1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef CPU_X86_VM_MACROASSEMBLER_X86_HPP
  26 #define CPU_X86_VM_MACROASSEMBLER_X86_HPP
  27 
  28 #include "asm/assembler.hpp"
  29 #include "utilities/macros.hpp"
  30 #include "runtime/rtmLocking.hpp"
  31 
  32 // MacroAssembler extends Assembler by frequently used macros.
  33 //
  34 // Instructions for which a 'better' code sequence exists depending
  35 // on arguments should also go in here.
  36 
  37 class MacroAssembler: public Assembler {
  38   friend class LIR_Assembler;
  39   friend class Runtime1;      // as_Address()
  40 
  41  protected:
  42 
  43   Address as_Address(AddressLiteral adr);
  44   Address as_Address(ArrayAddress adr);
  45 
  46   // Support for VM calls
  47   //
  48   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  49   // may customize this version by overriding it for its purposes (e.g., to save/restore
  50   // additional registers when doing a VM call).
  51 #define COMMA ,
  52 
  53   virtual void call_VM_leaf_base(
  54     address entry_point,               // the entry point
  55     int     number_of_arguments        // the number of arguments to pop after the call
  56   );
  57 
  58   // This is the base routine called by the different versions of call_VM. The interpreter
  59   // may customize this version by overriding it for its purposes (e.g., to save/restore
  60   // additional registers when doing a VM call).
  61   //
  62   // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
  63   // returns the register which contains the thread upon return. If a thread register has been
  64   // specified, the return value will correspond to that register. If no last_java_sp is specified
  65   // (noreg) than rsp will be used instead.
  66   virtual void call_VM_base(           // returns the register containing the thread upon return
  67     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  68     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  69     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  70     address  entry_point,              // the entry point
  71     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  72     bool     check_exceptions          // whether to check for pending exceptions after return
  73   );
  74 
  75   // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
  76   // The implementation is only non-empty for the InterpreterMacroAssembler,
  77   // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
  78   virtual void check_and_handle_popframe(Register java_thread);
  79   virtual void check_and_handle_earlyret(Register java_thread);
  80 
  81   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  82 
  83   // helpers for FPU flag access
  84   // tmp is a temporary register, if none is available use noreg
  85   void save_rax   (Register tmp);
  86   void restore_rax(Register tmp);
  87 
  88  public:
  89   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
  90 
  91   // Support for NULL-checks
  92   //
  93   // Generates code that causes a NULL OS exception if the content of reg is NULL.
  94   // If the accessed location is M[reg + offset] and the offset is known, provide the
  95   // offset. No explicit code generation is needed if the offset is within a certain
  96   // range (0 <= offset <= page_size).
  97 
  98   void null_check(Register reg, int offset = -1);
  99   static bool needs_explicit_null_check(intptr_t offset);
 100 
 101   // Required platform-specific helpers for Label::patch_instructions.
 102   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
 103   void pd_patch_instruction(address branch, address target) {
 104     unsigned char op = branch[0];
 105     assert(op == 0xE8 /* call */ ||
 106         op == 0xE9 /* jmp */ ||
 107         op == 0xEB /* short jmp */ ||
 108         (op & 0xF0) == 0x70 /* short jcc */ ||
 109         op == 0x0F && (branch[1] & 0xF0) == 0x80 /* jcc */ ||
 110         op == 0xC7 && branch[1] == 0xF8 /* xbegin */,
 111         "Invalid opcode at patch point");
 112 
 113     if (op == 0xEB || (op & 0xF0) == 0x70) {
 114       // short offset operators (jmp and jcc)
 115       char* disp = (char*) &branch[1];
 116       int imm8 = target - (address) &disp[1];
 117       guarantee(this->is8bit(imm8), "Short forward jump exceeds 8-bit offset");
 118       *disp = imm8;
 119     } else {
 120       int* disp = (int*) &branch[(op == 0x0F || op == 0xC7)? 2: 1];
 121       int imm32 = target - (address) &disp[1];
 122       *disp = imm32;
 123     }
 124   }
 125 
 126   // The following 4 methods return the offset of the appropriate move instruction
 127 
 128   // Support for fast byte/short loading with zero extension (depending on particular CPU)
 129   int load_unsigned_byte(Register dst, Address src);
 130   int load_unsigned_short(Register dst, Address src);
 131 
 132   // Support for fast byte/short loading with sign extension (depending on particular CPU)
 133   int load_signed_byte(Register dst, Address src);
 134   int load_signed_short(Register dst, Address src);
 135 
 136   // Support for sign-extension (hi:lo = extend_sign(lo))
 137   void extend_sign(Register hi, Register lo);
 138 
 139   // Load and store values by size and signed-ness
 140   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
 141   void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
 142 
 143   // Support for inc/dec with optimal instruction selection depending on value
 144 
 145   void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
 146   void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
 147 
 148   void decrementl(Address dst, int value = 1);
 149   void decrementl(Register reg, int value = 1);
 150 
 151   void decrementq(Register reg, int value = 1);
 152   void decrementq(Address dst, int value = 1);
 153 
 154   void incrementl(Address dst, int value = 1);
 155   void incrementl(Register reg, int value = 1);
 156 
 157   void incrementq(Register reg, int value = 1);
 158   void incrementq(Address dst, int value = 1);
 159 
 160   // Support optimal SSE move instructions.
 161   void movflt(XMMRegister dst, XMMRegister src) {
 162     if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
 163     else                       { movss (dst, src); return; }
 164   }
 165   void movflt(XMMRegister dst, Address src) { movss(dst, src); }
 166   void movflt(XMMRegister dst, AddressLiteral src);
 167   void movflt(Address dst, XMMRegister src) { movss(dst, src); }
 168 
 169   void movdbl(XMMRegister dst, XMMRegister src) {
 170     if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
 171     else                       { movsd (dst, src); return; }
 172   }
 173 
 174   void movdbl(XMMRegister dst, AddressLiteral src);
 175 
 176   void movdbl(XMMRegister dst, Address src) {
 177     if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
 178     else                         { movlpd(dst, src); return; }
 179   }
 180   void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
 181 
 182   void incrementl(AddressLiteral dst);
 183   void incrementl(ArrayAddress dst);
 184 
 185   void incrementq(AddressLiteral dst);
 186 
 187   // Alignment
 188   void align(int modulus);
 189   void align(int modulus, int target);
 190 
 191   // A 5 byte nop that is safe for patching (see patch_verified_entry)
 192   void fat_nop();
 193 
 194   // Stack frame creation/removal
 195   void enter();
 196   void leave();
 197 
 198   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
 199   // The pointer will be loaded into the thread register.
 200   void get_thread(Register thread);
 201 
 202 
 203   // Support for VM calls
 204   //
 205   // It is imperative that all calls into the VM are handled via the call_VM macros.
 206   // They make sure that the stack linkage is setup correctly. call_VM's correspond
 207   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
 208 
 209 
 210   void call_VM(Register oop_result,
 211                address entry_point,
 212                bool check_exceptions = true);
 213   void call_VM(Register oop_result,
 214                address entry_point,
 215                Register arg_1,
 216                bool check_exceptions = true);
 217   void call_VM(Register oop_result,
 218                address entry_point,
 219                Register arg_1, Register arg_2,
 220                bool check_exceptions = true);
 221   void call_VM(Register oop_result,
 222                address entry_point,
 223                Register arg_1, Register arg_2, Register arg_3,
 224                bool check_exceptions = true);
 225 
 226   // Overloadings with last_Java_sp
 227   void call_VM(Register oop_result,
 228                Register last_java_sp,
 229                address entry_point,
 230                int number_of_arguments = 0,
 231                bool check_exceptions = true);
 232   void call_VM(Register oop_result,
 233                Register last_java_sp,
 234                address entry_point,
 235                Register arg_1, bool
 236                check_exceptions = true);
 237   void call_VM(Register oop_result,
 238                Register last_java_sp,
 239                address entry_point,
 240                Register arg_1, Register arg_2,
 241                bool check_exceptions = true);
 242   void call_VM(Register oop_result,
 243                Register last_java_sp,
 244                address entry_point,
 245                Register arg_1, Register arg_2, Register arg_3,
 246                bool check_exceptions = true);
 247 
 248   void get_vm_result  (Register oop_result, Register thread);
 249   void get_vm_result_2(Register metadata_result, Register thread);
 250 
 251   // These always tightly bind to MacroAssembler::call_VM_base
 252   // bypassing the virtual implementation
 253   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
 254   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
 255   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 256   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
 257   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
 258 
 259   void call_VM_leaf(address entry_point,
 260                     int number_of_arguments = 0);
 261   void call_VM_leaf(address entry_point,
 262                     Register arg_1);
 263   void call_VM_leaf(address entry_point,
 264                     Register arg_1, Register arg_2);
 265   void call_VM_leaf(address entry_point,
 266                     Register arg_1, Register arg_2, Register arg_3);
 267 
 268   // These always tightly bind to MacroAssembler::call_VM_leaf_base
 269   // bypassing the virtual implementation
 270   void super_call_VM_leaf(address entry_point);
 271   void super_call_VM_leaf(address entry_point, Register arg_1);
 272   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
 273   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
 274   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 275 
 276   // last Java Frame (fills frame anchor)
 277   void set_last_Java_frame(Register thread,
 278                            Register last_java_sp,
 279                            Register last_java_fp,
 280                            address last_java_pc);
 281 
 282   // thread in the default location (r15_thread on 64bit)
 283   void set_last_Java_frame(Register last_java_sp,
 284                            Register last_java_fp,
 285                            address last_java_pc);
 286 
 287   void reset_last_Java_frame(Register thread, bool clear_fp, bool clear_pc);
 288 
 289   // thread in the default location (r15_thread on 64bit)
 290   void reset_last_Java_frame(bool clear_fp, bool clear_pc);
 291 
 292   // Stores
 293   void store_check(Register obj);                // store check for obj - register is destroyed afterwards
 294   void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)
 295 
 296 #if INCLUDE_ALL_GCS
 297 
 298   void g1_write_barrier_pre(Register obj,
 299                             Register pre_val,
 300                             Register thread,
 301                             Register tmp,
 302                             bool tosca_live,
 303                             bool expand_call);
 304 
 305   void g1_write_barrier_post(Register store_addr,
 306                              Register new_val,
 307                              Register thread,
 308                              Register tmp,
 309                              Register tmp2);
 310 
 311 #endif // INCLUDE_ALL_GCS
 312 
 313   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
 314   void c2bool(Register x);
 315 
 316   // C++ bool manipulation
 317 
 318   void movbool(Register dst, Address src);
 319   void movbool(Address dst, bool boolconst);
 320   void movbool(Address dst, Register src);
 321   void testbool(Register dst);
 322 
 323   // oop manipulations
 324   void load_klass(Register dst, Register src);
 325   void store_klass(Register dst, Register src);
 326 
 327   void load_heap_oop(Register dst, Address src);
 328   void load_heap_oop_not_null(Register dst, Address src);
 329   void store_heap_oop(Address dst, Register src);
 330   void cmp_heap_oop(Register src1, Address src2, Register tmp = noreg);
 331 
 332   // Used for storing NULL. All other oop constants should be
 333   // stored using routines that take a jobject.
 334   void store_heap_oop_null(Address dst);
 335 
 336   void load_prototype_header(Register dst, Register src);
 337 
 338 #ifdef _LP64
 339   void store_klass_gap(Register dst, Register src);
 340 
 341   // This dummy is to prevent a call to store_heap_oop from
 342   // converting a zero (like NULL) into a Register by giving
 343   // the compiler two choices it can't resolve
 344 
 345   void store_heap_oop(Address dst, void* dummy);
 346 
 347   void encode_heap_oop(Register r);
 348   void decode_heap_oop(Register r);
 349   void encode_heap_oop_not_null(Register r);
 350   void decode_heap_oop_not_null(Register r);
 351   void encode_heap_oop_not_null(Register dst, Register src);
 352   void decode_heap_oop_not_null(Register dst, Register src);
 353 
 354   void set_narrow_oop(Register dst, jobject obj);
 355   void set_narrow_oop(Address dst, jobject obj);
 356   void cmp_narrow_oop(Register dst, jobject obj);
 357   void cmp_narrow_oop(Address dst, jobject obj);
 358 
 359   void encode_klass_not_null(Register r);
 360   void decode_klass_not_null(Register r);
 361   void encode_klass_not_null(Register dst, Register src);
 362   void decode_klass_not_null(Register dst, Register src);
 363   void set_narrow_klass(Register dst, Klass* k);
 364   void set_narrow_klass(Address dst, Klass* k);
 365   void cmp_narrow_klass(Register dst, Klass* k);
 366   void cmp_narrow_klass(Address dst, Klass* k);
 367 
 368   // Returns the byte size of the instructions generated by decode_klass_not_null()
 369   // when compressed klass pointers are being used.
 370   static int instr_size_for_decode_klass_not_null();
 371 
 372   // if heap base register is used - reinit it with the correct value
 373   void reinit_heapbase();
 374 
 375   DEBUG_ONLY(void verify_heapbase(const char* msg);)
 376 
 377 #endif // _LP64
 378 
 379   // Int division/remainder for Java
 380   // (as idivl, but checks for special case as described in JVM spec.)
 381   // returns idivl instruction offset for implicit exception handling
 382   int corrected_idivl(Register reg);
 383 
 384   // Long division/remainder for Java
 385   // (as idivq, but checks for special case as described in JVM spec.)
 386   // returns idivq instruction offset for implicit exception handling
 387   int corrected_idivq(Register reg);
 388 
 389   void int3();
 390 
 391   // Long operation macros for a 32bit cpu
 392   // Long negation for Java
 393   void lneg(Register hi, Register lo);
 394 
 395   // Long multiplication for Java
 396   // (destroys contents of eax, ebx, ecx and edx)
 397   void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
 398 
 399   // Long shifts for Java
 400   // (semantics as described in JVM spec.)
 401   void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
 402   void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)
 403 
 404   // Long compare for Java
 405   // (semantics as described in JVM spec.)
 406   void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
 407 
 408 
 409   // misc
 410 
 411   // Sign extension
 412   void sign_extend_short(Register reg);
 413   void sign_extend_byte(Register reg);
 414 
 415   // Division by power of 2, rounding towards 0
 416   void division_with_shift(Register reg, int shift_value);
 417 
 418   // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
 419   //
 420   // CF (corresponds to C0) if x < y
 421   // PF (corresponds to C2) if unordered
 422   // ZF (corresponds to C3) if x = y
 423   //
 424   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 425   // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
 426   void fcmp(Register tmp);
 427   // Variant of the above which allows y to be further down the stack
 428   // and which only pops x and y if specified. If pop_right is
 429   // specified then pop_left must also be specified.
 430   void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
 431 
 432   // Floating-point comparison for Java
 433   // Compares the top-most stack entries on the FPU stack and stores the result in dst.
 434   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 435   // (semantics as described in JVM spec.)
 436   void fcmp2int(Register dst, bool unordered_is_less);
 437   // Variant of the above which allows y to be further down the stack
 438   // and which only pops x and y if specified. If pop_right is
 439   // specified then pop_left must also be specified.
 440   void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
 441 
 442   // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
 443   // tmp is a temporary register, if none is available use noreg
 444   void fremr(Register tmp);
 445 
 446 
 447   // same as fcmp2int, but using SSE2
 448   void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 449   void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 450 
 451   // Inlined sin/cos generator for Java; must not use CPU instruction
 452   // directly on Intel as it does not have high enough precision
 453   // outside of the range [-pi/4, pi/4]. Extra argument indicate the
 454   // number of FPU stack slots in use; all but the topmost will
 455   // require saving if a slow case is necessary. Assumes argument is
 456   // on FP TOS; result is on FP TOS.  No cpu registers are changed by
 457   // this code.
 458   void trigfunc(char trig, int num_fpu_regs_in_use = 1);
 459 
 460   // branch to L if FPU flag C2 is set/not set
 461   // tmp is a temporary register, if none is available use noreg
 462   void jC2 (Register tmp, Label& L);
 463   void jnC2(Register tmp, Label& L);
 464 
 465   // Pop ST (ffree & fincstp combined)
 466   void fpop();
 467 
 468   // Load float value from 'address'. If UseSSE >= 1, the value is loaded into
 469   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 470   void load_float(Address src);
 471 
 472   // Store float value to 'address'. If UseSSE >= 1, the value is stored
 473   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 474   void store_float(Address dst);
 475 
 476   // Load double value from 'address'. If UseSSE >= 2, the value is loaded into
 477   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 478   void load_double(Address src);
 479 
 480   // Store double value to 'address'. If UseSSE >= 2, the value is stored
 481   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 482   void store_double(Address dst);
 483 
 484   // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
 485   void push_fTOS();
 486 
 487   // pops double TOS element from CPU stack and pushes on FPU stack
 488   void pop_fTOS();
 489 
 490   void empty_FPU_stack();
 491 
 492   void push_IU_state();
 493   void pop_IU_state();
 494 
 495   void push_FPU_state();
 496   void pop_FPU_state();
 497 
 498   void push_CPU_state();
 499   void pop_CPU_state();
 500 
 501   // Round up to a power of two
 502   void round_to(Register reg, int modulus);
 503 
 504   // Callee saved registers handling
 505   void push_callee_saved_registers();
 506   void pop_callee_saved_registers();
 507 
 508   // allocation
 509   void eden_allocate(
 510     Register obj,                      // result: pointer to object after successful allocation
 511     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 512     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 513     Register t1,                       // temp register
 514     Label&   slow_case                 // continuation point if fast allocation fails
 515   );
 516   void tlab_allocate(
 517     Register obj,                      // result: pointer to object after successful allocation
 518     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 519     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 520     Register t1,                       // temp register
 521     Register t2,                       // temp register
 522     Label&   slow_case                 // continuation point if fast allocation fails
 523   );
 524   Register tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case); // returns TLS address
 525   void incr_allocated_bytes(Register thread,
 526                             Register var_size_in_bytes, int con_size_in_bytes,
 527                             Register t1 = noreg);
 528 
 529   // interface method calling
 530   void lookup_interface_method(Register recv_klass,
 531                                Register intf_klass,
 532                                RegisterOrConstant itable_index,
 533                                Register method_result,
 534                                Register scan_temp,
 535                                Label& no_such_interface);
 536 
 537   // virtual method calling
 538   void lookup_virtual_method(Register recv_klass,
 539                              RegisterOrConstant vtable_index,
 540                              Register method_result);
 541 
 542   // Test sub_klass against super_klass, with fast and slow paths.
 543 
 544   // The fast path produces a tri-state answer: yes / no / maybe-slow.
 545   // One of the three labels can be NULL, meaning take the fall-through.
 546   // If super_check_offset is -1, the value is loaded up from super_klass.
 547   // No registers are killed, except temp_reg.
 548   void check_klass_subtype_fast_path(Register sub_klass,
 549                                      Register super_klass,
 550                                      Register temp_reg,
 551                                      Label* L_success,
 552                                      Label* L_failure,
 553                                      Label* L_slow_path,
 554                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
 555 
 556   // The rest of the type check; must be wired to a corresponding fast path.
 557   // It does not repeat the fast path logic, so don't use it standalone.
 558   // The temp_reg and temp2_reg can be noreg, if no temps are available.
 559   // Updates the sub's secondary super cache as necessary.
 560   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
 561   void check_klass_subtype_slow_path(Register sub_klass,
 562                                      Register super_klass,
 563                                      Register temp_reg,
 564                                      Register temp2_reg,
 565                                      Label* L_success,
 566                                      Label* L_failure,
 567                                      bool set_cond_codes = false);
 568 
 569   // Simplified, combined version, good for typical uses.
 570   // Falls through on failure.
 571   void check_klass_subtype(Register sub_klass,
 572                            Register super_klass,
 573                            Register temp_reg,
 574                            Label& L_success);
 575 
 576   // method handles (JSR 292)
 577   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
 578 
 579   //----
 580   void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
 581 
 582   // Debugging
 583 
 584   // only if +VerifyOops
 585   // TODO: Make these macros with file and line like sparc version!
 586   void verify_oop(Register reg, const char* s = "broken oop");
 587   void verify_oop_addr(Address addr, const char * s = "broken oop addr");
 588 
 589   // TODO: verify method and klass metadata (compare against vptr?)
 590   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
 591   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
 592 
 593 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
 594 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
 595 
 596   // only if +VerifyFPU
 597   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
 598 
 599   // Verify or restore cpu control state after JNI call
 600   void restore_cpu_control_state_after_jni();
 601 
 602   // prints msg, dumps registers and stops execution
 603   void stop(const char* msg);
 604 
 605   // prints msg and continues
 606   void warn(const char* msg);
 607 
 608   // dumps registers and other state
 609   void print_state();
 610 
 611   static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
 612   static void debug64(char* msg, int64_t pc, int64_t regs[]);
 613   static void print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip);
 614   static void print_state64(int64_t pc, int64_t regs[]);
 615 
 616   void os_breakpoint();
 617 
 618   void untested()                                { stop("untested"); }
 619 
 620   void unimplemented(const char* what = "")      { char* b = new char[1024];  jio_snprintf(b, 1024, "unimplemented: %s", what);  stop(b); }
 621 
 622   void should_not_reach_here()                   { stop("should not reach here"); }
 623 
 624   void print_CPU_state();
 625 
 626   // Stack overflow checking
 627   void bang_stack_with_offset(int offset) {
 628     // stack grows down, caller passes positive offset
 629     assert(offset > 0, "must bang with negative offset");
 630     movl(Address(rsp, (-offset)), rax);
 631   }
 632 
 633   // Writes to stack successive pages until offset reached to check for
 634   // stack overflow + shadow pages.  Also, clobbers tmp
 635   void bang_stack_size(Register size, Register tmp);
 636 
 637   // Check for reserved stack access in method being exited (for JIT)
 638   void reserved_stack_check();
 639 
 640   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
 641                                                 Register tmp,
 642                                                 int offset);
 643 
 644   // Support for serializing memory accesses between threads
 645   void serialize_memory(Register thread, Register tmp);
 646 
 647   void verify_tlab();
 648 
 649   // Biased locking support
 650   // lock_reg and obj_reg must be loaded up with the appropriate values.
 651   // swap_reg must be rax, and is killed.
 652   // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
 653   // be killed; if not supplied, push/pop will be used internally to
 654   // allocate a temporary (inefficient, avoid if possible).
 655   // Optional slow case is for implementations (interpreter and C1) which branch to
 656   // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
 657   // Returns offset of first potentially-faulting instruction for null
 658   // check info (currently consumed only by C1). If
 659   // swap_reg_contains_mark is true then returns -1 as it is assumed
 660   // the calling code has already passed any potential faults.
 661   int biased_locking_enter(Register lock_reg, Register obj_reg,
 662                            Register swap_reg, Register tmp_reg,
 663                            bool swap_reg_contains_mark,
 664                            Label& done, Label* slow_case = NULL,
 665                            BiasedLockingCounters* counters = NULL);
 666   void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
 667 #ifdef COMPILER2
 668   // Code used by cmpFastLock and cmpFastUnlock mach instructions in .ad file.
 669   // See full desription in macroAssembler_x86.cpp.
 670   void fast_lock(Register obj, Register box, Register tmp,
 671                  Register scr, Register cx1, Register cx2,
 672                  BiasedLockingCounters* counters,
 673                  RTMLockingCounters* rtm_counters,
 674                  RTMLockingCounters* stack_rtm_counters,
 675                  Metadata* method_data,
 676                  bool use_rtm, bool profile_rtm);
 677   void fast_unlock(Register obj, Register box, Register tmp, bool use_rtm);
 678 #if INCLUDE_RTM_OPT
 679   void rtm_counters_update(Register abort_status, Register rtm_counters);
 680   void branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel);
 681   void rtm_abort_ratio_calculation(Register tmp, Register rtm_counters_reg,
 682                                    RTMLockingCounters* rtm_counters,
 683                                    Metadata* method_data);
 684   void rtm_profiling(Register abort_status_Reg, Register rtm_counters_Reg,
 685                      RTMLockingCounters* rtm_counters, Metadata* method_data, bool profile_rtm);
 686   void rtm_retry_lock_on_abort(Register retry_count, Register abort_status, Label& retryLabel);
 687   void rtm_retry_lock_on_busy(Register retry_count, Register box, Register tmp, Register scr, Label& retryLabel);
 688   void rtm_stack_locking(Register obj, Register tmp, Register scr,
 689                          Register retry_on_abort_count,
 690                          RTMLockingCounters* stack_rtm_counters,
 691                          Metadata* method_data, bool profile_rtm,
 692                          Label& DONE_LABEL, Label& IsInflated);
 693   void rtm_inflated_locking(Register obj, Register box, Register tmp,
 694                             Register scr, Register retry_on_busy_count,
 695                             Register retry_on_abort_count,
 696                             RTMLockingCounters* rtm_counters,
 697                             Metadata* method_data, bool profile_rtm,
 698                             Label& DONE_LABEL);
 699 #endif
 700 #endif
 701 
 702   Condition negate_condition(Condition cond);
 703 
 704   // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
 705   // operands. In general the names are modified to avoid hiding the instruction in Assembler
 706   // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
 707   // here in MacroAssembler. The major exception to this rule is call
 708 
 709   // Arithmetics
 710 
 711 
 712   void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
 713   void addptr(Address dst, Register src);
 714 
 715   void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
 716   void addptr(Register dst, int32_t src);
 717   void addptr(Register dst, Register src);
 718   void addptr(Register dst, RegisterOrConstant src) {
 719     if (src.is_constant()) addptr(dst, (int) src.as_constant());
 720     else                   addptr(dst,       src.as_register());
 721   }
 722 
 723   void andptr(Register dst, int32_t src);
 724   void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
 725 
 726   void cmp8(AddressLiteral src1, int imm);
 727 
 728   // renamed to drag out the casting of address to int32_t/intptr_t
 729   void cmp32(Register src1, int32_t imm);
 730 
 731   void cmp32(AddressLiteral src1, int32_t imm);
 732   // compare reg - mem, or reg - &mem
 733   void cmp32(Register src1, AddressLiteral src2);
 734 
 735   void cmp32(Register src1, Address src2);
 736 
 737 #ifndef _LP64
 738   void cmpklass(Address dst, Metadata* obj);
 739   void cmpklass(Register dst, Metadata* obj);
 740   void cmpoop(Address dst, jobject obj);
 741   void cmpoop(Register dst, jobject obj);
 742 #endif // _LP64
 743 
 744   // NOTE src2 must be the lval. This is NOT an mem-mem compare
 745   void cmpptr(Address src1, AddressLiteral src2);
 746 
 747   void cmpptr(Register src1, AddressLiteral src2);
 748 
 749   void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 750   void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 751   // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 752 
 753   void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 754   void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 755 
 756   // cmp64 to avoild hiding cmpq
 757   void cmp64(Register src1, AddressLiteral src);
 758 
 759   void cmpxchgptr(Register reg, Address adr);
 760 
 761   void locked_cmpxchgptr(Register reg, AddressLiteral adr);
 762 
 763 
 764   void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
 765   void imulptr(Register dst, Register src, int imm32) { LP64_ONLY(imulq(dst, src, imm32)) NOT_LP64(imull(dst, src, imm32)); }
 766 
 767 
 768   void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
 769 
 770   void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
 771 
 772   void shlptr(Register dst, int32_t shift);
 773   void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
 774 
 775   void shrptr(Register dst, int32_t shift);
 776   void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
 777 
 778   void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
 779   void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
 780 
 781   void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 782 
 783   void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 784   void subptr(Register dst, int32_t src);
 785   // Force generation of a 4 byte immediate value even if it fits into 8bit
 786   void subptr_imm32(Register dst, int32_t src);
 787   void subptr(Register dst, Register src);
 788   void subptr(Register dst, RegisterOrConstant src) {
 789     if (src.is_constant()) subptr(dst, (int) src.as_constant());
 790     else                   subptr(dst,       src.as_register());
 791   }
 792 
 793   void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 794   void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 795 
 796   void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 797   void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 798 
 799   void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
 800 
 801 
 802 
 803   // Helper functions for statistics gathering.
 804   // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
 805   void cond_inc32(Condition cond, AddressLiteral counter_addr);
 806   // Unconditional atomic increment.
 807   void atomic_incl(Address counter_addr);
 808   void atomic_incl(AddressLiteral counter_addr, Register scr = rscratch1);
 809 #ifdef _LP64
 810   void atomic_incq(Address counter_addr);
 811   void atomic_incq(AddressLiteral counter_addr, Register scr = rscratch1);
 812 #endif
 813   void atomic_incptr(AddressLiteral counter_addr, Register scr = rscratch1) { LP64_ONLY(atomic_incq(counter_addr, scr)) NOT_LP64(atomic_incl(counter_addr, scr)) ; }
 814   void atomic_incptr(Address counter_addr) { LP64_ONLY(atomic_incq(counter_addr)) NOT_LP64(atomic_incl(counter_addr)) ; }
 815 
 816   void lea(Register dst, AddressLiteral adr);
 817   void lea(Address dst, AddressLiteral adr);
 818   void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
 819 
 820   void leal32(Register dst, Address src) { leal(dst, src); }
 821 
 822   // Import other testl() methods from the parent class or else
 823   // they will be hidden by the following overriding declaration.
 824   using Assembler::testl;
 825   void testl(Register dst, AddressLiteral src);
 826 
 827   void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 828   void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 829   void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 830   void orptr(Address dst, int32_t imm32) { LP64_ONLY(orq(dst, imm32)) NOT_LP64(orl(dst, imm32)); }
 831 
 832   void testptr(Register src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
 833   void testptr(Register src1, Register src2);
 834 
 835   void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 836   void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 837 
 838   // Calls
 839 
 840   void call(Label& L, relocInfo::relocType rtype);
 841   void call(Register entry);
 842 
 843   // NOTE: this call tranfers to the effective address of entry NOT
 844   // the address contained by entry. This is because this is more natural
 845   // for jumps/calls.
 846   void call(AddressLiteral entry);
 847 
 848   // Emit the CompiledIC call idiom
 849   void ic_call(address entry);
 850 
 851   // Jumps
 852 
 853   // NOTE: these jumps tranfer to the effective address of dst NOT
 854   // the address contained by dst. This is because this is more natural
 855   // for jumps/calls.
 856   void jump(AddressLiteral dst);
 857   void jump_cc(Condition cc, AddressLiteral dst);
 858 
 859   // 32bit can do a case table jump in one instruction but we no longer allow the base
 860   // to be installed in the Address class. This jump will tranfers to the address
 861   // contained in the location described by entry (not the address of entry)
 862   void jump(ArrayAddress entry);
 863 
 864   // Floating
 865 
 866   void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
 867   void andpd(XMMRegister dst, AddressLiteral src);
 868 
 869   void andps(XMMRegister dst, XMMRegister src) { Assembler::andps(dst, src); }
 870   void andps(XMMRegister dst, Address src) { Assembler::andps(dst, src); }
 871   void andps(XMMRegister dst, AddressLiteral src);
 872 
 873   void comiss(XMMRegister dst, XMMRegister src) { Assembler::comiss(dst, src); }
 874   void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
 875   void comiss(XMMRegister dst, AddressLiteral src);
 876 
 877   void comisd(XMMRegister dst, XMMRegister src) { Assembler::comisd(dst, src); }
 878   void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
 879   void comisd(XMMRegister dst, AddressLiteral src);
 880 
 881   void fadd_s(Address src)        { Assembler::fadd_s(src); }
 882   void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); }
 883 
 884   void fldcw(Address src) { Assembler::fldcw(src); }
 885   void fldcw(AddressLiteral src);
 886 
 887   void fld_s(int index)   { Assembler::fld_s(index); }
 888   void fld_s(Address src) { Assembler::fld_s(src); }
 889   void fld_s(AddressLiteral src);
 890 
 891   void fld_d(Address src) { Assembler::fld_d(src); }
 892   void fld_d(AddressLiteral src);
 893 
 894   void fld_x(Address src) { Assembler::fld_x(src); }
 895   void fld_x(AddressLiteral src);
 896 
 897   void fmul_s(Address src)        { Assembler::fmul_s(src); }
 898   void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); }
 899 
 900   void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
 901   void ldmxcsr(AddressLiteral src);
 902 
 903   // compute pow(x,y) and exp(x) with x86 instructions. Don't cover
 904   // all corner cases and may result in NaN and require fallback to a
 905   // runtime call.
 906   void fast_pow();
 907   void fast_exp(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 908                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 909                 Register rax, Register rcx, Register rdx, Register tmp);
 910 
 911   void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 912                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 913                 Register rax, Register rcx, Register rdx, Register tmp1 LP64_ONLY(COMMA Register tmp2));
 914 
 915   void increase_precision();
 916   void restore_precision();
 917 
 918   // computes pow(x,y). Fallback to runtime call included.
 919   void pow_with_fallback(int num_fpu_regs_in_use) { pow_or_exp(num_fpu_regs_in_use); }
 920 
 921 private:
 922 
 923   // call runtime as a fallback for trig functions and pow/exp.
 924   void fp_runtime_fallback(address runtime_entry, int nb_args, int num_fpu_regs_in_use);
 925 
 926   // computes 2^(Ylog2X); Ylog2X in ST(0)
 927   void pow_exp_core_encoding();
 928 
 929   // computes pow(x,y) or exp(x). Fallback to runtime call included.
 930   void pow_or_exp(int num_fpu_regs_in_use);
 931 
 932   // these are private because users should be doing movflt/movdbl
 933 
 934   void movss(Address dst, XMMRegister src)     { Assembler::movss(dst, src); }
 935   void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
 936   void movss(XMMRegister dst, Address src)     { Assembler::movss(dst, src); }
 937   void movss(XMMRegister dst, AddressLiteral src);
 938 
 939   void movlpd(XMMRegister dst, Address src)    {Assembler::movlpd(dst, src); }
 940   void movlpd(XMMRegister dst, AddressLiteral src);
 941 
 942 public:
 943 
 944   void addsd(XMMRegister dst, XMMRegister src)    { Assembler::addsd(dst, src); }
 945   void addsd(XMMRegister dst, Address src)        { Assembler::addsd(dst, src); }
 946   void addsd(XMMRegister dst, AddressLiteral src);
 947 
 948   void addss(XMMRegister dst, XMMRegister src)    { Assembler::addss(dst, src); }
 949   void addss(XMMRegister dst, Address src)        { Assembler::addss(dst, src); }
 950   void addss(XMMRegister dst, AddressLiteral src);
 951 
 952   void divsd(XMMRegister dst, XMMRegister src)    { Assembler::divsd(dst, src); }
 953   void divsd(XMMRegister dst, Address src)        { Assembler::divsd(dst, src); }
 954   void divsd(XMMRegister dst, AddressLiteral src);
 955 
 956   void divss(XMMRegister dst, XMMRegister src)    { Assembler::divss(dst, src); }
 957   void divss(XMMRegister dst, Address src)        { Assembler::divss(dst, src); }
 958   void divss(XMMRegister dst, AddressLiteral src);
 959 
 960   // Move Unaligned Double Quadword
 961   void movdqu(Address     dst, XMMRegister src);
 962   void movdqu(XMMRegister dst, Address src);
 963   void movdqu(XMMRegister dst, XMMRegister src);
 964   void movdqu(XMMRegister dst, AddressLiteral src);
 965   // AVX Unaligned forms
 966   void vmovdqu(Address     dst, XMMRegister src);
 967   void vmovdqu(XMMRegister dst, Address src);
 968   void vmovdqu(XMMRegister dst, XMMRegister src);
 969   void vmovdqu(XMMRegister dst, AddressLiteral src);
 970 
 971   // Move Aligned Double Quadword
 972   void movdqa(XMMRegister dst, Address src)       { Assembler::movdqa(dst, src); }
 973   void movdqa(XMMRegister dst, XMMRegister src)   { Assembler::movdqa(dst, src); }
 974   void movdqa(XMMRegister dst, AddressLiteral src);
 975 
 976   void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
 977   void movsd(Address dst, XMMRegister src)     { Assembler::movsd(dst, src); }
 978   void movsd(XMMRegister dst, Address src)     { Assembler::movsd(dst, src); }
 979   void movsd(XMMRegister dst, AddressLiteral src);
 980 
 981   void mulpd(XMMRegister dst, XMMRegister src)    { Assembler::mulpd(dst, src); }
 982   void mulpd(XMMRegister dst, Address src)        { Assembler::mulpd(dst, src); }
 983   void mulpd(XMMRegister dst, AddressLiteral src);
 984 
 985   void mulsd(XMMRegister dst, XMMRegister src)    { Assembler::mulsd(dst, src); }
 986   void mulsd(XMMRegister dst, Address src)        { Assembler::mulsd(dst, src); }
 987   void mulsd(XMMRegister dst, AddressLiteral src);
 988 
 989   void mulss(XMMRegister dst, XMMRegister src)    { Assembler::mulss(dst, src); }
 990   void mulss(XMMRegister dst, Address src)        { Assembler::mulss(dst, src); }
 991   void mulss(XMMRegister dst, AddressLiteral src);
 992 
 993   // Carry-Less Multiplication Quadword
 994   void pclmulldq(XMMRegister dst, XMMRegister src) {
 995     // 0x00 - multiply lower 64 bits [0:63]
 996     Assembler::pclmulqdq(dst, src, 0x00);
 997   }
 998   void pclmulhdq(XMMRegister dst, XMMRegister src) {
 999     // 0x11 - multiply upper 64 bits [64:127]
1000     Assembler::pclmulqdq(dst, src, 0x11);
1001   }
1002 
1003   void pcmpeqb(XMMRegister dst, XMMRegister src);
1004   void pcmpeqw(XMMRegister dst, XMMRegister src);
1005 
1006   void pcmpestri(XMMRegister dst, Address src, int imm8);
1007   void pcmpestri(XMMRegister dst, XMMRegister src, int imm8);
1008 
1009   void pmovzxbw(XMMRegister dst, XMMRegister src);
1010   void pmovzxbw(XMMRegister dst, Address src);
1011 
1012   void pmovmskb(Register dst, XMMRegister src);
1013 
1014   void ptest(XMMRegister dst, XMMRegister src);
1015 
1016   void sqrtsd(XMMRegister dst, XMMRegister src)    { Assembler::sqrtsd(dst, src); }
1017   void sqrtsd(XMMRegister dst, Address src)        { Assembler::sqrtsd(dst, src); }
1018   void sqrtsd(XMMRegister dst, AddressLiteral src);
1019 
1020   void sqrtss(XMMRegister dst, XMMRegister src)    { Assembler::sqrtss(dst, src); }
1021   void sqrtss(XMMRegister dst, Address src)        { Assembler::sqrtss(dst, src); }
1022   void sqrtss(XMMRegister dst, AddressLiteral src);
1023 
1024   void subsd(XMMRegister dst, XMMRegister src)    { Assembler::subsd(dst, src); }
1025   void subsd(XMMRegister dst, Address src)        { Assembler::subsd(dst, src); }
1026   void subsd(XMMRegister dst, AddressLiteral src);
1027 
1028   void subss(XMMRegister dst, XMMRegister src)    { Assembler::subss(dst, src); }
1029   void subss(XMMRegister dst, Address src)        { Assembler::subss(dst, src); }
1030   void subss(XMMRegister dst, AddressLiteral src);
1031 
1032   void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
1033   void ucomiss(XMMRegister dst, Address src)     { Assembler::ucomiss(dst, src); }
1034   void ucomiss(XMMRegister dst, AddressLiteral src);
1035 
1036   void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
1037   void ucomisd(XMMRegister dst, Address src)     { Assembler::ucomisd(dst, src); }
1038   void ucomisd(XMMRegister dst, AddressLiteral src);
1039 
1040   // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
1041   void xorpd(XMMRegister dst, XMMRegister src);
1042   void xorpd(XMMRegister dst, Address src)     { Assembler::xorpd(dst, src); }
1043   void xorpd(XMMRegister dst, AddressLiteral src);
1044 
1045   // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
1046   void xorps(XMMRegister dst, XMMRegister src);
1047   void xorps(XMMRegister dst, Address src)     { Assembler::xorps(dst, src); }
1048   void xorps(XMMRegister dst, AddressLiteral src);
1049 
1050   // Shuffle Bytes
1051   void pshufb(XMMRegister dst, XMMRegister src) { Assembler::pshufb(dst, src); }
1052   void pshufb(XMMRegister dst, Address src)     { Assembler::pshufb(dst, src); }
1053   void pshufb(XMMRegister dst, AddressLiteral src);
1054   // AVX 3-operands instructions
1055 
1056   void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddsd(dst, nds, src); }
1057   void vaddsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddsd(dst, nds, src); }
1058   void vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1059 
1060   void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddss(dst, nds, src); }
1061   void vaddss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddss(dst, nds, src); }
1062   void vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1063 
1064   void vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
1065   void vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
1066 
1067   void vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1068   void vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1069 
1070   void vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1071   void vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1072 
1073   void vpbroadcastw(XMMRegister dst, XMMRegister src);
1074 
1075   void vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1076   void vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1077 
1078   void vpmovzxbw(XMMRegister dst, Address src, int vector_len);
1079   void vpmovmskb(Register dst, XMMRegister src);
1080 
1081   void vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1082   void vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1083 
1084   void vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1085   void vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1086 
1087   void vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1088   void vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1089 
1090   void vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1091   void vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1092 
1093   void vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1094   void vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1095 
1096   void vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1097   void vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1098 
1099   void vptest(XMMRegister dst, XMMRegister src);
1100 
1101   void punpcklbw(XMMRegister dst, XMMRegister src);
1102   void punpcklbw(XMMRegister dst, Address src) { Assembler::punpcklbw(dst, src); }
1103 
1104   void pshuflw(XMMRegister dst, XMMRegister src, int mode);
1105   void pshuflw(XMMRegister dst, Address src, int mode) { Assembler::pshuflw(dst, src, mode); }
1106 
1107   void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandpd(dst, nds, src, vector_len); }
1108   void vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandpd(dst, nds, src, vector_len); }
1109   void vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1110 
1111   void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandps(dst, nds, src, vector_len); }
1112   void vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandps(dst, nds, src, vector_len); }
1113   void vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1114 
1115   void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivsd(dst, nds, src); }
1116   void vdivsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivsd(dst, nds, src); }
1117   void vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1118 
1119   void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivss(dst, nds, src); }
1120   void vdivss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivss(dst, nds, src); }
1121   void vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1122 
1123   void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulsd(dst, nds, src); }
1124   void vmulsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulsd(dst, nds, src); }
1125   void vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1126 
1127   void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulss(dst, nds, src); }
1128   void vmulss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulss(dst, nds, src); }
1129   void vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1130 
1131   void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubsd(dst, nds, src); }
1132   void vsubsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubsd(dst, nds, src); }
1133   void vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1134 
1135   void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubss(dst, nds, src); }
1136   void vsubss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubss(dst, nds, src); }
1137   void vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1138 
1139   void vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1140   void vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1141 
1142   // AVX Vector instructions
1143 
1144   void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1145   void vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1146   void vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1147 
1148   void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1149   void vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1150   void vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1151 
1152   void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1153     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1154       Assembler::vpxor(dst, nds, src, vector_len);
1155     else
1156       Assembler::vxorpd(dst, nds, src, vector_len);
1157   }
1158   void vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
1159     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1160       Assembler::vpxor(dst, nds, src, vector_len);
1161     else
1162       Assembler::vxorpd(dst, nds, src, vector_len);
1163   }
1164 
1165   // Simple version for AVX2 256bit vectors
1166   void vpxor(XMMRegister dst, XMMRegister src) { Assembler::vpxor(dst, dst, src, true); }
1167   void vpxor(XMMRegister dst, Address src) { Assembler::vpxor(dst, dst, src, true); }
1168 
1169   // Move packed integer values from low 128 bit to hign 128 bit in 256 bit vector.
1170   void vinserti128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1171     if (UseAVX > 1) // vinserti128h is available only in AVX2
1172       Assembler::vinserti128h(dst, nds, src);
1173     else
1174       Assembler::vinsertf128h(dst, nds, src);
1175   }
1176 
1177   // Carry-Less Multiplication Quadword
1178   void vpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1179     // 0x00 - multiply lower 64 bits [0:63]
1180     Assembler::vpclmulqdq(dst, nds, src, 0x00);
1181   }
1182   void vpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1183     // 0x11 - multiply upper 64 bits [64:127]
1184     Assembler::vpclmulqdq(dst, nds, src, 0x11);
1185   }
1186 
1187   // Data
1188 
1189   void cmov32( Condition cc, Register dst, Address  src);
1190   void cmov32( Condition cc, Register dst, Register src);
1191 
1192   void cmov(   Condition cc, Register dst, Register src) { cmovptr(cc, dst, src); }
1193 
1194   void cmovptr(Condition cc, Register dst, Address  src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1195   void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1196 
1197   void movoop(Register dst, jobject obj);
1198   void movoop(Address dst, jobject obj);
1199 
1200   void mov_metadata(Register dst, Metadata* obj);
1201   void mov_metadata(Address dst, Metadata* obj);
1202 
1203   void movptr(ArrayAddress dst, Register src);
1204   // can this do an lea?
1205   void movptr(Register dst, ArrayAddress src);
1206 
1207   void movptr(Register dst, Address src);
1208 
1209 #ifdef _LP64
1210   void movptr(Register dst, AddressLiteral src, Register scratch=rscratch1);
1211 #else
1212   void movptr(Register dst, AddressLiteral src, Register scratch=noreg); // Scratch reg is ignored in 32-bit
1213 #endif
1214 
1215   void movptr(Register dst, intptr_t src);
1216   void movptr(Register dst, Register src);
1217   void movptr(Address dst, intptr_t src);
1218 
1219   void movptr(Address dst, Register src);
1220 
1221   void movptr(Register dst, RegisterOrConstant src) {
1222     if (src.is_constant()) movptr(dst, src.as_constant());
1223     else                   movptr(dst, src.as_register());
1224   }
1225 
1226 #ifdef _LP64
1227   // Generally the next two are only used for moving NULL
1228   // Although there are situations in initializing the mark word where
1229   // they could be used. They are dangerous.
1230 
1231   // They only exist on LP64 so that int32_t and intptr_t are not the same
1232   // and we have ambiguous declarations.
1233 
1234   void movptr(Address dst, int32_t imm32);
1235   void movptr(Register dst, int32_t imm32);
1236 #endif // _LP64
1237 
1238   // to avoid hiding movl
1239   void mov32(AddressLiteral dst, Register src);
1240   void mov32(Register dst, AddressLiteral src);
1241 
1242   // to avoid hiding movb
1243   void movbyte(ArrayAddress dst, int src);
1244 
1245   // Import other mov() methods from the parent class or else
1246   // they will be hidden by the following overriding declaration.
1247   using Assembler::movdl;
1248   using Assembler::movq;
1249   void movdl(XMMRegister dst, AddressLiteral src);
1250   void movq(XMMRegister dst, AddressLiteral src);
1251 
1252   // Can push value or effective address
1253   void pushptr(AddressLiteral src);
1254 
1255   void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
1256   void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
1257 
1258   void pushoop(jobject obj);
1259   void pushklass(Metadata* obj);
1260 
1261   // sign extend as need a l to ptr sized element
1262   void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
1263   void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
1264 
1265   // C2 compiled method's prolog code.
1266   void verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b);
1267 
1268   // clear memory of size 'cnt' qwords, starting at 'base'.
1269   void clear_mem(Register base, Register cnt, Register rtmp);
1270 
1271 #ifdef COMPILER2
1272   void string_indexof_char(Register str1, Register cnt1, Register ch, Register result,
1273                            XMMRegister vec1, XMMRegister vec2, XMMRegister vec3, Register tmp);
1274 
1275   // IndexOf strings.
1276   // Small strings are loaded through stack if they cross page boundary.
1277   void string_indexof(Register str1, Register str2,
1278                       Register cnt1, Register cnt2,
1279                       int int_cnt2,  Register result,
1280                       XMMRegister vec, Register tmp,
1281                       int ae);
1282 
1283   // IndexOf for constant substrings with size >= 8 elements
1284   // which don't need to be loaded through stack.
1285   void string_indexofC8(Register str1, Register str2,
1286                       Register cnt1, Register cnt2,
1287                       int int_cnt2,  Register result,
1288                       XMMRegister vec, Register tmp,
1289                       int ae);
1290 
1291     // Smallest code: we don't need to load through stack,
1292     // check string tail.
1293 
1294   // helper function for string_compare
1295   void load_next_elements(Register elem1, Register elem2, Register str1, Register str2,
1296                           Address::ScaleFactor scale, Address::ScaleFactor scale1,
1297                           Address::ScaleFactor scale2, Register index, int ae);
1298   // Compare strings.
1299   void string_compare(Register str1, Register str2,
1300                       Register cnt1, Register cnt2, Register result,
1301                       XMMRegister vec1, int ae);
1302 
1303   // Search for Non-ASCII character (Negative byte value) in a byte array,
1304   // return true if it has any and false otherwise.
1305   void has_negatives(Register ary1, Register len,
1306                      Register result, Register tmp1,
1307                      XMMRegister vec1, XMMRegister vec2);
1308 
1309   // Compare char[] or byte[] arrays.
1310   void arrays_equals(bool is_array_equ, Register ary1, Register ary2,
1311                      Register limit, Register result, Register chr,
1312                      XMMRegister vec1, XMMRegister vec2, bool is_char);
1313 
1314 #endif
1315 
1316   // Fill primitive arrays
1317   void generate_fill(BasicType t, bool aligned,
1318                      Register to, Register value, Register count,
1319                      Register rtmp, XMMRegister xtmp);
1320 
1321   void encode_iso_array(Register src, Register dst, Register len,
1322                         XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1323                         XMMRegister tmp4, Register tmp5, Register result);
1324 
1325 #ifdef _LP64
1326   void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2);
1327   void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
1328                              Register y, Register y_idx, Register z,
1329                              Register carry, Register product,
1330                              Register idx, Register kdx);
1331   void multiply_add_128_x_128(Register x_xstart, Register y, Register z,
1332                               Register yz_idx, Register idx,
1333                               Register carry, Register product, int offset);
1334   void multiply_128_x_128_bmi2_loop(Register y, Register z,
1335                                     Register carry, Register carry2,
1336                                     Register idx, Register jdx,
1337                                     Register yz_idx1, Register yz_idx2,
1338                                     Register tmp, Register tmp3, Register tmp4);
1339   void multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
1340                                Register yz_idx, Register idx, Register jdx,
1341                                Register carry, Register product,
1342                                Register carry2);
1343   void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
1344                        Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5);
1345 
1346   void square_rshift(Register x, Register len, Register z, Register tmp1, Register tmp3,
1347                      Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1348   void multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry,
1349                             Register tmp2);
1350   void multiply_add_64(Register sum, Register op1, Register op2, Register carry,
1351                        Register rdxReg, Register raxReg);
1352   void add_one_64(Register z, Register zlen, Register carry, Register tmp1);
1353   void lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1354                        Register tmp3, Register tmp4);
1355   void square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1356                      Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1357 
1358   void mul_add_128_x_32_loop(Register out, Register in, Register offset, Register len, Register tmp1,
1359                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1360                Register raxReg);
1361   void mul_add(Register out, Register in, Register offset, Register len, Register k, Register tmp1,
1362                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1363                Register raxReg);
1364 #endif
1365 
1366   // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic.
1367   void update_byte_crc32(Register crc, Register val, Register table);
1368   void kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp);
1369   // CRC32C code for java.util.zip.CRC32C::updateBytes() intrinsic
1370   // Note on a naming convention:
1371   // Prefix w = register only used on a Westmere+ architecture
1372   // Prefix n = register only used on a Nehalem architecture
1373 #ifdef _LP64
1374   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1375                        Register tmp1, Register tmp2, Register tmp3);
1376 #else
1377   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1378                        Register tmp1, Register tmp2, Register tmp3,
1379                        XMMRegister xtmp1, XMMRegister xtmp2);
1380 #endif
1381   void crc32c_pclmulqdq(XMMRegister w_xtmp1,
1382                         Register in_out,
1383                         uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
1384                         XMMRegister w_xtmp2,
1385                         Register tmp1,
1386                         Register n_tmp2, Register n_tmp3);
1387   void crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
1388                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1389                        Register tmp1, Register tmp2,
1390                        Register n_tmp3);
1391   void crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
1392                          Register in_out1, Register in_out2, Register in_out3,
1393                          Register tmp1, Register tmp2, Register tmp3,
1394                          XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1395                          Register tmp4, Register tmp5,
1396                          Register n_tmp6);
1397   void crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
1398                             Register tmp1, Register tmp2, Register tmp3,
1399                             Register tmp4, Register tmp5, Register tmp6,
1400                             XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1401                             bool is_pclmulqdq_supported);
1402   // Fold 128-bit data chunk
1403   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset);
1404   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf);
1405   // Fold 8-bit data
1406   void fold_8bit_crc32(Register crc, Register table, Register tmp);
1407   void fold_8bit_crc32(XMMRegister crc, Register table, XMMRegister xtmp, Register tmp);
1408 
1409   // Compress char[] array to byte[].
1410   void char_array_compress(Register src, Register dst, Register len,
1411                            XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1412                            XMMRegister tmp4, Register tmp5, Register result);
1413 
1414   // Inflate byte[] array to char[].
1415   void byte_array_inflate(Register src, Register dst, Register len,
1416                           XMMRegister tmp1, Register tmp2);
1417 
1418 };
1419 
1420 /**
1421  * class SkipIfEqual:
1422  *
1423  * Instantiating this class will result in assembly code being output that will
1424  * jump around any code emitted between the creation of the instance and it's
1425  * automatic destruction at the end of a scope block, depending on the value of
1426  * the flag passed to the constructor, which will be checked at run-time.
1427  */
1428 class SkipIfEqual {
1429  private:
1430   MacroAssembler* _masm;
1431   Label _label;
1432 
1433  public:
1434    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
1435    ~SkipIfEqual();
1436 };
1437 
1438 #endif // CPU_X86_VM_MACROASSEMBLER_X86_HPP