouldNotReachHere();
 627   }
 628   verify_oop(rax, state);
 629 }
 630 
 631 void InterpreterMacroAssembler::push(TosState state) {
 632   verify_oop(rax, state);
 633   switch (state) {
 634   case atos: push_ptr();                break;
 635   case btos:
 636   case ctos:
 637   case stos:
 638   case itos: push_i();                  break;
 639   case ltos: push_l();                  break;
 640   case ftos: push_f(xmm0);              break;
 641   case dtos: push_d(xmm0);              break;
 642   case vtos: /* nothing to do */        break;
 643   default  : ShouldNotReachHere();
 644   }
 645 }
 646 #else
 647 void InterpreterMacroAssembler::pop_i(Register r) {
 648   pop(r);
 649 }
 650 
 651 void InterpreterMacroAssembler::pop_l(Register lo, Register hi) {
 652   pop(lo);
 653   pop(hi);
 654 }
 655 
 656 void InterpreterMacroAssembler::pop_f() {
 657   fld_s(Address(rsp, 0));
 658   addptr(rsp, 1 * wordSize);
 659 }
 660 
 661 void InterpreterMacroAssembler::pop_d() {
 662   fld_d(Address(rsp, 0));
 663   addptr(rsp, 2 * wordSize);
 664 }
 665 
 666 
 667 void InterpreterMacroAssembler::pop(TosState state) {
 668   switch (state) {
 669     case atos: pop_ptr(rax);                                 break;
 670     case btos:                                               // fall through
 671     case ctos:                                               // fall through
 672     case stos:                                               // fall through
 673     case itos: pop_i(rax);                                   break;
 674     case ltos: pop_l(rax, rdx);                              break;
 675     case ftos:
 676       if (UseSSE >= 1) {
 677         pop_f(xmm0);
 678       } else {
 679         pop_f();
 680       }
 681       break;
 682     case dtos:
 683       if (UseSSE >= 2) {
 684         pop_d(xmm0);
 685       } else {
 686         pop_d();
 687       }
 688       break;
 689     case vtos: /* nothing to do */                           break;
 690     default  : ShouldNotReachHere();
 691   }
 692   verify_oop(rax, state);
 693 }
 694 
 695 
 696 void InterpreterMacroAssembler::push_l(Register lo, Register hi) {
 697   push(hi);
 698   push(lo);
 699 }
 700 
 701 void InterpreterMacroAssembler::push_f() {
 702   // Do not schedule for no AGI! Never write beyond rsp!
 703   subptr(rsp, 1 * wordSize);
 704   fstp_s(Address(rsp, 0));
 705 }
 706 
 707 void InterpreterMacroAssembler::push_d() {
 708   // Do not schedule for no AGI! Never write beyond rsp!
 709   subptr(rsp, 2 * wordSize);
 710   fstp_d(Address(rsp, 0));
 711 }
 712 
 713 
 714 void InterpreterMacroAssembler::push(TosState state) {
 715   verify_oop(rax, state);
 716   switch (state) {
 717     case atos: push_ptr(rax); break;
 718     case btos:                                               // fall through
 719     case ctos:                                               // fall through
 720     case stos:                                               // fall through
 721     case itos: push_i(rax);                                    break;
 722     case ltos: push_l(rax, rdx);                               break;
 723     case ftos:
 724       if (UseSSE >= 1) {
 725         push_f(xmm0);
 726       } else {
 727         push_f();
 728       }
 729       break;
 730     case dtos:
 731       if (UseSSE >= 2) {
 732         push_d(xmm0);
 733       } else {
 734         push_d();
 735       }
 736       break;
 737     case vtos: /* nothing to do */                             break;
 738     default  : ShouldNotReachHere();
 739   }
 740 }
 741 #endif // _LP64
 742 
 743 
 744 // Helpers for swap and dup
 745 void InterpreterMacroAssembler::load_ptr(int n, Register val) {
 746   movptr(val, Address(rsp, Interpreter::expr_offset_in_bytes(n)));
 747 }
 748 
 749 void InterpreterMacroAssembler::store_ptr(int n, Register val) {
 750   movptr(Address(rsp, Interpreter::expr_offset_in_bytes(n)), val);
 751 }
 752 
 753 
 754 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() {
 755   // set sender sp
 756   lea(_bcp_register, Address(rsp, wordSize));
 757   // record last_sp
 758   movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), _bcp_register);
 759 }
 760 
 761 
 762 // Jump to from_interpreted entry of a call unless single stepping is possible
 763 // in this thread in which case we must call the i2i entry
 764 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
 765   prepare_to_jump_from_interpreted();
 766 
 767   if (JvmtiExport::can_post_interpreter_events()) {
 768     Label run_compiled_code;
 769     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
 770     // compiled code in threads for which the event is enabled.  Check here for
 771     // interp_only_mode if these events CAN be enabled.
 772     // interp_only is an int, on little endian it is sufficient to test the byte only
 773     // Is a cmpl faster?
 774     LP64_ONLY(temp = r15_thread;)
 775     NOT_LP64(get_thread(temp);)
 776     cmpb(Address(temp, JavaThread::interp_only_mode_offset()), 0);
 777     jccb(Assembler::zero, run_compiled_code);
 778     jmp(Address(method, Method::interpreter_entry_offset()));
 779     bind(run_compiled_code);
 780   }
 781 
 782   jmp(Address(method, Method::from_interpreted_offset()));
 783 }
 784 
 785 // The following two routines provide a hook so that an implementation
 786 // can schedule the dispatch in two parts.  x86 does not do this.
 787 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
 788   // Nothing x86 specific to be done here
 789 }
 790 
 791 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
 792   dispatch_next(state, step);
 793 }
 794 
 795 void InterpreterMacroAssembler::dispatch_base(TosState state,
 796                                               address* table,
 797                                               bool verifyoop) {
 798   verify_FPU(1, state);
 799   if (VerifyActivationFrameSize) {
 800     Label L;
 801     mov(rcx, rbp);
 802     subptr(rcx, rsp);
 803     int32_t min_frame_size =
 804       (frame::link_offset - frame::interpreter_frame_initial_sp_offset) *
 805       wordSize;
 806     cmpptr(rcx, (int32_t)min_frame_size);
 807     jcc(Assembler::greaterEqual, L);
 808     stop("broken stack frame");
 809     bind(L);
 810   }
 811   if (verifyoop) {
 812     verify_oop(rax, state);
 813   }
 814 #ifdef _LP64
 815   lea(rscratch1, ExternalAddress((address)table));
 816   jmp(Address(rscratch1, rbx, Address::times_8));
 817 #else
 818   Address index(noreg, rbx, Address::times_ptr);
 819   ExternalAddress tbl((address)table);
 820   ArrayAddress dispatch(tbl, index);
 821   jump(dispatch);
 822 #endif // _LP64
 823 }
 824 
 825 void InterpreterMacroAssembler::dispatch_only(TosState state) {
 826   dispatch_base(state, Interpreter::dispatch_table(state));
 827 }
 828 
 829 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
 830   dispatch_base(state, Interpreter::normal_table(state));
 831 }
 832 
 833 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
 834   dispatch_base(state, Interpreter::normal_table(state), false);
 835 }
 836 
 837 
 838 void InterpreterMacroAssembler::dispatch_next(TosState state, int step) {
 839   // load next bytecode (load before advancing _bcp_register to prevent AGI)
 840   load_unsigned_byte(rbx, Address(_bcp_register, step));
 841   // advance _bcp_register
 842   increment(_bcp_register, step);
 843   dispatch_base(state, Interpreter::dispatch_table(state));
 844 }
 845 
 846 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
 847   // load current bytecode
 848   load_unsigned_byte(rbx, Address(_bcp_register, 0));
 849   dispatch_base(state, table);
 850 }
 851 
 852 // remove activation
 853 //
 854 // Unlock the receiver if this is a synchronized method.
 855 // Unlock any Java monitors from syncronized blocks.
 856 // Remove the activation from the stack.
 857 //
 858 // If there are locked Java monitors
 859 //    If throw_monitor_exception
 860 //       throws IllegalMonitorStateException
 861 //    Else if install_monitor_exception
 862 //       installs IllegalMonitorStateException
 863 //    Else
 864 //       no error processing
 865 void InterpreterMacroAssembler::remove_activation(
 866         TosState state,
 867         Register ret_addr,
 868         bool throw_monitor_exception,
 869         bool install_monitor_exception,
 870         bool notify_jvmdi) {
 871   // Note: Registers rdx xmm0 may be in use for the
 872   // result check if synchronized method
 873   Label unlocked, unlock, no_unlock;
 874 
 875   const Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
 876   const Register robj    = LP64_ONLY(c_rarg1) NOT_LP64(rdx);
 877   const Register rmon    = LP64_ONLY(c_rarg1) NOT_LP64(rcx);
 878                               // monitor pointers need different register
 879                               // because rdx may have the result in it
 880   NOT_LP64(get_thread(rcx);)
 881 
 882   // get the value of _do_not_unlock_if_synchronized into rdx
 883   const Address do_not_unlock_if_synchronized(rthread,
 884     in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
 885   movbool(rbx, do_not_unlock_if_synchronized);
 886   movbool(do_not_unlock_if_synchronized, false); // reset the flag
 887 
 888  // get method access flags
 889   movptr(rcx, Address(rbp, frame::interpreter_frame_method_offset * wordSize));
 890   movl(rcx, Address(rcx, Method::access_flags_offset()));
 891   testl(rcx, JVM_ACC_SYNCHRONIZED);
 892   jcc(Assembler::zero, unlocked);
 893 
 894   // Don't unlock anything if the _do_not_unlock_if_synchronized flag
 895   // is set.
 896   testbool(rbx);
 897   jcc(Assembler::notZero, no_unlock);
 898 
 899   // unlock monitor
 900   push(state); // save result
 901 
 902   // BasicObjectLock will be first in list, since this is a
 903   // synchronized method. However, need to check that the object has
 904   // not been unlocked by an explicit monitorexit bytecode.
 905   const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset *
 906                         wordSize - (int) sizeof(BasicObjectLock));
 907   // We use c_rarg1/rdx so that if we go slow path it will be the correct
 908   // register for unlock_object to pass to VM directly
 909   lea(robj, monitor); // address of first monitor
 910 
 911   movptr(rax, Address(robj, BasicObjectLock::obj_offset_in_bytes()));
 912   testptr(rax, rax);
 913   jcc(Assembler::notZero, unlock);
 914 
 915   pop(state);
 916   if (throw_monitor_exception) {
 917     // Entry already unlocked, need to throw exception
 918     NOT_LP64(empty_FPU_stack();)  // remove possible return value from FPU-stack, otherwise stack could overflow
 919     call_VM(noreg, CAST_FROM_FN_PTR(address,
 920                    InterpreterRuntime::throw_illegal_monitor_state_exception));
 921     should_not_reach_here();
 922   } else {
 923     // Monitor already unlocked during a stack unroll. If requested,
 924     // install an illegal_monitor_state_exception.  Continue with
 925     // stack unrolling.
 926     if (install_monitor_exception) {
 927       NOT_LP64(empty_FPU_stack();)
 928       call_VM(noreg, CAST_FROM_FN_PTR(address,
 929                      InterpreterRuntime::new_illegal_monitor_state_exception));
 930     }
 931     jmp(unlocked);
 932   }
 933 
 934   bind(unlock);
 935   unlock_object(robj);
 936   pop(state);
 937 
 938   // Check that for block-structured locking (i.e., that all locked
 939   // objects has been unlocked)
 940   bind(unlocked);
 941 
 942   // rax, rdx: Might contain return value
 943 
 944   // Check that all monitors are unlocked
 945   {
 946     Label loop, exception, entry, restart;
 947     const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
 948     const Address monitor_block_top(
 949         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
 950     const Address monitor_block_bot(
 951         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
 952 
 953     bind(restart);
 954     // We use c_rarg1 so that if we go slow path it will be the correct
 955     // register for unlock_object to pass to VM directly
 956     movptr(rmon, monitor_block_top); // points to current entry, starting
 957                                   // with top-most entry
 958     lea(rbx, monitor_block_bot);  // points to word before bottom of
 959                                   // monitor block
 960     jmp(entry);
 961 
 962     // Entry already locked, need to throw exception
 963     bind(exception);
 964 
 965     if (throw_monitor_exception) {
 966       // Throw exception
 967       NOT_LP64(empty_FPU_stack();)
 968       MacroAssembler::call_VM(noreg,
 969                               CAST_FROM_FN_PTR(address, InterpreterRuntime::
 970                                    throw_illegal_monitor_state_exception));
 971       should_not_reach_here();
 972     } else {
 973       // Stack unrolling. Unlock object and install illegal_monitor_exception.
 974       // Unlock does not block, so don't have to worry about the frame.
 975       // We don't have to preserve c_rarg1 since we are going to throw an exception.
 976 
 977       push(state);
 978       mov(robj, rmon);   // nop if robj and rmon are the same
 979       unlock_object(robj);
 980       pop(state);
 981 
 982       if (install_monitor_exception) {
 983         NOT_LP64(empty_FPU_stack();)
 984         call_VM(noreg, CAST_FROM_FN_PTR(address,
 985                                         InterpreterRuntime::
 986                                         new_illegal_monitor_state_exception));
 987       }
 988 
 989       jmp(restart);
 990     }
 991 
 992     bind(loop);
 993     // check if current entry is used
 994     cmpptr(Address(rmon, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL);
 995     jcc(Assembler::notEqual, exception);
 996 
 997     addptr(rmon, entry_size); // otherwise advance to next entry
 998     bind(entry);
 999     cmpptr(rmon, rbx); // check if bottom reached
1000     jcc(Assembler::notEqual, loop); // if not at bottom then check this entry
1001   }
1002 
1003   bind(no_unlock);
1004 
1005   // jvmti support
1006   if (notify_jvmdi) {
1007     notify_method_exit(state, NotifyJVMTI);    // preserve TOSCA
1008   } else {
1009     notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
1010   }
1011 
1012   // remove activation
1013   // get sender sp
1014   movptr(rbx,
1015          Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize));
1016   if (StackReservedPages > 0) {
1017     // testing if reserved zone needs to be re-enabled
1018     Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
1019     Label no_reserved_zone_enabling;
1020 
1021     NOT_LP64(get_thread(rthread);)
1022 
1023     cmpptr(rbx, Address(rthread, JavaThread::reserved_stack_activation_offset()));
1024     jcc(Assembler::lessEqual, no_reserved_zone_enabling);
1025 
1026     call_VM_leaf(
1027       CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), rthread);
1028     push(rthread);
1029     call_VM(noreg, CAST_FROM_FN_PTR(address,
1030                    InterpreterRuntime::throw_delayed_StackOverflowError));
1031     should_not_reach_here();
1032 
1033     bind(no_reserved_zone_enabling);
1034   }
1035   leave();                           // remove frame anchor
1036   pop(ret_addr);                     // get return address
1037   mov(rsp, rbx);                     // set sp to sender sp
1038 }
1039 
1040 void InterpreterMacroAssembler::get_method_counters(Register method,
1041                                                     Register mcs, Label& skip) {
1042   Label has_counters;
1043   movptr(mcs, Address(method, Method::method_counters_offset()));
1044   testptr(mcs, mcs);
1045   jcc(Assembler::notZero, has_counters);
1046   call_VM(noreg, CAST_FROM_FN_PTR(address,
1047           InterpreterRuntime::build_method_counters), method);
1048   movptr(mcs, Address(method,Method::method_counters_offset()));
1049   testptr(mcs, mcs);
1050   jcc(Assembler::zero, skip); // No MethodCounters allocated, OutOfMemory
1051   bind(has_counters);
1052 }
1053 
1054 
1055 // Lock object
1056 //
1057 // Args:
1058 //      rdx, c_rarg1: BasicObjectLock to be used for locking
1059 //
1060 // Kills:
1061 //      rax, rbx
1062 void InterpreterMacroAssembler::lock_object(Register lock_reg) {
1063   assert(lock_reg == LP64_ONLY(c_rarg1) NOT_LP64(rdx),
1064          "The argument is only for looks. It must be c_rarg1");
1065 
1066   if (UseHeavyMonitors) {
1067     call_VM(noreg,
1068             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
1069             lock_reg);
1070   } else {
1071     Label done;
1072 
1073     const Register swap_reg = rax; // Must use rax for cmpxchg instruction
1074     const Register tmp_reg = rbx; // Will be passed to biased_locking_enter to avoid a
1075                                   // problematic case where tmp_reg = no_reg.
1076     const Register obj_reg = LP64_ONLY(c_rarg3) NOT_LP64(rcx); // Will contain the oop
1077 
1078     const int obj_offset = BasicObjectLock::obj_offset_in_bytes();
1079     const int lock_offset = BasicObjectLock::lock_offset_in_bytes ();
1080     const int mark_offset = lock_offset +
1081                             BasicLock::displaced_header_offset_in_bytes();
1082 
1083     Label slow_case;
1084 
1085     // Load object pointer into obj_reg
1086     movptr(obj_reg, Address(lock_reg, obj_offset));
1087 
1088     if (UseBiasedLocking) {
1089       biased_locking_enter(lock_reg, obj_reg, swap_reg, tmp_reg, false, done, &slow_case);
1090     }
1091 
1092     // Load immediate 1 into swap_reg %rax
1093     movl(swap_reg, (int32_t)1);
1094 
1095     // Load (object->mark() | 1) into swap_reg %rax
1096     orptr(swap_reg, Address(obj_reg, 0));
1097 
1098     // Save (object->mark() | 1) into BasicLock's displaced header
1099     movptr(Address(lock_reg, mark_offset), swap_reg);
1100 
1101     assert(lock_offset == 0,
1102            "displached header must be first word in BasicObjectLock");
1103 
1104     if (os::is_MP()) lock();
1105     cmpxchgptr(lock_reg, Address(obj_reg, 0));
1106     if (PrintBiasedLockingStatistics) {
1107       cond_inc32(Assembler::zero,
1108                  ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
1109     }
1110     jcc(Assembler::zero, done);
1111 
1112     const int zero_bits = LP64_ONLY(7) NOT_LP64(3);
1113 
1114     // Test if the oopMark is an obvious stack pointer, i.e.,
1115     //  1) (mark & zero_bits) == 0, and
1116     //  2) rsp <= mark < mark + os::pagesize()
1117     //
1118     // These 3 tests can be done by evaluating the following
1119     // expression: ((mark - rsp) & (zero_bits - os::vm_page_size())),
1120     // assuming both stack pointer and pagesize have their
1121     // least significant bits clear.
1122     // NOTE: the oopMark is in swap_reg %rax as the result of cmpxchg
1123     subptr(swap_reg, rsp);
1124     andptr(swap_reg, zero_bits - os::vm_page_size());
1125 
1126     // Save the test result, for recursive case, the result is zero
1127     movptr(Address(lock_reg, mark_offset), swap_reg);
1128 
1129     if (PrintBiasedLockingStatistics) {
1130       cond_inc32(Assembler::zero,
1131                  ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
1132     }
1133     jcc(Assembler::zero, done);
1134 
1135     bind(slow_case);
1136 
1137     // Call the runtime routine for slow case
1138     call_VM(noreg,
1139             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
1140             lock_reg);
1141 
1142     bind(done);
1143   }
1144 }
1145 
1146 
1147 // Unlocks an object. Used in monitorexit bytecode and
1148 // remove_activation.  Throws an IllegalMonitorException if object is
1149 // not locked by current thread.
1150 //
1151 // Args:
1152 //      rdx, c_rarg1: BasicObjectLock for lock
1153 //
1154 // Kills:
1155 //      rax
1156 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs)
1157 //      rscratch1, rscratch2 (scratch regs)
1158 // rax, rbx, rcx, rdx
1159 void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
1160   assert(lock_reg == LP64_ONLY(c_rarg1) NOT_LP64(rdx),
1161          "The argument is only for looks. It must be c_rarg1");
1162 
1163   if (UseHeavyMonitors) {
1164     call_VM(noreg,
1165             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
1166             lock_reg);
1167   } else {
1168     Label done;
1169 
1170     const Register swap_reg   = rax;  // Must use rax for cmpxchg instruction
1171     const Register header_reg = LP64_ONLY(c_rarg2) NOT_LP64(rbx);  // Will contain the old oopMark
1172     const Register obj_reg    = LP64_ONLY(c_rarg3) NOT_LP64(rcx);  // Will contain the oop
1173 
1174     save_bcp(); // Save in case of exception
1175 
1176     // Convert from BasicObjectLock structure to object and BasicLock
1177     // structure Store the BasicLock address into %rax
1178     lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset_in_bytes()));
1179 
1180     // Load oop into obj_reg(%c_rarg3)
1181     movptr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()));
1182 
1183     // Free entry
1184     movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), (int32_t)NULL_WORD);
1185 
1186     if (UseBiasedLocking) {
1187       biased_locking_exit(obj_reg, header_reg, done);
1188     }
1189 
1190     // Load the old header from BasicLock structure
1191     movptr(header_reg, Address(swap_reg,
1192                                BasicLock::displaced_header_offset_in_bytes()));
1193 
1194     // Test for recursion
1195     testptr(header_reg, header_reg);
1196 
1197     // zero for recursive case
1198     jcc(Assembler::zero, done);
1199 
1200     // Atomic swap back the old header
1201     if (os::is_MP()) lock();
1202     cmpxchgptr(header_reg, Address(obj_reg, 0));
1203 
1204     // zero for recursive case
1205     jcc(Assembler::zero, done);
1206 
1207     // Call the runtime routine for slow case.
1208     movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()),
1209          obj_reg); // restore obj
1210     call_VM(noreg,
1211             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
1212             lock_reg);
1213 
1214     bind(done);
1215 
1216     restore_bcp();
1217   }
1218 }
1219 
1220 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp,
1221                                                          Label& zero_continue) {
1222   assert(ProfileInterpreter, "must be profiling interpreter");
1223   movptr(mdp, Address(rbp, frame::interpreter_frame_mdp_offset * wordSize));
1224   testptr(mdp, mdp);
1225   jcc(Assembler::zero, zero_continue);
1226 }
1227 
1228 
1229 // Set the method data pointer for the current bcp.
1230 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
1231   assert(ProfileInterpreter, "must be profiling interpreter");
1232   Label set_mdp;
1233   push(rax);
1234   push(rbx);
1235 
1236   get_method(rbx);
1237   // Test MDO to avoid the call if it is NULL.
1238   movptr(rax, Address(rbx, in_bytes(Method::method_data_offset())));
1239   testptr(rax, rax);
1240   jcc(Assembler::zero, set_mdp);
1241   // rbx: method
1242   // _bcp_register: bcp
1243   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rbx, _bcp_register);
1244   // rax: mdi
1245   // mdo is guaranteed to be non-zero here, we checked for it before the call.
1246   movptr(rbx, Address(rbx, in_bytes(Method::method_data_offset())));
1247   addptr(rbx, in_bytes(MethodData::data_offset()));
1248   addptr(rax, rbx);
1249   bind(set_mdp);
1250   movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), rax);
1251   pop(rbx);
1252   pop(rax);
1253 }
1254 
1255 void InterpreterMacroAssembler::verify_method_data_pointer() {
1256   assert(ProfileInterpreter, "must be profiling interpreter");
1257 #ifdef ASSERT
1258   Label verify_continue;
1259   push(rax);
1260   push(rbx);
1261   Register arg3_reg = LP64_ONLY(c_rarg3) NOT_LP64(rcx);
1262   Register arg2_reg = LP64_ONLY(c_rarg2) NOT_LP64(rdx);
1263   push(arg3_reg);
1264   push(arg2_reg);
1265   test_method_data_pointer(arg3_reg, verify_continue); // If mdp is zero, continue
1266   get_method(rbx);
1267 
1268   // If the mdp is valid, it will point to a DataLayout header which is
1269   // consistent with the bcp.  The converse is highly probable also.
1270   load_unsigned_short(arg2_reg,
1271                       Address(arg3_reg, in_bytes(DataLayout::bci_offset())));
1272   addptr(arg2_reg, Address(rbx, Method::const_offset()));
1273   lea(arg2_reg, Address(arg2_reg, ConstMethod::codes_offset()));
1274   cmpptr(arg2_reg, _bcp_register);
1275   jcc(Assembler::equal, verify_continue);
1276   // rbx: method
1277   // _bcp_register: bcp
1278   // c_rarg3: mdp
1279   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp),
1280                rbx, _bcp_register, arg3_reg);
1281   bind(verify_continue);
1282   pop(arg2_reg);
1283   pop(arg3_reg);
1284   pop(rbx);
1285   pop(rax);
1286 #endif // ASSERT
1287 }
1288 
1289 
1290 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in,
1291                                                 int constant,
1292                                                 Register value) {
1293   assert(ProfileInterpreter, "must be profiling interpreter");
1294   Address data(mdp_in, constant);
1295   movptr(data, value);
1296 }
1297 
1298 
1299 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
1300                                                       int constant,
1301                                                       bool decrement) {
1302   // Counter address
1303   Address data(mdp_in, constant);
1304 
1305   increment_mdp_data_at(data, decrement);
1306 }
1307 
1308 void InterpreterMacroAssembler::increment_mdp_data_at(Address data,
1309                                                       bool decrement) {
1310   assert(ProfileInterpreter, "must be profiling interpreter");
1311   // %%% this does 64bit counters at best it is wasting space
1312   // at worst it is a rare bug when counters overflow
1313 
1314   if (decrement) {
1315     // Decrement the register.  Set condition codes.
1316     addptr(data, (int32_t) -DataLayout::counter_increment);
1317     // If the decrement causes the counter to overflow, stay negative
1318     Label L;
1319     jcc(Assembler::negative, L);
1320     addptr(data, (int32_t) DataLayout::counter_increment);
1321     bind(L);
1322   } else {
1323     assert(DataLayout::counter_increment == 1,
1324            "flow-free idiom only works with 1");
1325     // Increment the register.  Set carry flag.
1326     addptr(data, DataLayout::counter_increment);
1327     // If the increment causes the counter to overflow, pull back by 1.
1328     sbbptr(data, (int32_t)0);
1329   }
1330 }
1331 
1332 
1333 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
1334                                                       Register reg,
1335                                                       int constant,
1336                                                       bool decrement) {
1337   Address data(mdp_in, reg, Address::times_1, constant);
1338 
1339   increment_mdp_data_at(data, decrement);
1340 }
1341 
1342 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in,
1343                                                 int flag_byte_constant) {
1344   assert(ProfileInterpreter, "must be profiling interpreter");
1345   int header_offset = in_bytes(DataLayout::header_offset());
1346   int header_bits = DataLayout::flag_mask_to_header_mask(flag_byte_constant);
1347   // Set the flag
1348   orl(Address(mdp_in, header_offset), header_bits);
1349 }
1350 
1351 
1352 
1353 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
1354                                                  int offset,
1355                                                  Register value,
1356                                                  Register test_value_out,
1357                                                  Label& not_equal_continue) {
1358   assert(ProfileInterpreter, "must be profiling interpreter");
1359   if (test_value_out == noreg) {
1360     cmpptr(value, Address(mdp_in, offset));
1361   } else {
1362     // Put the test value into a register, so caller can use it:
1363     movptr(test_value_out, Address(mdp_in, offset));
1364     cmpptr(test_value_out, value);
1365   }
1366   jcc(Assembler::notEqual, not_equal_continue);
1367 }
1368 
1369 
1370 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
1371                                                      int offset_of_disp) {
1372   assert(ProfileInterpreter, "must be profiling interpreter");
1373   Address disp_address(mdp_in, offset_of_disp);
1374   addptr(mdp_in, disp_address);
1375   movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in);
1376 }
1377 
1378 
1379 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
1380                                                      Register reg,
1381                                                      int offset_of_disp) {
1382   assert(ProfileInterpreter, "must be profiling interpreter");
1383   Address disp_address(mdp_in, reg, Address::times_1, offset_of_disp);
1384   addptr(mdp_in, disp_address);
1385   movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in);
1386 }
1387 
1388 
1389 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in,
1390                                                        int constant) {
1391   assert(ProfileInterpreter, "must be profiling interpreter");
1392   addptr(mdp_in, constant);
1393   movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in);
1394 }
1395 
1396 
1397 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
1398   assert(ProfileInterpreter, "must be profiling interpreter");
1399   push(return_bci); // save/restore across call_VM
1400   call_VM(noreg,
1401           CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret),
1402           return_bci);
1403   pop(return_bci);
1404 }
1405 
1406 
1407 void InterpreterMacroAssembler::profile_taken_branch(Register mdp,
1408                                                      Register bumped_count) {
1409   if (ProfileInterpreter) {
1410     Label profile_continue;
1411 
1412     // If no method data exists, go to profile_continue.
1413     // Otherwise, assign to mdp
1414     test_method_data_pointer(mdp, profile_continue);
1415 
1416     // We are taking a branch.  Increment the taken count.
1417     // We inline increment_mdp_data_at to return bumped_count in a register
1418     //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
1419     Address data(mdp, in_bytes(JumpData::taken_offset()));
1420     movptr(bumped_count, data);
1421     assert(DataLayout::counter_increment == 1,
1422             "flow-free idiom only works with 1");
1423     addptr(bumped_count, DataLayout::counter_increment);
1424     sbbptr(bumped_count, 0);
1425     movptr(data, bumped_count); // Store back out
1426 
1427     // The method data pointer needs to be updated to reflect the new target.
1428     update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
1429     bind(profile_continue);
1430   }
1431 }
1432 
1433 
1434 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
1435   if (ProfileInterpreter) {
1436     Label profile_continue;
1437 
1438     // If no method data exists, go to profile_continue.
1439     test_method_data_pointer(mdp, profile_continue);
1440 
1441     // We are taking a branch.  Increment the not taken count.
1442     increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));
1443 
1444     // The method data pointer needs to be updated to correspond to
1445     // the next bytecode
1446     update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
1447     bind(profile_continue);
1448   }
1449 }
1450 
1451 void InterpreterMacroAssembler::profile_call(Register mdp) {
1452   if (ProfileInterpreter) {
1453     Label profile_continue;
1454 
1455     // If no method data exists, go to profile_continue.
1456     test_method_data_pointer(mdp, profile_continue);
1457 
1458     // We are making a call.  Increment the count.
1459     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1460 
1461     // The method data pointer needs to be updated to reflect the new target.
1462     update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
1463     bind(profile_continue);
1464   }
1465 }
1466 
1467 
1468 void InterpreterMacroAssembler::profile_final_call(Register mdp) {
1469   if (ProfileInterpreter) {
1470     Label profile_continue;
1471 
1472     // If no method data exists, go to profile_continue.
1473     test_method_data_pointer(mdp, profile_continue);
1474 
1475     // We are making a call.  Increment the count.
1476     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1477 
1478     // The method data pointer needs to be updated to reflect the new target.
1479     update_mdp_by_constant(mdp,
1480                            in_bytes(VirtualCallData::
1481                                     virtual_call_data_size()));
1482     bind(profile_continue);
1483   }
1484 }
1485 
1486 
1487 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
1488                                                      Register mdp,
1489                                                      Register reg2,
1490                                                      bool receiver_can_be_null) {
1491   if (ProfileInterpreter) {
1492     Label profile_continue;
1493 
1494     // If no method data exists, go to profile_continue.
1495     test_method_data_pointer(mdp, profile_continue);
1496 
1497     Label skip_receiver_profile;
1498     if (receiver_can_be_null) {
1499       Label not_null;
1500       testptr(receiver, receiver);
1501       jccb(Assembler::notZero, not_null);
1502       // We are making a call.  Increment the count for null receiver.
1503       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1504       jmp(skip_receiver_profile);
1505       bind(not_null);
1506     }
1507 
1508     // Record the receiver type.
1509     record_klass_in_profile(receiver, mdp, reg2, true);
1510     bind(skip_receiver_profile);
1511 
1512     // The method data pointer needs to be updated to reflect the new target.
1513 #if INCLUDE_JVMCI
1514     if (MethodProfileWidth == 0) {
1515       update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
1516     }
1517 #else // INCLUDE_JVMCI
1518     update_mdp_by_constant(mdp,
1519                            in_bytes(VirtualCallData::
1520                                     virtual_call_data_size()));
1521 #endif // INCLUDE_JVMCI
1522     bind(profile_continue);
1523   }
1524 }
1525 
1526 #if INCLUDE_JVMCI
1527 void InterpreterMacroAssembler::profile_called_method(Register method, Register mdp, Register reg2) {
1528   assert_different_registers(method, mdp, reg2);
1529   if (ProfileInterpreter && MethodProfileWidth > 0) {
1530     Label profile_continue;
1531 
1532     // If no method data exists, go to profile_continue.
1533     test_method_data_pointer(mdp, profile_continue);
1534 
1535     Label done;
1536     record_item_in_profile_helper(method, mdp, reg2, 0, done, MethodProfileWidth,
1537       &VirtualCallData::method_offset, &VirtualCallData::method_count_offset, in_bytes(VirtualCallData::nonprofiled_receiver_count_offset()));
1538     bind(done);
1539 
1540     update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
1541     bind(profile_continue);
1542   }
1543 }
1544 #endif // INCLUDE_JVMCI
1545 
1546 // This routine creates a state machine for updating the multi-row
1547 // type profile at a virtual call site (or other type-sensitive bytecode).
1548 // The machine visits each row (of receiver/count) until the receiver type
1549 // is found, or until it runs out of rows.  At the same time, it remembers
1550 // the location of the first empty row.  (An empty row records null for its
1551 // receiver, and can be allocated for a newly-observed receiver type.)
1552 // Because there are two degrees of freedom in the state, a simple linear
1553 // search will not work; it must be a decision tree.  Hence this helper
1554 // function is recursive, to generate the required tree structured code.
1555 // It's the interpreter, so we are trading off code space for speed.
1556 // See below for example code.
1557 void InterpreterMacroAssembler::record_klass_in_profile_helper(
1558                                         Register receiver, Register mdp,
1559                                         Register reg2, int start_row,
1560                                         Label& done, bool is_virtual_call) {
1561   if (TypeProfileWidth == 0) {
1562     if (is_virtual_call) {
1563       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1564     }
1565 #if INCLUDE_JVMCI
1566     else if (EnableJVMCI) {
1567       increment_mdp_data_at(mdp, in_bytes(ReceiverTypeData::nonprofiled_receiver_count_offset()));
1568     }
1569 #endif // INCLUDE_JVMCI
1570   } else {
1571     int non_profiled_offset = -1;
1572     if (is_virtual_call) {
1573       non_profiled_offset = in_bytes(CounterData::count_offset());
1574     }
1575 #if INCLUDE_JVMCI
1576     else if (EnableJVMCI) {
1577       non_profiled_offset = in_bytes(ReceiverTypeData::nonprofiled_receiver_count_offset());
1578     }
1579 #endif // INCLUDE_JVMCI
1580 
1581     record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth,
1582         &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset, non_profiled_offset);
1583   }
1584 }
1585 
1586 void InterpreterMacroAssembler::record_item_in_profile_helper(Register item, Register mdp,
1587                                         Register reg2, int start_row, Label& done, int total_rows,
1588                                         OffsetFunction item_offset_fn, OffsetFunction item_count_offset_fn,
1589                                         int non_profiled_offset) {
1590   int last_row = total_rows - 1;
1591   assert(start_row <= last_row, "must be work left to do");
1592   // Test this row for both the item and for null.
1593   // Take any of three different outcomes:
1594   //   1. found item => increment count and goto done
1595   //   2. found null => keep looking for case 1, maybe allocate this cell
1596   //   3. found something else => keep looking for cases 1 and 2
1597   // Case 3 is handled by a recursive call.
1598   for (int row = start_row; row <= last_row; row++) {
1599     Label next_test;
1600     bool test_for_null_also = (row == start_row);
1601 
1602     // See if the item is item[n].
1603     int item_offset = in_bytes(item_offset_fn(row));
1604     test_mdp_data_at(mdp, item_offset, item,
1605                      (test_for_null_also ? reg2 : noreg),
1606                      next_test);
1607     // (Reg2 now contains the item from the CallData.)
1608 
1609     // The item is item[n].  Increment count[n].
1610     int count_offset = in_bytes(item_count_offset_fn(row));
1611     increment_mdp_data_at(mdp, count_offset);
1612     jmp(done);
1613     bind(next_test);
1614 
1615     if (test_for_null_also) {
1616       Label found_null;
1617       // Failed the equality check on item[n]...  Test for null.
1618       testptr(reg2, reg2);
1619       if (start_row == last_row) {
1620         // The only thing left to do is handle the null case.
1621         if (non_profiled_offset >= 0) {
1622           jccb(Assembler::zero, found_null);
1623           // Item did not match any saved item and there is no empty row for it.
1624           // Increment total counter to indicate polymorphic case.
1625           increment_mdp_data_at(mdp, non_profiled_offset);
1626           jmp(done);
1627           bind(found_null);
1628         } else {
1629           jcc(Assembler::notZero, done);
1630         }
1631         break;
1632       }
1633       // Since null is rare, make it be the branch-taken case.
1634       jcc(Assembler::zero, found_null);
1635 
1636       // Put all the "Case 3" tests here.
1637       record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows,
1638         item_offset_fn, item_count_offset_fn, non_profiled_offset);
1639 
1640       // Found a null.  Keep searching for a matching item,
1641       // but remember that this is an empty (unused) slot.
1642       bind(found_null);
1643     }
1644   }
1645 
1646   // In the fall-through case, we found no matching item, but we
1647   // observed the item[start_row] is NULL.
1648 
1649   // Fill in the item field and increment the count.
1650   int item_offset = in_bytes(item_offset_fn(start_row));
1651   set_mdp_data_at(mdp, item_offset, item);
1652   int count_offset = in_bytes(item_count_offset_fn(start_row));
1653   movl(reg2, DataLayout::counter_increment);
1654   set_mdp_data_at(mdp, count_offset, reg2);
1655   if (start_row > 0) {
1656     jmp(done);
1657   }
1658 }
1659 
1660 // Example state machine code for three profile rows:
1661 //   // main copy of decision tree, rooted at row[1]
1662 //   if (row[0].rec == rec) { row[0].incr(); goto done; }
1663 //   if (row[0].rec != NULL) {
1664 //     // inner copy of decision tree, rooted at row[1]
1665 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
1666 //     if (row[1].rec != NULL) {
1667 //       // degenerate decision tree, rooted at row[2]
1668 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
1669 //       if (row[2].rec != NULL) { count.incr(); goto done; } // overflow
1670 //       row[2].init(rec); goto done;
1671 //     } else {
1672 //       // remember row[1] is empty
1673 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
1674 //       row[1].init(rec); goto done;
1675 //     }
1676 //   } else {
1677 //     // remember row[0] is empty
1678 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
1679 //     if (row[2].rec == rec) { row[2].incr(); goto done; }
1680 //     row[0].init(rec); goto done;
1681 //   }
1682 //   done:
1683 
1684 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
1685                                                         Register mdp, Register reg2,
1686                                                         bool is_virtual_call) {
1687   assert(ProfileInterpreter, "must be profiling");
1688   Label done;
1689 
1690   record_klass_in_profile_helper(receiver, mdp, reg2, 0, done, is_virtual_call);
1691 
1692   bind (done);
1693 }
1694 
1695 void InterpreterMacroAssembler::profile_ret(Register return_bci,
1696                                             Register mdp) {
1697   if (ProfileInterpreter) {
1698     Label profile_continue;
1699     uint row;
1700 
1701     // If no method data exists, go to profile_continue.
1702     test_method_data_pointer(mdp, profile_continue);
1703 
1704     // Update the total ret count.
1705     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1706 
1707     for (row = 0; row < RetData::row_limit(); row++) {
1708       Label next_test;
1709 
1710       // See if return_bci is equal to bci[n]:
1711       test_mdp_data_at(mdp,
1712                        in_bytes(RetData::bci_offset(row)),
1713                        return_bci, noreg,
1714                        next_test);
1715 
1716       // return_bci is equal to bci[n].  Increment the count.
1717       increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
1718 
1719       // The method data pointer needs to be updated to reflect the new target.
1720       update_mdp_by_offset(mdp,
1721                            in_bytes(RetData::bci_displacement_offset(row)));
1722       jmp(profile_continue);
1723       bind(next_test);
1724     }
1725 
1726     update_mdp_for_ret(return_bci);
1727 
1728     bind(profile_continue);
1729   }
1730 }
1731 
1732 
1733 void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
1734   if (ProfileInterpreter) {
1735     Label profile_continue;
1736 
1737     // If no method data exists, go to profile_continue.
1738     test_method_data_pointer(mdp, profile_continue);
1739 
1740     set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
1741 
1742     // The method data pointer needs to be updated.
1743     int mdp_delta = in_bytes(BitData::bit_data_size());
1744     if (TypeProfileCasts) {
1745       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1746     }
1747     update_mdp_by_constant(mdp, mdp_delta);
1748 
1749     bind(profile_continue);
1750   }
1751 }
1752 
1753 
1754 void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) {
1755   if (ProfileInterpreter && TypeProfileCasts) {
1756     Label profile_continue;
1757 
1758     // If no method data exists, go to profile_continue.
1759     test_method_data_pointer(mdp, profile_continue);
1760 
1761     int count_offset = in_bytes(CounterData::count_offset());
1762     // Back up the address, since we have already bumped the mdp.
1763     count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
1764 
1765     // *Decrement* the counter.  We expect to see zero or small negatives.
1766     increment_mdp_data_at(mdp, count_offset, true);
1767 
1768     bind (profile_continue);
1769   }
1770 }
1771 
1772 
1773 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) {
1774   if (ProfileInterpreter) {
1775     Label profile_continue;
1776 
1777     // If no method data exists, go to profile_continue.
1778     test_method_data_pointer(mdp, profile_continue);
1779 
1780     // The method data pointer needs to be updated.
1781     int mdp_delta = in_bytes(BitData::bit_data_size());
1782     if (TypeProfileCasts) {
1783       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1784 
1785       // Record the object type.
1786       record_klass_in_profile(klass, mdp, reg2, false);
1787       NOT_LP64(assert(reg2 == rdi, "we know how to fix this blown reg");)
1788       NOT_LP64(restore_locals();)         // Restore EDI
1789     }
1790     update_mdp_by_constant(mdp, mdp_delta);
1791 
1792     bind(profile_continue);
1793   }
1794 }
1795 
1796 
1797 void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
1798   if (ProfileInterpreter) {
1799     Label profile_continue;
1800 
1801     // If no method data exists, go to profile_continue.
1802     test_method_data_pointer(mdp, profile_continue);
1803 
1804     // Update the default case count
1805     increment_mdp_data_at(mdp,
1806                           in_bytes(MultiBranchData::default_count_offset()));
1807 
1808     // The method data pointer needs to be updated.
1809     update_mdp_by_offset(mdp,
1810                          in_bytes(MultiBranchData::
1811                                   default_displacement_offset()));
1812 
1813     bind(profile_continue);
1814   }
1815 }
1816 
1817 
1818 void InterpreterMacroAssembler::profile_switch_case(Register index,
1819                                                     Register mdp,
1820                                                     Register reg2) {
1821   if (ProfileInterpreter) {
1822     Label profile_continue;
1823 
1824     // If no method data exists, go to profile_continue.
1825     test_method_data_pointer(mdp, profile_continue);
1826 
1827     // Build the base (index * per_case_size_in_bytes()) +
1828     // case_array_offset_in_bytes()
1829     movl(reg2, in_bytes(MultiBranchData::per_case_size()));
1830     imulptr(index, reg2); // XXX l ?
1831     addptr(index, in_bytes(MultiBranchData::case_array_offset())); // XXX l ?
1832 
1833     // Update the case count
1834     increment_mdp_data_at(mdp,
1835                           index,
1836                           in_bytes(MultiBranchData::relative_count_offset()));
1837 
1838     // The method data pointer needs to be updated.
1839     update_mdp_by_offset(mdp,
1840                          index,
1841                          in_bytes(MultiBranchData::
1842                                   relative_displacement_offset()));
1843 
1844     bind(profile_continue);
1845   }
1846 }
1847 
1848 
1849 
1850 void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) {
1851   if (state == atos) {
1852     MacroAssembler::verify_oop(reg);
1853   }
1854 }
1855 
1856 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
1857 #ifndef _LP64
1858   if ((state == ftos && UseSSE < 1) ||
1859       (state == dtos && UseSSE < 2)) {
1860     MacroAssembler::verify_FPU(stack_depth);
1861   }
1862 #endif
1863 }
1864 
1865 // Jump if ((*counter_addr += increment) & mask) satisfies the condition.
1866 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
1867                                                         int increment, Address mask,
1868                                                         Register scratch, bool preloaded,
1869                                                         Condition cond, Label* where) {
1870   if (!preloaded) {
1871     movl(scratch, counter_addr);
1872   }
1873   incrementl(scratch, increment);
1874   movl(counter_addr, scratch);
1875   andl(scratch, mask);
1876   jcc(cond, *where);
1877 }
1878 
1879 void InterpreterMacroAssembler::notify_method_entry() {
1880   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1881   // track stack depth.  If it is possible to enter interp_only_mode we add
1882   // the code to check if the event should be sent.
1883   Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
1884   Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rbx);
1885   if (JvmtiExport::can_post_interpreter_events()) {
1886     Label L;
1887     NOT_LP64(get_thread(rthread);)
1888     movl(rdx, Address(rthread, JavaThread::interp_only_mode_offset()));
1889     testl(rdx, rdx);
1890     jcc(Assembler::zero, L);
1891     call_VM(noreg, CAST_FROM_FN_PTR(address,
1892                                     InterpreterRuntime::post_method_entry));
1893     bind(L);
1894   }
1895 
1896   {
1897     SkipIfEqual skip(this, &DTraceMethodProbes, false);
1898     NOT_LP64(get_thread(rthread);)
1899     get_method(rarg);
1900     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
1901                  rthread, rarg);
1902   }
1903 
1904   // RedefineClasses() tracing support for obsolete method entry
1905   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
1906     NOT_LP64(get_thread(rthread);)
1907     get_method(rarg);
1908     call_VM_leaf(
1909       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
1910       rthread, rarg);
1911   }
1912 }
1913 
1914 
1915 void InterpreterMacroAssembler::notify_method_exit(
1916     TosState state, NotifyMethodExitMode mode) {
1917   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1918   // track stack depth.  If it is possible to enter interp_only_mode we add
1919   // the code to check if the event should be sent.
1920   Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
1921   Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rbx);
1922   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
1923     Label L;
1924     // Note: frame::interpreter_frame_result has a dependency on how the
1925     // method result is saved across the call to post_method_exit. If this
1926     // is changed then the interpreter_frame_result implementation will
1927     // need to be updated too.
1928 
1929     // template interpreter will leave the result on the top of the stack.
1930     push(state);
1931     NOT_LP64(get_thread(rthread);)
1932     movl(rdx, Address(rthread, JavaThread::interp_only_mode_offset()));
1933     testl(rdx, rdx);
1934     jcc(Assembler::zero, L);
1935     call_VM(noreg,
1936             CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
1937     bind(L);
1938     pop(state);
1939   }
1940 
1941   {
1942     SkipIfEqual skip(this, &DTraceMethodProbes, false);
1943     push(state);
1944     NOT_LP64(get_thread(rthread);)
1945     get_method(rarg);
1946     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
1947                  rthread, rarg);
1948     pop(state);
1949   }
1950 }