src/cpu/x86/vm/interp_masm_x86_32.cpp
Index Unified diffs Context diffs Sdiffs Patch New Old Previous File Next File 8074717 Cdiff src/cpu/x86/vm/interp_masm_x86_32.cpp

src/cpu/x86/vm/interp_masm_x86_32.cpp

Print this page

        

*** 45,149 **** movptr(reg, Address(rbp, -(sizeof(BytecodeInterpreter) + 2 * wordSize))); movptr(reg, Address(reg, byte_offset_of(BytecodeInterpreter, _method))); } #endif // CC_INTERP - #ifndef CC_INTERP ! void InterpreterMacroAssembler::call_VM_leaf_base( ! address entry_point, ! int number_of_arguments ! ) { // interpreter specific // ! // Note: No need to save/restore bcp & locals (rsi & rdi) pointer // since these are callee saved registers and no blocking/ // GC can happen in leaf calls. // Further Note: DO NOT save/restore bcp/locals. If a caller has ! // already saved them so that it can use rsi/rdi as temporaries // then a save/restore here will DESTROY the copy the caller // saved! There used to be a save_bcp() that only happened in // the ASSERT path (no restore_bcp). Which caused bizarre failures // when jvm built with ASSERTs. #ifdef ASSERT ! { Label L; cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD); jcc(Assembler::equal, L); ! stop("InterpreterMacroAssembler::call_VM_leaf_base: last_sp != NULL"); bind(L); } #endif // super call MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments); // interpreter specific ! ! // Used to ASSERT that rsi/rdi were equal to frame's bcp/locals // but since they may not have been saved (and we don't want to // save them here (see note above) the assert is invalid. } ! ! void InterpreterMacroAssembler::call_VM_base( ! Register oop_result, Register java_thread, Register last_java_sp, address entry_point, int number_of_arguments, ! bool check_exceptions ! ) { ! #ifdef ASSERT ! { Label L; ! cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD); ! jcc(Assembler::equal, L); ! stop("InterpreterMacroAssembler::call_VM_base: last_sp != NULL"); ! bind(L); ! } ! #endif /* ASSERT */ // interpreter specific // // Note: Could avoid restoring locals ptr (callee saved) - however doesn't // really make a difference for these runtime calls, since they are // slow anyway. Btw., bcp must be saved/restored since it may change // due to GC. ! assert(java_thread == noreg , "not expecting a precomputed java thread"); save_bcp(); // super call ! MacroAssembler::call_VM_base(oop_result, java_thread, last_java_sp, entry_point, number_of_arguments, check_exceptions); // interpreter specific restore_bcp(); restore_locals(); } - void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) { if (JvmtiExport::can_pop_frame()) { Label L; ! // Initiate popframe handling only if it is not already being processed. If the flag ! // has the popframe_processing bit set, it means that this code is called *during* popframe ! // handling - we don't want to reenter. ! Register pop_cond = java_thread; // Not clear if any other register is available... movl(pop_cond, Address(java_thread, JavaThread::popframe_condition_offset())); testl(pop_cond, JavaThread::popframe_pending_bit); jcc(Assembler::zero, L); testl(pop_cond, JavaThread::popframe_processing_bit); jcc(Assembler::notZero, L); // Call Interpreter::remove_activation_preserving_args_entry() to get the // address of the same-named entrypoint in the generated interpreter code. call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry)); jmp(rax); bind(L); ! get_thread(java_thread); } } - void InterpreterMacroAssembler::load_earlyret_value(TosState state) { ! get_thread(rcx); ! movl(rcx, Address(rcx, JavaThread::jvmti_thread_state_offset())); ! const Address tos_addr (rcx, JvmtiThreadState::earlyret_tos_offset()); ! const Address oop_addr (rcx, JvmtiThreadState::earlyret_oop_offset()); ! const Address val_addr (rcx, JvmtiThreadState::earlyret_value_offset()); const Address val_addr1(rcx, JvmtiThreadState::earlyret_value_offset() + in_ByteSize(wordSize)); switch (state) { case atos: movptr(rax, oop_addr); movptr(oop_addr, NULL_WORD); --- 45,170 ---- movptr(reg, Address(rbp, -(sizeof(BytecodeInterpreter) + 2 * wordSize))); movptr(reg, Address(reg, byte_offset_of(BytecodeInterpreter, _method))); } #endif // CC_INTERP #ifndef CC_INTERP ! void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point, ! int number_of_arguments) { // interpreter specific // ! // Note: No need to save/restore bcp & locals (r13 & r14) pointer // since these are callee saved registers and no blocking/ // GC can happen in leaf calls. // Further Note: DO NOT save/restore bcp/locals. If a caller has ! // already saved them so that it can use esi/edi as temporaries // then a save/restore here will DESTROY the copy the caller // saved! There used to be a save_bcp() that only happened in // the ASSERT path (no restore_bcp). Which caused bizarre failures // when jvm built with ASSERTs. #ifdef ASSERT ! { ! Label L; cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD); jcc(Assembler::equal, L); ! stop("InterpreterMacroAssembler::call_VM_leaf_base:" ! " last_sp != NULL"); bind(L); } #endif // super call MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments); // interpreter specific ! // Used to ASSERT that r13/r14 were equal to frame's bcp/locals // but since they may not have been saved (and we don't want to // save them here (see note above) the assert is invalid. } ! void InterpreterMacroAssembler::call_VM_base(Register oop_result, Register java_thread, Register last_java_sp, address entry_point, int number_of_arguments, ! bool check_exceptions) { // interpreter specific // // Note: Could avoid restoring locals ptr (callee saved) - however doesn't // really make a difference for these runtime calls, since they are // slow anyway. Btw., bcp must be saved/restored since it may change // due to GC. ! NOT_LP64(assert(java_thread == noreg , "not expecting a precomputed java thread");) save_bcp(); + #ifdef ASSERT + { + Label L; + cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD); + jcc(Assembler::equal, L); + stop("InterpreterMacroAssembler::call_VM_leaf_base:" + " last_sp != NULL"); + bind(L); + } + #endif /* ASSERT */ // super call ! MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp, ! entry_point, number_of_arguments, ! check_exceptions); // interpreter specific restore_bcp(); restore_locals(); } void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) { if (JvmtiExport::can_pop_frame()) { Label L; ! // Initiate popframe handling only if it is not already being ! // processed. If the flag has the popframe_processing bit set, it ! // means that this code is called *during* popframe handling - we ! // don't want to reenter. ! // This method is only called just after the call into the vm in ! // call_VM_base, so the arg registers are available. ! Register pop_cond = NOT_LP64(java_thread) // Not clear if any other register is available on 32 bit ! LP64_ONLY(c_rarg0); movl(pop_cond, Address(java_thread, JavaThread::popframe_condition_offset())); testl(pop_cond, JavaThread::popframe_pending_bit); jcc(Assembler::zero, L); testl(pop_cond, JavaThread::popframe_processing_bit); jcc(Assembler::notZero, L); // Call Interpreter::remove_activation_preserving_args_entry() to get the // address of the same-named entrypoint in the generated interpreter code. call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry)); jmp(rax); bind(L); ! NOT_LP64(get_thread(java_thread);) } } void InterpreterMacroAssembler::load_earlyret_value(TosState state) { ! Register thread = LP64_ONLY(r15_thread) NOT_LP64(rcx); ! NOT_LP64(get_thread(thread);) ! movptr(rcx, Address(thread, JavaThread::jvmti_thread_state_offset())); ! const Address tos_addr(rcx, JvmtiThreadState::earlyret_tos_offset()); ! const Address oop_addr(rcx, JvmtiThreadState::earlyret_oop_offset()); ! const Address val_addr(rcx, JvmtiThreadState::earlyret_value_offset()); ! #ifdef _LP64 ! switch (state) { ! case atos: movptr(rax, oop_addr); ! movptr(oop_addr, (int32_t)NULL_WORD); ! verify_oop(rax, state); break; ! case ltos: movptr(rax, val_addr); break; ! case btos: // fall through ! case ctos: // fall through ! case stos: // fall through ! case itos: movl(rax, val_addr); break; ! case ftos: movflt(xmm0, val_addr); break; ! case dtos: movdbl(xmm0, val_addr); break; ! case vtos: /* nothing to do */ break; ! default : ShouldNotReachHere(); ! } ! // Clean up tos value in the thread object ! movl(tos_addr, (int) ilgl); ! movl(val_addr, (int32_t) NULL_WORD); ! #else const Address val_addr1(rcx, JvmtiThreadState::earlyret_value_offset() + in_ByteSize(wordSize)); switch (state) { case atos: movptr(rax, oop_addr); movptr(oop_addr, NULL_WORD);
*** 157,178 **** case ftos: fld_s(val_addr); break; case dtos: fld_d(val_addr); break; case vtos: /* nothing to do */ break; default : ShouldNotReachHere(); } // Clean up tos value in the thread object movl(tos_addr, (int32_t) ilgl); movptr(val_addr, NULL_WORD); ! NOT_LP64(movptr(val_addr1, NULL_WORD)); } void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) { if (JvmtiExport::can_force_early_return()) { Label L; ! Register tmp = java_thread; ! movptr(tmp, Address(tmp, JavaThread::jvmti_thread_state_offset())); testptr(tmp, tmp); jcc(Assembler::zero, L); // if (thread->jvmti_thread_state() == NULL) exit; // Initiate earlyret handling only if it is not already being processed. // If the flag has the earlyret_processing bit set, it means that this code --- 178,202 ---- case ftos: fld_s(val_addr); break; case dtos: fld_d(val_addr); break; case vtos: /* nothing to do */ break; default : ShouldNotReachHere(); } + #endif // _LP64 // Clean up tos value in the thread object movl(tos_addr, (int32_t) ilgl); movptr(val_addr, NULL_WORD); ! NOT_LP64(movptr(val_addr1, NULL_WORD);) } void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) { if (JvmtiExport::can_force_early_return()) { Label L; ! Register tmp = LP64_ONLY(c_rarg0) NOT_LP64(java_thread); ! Register rthread = LP64_ONLY(r15_thread) NOT_LP64(java_thread); ! ! movptr(tmp, Address(rthread, JavaThread::jvmti_thread_state_offset())); testptr(tmp, tmp); jcc(Assembler::zero, L); // if (thread->jvmti_thread_state() == NULL) exit; // Initiate earlyret handling only if it is not already being processed. // If the flag has the earlyret_processing bit set, it means that this code
*** 181,262 **** cmpl(tmp, JvmtiThreadState::earlyret_pending); jcc(Assembler::notEqual, L); // Call Interpreter::remove_activation_early_entry() to get the address of the // same-named entrypoint in the generated interpreter code. ! get_thread(java_thread); ! movptr(tmp, Address(java_thread, JavaThread::jvmti_thread_state_offset())); pushl(Address(tmp, JvmtiThreadState::earlyret_tos_offset())); call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), 1); jmp(rax); bind(L); ! get_thread(java_thread); } } - void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(Register reg, int bcp_offset) { assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode"); ! load_unsigned_short(reg, Address(rsi, bcp_offset)); bswapl(reg); shrl(reg, 16); } ! ! void InterpreterMacroAssembler::get_cache_index_at_bcp(Register reg, int bcp_offset, size_t index_size) { assert(bcp_offset > 0, "bcp is still pointing to start of bytecode"); if (index_size == sizeof(u2)) { ! load_unsigned_short(reg, Address(rsi, bcp_offset)); } else if (index_size == sizeof(u4)) { ! movl(reg, Address(rsi, bcp_offset)); // Check if the secondary index definition is still ~x, otherwise // we have to change the following assembler code to calculate the // plain index. assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line"); ! notl(reg); // convert to plain index } else if (index_size == sizeof(u1)) { ! load_unsigned_byte(reg, Address(rsi, bcp_offset)); } else { ShouldNotReachHere(); } } ! ! void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, Register index, ! int bcp_offset, size_t index_size) { assert_different_registers(cache, index); get_cache_index_at_bcp(index, bcp_offset, index_size); movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize)); ! assert(sizeof(ConstantPoolCacheEntry) == 4*wordSize, "adjust code below"); assert(exact_log2(in_words(ConstantPoolCacheEntry::size())) == 2, "else change next line"); ! shlptr(index, 2); // convert from field index to ConstantPoolCacheEntry index } - void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache, Register index, Register bytecode, int byte_no, int bcp_offset, size_t index_size) { get_cache_and_index_at_bcp(cache, index, bcp_offset, index_size); ! movptr(bytecode, Address(cache, index, Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset())); const int shift_count = (1 + byte_no) * BitsPerByte; assert((byte_no == TemplateTable::f1_byte && shift_count == ConstantPoolCacheEntry::bytecode_1_shift) || (byte_no == TemplateTable::f2_byte && shift_count == ConstantPoolCacheEntry::bytecode_2_shift), "correct shift count"); ! shrptr(bytecode, shift_count); assert(ConstantPoolCacheEntry::bytecode_1_mask == ConstantPoolCacheEntry::bytecode_2_mask, "common mask"); ! andptr(bytecode, ConstantPoolCacheEntry::bytecode_1_mask); } ! ! void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, Register tmp, ! int bcp_offset, size_t index_size) { assert(cache != tmp, "must use different register"); get_cache_index_at_bcp(tmp, bcp_offset, index_size); ! assert(sizeof(ConstantPoolCacheEntry) == 4*wordSize, "adjust code below"); // convert from field index to ConstantPoolCacheEntry index // and from word offset to byte offset assert(exact_log2(in_bytes(ConstantPoolCacheEntry::size_in_bytes())) == 2 + LogBytesPerWord, "else change next line"); shll(tmp, 2 + LogBytesPerWord); movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize)); --- 205,295 ---- cmpl(tmp, JvmtiThreadState::earlyret_pending); jcc(Assembler::notEqual, L); // Call Interpreter::remove_activation_early_entry() to get the address of the // same-named entrypoint in the generated interpreter code. ! NOT_LP64(get_thread(java_thread);) ! movptr(tmp, Address(rthread, JavaThread::jvmti_thread_state_offset())); ! #ifdef _LP64 ! movl(tmp, Address(tmp, JvmtiThreadState::earlyret_tos_offset())); ! call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), tmp); ! #else pushl(Address(tmp, JvmtiThreadState::earlyret_tos_offset())); call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), 1); + #endif // _LP64 jmp(rax); bind(L); ! NOT_LP64(get_thread(java_thread);) } } void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(Register reg, int bcp_offset) { assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode"); ! load_unsigned_short(reg, Address(_bcp_register, bcp_offset)); bswapl(reg); shrl(reg, 16); } ! void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index, ! int bcp_offset, ! size_t index_size) { assert(bcp_offset > 0, "bcp is still pointing to start of bytecode"); if (index_size == sizeof(u2)) { ! load_unsigned_short(index, Address(_bcp_register, bcp_offset)); } else if (index_size == sizeof(u4)) { ! movl(index, Address(_bcp_register, bcp_offset)); // Check if the secondary index definition is still ~x, otherwise // we have to change the following assembler code to calculate the // plain index. assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line"); ! notl(index); // convert to plain index } else if (index_size == sizeof(u1)) { ! load_unsigned_byte(index, Address(_bcp_register, bcp_offset)); } else { ShouldNotReachHere(); } } ! void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, ! Register index, ! int bcp_offset, ! size_t index_size) { assert_different_registers(cache, index); get_cache_index_at_bcp(index, bcp_offset, index_size); movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize)); ! assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below"); ! // convert from field index to ConstantPoolCacheEntry index assert(exact_log2(in_words(ConstantPoolCacheEntry::size())) == 2, "else change next line"); ! shll(index, 2); } void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache, Register index, Register bytecode, int byte_no, int bcp_offset, size_t index_size) { get_cache_and_index_at_bcp(cache, index, bcp_offset, index_size); ! // We use a 32-bit load here since the layout of 64-bit words on ! // little-endian machines allow us that. ! movl(bytecode, Address(cache, index, Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset())); const int shift_count = (1 + byte_no) * BitsPerByte; assert((byte_no == TemplateTable::f1_byte && shift_count == ConstantPoolCacheEntry::bytecode_1_shift) || (byte_no == TemplateTable::f2_byte && shift_count == ConstantPoolCacheEntry::bytecode_2_shift), "correct shift count"); ! shrl(bytecode, shift_count); assert(ConstantPoolCacheEntry::bytecode_1_mask == ConstantPoolCacheEntry::bytecode_2_mask, "common mask"); ! andl(bytecode, ConstantPoolCacheEntry::bytecode_1_mask); } ! void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, ! Register tmp, ! int bcp_offset, ! size_t index_size) { assert(cache != tmp, "must use different register"); get_cache_index_at_bcp(tmp, bcp_offset, index_size); ! assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below"); // convert from field index to ConstantPoolCacheEntry index // and from word offset to byte offset assert(exact_log2(in_bytes(ConstantPoolCacheEntry::size_in_bytes())) == 2 + LogBytesPerWord, "else change next line"); shll(tmp, 2 + LogBytesPerWord); movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
*** 282,298 **** // Add in the index addptr(result, tmp); load_heap_oop(result, Address(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT))); } ! // Generate a subtype check: branch to ok_is_subtype if sub_klass is ! // a subtype of super_klass. EAX holds the super_klass. Blows ECX. ! // Resets EDI to locals. Register sub_klass cannot be any of the above. ! void InterpreterMacroAssembler::gen_subtype_check( Register Rsub_klass, Label &ok_is_subtype ) { ! assert( Rsub_klass != rax, "rax, holds superklass" ); ! assert( Rsub_klass != rcx, "used as a temp" ); ! assert( Rsub_klass != rdi, "used as a temp, restored from locals" ); // Profile the not-null value's klass. profile_typecheck(rcx, Rsub_klass, rdi); // blows rcx, reloads rdi // Do the check. --- 315,341 ---- // Add in the index addptr(result, tmp); load_heap_oop(result, Address(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT))); } ! ! // Generate a subtype check: branch to ok_is_subtype if sub_klass is a ! // subtype of super_klass. ! // ! // Args: ! // rax: superklass ! // Rsub_klass: subklass ! // ! // Kills: ! // rcx, rdi ! void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass, ! Label& ok_is_subtype) { ! assert(Rsub_klass != rax, "rax holds superklass"); ! LP64_ONLY(assert(Rsub_klass != r14, "r14 holds locals");) ! LP64_ONLY(assert(Rsub_klass != r13, "r13 holds bcp");) ! assert(Rsub_klass != rcx, "rcx holds 2ndary super array length"); ! assert(Rsub_klass != rdi, "rdi holds 2ndary super array scan ptr"); // Profile the not-null value's klass. profile_typecheck(rcx, Rsub_klass, rdi); // blows rcx, reloads rdi // Do the check.
*** 300,309 **** --- 343,354 ---- // Profile the failure of the check. profile_typecheck_failed(rcx); // blows rcx } + + #ifndef _LP64 void InterpreterMacroAssembler::f2ieee() { if (IEEEPrecision) { fstp_s(Address(rsp, 0)); fld_s(Address(rsp, 0)); }
*** 314,330 **** --- 359,453 ---- if (IEEEPrecision) { fstp_d(Address(rsp, 0)); fld_d(Address(rsp, 0)); } } + #endif // _LP64 // Java Expression Stack void InterpreterMacroAssembler::pop_ptr(Register r) { pop(r); } + void InterpreterMacroAssembler::push_ptr(Register r) { + push(r); + } + + void InterpreterMacroAssembler::push_i(Register r) { + push(r); + } + + #ifdef _LP64 + void InterpreterMacroAssembler::pop_i(Register r) { + // XXX can't use pop currently, upper half non clean + movl(r, Address(rsp, 0)); + addptr(rsp, wordSize); + } + + void InterpreterMacroAssembler::pop_l(Register r) { + movq(r, Address(rsp, 0)); + addptr(rsp, 2 * Interpreter::stackElementSize); + } + + void InterpreterMacroAssembler::pop_f(XMMRegister r) { + movflt(r, Address(rsp, 0)); + addptr(rsp, wordSize); + } + + void InterpreterMacroAssembler::pop_d(XMMRegister r) { + movdbl(r, Address(rsp, 0)); + addptr(rsp, 2 * Interpreter::stackElementSize); + } + + void InterpreterMacroAssembler::push_l(Register r) { + subptr(rsp, 2 * wordSize); + movq(Address(rsp, 0), r); + } + + void InterpreterMacroAssembler::push_f(XMMRegister r) { + subptr(rsp, wordSize); + movflt(Address(rsp, 0), r); + } + + void InterpreterMacroAssembler::push_d(XMMRegister r) { + subptr(rsp, 2 * wordSize); + movdbl(Address(rsp, 0), r); + } + + void InterpreterMacroAssembler::pop(TosState state) { + switch (state) { + case atos: pop_ptr(); break; + case btos: + case ctos: + case stos: + case itos: pop_i(); break; + case ltos: pop_l(); break; + case ftos: pop_f(); break; + case dtos: pop_d(); break; + case vtos: /* nothing to do */ break; + default: ShouldNotReachHere(); + } + verify_oop(rax, state); + } + + void InterpreterMacroAssembler::push(TosState state) { + verify_oop(rax, state); + switch (state) { + case atos: push_ptr(); break; + case btos: + case ctos: + case stos: + case itos: push_i(); break; + case ltos: push_l(); break; + case ftos: push_f(); break; + case dtos: push_d(); break; + case vtos: /* nothing to do */ break; + default : ShouldNotReachHere(); + } + } + #else void InterpreterMacroAssembler::pop_i(Register r) { pop(r); } void InterpreterMacroAssembler::pop_l(Register lo, Register hi) {
*** 357,373 **** default : ShouldNotReachHere(); } verify_oop(rax, state); } - void InterpreterMacroAssembler::push_ptr(Register r) { - push(r); - } - - void InterpreterMacroAssembler::push_i(Register r) { - push(r); - } void InterpreterMacroAssembler::push_l(Register lo, Register hi) { push(hi); push(lo); } --- 480,489 ----
*** 398,407 **** --- 514,524 ---- case dtos: push_d(rax); break; case vtos: /* nothing to do */ break; default : ShouldNotReachHere(); } } + #endif // _LP64 // Helpers for swap and dup void InterpreterMacroAssembler::load_ptr(int n, Register val) { movptr(val, Address(rsp, Interpreter::expr_offset_in_bytes(n)));
*** 409,423 **** void InterpreterMacroAssembler::store_ptr(int n, Register val) { movptr(Address(rsp, Interpreter::expr_offset_in_bytes(n)), val); } void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() { // set sender sp ! lea(rsi, Address(rsp, wordSize)); // record last_sp ! movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), rsi); } // Jump to from_interpreted entry of a call unless single stepping is possible // in this thread in which case we must call the i2i entry --- 526,541 ---- void InterpreterMacroAssembler::store_ptr(int n, Register val) { movptr(Address(rsp, Interpreter::expr_offset_in_bytes(n)), val); } + void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() { // set sender sp ! lea(_bcp_register, Address(rsp, wordSize)); // record last_sp ! movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), _bcp_register); } // Jump to from_interpreted entry of a call unless single stepping is possible // in this thread in which case we must call the i2i entry
*** 427,507 **** if (JvmtiExport::can_post_interpreter_events()) { Label run_compiled_code; // JVMTI events, such as single-stepping, are implemented partly by avoiding running // compiled code in threads for which the event is enabled. Check here for // interp_only_mode if these events CAN be enabled. - get_thread(temp); // interp_only is an int, on little endian it is sufficient to test the byte only // Is a cmpl faster? cmpb(Address(temp, JavaThread::interp_only_mode_offset()), 0); jccb(Assembler::zero, run_compiled_code); jmp(Address(method, Method::interpreter_entry_offset())); bind(run_compiled_code); } jmp(Address(method, Method::from_interpreted_offset())); - } - // The following two routines provide a hook so that an implementation ! // can schedule the dispatch in two parts. Intel does not do this. void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) { ! // Nothing Intel-specific to be done here. } void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) { dispatch_next(state, step); } ! void InterpreterMacroAssembler::dispatch_base(TosState state, address* table, bool verifyoop) { verify_FPU(1, state); if (VerifyActivationFrameSize) { Label L; mov(rcx, rbp); subptr(rcx, rsp); ! int min_frame_size = (frame::link_offset - frame::interpreter_frame_initial_sp_offset) * wordSize; ! cmpptr(rcx, min_frame_size); jcc(Assembler::greaterEqual, L); stop("broken stack frame"); bind(L); } ! if (verifyoop) verify_oop(rax, state); Address index(noreg, rbx, Address::times_ptr); ExternalAddress tbl((address)table); ArrayAddress dispatch(tbl, index); jump(dispatch); } - void InterpreterMacroAssembler::dispatch_only(TosState state) { dispatch_base(state, Interpreter::dispatch_table(state)); } - void InterpreterMacroAssembler::dispatch_only_normal(TosState state) { dispatch_base(state, Interpreter::normal_table(state)); } void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) { dispatch_base(state, Interpreter::normal_table(state), false); } void InterpreterMacroAssembler::dispatch_next(TosState state, int step) { ! // load next bytecode (load before advancing rsi to prevent AGI) ! load_unsigned_byte(rbx, Address(rsi, step)); ! // advance rsi ! increment(rsi, step); dispatch_base(state, Interpreter::dispatch_table(state)); } - void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) { // load current bytecode ! load_unsigned_byte(rbx, Address(rsi, 0)); dispatch_base(state, table); } // remove activation // --- 545,631 ---- if (JvmtiExport::can_post_interpreter_events()) { Label run_compiled_code; // JVMTI events, such as single-stepping, are implemented partly by avoiding running // compiled code in threads for which the event is enabled. Check here for // interp_only_mode if these events CAN be enabled. // interp_only is an int, on little endian it is sufficient to test the byte only // Is a cmpl faster? + LP64_ONLY(temp = r15_thread;) + NOT_LP64(get_thread(temp);) cmpb(Address(temp, JavaThread::interp_only_mode_offset()), 0); jccb(Assembler::zero, run_compiled_code); jmp(Address(method, Method::interpreter_entry_offset())); bind(run_compiled_code); } jmp(Address(method, Method::from_interpreted_offset())); } // The following two routines provide a hook so that an implementation ! // can schedule the dispatch in two parts. x86 does not do this. void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) { ! // Nothing x86 specific to be done here } void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) { dispatch_next(state, step); } ! void InterpreterMacroAssembler::dispatch_base(TosState state, ! address* table, bool verifyoop) { verify_FPU(1, state); if (VerifyActivationFrameSize) { Label L; mov(rcx, rbp); subptr(rcx, rsp); ! int32_t min_frame_size = ! (frame::link_offset - frame::interpreter_frame_initial_sp_offset) * ! wordSize; ! cmpptr(rcx, (int32_t)min_frame_size); jcc(Assembler::greaterEqual, L); stop("broken stack frame"); bind(L); } ! if (verifyoop) { ! verify_oop(rax, state); ! } ! #ifdef _LP64 ! lea(rscratch1, ExternalAddress((address)table)); ! jmp(Address(rscratch1, rbx, Address::times_8)); ! #else Address index(noreg, rbx, Address::times_ptr); ExternalAddress tbl((address)table); ArrayAddress dispatch(tbl, index); jump(dispatch); + #endif // _LP64 } void InterpreterMacroAssembler::dispatch_only(TosState state) { dispatch_base(state, Interpreter::dispatch_table(state)); } void InterpreterMacroAssembler::dispatch_only_normal(TosState state) { dispatch_base(state, Interpreter::normal_table(state)); } void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) { dispatch_base(state, Interpreter::normal_table(state), false); } void InterpreterMacroAssembler::dispatch_next(TosState state, int step) { ! // load next bytecode (load before advancing _bcp_register to prevent AGI) ! load_unsigned_byte(rbx, Address(_bcp_register, step)); ! // advance _bcp_register ! increment(_bcp_register, step); dispatch_base(state, Interpreter::dispatch_table(state)); } void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) { // load current bytecode ! load_unsigned_byte(rbx, Address(_bcp_register, 0)); dispatch_base(state, table); } // remove activation //
*** 514,635 **** // throws IllegalMonitorStateException // Else if install_monitor_exception // installs IllegalMonitorStateException // Else // no error processing ! void InterpreterMacroAssembler::remove_activation(TosState state, Register ret_addr, bool throw_monitor_exception, bool install_monitor_exception, bool notify_jvmdi) { ! // Note: Registers rax, rdx and FPU ST(0) may be in use for the result ! // check if synchronized method Label unlocked, unlock, no_unlock; ! get_thread(rcx); ! const Address do_not_unlock_if_synchronized(rcx, ! in_bytes(JavaThread::do_not_unlock_if_synchronized_offset())); movbool(rbx, do_not_unlock_if_synchronized); - mov(rdi,rbx); movbool(do_not_unlock_if_synchronized, false); // reset the flag ! movptr(rbx, Address(rbp, frame::interpreter_frame_method_offset * wordSize)); // get method access flags ! movl(rcx, Address(rbx, Method::access_flags_offset())); ! testl(rcx, JVM_ACC_SYNCHRONIZED); jcc(Assembler::zero, unlocked); // Don't unlock anything if the _do_not_unlock_if_synchronized flag // is set. ! mov(rcx,rdi); ! testbool(rcx); jcc(Assembler::notZero, no_unlock); // unlock monitor push(state); // save result ! // BasicObjectLock will be first in list, since this is a synchronized method. However, need ! // to check that the object has not been unlocked by an explicit monitorexit bytecode. ! const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset * wordSize - (int)sizeof(BasicObjectLock)); ! lea (rdx, monitor); // address of first monitor ! movptr (rax, Address(rdx, BasicObjectLock::obj_offset_in_bytes())); testptr(rax, rax); ! jcc (Assembler::notZero, unlock); pop(state); if (throw_monitor_exception) { - empty_FPU_stack(); // remove possible return value from FPU-stack, otherwise stack could overflow - // Entry already unlocked, need to throw exception ! call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception)); should_not_reach_here(); } else { ! // Monitor already unlocked during a stack unroll. ! // If requested, install an illegal_monitor_state_exception. ! // Continue with stack unrolling. if (install_monitor_exception) { ! empty_FPU_stack(); // remove possible return value from FPU-stack, otherwise stack could overflow ! call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception)); } jmp(unlocked); } bind(unlock); ! unlock_object(rdx); pop(state); ! // Check that for block-structured locking (i.e., that all locked objects has been unlocked) bind(unlocked); // rax, rdx: Might contain return value // Check that all monitors are unlocked { Label loop, exception, entry, restart; const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; ! const Address monitor_block_top(rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize); ! const Address monitor_block_bot(rbp, frame::interpreter_frame_initial_sp_offset * wordSize); bind(restart); ! movptr(rcx, monitor_block_top); // points to current entry, starting with top-most entry ! lea(rbx, monitor_block_bot); // points to word before bottom of monitor block jmp(entry); // Entry already locked, need to throw exception bind(exception); if (throw_monitor_exception) { - empty_FPU_stack(); // remove possible return value from FPU-stack, otherwise stack could overflow - // Throw exception ! call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception)); should_not_reach_here(); } else { ! // Stack unrolling. Unlock object and install illegal_monitor_exception ! // Unlock does not block, so don't have to worry about the frame push(state); ! mov(rdx, rcx); ! unlock_object(rdx); pop(state); if (install_monitor_exception) { ! empty_FPU_stack(); // remove possible return value from FPU-stack, otherwise stack could overflow ! call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception)); } jmp(restart); } bind(loop); ! cmpptr(Address(rcx, BasicObjectLock::obj_offset_in_bytes()), (int32_t)NULL_WORD); // check if current entry is used jcc(Assembler::notEqual, exception); ! addptr(rcx, entry_size); // otherwise advance to next entry bind(entry); ! cmpptr(rcx, rbx); // check if bottom reached jcc(Assembler::notEqual, loop); // if not at bottom then check this entry } bind(no_unlock); --- 638,782 ---- // throws IllegalMonitorStateException // Else if install_monitor_exception // installs IllegalMonitorStateException // Else // no error processing ! void InterpreterMacroAssembler::remove_activation( ! TosState state, ! Register ret_addr, bool throw_monitor_exception, bool install_monitor_exception, bool notify_jvmdi) { ! // Note: Registers rdx xmm0 may be in use for the ! // result check if synchronized method Label unlocked, unlock, no_unlock; ! const Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx); ! const Register robj = LP64_ONLY(c_rarg1) NOT_LP64(rdx); ! const Register rmon = LP64_ONLY(c_rarg1) NOT_LP64(rcx); ! // monitor pointers need different register ! // because rdx may have the result in it ! NOT_LP64(get_thread(rcx);) + // get the value of _do_not_unlock_if_synchronized into rdx + const Address do_not_unlock_if_synchronized(rthread, + in_bytes(JavaThread::do_not_unlock_if_synchronized_offset())); movbool(rbx, do_not_unlock_if_synchronized); movbool(do_not_unlock_if_synchronized, false); // reset the flag ! // get method access flags ! movptr(rcx, Address(rbp, frame::interpreter_frame_method_offset * wordSize)); ! movl(rcx, Address(rcx, Method::access_flags_offset())); testl(rcx, JVM_ACC_SYNCHRONIZED); jcc(Assembler::zero, unlocked); // Don't unlock anything if the _do_not_unlock_if_synchronized flag // is set. ! testbool(rbx); jcc(Assembler::notZero, no_unlock); // unlock monitor push(state); // save result ! // BasicObjectLock will be first in list, since this is a ! // synchronized method. However, need to check that the object has ! // not been unlocked by an explicit monitorexit bytecode. ! const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset * ! wordSize - (int) sizeof(BasicObjectLock)); ! // We use c_rarg1/rdx so that if we go slow path it will be the correct ! // register for unlock_object to pass to VM directly ! lea(robj, monitor); // address of first monitor ! movptr(rax, Address(robj, BasicObjectLock::obj_offset_in_bytes())); testptr(rax, rax); ! jcc(Assembler::notZero, unlock); pop(state); if (throw_monitor_exception) { // Entry already unlocked, need to throw exception ! NOT_LP64(empty_FPU_stack();) // remove possible return value from FPU-stack, otherwise stack could overflow ! call_VM(noreg, CAST_FROM_FN_PTR(address, ! InterpreterRuntime::throw_illegal_monitor_state_exception)); should_not_reach_here(); } else { ! // Monitor already unlocked during a stack unroll. If requested, ! // install an illegal_monitor_state_exception. Continue with ! // stack unrolling. if (install_monitor_exception) { ! NOT_LP64(empty_FPU_stack();) ! call_VM(noreg, CAST_FROM_FN_PTR(address, ! InterpreterRuntime::new_illegal_monitor_state_exception)); } jmp(unlocked); } bind(unlock); ! unlock_object(robj); pop(state); ! // Check that for block-structured locking (i.e., that all locked ! // objects has been unlocked) bind(unlocked); // rax, rdx: Might contain return value // Check that all monitors are unlocked { Label loop, exception, entry, restart; const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; ! const Address monitor_block_top( ! rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize); ! const Address monitor_block_bot( ! rbp, frame::interpreter_frame_initial_sp_offset * wordSize); bind(restart); ! // We use c_rarg1 so that if we go slow path it will be the correct ! // register for unlock_object to pass to VM directly ! movptr(rmon, monitor_block_top); // points to current entry, starting ! // with top-most entry ! lea(rbx, monitor_block_bot); // points to word before bottom of ! // monitor block jmp(entry); // Entry already locked, need to throw exception bind(exception); if (throw_monitor_exception) { // Throw exception ! NOT_LP64(empty_FPU_stack();) ! MacroAssembler::call_VM(noreg, ! CAST_FROM_FN_PTR(address, InterpreterRuntime:: ! throw_illegal_monitor_state_exception)); should_not_reach_here(); } else { ! // Stack unrolling. Unlock object and install illegal_monitor_exception. ! // Unlock does not block, so don't have to worry about the frame. ! // We don't have to preserve c_rarg1 since we are going to throw an exception. push(state); ! mov(robj, rmon); // nop if robj and rmon are the same ! unlock_object(robj); pop(state); if (install_monitor_exception) { ! NOT_LP64(empty_FPU_stack();) ! call_VM(noreg, CAST_FROM_FN_PTR(address, ! InterpreterRuntime:: ! new_illegal_monitor_state_exception)); } jmp(restart); } bind(loop); ! // check if current entry is used ! cmpptr(Address(rmon, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL); jcc(Assembler::notEqual, exception); ! addptr(rmon, entry_size); // otherwise advance to next entry bind(entry); ! cmpptr(rmon, rbx); // check if bottom reached jcc(Assembler::notEqual, loop); // if not at bottom then check this entry } bind(no_unlock);
*** 639,652 **** } else { notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA } // remove activation ! movptr(rbx, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp leave(); // remove frame anchor pop(ret_addr); // get return address mov(rsp, rbx); // set sp to sender sp if (UseSSE) { // float and double are returned in xmm register in SSE-mode if (state == ftos && UseSSE >= 1) { subptr(rsp, wordSize); fstp_s(Address(rsp, 0)); --- 786,802 ---- } else { notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA } // remove activation ! // get sender sp ! movptr(rbx, ! Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); leave(); // remove frame anchor pop(ret_addr); // get return address mov(rsp, rbx); // set sp to sender sp + #ifndef _LP64 if (UseSSE) { // float and double are returned in xmm register in SSE-mode if (state == ftos && UseSSE >= 1) { subptr(rsp, wordSize); fstp_s(Address(rsp, 0));
*** 657,668 **** fstp_d(Address(rsp, 0)); movdbl(xmm0, Address(rsp, 0)); addptr(rsp, 2*wordSize); } } } - #endif /* !CC_INTERP */ void InterpreterMacroAssembler::get_method_counters(Register method, Register mcs, Label& skip) { Label has_counters; --- 807,818 ---- fstp_d(Address(rsp, 0)); movdbl(xmm0, Address(rsp, 0)); addptr(rsp, 2*wordSize); } } + #endif // _LP64 } #endif /* !CC_INTERP */ void InterpreterMacroAssembler::get_method_counters(Register method, Register mcs, Label& skip) { Label has_counters;
*** 678,747 **** } // Lock object // ! // Argument: rdx : Points to BasicObjectLock to be used for locking. Must ! // be initialized with object to lock void InterpreterMacroAssembler::lock_object(Register lock_reg) { ! assert(lock_reg == rdx, "The argument is only for looks. It must be rdx"); if (UseHeavyMonitors) { ! call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg); } else { - Label done; ! const Register swap_reg = rax; // Must use rax, for cmpxchg instruction ! const Register obj_reg = rcx; // Will contain the oop const int obj_offset = BasicObjectLock::obj_offset_in_bytes(); const int lock_offset = BasicObjectLock::lock_offset_in_bytes (); ! const int mark_offset = lock_offset + BasicLock::displaced_header_offset_in_bytes(); Label slow_case; ! // Load object pointer into obj_reg %rcx movptr(obj_reg, Address(lock_reg, obj_offset)); if (UseBiasedLocking) { ! // Note: we use noreg for the temporary register since it's hard ! // to come up with a free register on all incoming code paths ! biased_locking_enter(lock_reg, obj_reg, swap_reg, noreg, false, done, &slow_case); } ! // Load immediate 1 into swap_reg %rax, ! movptr(swap_reg, (int32_t)1); ! // Load (object->mark() | 1) into swap_reg %rax, orptr(swap_reg, Address(obj_reg, 0)); // Save (object->mark() | 1) into BasicLock's displaced header movptr(Address(lock_reg, mark_offset), swap_reg); ! assert(lock_offset == 0, "displached header must be first word in BasicObjectLock"); ! if (os::is_MP()) { ! lock(); ! } cmpxchgptr(lock_reg, Address(obj_reg, 0)); if (PrintBiasedLockingStatistics) { cond_inc32(Assembler::zero, ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr())); } jcc(Assembler::zero, done); // Test if the oopMark is an obvious stack pointer, i.e., ! // 1) (mark & 3) == 0, and // 2) rsp <= mark < mark + os::pagesize() // // These 3 tests can be done by evaluating the following ! // expression: ((mark - rsp) & (3 - os::vm_page_size())), // assuming both stack pointer and pagesize have their ! // least significant 2 bits clear. ! // NOTE: the oopMark is in swap_reg %rax, as the result of cmpxchg subptr(swap_reg, rsp); ! andptr(swap_reg, 3 - os::vm_page_size()); // Save the test result, for recursive case, the result is zero movptr(Address(lock_reg, mark_offset), swap_reg); if (PrintBiasedLockingStatistics) { --- 828,904 ---- } // Lock object // ! // Args: ! // rdx, c_rarg1: BasicObjectLock to be used for locking ! // ! // Kills: ! // rax ! // rscratch1 (scratch regs) void InterpreterMacroAssembler::lock_object(Register lock_reg) { ! assert(lock_reg == LP64_ONLY(c_rarg1) NOT_LP64(rdx), ! "The argument is only for looks. It must be c_rarg1"); if (UseHeavyMonitors) { ! call_VM(noreg, ! CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), ! lock_reg); } else { Label done; ! const Register swap_reg = rax; // Must use rax for cmpxchg instruction ! const Register obj_reg = LP64_ONLY(c_rarg3) NOT_LP64(rcx); // Will contain the oop const int obj_offset = BasicObjectLock::obj_offset_in_bytes(); const int lock_offset = BasicObjectLock::lock_offset_in_bytes (); ! const int mark_offset = lock_offset + ! BasicLock::displaced_header_offset_in_bytes(); Label slow_case; ! // Load object pointer into obj_reg movptr(obj_reg, Address(lock_reg, obj_offset)); if (UseBiasedLocking) { ! biased_locking_enter(lock_reg, obj_reg, swap_reg, rscratch1, false, done, &slow_case); } ! // Load immediate 1 into swap_reg %rax ! movl(swap_reg, (int32_t)1); ! // Load (object->mark() | 1) into swap_reg %rax orptr(swap_reg, Address(obj_reg, 0)); // Save (object->mark() | 1) into BasicLock's displaced header movptr(Address(lock_reg, mark_offset), swap_reg); ! assert(lock_offset == 0, ! "displached header must be first word in BasicObjectLock"); ! ! if (os::is_MP()) lock(); cmpxchgptr(lock_reg, Address(obj_reg, 0)); if (PrintBiasedLockingStatistics) { cond_inc32(Assembler::zero, ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr())); } jcc(Assembler::zero, done); + const int zero_bits = LP64_ONLY(7) NOT_LP64(3); + // Test if the oopMark is an obvious stack pointer, i.e., ! // 1) (mark & zero_bits) == 0, and // 2) rsp <= mark < mark + os::pagesize() // // These 3 tests can be done by evaluating the following ! // expression: ((mark - rsp) & (zero_bits - os::vm_page_size())), // assuming both stack pointer and pagesize have their ! // least significant bits clear. ! // NOTE: the oopMark is in swap_reg %rax as the result of cmpxchg subptr(swap_reg, rsp); ! andptr(swap_reg, zero_bits - os::vm_page_size()); // Save the test result, for recursive case, the result is zero movptr(Address(lock_reg, mark_offset), swap_reg); if (PrintBiasedLockingStatistics) {
*** 751,803 **** jcc(Assembler::zero, done); bind(slow_case); // Call the runtime routine for slow case ! call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg); bind(done); } } ! // Unlocks an object. Used in monitorexit bytecode and remove_activation. // ! // Argument: rdx : Points to BasicObjectLock structure for lock ! // Throw an IllegalMonitorException if object is not locked by current thread // ! // Uses: rax, rbx, rcx, rdx void InterpreterMacroAssembler::unlock_object(Register lock_reg) { ! assert(lock_reg == rdx, "The argument is only for looks. It must be rdx"); if (UseHeavyMonitors) { ! call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); } else { Label done; ! const Register swap_reg = rax; // Must use rax, for cmpxchg instruction ! const Register header_reg = rbx; // Will contain the old oopMark ! const Register obj_reg = rcx; // Will contain the oop save_bcp(); // Save in case of exception ! // Convert from BasicObjectLock structure to object and BasicLock structure ! // Store the BasicLock address into %rax, lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset_in_bytes())); ! // Load oop into obj_reg(%rcx) ! movptr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes ())); // Free entry ! movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), NULL_WORD); if (UseBiasedLocking) { biased_locking_exit(obj_reg, header_reg, done); } // Load the old header from BasicLock structure ! movptr(header_reg, Address(swap_reg, BasicLock::displaced_header_offset_in_bytes())); // Test for recursion testptr(header_reg, header_reg); // zero for recursive case --- 908,972 ---- jcc(Assembler::zero, done); bind(slow_case); // Call the runtime routine for slow case ! call_VM(noreg, ! CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), ! lock_reg); bind(done); } } ! // Unlocks an object. Used in monitorexit bytecode and ! // remove_activation. Throws an IllegalMonitorException if object is ! // not locked by current thread. // ! // Args: ! // rdx, c_rarg1: BasicObjectLock for lock // ! // Kills: ! // rax ! // c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs) ! // rscratch1, rscratch2 (scratch regs) ! // rax, rbx, rcx, rdx void InterpreterMacroAssembler::unlock_object(Register lock_reg) { ! assert(lock_reg == LP64_ONLY(c_rarg1) NOT_LP64(rdx), ! "The argument is only for looks. It must be c_rarg1"); if (UseHeavyMonitors) { ! call_VM(noreg, ! CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), ! lock_reg); } else { Label done; ! const Register swap_reg = rax; // Must use rax for cmpxchg instruction ! const Register header_reg = LP64_ONLY(c_rarg2) NOT_LP64(rbx); // Will contain the old oopMark ! const Register obj_reg = LP64_ONLY(c_rarg3) NOT_LP64(rcx); // Will contain the oop save_bcp(); // Save in case of exception ! // Convert from BasicObjectLock structure to object and BasicLock ! // structure Store the BasicLock address into %rax lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset_in_bytes())); ! // Load oop into obj_reg(%c_rarg3) ! movptr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes())); // Free entry ! movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), (int32_t)NULL_WORD); if (UseBiasedLocking) { biased_locking_exit(obj_reg, header_reg, done); } // Load the old header from BasicLock structure ! movptr(header_reg, Address(swap_reg, ! BasicLock::displaced_header_offset_in_bytes())); // Test for recursion testptr(header_reg, header_reg); // zero for recursive case
*** 809,832 **** // zero for recursive case jcc(Assembler::zero, done); // Call the runtime routine for slow case. ! movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), obj_reg); // restore obj ! call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); bind(done); restore_bcp(); } } - - #ifndef CC_INTERP ! ! // Test ImethodDataPtr. If it is null, continue at the specified label ! void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, Label& zero_continue) { assert(ProfileInterpreter, "must be profiling interpreter"); movptr(mdp, Address(rbp, frame::interpreter_frame_mdp_offset * wordSize)); testptr(mdp, mdp); jcc(Assembler::zero, zero_continue); } --- 978,1001 ---- // zero for recursive case jcc(Assembler::zero, done); // Call the runtime routine for slow case. ! movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), ! obj_reg); // restore obj ! call_VM(noreg, ! CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), ! lock_reg); bind(done); restore_bcp(); } } #ifndef CC_INTERP ! void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, ! Label& zero_continue) { assert(ProfileInterpreter, "must be profiling interpreter"); movptr(mdp, Address(rbp, frame::interpreter_frame_mdp_offset * wordSize)); testptr(mdp, mdp); jcc(Assembler::zero, zero_continue); }
*** 842,855 **** get_method(rbx); // Test MDO to avoid the call if it is NULL. movptr(rax, Address(rbx, in_bytes(Method::method_data_offset()))); testptr(rax, rax); jcc(Assembler::zero, set_mdp); ! // rbx,: method ! // rsi: bcp ! call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rbx, rsi); ! // rax,: mdi // mdo is guaranteed to be non-zero here, we checked for it before the call. movptr(rbx, Address(rbx, in_bytes(Method::method_data_offset()))); addptr(rbx, in_bytes(MethodData::data_offset())); addptr(rax, rbx); bind(set_mdp); --- 1011,1024 ---- get_method(rbx); // Test MDO to avoid the call if it is NULL. movptr(rax, Address(rbx, in_bytes(Method::method_data_offset()))); testptr(rax, rax); jcc(Assembler::zero, set_mdp); ! // rbx: method ! // _bcp_register: bcp ! call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rbx, _bcp_register); ! // rax: mdi // mdo is guaranteed to be non-zero here, we checked for it before the call. movptr(rbx, Address(rbx, in_bytes(Method::method_data_offset()))); addptr(rbx, in_bytes(MethodData::data_offset())); addptr(rax, rbx); bind(set_mdp);
*** 862,899 **** assert(ProfileInterpreter, "must be profiling interpreter"); #ifdef ASSERT Label verify_continue; push(rax); push(rbx); ! push(rcx); ! push(rdx); ! test_method_data_pointer(rcx, verify_continue); // If mdp is zero, continue get_method(rbx); // If the mdp is valid, it will point to a DataLayout header which is // consistent with the bcp. The converse is highly probable also. ! load_unsigned_short(rdx, Address(rcx, in_bytes(DataLayout::bci_offset()))); ! addptr(rdx, Address(rbx, Method::const_offset())); ! lea(rdx, Address(rdx, ConstMethod::codes_offset())); ! cmpptr(rdx, rsi); jcc(Assembler::equal, verify_continue); ! // rbx,: method ! // rsi: bcp ! // rcx: mdp ! call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), rbx, rsi, rcx); bind(verify_continue); ! pop(rdx); ! pop(rcx); pop(rbx); pop(rax); #endif // ASSERT } ! void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, int constant, Register value) { ! // %%% this seems to be used to store counter data which is surely 32bits ! // however 64bit side stores 64 bits which seems wrong assert(ProfileInterpreter, "must be profiling interpreter"); Address data(mdp_in, constant); movptr(data, value); } --- 1031,1072 ---- assert(ProfileInterpreter, "must be profiling interpreter"); #ifdef ASSERT Label verify_continue; push(rax); push(rbx); ! Register arg3_reg = LP64_ONLY(c_rarg3) NOT_LP64(rcx); ! Register arg2_reg = LP64_ONLY(c_rarg2) NOT_LP64(rdx); ! push(arg3_reg); ! push(arg2_reg); ! test_method_data_pointer(arg3_reg, verify_continue); // If mdp is zero, continue get_method(rbx); // If the mdp is valid, it will point to a DataLayout header which is // consistent with the bcp. The converse is highly probable also. ! load_unsigned_short(arg2_reg, ! Address(arg3_reg, in_bytes(DataLayout::bci_offset()))); ! addptr(arg2_reg, Address(rbx, Method::const_offset())); ! lea(arg2_reg, Address(arg2_reg, ConstMethod::codes_offset())); ! cmpptr(arg2_reg, _bcp_register); jcc(Assembler::equal, verify_continue); ! // rbx: method ! // _bcp_register: bcp ! // c_rarg3: mdp ! call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), ! rbx, _bcp_register, arg3_reg); bind(verify_continue); ! pop(arg2_reg); ! pop(arg3_reg); pop(rbx); pop(rax); #endif // ASSERT } ! void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, ! int constant, ! Register value) { assert(ProfileInterpreter, "must be profiling interpreter"); Address data(mdp_in, constant); movptr(data, value); }
*** 905,937 **** Address data(mdp_in, constant); increment_mdp_data_at(data, decrement); } - void InterpreterMacroAssembler::increment_mdp_data_at(Address data, bool decrement) { - - assert( DataLayout::counter_increment==1, "flow-free idiom only works with 1" ); assert(ProfileInterpreter, "must be profiling interpreter"); - // %%% 64bit treats this as 64 bit which seems unlikely if (decrement) { // Decrement the register. Set condition codes. ! addl(data, -DataLayout::counter_increment); // If the decrement causes the counter to overflow, stay negative Label L; jcc(Assembler::negative, L); ! addl(data, DataLayout::counter_increment); bind(L); } else { assert(DataLayout::counter_increment == 1, "flow-free idiom only works with 1"); // Increment the register. Set carry flag. ! addl(data, DataLayout::counter_increment); // If the increment causes the counter to overflow, pull back by 1. ! sbbl(data, 0); } } void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, --- 1078,1108 ---- Address data(mdp_in, constant); increment_mdp_data_at(data, decrement); } void InterpreterMacroAssembler::increment_mdp_data_at(Address data, bool decrement) { assert(ProfileInterpreter, "must be profiling interpreter"); + // %%% this does 64bit counters at best it is wasting space + // at worst it is a rare bug when counters overflow if (decrement) { // Decrement the register. Set condition codes. ! addptr(data, (int32_t) -DataLayout::counter_increment); // If the decrement causes the counter to overflow, stay negative Label L; jcc(Assembler::negative, L); ! addptr(data, (int32_t) DataLayout::counter_increment); bind(L); } else { assert(DataLayout::counter_increment == 1, "flow-free idiom only works with 1"); // Increment the register. Set carry flag. ! addptr(data, DataLayout::counter_increment); // If the increment causes the counter to overflow, pull back by 1. ! sbbptr(data, (int32_t)0); } } void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
*** 941,952 **** Address data(mdp_in, reg, Address::times_1, constant); increment_mdp_data_at(data, decrement); } ! ! void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in, int flag_byte_constant) { assert(ProfileInterpreter, "must be profiling interpreter"); int header_offset = in_bytes(DataLayout::header_offset()); int header_bits = DataLayout::flag_mask_to_header_mask(flag_byte_constant); // Set the flag orl(Address(mdp_in, header_offset), header_bits); --- 1112,1123 ---- Address data(mdp_in, reg, Address::times_1, constant); increment_mdp_data_at(data, decrement); } ! void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in, ! int flag_byte_constant) { assert(ProfileInterpreter, "must be profiling interpreter"); int header_offset = in_bytes(DataLayout::header_offset()); int header_bits = DataLayout::flag_mask_to_header_mask(flag_byte_constant); // Set the flag orl(Address(mdp_in, header_offset), header_bits);
*** 969,1010 **** } jcc(Assembler::notEqual, not_equal_continue); } ! void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, int offset_of_disp) { assert(ProfileInterpreter, "must be profiling interpreter"); Address disp_address(mdp_in, offset_of_disp); ! addptr(mdp_in,disp_address); movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in); } ! void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, Register reg, int offset_of_disp) { assert(ProfileInterpreter, "must be profiling interpreter"); Address disp_address(mdp_in, reg, Address::times_1, offset_of_disp); addptr(mdp_in, disp_address); movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in); } ! void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, int constant) { assert(ProfileInterpreter, "must be profiling interpreter"); addptr(mdp_in, constant); movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in); } void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) { assert(ProfileInterpreter, "must be profiling interpreter"); push(return_bci); // save/restore across call_VM ! call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), return_bci); pop(return_bci); } ! void InterpreterMacroAssembler::profile_taken_branch(Register mdp, Register bumped_count) { if (ProfileInterpreter) { Label profile_continue; // If no method data exists, go to profile_continue. // Otherwise, assign to mdp --- 1140,1188 ---- } jcc(Assembler::notEqual, not_equal_continue); } ! void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, ! int offset_of_disp) { assert(ProfileInterpreter, "must be profiling interpreter"); Address disp_address(mdp_in, offset_of_disp); ! addptr(mdp_in, disp_address); movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in); } ! void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, ! Register reg, ! int offset_of_disp) { assert(ProfileInterpreter, "must be profiling interpreter"); Address disp_address(mdp_in, reg, Address::times_1, offset_of_disp); addptr(mdp_in, disp_address); movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in); } ! void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, ! int constant) { assert(ProfileInterpreter, "must be profiling interpreter"); addptr(mdp_in, constant); movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in); } void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) { assert(ProfileInterpreter, "must be profiling interpreter"); push(return_bci); // save/restore across call_VM ! call_VM(noreg, ! CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), ! return_bci); pop(return_bci); } ! void InterpreterMacroAssembler::profile_taken_branch(Register mdp, ! Register bumped_count) { if (ProfileInterpreter) { Label profile_continue; // If no method data exists, go to profile_continue. // Otherwise, assign to mdp
*** 1012,1032 **** // We are taking a branch. Increment the taken count. // We inline increment_mdp_data_at to return bumped_count in a register //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset())); Address data(mdp, in_bytes(JumpData::taken_offset())); ! ! // %%% 64bit treats these cells as 64 bit but they seem to be 32 bit ! movl(bumped_count,data); ! assert( DataLayout::counter_increment==1, "flow-free idiom only works with 1" ); ! addl(bumped_count, DataLayout::counter_increment); ! sbbl(bumped_count, 0); ! movl(data,bumped_count); // Store back out // The method data pointer needs to be updated to reflect the new target. update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset())); ! bind (profile_continue); } } void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) { --- 1190,1209 ---- // We are taking a branch. Increment the taken count. // We inline increment_mdp_data_at to return bumped_count in a register //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset())); Address data(mdp, in_bytes(JumpData::taken_offset())); ! movptr(bumped_count, data); ! assert(DataLayout::counter_increment == 1, ! "flow-free idiom only works with 1"); ! addptr(bumped_count, DataLayout::counter_increment); ! sbbptr(bumped_count, 0); ! movptr(data, bumped_count); // Store back out // The method data pointer needs to be updated to reflect the new target. update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset())); ! bind(profile_continue); } } void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
*** 1037,1049 **** test_method_data_pointer(mdp, profile_continue); // We are taking a branch. Increment the not taken count. increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset())); ! // The method data pointer needs to be updated to correspond to the next bytecode update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size())); ! bind (profile_continue); } } void InterpreterMacroAssembler::profile_call(Register mdp) { if (ProfileInterpreter) { --- 1214,1227 ---- test_method_data_pointer(mdp, profile_continue); // We are taking a branch. Increment the not taken count. increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset())); ! // The method data pointer needs to be updated to correspond to ! // the next bytecode update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size())); ! bind(profile_continue); } } void InterpreterMacroAssembler::profile_call(Register mdp) { if (ProfileInterpreter) {
*** 1055,1065 **** // We are making a call. Increment the count. increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); // The method data pointer needs to be updated to reflect the new target. update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size())); ! bind (profile_continue); } } void InterpreterMacroAssembler::profile_final_call(Register mdp) { --- 1233,1243 ---- // We are making a call. Increment the count. increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); // The method data pointer needs to be updated to reflect the new target. update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size())); ! bind(profile_continue); } } void InterpreterMacroAssembler::profile_final_call(Register mdp) {
*** 1071,1087 **** // We are making a call. Increment the count. increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); // The method data pointer needs to be updated to reflect the new target. ! update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size())); ! bind (profile_continue); } } ! void InterpreterMacroAssembler::profile_virtual_call(Register receiver, Register mdp, Register reg2, bool receiver_can_be_null) { if (ProfileInterpreter) { Label profile_continue; --- 1249,1268 ---- // We are making a call. Increment the count. increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); // The method data pointer needs to be updated to reflect the new target. ! update_mdp_by_constant(mdp, ! in_bytes(VirtualCallData:: ! virtual_call_data_size())); ! bind(profile_continue); } } ! void InterpreterMacroAssembler::profile_virtual_call(Register receiver, ! Register mdp, Register reg2, bool receiver_can_be_null) { if (ProfileInterpreter) { Label profile_continue;
*** 1109,1119 **** virtual_call_data_size())); bind(profile_continue); } } ! void InterpreterMacroAssembler::record_klass_in_profile_helper( Register receiver, Register mdp, Register reg2, int start_row, Label& done, bool is_virtual_call) { if (TypeProfileWidth == 0) { --- 1290,1310 ---- virtual_call_data_size())); bind(profile_continue); } } ! // This routine creates a state machine for updating the multi-row ! // type profile at a virtual call site (or other type-sensitive bytecode). ! // The machine visits each row (of receiver/count) until the receiver type ! // is found, or until it runs out of rows. At the same time, it remembers ! // the location of the first empty row. (An empty row records null for its ! // receiver, and can be allocated for a newly-observed receiver type.) ! // Because there are two degrees of freedom in the state, a simple linear ! // search will not work; it must be a decision tree. Hence this helper ! // function is recursive, to generate the required tree structured code. ! // It's the interpreter, so we are trading off code space for speed. ! // See below for example code. void InterpreterMacroAssembler::record_klass_in_profile_helper( Register receiver, Register mdp, Register reg2, int start_row, Label& done, bool is_virtual_call) { if (TypeProfileWidth == 0) {
*** 1146,1156 **** int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row)); increment_mdp_data_at(mdp, count_offset); jmp(done); bind(next_test); ! if (row == start_row) { Label found_null; // Failed the equality check on receiver[n]... Test for null. testptr(reg2, reg2); if (start_row == last_row) { // The only thing left to do is handle the null case. --- 1337,1347 ---- int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row)); increment_mdp_data_at(mdp, count_offset); jmp(done); bind(next_test); ! if (test_for_null_also) { Label found_null; // Failed the equality check on receiver[n]... Test for null. testptr(reg2, reg2); if (start_row == last_row) { // The only thing left to do is handle the null case.
*** 1183,1199 **** // Fill in the receiver field and increment the count. int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row)); set_mdp_data_at(mdp, recvr_offset, receiver); int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row)); ! movptr(reg2, (intptr_t)DataLayout::counter_increment); set_mdp_data_at(mdp, count_offset, reg2); if (start_row > 0) { jmp(done); } } void InterpreterMacroAssembler::record_klass_in_profile(Register receiver, Register mdp, Register reg2, bool is_virtual_call) { assert(ProfileInterpreter, "must be profiling"); Label done; --- 1374,1414 ---- // Fill in the receiver field and increment the count. int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row)); set_mdp_data_at(mdp, recvr_offset, receiver); int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row)); ! movl(reg2, DataLayout::counter_increment); set_mdp_data_at(mdp, count_offset, reg2); if (start_row > 0) { jmp(done); } } + // Example state machine code for three profile rows: + // // main copy of decision tree, rooted at row[1] + // if (row[0].rec == rec) { row[0].incr(); goto done; } + // if (row[0].rec != NULL) { + // // inner copy of decision tree, rooted at row[1] + // if (row[1].rec == rec) { row[1].incr(); goto done; } + // if (row[1].rec != NULL) { + // // degenerate decision tree, rooted at row[2] + // if (row[2].rec == rec) { row[2].incr(); goto done; } + // if (row[2].rec != NULL) { count.incr(); goto done; } // overflow + // row[2].init(rec); goto done; + // } else { + // // remember row[1] is empty + // if (row[2].rec == rec) { row[2].incr(); goto done; } + // row[1].init(rec); goto done; + // } + // } else { + // // remember row[0] is empty + // if (row[1].rec == rec) { row[1].incr(); goto done; } + // if (row[2].rec == rec) { row[2].incr(); goto done; } + // row[0].init(rec); goto done; + // } + // done: + void InterpreterMacroAssembler::record_klass_in_profile(Register receiver, Register mdp, Register reg2, bool is_virtual_call) { assert(ProfileInterpreter, "must be profiling"); Label done;
*** 1201,1211 **** record_klass_in_profile_helper(receiver, mdp, reg2, 0, done, is_virtual_call); bind (done); } ! void InterpreterMacroAssembler::profile_ret(Register return_bci, Register mdp) { if (ProfileInterpreter) { Label profile_continue; uint row; // If no method data exists, go to profile_continue. --- 1416,1427 ---- record_klass_in_profile_helper(receiver, mdp, reg2, 0, done, is_virtual_call); bind (done); } ! void InterpreterMacroAssembler::profile_ret(Register return_bci, ! Register mdp) { if (ProfileInterpreter) { Label profile_continue; uint row; // If no method data exists, go to profile_continue.
*** 1216,1240 **** for (row = 0; row < RetData::row_limit(); row++) { Label next_test; // See if return_bci is equal to bci[n]: ! test_mdp_data_at(mdp, in_bytes(RetData::bci_offset(row)), return_bci, ! noreg, next_test); // return_bci is equal to bci[n]. Increment the count. increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row))); // The method data pointer needs to be updated to reflect the new target. ! update_mdp_by_offset(mdp, in_bytes(RetData::bci_displacement_offset(row))); jmp(profile_continue); bind(next_test); } update_mdp_for_ret(return_bci); ! bind (profile_continue); } } void InterpreterMacroAssembler::profile_null_seen(Register mdp) { --- 1432,1459 ---- for (row = 0; row < RetData::row_limit(); row++) { Label next_test; // See if return_bci is equal to bci[n]: ! test_mdp_data_at(mdp, ! in_bytes(RetData::bci_offset(row)), ! return_bci, noreg, ! next_test); // return_bci is equal to bci[n]. Increment the count. increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row))); // The method data pointer needs to be updated to reflect the new target. ! update_mdp_by_offset(mdp, ! in_bytes(RetData::bci_displacement_offset(row))); jmp(profile_continue); bind(next_test); } update_mdp_for_ret(return_bci); ! bind(profile_continue); } } void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
*** 1251,1261 **** if (TypeProfileCasts) { mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); } update_mdp_by_constant(mdp, mdp_delta); ! bind (profile_continue); } } void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) { --- 1470,1480 ---- if (TypeProfileCasts) { mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); } update_mdp_by_constant(mdp, mdp_delta); ! bind(profile_continue); } } void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) {
*** 1275,1286 **** bind (profile_continue); } } ! void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) ! { if (ProfileInterpreter) { Label profile_continue; // If no method data exists, go to profile_continue. test_method_data_pointer(mdp, profile_continue); --- 1494,1504 ---- bind (profile_continue); } } ! void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) { if (ProfileInterpreter) { Label profile_continue; // If no method data exists, go to profile_continue. test_method_data_pointer(mdp, profile_continue);
*** 1290,1301 **** if (TypeProfileCasts) { mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); // Record the object type. record_klass_in_profile(klass, mdp, reg2, false); ! assert(reg2 == rdi, "we know how to fix this blown reg"); ! restore_locals(); // Restore EDI } update_mdp_by_constant(mdp, mdp_delta); bind(profile_continue); } --- 1508,1519 ---- if (TypeProfileCasts) { mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); // Record the object type. record_klass_in_profile(klass, mdp, reg2, false); ! NOT_LP64(assert(reg2 == rdi, "we know how to fix this blown reg");) ! NOT_LP64(restore_locals();) // Restore EDI } update_mdp_by_constant(mdp, mdp_delta); bind(profile_continue); }
*** 1308,1363 **** // If no method data exists, go to profile_continue. test_method_data_pointer(mdp, profile_continue); // Update the default case count ! increment_mdp_data_at(mdp, in_bytes(MultiBranchData::default_count_offset())); // The method data pointer needs to be updated. ! update_mdp_by_offset(mdp, in_bytes(MultiBranchData::default_displacement_offset())); ! bind (profile_continue); } } ! void InterpreterMacroAssembler::profile_switch_case(Register index, Register mdp, Register reg2) { if (ProfileInterpreter) { Label profile_continue; // If no method data exists, go to profile_continue. test_method_data_pointer(mdp, profile_continue); ! // Build the base (index * per_case_size_in_bytes()) + case_array_offset_in_bytes() ! movptr(reg2, (intptr_t)in_bytes(MultiBranchData::per_case_size())); ! // index is positive and so should have correct value if this code were ! // used on 64bits ! imulptr(index, reg2); ! addptr(index, in_bytes(MultiBranchData::case_array_offset())); // Update the case count ! increment_mdp_data_at(mdp, index, in_bytes(MultiBranchData::relative_count_offset())); // The method data pointer needs to be updated. ! update_mdp_by_offset(mdp, index, in_bytes(MultiBranchData::relative_displacement_offset())); ! bind (profile_continue); } } - #endif // !CC_INTERP - void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) { ! if (state == atos) MacroAssembler::verify_oop(reg); } - - #ifndef CC_INTERP void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) { if (state == ftos || state == dtos) MacroAssembler::verify_FPU(stack_depth); } // Jump if ((*counter_addr += increment) & mask) satisfies the condition. void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr, int increment, Address mask, --- 1526,1590 ---- // If no method data exists, go to profile_continue. test_method_data_pointer(mdp, profile_continue); // Update the default case count ! increment_mdp_data_at(mdp, ! in_bytes(MultiBranchData::default_count_offset())); // The method data pointer needs to be updated. ! update_mdp_by_offset(mdp, ! in_bytes(MultiBranchData:: ! default_displacement_offset())); ! bind(profile_continue); } } ! void InterpreterMacroAssembler::profile_switch_case(Register index, ! Register mdp, ! Register reg2) { if (ProfileInterpreter) { Label profile_continue; // If no method data exists, go to profile_continue. test_method_data_pointer(mdp, profile_continue); ! // Build the base (index * per_case_size_in_bytes()) + ! // case_array_offset_in_bytes() ! movl(reg2, in_bytes(MultiBranchData::per_case_size())); ! imulptr(index, reg2); // XXX l ? ! addptr(index, in_bytes(MultiBranchData::case_array_offset())); // XXX l ? // Update the case count ! increment_mdp_data_at(mdp, ! index, ! in_bytes(MultiBranchData::relative_count_offset())); // The method data pointer needs to be updated. ! update_mdp_by_offset(mdp, ! index, ! in_bytes(MultiBranchData:: ! relative_displacement_offset())); ! bind(profile_continue); } } void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) { ! if (state == atos) { ! MacroAssembler::verify_oop(reg); ! } } void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) { + #ifndef _LP64 if (state == ftos || state == dtos) MacroAssembler::verify_FPU(stack_depth); + #endif } // Jump if ((*counter_addr += increment) & mask) satisfies the condition. void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr, int increment, Address mask,
*** 1371,1444 **** andl(scratch, mask); jcc(cond, *where); } #endif /* CC_INTERP */ - void InterpreterMacroAssembler::notify_method_entry() { // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to // track stack depth. If it is possible to enter interp_only_mode we add // the code to check if the event should be sent. if (JvmtiExport::can_post_interpreter_events()) { Label L; ! get_thread(rcx); ! movl(rcx, Address(rcx, JavaThread::interp_only_mode_offset())); ! testl(rcx,rcx); jcc(Assembler::zero, L); ! call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry)); bind(L); } { ! SkipIfEqual skip_if(this, &DTraceMethodProbes, 0); ! get_thread(rcx); ! get_method(rbx); ! call_VM_leaf( ! CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), rcx, rbx); } // RedefineClasses() tracing support for obsolete method entry if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) { ! get_thread(rcx); ! get_method(rbx); call_VM_leaf( CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry), ! rcx, rbx); } } void InterpreterMacroAssembler::notify_method_exit( TosState state, NotifyMethodExitMode mode) { // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to // track stack depth. If it is possible to enter interp_only_mode we add // the code to check if the event should be sent. if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) { Label L; // Note: frame::interpreter_frame_result has a dependency on how the // method result is saved across the call to post_method_exit. If this // is changed then the interpreter_frame_result implementation will // need to be updated too. // For c++ interpreter the result is always stored at a known location in the frame // template interpreter will leave it on the top of the stack. NOT_CC_INTERP(push(state);) ! get_thread(rcx); ! movl(rcx, Address(rcx, JavaThread::interp_only_mode_offset())); ! testl(rcx,rcx); jcc(Assembler::zero, L); ! call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit)); bind(L); ! NOT_CC_INTERP(pop(state);) } { ! SkipIfEqual skip_if(this, &DTraceMethodProbes, 0); NOT_CC_INTERP(push(state)); ! get_thread(rbx); ! get_method(rcx); ! call_VM_leaf( ! CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), ! rbx, rcx); NOT_CC_INTERP(pop(state)); } } --- 1598,1675 ---- andl(scratch, mask); jcc(cond, *where); } #endif /* CC_INTERP */ void InterpreterMacroAssembler::notify_method_entry() { // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to // track stack depth. If it is possible to enter interp_only_mode we add // the code to check if the event should be sent. + Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx); + Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rbx); if (JvmtiExport::can_post_interpreter_events()) { Label L; ! NOT_LP64(get_thread(rthread);) ! movl(rdx, Address(rthread, JavaThread::interp_only_mode_offset())); ! testl(rdx, rdx); jcc(Assembler::zero, L); ! call_VM(noreg, CAST_FROM_FN_PTR(address, ! InterpreterRuntime::post_method_entry)); bind(L); } { ! SkipIfEqual skip(this, &DTraceMethodProbes, false); ! NOT_LP64(get_thread(rthread);) ! get_method(rarg); ! call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), ! rthread, rarg); } // RedefineClasses() tracing support for obsolete method entry if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) { ! NOT_LP64(get_thread(rthread);) ! get_method(rarg); call_VM_leaf( CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry), ! rthread, rarg); } } void InterpreterMacroAssembler::notify_method_exit( TosState state, NotifyMethodExitMode mode) { // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to // track stack depth. If it is possible to enter interp_only_mode we add // the code to check if the event should be sent. + Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx); + Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rbx); if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) { Label L; // Note: frame::interpreter_frame_result has a dependency on how the // method result is saved across the call to post_method_exit. If this // is changed then the interpreter_frame_result implementation will // need to be updated too. // For c++ interpreter the result is always stored at a known location in the frame // template interpreter will leave it on the top of the stack. NOT_CC_INTERP(push(state);) ! get_thread(rthread); ! movl(rdx, Address(rthread, JavaThread::interp_only_mode_offset())); ! testl(rdx, rdx); jcc(Assembler::zero, L); ! call_VM(noreg, ! CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit)); bind(L); ! NOT_CC_INTERP(pop(state)); } { ! SkipIfEqual skip(this, &DTraceMethodProbes, false); NOT_CC_INTERP(push(state)); ! get_thread(rthread); ! get_method(rarg); ! call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), ! rthread, rarg); NOT_CC_INTERP(pop(state)); } }
src/cpu/x86/vm/interp_masm_x86_32.cpp
Index Unified diffs Context diffs Sdiffs Patch New Old Previous File Next File