src/cpu/x86/vm/interp_masm_x86.cpp
Index Unified diffs Context diffs Sdiffs Patch New Old Previous File Next File
*** old/src/cpu/x86/vm/interp_masm_x86.cpp	Mon Mar  9 16:17:33 2015
--- new/src/cpu/x86/vm/interp_masm_x86.cpp	Mon Mar  9 16:17:32 2015

*** 23,33 **** --- 23,46 ---- */ #include "precompiled.hpp" #include "interp_masm_x86.hpp" #include "interpreter/interpreter.hpp" + #include "interpreter/interpreterRuntime.hpp" + #include "oops/arrayOop.hpp" + #include "oops/markOop.hpp" #include "oops/methodData.hpp" + #include "oops/method.hpp" + #include "prims/jvmtiExport.hpp" + #include "prims/jvmtiRedefineClassesTrace.hpp" + #include "prims/jvmtiThreadState.hpp" + #include "runtime/basicLock.hpp" + #include "runtime/biasedLocking.hpp" + #include "runtime/sharedRuntime.hpp" + #include "runtime/thread.inline.hpp" + + // Implementation of InterpreterMacroAssembler #ifndef CC_INTERP void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr) { Label update, next, none;
*** 225,229 **** --- 238,1876 ---- bind(profile_continue); } } #endif + + #ifdef CC_INTERP + void InterpreterMacroAssembler::get_method(Register reg) { + movptr(reg, Address(rbp, -(sizeof(BytecodeInterpreter) + 2 * wordSize))); + movptr(reg, Address(reg, byte_offset_of(BytecodeInterpreter, _method))); + } + #endif // CC_INTERP + + #ifndef CC_INTERP + void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point, + int number_of_arguments) { + // interpreter specific + // + // Note: No need to save/restore bcp & locals (r13 & r14) pointer + // since these are callee saved registers and no blocking/ + // GC can happen in leaf calls. + // Further Note: DO NOT save/restore bcp/locals. If a caller has + // already saved them so that it can use esi/edi as temporaries + // then a save/restore here will DESTROY the copy the caller + // saved! There used to be a save_bcp() that only happened in + // the ASSERT path (no restore_bcp). Which caused bizarre failures + // when jvm built with ASSERTs. + #ifdef ASSERT + { + Label L; + cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD); + jcc(Assembler::equal, L); + stop("InterpreterMacroAssembler::call_VM_leaf_base:" + " last_sp != NULL"); + bind(L); + } + #endif + // super call + MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments); + // interpreter specific + // Used to ASSERT that r13/r14 were equal to frame's bcp/locals + // but since they may not have been saved (and we don't want to + // save them here (see note above) the assert is invalid. + } + + void InterpreterMacroAssembler::call_VM_base(Register oop_result, + Register java_thread, + Register last_java_sp, + address entry_point, + int number_of_arguments, + bool check_exceptions) { + // interpreter specific + // + // Note: Could avoid restoring locals ptr (callee saved) - however doesn't + // really make a difference for these runtime calls, since they are + // slow anyway. Btw., bcp must be saved/restored since it may change + // due to GC. + NOT_LP64(assert(java_thread == noreg , "not expecting a precomputed java thread");) + save_bcp(); + #ifdef ASSERT + { + Label L; + cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD); + jcc(Assembler::equal, L); + stop("InterpreterMacroAssembler::call_VM_leaf_base:" + " last_sp != NULL"); + bind(L); + } + #endif /* ASSERT */ + // super call + MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp, + entry_point, number_of_arguments, + check_exceptions); + // interpreter specific + restore_bcp(); + restore_locals(); + } + + void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) { + if (JvmtiExport::can_pop_frame()) { + Label L; + // Initiate popframe handling only if it is not already being + // processed. If the flag has the popframe_processing bit set, it + // means that this code is called *during* popframe handling - we + // don't want to reenter. + // This method is only called just after the call into the vm in + // call_VM_base, so the arg registers are available. + Register pop_cond = NOT_LP64(java_thread) // Not clear if any other register is available on 32 bit + LP64_ONLY(c_rarg0); + movl(pop_cond, Address(java_thread, JavaThread::popframe_condition_offset())); + testl(pop_cond, JavaThread::popframe_pending_bit); + jcc(Assembler::zero, L); + testl(pop_cond, JavaThread::popframe_processing_bit); + jcc(Assembler::notZero, L); + // Call Interpreter::remove_activation_preserving_args_entry() to get the + // address of the same-named entrypoint in the generated interpreter code. + call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry)); + jmp(rax); + bind(L); + NOT_LP64(get_thread(java_thread);) + } + } + + void InterpreterMacroAssembler::load_earlyret_value(TosState state) { + Register thread = LP64_ONLY(r15_thread) NOT_LP64(rcx); + NOT_LP64(get_thread(thread);) + movptr(rcx, Address(thread, JavaThread::jvmti_thread_state_offset())); + const Address tos_addr(rcx, JvmtiThreadState::earlyret_tos_offset()); + const Address oop_addr(rcx, JvmtiThreadState::earlyret_oop_offset()); + const Address val_addr(rcx, JvmtiThreadState::earlyret_value_offset()); + #ifdef _LP64 + switch (state) { + case atos: movptr(rax, oop_addr); + movptr(oop_addr, (int32_t)NULL_WORD); + verify_oop(rax, state); break; + case ltos: movptr(rax, val_addr); break; + case btos: // fall through + case ctos: // fall through + case stos: // fall through + case itos: movl(rax, val_addr); break; + case ftos: movflt(xmm0, val_addr); break; + case dtos: movdbl(xmm0, val_addr); break; + case vtos: /* nothing to do */ break; + default : ShouldNotReachHere(); + } + // Clean up tos value in the thread object + movl(tos_addr, (int) ilgl); + movl(val_addr, (int32_t) NULL_WORD); + #else + const Address val_addr1(rcx, JvmtiThreadState::earlyret_value_offset() + + in_ByteSize(wordSize)); + switch (state) { + case atos: movptr(rax, oop_addr); + movptr(oop_addr, NULL_WORD); + verify_oop(rax, state); break; + case ltos: + movl(rdx, val_addr1); // fall through + case btos: // fall through + case ctos: // fall through + case stos: // fall through + case itos: movl(rax, val_addr); break; + case ftos: fld_s(val_addr); break; + case dtos: fld_d(val_addr); break; + case vtos: /* nothing to do */ break; + default : ShouldNotReachHere(); + } + #endif // _LP64 + // Clean up tos value in the thread object + movl(tos_addr, (int32_t) ilgl); + movptr(val_addr, NULL_WORD); + NOT_LP64(movptr(val_addr1, NULL_WORD);) + } + + + void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) { + if (JvmtiExport::can_force_early_return()) { + Label L; + Register tmp = LP64_ONLY(c_rarg0) NOT_LP64(java_thread); + Register rthread = LP64_ONLY(r15_thread) NOT_LP64(java_thread); + + movptr(tmp, Address(rthread, JavaThread::jvmti_thread_state_offset())); + testptr(tmp, tmp); + jcc(Assembler::zero, L); // if (thread->jvmti_thread_state() == NULL) exit; + + // Initiate earlyret handling only if it is not already being processed. + // If the flag has the earlyret_processing bit set, it means that this code + // is called *during* earlyret handling - we don't want to reenter. + movl(tmp, Address(tmp, JvmtiThreadState::earlyret_state_offset())); + cmpl(tmp, JvmtiThreadState::earlyret_pending); + jcc(Assembler::notEqual, L); + + // Call Interpreter::remove_activation_early_entry() to get the address of the + // same-named entrypoint in the generated interpreter code. + NOT_LP64(get_thread(java_thread);) + movptr(tmp, Address(rthread, JavaThread::jvmti_thread_state_offset())); + #ifdef _LP64 + movl(tmp, Address(tmp, JvmtiThreadState::earlyret_tos_offset())); + call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), tmp); + #else + pushl(Address(tmp, JvmtiThreadState::earlyret_tos_offset())); + call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), 1); + #endif // _LP64 + jmp(rax); + bind(L); + NOT_LP64(get_thread(java_thread);) + } + } + + void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(Register reg, int bcp_offset) { + assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode"); + load_unsigned_short(reg, Address(_bcp_register, bcp_offset)); + bswapl(reg); + shrl(reg, 16); + } + + void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index, + int bcp_offset, + size_t index_size) { + assert(bcp_offset > 0, "bcp is still pointing to start of bytecode"); + if (index_size == sizeof(u2)) { + load_unsigned_short(index, Address(_bcp_register, bcp_offset)); + } else if (index_size == sizeof(u4)) { + movl(index, Address(_bcp_register, bcp_offset)); + // Check if the secondary index definition is still ~x, otherwise + // we have to change the following assembler code to calculate the + // plain index. + assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line"); + notl(index); // convert to plain index + } else if (index_size == sizeof(u1)) { + load_unsigned_byte(index, Address(_bcp_register, bcp_offset)); + } else { + ShouldNotReachHere(); + } + } + + void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, + Register index, + int bcp_offset, + size_t index_size) { + assert_different_registers(cache, index); + get_cache_index_at_bcp(index, bcp_offset, index_size); + movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize)); + assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below"); + // convert from field index to ConstantPoolCacheEntry index + assert(exact_log2(in_words(ConstantPoolCacheEntry::size())) == 2, "else change next line"); + shll(index, 2); + } + + void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache, + Register index, + Register bytecode, + int byte_no, + int bcp_offset, + size_t index_size) { + get_cache_and_index_at_bcp(cache, index, bcp_offset, index_size); + // We use a 32-bit load here since the layout of 64-bit words on + // little-endian machines allow us that. + movl(bytecode, Address(cache, index, Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset())); + const int shift_count = (1 + byte_no) * BitsPerByte; + assert((byte_no == TemplateTable::f1_byte && shift_count == ConstantPoolCacheEntry::bytecode_1_shift) || + (byte_no == TemplateTable::f2_byte && shift_count == ConstantPoolCacheEntry::bytecode_2_shift), + "correct shift count"); + shrl(bytecode, shift_count); + assert(ConstantPoolCacheEntry::bytecode_1_mask == ConstantPoolCacheEntry::bytecode_2_mask, "common mask"); + andl(bytecode, ConstantPoolCacheEntry::bytecode_1_mask); + } + + void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, + Register tmp, + int bcp_offset, + size_t index_size) { + assert(cache != tmp, "must use different register"); + get_cache_index_at_bcp(tmp, bcp_offset, index_size); + assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below"); + // convert from field index to ConstantPoolCacheEntry index + // and from word offset to byte offset + assert(exact_log2(in_bytes(ConstantPoolCacheEntry::size_in_bytes())) == 2 + LogBytesPerWord, "else change next line"); + shll(tmp, 2 + LogBytesPerWord); + movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize)); + // skip past the header + addptr(cache, in_bytes(ConstantPoolCache::base_offset())); + addptr(cache, tmp); // construct pointer to cache entry + } + + // Load object from cpool->resolved_references(index) + void InterpreterMacroAssembler::load_resolved_reference_at_index( + Register result, Register index) { + assert_different_registers(result, index); + // convert from field index to resolved_references() index and from + // word index to byte offset. Since this is a java object, it can be compressed + Register tmp = index; // reuse + shll(tmp, LogBytesPerHeapOop); + + get_constant_pool(result); + // load pointer for resolved_references[] objArray + movptr(result, Address(result, ConstantPool::resolved_references_offset_in_bytes())); + // JNIHandles::resolve(obj); + movptr(result, Address(result, 0)); + // Add in the index + addptr(result, tmp); + load_heap_oop(result, Address(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT))); + } + + + // Generate a subtype check: branch to ok_is_subtype if sub_klass is a + // subtype of super_klass. + // + // Args: + // rax: superklass + // Rsub_klass: subklass + // + // Kills: + // rcx, rdi + void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass, + Label& ok_is_subtype) { + assert(Rsub_klass != rax, "rax holds superklass"); + LP64_ONLY(assert(Rsub_klass != r14, "r14 holds locals");) + LP64_ONLY(assert(Rsub_klass != r13, "r13 holds bcp");) + assert(Rsub_klass != rcx, "rcx holds 2ndary super array length"); + assert(Rsub_klass != rdi, "rdi holds 2ndary super array scan ptr"); + + // Profile the not-null value's klass. + profile_typecheck(rcx, Rsub_klass, rdi); // blows rcx, reloads rdi + + // Do the check. + check_klass_subtype(Rsub_klass, rax, rcx, ok_is_subtype); // blows rcx + + // Profile the failure of the check. + profile_typecheck_failed(rcx); // blows rcx + } + + + #ifndef _LP64 + void InterpreterMacroAssembler::f2ieee() { + if (IEEEPrecision) { + fstp_s(Address(rsp, 0)); + fld_s(Address(rsp, 0)); + } + } + + + void InterpreterMacroAssembler::d2ieee() { + if (IEEEPrecision) { + fstp_d(Address(rsp, 0)); + fld_d(Address(rsp, 0)); + } + } + #endif // _LP64 + + // Java Expression Stack + + void InterpreterMacroAssembler::pop_ptr(Register r) { + pop(r); + } + + void InterpreterMacroAssembler::push_ptr(Register r) { + push(r); + } + + void InterpreterMacroAssembler::push_i(Register r) { + push(r); + } + + #ifdef _LP64 + void InterpreterMacroAssembler::pop_i(Register r) { + // XXX can't use pop currently, upper half non clean + movl(r, Address(rsp, 0)); + addptr(rsp, wordSize); + } + + void InterpreterMacroAssembler::pop_l(Register r) { + movq(r, Address(rsp, 0)); + addptr(rsp, 2 * Interpreter::stackElementSize); + } + + void InterpreterMacroAssembler::pop_f(XMMRegister r) { + movflt(r, Address(rsp, 0)); + addptr(rsp, wordSize); + } + + void InterpreterMacroAssembler::pop_d(XMMRegister r) { + movdbl(r, Address(rsp, 0)); + addptr(rsp, 2 * Interpreter::stackElementSize); + } + + void InterpreterMacroAssembler::push_l(Register r) { + subptr(rsp, 2 * wordSize); + movq(Address(rsp, 0), r); + } + + void InterpreterMacroAssembler::push_f(XMMRegister r) { + subptr(rsp, wordSize); + movflt(Address(rsp, 0), r); + } + + void InterpreterMacroAssembler::push_d(XMMRegister r) { + subptr(rsp, 2 * wordSize); + movdbl(Address(rsp, 0), r); + } + + void InterpreterMacroAssembler::pop(TosState state) { + switch (state) { + case atos: pop_ptr(); break; + case btos: + case ctos: + case stos: + case itos: pop_i(); break; + case ltos: pop_l(); break; + case ftos: pop_f(); break; + case dtos: pop_d(); break; + case vtos: /* nothing to do */ break; + default: ShouldNotReachHere(); + } + verify_oop(rax, state); + } + + void InterpreterMacroAssembler::push(TosState state) { + verify_oop(rax, state); + switch (state) { + case atos: push_ptr(); break; + case btos: + case ctos: + case stos: + case itos: push_i(); break; + case ltos: push_l(); break; + case ftos: push_f(); break; + case dtos: push_d(); break; + case vtos: /* nothing to do */ break; + default : ShouldNotReachHere(); + } + } + #else + void InterpreterMacroAssembler::pop_i(Register r) { + pop(r); + } + + void InterpreterMacroAssembler::pop_l(Register lo, Register hi) { + pop(lo); + pop(hi); + } + + void InterpreterMacroAssembler::pop_f() { + fld_s(Address(rsp, 0)); + addptr(rsp, 1 * wordSize); + } + + void InterpreterMacroAssembler::pop_d() { + fld_d(Address(rsp, 0)); + addptr(rsp, 2 * wordSize); + } + + + void InterpreterMacroAssembler::pop(TosState state) { + switch (state) { + case atos: pop_ptr(rax); break; + case btos: // fall through + case ctos: // fall through + case stos: // fall through + case itos: pop_i(rax); break; + case ltos: pop_l(rax, rdx); break; + case ftos: pop_f(); break; + case dtos: pop_d(); break; + case vtos: /* nothing to do */ break; + default : ShouldNotReachHere(); + } + verify_oop(rax, state); + } + + + void InterpreterMacroAssembler::push_l(Register lo, Register hi) { + push(hi); + push(lo); + } + + void InterpreterMacroAssembler::push_f() { + // Do not schedule for no AGI! Never write beyond rsp! + subptr(rsp, 1 * wordSize); + fstp_s(Address(rsp, 0)); + } + + void InterpreterMacroAssembler::push_d(Register r) { + // Do not schedule for no AGI! Never write beyond rsp! + subptr(rsp, 2 * wordSize); + fstp_d(Address(rsp, 0)); + } + + + void InterpreterMacroAssembler::push(TosState state) { + verify_oop(rax, state); + switch (state) { + case atos: push_ptr(rax); break; + case btos: // fall through + case ctos: // fall through + case stos: // fall through + case itos: push_i(rax); break; + case ltos: push_l(rax, rdx); break; + case ftos: push_f(); break; + case dtos: push_d(rax); break; + case vtos: /* nothing to do */ break; + default : ShouldNotReachHere(); + } + } + #endif // _LP64 + + + // Helpers for swap and dup + void InterpreterMacroAssembler::load_ptr(int n, Register val) { + movptr(val, Address(rsp, Interpreter::expr_offset_in_bytes(n))); + } + + void InterpreterMacroAssembler::store_ptr(int n, Register val) { + movptr(Address(rsp, Interpreter::expr_offset_in_bytes(n)), val); + } + + + void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() { + // set sender sp + lea(_bcp_register, Address(rsp, wordSize)); + // record last_sp + movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), _bcp_register); + } + + + // Jump to from_interpreted entry of a call unless single stepping is possible + // in this thread in which case we must call the i2i entry + void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) { + prepare_to_jump_from_interpreted(); + + if (JvmtiExport::can_post_interpreter_events()) { + Label run_compiled_code; + // JVMTI events, such as single-stepping, are implemented partly by avoiding running + // compiled code in threads for which the event is enabled. Check here for + // interp_only_mode if these events CAN be enabled. + // interp_only is an int, on little endian it is sufficient to test the byte only + // Is a cmpl faster? + LP64_ONLY(temp = r15_thread;) + NOT_LP64(get_thread(temp);) + cmpb(Address(temp, JavaThread::interp_only_mode_offset()), 0); + jccb(Assembler::zero, run_compiled_code); + jmp(Address(method, Method::interpreter_entry_offset())); + bind(run_compiled_code); + } + + jmp(Address(method, Method::from_interpreted_offset())); + } + + // The following two routines provide a hook so that an implementation + // can schedule the dispatch in two parts. x86 does not do this. + void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) { + // Nothing x86 specific to be done here + } + + void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) { + dispatch_next(state, step); + } + + void InterpreterMacroAssembler::dispatch_base(TosState state, + address* table, + bool verifyoop) { + verify_FPU(1, state); + if (VerifyActivationFrameSize) { + Label L; + mov(rcx, rbp); + subptr(rcx, rsp); + int32_t min_frame_size = + (frame::link_offset - frame::interpreter_frame_initial_sp_offset) * + wordSize; + cmpptr(rcx, (int32_t)min_frame_size); + jcc(Assembler::greaterEqual, L); + stop("broken stack frame"); + bind(L); + } + if (verifyoop) { + verify_oop(rax, state); + } + #ifdef _LP64 + lea(rscratch1, ExternalAddress((address)table)); + jmp(Address(rscratch1, rbx, Address::times_8)); + #else + Address index(noreg, rbx, Address::times_ptr); + ExternalAddress tbl((address)table); + ArrayAddress dispatch(tbl, index); + jump(dispatch); + #endif // _LP64 + } + + void InterpreterMacroAssembler::dispatch_only(TosState state) { + dispatch_base(state, Interpreter::dispatch_table(state)); + } + + void InterpreterMacroAssembler::dispatch_only_normal(TosState state) { + dispatch_base(state, Interpreter::normal_table(state)); + } + + void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) { + dispatch_base(state, Interpreter::normal_table(state), false); + } + + + void InterpreterMacroAssembler::dispatch_next(TosState state, int step) { + // load next bytecode (load before advancing _bcp_register to prevent AGI) + load_unsigned_byte(rbx, Address(_bcp_register, step)); + // advance _bcp_register + increment(_bcp_register, step); + dispatch_base(state, Interpreter::dispatch_table(state)); + } + + void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) { + // load current bytecode + load_unsigned_byte(rbx, Address(_bcp_register, 0)); + dispatch_base(state, table); + } + + // remove activation + // + // Unlock the receiver if this is a synchronized method. + // Unlock any Java monitors from syncronized blocks. + // Remove the activation from the stack. + // + // If there are locked Java monitors + // If throw_monitor_exception + // throws IllegalMonitorStateException + // Else if install_monitor_exception + // installs IllegalMonitorStateException + // Else + // no error processing + void InterpreterMacroAssembler::remove_activation( + TosState state, + Register ret_addr, + bool throw_monitor_exception, + bool install_monitor_exception, + bool notify_jvmdi) { + // Note: Registers rdx xmm0 may be in use for the + // result check if synchronized method + Label unlocked, unlock, no_unlock; + + const Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx); + const Register robj = LP64_ONLY(c_rarg1) NOT_LP64(rdx); + const Register rmon = LP64_ONLY(c_rarg1) NOT_LP64(rcx); + // monitor pointers need different register + // because rdx may have the result in it + NOT_LP64(get_thread(rcx);) + + // get the value of _do_not_unlock_if_synchronized into rdx + const Address do_not_unlock_if_synchronized(rthread, + in_bytes(JavaThread::do_not_unlock_if_synchronized_offset())); + movbool(rbx, do_not_unlock_if_synchronized); + movbool(do_not_unlock_if_synchronized, false); // reset the flag + + // get method access flags + movptr(rcx, Address(rbp, frame::interpreter_frame_method_offset * wordSize)); + movl(rcx, Address(rcx, Method::access_flags_offset())); + testl(rcx, JVM_ACC_SYNCHRONIZED); + jcc(Assembler::zero, unlocked); + + // Don't unlock anything if the _do_not_unlock_if_synchronized flag + // is set. + testbool(rbx); + jcc(Assembler::notZero, no_unlock); + + // unlock monitor + push(state); // save result + + // BasicObjectLock will be first in list, since this is a + // synchronized method. However, need to check that the object has + // not been unlocked by an explicit monitorexit bytecode. + const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset * + wordSize - (int) sizeof(BasicObjectLock)); + // We use c_rarg1/rdx so that if we go slow path it will be the correct + // register for unlock_object to pass to VM directly + lea(robj, monitor); // address of first monitor + + movptr(rax, Address(robj, BasicObjectLock::obj_offset_in_bytes())); + testptr(rax, rax); + jcc(Assembler::notZero, unlock); + + pop(state); + if (throw_monitor_exception) { + // Entry already unlocked, need to throw exception + NOT_LP64(empty_FPU_stack();) // remove possible return value from FPU-stack, otherwise stack could overflow + call_VM(noreg, CAST_FROM_FN_PTR(address, + InterpreterRuntime::throw_illegal_monitor_state_exception)); + should_not_reach_here(); + } else { + // Monitor already unlocked during a stack unroll. If requested, + // install an illegal_monitor_state_exception. Continue with + // stack unrolling. + if (install_monitor_exception) { + NOT_LP64(empty_FPU_stack();) + call_VM(noreg, CAST_FROM_FN_PTR(address, + InterpreterRuntime::new_illegal_monitor_state_exception)); + } + jmp(unlocked); + } + + bind(unlock); + unlock_object(robj); + pop(state); + + // Check that for block-structured locking (i.e., that all locked + // objects has been unlocked) + bind(unlocked); + + // rax, rdx: Might contain return value + + // Check that all monitors are unlocked + { + Label loop, exception, entry, restart; + const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; + const Address monitor_block_top( + rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize); + const Address monitor_block_bot( + rbp, frame::interpreter_frame_initial_sp_offset * wordSize); + + bind(restart); + // We use c_rarg1 so that if we go slow path it will be the correct + // register for unlock_object to pass to VM directly + movptr(rmon, monitor_block_top); // points to current entry, starting + // with top-most entry + lea(rbx, monitor_block_bot); // points to word before bottom of + // monitor block + jmp(entry); + + // Entry already locked, need to throw exception + bind(exception); + + if (throw_monitor_exception) { + // Throw exception + NOT_LP64(empty_FPU_stack();) + MacroAssembler::call_VM(noreg, + CAST_FROM_FN_PTR(address, InterpreterRuntime:: + throw_illegal_monitor_state_exception)); + should_not_reach_here(); + } else { + // Stack unrolling. Unlock object and install illegal_monitor_exception. + // Unlock does not block, so don't have to worry about the frame. + // We don't have to preserve c_rarg1 since we are going to throw an exception. + + push(state); + mov(robj, rmon); // nop if robj and rmon are the same + unlock_object(robj); + pop(state); + + if (install_monitor_exception) { + NOT_LP64(empty_FPU_stack();) + call_VM(noreg, CAST_FROM_FN_PTR(address, + InterpreterRuntime:: + new_illegal_monitor_state_exception)); + } + + jmp(restart); + } + + bind(loop); + // check if current entry is used + cmpptr(Address(rmon, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL); + jcc(Assembler::notEqual, exception); + + addptr(rmon, entry_size); // otherwise advance to next entry + bind(entry); + cmpptr(rmon, rbx); // check if bottom reached + jcc(Assembler::notEqual, loop); // if not at bottom then check this entry + } + + bind(no_unlock); + + // jvmti support + if (notify_jvmdi) { + notify_method_exit(state, NotifyJVMTI); // preserve TOSCA + } else { + notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA + } + + // remove activation + // get sender sp + movptr(rbx, + Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); + leave(); // remove frame anchor + pop(ret_addr); // get return address + mov(rsp, rbx); // set sp to sender sp + #ifndef _LP64 + if (UseSSE) { + // float and double are returned in xmm register in SSE-mode + if (state == ftos && UseSSE >= 1) { + subptr(rsp, wordSize); + fstp_s(Address(rsp, 0)); + movflt(xmm0, Address(rsp, 0)); + addptr(rsp, wordSize); + } else if (state == dtos && UseSSE >= 2) { + subptr(rsp, 2*wordSize); + fstp_d(Address(rsp, 0)); + movdbl(xmm0, Address(rsp, 0)); + addptr(rsp, 2*wordSize); + } + } + #endif // _LP64 + } + #endif /* !CC_INTERP */ + + void InterpreterMacroAssembler::get_method_counters(Register method, + Register mcs, Label& skip) { + Label has_counters; + movptr(mcs, Address(method, Method::method_counters_offset())); + testptr(mcs, mcs); + jcc(Assembler::notZero, has_counters); + call_VM(noreg, CAST_FROM_FN_PTR(address, + InterpreterRuntime::build_method_counters), method); + movptr(mcs, Address(method,Method::method_counters_offset())); + testptr(mcs, mcs); + jcc(Assembler::zero, skip); // No MethodCounters allocated, OutOfMemory + bind(has_counters); + } + + + // Lock object + // + // Args: + // rdx, c_rarg1: BasicObjectLock to be used for locking + // + // Kills: + // rax + // rscratch1 (scratch regs) + void InterpreterMacroAssembler::lock_object(Register lock_reg) { + assert(lock_reg == LP64_ONLY(c_rarg1) NOT_LP64(rdx), + "The argument is only for looks. It must be c_rarg1"); + + if (UseHeavyMonitors) { + call_VM(noreg, + CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), + lock_reg); + } else { + Label done; + + const Register swap_reg = rax; // Must use rax for cmpxchg instruction + const Register obj_reg = LP64_ONLY(c_rarg3) NOT_LP64(rcx); // Will contain the oop + + const int obj_offset = BasicObjectLock::obj_offset_in_bytes(); + const int lock_offset = BasicObjectLock::lock_offset_in_bytes (); + const int mark_offset = lock_offset + + BasicLock::displaced_header_offset_in_bytes(); + + Label slow_case; + + // Load object pointer into obj_reg + movptr(obj_reg, Address(lock_reg, obj_offset)); + + if (UseBiasedLocking) { + biased_locking_enter(lock_reg, obj_reg, swap_reg, rscratch1, false, done, &slow_case); + } + + // Load immediate 1 into swap_reg %rax + movl(swap_reg, (int32_t)1); + + // Load (object->mark() | 1) into swap_reg %rax + orptr(swap_reg, Address(obj_reg, 0)); + + // Save (object->mark() | 1) into BasicLock's displaced header + movptr(Address(lock_reg, mark_offset), swap_reg); + + assert(lock_offset == 0, + "displached header must be first word in BasicObjectLock"); + + if (os::is_MP()) lock(); + cmpxchgptr(lock_reg, Address(obj_reg, 0)); + if (PrintBiasedLockingStatistics) { + cond_inc32(Assembler::zero, + ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr())); + } + jcc(Assembler::zero, done); + + const int zero_bits = LP64_ONLY(7) NOT_LP64(3); + + // Test if the oopMark is an obvious stack pointer, i.e., + // 1) (mark & zero_bits) == 0, and + // 2) rsp <= mark < mark + os::pagesize() + // + // These 3 tests can be done by evaluating the following + // expression: ((mark - rsp) & (zero_bits - os::vm_page_size())), + // assuming both stack pointer and pagesize have their + // least significant bits clear. + // NOTE: the oopMark is in swap_reg %rax as the result of cmpxchg + subptr(swap_reg, rsp); + andptr(swap_reg, zero_bits - os::vm_page_size()); + + // Save the test result, for recursive case, the result is zero + movptr(Address(lock_reg, mark_offset), swap_reg); + + if (PrintBiasedLockingStatistics) { + cond_inc32(Assembler::zero, + ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr())); + } + jcc(Assembler::zero, done); + + bind(slow_case); + + // Call the runtime routine for slow case + call_VM(noreg, + CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), + lock_reg); + + bind(done); + } + } + + + // Unlocks an object. Used in monitorexit bytecode and + // remove_activation. Throws an IllegalMonitorException if object is + // not locked by current thread. + // + // Args: + // rdx, c_rarg1: BasicObjectLock for lock + // + // Kills: + // rax + // c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs) + // rscratch1, rscratch2 (scratch regs) + // rax, rbx, rcx, rdx + void InterpreterMacroAssembler::unlock_object(Register lock_reg) { + assert(lock_reg == LP64_ONLY(c_rarg1) NOT_LP64(rdx), + "The argument is only for looks. It must be c_rarg1"); + + if (UseHeavyMonitors) { + call_VM(noreg, + CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), + lock_reg); + } else { + Label done; + + const Register swap_reg = rax; // Must use rax for cmpxchg instruction + const Register header_reg = LP64_ONLY(c_rarg2) NOT_LP64(rbx); // Will contain the old oopMark + const Register obj_reg = LP64_ONLY(c_rarg3) NOT_LP64(rcx); // Will contain the oop + + save_bcp(); // Save in case of exception + + // Convert from BasicObjectLock structure to object and BasicLock + // structure Store the BasicLock address into %rax + lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset_in_bytes())); + + // Load oop into obj_reg(%c_rarg3) + movptr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes())); + + // Free entry + movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), (int32_t)NULL_WORD); + + if (UseBiasedLocking) { + biased_locking_exit(obj_reg, header_reg, done); + } + + // Load the old header from BasicLock structure + movptr(header_reg, Address(swap_reg, + BasicLock::displaced_header_offset_in_bytes())); + + // Test for recursion + testptr(header_reg, header_reg); + + // zero for recursive case + jcc(Assembler::zero, done); + + // Atomic swap back the old header + if (os::is_MP()) lock(); + cmpxchgptr(header_reg, Address(obj_reg, 0)); + + // zero for recursive case + jcc(Assembler::zero, done); + + // Call the runtime routine for slow case. + movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), + obj_reg); // restore obj + call_VM(noreg, + CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), + lock_reg); + + bind(done); + + restore_bcp(); + } + } + #ifndef CC_INTERP + void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, + Label& zero_continue) { + assert(ProfileInterpreter, "must be profiling interpreter"); + movptr(mdp, Address(rbp, frame::interpreter_frame_mdp_offset * wordSize)); + testptr(mdp, mdp); + jcc(Assembler::zero, zero_continue); + } + + + // Set the method data pointer for the current bcp. + void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() { + assert(ProfileInterpreter, "must be profiling interpreter"); + Label set_mdp; + push(rax); + push(rbx); + + get_method(rbx); + // Test MDO to avoid the call if it is NULL. + movptr(rax, Address(rbx, in_bytes(Method::method_data_offset()))); + testptr(rax, rax); + jcc(Assembler::zero, set_mdp); + // rbx: method + // _bcp_register: bcp + call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rbx, _bcp_register); + // rax: mdi + // mdo is guaranteed to be non-zero here, we checked for it before the call. + movptr(rbx, Address(rbx, in_bytes(Method::method_data_offset()))); + addptr(rbx, in_bytes(MethodData::data_offset())); + addptr(rax, rbx); + bind(set_mdp); + movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), rax); + pop(rbx); + pop(rax); + } + + void InterpreterMacroAssembler::verify_method_data_pointer() { + assert(ProfileInterpreter, "must be profiling interpreter"); + #ifdef ASSERT + Label verify_continue; + push(rax); + push(rbx); + Register arg3_reg = LP64_ONLY(c_rarg3) NOT_LP64(rcx); + Register arg2_reg = LP64_ONLY(c_rarg2) NOT_LP64(rdx); + push(arg3_reg); + push(arg2_reg); + test_method_data_pointer(arg3_reg, verify_continue); // If mdp is zero, continue + get_method(rbx); + + // If the mdp is valid, it will point to a DataLayout header which is + // consistent with the bcp. The converse is highly probable also. + load_unsigned_short(arg2_reg, + Address(arg3_reg, in_bytes(DataLayout::bci_offset()))); + addptr(arg2_reg, Address(rbx, Method::const_offset())); + lea(arg2_reg, Address(arg2_reg, ConstMethod::codes_offset())); + cmpptr(arg2_reg, _bcp_register); + jcc(Assembler::equal, verify_continue); + // rbx: method + // _bcp_register: bcp + // c_rarg3: mdp + call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), + rbx, _bcp_register, arg3_reg); + bind(verify_continue); + pop(arg2_reg); + pop(arg3_reg); + pop(rbx); + pop(rax); + #endif // ASSERT + } + + + void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, + int constant, + Register value) { + assert(ProfileInterpreter, "must be profiling interpreter"); + Address data(mdp_in, constant); + movptr(data, value); + } + + + void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, + int constant, + bool decrement) { + // Counter address + Address data(mdp_in, constant); + + increment_mdp_data_at(data, decrement); + } + + void InterpreterMacroAssembler::increment_mdp_data_at(Address data, + bool decrement) { + assert(ProfileInterpreter, "must be profiling interpreter"); + // %%% this does 64bit counters at best it is wasting space + // at worst it is a rare bug when counters overflow + + if (decrement) { + // Decrement the register. Set condition codes. + addptr(data, (int32_t) -DataLayout::counter_increment); + // If the decrement causes the counter to overflow, stay negative + Label L; + jcc(Assembler::negative, L); + addptr(data, (int32_t) DataLayout::counter_increment); + bind(L); + } else { + assert(DataLayout::counter_increment == 1, + "flow-free idiom only works with 1"); + // Increment the register. Set carry flag. + addptr(data, DataLayout::counter_increment); + // If the increment causes the counter to overflow, pull back by 1. + sbbptr(data, (int32_t)0); + } + } + + + void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, + Register reg, + int constant, + bool decrement) { + Address data(mdp_in, reg, Address::times_1, constant); + + increment_mdp_data_at(data, decrement); + } + + void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in, + int flag_byte_constant) { + assert(ProfileInterpreter, "must be profiling interpreter"); + int header_offset = in_bytes(DataLayout::header_offset()); + int header_bits = DataLayout::flag_mask_to_header_mask(flag_byte_constant); + // Set the flag + orl(Address(mdp_in, header_offset), header_bits); + } + + + + void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in, + int offset, + Register value, + Register test_value_out, + Label& not_equal_continue) { + assert(ProfileInterpreter, "must be profiling interpreter"); + if (test_value_out == noreg) { + cmpptr(value, Address(mdp_in, offset)); + } else { + // Put the test value into a register, so caller can use it: + movptr(test_value_out, Address(mdp_in, offset)); + cmpptr(test_value_out, value); + } + jcc(Assembler::notEqual, not_equal_continue); + } + + + void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, + int offset_of_disp) { + assert(ProfileInterpreter, "must be profiling interpreter"); + Address disp_address(mdp_in, offset_of_disp); + addptr(mdp_in, disp_address); + movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in); + } + + + void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, + Register reg, + int offset_of_disp) { + assert(ProfileInterpreter, "must be profiling interpreter"); + Address disp_address(mdp_in, reg, Address::times_1, offset_of_disp); + addptr(mdp_in, disp_address); + movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in); + } + + + void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, + int constant) { + assert(ProfileInterpreter, "must be profiling interpreter"); + addptr(mdp_in, constant); + movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in); + } + + + void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) { + assert(ProfileInterpreter, "must be profiling interpreter"); + push(return_bci); // save/restore across call_VM + call_VM(noreg, + CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), + return_bci); + pop(return_bci); + } + + + void InterpreterMacroAssembler::profile_taken_branch(Register mdp, + Register bumped_count) { + if (ProfileInterpreter) { + Label profile_continue; + + // If no method data exists, go to profile_continue. + // Otherwise, assign to mdp + test_method_data_pointer(mdp, profile_continue); + + // We are taking a branch. Increment the taken count. + // We inline increment_mdp_data_at to return bumped_count in a register + //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset())); + Address data(mdp, in_bytes(JumpData::taken_offset())); + movptr(bumped_count, data); + assert(DataLayout::counter_increment == 1, + "flow-free idiom only works with 1"); + addptr(bumped_count, DataLayout::counter_increment); + sbbptr(bumped_count, 0); + movptr(data, bumped_count); // Store back out + + // The method data pointer needs to be updated to reflect the new target. + update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset())); + bind(profile_continue); + } + } + + + void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) { + if (ProfileInterpreter) { + Label profile_continue; + + // If no method data exists, go to profile_continue. + test_method_data_pointer(mdp, profile_continue); + + // We are taking a branch. Increment the not taken count. + increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset())); + + // The method data pointer needs to be updated to correspond to + // the next bytecode + update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size())); + bind(profile_continue); + } + } + + void InterpreterMacroAssembler::profile_call(Register mdp) { + if (ProfileInterpreter) { + Label profile_continue; + + // If no method data exists, go to profile_continue. + test_method_data_pointer(mdp, profile_continue); + + // We are making a call. Increment the count. + increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); + + // The method data pointer needs to be updated to reflect the new target. + update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size())); + bind(profile_continue); + } + } + + + void InterpreterMacroAssembler::profile_final_call(Register mdp) { + if (ProfileInterpreter) { + Label profile_continue; + + // If no method data exists, go to profile_continue. + test_method_data_pointer(mdp, profile_continue); + + // We are making a call. Increment the count. + increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); + + // The method data pointer needs to be updated to reflect the new target. + update_mdp_by_constant(mdp, + in_bytes(VirtualCallData:: + virtual_call_data_size())); + bind(profile_continue); + } + } + + + void InterpreterMacroAssembler::profile_virtual_call(Register receiver, + Register mdp, + Register reg2, + bool receiver_can_be_null) { + if (ProfileInterpreter) { + Label profile_continue; + + // If no method data exists, go to profile_continue. + test_method_data_pointer(mdp, profile_continue); + + Label skip_receiver_profile; + if (receiver_can_be_null) { + Label not_null; + testptr(receiver, receiver); + jccb(Assembler::notZero, not_null); + // We are making a call. Increment the count for null receiver. + increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); + jmp(skip_receiver_profile); + bind(not_null); + } + + // Record the receiver type. + record_klass_in_profile(receiver, mdp, reg2, true); + bind(skip_receiver_profile); + + // The method data pointer needs to be updated to reflect the new target. + update_mdp_by_constant(mdp, + in_bytes(VirtualCallData:: + virtual_call_data_size())); + bind(profile_continue); + } + } + + // This routine creates a state machine for updating the multi-row + // type profile at a virtual call site (or other type-sensitive bytecode). + // The machine visits each row (of receiver/count) until the receiver type + // is found, or until it runs out of rows. At the same time, it remembers + // the location of the first empty row. (An empty row records null for its + // receiver, and can be allocated for a newly-observed receiver type.) + // Because there are two degrees of freedom in the state, a simple linear + // search will not work; it must be a decision tree. Hence this helper + // function is recursive, to generate the required tree structured code. + // It's the interpreter, so we are trading off code space for speed. + // See below for example code. + void InterpreterMacroAssembler::record_klass_in_profile_helper( + Register receiver, Register mdp, + Register reg2, int start_row, + Label& done, bool is_virtual_call) { + if (TypeProfileWidth == 0) { + if (is_virtual_call) { + increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); + } + return; + } + + int last_row = VirtualCallData::row_limit() - 1; + assert(start_row <= last_row, "must be work left to do"); + // Test this row for both the receiver and for null. + // Take any of three different outcomes: + // 1. found receiver => increment count and goto done + // 2. found null => keep looking for case 1, maybe allocate this cell + // 3. found something else => keep looking for cases 1 and 2 + // Case 3 is handled by a recursive call. + for (int row = start_row; row <= last_row; row++) { + Label next_test; + bool test_for_null_also = (row == start_row); + + // See if the receiver is receiver[n]. + int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row)); + test_mdp_data_at(mdp, recvr_offset, receiver, + (test_for_null_also ? reg2 : noreg), + next_test); + // (Reg2 now contains the receiver from the CallData.) + + // The receiver is receiver[n]. Increment count[n]. + int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row)); + increment_mdp_data_at(mdp, count_offset); + jmp(done); + bind(next_test); + + if (test_for_null_also) { + Label found_null; + // Failed the equality check on receiver[n]... Test for null. + testptr(reg2, reg2); + if (start_row == last_row) { + // The only thing left to do is handle the null case. + if (is_virtual_call) { + jccb(Assembler::zero, found_null); + // Receiver did not match any saved receiver and there is no empty row for it. + // Increment total counter to indicate polymorphic case. + increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); + jmp(done); + bind(found_null); + } else { + jcc(Assembler::notZero, done); + } + break; + } + // Since null is rare, make it be the branch-taken case. + jcc(Assembler::zero, found_null); + + // Put all the "Case 3" tests here. + record_klass_in_profile_helper(receiver, mdp, reg2, start_row + 1, done, is_virtual_call); + + // Found a null. Keep searching for a matching receiver, + // but remember that this is an empty (unused) slot. + bind(found_null); + } + } + + // In the fall-through case, we found no matching receiver, but we + // observed the receiver[start_row] is NULL. + + // Fill in the receiver field and increment the count. + int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row)); + set_mdp_data_at(mdp, recvr_offset, receiver); + int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row)); + movl(reg2, DataLayout::counter_increment); + set_mdp_data_at(mdp, count_offset, reg2); + if (start_row > 0) { + jmp(done); + } + } + + // Example state machine code for three profile rows: + // // main copy of decision tree, rooted at row[1] + // if (row[0].rec == rec) { row[0].incr(); goto done; } + // if (row[0].rec != NULL) { + // // inner copy of decision tree, rooted at row[1] + // if (row[1].rec == rec) { row[1].incr(); goto done; } + // if (row[1].rec != NULL) { + // // degenerate decision tree, rooted at row[2] + // if (row[2].rec == rec) { row[2].incr(); goto done; } + // if (row[2].rec != NULL) { count.incr(); goto done; } // overflow + // row[2].init(rec); goto done; + // } else { + // // remember row[1] is empty + // if (row[2].rec == rec) { row[2].incr(); goto done; } + // row[1].init(rec); goto done; + // } + // } else { + // // remember row[0] is empty + // if (row[1].rec == rec) { row[1].incr(); goto done; } + // if (row[2].rec == rec) { row[2].incr(); goto done; } + // row[0].init(rec); goto done; + // } + // done: + + void InterpreterMacroAssembler::record_klass_in_profile(Register receiver, + Register mdp, Register reg2, + bool is_virtual_call) { + assert(ProfileInterpreter, "must be profiling"); + Label done; + + record_klass_in_profile_helper(receiver, mdp, reg2, 0, done, is_virtual_call); + + bind (done); + } + + void InterpreterMacroAssembler::profile_ret(Register return_bci, + Register mdp) { + if (ProfileInterpreter) { + Label profile_continue; + uint row; + + // If no method data exists, go to profile_continue. + test_method_data_pointer(mdp, profile_continue); + + // Update the total ret count. + increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); + + for (row = 0; row < RetData::row_limit(); row++) { + Label next_test; + + // See if return_bci is equal to bci[n]: + test_mdp_data_at(mdp, + in_bytes(RetData::bci_offset(row)), + return_bci, noreg, + next_test); + + // return_bci is equal to bci[n]. Increment the count. + increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row))); + + // The method data pointer needs to be updated to reflect the new target. + update_mdp_by_offset(mdp, + in_bytes(RetData::bci_displacement_offset(row))); + jmp(profile_continue); + bind(next_test); + } + + update_mdp_for_ret(return_bci); + + bind(profile_continue); + } + } + + + void InterpreterMacroAssembler::profile_null_seen(Register mdp) { + if (ProfileInterpreter) { + Label profile_continue; + + // If no method data exists, go to profile_continue. + test_method_data_pointer(mdp, profile_continue); + + set_mdp_flag_at(mdp, BitData::null_seen_byte_constant()); + + // The method data pointer needs to be updated. + int mdp_delta = in_bytes(BitData::bit_data_size()); + if (TypeProfileCasts) { + mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); + } + update_mdp_by_constant(mdp, mdp_delta); + + bind(profile_continue); + } + } + + + void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) { + if (ProfileInterpreter && TypeProfileCasts) { + Label profile_continue; + + // If no method data exists, go to profile_continue. + test_method_data_pointer(mdp, profile_continue); + + int count_offset = in_bytes(CounterData::count_offset()); + // Back up the address, since we have already bumped the mdp. + count_offset -= in_bytes(VirtualCallData::virtual_call_data_size()); + + // *Decrement* the counter. We expect to see zero or small negatives. + increment_mdp_data_at(mdp, count_offset, true); + + bind (profile_continue); + } + } + + + void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) { + if (ProfileInterpreter) { + Label profile_continue; + + // If no method data exists, go to profile_continue. + test_method_data_pointer(mdp, profile_continue); + + // The method data pointer needs to be updated. + int mdp_delta = in_bytes(BitData::bit_data_size()); + if (TypeProfileCasts) { + mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); + + // Record the object type. + record_klass_in_profile(klass, mdp, reg2, false); + NOT_LP64(assert(reg2 == rdi, "we know how to fix this blown reg");) + NOT_LP64(restore_locals();) // Restore EDI + } + update_mdp_by_constant(mdp, mdp_delta); + + bind(profile_continue); + } + } + + + void InterpreterMacroAssembler::profile_switch_default(Register mdp) { + if (ProfileInterpreter) { + Label profile_continue; + + // If no method data exists, go to profile_continue. + test_method_data_pointer(mdp, profile_continue); + + // Update the default case count + increment_mdp_data_at(mdp, + in_bytes(MultiBranchData::default_count_offset())); + + // The method data pointer needs to be updated. + update_mdp_by_offset(mdp, + in_bytes(MultiBranchData:: + default_displacement_offset())); + + bind(profile_continue); + } + } + + + void InterpreterMacroAssembler::profile_switch_case(Register index, + Register mdp, + Register reg2) { + if (ProfileInterpreter) { + Label profile_continue; + + // If no method data exists, go to profile_continue. + test_method_data_pointer(mdp, profile_continue); + + // Build the base (index * per_case_size_in_bytes()) + + // case_array_offset_in_bytes() + movl(reg2, in_bytes(MultiBranchData::per_case_size())); + imulptr(index, reg2); // XXX l ? + addptr(index, in_bytes(MultiBranchData::case_array_offset())); // XXX l ? + + // Update the case count + increment_mdp_data_at(mdp, + index, + in_bytes(MultiBranchData::relative_count_offset())); + + // The method data pointer needs to be updated. + update_mdp_by_offset(mdp, + index, + in_bytes(MultiBranchData:: + relative_displacement_offset())); + + bind(profile_continue); + } + } + + + + void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) { + if (state == atos) { + MacroAssembler::verify_oop(reg); + } + } + + void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) { + #ifndef _LP64 + if (state == ftos || state == dtos) MacroAssembler::verify_FPU(stack_depth); + #endif + } + + // Jump if ((*counter_addr += increment) & mask) satisfies the condition. + void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr, + int increment, Address mask, + Register scratch, bool preloaded, + Condition cond, Label* where) { + if (!preloaded) { + movl(scratch, counter_addr); + } + incrementl(scratch, increment); + movl(counter_addr, scratch); + andl(scratch, mask); + jcc(cond, *where); + } + #endif /* CC_INTERP */ + + void InterpreterMacroAssembler::notify_method_entry() { + // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to + // track stack depth. If it is possible to enter interp_only_mode we add + // the code to check if the event should be sent. + Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx); + Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rbx); + if (JvmtiExport::can_post_interpreter_events()) { + Label L; + NOT_LP64(get_thread(rthread);) + movl(rdx, Address(rthread, JavaThread::interp_only_mode_offset())); + testl(rdx, rdx); + jcc(Assembler::zero, L); + call_VM(noreg, CAST_FROM_FN_PTR(address, + InterpreterRuntime::post_method_entry)); + bind(L); + } + + { + SkipIfEqual skip(this, &DTraceMethodProbes, false); + NOT_LP64(get_thread(rthread);) + get_method(rarg); + call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), + rthread, rarg); + } + + // RedefineClasses() tracing support for obsolete method entry + if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) { + NOT_LP64(get_thread(rthread);) + get_method(rarg); + call_VM_leaf( + CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry), + rthread, rarg); + } + } + + + void InterpreterMacroAssembler::notify_method_exit( + TosState state, NotifyMethodExitMode mode) { + // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to + // track stack depth. If it is possible to enter interp_only_mode we add + // the code to check if the event should be sent. + Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx); + Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rbx); + if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) { + Label L; + // Note: frame::interpreter_frame_result has a dependency on how the + // method result is saved across the call to post_method_exit. If this + // is changed then the interpreter_frame_result implementation will + // need to be updated too. + + // For c++ interpreter the result is always stored at a known location in the frame + // template interpreter will leave it on the top of the stack. + NOT_CC_INTERP(push(state);) + get_thread(rthread); + movl(rdx, Address(rthread, JavaThread::interp_only_mode_offset())); + testl(rdx, rdx); + jcc(Assembler::zero, L); + call_VM(noreg, + CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit)); + bind(L); + NOT_CC_INTERP(pop(state)); + } + + { + SkipIfEqual skip(this, &DTraceMethodProbes, false); + NOT_CC_INTERP(push(state)); + get_thread(rthread); + get_method(rarg); + call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), + rthread, rarg); + NOT_CC_INTERP(pop(state)); + } + }

src/cpu/x86/vm/interp_masm_x86.cpp
Index Unified diffs Context diffs Sdiffs Patch New Old Previous File Next File