1 /*
   2  * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_linux.h"
  35 #include "memory/allocation.inline.hpp"
  36 #include "memory/filemap.hpp"
  37 #include "mutex_linux.inline.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_linux.inline.hpp"
  40 #include "os_share_linux.hpp"
  41 #include "prims/jniFastGetField.hpp"
  42 #include "prims/jvm.h"
  43 #include "prims/jvm_misc.hpp"
  44 #include "runtime/arguments.hpp"
  45 #include "runtime/atomic.inline.hpp"
  46 #include "runtime/extendedPC.hpp"
  47 #include "runtime/globals.hpp"
  48 #include "runtime/interfaceSupport.hpp"
  49 #include "runtime/init.hpp"
  50 #include "runtime/java.hpp"
  51 #include "runtime/javaCalls.hpp"
  52 #include "runtime/mutexLocker.hpp"
  53 #include "runtime/objectMonitor.hpp"
  54 #include "runtime/orderAccess.inline.hpp"
  55 #include "runtime/osThread.hpp"
  56 #include "runtime/perfMemory.hpp"
  57 #include "runtime/sharedRuntime.hpp"
  58 #include "runtime/statSampler.hpp"
  59 #include "runtime/stubRoutines.hpp"
  60 #include "runtime/thread.inline.hpp"
  61 #include "runtime/threadCritical.hpp"
  62 #include "runtime/timer.hpp"
  63 #include "services/attachListener.hpp"
  64 #include "services/memTracker.hpp"
  65 #include "services/runtimeService.hpp"
  66 #include "utilities/decoder.hpp"
  67 #include "utilities/defaultStream.hpp"
  68 #include "utilities/events.hpp"
  69 #include "utilities/elfFile.hpp"
  70 #include "utilities/growableArray.hpp"
  71 #include "utilities/macros.hpp"
  72 #include "utilities/vmError.hpp"
  73 
  74 // put OS-includes here
  75 # include <sys/types.h>
  76 # include <sys/mman.h>
  77 # include <sys/stat.h>
  78 # include <sys/select.h>
  79 # include <pthread.h>
  80 # include <signal.h>
  81 # include <errno.h>
  82 # include <dlfcn.h>
  83 # include <stdio.h>
  84 # include <unistd.h>
  85 # include <sys/resource.h>
  86 # include <pthread.h>
  87 # include <sys/stat.h>
  88 # include <sys/time.h>
  89 # include <sys/times.h>
  90 # include <sys/utsname.h>
  91 # include <sys/socket.h>
  92 # include <sys/wait.h>
  93 # include <pwd.h>
  94 # include <poll.h>
  95 # include <semaphore.h>
  96 # include <fcntl.h>
  97 # include <string.h>
  98 # include <syscall.h>
  99 # include <sys/sysinfo.h>
 100 # include <gnu/libc-version.h>
 101 # include <sys/ipc.h>
 102 # include <sys/shm.h>
 103 # include <link.h>
 104 # include <stdint.h>
 105 # include <inttypes.h>
 106 # include <sys/ioctl.h>
 107 
 108 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
 109 
 110 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 111 // getrusage() is prepared to handle the associated failure.
 112 #ifndef RUSAGE_THREAD
 113   #define RUSAGE_THREAD   (1)               /* only the calling thread */
 114 #endif
 115 
 116 #define MAX_PATH    (2 * K)
 117 
 118 #define MAX_SECS 100000000
 119 
 120 // for timer info max values which include all bits
 121 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 122 
 123 #define LARGEPAGES_BIT (1 << 6)
 124 ////////////////////////////////////////////////////////////////////////////////
 125 // global variables
 126 julong os::Linux::_physical_memory = 0;
 127 
 128 address   os::Linux::_initial_thread_stack_bottom = NULL;
 129 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 130 
 131 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 132 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 133 int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
 134 Mutex* os::Linux::_createThread_lock = NULL;
 135 pthread_t os::Linux::_main_thread;
 136 int os::Linux::_page_size = -1;
 137 const int os::Linux::_vm_default_page_size = (8 * K);
 138 bool os::Linux::_is_floating_stack = false;
 139 bool os::Linux::_is_NPTL = false;
 140 bool os::Linux::_supports_fast_thread_cpu_time = false;
 141 const char * os::Linux::_glibc_version = NULL;
 142 const char * os::Linux::_libpthread_version = NULL;
 143 pthread_condattr_t os::Linux::_condattr[1];
 144 
 145 static jlong initial_time_count=0;
 146 
 147 static int clock_tics_per_sec = 100;
 148 
 149 // For diagnostics to print a message once. see run_periodic_checks
 150 static sigset_t check_signal_done;
 151 static bool check_signals = true;
 152 
 153 static pid_t _initial_pid = 0;
 154 
 155 // Signal number used to suspend/resume a thread
 156 
 157 // do not use any signal number less than SIGSEGV, see 4355769
 158 static int SR_signum = SIGUSR2;
 159 sigset_t SR_sigset;
 160 
 161 // Declarations
 162 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
 163 
 164 // utility functions
 165 
 166 static int SR_initialize();
 167 
 168 julong os::available_memory() {
 169   return Linux::available_memory();
 170 }
 171 
 172 julong os::Linux::available_memory() {
 173   // values in struct sysinfo are "unsigned long"
 174   struct sysinfo si;
 175   sysinfo(&si);
 176 
 177   return (julong)si.freeram * si.mem_unit;
 178 }
 179 
 180 julong os::physical_memory() {
 181   return Linux::physical_memory();
 182 }
 183 
 184 // Return true if user is running as root.
 185 
 186 bool os::have_special_privileges() {
 187   static bool init = false;
 188   static bool privileges = false;
 189   if (!init) {
 190     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 191     init = true;
 192   }
 193   return privileges;
 194 }
 195 
 196 
 197 #ifndef SYS_gettid
 198 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 199   #ifdef __ia64__
 200     #define SYS_gettid 1105
 201   #else
 202     #ifdef __i386__
 203       #define SYS_gettid 224
 204     #else
 205       #ifdef __amd64__
 206         #define SYS_gettid 186
 207       #else
 208         #ifdef __sparc__
 209           #define SYS_gettid 143
 210         #else
 211           #error define gettid for the arch
 212         #endif
 213       #endif
 214     #endif
 215   #endif
 216 #endif
 217 
 218 // Cpu architecture string
 219 static char cpu_arch[] = HOTSPOT_LIB_ARCH;
 220 
 221 
 222 // pid_t gettid()
 223 //
 224 // Returns the kernel thread id of the currently running thread. Kernel
 225 // thread id is used to access /proc.
 226 //
 227 // (Note that getpid() on LinuxThreads returns kernel thread id too; but
 228 // on NPTL, it returns the same pid for all threads, as required by POSIX.)
 229 //
 230 pid_t os::Linux::gettid() {
 231   int rslt = syscall(SYS_gettid);
 232   if (rslt == -1) {
 233     // old kernel, no NPTL support
 234     return getpid();
 235   } else {
 236     return (pid_t)rslt;
 237   }
 238 }
 239 
 240 // Most versions of linux have a bug where the number of processors are
 241 // determined by looking at the /proc file system.  In a chroot environment,
 242 // the system call returns 1.  This causes the VM to act as if it is
 243 // a single processor and elide locking (see is_MP() call).
 244 static bool unsafe_chroot_detected = false;
 245 static const char *unstable_chroot_error = "/proc file system not found.\n"
 246                      "Java may be unstable running multithreaded in a chroot "
 247                      "environment on Linux when /proc filesystem is not mounted.";
 248 
 249 void os::Linux::initialize_system_info() {
 250   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 251   if (processor_count() == 1) {
 252     pid_t pid = os::Linux::gettid();
 253     char fname[32];
 254     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 255     FILE *fp = fopen(fname, "r");
 256     if (fp == NULL) {
 257       unsafe_chroot_detected = true;
 258     } else {
 259       fclose(fp);
 260     }
 261   }
 262   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 263   assert(processor_count() > 0, "linux error");
 264 }
 265 
 266 void os::init_system_properties_values() {
 267   // The next steps are taken in the product version:
 268   //
 269   // Obtain the JAVA_HOME value from the location of libjvm.so.
 270   // This library should be located at:
 271   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
 272   //
 273   // If "/jre/lib/" appears at the right place in the path, then we
 274   // assume libjvm.so is installed in a JDK and we use this path.
 275   //
 276   // Otherwise exit with message: "Could not create the Java virtual machine."
 277   //
 278   // The following extra steps are taken in the debugging version:
 279   //
 280   // If "/jre/lib/" does NOT appear at the right place in the path
 281   // instead of exit check for $JAVA_HOME environment variable.
 282   //
 283   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 284   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 285   // it looks like libjvm.so is installed there
 286   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 287   //
 288   // Otherwise exit.
 289   //
 290   // Important note: if the location of libjvm.so changes this
 291   // code needs to be changed accordingly.
 292 
 293   // See ld(1):
 294   //      The linker uses the following search paths to locate required
 295   //      shared libraries:
 296   //        1: ...
 297   //        ...
 298   //        7: The default directories, normally /lib and /usr/lib.
 299 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
 300   #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 301 #else
 302   #define DEFAULT_LIBPATH "/lib:/usr/lib"
 303 #endif
 304 
 305 // Base path of extensions installed on the system.
 306 #define SYS_EXT_DIR     "/usr/java/packages"
 307 #define EXTENSIONS_DIR  "/lib/ext"
 308 
 309   // Buffer that fits several sprintfs.
 310   // Note that the space for the colon and the trailing null are provided
 311   // by the nulls included by the sizeof operator.
 312   const size_t bufsize =
 313     MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
 314          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
 315   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 316 
 317   // sysclasspath, java_home, dll_dir
 318   {
 319     char *pslash;
 320     os::jvm_path(buf, bufsize);
 321 
 322     // Found the full path to libjvm.so.
 323     // Now cut the path to <java_home>/jre if we can.
 324     pslash = strrchr(buf, '/');
 325     if (pslash != NULL) {
 326       *pslash = '\0';            // Get rid of /libjvm.so.
 327     }
 328     pslash = strrchr(buf, '/');
 329     if (pslash != NULL) {
 330       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 331     }
 332     Arguments::set_dll_dir(buf);
 333 
 334     if (pslash != NULL) {
 335       pslash = strrchr(buf, '/');
 336       if (pslash != NULL) {
 337         *pslash = '\0';          // Get rid of /<arch>.
 338         pslash = strrchr(buf, '/');
 339         if (pslash != NULL) {
 340           *pslash = '\0';        // Get rid of /lib.
 341         }
 342       }
 343     }
 344     Arguments::set_java_home(buf);
 345     set_boot_path('/', ':');
 346   }
 347 
 348   // Where to look for native libraries.
 349   //
 350   // Note: Due to a legacy implementation, most of the library path
 351   // is set in the launcher. This was to accomodate linking restrictions
 352   // on legacy Linux implementations (which are no longer supported).
 353   // Eventually, all the library path setting will be done here.
 354   //
 355   // However, to prevent the proliferation of improperly built native
 356   // libraries, the new path component /usr/java/packages is added here.
 357   // Eventually, all the library path setting will be done here.
 358   {
 359     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 360     // should always exist (until the legacy problem cited above is
 361     // addressed).
 362     const char *v = ::getenv("LD_LIBRARY_PATH");
 363     const char *v_colon = ":";
 364     if (v == NULL) { v = ""; v_colon = ""; }
 365     // That's +1 for the colon and +1 for the trailing '\0'.
 366     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 367                                                      strlen(v) + 1 +
 368                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
 369                                                      mtInternal);
 370     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
 371     Arguments::set_library_path(ld_library_path);
 372     FREE_C_HEAP_ARRAY(char, ld_library_path);
 373   }
 374 
 375   // Extensions directories.
 376   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 377   Arguments::set_ext_dirs(buf);
 378 
 379   FREE_C_HEAP_ARRAY(char, buf);
 380 
 381 #undef DEFAULT_LIBPATH
 382 #undef SYS_EXT_DIR
 383 #undef EXTENSIONS_DIR
 384 }
 385 
 386 ////////////////////////////////////////////////////////////////////////////////
 387 // breakpoint support
 388 
 389 void os::breakpoint() {
 390   BREAKPOINT;
 391 }
 392 
 393 extern "C" void breakpoint() {
 394   // use debugger to set breakpoint here
 395 }
 396 
 397 ////////////////////////////////////////////////////////////////////////////////
 398 // signal support
 399 
 400 debug_only(static bool signal_sets_initialized = false);
 401 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
 402 
 403 bool os::Linux::is_sig_ignored(int sig) {
 404   struct sigaction oact;
 405   sigaction(sig, (struct sigaction*)NULL, &oact);
 406   void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 407                                  : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 408   if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
 409     return true;
 410   } else {
 411     return false;
 412   }
 413 }
 414 
 415 void os::Linux::signal_sets_init() {
 416   // Should also have an assertion stating we are still single-threaded.
 417   assert(!signal_sets_initialized, "Already initialized");
 418   // Fill in signals that are necessarily unblocked for all threads in
 419   // the VM. Currently, we unblock the following signals:
 420   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 421   //                         by -Xrs (=ReduceSignalUsage));
 422   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 423   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 424   // the dispositions or masks wrt these signals.
 425   // Programs embedding the VM that want to use the above signals for their
 426   // own purposes must, at this time, use the "-Xrs" option to prevent
 427   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 428   // (See bug 4345157, and other related bugs).
 429   // In reality, though, unblocking these signals is really a nop, since
 430   // these signals are not blocked by default.
 431   sigemptyset(&unblocked_sigs);
 432   sigemptyset(&allowdebug_blocked_sigs);
 433   sigaddset(&unblocked_sigs, SIGILL);
 434   sigaddset(&unblocked_sigs, SIGSEGV);
 435   sigaddset(&unblocked_sigs, SIGBUS);
 436   sigaddset(&unblocked_sigs, SIGFPE);
 437 #if defined(PPC64)
 438   sigaddset(&unblocked_sigs, SIGTRAP);
 439 #endif
 440   sigaddset(&unblocked_sigs, SR_signum);
 441 
 442   if (!ReduceSignalUsage) {
 443     if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 444       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 445       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
 446     }
 447     if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 448       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 449       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
 450     }
 451     if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 452       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 453       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
 454     }
 455   }
 456   // Fill in signals that are blocked by all but the VM thread.
 457   sigemptyset(&vm_sigs);
 458   if (!ReduceSignalUsage) {
 459     sigaddset(&vm_sigs, BREAK_SIGNAL);
 460   }
 461   debug_only(signal_sets_initialized = true);
 462 
 463 }
 464 
 465 // These are signals that are unblocked while a thread is running Java.
 466 // (For some reason, they get blocked by default.)
 467 sigset_t* os::Linux::unblocked_signals() {
 468   assert(signal_sets_initialized, "Not initialized");
 469   return &unblocked_sigs;
 470 }
 471 
 472 // These are the signals that are blocked while a (non-VM) thread is
 473 // running Java. Only the VM thread handles these signals.
 474 sigset_t* os::Linux::vm_signals() {
 475   assert(signal_sets_initialized, "Not initialized");
 476   return &vm_sigs;
 477 }
 478 
 479 // These are signals that are blocked during cond_wait to allow debugger in
 480 sigset_t* os::Linux::allowdebug_blocked_signals() {
 481   assert(signal_sets_initialized, "Not initialized");
 482   return &allowdebug_blocked_sigs;
 483 }
 484 
 485 void os::Linux::hotspot_sigmask(Thread* thread) {
 486 
 487   //Save caller's signal mask before setting VM signal mask
 488   sigset_t caller_sigmask;
 489   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 490 
 491   OSThread* osthread = thread->osthread();
 492   osthread->set_caller_sigmask(caller_sigmask);
 493 
 494   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 495 
 496   if (!ReduceSignalUsage) {
 497     if (thread->is_VM_thread()) {
 498       // Only the VM thread handles BREAK_SIGNAL ...
 499       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 500     } else {
 501       // ... all other threads block BREAK_SIGNAL
 502       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 503     }
 504   }
 505 }
 506 
 507 //////////////////////////////////////////////////////////////////////////////
 508 // detecting pthread library
 509 
 510 void os::Linux::libpthread_init() {
 511   // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
 512   // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
 513   // generic name for earlier versions.
 514   // Define macros here so we can build HotSpot on old systems.
 515 #ifndef _CS_GNU_LIBC_VERSION
 516   #define _CS_GNU_LIBC_VERSION 2
 517 #endif
 518 #ifndef _CS_GNU_LIBPTHREAD_VERSION
 519   #define _CS_GNU_LIBPTHREAD_VERSION 3
 520 #endif
 521 
 522   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 523   if (n > 0) {
 524     char *str = (char *)malloc(n, mtInternal);
 525     confstr(_CS_GNU_LIBC_VERSION, str, n);
 526     os::Linux::set_glibc_version(str);
 527   } else {
 528     // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
 529     static char _gnu_libc_version[32];
 530     jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
 531                  "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
 532     os::Linux::set_glibc_version(_gnu_libc_version);
 533   }
 534 
 535   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 536   if (n > 0) {
 537     char *str = (char *)malloc(n, mtInternal);
 538     confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 539     // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
 540     // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
 541     // is the case. LinuxThreads has a hard limit on max number of threads.
 542     // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
 543     // On the other hand, NPTL does not have such a limit, sysconf()
 544     // will return -1 and errno is not changed. Check if it is really NPTL.
 545     if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
 546         strstr(str, "NPTL") &&
 547         sysconf(_SC_THREAD_THREADS_MAX) > 0) {
 548       free(str);
 549       os::Linux::set_libpthread_version("linuxthreads");
 550     } else {
 551       os::Linux::set_libpthread_version(str);
 552     }
 553   } else {
 554     // glibc before 2.3.2 only has LinuxThreads.
 555     os::Linux::set_libpthread_version("linuxthreads");
 556   }
 557 
 558   if (strstr(libpthread_version(), "NPTL")) {
 559     os::Linux::set_is_NPTL();
 560   } else {
 561     os::Linux::set_is_LinuxThreads();
 562   }
 563 
 564   // LinuxThreads have two flavors: floating-stack mode, which allows variable
 565   // stack size; and fixed-stack mode. NPTL is always floating-stack.
 566   if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
 567     os::Linux::set_is_floating_stack();
 568   }
 569 }
 570 
 571 /////////////////////////////////////////////////////////////////////////////
 572 // thread stack
 573 
 574 // Force Linux kernel to expand current thread stack. If "bottom" is close
 575 // to the stack guard, caller should block all signals.
 576 //
 577 // MAP_GROWSDOWN:
 578 //   A special mmap() flag that is used to implement thread stacks. It tells
 579 //   kernel that the memory region should extend downwards when needed. This
 580 //   allows early versions of LinuxThreads to only mmap the first few pages
 581 //   when creating a new thread. Linux kernel will automatically expand thread
 582 //   stack as needed (on page faults).
 583 //
 584 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 585 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 586 //   region, it's hard to tell if the fault is due to a legitimate stack
 587 //   access or because of reading/writing non-exist memory (e.g. buffer
 588 //   overrun). As a rule, if the fault happens below current stack pointer,
 589 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 590 //   application (see Linux kernel fault.c).
 591 //
 592 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 593 //   stack overflow detection.
 594 //
 595 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 596 //   not use this flag. However, the stack of initial thread is not created
 597 //   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
 598 //   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
 599 //   and then attach the thread to JVM.
 600 //
 601 // To get around the problem and allow stack banging on Linux, we need to
 602 // manually expand thread stack after receiving the SIGSEGV.
 603 //
 604 // There are two ways to expand thread stack to address "bottom", we used
 605 // both of them in JVM before 1.5:
 606 //   1. adjust stack pointer first so that it is below "bottom", and then
 607 //      touch "bottom"
 608 //   2. mmap() the page in question
 609 //
 610 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 611 // if current sp is already near the lower end of page 101, and we need to
 612 // call mmap() to map page 100, it is possible that part of the mmap() frame
 613 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 614 // That will destroy the mmap() frame and cause VM to crash.
 615 //
 616 // The following code works by adjusting sp first, then accessing the "bottom"
 617 // page to force a page fault. Linux kernel will then automatically expand the
 618 // stack mapping.
 619 //
 620 // _expand_stack_to() assumes its frame size is less than page size, which
 621 // should always be true if the function is not inlined.
 622 
 623 #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
 624   #define NOINLINE
 625 #else
 626   #define NOINLINE __attribute__ ((noinline))
 627 #endif
 628 
 629 static void _expand_stack_to(address bottom) NOINLINE;
 630 
 631 static void _expand_stack_to(address bottom) {
 632   address sp;
 633   size_t size;
 634   volatile char *p;
 635 
 636   // Adjust bottom to point to the largest address within the same page, it
 637   // gives us a one-page buffer if alloca() allocates slightly more memory.
 638   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
 639   bottom += os::Linux::page_size() - 1;
 640 
 641   // sp might be slightly above current stack pointer; if that's the case, we
 642   // will alloca() a little more space than necessary, which is OK. Don't use
 643   // os::current_stack_pointer(), as its result can be slightly below current
 644   // stack pointer, causing us to not alloca enough to reach "bottom".
 645   sp = (address)&sp;
 646 
 647   if (sp > bottom) {
 648     size = sp - bottom;
 649     p = (volatile char *)alloca(size);
 650     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 651     p[0] = '\0';
 652   }
 653 }
 654 
 655 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 656   assert(t!=NULL, "just checking");
 657   assert(t->osthread()->expanding_stack(), "expand should be set");
 658   assert(t->stack_base() != NULL, "stack_base was not initialized");
 659 
 660   if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
 661     sigset_t mask_all, old_sigset;
 662     sigfillset(&mask_all);
 663     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 664     _expand_stack_to(addr);
 665     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 666     return true;
 667   }
 668   return false;
 669 }
 670 
 671 //////////////////////////////////////////////////////////////////////////////
 672 // create new thread
 673 
 674 static address highest_vm_reserved_address();
 675 
 676 // check if it's safe to start a new thread
 677 static bool _thread_safety_check(Thread* thread) {
 678   if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
 679     // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
 680     //   Heap is mmap'ed at lower end of memory space. Thread stacks are
 681     //   allocated (MAP_FIXED) from high address space. Every thread stack
 682     //   occupies a fixed size slot (usually 2Mbytes, but user can change
 683     //   it to other values if they rebuild LinuxThreads).
 684     //
 685     // Problem with MAP_FIXED is that mmap() can still succeed even part of
 686     // the memory region has already been mmap'ed. That means if we have too
 687     // many threads and/or very large heap, eventually thread stack will
 688     // collide with heap.
 689     //
 690     // Here we try to prevent heap/stack collision by comparing current
 691     // stack bottom with the highest address that has been mmap'ed by JVM
 692     // plus a safety margin for memory maps created by native code.
 693     //
 694     // This feature can be disabled by setting ThreadSafetyMargin to 0
 695     //
 696     if (ThreadSafetyMargin > 0) {
 697       address stack_bottom = os::current_stack_base() - os::current_stack_size();
 698 
 699       // not safe if our stack extends below the safety margin
 700       return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
 701     } else {
 702       return true;
 703     }
 704   } else {
 705     // Floating stack LinuxThreads or NPTL:
 706     //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
 707     //   there's not enough space left, pthread_create() will fail. If we come
 708     //   here, that means enough space has been reserved for stack.
 709     return true;
 710   }
 711 }
 712 
 713 // Thread start routine for all newly created threads
 714 static void *java_start(Thread *thread) {
 715   // Try to randomize the cache line index of hot stack frames.
 716   // This helps when threads of the same stack traces evict each other's
 717   // cache lines. The threads can be either from the same JVM instance, or
 718   // from different JVM instances. The benefit is especially true for
 719   // processors with hyperthreading technology.
 720   static int counter = 0;
 721   int pid = os::current_process_id();
 722   alloca(((pid ^ counter++) & 7) * 128);
 723 
 724   ThreadLocalStorage::set_thread(thread);
 725 
 726   OSThread* osthread = thread->osthread();
 727   Monitor* sync = osthread->startThread_lock();
 728 
 729   // non floating stack LinuxThreads needs extra check, see above
 730   if (!_thread_safety_check(thread)) {
 731     // notify parent thread
 732     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 733     osthread->set_state(ZOMBIE);
 734     sync->notify_all();
 735     return NULL;
 736   }
 737 
 738   // thread_id is kernel thread id (similar to Solaris LWP id)
 739   osthread->set_thread_id(os::Linux::gettid());
 740 
 741   if (UseNUMA) {
 742     int lgrp_id = os::numa_get_group_id();
 743     if (lgrp_id != -1) {
 744       thread->set_lgrp_id(lgrp_id);
 745     }
 746   }
 747   // initialize signal mask for this thread
 748   os::Linux::hotspot_sigmask(thread);
 749 
 750   // initialize floating point control register
 751   os::Linux::init_thread_fpu_state();
 752 
 753   // handshaking with parent thread
 754   {
 755     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 756 
 757     // notify parent thread
 758     osthread->set_state(INITIALIZED);
 759     sync->notify_all();
 760 
 761     // wait until os::start_thread()
 762     while (osthread->get_state() == INITIALIZED) {
 763       sync->wait(Mutex::_no_safepoint_check_flag);
 764     }
 765   }
 766 
 767   // call one more level start routine
 768   thread->run();
 769 
 770   return 0;
 771 }
 772 
 773 bool os::create_thread(Thread* thread, ThreadType thr_type,
 774                        size_t stack_size) {
 775   assert(thread->osthread() == NULL, "caller responsible");
 776 
 777   // Allocate the OSThread object
 778   OSThread* osthread = new OSThread(NULL, NULL);
 779   if (osthread == NULL) {
 780     return false;
 781   }
 782 
 783   // set the correct thread state
 784   osthread->set_thread_type(thr_type);
 785 
 786   // Initial state is ALLOCATED but not INITIALIZED
 787   osthread->set_state(ALLOCATED);
 788 
 789   thread->set_osthread(osthread);
 790 
 791   // init thread attributes
 792   pthread_attr_t attr;
 793   pthread_attr_init(&attr);
 794   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 795 
 796   // stack size
 797   if (os::Linux::supports_variable_stack_size()) {
 798     // calculate stack size if it's not specified by caller
 799     if (stack_size == 0) {
 800       stack_size = os::Linux::default_stack_size(thr_type);
 801 
 802       switch (thr_type) {
 803       case os::java_thread:
 804         // Java threads use ThreadStackSize which default value can be
 805         // changed with the flag -Xss
 806         assert(JavaThread::stack_size_at_create() > 0, "this should be set");
 807         stack_size = JavaThread::stack_size_at_create();
 808         break;
 809       case os::compiler_thread:
 810         if (CompilerThreadStackSize > 0) {
 811           stack_size = (size_t)(CompilerThreadStackSize * K);
 812           break;
 813         } // else fall through:
 814           // use VMThreadStackSize if CompilerThreadStackSize is not defined
 815       case os::vm_thread:
 816       case os::pgc_thread:
 817       case os::cgc_thread:
 818       case os::watcher_thread:
 819         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 820         break;
 821       }
 822     }
 823 
 824     stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
 825     pthread_attr_setstacksize(&attr, stack_size);
 826   } else {
 827     // let pthread_create() pick the default value.
 828   }
 829 
 830   // glibc guard page
 831   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 832 
 833   ThreadState state;
 834 
 835   {
 836     // Serialize thread creation if we are running with fixed stack LinuxThreads
 837     bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
 838     if (lock) {
 839       os::Linux::createThread_lock()->lock_without_safepoint_check();
 840     }
 841 
 842     pthread_t tid;
 843     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
 844 
 845     pthread_attr_destroy(&attr);
 846 
 847     if (ret != 0) {
 848       if (PrintMiscellaneous && (Verbose || WizardMode)) {
 849         perror("pthread_create()");
 850       }
 851       // Need to clean up stuff we've allocated so far
 852       thread->set_osthread(NULL);
 853       delete osthread;
 854       if (lock) os::Linux::createThread_lock()->unlock();
 855       return false;
 856     }
 857 
 858     // Store pthread info into the OSThread
 859     osthread->set_pthread_id(tid);
 860 
 861     // Wait until child thread is either initialized or aborted
 862     {
 863       Monitor* sync_with_child = osthread->startThread_lock();
 864       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 865       while ((state = osthread->get_state()) == ALLOCATED) {
 866         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 867       }
 868     }
 869 
 870     if (lock) {
 871       os::Linux::createThread_lock()->unlock();
 872     }
 873   }
 874 
 875   // Aborted due to thread limit being reached
 876   if (state == ZOMBIE) {
 877     thread->set_osthread(NULL);
 878     delete osthread;
 879     return false;
 880   }
 881 
 882   // The thread is returned suspended (in state INITIALIZED),
 883   // and is started higher up in the call chain
 884   assert(state == INITIALIZED, "race condition");
 885   return true;
 886 }
 887 
 888 /////////////////////////////////////////////////////////////////////////////
 889 // attach existing thread
 890 
 891 // bootstrap the main thread
 892 bool os::create_main_thread(JavaThread* thread) {
 893   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 894   return create_attached_thread(thread);
 895 }
 896 
 897 bool os::create_attached_thread(JavaThread* thread) {
 898 #ifdef ASSERT
 899   thread->verify_not_published();
 900 #endif
 901 
 902   // Allocate the OSThread object
 903   OSThread* osthread = new OSThread(NULL, NULL);
 904 
 905   if (osthread == NULL) {
 906     return false;
 907   }
 908 
 909   // Store pthread info into the OSThread
 910   osthread->set_thread_id(os::Linux::gettid());
 911   osthread->set_pthread_id(::pthread_self());
 912 
 913   // initialize floating point control register
 914   os::Linux::init_thread_fpu_state();
 915 
 916   // Initial thread state is RUNNABLE
 917   osthread->set_state(RUNNABLE);
 918 
 919   thread->set_osthread(osthread);
 920 
 921   if (UseNUMA) {
 922     int lgrp_id = os::numa_get_group_id();
 923     if (lgrp_id != -1) {
 924       thread->set_lgrp_id(lgrp_id);
 925     }
 926   }
 927 
 928   if (os::Linux::is_initial_thread()) {
 929     // If current thread is initial thread, its stack is mapped on demand,
 930     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
 931     // the entire stack region to avoid SEGV in stack banging.
 932     // It is also useful to get around the heap-stack-gap problem on SuSE
 933     // kernel (see 4821821 for details). We first expand stack to the top
 934     // of yellow zone, then enable stack yellow zone (order is significant,
 935     // enabling yellow zone first will crash JVM on SuSE Linux), so there
 936     // is no gap between the last two virtual memory regions.
 937 
 938     JavaThread *jt = (JavaThread *)thread;
 939     address addr = jt->stack_yellow_zone_base();
 940     assert(addr != NULL, "initialization problem?");
 941     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
 942 
 943     osthread->set_expanding_stack();
 944     os::Linux::manually_expand_stack(jt, addr);
 945     osthread->clear_expanding_stack();
 946   }
 947 
 948   // initialize signal mask for this thread
 949   // and save the caller's signal mask
 950   os::Linux::hotspot_sigmask(thread);
 951 
 952   return true;
 953 }
 954 
 955 void os::pd_start_thread(Thread* thread) {
 956   OSThread * osthread = thread->osthread();
 957   assert(osthread->get_state() != INITIALIZED, "just checking");
 958   Monitor* sync_with_child = osthread->startThread_lock();
 959   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 960   sync_with_child->notify();
 961 }
 962 
 963 // Free Linux resources related to the OSThread
 964 void os::free_thread(OSThread* osthread) {
 965   assert(osthread != NULL, "osthread not set");
 966 
 967   if (Thread::current()->osthread() == osthread) {
 968     // Restore caller's signal mask
 969     sigset_t sigmask = osthread->caller_sigmask();
 970     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
 971   }
 972 
 973   delete osthread;
 974 }
 975 
 976 //////////////////////////////////////////////////////////////////////////////
 977 // thread local storage
 978 
 979 // Restore the thread pointer if the destructor is called. This is in case
 980 // someone from JNI code sets up a destructor with pthread_key_create to run
 981 // detachCurrentThread on thread death. Unless we restore the thread pointer we
 982 // will hang or crash. When detachCurrentThread is called the key will be set
 983 // to null and we will not be called again. If detachCurrentThread is never
 984 // called we could loop forever depending on the pthread implementation.
 985 static void restore_thread_pointer(void* p) {
 986   Thread* thread = (Thread*) p;
 987   os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
 988 }
 989 
 990 int os::allocate_thread_local_storage() {
 991   pthread_key_t key;
 992   int rslt = pthread_key_create(&key, restore_thread_pointer);
 993   assert(rslt == 0, "cannot allocate thread local storage");
 994   return (int)key;
 995 }
 996 
 997 // Note: This is currently not used by VM, as we don't destroy TLS key
 998 // on VM exit.
 999 void os::free_thread_local_storage(int index) {
1000   int rslt = pthread_key_delete((pthread_key_t)index);
1001   assert(rslt == 0, "invalid index");
1002 }
1003 
1004 void os::thread_local_storage_at_put(int index, void* value) {
1005   int rslt = pthread_setspecific((pthread_key_t)index, value);
1006   assert(rslt == 0, "pthread_setspecific failed");
1007 }
1008 
1009 extern "C" Thread* get_thread() {
1010   return ThreadLocalStorage::thread();
1011 }
1012 
1013 //////////////////////////////////////////////////////////////////////////////
1014 // initial thread
1015 
1016 // Check if current thread is the initial thread, similar to Solaris thr_main.
1017 bool os::Linux::is_initial_thread(void) {
1018   char dummy;
1019   // If called before init complete, thread stack bottom will be null.
1020   // Can be called if fatal error occurs before initialization.
1021   if (initial_thread_stack_bottom() == NULL) return false;
1022   assert(initial_thread_stack_bottom() != NULL &&
1023          initial_thread_stack_size()   != 0,
1024          "os::init did not locate initial thread's stack region");
1025   if ((address)&dummy >= initial_thread_stack_bottom() &&
1026       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size()) {
1027     return true;
1028   } else {
1029     return false;
1030   }
1031 }
1032 
1033 // Find the virtual memory area that contains addr
1034 static bool find_vma(address addr, address* vma_low, address* vma_high) {
1035   FILE *fp = fopen("/proc/self/maps", "r");
1036   if (fp) {
1037     address low, high;
1038     while (!feof(fp)) {
1039       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1040         if (low <= addr && addr < high) {
1041           if (vma_low)  *vma_low  = low;
1042           if (vma_high) *vma_high = high;
1043           fclose(fp);
1044           return true;
1045         }
1046       }
1047       for (;;) {
1048         int ch = fgetc(fp);
1049         if (ch == EOF || ch == (int)'\n') break;
1050       }
1051     }
1052     fclose(fp);
1053   }
1054   return false;
1055 }
1056 
1057 // Locate initial thread stack. This special handling of initial thread stack
1058 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
1059 // bogus value for initial thread.
1060 void os::Linux::capture_initial_stack(size_t max_size) {
1061   // stack size is the easy part, get it from RLIMIT_STACK
1062   size_t stack_size;
1063   struct rlimit rlim;
1064   getrlimit(RLIMIT_STACK, &rlim);
1065   stack_size = rlim.rlim_cur;
1066 
1067   // 6308388: a bug in ld.so will relocate its own .data section to the
1068   //   lower end of primordial stack; reduce ulimit -s value a little bit
1069   //   so we won't install guard page on ld.so's data section.
1070   stack_size -= 2 * page_size();
1071 
1072   // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1073   //   7.1, in both cases we will get 2G in return value.
1074   // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1075   //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1076   //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1077   //   in case other parts in glibc still assumes 2M max stack size.
1078   // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1079   // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1080   if (stack_size > 2 * K * K IA64_ONLY(*2)) {
1081     stack_size = 2 * K * K IA64_ONLY(*2);
1082   }
1083   // Try to figure out where the stack base (top) is. This is harder.
1084   //
1085   // When an application is started, glibc saves the initial stack pointer in
1086   // a global variable "__libc_stack_end", which is then used by system
1087   // libraries. __libc_stack_end should be pretty close to stack top. The
1088   // variable is available since the very early days. However, because it is
1089   // a private interface, it could disappear in the future.
1090   //
1091   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1092   // to __libc_stack_end, it is very close to stack top, but isn't the real
1093   // stack top. Note that /proc may not exist if VM is running as a chroot
1094   // program, so reading /proc/<pid>/stat could fail. Also the contents of
1095   // /proc/<pid>/stat could change in the future (though unlikely).
1096   //
1097   // We try __libc_stack_end first. If that doesn't work, look for
1098   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1099   // as a hint, which should work well in most cases.
1100 
1101   uintptr_t stack_start;
1102 
1103   // try __libc_stack_end first
1104   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1105   if (p && *p) {
1106     stack_start = *p;
1107   } else {
1108     // see if we can get the start_stack field from /proc/self/stat
1109     FILE *fp;
1110     int pid;
1111     char state;
1112     int ppid;
1113     int pgrp;
1114     int session;
1115     int nr;
1116     int tpgrp;
1117     unsigned long flags;
1118     unsigned long minflt;
1119     unsigned long cminflt;
1120     unsigned long majflt;
1121     unsigned long cmajflt;
1122     unsigned long utime;
1123     unsigned long stime;
1124     long cutime;
1125     long cstime;
1126     long prio;
1127     long nice;
1128     long junk;
1129     long it_real;
1130     uintptr_t start;
1131     uintptr_t vsize;
1132     intptr_t rss;
1133     uintptr_t rsslim;
1134     uintptr_t scodes;
1135     uintptr_t ecode;
1136     int i;
1137 
1138     // Figure what the primordial thread stack base is. Code is inspired
1139     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1140     // followed by command name surrounded by parentheses, state, etc.
1141     char stat[2048];
1142     int statlen;
1143 
1144     fp = fopen("/proc/self/stat", "r");
1145     if (fp) {
1146       statlen = fread(stat, 1, 2047, fp);
1147       stat[statlen] = '\0';
1148       fclose(fp);
1149 
1150       // Skip pid and the command string. Note that we could be dealing with
1151       // weird command names, e.g. user could decide to rename java launcher
1152       // to "java 1.4.2 :)", then the stat file would look like
1153       //                1234 (java 1.4.2 :)) R ... ...
1154       // We don't really need to know the command string, just find the last
1155       // occurrence of ")" and then start parsing from there. See bug 4726580.
1156       char * s = strrchr(stat, ')');
1157 
1158       i = 0;
1159       if (s) {
1160         // Skip blank chars
1161         do { s++; } while (s && isspace(*s));
1162 
1163 #define _UFM UINTX_FORMAT
1164 #define _DFM INTX_FORMAT
1165 
1166         //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1167         //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1168         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1169                    &state,          // 3  %c
1170                    &ppid,           // 4  %d
1171                    &pgrp,           // 5  %d
1172                    &session,        // 6  %d
1173                    &nr,             // 7  %d
1174                    &tpgrp,          // 8  %d
1175                    &flags,          // 9  %lu
1176                    &minflt,         // 10 %lu
1177                    &cminflt,        // 11 %lu
1178                    &majflt,         // 12 %lu
1179                    &cmajflt,        // 13 %lu
1180                    &utime,          // 14 %lu
1181                    &stime,          // 15 %lu
1182                    &cutime,         // 16 %ld
1183                    &cstime,         // 17 %ld
1184                    &prio,           // 18 %ld
1185                    &nice,           // 19 %ld
1186                    &junk,           // 20 %ld
1187                    &it_real,        // 21 %ld
1188                    &start,          // 22 UINTX_FORMAT
1189                    &vsize,          // 23 UINTX_FORMAT
1190                    &rss,            // 24 INTX_FORMAT
1191                    &rsslim,         // 25 UINTX_FORMAT
1192                    &scodes,         // 26 UINTX_FORMAT
1193                    &ecode,          // 27 UINTX_FORMAT
1194                    &stack_start);   // 28 UINTX_FORMAT
1195       }
1196 
1197 #undef _UFM
1198 #undef _DFM
1199 
1200       if (i != 28 - 2) {
1201         assert(false, "Bad conversion from /proc/self/stat");
1202         // product mode - assume we are the initial thread, good luck in the
1203         // embedded case.
1204         warning("Can't detect initial thread stack location - bad conversion");
1205         stack_start = (uintptr_t) &rlim;
1206       }
1207     } else {
1208       // For some reason we can't open /proc/self/stat (for example, running on
1209       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1210       // most cases, so don't abort:
1211       warning("Can't detect initial thread stack location - no /proc/self/stat");
1212       stack_start = (uintptr_t) &rlim;
1213     }
1214   }
1215 
1216   // Now we have a pointer (stack_start) very close to the stack top, the
1217   // next thing to do is to figure out the exact location of stack top. We
1218   // can find out the virtual memory area that contains stack_start by
1219   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1220   // and its upper limit is the real stack top. (again, this would fail if
1221   // running inside chroot, because /proc may not exist.)
1222 
1223   uintptr_t stack_top;
1224   address low, high;
1225   if (find_vma((address)stack_start, &low, &high)) {
1226     // success, "high" is the true stack top. (ignore "low", because initial
1227     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1228     stack_top = (uintptr_t)high;
1229   } else {
1230     // failed, likely because /proc/self/maps does not exist
1231     warning("Can't detect initial thread stack location - find_vma failed");
1232     // best effort: stack_start is normally within a few pages below the real
1233     // stack top, use it as stack top, and reduce stack size so we won't put
1234     // guard page outside stack.
1235     stack_top = stack_start;
1236     stack_size -= 16 * page_size();
1237   }
1238 
1239   // stack_top could be partially down the page so align it
1240   stack_top = align_size_up(stack_top, page_size());
1241 
1242   if (max_size && stack_size > max_size) {
1243     _initial_thread_stack_size = max_size;
1244   } else {
1245     _initial_thread_stack_size = stack_size;
1246   }
1247 
1248   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1249   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1250 }
1251 
1252 ////////////////////////////////////////////////////////////////////////////////
1253 // time support
1254 
1255 // Time since start-up in seconds to a fine granularity.
1256 // Used by VMSelfDestructTimer and the MemProfiler.
1257 double os::elapsedTime() {
1258 
1259   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1260 }
1261 
1262 jlong os::elapsed_counter() {
1263   return javaTimeNanos() - initial_time_count;
1264 }
1265 
1266 jlong os::elapsed_frequency() {
1267   return NANOSECS_PER_SEC; // nanosecond resolution
1268 }
1269 
1270 bool os::supports_vtime() { return true; }
1271 bool os::enable_vtime()   { return false; }
1272 bool os::vtime_enabled()  { return false; }
1273 
1274 double os::elapsedVTime() {
1275   struct rusage usage;
1276   int retval = getrusage(RUSAGE_THREAD, &usage);
1277   if (retval == 0) {
1278     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1279   } else {
1280     // better than nothing, but not much
1281     return elapsedTime();
1282   }
1283 }
1284 
1285 jlong os::javaTimeMillis() {
1286   timeval time;
1287   int status = gettimeofday(&time, NULL);
1288   assert(status != -1, "linux error");
1289   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1290 }
1291 
1292 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1293   timeval time;
1294   int status = gettimeofday(&time, NULL);
1295   assert(status != -1, "linux error");
1296   seconds = jlong(time.tv_sec);
1297   nanos = jlong(time.tv_usec) * 1000;
1298 }
1299 
1300 
1301 #ifndef CLOCK_MONOTONIC
1302   #define CLOCK_MONOTONIC (1)
1303 #endif
1304 
1305 void os::Linux::clock_init() {
1306   // we do dlopen's in this particular order due to bug in linux
1307   // dynamical loader (see 6348968) leading to crash on exit
1308   void* handle = dlopen("librt.so.1", RTLD_LAZY);
1309   if (handle == NULL) {
1310     handle = dlopen("librt.so", RTLD_LAZY);
1311   }
1312 
1313   if (handle) {
1314     int (*clock_getres_func)(clockid_t, struct timespec*) =
1315            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1316     int (*clock_gettime_func)(clockid_t, struct timespec*) =
1317            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1318     if (clock_getres_func && clock_gettime_func) {
1319       // See if monotonic clock is supported by the kernel. Note that some
1320       // early implementations simply return kernel jiffies (updated every
1321       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1322       // for nano time (though the monotonic property is still nice to have).
1323       // It's fixed in newer kernels, however clock_getres() still returns
1324       // 1/HZ. We check if clock_getres() works, but will ignore its reported
1325       // resolution for now. Hopefully as people move to new kernels, this
1326       // won't be a problem.
1327       struct timespec res;
1328       struct timespec tp;
1329       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1330           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1331         // yes, monotonic clock is supported
1332         _clock_gettime = clock_gettime_func;
1333         return;
1334       } else {
1335         // close librt if there is no monotonic clock
1336         dlclose(handle);
1337       }
1338     }
1339   }
1340   warning("No monotonic clock was available - timed services may " \
1341           "be adversely affected if the time-of-day clock changes");
1342 }
1343 
1344 #ifndef SYS_clock_getres
1345   #if defined(IA32) || defined(AMD64)
1346     #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1347     #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1348   #else
1349     #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1350     #define sys_clock_getres(x,y)  -1
1351   #endif
1352 #else
1353   #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1354 #endif
1355 
1356 void os::Linux::fast_thread_clock_init() {
1357   if (!UseLinuxPosixThreadCPUClocks) {
1358     return;
1359   }
1360   clockid_t clockid;
1361   struct timespec tp;
1362   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1363       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1364 
1365   // Switch to using fast clocks for thread cpu time if
1366   // the sys_clock_getres() returns 0 error code.
1367   // Note, that some kernels may support the current thread
1368   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1369   // returned by the pthread_getcpuclockid().
1370   // If the fast Posix clocks are supported then the sys_clock_getres()
1371   // must return at least tp.tv_sec == 0 which means a resolution
1372   // better than 1 sec. This is extra check for reliability.
1373 
1374   if (pthread_getcpuclockid_func &&
1375       pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1376       sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1377     _supports_fast_thread_cpu_time = true;
1378     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1379   }
1380 }
1381 
1382 jlong os::javaTimeNanos() {
1383   if (os::supports_monotonic_clock()) {
1384     struct timespec tp;
1385     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1386     assert(status == 0, "gettime error");
1387     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1388     return result;
1389   } else {
1390     timeval time;
1391     int status = gettimeofday(&time, NULL);
1392     assert(status != -1, "linux error");
1393     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1394     return 1000 * usecs;
1395   }
1396 }
1397 
1398 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1399   if (os::supports_monotonic_clock()) {
1400     info_ptr->max_value = ALL_64_BITS;
1401 
1402     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1403     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1404     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1405   } else {
1406     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1407     info_ptr->max_value = ALL_64_BITS;
1408 
1409     // gettimeofday is a real time clock so it skips
1410     info_ptr->may_skip_backward = true;
1411     info_ptr->may_skip_forward = true;
1412   }
1413 
1414   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1415 }
1416 
1417 // Return the real, user, and system times in seconds from an
1418 // arbitrary fixed point in the past.
1419 bool os::getTimesSecs(double* process_real_time,
1420                       double* process_user_time,
1421                       double* process_system_time) {
1422   struct tms ticks;
1423   clock_t real_ticks = times(&ticks);
1424 
1425   if (real_ticks == (clock_t) (-1)) {
1426     return false;
1427   } else {
1428     double ticks_per_second = (double) clock_tics_per_sec;
1429     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1430     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1431     *process_real_time = ((double) real_ticks) / ticks_per_second;
1432 
1433     return true;
1434   }
1435 }
1436 
1437 
1438 char * os::local_time_string(char *buf, size_t buflen) {
1439   struct tm t;
1440   time_t long_time;
1441   time(&long_time);
1442   localtime_r(&long_time, &t);
1443   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1444                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1445                t.tm_hour, t.tm_min, t.tm_sec);
1446   return buf;
1447 }
1448 
1449 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1450   return localtime_r(clock, res);
1451 }
1452 
1453 ////////////////////////////////////////////////////////////////////////////////
1454 // runtime exit support
1455 
1456 // Note: os::shutdown() might be called very early during initialization, or
1457 // called from signal handler. Before adding something to os::shutdown(), make
1458 // sure it is async-safe and can handle partially initialized VM.
1459 void os::shutdown() {
1460 
1461   // allow PerfMemory to attempt cleanup of any persistent resources
1462   perfMemory_exit();
1463 
1464   // needs to remove object in file system
1465   AttachListener::abort();
1466 
1467   // flush buffered output, finish log files
1468   ostream_abort();
1469 
1470   // Check for abort hook
1471   abort_hook_t abort_hook = Arguments::abort_hook();
1472   if (abort_hook != NULL) {
1473     abort_hook();
1474   }
1475 
1476 }
1477 
1478 // Note: os::abort() might be called very early during initialization, or
1479 // called from signal handler. Before adding something to os::abort(), make
1480 // sure it is async-safe and can handle partially initialized VM.
1481 void os::abort(bool dump_core, void* siginfo, void* context) {
1482   os::shutdown();
1483   if (dump_core) {
1484 #ifndef PRODUCT
1485     fdStream out(defaultStream::output_fd());
1486     out.print_raw("Current thread is ");
1487     char buf[16];
1488     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1489     out.print_raw_cr(buf);
1490     out.print_raw_cr("Dumping core ...");
1491 #endif
1492     ::abort(); // dump core
1493   }
1494 
1495   ::exit(1);
1496 }
1497 
1498 // Die immediately, no exit hook, no abort hook, no cleanup.
1499 void os::die() {
1500   // _exit() on LinuxThreads only kills current thread
1501   ::abort();
1502 }
1503 
1504 
1505 // This method is a copy of JDK's sysGetLastErrorString
1506 // from src/solaris/hpi/src/system_md.c
1507 
1508 size_t os::lasterror(char *buf, size_t len) {
1509   if (errno == 0)  return 0;
1510 
1511   const char *s = ::strerror(errno);
1512   size_t n = ::strlen(s);
1513   if (n >= len) {
1514     n = len - 1;
1515   }
1516   ::strncpy(buf, s, n);
1517   buf[n] = '\0';
1518   return n;
1519 }
1520 
1521 intx os::current_thread_id() { return (intx)pthread_self(); }
1522 int os::current_process_id() {
1523 
1524   // Under the old linux thread library, linux gives each thread
1525   // its own process id. Because of this each thread will return
1526   // a different pid if this method were to return the result
1527   // of getpid(2). Linux provides no api that returns the pid
1528   // of the launcher thread for the vm. This implementation
1529   // returns a unique pid, the pid of the launcher thread
1530   // that starts the vm 'process'.
1531 
1532   // Under the NPTL, getpid() returns the same pid as the
1533   // launcher thread rather than a unique pid per thread.
1534   // Use gettid() if you want the old pre NPTL behaviour.
1535 
1536   // if you are looking for the result of a call to getpid() that
1537   // returns a unique pid for the calling thread, then look at the
1538   // OSThread::thread_id() method in osThread_linux.hpp file
1539 
1540   return (int)(_initial_pid ? _initial_pid : getpid());
1541 }
1542 
1543 // DLL functions
1544 
1545 const char* os::dll_file_extension() { return ".so"; }
1546 
1547 // This must be hard coded because it's the system's temporary
1548 // directory not the java application's temp directory, ala java.io.tmpdir.
1549 const char* os::get_temp_directory() { return "/tmp"; }
1550 
1551 static bool file_exists(const char* filename) {
1552   struct stat statbuf;
1553   if (filename == NULL || strlen(filename) == 0) {
1554     return false;
1555   }
1556   return os::stat(filename, &statbuf) == 0;
1557 }
1558 
1559 bool os::dll_build_name(char* buffer, size_t buflen,
1560                         const char* pname, const char* fname) {
1561   bool retval = false;
1562   // Copied from libhpi
1563   const size_t pnamelen = pname ? strlen(pname) : 0;
1564 
1565   // Return error on buffer overflow.
1566   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1567     return retval;
1568   }
1569 
1570   if (pnamelen == 0) {
1571     snprintf(buffer, buflen, "lib%s.so", fname);
1572     retval = true;
1573   } else if (strchr(pname, *os::path_separator()) != NULL) {
1574     int n;
1575     char** pelements = split_path(pname, &n);
1576     if (pelements == NULL) {
1577       return false;
1578     }
1579     for (int i = 0; i < n; i++) {
1580       // Really shouldn't be NULL, but check can't hurt
1581       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1582         continue; // skip the empty path values
1583       }
1584       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1585       if (file_exists(buffer)) {
1586         retval = true;
1587         break;
1588       }
1589     }
1590     // release the storage
1591     for (int i = 0; i < n; i++) {
1592       if (pelements[i] != NULL) {
1593         FREE_C_HEAP_ARRAY(char, pelements[i]);
1594       }
1595     }
1596     if (pelements != NULL) {
1597       FREE_C_HEAP_ARRAY(char*, pelements);
1598     }
1599   } else {
1600     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1601     retval = true;
1602   }
1603   return retval;
1604 }
1605 
1606 // check if addr is inside libjvm.so
1607 bool os::address_is_in_vm(address addr) {
1608   static address libjvm_base_addr;
1609   Dl_info dlinfo;
1610 
1611   if (libjvm_base_addr == NULL) {
1612     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1613       libjvm_base_addr = (address)dlinfo.dli_fbase;
1614     }
1615     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1616   }
1617 
1618   if (dladdr((void *)addr, &dlinfo) != 0) {
1619     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1620   }
1621 
1622   return false;
1623 }
1624 
1625 bool os::dll_address_to_function_name(address addr, char *buf,
1626                                       int buflen, int *offset) {
1627   // buf is not optional, but offset is optional
1628   assert(buf != NULL, "sanity check");
1629 
1630   Dl_info dlinfo;
1631 
1632   if (dladdr((void*)addr, &dlinfo) != 0) {
1633     // see if we have a matching symbol
1634     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1635       if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1636         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1637       }
1638       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1639       return true;
1640     }
1641     // no matching symbol so try for just file info
1642     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1643       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1644                           buf, buflen, offset, dlinfo.dli_fname)) {
1645         return true;
1646       }
1647     }
1648   }
1649 
1650   buf[0] = '\0';
1651   if (offset != NULL) *offset = -1;
1652   return false;
1653 }
1654 
1655 struct _address_to_library_name {
1656   address addr;          // input : memory address
1657   size_t  buflen;        //         size of fname
1658   char*   fname;         // output: library name
1659   address base;          //         library base addr
1660 };
1661 
1662 static int address_to_library_name_callback(struct dl_phdr_info *info,
1663                                             size_t size, void *data) {
1664   int i;
1665   bool found = false;
1666   address libbase = NULL;
1667   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1668 
1669   // iterate through all loadable segments
1670   for (i = 0; i < info->dlpi_phnum; i++) {
1671     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1672     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1673       // base address of a library is the lowest address of its loaded
1674       // segments.
1675       if (libbase == NULL || libbase > segbase) {
1676         libbase = segbase;
1677       }
1678       // see if 'addr' is within current segment
1679       if (segbase <= d->addr &&
1680           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1681         found = true;
1682       }
1683     }
1684   }
1685 
1686   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1687   // so dll_address_to_library_name() can fall through to use dladdr() which
1688   // can figure out executable name from argv[0].
1689   if (found && info->dlpi_name && info->dlpi_name[0]) {
1690     d->base = libbase;
1691     if (d->fname) {
1692       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1693     }
1694     return 1;
1695   }
1696   return 0;
1697 }
1698 
1699 bool os::dll_address_to_library_name(address addr, char* buf,
1700                                      int buflen, int* offset) {
1701   // buf is not optional, but offset is optional
1702   assert(buf != NULL, "sanity check");
1703 
1704   Dl_info dlinfo;
1705   struct _address_to_library_name data;
1706 
1707   // There is a bug in old glibc dladdr() implementation that it could resolve
1708   // to wrong library name if the .so file has a base address != NULL. Here
1709   // we iterate through the program headers of all loaded libraries to find
1710   // out which library 'addr' really belongs to. This workaround can be
1711   // removed once the minimum requirement for glibc is moved to 2.3.x.
1712   data.addr = addr;
1713   data.fname = buf;
1714   data.buflen = buflen;
1715   data.base = NULL;
1716   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1717 
1718   if (rslt) {
1719     // buf already contains library name
1720     if (offset) *offset = addr - data.base;
1721     return true;
1722   }
1723   if (dladdr((void*)addr, &dlinfo) != 0) {
1724     if (dlinfo.dli_fname != NULL) {
1725       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1726     }
1727     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1728       *offset = addr - (address)dlinfo.dli_fbase;
1729     }
1730     return true;
1731   }
1732 
1733   buf[0] = '\0';
1734   if (offset) *offset = -1;
1735   return false;
1736 }
1737 
1738 // Loads .dll/.so and
1739 // in case of error it checks if .dll/.so was built for the
1740 // same architecture as Hotspot is running on
1741 
1742 
1743 // Remember the stack's state. The Linux dynamic linker will change
1744 // the stack to 'executable' at most once, so we must safepoint only once.
1745 bool os::Linux::_stack_is_executable = false;
1746 
1747 // VM operation that loads a library.  This is necessary if stack protection
1748 // of the Java stacks can be lost during loading the library.  If we
1749 // do not stop the Java threads, they can stack overflow before the stacks
1750 // are protected again.
1751 class VM_LinuxDllLoad: public VM_Operation {
1752  private:
1753   const char *_filename;
1754   char *_ebuf;
1755   int _ebuflen;
1756   void *_lib;
1757  public:
1758   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1759     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1760   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1761   void doit() {
1762     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1763     os::Linux::_stack_is_executable = true;
1764   }
1765   void* loaded_library() { return _lib; }
1766 };
1767 
1768 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1769   void * result = NULL;
1770   bool load_attempted = false;
1771 
1772   // Check whether the library to load might change execution rights
1773   // of the stack. If they are changed, the protection of the stack
1774   // guard pages will be lost. We need a safepoint to fix this.
1775   //
1776   // See Linux man page execstack(8) for more info.
1777   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1778     ElfFile ef(filename);
1779     if (!ef.specifies_noexecstack()) {
1780       if (!is_init_completed()) {
1781         os::Linux::_stack_is_executable = true;
1782         // This is OK - No Java threads have been created yet, and hence no
1783         // stack guard pages to fix.
1784         //
1785         // This should happen only when you are building JDK7 using a very
1786         // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1787         //
1788         // Dynamic loader will make all stacks executable after
1789         // this function returns, and will not do that again.
1790         assert(Threads::first() == NULL, "no Java threads should exist yet.");
1791       } else {
1792         warning("You have loaded library %s which might have disabled stack guard. "
1793                 "The VM will try to fix the stack guard now.\n"
1794                 "It's highly recommended that you fix the library with "
1795                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1796                 filename);
1797 
1798         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1799         JavaThread *jt = JavaThread::current();
1800         if (jt->thread_state() != _thread_in_native) {
1801           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1802           // that requires ExecStack. Cannot enter safe point. Let's give up.
1803           warning("Unable to fix stack guard. Giving up.");
1804         } else {
1805           if (!LoadExecStackDllInVMThread) {
1806             // This is for the case where the DLL has an static
1807             // constructor function that executes JNI code. We cannot
1808             // load such DLLs in the VMThread.
1809             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1810           }
1811 
1812           ThreadInVMfromNative tiv(jt);
1813           debug_only(VMNativeEntryWrapper vew;)
1814 
1815           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1816           VMThread::execute(&op);
1817           if (LoadExecStackDllInVMThread) {
1818             result = op.loaded_library();
1819           }
1820           load_attempted = true;
1821         }
1822       }
1823     }
1824   }
1825 
1826   if (!load_attempted) {
1827     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1828   }
1829 
1830   if (result != NULL) {
1831     // Successful loading
1832     return result;
1833   }
1834 
1835   Elf32_Ehdr elf_head;
1836   int diag_msg_max_length=ebuflen-strlen(ebuf);
1837   char* diag_msg_buf=ebuf+strlen(ebuf);
1838 
1839   if (diag_msg_max_length==0) {
1840     // No more space in ebuf for additional diagnostics message
1841     return NULL;
1842   }
1843 
1844 
1845   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1846 
1847   if (file_descriptor < 0) {
1848     // Can't open library, report dlerror() message
1849     return NULL;
1850   }
1851 
1852   bool failed_to_read_elf_head=
1853     (sizeof(elf_head)!=
1854      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1855 
1856   ::close(file_descriptor);
1857   if (failed_to_read_elf_head) {
1858     // file i/o error - report dlerror() msg
1859     return NULL;
1860   }
1861 
1862   typedef struct {
1863     Elf32_Half  code;         // Actual value as defined in elf.h
1864     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1865     char        elf_class;    // 32 or 64 bit
1866     char        endianess;    // MSB or LSB
1867     char*       name;         // String representation
1868   } arch_t;
1869 
1870 #ifndef EM_486
1871   #define EM_486          6               /* Intel 80486 */
1872 #endif
1873 #ifndef EM_AARCH64
1874   #define EM_AARCH64    183               /* ARM AARCH64 */
1875 #endif
1876 
1877   static const arch_t arch_array[]={
1878     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1879     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1880     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1881     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1882     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1883     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1884     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1885     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1886 #if defined(VM_LITTLE_ENDIAN)
1887     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64"},
1888 #else
1889     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1890 #endif
1891     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1892     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1893     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1894     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1895     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1896     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1897     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"},
1898     {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"},
1899   };
1900 
1901 #if  (defined IA32)
1902   static  Elf32_Half running_arch_code=EM_386;
1903 #elif   (defined AMD64)
1904   static  Elf32_Half running_arch_code=EM_X86_64;
1905 #elif  (defined IA64)
1906   static  Elf32_Half running_arch_code=EM_IA_64;
1907 #elif  (defined __sparc) && (defined _LP64)
1908   static  Elf32_Half running_arch_code=EM_SPARCV9;
1909 #elif  (defined __sparc) && (!defined _LP64)
1910   static  Elf32_Half running_arch_code=EM_SPARC;
1911 #elif  (defined __powerpc64__)
1912   static  Elf32_Half running_arch_code=EM_PPC64;
1913 #elif  (defined __powerpc__)
1914   static  Elf32_Half running_arch_code=EM_PPC;
1915 #elif  (defined ARM)
1916   static  Elf32_Half running_arch_code=EM_ARM;
1917 #elif  (defined S390)
1918   static  Elf32_Half running_arch_code=EM_S390;
1919 #elif  (defined ALPHA)
1920   static  Elf32_Half running_arch_code=EM_ALPHA;
1921 #elif  (defined MIPSEL)
1922   static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1923 #elif  (defined PARISC)
1924   static  Elf32_Half running_arch_code=EM_PARISC;
1925 #elif  (defined MIPS)
1926   static  Elf32_Half running_arch_code=EM_MIPS;
1927 #elif  (defined M68K)
1928   static  Elf32_Half running_arch_code=EM_68K;
1929 #elif  (defined AARCH64)
1930   static  Elf32_Half running_arch_code=EM_AARCH64;
1931 #else
1932     #error Method os::dll_load requires that one of following is defined:\
1933          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K, AARCH64
1934 #endif
1935 
1936   // Identify compatability class for VM's architecture and library's architecture
1937   // Obtain string descriptions for architectures
1938 
1939   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1940   int running_arch_index=-1;
1941 
1942   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1943     if (running_arch_code == arch_array[i].code) {
1944       running_arch_index    = i;
1945     }
1946     if (lib_arch.code == arch_array[i].code) {
1947       lib_arch.compat_class = arch_array[i].compat_class;
1948       lib_arch.name         = arch_array[i].name;
1949     }
1950   }
1951 
1952   assert(running_arch_index != -1,
1953          "Didn't find running architecture code (running_arch_code) in arch_array");
1954   if (running_arch_index == -1) {
1955     // Even though running architecture detection failed
1956     // we may still continue with reporting dlerror() message
1957     return NULL;
1958   }
1959 
1960   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1961     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1962     return NULL;
1963   }
1964 
1965 #ifndef S390
1966   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1967     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1968     return NULL;
1969   }
1970 #endif // !S390
1971 
1972   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1973     if (lib_arch.name!=NULL) {
1974       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1975                  " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1976                  lib_arch.name, arch_array[running_arch_index].name);
1977     } else {
1978       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1979                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1980                  lib_arch.code,
1981                  arch_array[running_arch_index].name);
1982     }
1983   }
1984 
1985   return NULL;
1986 }
1987 
1988 void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
1989                                 int ebuflen) {
1990   void * result = ::dlopen(filename, RTLD_LAZY);
1991   if (result == NULL) {
1992     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
1993     ebuf[ebuflen-1] = '\0';
1994   }
1995   return result;
1996 }
1997 
1998 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
1999                                        int ebuflen) {
2000   void * result = NULL;
2001   if (LoadExecStackDllInVMThread) {
2002     result = dlopen_helper(filename, ebuf, ebuflen);
2003   }
2004 
2005   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
2006   // library that requires an executable stack, or which does not have this
2007   // stack attribute set, dlopen changes the stack attribute to executable. The
2008   // read protection of the guard pages gets lost.
2009   //
2010   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
2011   // may have been queued at the same time.
2012 
2013   if (!_stack_is_executable) {
2014     JavaThread *jt = Threads::first();
2015 
2016     while (jt) {
2017       if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
2018           jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
2019         if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
2020                               jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
2021           warning("Attempt to reguard stack yellow zone failed.");
2022         }
2023       }
2024       jt = jt->next();
2025     }
2026   }
2027 
2028   return result;
2029 }
2030 
2031 void* os::dll_lookup(void* handle, const char* name) {
2032   void* res = dlsym(handle, name);
2033   return res;
2034 }
2035 
2036 void* os::get_default_process_handle() {
2037   return (void*)::dlopen(NULL, RTLD_LAZY);
2038 }
2039 
2040 static bool _print_ascii_file(const char* filename, outputStream* st) {
2041   int fd = ::open(filename, O_RDONLY);
2042   if (fd == -1) {
2043     return false;
2044   }
2045 
2046   char buf[32];
2047   int bytes;
2048   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
2049     st->print_raw(buf, bytes);
2050   }
2051 
2052   ::close(fd);
2053 
2054   return true;
2055 }
2056 
2057 void os::print_dll_info(outputStream *st) {
2058   st->print_cr("Dynamic libraries:");
2059 
2060   char fname[32];
2061   pid_t pid = os::Linux::gettid();
2062 
2063   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
2064 
2065   if (!_print_ascii_file(fname, st)) {
2066     st->print("Can not get library information for pid = %d\n", pid);
2067   }
2068 }
2069 
2070 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
2071   FILE *procmapsFile = NULL;
2072 
2073   // Open the procfs maps file for the current process
2074   if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
2075     // Allocate PATH_MAX for file name plus a reasonable size for other fields.
2076     char line[PATH_MAX + 100];
2077 
2078     // Read line by line from 'file'
2079     while (fgets(line, sizeof(line), procmapsFile) != NULL) {
2080       u8 base, top, offset, inode;
2081       char permissions[5];
2082       char device[6];
2083       char name[PATH_MAX + 1];
2084 
2085       // Parse fields from line
2086       sscanf(line, "%lx-%lx %4s %lx %5s %ld %s", &base, &top, permissions, &offset, device, &inode, name);
2087 
2088       // Filter by device id '00:00' so that we only get file system mapped files.
2089       if (strcmp(device, "00:00") != 0) {
2090 
2091         // Call callback with the fields of interest
2092         if(callback(name, (address)base, (address)top, param)) {
2093           // Oops abort, callback aborted
2094           fclose(procmapsFile);
2095           return 1;
2096         }
2097       }
2098     }
2099     fclose(procmapsFile);
2100   }
2101   return 0;
2102 }
2103 
2104 void os::print_os_info_brief(outputStream* st) {
2105   os::Linux::print_distro_info(st);
2106 
2107   os::Posix::print_uname_info(st);
2108 
2109   os::Linux::print_libversion_info(st);
2110 
2111 }
2112 
2113 void os::print_os_info(outputStream* st) {
2114   st->print("OS:");
2115 
2116   os::Linux::print_distro_info(st);
2117 
2118   os::Posix::print_uname_info(st);
2119 
2120   // Print warning if unsafe chroot environment detected
2121   if (unsafe_chroot_detected) {
2122     st->print("WARNING!! ");
2123     st->print_cr("%s", unstable_chroot_error);
2124   }
2125 
2126   os::Linux::print_libversion_info(st);
2127 
2128   os::Posix::print_rlimit_info(st);
2129 
2130   os::Posix::print_load_average(st);
2131 
2132   os::Linux::print_full_memory_info(st);
2133 }
2134 
2135 // Try to identify popular distros.
2136 // Most Linux distributions have a /etc/XXX-release file, which contains
2137 // the OS version string. Newer Linux distributions have a /etc/lsb-release
2138 // file that also contains the OS version string. Some have more than one
2139 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2140 // /etc/redhat-release.), so the order is important.
2141 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2142 // their own specific XXX-release file as well as a redhat-release file.
2143 // Because of this the XXX-release file needs to be searched for before the
2144 // redhat-release file.
2145 // Since Red Hat has a lsb-release file that is not very descriptive the
2146 // search for redhat-release needs to be before lsb-release.
2147 // Since the lsb-release file is the new standard it needs to be searched
2148 // before the older style release files.
2149 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
2150 // next to last resort.  The os-release file is a new standard that contains
2151 // distribution information and the system-release file seems to be an old
2152 // standard that has been replaced by the lsb-release and os-release files.
2153 // Searching for the debian_version file is the last resort.  It contains
2154 // an informative string like "6.0.6" or "wheezy/sid". Because of this
2155 // "Debian " is printed before the contents of the debian_version file.
2156 void os::Linux::print_distro_info(outputStream* st) {
2157   if (!_print_ascii_file("/etc/oracle-release", st) &&
2158       !_print_ascii_file("/etc/mandriva-release", st) &&
2159       !_print_ascii_file("/etc/mandrake-release", st) &&
2160       !_print_ascii_file("/etc/sun-release", st) &&
2161       !_print_ascii_file("/etc/redhat-release", st) &&
2162       !_print_ascii_file("/etc/lsb-release", st) &&
2163       !_print_ascii_file("/etc/SuSE-release", st) &&
2164       !_print_ascii_file("/etc/turbolinux-release", st) &&
2165       !_print_ascii_file("/etc/gentoo-release", st) &&
2166       !_print_ascii_file("/etc/ltib-release", st) &&
2167       !_print_ascii_file("/etc/angstrom-version", st) &&
2168       !_print_ascii_file("/etc/system-release", st) &&
2169       !_print_ascii_file("/etc/os-release", st)) {
2170 
2171     if (file_exists("/etc/debian_version")) {
2172       st->print("Debian ");
2173       _print_ascii_file("/etc/debian_version", st);
2174     } else {
2175       st->print("Linux");
2176     }
2177   }
2178   st->cr();
2179 }
2180 
2181 void os::Linux::print_libversion_info(outputStream* st) {
2182   // libc, pthread
2183   st->print("libc:");
2184   st->print("%s ", os::Linux::glibc_version());
2185   st->print("%s ", os::Linux::libpthread_version());
2186   if (os::Linux::is_LinuxThreads()) {
2187     st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
2188   }
2189   st->cr();
2190 }
2191 
2192 void os::Linux::print_full_memory_info(outputStream* st) {
2193   st->print("\n/proc/meminfo:\n");
2194   _print_ascii_file("/proc/meminfo", st);
2195   st->cr();
2196 }
2197 
2198 void os::print_memory_info(outputStream* st) {
2199 
2200   st->print("Memory:");
2201   st->print(" %dk page", os::vm_page_size()>>10);
2202 
2203   // values in struct sysinfo are "unsigned long"
2204   struct sysinfo si;
2205   sysinfo(&si);
2206 
2207   st->print(", physical " UINT64_FORMAT "k",
2208             os::physical_memory() >> 10);
2209   st->print("(" UINT64_FORMAT "k free)",
2210             os::available_memory() >> 10);
2211   st->print(", swap " UINT64_FORMAT "k",
2212             ((jlong)si.totalswap * si.mem_unit) >> 10);
2213   st->print("(" UINT64_FORMAT "k free)",
2214             ((jlong)si.freeswap * si.mem_unit) >> 10);
2215   st->cr();
2216 }
2217 
2218 void os::pd_print_cpu_info(outputStream* st) {
2219 #if defined(IA32) || defined(AMD64)
2220   // Only print the model name if the platform provides this as a summary
2221   st->print("\n/proc/cpuinfo:\n");
2222   FILE *fp = fopen("/proc/cpuinfo", "r");
2223   if (fp) {
2224     while (!feof(fp)) {
2225       char buf[256];
2226       if (fgets(buf, sizeof(buf), fp)) {
2227         if (strstr(buf, "model name") != NULL) {
2228           st->print_raw(buf);
2229           break;
2230         }
2231       }
2232     }
2233   } else {
2234     st->print_cr("  <Not Available>");
2235   }
2236 #else
2237     // Other platforms have reasonable cpuinfo files
2238     if (!_print_ascii_file("/proc/cpuinfo", st)) {
2239       st->print_cr("  <Not Available>");
2240     }
2241 #endif
2242 }
2243 
2244 void os::print_siginfo(outputStream* st, void* siginfo) {
2245   const siginfo_t* si = (const siginfo_t*)siginfo;
2246 
2247   os::Posix::print_siginfo_brief(st, si);
2248 #if INCLUDE_CDS
2249   if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2250       UseSharedSpaces) {
2251     FileMapInfo* mapinfo = FileMapInfo::current_info();
2252     if (mapinfo->is_in_shared_space(si->si_addr)) {
2253       st->print("\n\nError accessing class data sharing archive."   \
2254                 " Mapped file inaccessible during execution, "      \
2255                 " possible disk/network problem.");
2256     }
2257   }
2258 #endif
2259   st->cr();
2260 }
2261 
2262 
2263 static void print_signal_handler(outputStream* st, int sig,
2264                                  char* buf, size_t buflen);
2265 
2266 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2267   st->print_cr("Signal Handlers:");
2268   print_signal_handler(st, SIGSEGV, buf, buflen);
2269   print_signal_handler(st, SIGBUS , buf, buflen);
2270   print_signal_handler(st, SIGFPE , buf, buflen);
2271   print_signal_handler(st, SIGPIPE, buf, buflen);
2272   print_signal_handler(st, SIGXFSZ, buf, buflen);
2273   print_signal_handler(st, SIGILL , buf, buflen);
2274   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2275   print_signal_handler(st, SR_signum, buf, buflen);
2276   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2277   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2278   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2279   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2280 #if defined(PPC64)
2281   print_signal_handler(st, SIGTRAP, buf, buflen);
2282 #endif
2283 }
2284 
2285 static char saved_jvm_path[MAXPATHLEN] = {0};
2286 
2287 // Find the full path to the current module, libjvm.so
2288 void os::jvm_path(char *buf, jint buflen) {
2289   // Error checking.
2290   if (buflen < MAXPATHLEN) {
2291     assert(false, "must use a large-enough buffer");
2292     buf[0] = '\0';
2293     return;
2294   }
2295   // Lazy resolve the path to current module.
2296   if (saved_jvm_path[0] != 0) {
2297     strcpy(buf, saved_jvm_path);
2298     return;
2299   }
2300 
2301   char dli_fname[MAXPATHLEN];
2302   bool ret = dll_address_to_library_name(
2303                                          CAST_FROM_FN_PTR(address, os::jvm_path),
2304                                          dli_fname, sizeof(dli_fname), NULL);
2305   assert(ret, "cannot locate libjvm");
2306   char *rp = NULL;
2307   if (ret && dli_fname[0] != '\0') {
2308     rp = realpath(dli_fname, buf);
2309   }
2310   if (rp == NULL) {
2311     return;
2312   }
2313 
2314   if (Arguments::sun_java_launcher_is_altjvm()) {
2315     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2316     // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".
2317     // If "/jre/lib/" appears at the right place in the string, then
2318     // assume we are installed in a JDK and we're done. Otherwise, check
2319     // for a JAVA_HOME environment variable and fix up the path so it
2320     // looks like libjvm.so is installed there (append a fake suffix
2321     // hotspot/libjvm.so).
2322     const char *p = buf + strlen(buf) - 1;
2323     for (int count = 0; p > buf && count < 5; ++count) {
2324       for (--p; p > buf && *p != '/'; --p)
2325         /* empty */ ;
2326     }
2327 
2328     if (strncmp(p, "/jre/lib/", 9) != 0) {
2329       // Look for JAVA_HOME in the environment.
2330       char* java_home_var = ::getenv("JAVA_HOME");
2331       if (java_home_var != NULL && java_home_var[0] != 0) {
2332         char* jrelib_p;
2333         int len;
2334 
2335         // Check the current module name "libjvm.so".
2336         p = strrchr(buf, '/');
2337         if (p == NULL) {
2338           return;
2339         }
2340         assert(strstr(p, "/libjvm") == p, "invalid library name");
2341 
2342         rp = realpath(java_home_var, buf);
2343         if (rp == NULL) {
2344           return;
2345         }
2346 
2347         // determine if this is a legacy image or modules image
2348         // modules image doesn't have "jre" subdirectory
2349         len = strlen(buf);
2350         assert(len < buflen, "Ran out of buffer room");
2351         jrelib_p = buf + len;
2352         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2353         if (0 != access(buf, F_OK)) {
2354           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2355         }
2356 
2357         if (0 == access(buf, F_OK)) {
2358           // Use current module name "libjvm.so"
2359           len = strlen(buf);
2360           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2361         } else {
2362           // Go back to path of .so
2363           rp = realpath(dli_fname, buf);
2364           if (rp == NULL) {
2365             return;
2366           }
2367         }
2368       }
2369     }
2370   }
2371 
2372   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2373   saved_jvm_path[MAXPATHLEN - 1] = '\0';
2374 }
2375 
2376 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2377   // no prefix required, not even "_"
2378 }
2379 
2380 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2381   // no suffix required
2382 }
2383 
2384 ////////////////////////////////////////////////////////////////////////////////
2385 // sun.misc.Signal support
2386 
2387 static volatile jint sigint_count = 0;
2388 
2389 static void UserHandler(int sig, void *siginfo, void *context) {
2390   // 4511530 - sem_post is serialized and handled by the manager thread. When
2391   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2392   // don't want to flood the manager thread with sem_post requests.
2393   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
2394     return;
2395   }
2396 
2397   // Ctrl-C is pressed during error reporting, likely because the error
2398   // handler fails to abort. Let VM die immediately.
2399   if (sig == SIGINT && is_error_reported()) {
2400     os::die();
2401   }
2402 
2403   os::signal_notify(sig);
2404 }
2405 
2406 void* os::user_handler() {
2407   return CAST_FROM_FN_PTR(void*, UserHandler);
2408 }
2409 
2410 class Semaphore : public StackObj {
2411  public:
2412   Semaphore();
2413   ~Semaphore();
2414   void signal();
2415   void wait();
2416   bool trywait();
2417   bool timedwait(unsigned int sec, int nsec);
2418  private:
2419   sem_t _semaphore;
2420 };
2421 
2422 Semaphore::Semaphore() {
2423   sem_init(&_semaphore, 0, 0);
2424 }
2425 
2426 Semaphore::~Semaphore() {
2427   sem_destroy(&_semaphore);
2428 }
2429 
2430 void Semaphore::signal() {
2431   sem_post(&_semaphore);
2432 }
2433 
2434 void Semaphore::wait() {
2435   sem_wait(&_semaphore);
2436 }
2437 
2438 bool Semaphore::trywait() {
2439   return sem_trywait(&_semaphore) == 0;
2440 }
2441 
2442 bool Semaphore::timedwait(unsigned int sec, int nsec) {
2443 
2444   struct timespec ts;
2445   // Semaphore's are always associated with CLOCK_REALTIME
2446   os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2447   // see unpackTime for discussion on overflow checking
2448   if (sec >= MAX_SECS) {
2449     ts.tv_sec += MAX_SECS;
2450     ts.tv_nsec = 0;
2451   } else {
2452     ts.tv_sec += sec;
2453     ts.tv_nsec += nsec;
2454     if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2455       ts.tv_nsec -= NANOSECS_PER_SEC;
2456       ++ts.tv_sec; // note: this must be <= max_secs
2457     }
2458   }
2459 
2460   while (1) {
2461     int result = sem_timedwait(&_semaphore, &ts);
2462     if (result == 0) {
2463       return true;
2464     } else if (errno == EINTR) {
2465       continue;
2466     } else if (errno == ETIMEDOUT) {
2467       return false;
2468     } else {
2469       return false;
2470     }
2471   }
2472 }
2473 
2474 extern "C" {
2475   typedef void (*sa_handler_t)(int);
2476   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2477 }
2478 
2479 void* os::signal(int signal_number, void* handler) {
2480   struct sigaction sigAct, oldSigAct;
2481 
2482   sigfillset(&(sigAct.sa_mask));
2483   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2484   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2485 
2486   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2487     // -1 means registration failed
2488     return (void *)-1;
2489   }
2490 
2491   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2492 }
2493 
2494 void os::signal_raise(int signal_number) {
2495   ::raise(signal_number);
2496 }
2497 
2498 // The following code is moved from os.cpp for making this
2499 // code platform specific, which it is by its very nature.
2500 
2501 // Will be modified when max signal is changed to be dynamic
2502 int os::sigexitnum_pd() {
2503   return NSIG;
2504 }
2505 
2506 // a counter for each possible signal value
2507 static volatile jint pending_signals[NSIG+1] = { 0 };
2508 
2509 // Linux(POSIX) specific hand shaking semaphore.
2510 static sem_t sig_sem;
2511 static Semaphore sr_semaphore;
2512 
2513 void os::signal_init_pd() {
2514   // Initialize signal structures
2515   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2516 
2517   // Initialize signal semaphore
2518   ::sem_init(&sig_sem, 0, 0);
2519 }
2520 
2521 void os::signal_notify(int sig) {
2522   Atomic::inc(&pending_signals[sig]);
2523   ::sem_post(&sig_sem);
2524 }
2525 
2526 static int check_pending_signals(bool wait) {
2527   Atomic::store(0, &sigint_count);
2528   for (;;) {
2529     for (int i = 0; i < NSIG + 1; i++) {
2530       jint n = pending_signals[i];
2531       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2532         return i;
2533       }
2534     }
2535     if (!wait) {
2536       return -1;
2537     }
2538     JavaThread *thread = JavaThread::current();
2539     ThreadBlockInVM tbivm(thread);
2540 
2541     bool threadIsSuspended;
2542     do {
2543       thread->set_suspend_equivalent();
2544       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2545       ::sem_wait(&sig_sem);
2546 
2547       // were we externally suspended while we were waiting?
2548       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2549       if (threadIsSuspended) {
2550         // The semaphore has been incremented, but while we were waiting
2551         // another thread suspended us. We don't want to continue running
2552         // while suspended because that would surprise the thread that
2553         // suspended us.
2554         ::sem_post(&sig_sem);
2555 
2556         thread->java_suspend_self();
2557       }
2558     } while (threadIsSuspended);
2559   }
2560 }
2561 
2562 int os::signal_lookup() {
2563   return check_pending_signals(false);
2564 }
2565 
2566 int os::signal_wait() {
2567   return check_pending_signals(true);
2568 }
2569 
2570 ////////////////////////////////////////////////////////////////////////////////
2571 // Virtual Memory
2572 
2573 int os::vm_page_size() {
2574   // Seems redundant as all get out
2575   assert(os::Linux::page_size() != -1, "must call os::init");
2576   return os::Linux::page_size();
2577 }
2578 
2579 // Solaris allocates memory by pages.
2580 int os::vm_allocation_granularity() {
2581   assert(os::Linux::page_size() != -1, "must call os::init");
2582   return os::Linux::page_size();
2583 }
2584 
2585 // Rationale behind this function:
2586 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2587 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2588 //  samples for JITted code. Here we create private executable mapping over the code cache
2589 //  and then we can use standard (well, almost, as mapping can change) way to provide
2590 //  info for the reporting script by storing timestamp and location of symbol
2591 void linux_wrap_code(char* base, size_t size) {
2592   static volatile jint cnt = 0;
2593 
2594   if (!UseOprofile) {
2595     return;
2596   }
2597 
2598   char buf[PATH_MAX+1];
2599   int num = Atomic::add(1, &cnt);
2600 
2601   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2602            os::get_temp_directory(), os::current_process_id(), num);
2603   unlink(buf);
2604 
2605   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2606 
2607   if (fd != -1) {
2608     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2609     if (rv != (off_t)-1) {
2610       if (::write(fd, "", 1) == 1) {
2611         mmap(base, size,
2612              PROT_READ|PROT_WRITE|PROT_EXEC,
2613              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2614       }
2615     }
2616     ::close(fd);
2617     unlink(buf);
2618   }
2619 }
2620 
2621 static bool recoverable_mmap_error(int err) {
2622   // See if the error is one we can let the caller handle. This
2623   // list of errno values comes from JBS-6843484. I can't find a
2624   // Linux man page that documents this specific set of errno
2625   // values so while this list currently matches Solaris, it may
2626   // change as we gain experience with this failure mode.
2627   switch (err) {
2628   case EBADF:
2629   case EINVAL:
2630   case ENOTSUP:
2631     // let the caller deal with these errors
2632     return true;
2633 
2634   default:
2635     // Any remaining errors on this OS can cause our reserved mapping
2636     // to be lost. That can cause confusion where different data
2637     // structures think they have the same memory mapped. The worst
2638     // scenario is if both the VM and a library think they have the
2639     // same memory mapped.
2640     return false;
2641   }
2642 }
2643 
2644 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2645                                     int err) {
2646   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2647           ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2648           strerror(err), err);
2649 }
2650 
2651 static void warn_fail_commit_memory(char* addr, size_t size,
2652                                     size_t alignment_hint, bool exec,
2653                                     int err) {
2654   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2655           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, size,
2656           alignment_hint, exec, strerror(err), err);
2657 }
2658 
2659 // NOTE: Linux kernel does not really reserve the pages for us.
2660 //       All it does is to check if there are enough free pages
2661 //       left at the time of mmap(). This could be a potential
2662 //       problem.
2663 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2664   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2665   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2666                                      MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2667   if (res != (uintptr_t) MAP_FAILED) {
2668     if (UseNUMAInterleaving) {
2669       numa_make_global(addr, size);
2670     }
2671     return 0;
2672   }
2673 
2674   int err = errno;  // save errno from mmap() call above
2675 
2676   if (!recoverable_mmap_error(err)) {
2677     warn_fail_commit_memory(addr, size, exec, err);
2678     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2679   }
2680 
2681   return err;
2682 }
2683 
2684 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2685   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2686 }
2687 
2688 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2689                                   const char* mesg) {
2690   assert(mesg != NULL, "mesg must be specified");
2691   int err = os::Linux::commit_memory_impl(addr, size, exec);
2692   if (err != 0) {
2693     // the caller wants all commit errors to exit with the specified mesg:
2694     warn_fail_commit_memory(addr, size, exec, err);
2695     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2696   }
2697 }
2698 
2699 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2700 #ifndef MAP_HUGETLB
2701   #define MAP_HUGETLB 0x40000
2702 #endif
2703 
2704 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2705 #ifndef MADV_HUGEPAGE
2706   #define MADV_HUGEPAGE 14
2707 #endif
2708 
2709 int os::Linux::commit_memory_impl(char* addr, size_t size,
2710                                   size_t alignment_hint, bool exec) {
2711   int err = os::Linux::commit_memory_impl(addr, size, exec);
2712   if (err == 0) {
2713     realign_memory(addr, size, alignment_hint);
2714   }
2715   return err;
2716 }
2717 
2718 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2719                           bool exec) {
2720   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2721 }
2722 
2723 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2724                                   size_t alignment_hint, bool exec,
2725                                   const char* mesg) {
2726   assert(mesg != NULL, "mesg must be specified");
2727   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2728   if (err != 0) {
2729     // the caller wants all commit errors to exit with the specified mesg:
2730     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2731     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2732   }
2733 }
2734 
2735 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2736   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2737     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2738     // be supported or the memory may already be backed by huge pages.
2739     ::madvise(addr, bytes, MADV_HUGEPAGE);
2740   }
2741 }
2742 
2743 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2744   // This method works by doing an mmap over an existing mmaping and effectively discarding
2745   // the existing pages. However it won't work for SHM-based large pages that cannot be
2746   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2747   // small pages on top of the SHM segment. This method always works for small pages, so we
2748   // allow that in any case.
2749   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2750     commit_memory(addr, bytes, alignment_hint, !ExecMem);
2751   }
2752 }
2753 
2754 void os::numa_make_global(char *addr, size_t bytes) {
2755   Linux::numa_interleave_memory(addr, bytes);
2756 }
2757 
2758 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2759 // bind policy to MPOL_PREFERRED for the current thread.
2760 #define USE_MPOL_PREFERRED 0
2761 
2762 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2763   // To make NUMA and large pages more robust when both enabled, we need to ease
2764   // the requirements on where the memory should be allocated. MPOL_BIND is the
2765   // default policy and it will force memory to be allocated on the specified
2766   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2767   // the specified node, but will not force it. Using this policy will prevent
2768   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2769   // free large pages.
2770   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2771   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2772 }
2773 
2774 bool os::numa_topology_changed() { return false; }
2775 
2776 size_t os::numa_get_groups_num() {
2777   int max_node = Linux::numa_max_node();
2778   return max_node > 0 ? max_node + 1 : 1;
2779 }
2780 
2781 int os::numa_get_group_id() {
2782   int cpu_id = Linux::sched_getcpu();
2783   if (cpu_id != -1) {
2784     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2785     if (lgrp_id != -1) {
2786       return lgrp_id;
2787     }
2788   }
2789   return 0;
2790 }
2791 
2792 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2793   for (size_t i = 0; i < size; i++) {
2794     ids[i] = i;
2795   }
2796   return size;
2797 }
2798 
2799 bool os::get_page_info(char *start, page_info* info) {
2800   return false;
2801 }
2802 
2803 char *os::scan_pages(char *start, char* end, page_info* page_expected,
2804                      page_info* page_found) {
2805   return end;
2806 }
2807 
2808 
2809 int os::Linux::sched_getcpu_syscall(void) {
2810   unsigned int cpu;
2811   int retval = -1;
2812 
2813 #if defined(IA32)
2814   #ifndef SYS_getcpu
2815     #define SYS_getcpu 318
2816   #endif
2817   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2818 #elif defined(AMD64)
2819 // Unfortunately we have to bring all these macros here from vsyscall.h
2820 // to be able to compile on old linuxes.
2821   #define __NR_vgetcpu 2
2822   #define VSYSCALL_START (-10UL << 20)
2823   #define VSYSCALL_SIZE 1024
2824   #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2825   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2826   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2827   retval = vgetcpu(&cpu, NULL, NULL);
2828 #endif
2829 
2830   return (retval == -1) ? retval : cpu;
2831 }
2832 
2833 // Something to do with the numa-aware allocator needs these symbols
2834 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2835 extern "C" JNIEXPORT void numa_error(char *where) { }
2836 extern "C" JNIEXPORT int fork1() { return fork(); }
2837 
2838 
2839 // If we are running with libnuma version > 2, then we should
2840 // be trying to use symbols with versions 1.1
2841 // If we are running with earlier version, which did not have symbol versions,
2842 // we should use the base version.
2843 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2844   void *f = dlvsym(handle, name, "libnuma_1.1");
2845   if (f == NULL) {
2846     f = dlsym(handle, name);
2847   }
2848   return f;
2849 }
2850 
2851 bool os::Linux::libnuma_init() {
2852   // sched_getcpu() should be in libc.
2853   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2854                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2855 
2856   // If it's not, try a direct syscall.
2857   if (sched_getcpu() == -1) {
2858     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2859                                     (void*)&sched_getcpu_syscall));
2860   }
2861 
2862   if (sched_getcpu() != -1) { // Does it work?
2863     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2864     if (handle != NULL) {
2865       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2866                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
2867       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2868                                        libnuma_dlsym(handle, "numa_max_node")));
2869       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2870                                         libnuma_dlsym(handle, "numa_available")));
2871       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2872                                             libnuma_dlsym(handle, "numa_tonode_memory")));
2873       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2874                                                 libnuma_dlsym(handle, "numa_interleave_memory")));
2875       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2876                                               libnuma_dlsym(handle, "numa_set_bind_policy")));
2877 
2878 
2879       if (numa_available() != -1) {
2880         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2881         // Create a cpu -> node mapping
2882         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2883         rebuild_cpu_to_node_map();
2884         return true;
2885       }
2886     }
2887   }
2888   return false;
2889 }
2890 
2891 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2892 // The table is later used in get_node_by_cpu().
2893 void os::Linux::rebuild_cpu_to_node_map() {
2894   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2895                               // in libnuma (possible values are starting from 16,
2896                               // and continuing up with every other power of 2, but less
2897                               // than the maximum number of CPUs supported by kernel), and
2898                               // is a subject to change (in libnuma version 2 the requirements
2899                               // are more reasonable) we'll just hardcode the number they use
2900                               // in the library.
2901   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2902 
2903   size_t cpu_num = os::active_processor_count();
2904   size_t cpu_map_size = NCPUS / BitsPerCLong;
2905   size_t cpu_map_valid_size =
2906     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2907 
2908   cpu_to_node()->clear();
2909   cpu_to_node()->at_grow(cpu_num - 1);
2910   size_t node_num = numa_get_groups_num();
2911 
2912   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2913   for (size_t i = 0; i < node_num; i++) {
2914     if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2915       for (size_t j = 0; j < cpu_map_valid_size; j++) {
2916         if (cpu_map[j] != 0) {
2917           for (size_t k = 0; k < BitsPerCLong; k++) {
2918             if (cpu_map[j] & (1UL << k)) {
2919               cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2920             }
2921           }
2922         }
2923       }
2924     }
2925   }
2926   FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
2927 }
2928 
2929 int os::Linux::get_node_by_cpu(int cpu_id) {
2930   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2931     return cpu_to_node()->at(cpu_id);
2932   }
2933   return -1;
2934 }
2935 
2936 GrowableArray<int>* os::Linux::_cpu_to_node;
2937 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2938 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2939 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2940 os::Linux::numa_available_func_t os::Linux::_numa_available;
2941 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2942 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2943 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
2944 unsigned long* os::Linux::_numa_all_nodes;
2945 
2946 bool os::pd_uncommit_memory(char* addr, size_t size) {
2947   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2948                                      MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2949   return res  != (uintptr_t) MAP_FAILED;
2950 }
2951 
2952 static address get_stack_commited_bottom(address bottom, size_t size) {
2953   address nbot = bottom;
2954   address ntop = bottom + size;
2955 
2956   size_t page_sz = os::vm_page_size();
2957   unsigned pages = size / page_sz;
2958 
2959   unsigned char vec[1];
2960   unsigned imin = 1, imax = pages + 1, imid;
2961   int mincore_return_value = 0;
2962 
2963   assert(imin <= imax, "Unexpected page size");
2964 
2965   while (imin < imax) {
2966     imid = (imax + imin) / 2;
2967     nbot = ntop - (imid * page_sz);
2968 
2969     // Use a trick with mincore to check whether the page is mapped or not.
2970     // mincore sets vec to 1 if page resides in memory and to 0 if page
2971     // is swapped output but if page we are asking for is unmapped
2972     // it returns -1,ENOMEM
2973     mincore_return_value = mincore(nbot, page_sz, vec);
2974 
2975     if (mincore_return_value == -1) {
2976       // Page is not mapped go up
2977       // to find first mapped page
2978       if (errno != EAGAIN) {
2979         assert(errno == ENOMEM, "Unexpected mincore errno");
2980         imax = imid;
2981       }
2982     } else {
2983       // Page is mapped go down
2984       // to find first not mapped page
2985       imin = imid + 1;
2986     }
2987   }
2988 
2989   nbot = nbot + page_sz;
2990 
2991   // Adjust stack bottom one page up if last checked page is not mapped
2992   if (mincore_return_value == -1) {
2993     nbot = nbot + page_sz;
2994   }
2995 
2996   return nbot;
2997 }
2998 
2999 
3000 // Linux uses a growable mapping for the stack, and if the mapping for
3001 // the stack guard pages is not removed when we detach a thread the
3002 // stack cannot grow beyond the pages where the stack guard was
3003 // mapped.  If at some point later in the process the stack expands to
3004 // that point, the Linux kernel cannot expand the stack any further
3005 // because the guard pages are in the way, and a segfault occurs.
3006 //
3007 // However, it's essential not to split the stack region by unmapping
3008 // a region (leaving a hole) that's already part of the stack mapping,
3009 // so if the stack mapping has already grown beyond the guard pages at
3010 // the time we create them, we have to truncate the stack mapping.
3011 // So, we need to know the extent of the stack mapping when
3012 // create_stack_guard_pages() is called.
3013 
3014 // We only need this for stacks that are growable: at the time of
3015 // writing thread stacks don't use growable mappings (i.e. those
3016 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
3017 // only applies to the main thread.
3018 
3019 // If the (growable) stack mapping already extends beyond the point
3020 // where we're going to put our guard pages, truncate the mapping at
3021 // that point by munmap()ping it.  This ensures that when we later
3022 // munmap() the guard pages we don't leave a hole in the stack
3023 // mapping. This only affects the main/initial thread
3024 
3025 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3026   if (os::Linux::is_initial_thread()) {
3027     // As we manually grow stack up to bottom inside create_attached_thread(),
3028     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3029     // we don't need to do anything special.
3030     // Check it first, before calling heavy function.
3031     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3032     unsigned char vec[1];
3033 
3034     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3035       // Fallback to slow path on all errors, including EAGAIN
3036       stack_extent = (uintptr_t) get_stack_commited_bottom(
3037                                                            os::Linux::initial_thread_stack_bottom(),
3038                                                            (size_t)addr - stack_extent);
3039     }
3040 
3041     if (stack_extent < (uintptr_t)addr) {
3042       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3043     }
3044   }
3045 
3046   return os::commit_memory(addr, size, !ExecMem);
3047 }
3048 
3049 // If this is a growable mapping, remove the guard pages entirely by
3050 // munmap()ping them.  If not, just call uncommit_memory(). This only
3051 // affects the main/initial thread, but guard against future OS changes
3052 // It's safe to always unmap guard pages for initial thread because we
3053 // always place it right after end of the mapped region
3054 
3055 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3056   uintptr_t stack_extent, stack_base;
3057 
3058   if (os::Linux::is_initial_thread()) {
3059     return ::munmap(addr, size) == 0;
3060   }
3061 
3062   return os::uncommit_memory(addr, size);
3063 }
3064 
3065 static address _highest_vm_reserved_address = NULL;
3066 
3067 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3068 // at 'requested_addr'. If there are existing memory mappings at the same
3069 // location, however, they will be overwritten. If 'fixed' is false,
3070 // 'requested_addr' is only treated as a hint, the return value may or
3071 // may not start from the requested address. Unlike Linux mmap(), this
3072 // function returns NULL to indicate failure.
3073 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3074   char * addr;
3075   int flags;
3076 
3077   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3078   if (fixed) {
3079     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3080     flags |= MAP_FIXED;
3081   }
3082 
3083   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3084   // touch an uncommitted page. Otherwise, the read/write might
3085   // succeed if we have enough swap space to back the physical page.
3086   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3087                        flags, -1, 0);
3088 
3089   if (addr != MAP_FAILED) {
3090     // anon_mmap() should only get called during VM initialization,
3091     // don't need lock (actually we can skip locking even it can be called
3092     // from multiple threads, because _highest_vm_reserved_address is just a
3093     // hint about the upper limit of non-stack memory regions.)
3094     if ((address)addr + bytes > _highest_vm_reserved_address) {
3095       _highest_vm_reserved_address = (address)addr + bytes;
3096     }
3097   }
3098 
3099   return addr == MAP_FAILED ? NULL : addr;
3100 }
3101 
3102 // Don't update _highest_vm_reserved_address, because there might be memory
3103 // regions above addr + size. If so, releasing a memory region only creates
3104 // a hole in the address space, it doesn't help prevent heap-stack collision.
3105 //
3106 static int anon_munmap(char * addr, size_t size) {
3107   return ::munmap(addr, size) == 0;
3108 }
3109 
3110 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3111                             size_t alignment_hint) {
3112   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3113 }
3114 
3115 bool os::pd_release_memory(char* addr, size_t size) {
3116   return anon_munmap(addr, size);
3117 }
3118 
3119 static address highest_vm_reserved_address() {
3120   return _highest_vm_reserved_address;
3121 }
3122 
3123 static bool linux_mprotect(char* addr, size_t size, int prot) {
3124   // Linux wants the mprotect address argument to be page aligned.
3125   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
3126 
3127   // According to SUSv3, mprotect() should only be used with mappings
3128   // established by mmap(), and mmap() always maps whole pages. Unaligned
3129   // 'addr' likely indicates problem in the VM (e.g. trying to change
3130   // protection of malloc'ed or statically allocated memory). Check the
3131   // caller if you hit this assert.
3132   assert(addr == bottom, "sanity check");
3133 
3134   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3135   return ::mprotect(bottom, size, prot) == 0;
3136 }
3137 
3138 // Set protections specified
3139 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3140                         bool is_committed) {
3141   unsigned int p = 0;
3142   switch (prot) {
3143   case MEM_PROT_NONE: p = PROT_NONE; break;
3144   case MEM_PROT_READ: p = PROT_READ; break;
3145   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3146   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3147   default:
3148     ShouldNotReachHere();
3149   }
3150   // is_committed is unused.
3151   return linux_mprotect(addr, bytes, p);
3152 }
3153 
3154 bool os::guard_memory(char* addr, size_t size) {
3155   return linux_mprotect(addr, size, PROT_NONE);
3156 }
3157 
3158 bool os::unguard_memory(char* addr, size_t size) {
3159   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3160 }
3161 
3162 bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3163                                                     size_t page_size) {
3164   bool result = false;
3165   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3166                  MAP_ANONYMOUS|MAP_PRIVATE,
3167                  -1, 0);
3168   if (p != MAP_FAILED) {
3169     void *aligned_p = align_ptr_up(p, page_size);
3170 
3171     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3172 
3173     munmap(p, page_size * 2);
3174   }
3175 
3176   if (warn && !result) {
3177     warning("TransparentHugePages is not supported by the operating system.");
3178   }
3179 
3180   return result;
3181 }
3182 
3183 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3184   bool result = false;
3185   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3186                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3187                  -1, 0);
3188 
3189   if (p != MAP_FAILED) {
3190     // We don't know if this really is a huge page or not.
3191     FILE *fp = fopen("/proc/self/maps", "r");
3192     if (fp) {
3193       while (!feof(fp)) {
3194         char chars[257];
3195         long x = 0;
3196         if (fgets(chars, sizeof(chars), fp)) {
3197           if (sscanf(chars, "%lx-%*x", &x) == 1
3198               && x == (long)p) {
3199             if (strstr (chars, "hugepage")) {
3200               result = true;
3201               break;
3202             }
3203           }
3204         }
3205       }
3206       fclose(fp);
3207     }
3208     munmap(p, page_size);
3209   }
3210 
3211   if (warn && !result) {
3212     warning("HugeTLBFS is not supported by the operating system.");
3213   }
3214 
3215   return result;
3216 }
3217 
3218 // Set the coredump_filter bits to include largepages in core dump (bit 6)
3219 //
3220 // From the coredump_filter documentation:
3221 //
3222 // - (bit 0) anonymous private memory
3223 // - (bit 1) anonymous shared memory
3224 // - (bit 2) file-backed private memory
3225 // - (bit 3) file-backed shared memory
3226 // - (bit 4) ELF header pages in file-backed private memory areas (it is
3227 //           effective only if the bit 2 is cleared)
3228 // - (bit 5) hugetlb private memory
3229 // - (bit 6) hugetlb shared memory
3230 //
3231 static void set_coredump_filter(void) {
3232   FILE *f;
3233   long cdm;
3234 
3235   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3236     return;
3237   }
3238 
3239   if (fscanf(f, "%lx", &cdm) != 1) {
3240     fclose(f);
3241     return;
3242   }
3243 
3244   rewind(f);
3245 
3246   if ((cdm & LARGEPAGES_BIT) == 0) {
3247     cdm |= LARGEPAGES_BIT;
3248     fprintf(f, "%#lx", cdm);
3249   }
3250 
3251   fclose(f);
3252 }
3253 
3254 // Large page support
3255 
3256 static size_t _large_page_size = 0;
3257 
3258 size_t os::Linux::find_large_page_size() {
3259   size_t large_page_size = 0;
3260 
3261   // large_page_size on Linux is used to round up heap size. x86 uses either
3262   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3263   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3264   // page as large as 256M.
3265   //
3266   // Here we try to figure out page size by parsing /proc/meminfo and looking
3267   // for a line with the following format:
3268   //    Hugepagesize:     2048 kB
3269   //
3270   // If we can't determine the value (e.g. /proc is not mounted, or the text
3271   // format has been changed), we'll use the largest page size supported by
3272   // the processor.
3273 
3274 #ifndef ZERO
3275   large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3276                      ARM32_ONLY(2 * M) PPC_ONLY(4 * M) AARCH64_ONLY(2 * M);
3277 #endif // ZERO
3278 
3279   FILE *fp = fopen("/proc/meminfo", "r");
3280   if (fp) {
3281     while (!feof(fp)) {
3282       int x = 0;
3283       char buf[16];
3284       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3285         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3286           large_page_size = x * K;
3287           break;
3288         }
3289       } else {
3290         // skip to next line
3291         for (;;) {
3292           int ch = fgetc(fp);
3293           if (ch == EOF || ch == (int)'\n') break;
3294         }
3295       }
3296     }
3297     fclose(fp);
3298   }
3299 
3300   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3301     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3302             SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3303             proper_unit_for_byte_size(large_page_size));
3304   }
3305 
3306   return large_page_size;
3307 }
3308 
3309 size_t os::Linux::setup_large_page_size() {
3310   _large_page_size = Linux::find_large_page_size();
3311   const size_t default_page_size = (size_t)Linux::page_size();
3312   if (_large_page_size > default_page_size) {
3313     _page_sizes[0] = _large_page_size;
3314     _page_sizes[1] = default_page_size;
3315     _page_sizes[2] = 0;
3316   }
3317 
3318   return _large_page_size;
3319 }
3320 
3321 bool os::Linux::setup_large_page_type(size_t page_size) {
3322   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3323       FLAG_IS_DEFAULT(UseSHM) &&
3324       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3325 
3326     // The type of large pages has not been specified by the user.
3327 
3328     // Try UseHugeTLBFS and then UseSHM.
3329     UseHugeTLBFS = UseSHM = true;
3330 
3331     // Don't try UseTransparentHugePages since there are known
3332     // performance issues with it turned on. This might change in the future.
3333     UseTransparentHugePages = false;
3334   }
3335 
3336   if (UseTransparentHugePages) {
3337     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3338     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3339       UseHugeTLBFS = false;
3340       UseSHM = false;
3341       return true;
3342     }
3343     UseTransparentHugePages = false;
3344   }
3345 
3346   if (UseHugeTLBFS) {
3347     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3348     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3349       UseSHM = false;
3350       return true;
3351     }
3352     UseHugeTLBFS = false;
3353   }
3354 
3355   return UseSHM;
3356 }
3357 
3358 void os::large_page_init() {
3359   if (!UseLargePages &&
3360       !UseTransparentHugePages &&
3361       !UseHugeTLBFS &&
3362       !UseSHM) {
3363     // Not using large pages.
3364     return;
3365   }
3366 
3367   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3368     // The user explicitly turned off large pages.
3369     // Ignore the rest of the large pages flags.
3370     UseTransparentHugePages = false;
3371     UseHugeTLBFS = false;
3372     UseSHM = false;
3373     return;
3374   }
3375 
3376   size_t large_page_size = Linux::setup_large_page_size();
3377   UseLargePages          = Linux::setup_large_page_type(large_page_size);
3378 
3379   set_coredump_filter();
3380 }
3381 
3382 #ifndef SHM_HUGETLB
3383   #define SHM_HUGETLB 04000
3384 #endif
3385 
3386 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
3387                                             char* req_addr, bool exec) {
3388   // "exec" is passed in but not used.  Creating the shared image for
3389   // the code cache doesn't have an SHM_X executable permission to check.
3390   assert(UseLargePages && UseSHM, "only for SHM large pages");
3391   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3392 
3393   if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3394     return NULL; // Fallback to small pages.
3395   }
3396 
3397   key_t key = IPC_PRIVATE;
3398   char *addr;
3399 
3400   bool warn_on_failure = UseLargePages &&
3401                         (!FLAG_IS_DEFAULT(UseLargePages) ||
3402                          !FLAG_IS_DEFAULT(UseSHM) ||
3403                          !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3404   char msg[128];
3405 
3406   // Create a large shared memory region to attach to based on size.
3407   // Currently, size is the total size of the heap
3408   int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3409   if (shmid == -1) {
3410     // Possible reasons for shmget failure:
3411     // 1. shmmax is too small for Java heap.
3412     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3413     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3414     // 2. not enough large page memory.
3415     //    > check available large pages: cat /proc/meminfo
3416     //    > increase amount of large pages:
3417     //          echo new_value > /proc/sys/vm/nr_hugepages
3418     //      Note 1: different Linux may use different name for this property,
3419     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3420     //      Note 2: it's possible there's enough physical memory available but
3421     //            they are so fragmented after a long run that they can't
3422     //            coalesce into large pages. Try to reserve large pages when
3423     //            the system is still "fresh".
3424     if (warn_on_failure) {
3425       jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3426       warning("%s", msg);
3427     }
3428     return NULL;
3429   }
3430 
3431   // attach to the region
3432   addr = (char*)shmat(shmid, req_addr, 0);
3433   int err = errno;
3434 
3435   // Remove shmid. If shmat() is successful, the actual shared memory segment
3436   // will be deleted when it's detached by shmdt() or when the process
3437   // terminates. If shmat() is not successful this will remove the shared
3438   // segment immediately.
3439   shmctl(shmid, IPC_RMID, NULL);
3440 
3441   if ((intptr_t)addr == -1) {
3442     if (warn_on_failure) {
3443       jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3444       warning("%s", msg);
3445     }
3446     return NULL;
3447   }
3448 
3449   return addr;
3450 }
3451 
3452 static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
3453                                         int error) {
3454   assert(error == ENOMEM, "Only expect to fail if no memory is available");
3455 
3456   bool warn_on_failure = UseLargePages &&
3457       (!FLAG_IS_DEFAULT(UseLargePages) ||
3458        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3459        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3460 
3461   if (warn_on_failure) {
3462     char msg[128];
3463     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3464                  PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3465     warning("%s", msg);
3466   }
3467 }
3468 
3469 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
3470                                                         char* req_addr,
3471                                                         bool exec) {
3472   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3473   assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
3474   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3475 
3476   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3477   char* addr = (char*)::mmap(req_addr, bytes, prot,
3478                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3479                              -1, 0);
3480 
3481   if (addr == MAP_FAILED) {
3482     warn_on_large_pages_failure(req_addr, bytes, errno);
3483     return NULL;
3484   }
3485 
3486   assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
3487 
3488   return addr;
3489 }
3490 
3491 // Helper for os::Linux::reserve_memory_special_huge_tlbfs_mixed().
3492 // Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
3493 //   (req_addr != NULL) or with a given alignment.
3494 //  - bytes shall be a multiple of alignment.
3495 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3496 //  - alignment sets the alignment at which memory shall be allocated.
3497 //     It must be a multiple of allocation granularity.
3498 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3499 //  req_addr or NULL.
3500 static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
3501 
3502   size_t extra_size = bytes;
3503   if (req_addr == NULL && alignment > 0) {
3504     extra_size += alignment;
3505   }
3506 
3507   char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
3508     MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
3509     -1, 0);
3510   if (start == MAP_FAILED) {
3511     start = NULL;
3512   } else {
3513     if (req_addr != NULL) {
3514       if (start != req_addr) {
3515         ::munmap(start, extra_size);
3516         start = NULL;
3517       }
3518     } else {
3519       char* const start_aligned = (char*) align_ptr_up(start, alignment);
3520       char* const end_aligned = start_aligned + bytes;
3521       char* const end = start + extra_size;
3522       if (start_aligned > start) {
3523         ::munmap(start, start_aligned - start);
3524       }
3525       if (end_aligned < end) {
3526         ::munmap(end_aligned, end - end_aligned);
3527       }
3528       start = start_aligned;
3529     }
3530   }
3531   return start;
3532 
3533 }
3534 
3535 // Reserve memory using mmap(MAP_HUGETLB).
3536 //  - bytes shall be a multiple of alignment.
3537 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3538 //  - alignment sets the alignment at which memory shall be allocated.
3539 //     It must be a multiple of allocation granularity.
3540 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3541 //  req_addr or NULL.
3542 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
3543                                                          size_t alignment,
3544                                                          char* req_addr,
3545                                                          bool exec) {
3546   size_t large_page_size = os::large_page_size();
3547   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3548 
3549   assert(is_ptr_aligned(req_addr, alignment), "Must be");
3550   assert(is_size_aligned(bytes, alignment), "Must be");
3551 
3552   // First reserve - but not commit - the address range in small pages.
3553   char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
3554 
3555   if (start == NULL) {
3556     return NULL;
3557   }
3558 
3559   assert(is_ptr_aligned(start, alignment), "Must be");
3560 
3561   char* end = start + bytes;
3562 
3563   // Find the regions of the allocated chunk that can be promoted to large pages.
3564   char* lp_start = (char*)align_ptr_up(start, large_page_size);
3565   char* lp_end   = (char*)align_ptr_down(end, large_page_size);
3566 
3567   size_t lp_bytes = lp_end - lp_start;
3568 
3569   assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
3570 
3571   if (lp_bytes == 0) {
3572     // The mapped region doesn't even span the start and the end of a large page.
3573     // Fall back to allocate a non-special area.
3574     ::munmap(start, end - start);
3575     return NULL;
3576   }
3577 
3578   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3579 
3580   void* result;
3581 
3582   // Commit small-paged leading area.
3583   if (start != lp_start) {
3584     result = ::mmap(start, lp_start - start, prot,
3585                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3586                     -1, 0);
3587     if (result == MAP_FAILED) {
3588       ::munmap(lp_start, end - lp_start);
3589       return NULL;
3590     }
3591   }
3592 
3593   // Commit large-paged area.
3594   result = ::mmap(lp_start, lp_bytes, prot,
3595                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3596                   -1, 0);
3597   if (result == MAP_FAILED) {
3598     warn_on_large_pages_failure(lp_start, lp_bytes, errno);
3599     // If the mmap above fails, the large pages region will be unmapped and we
3600     // have regions before and after with small pages. Release these regions.
3601     //
3602     // |  mapped  |  unmapped  |  mapped  |
3603     // ^          ^            ^          ^
3604     // start      lp_start     lp_end     end
3605     //
3606     ::munmap(start, lp_start - start);
3607     ::munmap(lp_end, end - lp_end);
3608     return NULL;
3609   }
3610 
3611   // Commit small-paged trailing area.
3612   if (lp_end != end) {
3613     result = ::mmap(lp_end, end - lp_end, prot,
3614                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3615                     -1, 0);
3616     if (result == MAP_FAILED) {
3617       ::munmap(start, lp_end - start);
3618       return NULL;
3619     }
3620   }
3621 
3622   return start;
3623 }
3624 
3625 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
3626                                                    size_t alignment,
3627                                                    char* req_addr,
3628                                                    bool exec) {
3629   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3630   assert(is_ptr_aligned(req_addr, alignment), "Must be");
3631   assert(is_size_aligned(alignment, os::vm_allocation_granularity()), "Must be");
3632   assert(is_power_of_2(os::large_page_size()), "Must be");
3633   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3634 
3635   if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3636     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3637   } else {
3638     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3639   }
3640 }
3641 
3642 char* os::reserve_memory_special(size_t bytes, size_t alignment,
3643                                  char* req_addr, bool exec) {
3644   assert(UseLargePages, "only for large pages");
3645 
3646   char* addr;
3647   if (UseSHM) {
3648     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3649   } else {
3650     assert(UseHugeTLBFS, "must be");
3651     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3652   }
3653 
3654   if (addr != NULL) {
3655     if (UseNUMAInterleaving) {
3656       numa_make_global(addr, bytes);
3657     }
3658 
3659     // The memory is committed
3660     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3661   }
3662 
3663   return addr;
3664 }
3665 
3666 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3667   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3668   return shmdt(base) == 0;
3669 }
3670 
3671 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3672   return pd_release_memory(base, bytes);
3673 }
3674 
3675 bool os::release_memory_special(char* base, size_t bytes) {
3676   bool res;
3677   if (MemTracker::tracking_level() > NMT_minimal) {
3678     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3679     res = os::Linux::release_memory_special_impl(base, bytes);
3680     if (res) {
3681       tkr.record((address)base, bytes);
3682     }
3683 
3684   } else {
3685     res = os::Linux::release_memory_special_impl(base, bytes);
3686   }
3687   return res;
3688 }
3689 
3690 bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3691   assert(UseLargePages, "only for large pages");
3692   bool res;
3693 
3694   if (UseSHM) {
3695     res = os::Linux::release_memory_special_shm(base, bytes);
3696   } else {
3697     assert(UseHugeTLBFS, "must be");
3698     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3699   }
3700   return res;
3701 }
3702 
3703 size_t os::large_page_size() {
3704   return _large_page_size;
3705 }
3706 
3707 // With SysV SHM the entire memory region must be allocated as shared
3708 // memory.
3709 // HugeTLBFS allows application to commit large page memory on demand.
3710 // However, when committing memory with HugeTLBFS fails, the region
3711 // that was supposed to be committed will lose the old reservation
3712 // and allow other threads to steal that memory region. Because of this
3713 // behavior we can't commit HugeTLBFS memory.
3714 bool os::can_commit_large_page_memory() {
3715   return UseTransparentHugePages;
3716 }
3717 
3718 bool os::can_execute_large_page_memory() {
3719   return UseTransparentHugePages || UseHugeTLBFS;
3720 }
3721 
3722 // Reserve memory at an arbitrary address, only if that area is
3723 // available (and not reserved for something else).
3724 
3725 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3726   const int max_tries = 10;
3727   char* base[max_tries];
3728   size_t size[max_tries];
3729   const size_t gap = 0x000000;
3730 
3731   // Assert only that the size is a multiple of the page size, since
3732   // that's all that mmap requires, and since that's all we really know
3733   // about at this low abstraction level.  If we need higher alignment,
3734   // we can either pass an alignment to this method or verify alignment
3735   // in one of the methods further up the call chain.  See bug 5044738.
3736   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3737 
3738   // Repeatedly allocate blocks until the block is allocated at the
3739   // right spot. Give up after max_tries. Note that reserve_memory() will
3740   // automatically update _highest_vm_reserved_address if the call is
3741   // successful. The variable tracks the highest memory address every reserved
3742   // by JVM. It is used to detect heap-stack collision if running with
3743   // fixed-stack LinuxThreads. Because here we may attempt to reserve more
3744   // space than needed, it could confuse the collision detecting code. To
3745   // solve the problem, save current _highest_vm_reserved_address and
3746   // calculate the correct value before return.
3747   address old_highest = _highest_vm_reserved_address;
3748 
3749   // Linux mmap allows caller to pass an address as hint; give it a try first,
3750   // if kernel honors the hint then we can return immediately.
3751   char * addr = anon_mmap(requested_addr, bytes, false);
3752   if (addr == requested_addr) {
3753     return requested_addr;
3754   }
3755 
3756   if (addr != NULL) {
3757     // mmap() is successful but it fails to reserve at the requested address
3758     anon_munmap(addr, bytes);
3759   }
3760 
3761   int i;
3762   for (i = 0; i < max_tries; ++i) {
3763     base[i] = reserve_memory(bytes);
3764 
3765     if (base[i] != NULL) {
3766       // Is this the block we wanted?
3767       if (base[i] == requested_addr) {
3768         size[i] = bytes;
3769         break;
3770       }
3771 
3772       // Does this overlap the block we wanted? Give back the overlapped
3773       // parts and try again.
3774 
3775       ptrdiff_t top_overlap = requested_addr + (bytes + gap) - base[i];
3776       if (top_overlap >= 0 && (size_t)top_overlap < bytes) {
3777         unmap_memory(base[i], top_overlap);
3778         base[i] += top_overlap;
3779         size[i] = bytes - top_overlap;
3780       } else {
3781         ptrdiff_t bottom_overlap = base[i] + bytes - requested_addr;
3782         if (bottom_overlap >= 0 && (size_t)bottom_overlap < bytes) {
3783           unmap_memory(requested_addr, bottom_overlap);
3784           size[i] = bytes - bottom_overlap;
3785         } else {
3786           size[i] = bytes;
3787         }
3788       }
3789     }
3790   }
3791 
3792   // Give back the unused reserved pieces.
3793 
3794   for (int j = 0; j < i; ++j) {
3795     if (base[j] != NULL) {
3796       unmap_memory(base[j], size[j]);
3797     }
3798   }
3799 
3800   if (i < max_tries) {
3801     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
3802     return requested_addr;
3803   } else {
3804     _highest_vm_reserved_address = old_highest;
3805     return NULL;
3806   }
3807 }
3808 
3809 size_t os::read(int fd, void *buf, unsigned int nBytes) {
3810   return ::read(fd, buf, nBytes);
3811 }
3812 
3813 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
3814   return ::pread(fd, buf, nBytes, offset);
3815 }
3816 
3817 // Short sleep, direct OS call.
3818 //
3819 // Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
3820 // sched_yield(2) will actually give up the CPU:
3821 //
3822 //   * Alone on this pariticular CPU, keeps running.
3823 //   * Before the introduction of "skip_buddy" with "compat_yield" disabled
3824 //     (pre 2.6.39).
3825 //
3826 // So calling this with 0 is an alternative.
3827 //
3828 void os::naked_short_sleep(jlong ms) {
3829   struct timespec req;
3830 
3831   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3832   req.tv_sec = 0;
3833   if (ms > 0) {
3834     req.tv_nsec = (ms % 1000) * 1000000;
3835   } else {
3836     req.tv_nsec = 1;
3837   }
3838 
3839   nanosleep(&req, NULL);
3840 
3841   return;
3842 }
3843 
3844 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3845 void os::infinite_sleep() {
3846   while (true) {    // sleep forever ...
3847     ::sleep(100);   // ... 100 seconds at a time
3848   }
3849 }
3850 
3851 // Used to convert frequent JVM_Yield() to nops
3852 bool os::dont_yield() {
3853   return DontYieldALot;
3854 }
3855 
3856 void os::naked_yield() {
3857   sched_yield();
3858 }
3859 
3860 ////////////////////////////////////////////////////////////////////////////////
3861 // thread priority support
3862 
3863 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3864 // only supports dynamic priority, static priority must be zero. For real-time
3865 // applications, Linux supports SCHED_RR which allows static priority (1-99).
3866 // However, for large multi-threaded applications, SCHED_RR is not only slower
3867 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3868 // of 5 runs - Sep 2005).
3869 //
3870 // The following code actually changes the niceness of kernel-thread/LWP. It
3871 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
3872 // not the entire user process, and user level threads are 1:1 mapped to kernel
3873 // threads. It has always been the case, but could change in the future. For
3874 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3875 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3876 
3877 int os::java_to_os_priority[CriticalPriority + 1] = {
3878   19,              // 0 Entry should never be used
3879 
3880    4,              // 1 MinPriority
3881    3,              // 2
3882    2,              // 3
3883 
3884    1,              // 4
3885    0,              // 5 NormPriority
3886   -1,              // 6
3887 
3888   -2,              // 7
3889   -3,              // 8
3890   -4,              // 9 NearMaxPriority
3891 
3892   -5,              // 10 MaxPriority
3893 
3894   -5               // 11 CriticalPriority
3895 };
3896 
3897 static int prio_init() {
3898   if (ThreadPriorityPolicy == 1) {
3899     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3900     // if effective uid is not root. Perhaps, a more elegant way of doing
3901     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3902     if (geteuid() != 0) {
3903       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3904         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3905       }
3906       ThreadPriorityPolicy = 0;
3907     }
3908   }
3909   if (UseCriticalJavaThreadPriority) {
3910     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3911   }
3912   return 0;
3913 }
3914 
3915 OSReturn os::set_native_priority(Thread* thread, int newpri) {
3916   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
3917 
3918   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3919   return (ret == 0) ? OS_OK : OS_ERR;
3920 }
3921 
3922 OSReturn os::get_native_priority(const Thread* const thread,
3923                                  int *priority_ptr) {
3924   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
3925     *priority_ptr = java_to_os_priority[NormPriority];
3926     return OS_OK;
3927   }
3928 
3929   errno = 0;
3930   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3931   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3932 }
3933 
3934 // Hint to the underlying OS that a task switch would not be good.
3935 // Void return because it's a hint and can fail.
3936 void os::hint_no_preempt() {}
3937 
3938 ////////////////////////////////////////////////////////////////////////////////
3939 // suspend/resume support
3940 
3941 //  the low-level signal-based suspend/resume support is a remnant from the
3942 //  old VM-suspension that used to be for java-suspension, safepoints etc,
3943 //  within hotspot. Now there is a single use-case for this:
3944 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
3945 //      that runs in the watcher thread.
3946 //  The remaining code is greatly simplified from the more general suspension
3947 //  code that used to be used.
3948 //
3949 //  The protocol is quite simple:
3950 //  - suspend:
3951 //      - sends a signal to the target thread
3952 //      - polls the suspend state of the osthread using a yield loop
3953 //      - target thread signal handler (SR_handler) sets suspend state
3954 //        and blocks in sigsuspend until continued
3955 //  - resume:
3956 //      - sets target osthread state to continue
3957 //      - sends signal to end the sigsuspend loop in the SR_handler
3958 //
3959 //  Note that the SR_lock plays no role in this suspend/resume protocol.
3960 
3961 static void resume_clear_context(OSThread *osthread) {
3962   osthread->set_ucontext(NULL);
3963   osthread->set_siginfo(NULL);
3964 }
3965 
3966 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
3967                                  ucontext_t* context) {
3968   osthread->set_ucontext(context);
3969   osthread->set_siginfo(siginfo);
3970 }
3971 
3972 // Handler function invoked when a thread's execution is suspended or
3973 // resumed. We have to be careful that only async-safe functions are
3974 // called here (Note: most pthread functions are not async safe and
3975 // should be avoided.)
3976 //
3977 // Note: sigwait() is a more natural fit than sigsuspend() from an
3978 // interface point of view, but sigwait() prevents the signal hander
3979 // from being run. libpthread would get very confused by not having
3980 // its signal handlers run and prevents sigwait()'s use with the
3981 // mutex granting granting signal.
3982 //
3983 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
3984 //
3985 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3986   // Save and restore errno to avoid confusing native code with EINTR
3987   // after sigsuspend.
3988   int old_errno = errno;
3989 
3990   Thread* thread = Thread::current();
3991   OSThread* osthread = thread->osthread();
3992   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
3993 
3994   os::SuspendResume::State current = osthread->sr.state();
3995   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
3996     suspend_save_context(osthread, siginfo, context);
3997 
3998     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
3999     os::SuspendResume::State state = osthread->sr.suspended();
4000     if (state == os::SuspendResume::SR_SUSPENDED) {
4001       sigset_t suspend_set;  // signals for sigsuspend()
4002 
4003       // get current set of blocked signals and unblock resume signal
4004       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
4005       sigdelset(&suspend_set, SR_signum);
4006 
4007       sr_semaphore.signal();
4008       // wait here until we are resumed
4009       while (1) {
4010         sigsuspend(&suspend_set);
4011 
4012         os::SuspendResume::State result = osthread->sr.running();
4013         if (result == os::SuspendResume::SR_RUNNING) {
4014           sr_semaphore.signal();
4015           break;
4016         }
4017       }
4018 
4019     } else if (state == os::SuspendResume::SR_RUNNING) {
4020       // request was cancelled, continue
4021     } else {
4022       ShouldNotReachHere();
4023     }
4024 
4025     resume_clear_context(osthread);
4026   } else if (current == os::SuspendResume::SR_RUNNING) {
4027     // request was cancelled, continue
4028   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4029     // ignore
4030   } else {
4031     // ignore
4032   }
4033 
4034   errno = old_errno;
4035 }
4036 
4037 
4038 static int SR_initialize() {
4039   struct sigaction act;
4040   char *s;
4041   // Get signal number to use for suspend/resume
4042   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4043     int sig = ::strtol(s, 0, 10);
4044     if (sig > 0 || sig < _NSIG) {
4045       SR_signum = sig;
4046     }
4047   }
4048 
4049   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4050          "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4051 
4052   sigemptyset(&SR_sigset);
4053   sigaddset(&SR_sigset, SR_signum);
4054 
4055   // Set up signal handler for suspend/resume
4056   act.sa_flags = SA_RESTART|SA_SIGINFO;
4057   act.sa_handler = (void (*)(int)) SR_handler;
4058 
4059   // SR_signum is blocked by default.
4060   // 4528190 - We also need to block pthread restart signal (32 on all
4061   // supported Linux platforms). Note that LinuxThreads need to block
4062   // this signal for all threads to work properly. So we don't have
4063   // to use hard-coded signal number when setting up the mask.
4064   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4065 
4066   if (sigaction(SR_signum, &act, 0) == -1) {
4067     return -1;
4068   }
4069 
4070   // Save signal flag
4071   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4072   return 0;
4073 }
4074 
4075 static int sr_notify(OSThread* osthread) {
4076   int status = pthread_kill(osthread->pthread_id(), SR_signum);
4077   assert_status(status == 0, status, "pthread_kill");
4078   return status;
4079 }
4080 
4081 // "Randomly" selected value for how long we want to spin
4082 // before bailing out on suspending a thread, also how often
4083 // we send a signal to a thread we want to resume
4084 static const int RANDOMLY_LARGE_INTEGER = 1000000;
4085 static const int RANDOMLY_LARGE_INTEGER2 = 100;
4086 
4087 // returns true on success and false on error - really an error is fatal
4088 // but this seems the normal response to library errors
4089 static bool do_suspend(OSThread* osthread) {
4090   assert(osthread->sr.is_running(), "thread should be running");
4091   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4092 
4093   // mark as suspended and send signal
4094   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4095     // failed to switch, state wasn't running?
4096     ShouldNotReachHere();
4097     return false;
4098   }
4099 
4100   if (sr_notify(osthread) != 0) {
4101     ShouldNotReachHere();
4102   }
4103 
4104   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4105   while (true) {
4106     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4107       break;
4108     } else {
4109       // timeout
4110       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4111       if (cancelled == os::SuspendResume::SR_RUNNING) {
4112         return false;
4113       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4114         // make sure that we consume the signal on the semaphore as well
4115         sr_semaphore.wait();
4116         break;
4117       } else {
4118         ShouldNotReachHere();
4119         return false;
4120       }
4121     }
4122   }
4123 
4124   guarantee(osthread->sr.is_suspended(), "Must be suspended");
4125   return true;
4126 }
4127 
4128 static void do_resume(OSThread* osthread) {
4129   assert(osthread->sr.is_suspended(), "thread should be suspended");
4130   assert(!sr_semaphore.trywait(), "invalid semaphore state");
4131 
4132   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4133     // failed to switch to WAKEUP_REQUEST
4134     ShouldNotReachHere();
4135     return;
4136   }
4137 
4138   while (true) {
4139     if (sr_notify(osthread) == 0) {
4140       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4141         if (osthread->sr.is_running()) {
4142           return;
4143         }
4144       }
4145     } else {
4146       ShouldNotReachHere();
4147     }
4148   }
4149 
4150   guarantee(osthread->sr.is_running(), "Must be running!");
4151 }
4152 
4153 ///////////////////////////////////////////////////////////////////////////////////
4154 // signal handling (except suspend/resume)
4155 
4156 // This routine may be used by user applications as a "hook" to catch signals.
4157 // The user-defined signal handler must pass unrecognized signals to this
4158 // routine, and if it returns true (non-zero), then the signal handler must
4159 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
4160 // routine will never retun false (zero), but instead will execute a VM panic
4161 // routine kill the process.
4162 //
4163 // If this routine returns false, it is OK to call it again.  This allows
4164 // the user-defined signal handler to perform checks either before or after
4165 // the VM performs its own checks.  Naturally, the user code would be making
4166 // a serious error if it tried to handle an exception (such as a null check
4167 // or breakpoint) that the VM was generating for its own correct operation.
4168 //
4169 // This routine may recognize any of the following kinds of signals:
4170 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4171 // It should be consulted by handlers for any of those signals.
4172 //
4173 // The caller of this routine must pass in the three arguments supplied
4174 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
4175 // field of the structure passed to sigaction().  This routine assumes that
4176 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4177 //
4178 // Note that the VM will print warnings if it detects conflicting signal
4179 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4180 //
4181 extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4182                                                  siginfo_t* siginfo,
4183                                                  void* ucontext,
4184                                                  int abort_if_unrecognized);
4185 
4186 void signalHandler(int sig, siginfo_t* info, void* uc) {
4187   assert(info != NULL && uc != NULL, "it must be old kernel");
4188   int orig_errno = errno;  // Preserve errno value over signal handler.
4189   JVM_handle_linux_signal(sig, info, uc, true);
4190   errno = orig_errno;
4191 }
4192 
4193 
4194 // This boolean allows users to forward their own non-matching signals
4195 // to JVM_handle_linux_signal, harmlessly.
4196 bool os::Linux::signal_handlers_are_installed = false;
4197 
4198 // For signal-chaining
4199 struct sigaction os::Linux::sigact[MAXSIGNUM];
4200 unsigned int os::Linux::sigs = 0;
4201 bool os::Linux::libjsig_is_loaded = false;
4202 typedef struct sigaction *(*get_signal_t)(int);
4203 get_signal_t os::Linux::get_signal_action = NULL;
4204 
4205 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4206   struct sigaction *actp = NULL;
4207 
4208   if (libjsig_is_loaded) {
4209     // Retrieve the old signal handler from libjsig
4210     actp = (*get_signal_action)(sig);
4211   }
4212   if (actp == NULL) {
4213     // Retrieve the preinstalled signal handler from jvm
4214     actp = get_preinstalled_handler(sig);
4215   }
4216 
4217   return actp;
4218 }
4219 
4220 static bool call_chained_handler(struct sigaction *actp, int sig,
4221                                  siginfo_t *siginfo, void *context) {
4222   // Call the old signal handler
4223   if (actp->sa_handler == SIG_DFL) {
4224     // It's more reasonable to let jvm treat it as an unexpected exception
4225     // instead of taking the default action.
4226     return false;
4227   } else if (actp->sa_handler != SIG_IGN) {
4228     if ((actp->sa_flags & SA_NODEFER) == 0) {
4229       // automaticlly block the signal
4230       sigaddset(&(actp->sa_mask), sig);
4231     }
4232 
4233     sa_handler_t hand;
4234     sa_sigaction_t sa;
4235     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4236     // retrieve the chained handler
4237     if (siginfo_flag_set) {
4238       sa = actp->sa_sigaction;
4239     } else {
4240       hand = actp->sa_handler;
4241     }
4242 
4243     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4244       actp->sa_handler = SIG_DFL;
4245     }
4246 
4247     // try to honor the signal mask
4248     sigset_t oset;
4249     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4250 
4251     // call into the chained handler
4252     if (siginfo_flag_set) {
4253       (*sa)(sig, siginfo, context);
4254     } else {
4255       (*hand)(sig);
4256     }
4257 
4258     // restore the signal mask
4259     pthread_sigmask(SIG_SETMASK, &oset, 0);
4260   }
4261   // Tell jvm's signal handler the signal is taken care of.
4262   return true;
4263 }
4264 
4265 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4266   bool chained = false;
4267   // signal-chaining
4268   if (UseSignalChaining) {
4269     struct sigaction *actp = get_chained_signal_action(sig);
4270     if (actp != NULL) {
4271       chained = call_chained_handler(actp, sig, siginfo, context);
4272     }
4273   }
4274   return chained;
4275 }
4276 
4277 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4278   if ((((unsigned int)1 << sig) & sigs) != 0) {
4279     return &sigact[sig];
4280   }
4281   return NULL;
4282 }
4283 
4284 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4285   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4286   sigact[sig] = oldAct;
4287   sigs |= (unsigned int)1 << sig;
4288 }
4289 
4290 // for diagnostic
4291 int os::Linux::sigflags[MAXSIGNUM];
4292 
4293 int os::Linux::get_our_sigflags(int sig) {
4294   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4295   return sigflags[sig];
4296 }
4297 
4298 void os::Linux::set_our_sigflags(int sig, int flags) {
4299   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4300   sigflags[sig] = flags;
4301 }
4302 
4303 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4304   // Check for overwrite.
4305   struct sigaction oldAct;
4306   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4307 
4308   void* oldhand = oldAct.sa_sigaction
4309                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4310                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4311   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4312       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4313       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4314     if (AllowUserSignalHandlers || !set_installed) {
4315       // Do not overwrite; user takes responsibility to forward to us.
4316       return;
4317     } else if (UseSignalChaining) {
4318       // save the old handler in jvm
4319       save_preinstalled_handler(sig, oldAct);
4320       // libjsig also interposes the sigaction() call below and saves the
4321       // old sigaction on it own.
4322     } else {
4323       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
4324                     "%#lx for signal %d.", (long)oldhand, sig));
4325     }
4326   }
4327 
4328   struct sigaction sigAct;
4329   sigfillset(&(sigAct.sa_mask));
4330   sigAct.sa_handler = SIG_DFL;
4331   if (!set_installed) {
4332     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4333   } else {
4334     sigAct.sa_sigaction = signalHandler;
4335     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4336   }
4337   // Save flags, which are set by ours
4338   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4339   sigflags[sig] = sigAct.sa_flags;
4340 
4341   int ret = sigaction(sig, &sigAct, &oldAct);
4342   assert(ret == 0, "check");
4343 
4344   void* oldhand2  = oldAct.sa_sigaction
4345                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4346                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4347   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4348 }
4349 
4350 // install signal handlers for signals that HotSpot needs to
4351 // handle in order to support Java-level exception handling.
4352 
4353 void os::Linux::install_signal_handlers() {
4354   if (!signal_handlers_are_installed) {
4355     signal_handlers_are_installed = true;
4356 
4357     // signal-chaining
4358     typedef void (*signal_setting_t)();
4359     signal_setting_t begin_signal_setting = NULL;
4360     signal_setting_t end_signal_setting = NULL;
4361     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4362                                           dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4363     if (begin_signal_setting != NULL) {
4364       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4365                                           dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4366       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4367                                          dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4368       libjsig_is_loaded = true;
4369       assert(UseSignalChaining, "should enable signal-chaining");
4370     }
4371     if (libjsig_is_loaded) {
4372       // Tell libjsig jvm is setting signal handlers
4373       (*begin_signal_setting)();
4374     }
4375 
4376     set_signal_handler(SIGSEGV, true);
4377     set_signal_handler(SIGPIPE, true);
4378     set_signal_handler(SIGBUS, true);
4379     set_signal_handler(SIGILL, true);
4380     set_signal_handler(SIGFPE, true);
4381 #if defined(PPC64)
4382     set_signal_handler(SIGTRAP, true);
4383 #endif
4384     set_signal_handler(SIGXFSZ, true);
4385 
4386     if (libjsig_is_loaded) {
4387       // Tell libjsig jvm finishes setting signal handlers
4388       (*end_signal_setting)();
4389     }
4390 
4391     // We don't activate signal checker if libjsig is in place, we trust ourselves
4392     // and if UserSignalHandler is installed all bets are off.
4393     // Log that signal checking is off only if -verbose:jni is specified.
4394     if (CheckJNICalls) {
4395       if (libjsig_is_loaded) {
4396         if (PrintJNIResolving) {
4397           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4398         }
4399         check_signals = false;
4400       }
4401       if (AllowUserSignalHandlers) {
4402         if (PrintJNIResolving) {
4403           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4404         }
4405         check_signals = false;
4406       }
4407     }
4408   }
4409 }
4410 
4411 // This is the fastest way to get thread cpu time on Linux.
4412 // Returns cpu time (user+sys) for any thread, not only for current.
4413 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4414 // It might work on 2.6.10+ with a special kernel/glibc patch.
4415 // For reference, please, see IEEE Std 1003.1-2004:
4416 //   http://www.unix.org/single_unix_specification
4417 
4418 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4419   struct timespec tp;
4420   int rc = os::Linux::clock_gettime(clockid, &tp);
4421   assert(rc == 0, "clock_gettime is expected to return 0 code");
4422 
4423   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4424 }
4425 
4426 /////
4427 // glibc on Linux platform uses non-documented flag
4428 // to indicate, that some special sort of signal
4429 // trampoline is used.
4430 // We will never set this flag, and we should
4431 // ignore this flag in our diagnostic
4432 #ifdef SIGNIFICANT_SIGNAL_MASK
4433   #undef SIGNIFICANT_SIGNAL_MASK
4434 #endif
4435 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4436 
4437 static const char* get_signal_handler_name(address handler,
4438                                            char* buf, int buflen) {
4439   int offset;
4440   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4441   if (found) {
4442     // skip directory names
4443     const char *p1, *p2;
4444     p1 = buf;
4445     size_t len = strlen(os::file_separator());
4446     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4447     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4448   } else {
4449     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4450   }
4451   return buf;
4452 }
4453 
4454 static void print_signal_handler(outputStream* st, int sig,
4455                                  char* buf, size_t buflen) {
4456   struct sigaction sa;
4457 
4458   sigaction(sig, NULL, &sa);
4459 
4460   // See comment for SIGNIFICANT_SIGNAL_MASK define
4461   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4462 
4463   st->print("%s: ", os::exception_name(sig, buf, buflen));
4464 
4465   address handler = (sa.sa_flags & SA_SIGINFO)
4466     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4467     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4468 
4469   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4470     st->print("SIG_DFL");
4471   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4472     st->print("SIG_IGN");
4473   } else {
4474     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4475   }
4476 
4477   st->print(", sa_mask[0]=");
4478   os::Posix::print_signal_set_short(st, &sa.sa_mask);
4479 
4480   address rh = VMError::get_resetted_sighandler(sig);
4481   // May be, handler was resetted by VMError?
4482   if (rh != NULL) {
4483     handler = rh;
4484     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4485   }
4486 
4487   st->print(", sa_flags=");
4488   os::Posix::print_sa_flags(st, sa.sa_flags);
4489 
4490   // Check: is it our handler?
4491   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4492       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4493     // It is our signal handler
4494     // check for flags, reset system-used one!
4495     if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4496       st->print(
4497                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4498                 os::Linux::get_our_sigflags(sig));
4499     }
4500   }
4501   st->cr();
4502 }
4503 
4504 
4505 #define DO_SIGNAL_CHECK(sig)                      \
4506   do {                                            \
4507     if (!sigismember(&check_signal_done, sig)) {  \
4508       os::Linux::check_signal_handler(sig);       \
4509     }                                             \
4510   } while (0)
4511 
4512 // This method is a periodic task to check for misbehaving JNI applications
4513 // under CheckJNI, we can add any periodic checks here
4514 
4515 void os::run_periodic_checks() {
4516   if (check_signals == false) return;
4517 
4518   // SEGV and BUS if overridden could potentially prevent
4519   // generation of hs*.log in the event of a crash, debugging
4520   // such a case can be very challenging, so we absolutely
4521   // check the following for a good measure:
4522   DO_SIGNAL_CHECK(SIGSEGV);
4523   DO_SIGNAL_CHECK(SIGILL);
4524   DO_SIGNAL_CHECK(SIGFPE);
4525   DO_SIGNAL_CHECK(SIGBUS);
4526   DO_SIGNAL_CHECK(SIGPIPE);
4527   DO_SIGNAL_CHECK(SIGXFSZ);
4528 #if defined(PPC64)
4529   DO_SIGNAL_CHECK(SIGTRAP);
4530 #endif
4531 
4532   // ReduceSignalUsage allows the user to override these handlers
4533   // see comments at the very top and jvm_solaris.h
4534   if (!ReduceSignalUsage) {
4535     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4536     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4537     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4538     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4539   }
4540 
4541   DO_SIGNAL_CHECK(SR_signum);
4542   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
4543 }
4544 
4545 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4546 
4547 static os_sigaction_t os_sigaction = NULL;
4548 
4549 void os::Linux::check_signal_handler(int sig) {
4550   char buf[O_BUFLEN];
4551   address jvmHandler = NULL;
4552 
4553 
4554   struct sigaction act;
4555   if (os_sigaction == NULL) {
4556     // only trust the default sigaction, in case it has been interposed
4557     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4558     if (os_sigaction == NULL) return;
4559   }
4560 
4561   os_sigaction(sig, (struct sigaction*)NULL, &act);
4562 
4563 
4564   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4565 
4566   address thisHandler = (act.sa_flags & SA_SIGINFO)
4567     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4568     : CAST_FROM_FN_PTR(address, act.sa_handler);
4569 
4570 
4571   switch (sig) {
4572   case SIGSEGV:
4573   case SIGBUS:
4574   case SIGFPE:
4575   case SIGPIPE:
4576   case SIGILL:
4577   case SIGXFSZ:
4578     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4579     break;
4580 
4581   case SHUTDOWN1_SIGNAL:
4582   case SHUTDOWN2_SIGNAL:
4583   case SHUTDOWN3_SIGNAL:
4584   case BREAK_SIGNAL:
4585     jvmHandler = (address)user_handler();
4586     break;
4587 
4588   case INTERRUPT_SIGNAL:
4589     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
4590     break;
4591 
4592   default:
4593     if (sig == SR_signum) {
4594       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4595     } else {
4596       return;
4597     }
4598     break;
4599   }
4600 
4601   if (thisHandler != jvmHandler) {
4602     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4603     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4604     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4605     // No need to check this sig any longer
4606     sigaddset(&check_signal_done, sig);
4607     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4608     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4609       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4610                     exception_name(sig, buf, O_BUFLEN));
4611     }
4612   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4613     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4614     tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
4615     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4616     // No need to check this sig any longer
4617     sigaddset(&check_signal_done, sig);
4618   }
4619 
4620   // Dump all the signal
4621   if (sigismember(&check_signal_done, sig)) {
4622     print_signal_handlers(tty, buf, O_BUFLEN);
4623   }
4624 }
4625 
4626 extern void report_error(char* file_name, int line_no, char* title,
4627                          char* format, ...);
4628 
4629 extern bool signal_name(int signo, char* buf, size_t len);
4630 
4631 const char* os::exception_name(int exception_code, char* buf, size_t size) {
4632   if (0 < exception_code && exception_code <= SIGRTMAX) {
4633     // signal
4634     if (!signal_name(exception_code, buf, size)) {
4635       jio_snprintf(buf, size, "SIG%d", exception_code);
4636     }
4637     return buf;
4638   } else {
4639     return NULL;
4640   }
4641 }
4642 
4643 // this is called _before_ the most of global arguments have been parsed
4644 void os::init(void) {
4645   char dummy;   // used to get a guess on initial stack address
4646 //  first_hrtime = gethrtime();
4647 
4648   // With LinuxThreads the JavaMain thread pid (primordial thread)
4649   // is different than the pid of the java launcher thread.
4650   // So, on Linux, the launcher thread pid is passed to the VM
4651   // via the sun.java.launcher.pid property.
4652   // Use this property instead of getpid() if it was correctly passed.
4653   // See bug 6351349.
4654   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
4655 
4656   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
4657 
4658   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4659 
4660   init_random(1234567);
4661 
4662   ThreadCritical::initialize();
4663 
4664   Linux::set_page_size(sysconf(_SC_PAGESIZE));
4665   if (Linux::page_size() == -1) {
4666     fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
4667                   strerror(errno)));
4668   }
4669   init_page_sizes((size_t) Linux::page_size());
4670 
4671   Linux::initialize_system_info();
4672 
4673   // main_thread points to the aboriginal thread
4674   Linux::_main_thread = pthread_self();
4675 
4676   Linux::clock_init();
4677   initial_time_count = javaTimeNanos();
4678 
4679   // pthread_condattr initialization for monotonic clock
4680   int status;
4681   pthread_condattr_t* _condattr = os::Linux::condAttr();
4682   if ((status = pthread_condattr_init(_condattr)) != 0) {
4683     fatal(err_msg("pthread_condattr_init: %s", strerror(status)));
4684   }
4685   // Only set the clock if CLOCK_MONOTONIC is available
4686   if (os::supports_monotonic_clock()) {
4687     if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
4688       if (status == EINVAL) {
4689         warning("Unable to use monotonic clock with relative timed-waits" \
4690                 " - changes to the time-of-day clock may have adverse affects");
4691       } else {
4692         fatal(err_msg("pthread_condattr_setclock: %s", strerror(status)));
4693       }
4694     }
4695   }
4696   // else it defaults to CLOCK_REALTIME
4697 
4698   // If the pagesize of the VM is greater than 8K determine the appropriate
4699   // number of initial guard pages.  The user can change this with the
4700   // command line arguments, if needed.
4701   if (vm_page_size() > (int)Linux::vm_default_page_size()) {
4702     StackYellowPages = 1;
4703     StackRedPages = 1;
4704     StackShadowPages = round_to((StackShadowPages*Linux::vm_default_page_size()), vm_page_size()) / vm_page_size();
4705   }
4706 
4707   // retrieve entry point for pthread_setname_np
4708   Linux::_pthread_setname_np =
4709     (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
4710 
4711 }
4712 
4713 // To install functions for atexit system call
4714 extern "C" {
4715   static void perfMemory_exit_helper() {
4716     perfMemory_exit();
4717   }
4718 }
4719 
4720 // this is called _after_ the global arguments have been parsed
4721 jint os::init_2(void) {
4722   Linux::fast_thread_clock_init();
4723 
4724   // Allocate a single page and mark it as readable for safepoint polling
4725   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4726   guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
4727 
4728   os::set_polling_page(polling_page);
4729 
4730 #ifndef PRODUCT
4731   if (Verbose && PrintMiscellaneous) {
4732     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
4733                (intptr_t)polling_page);
4734   }
4735 #endif
4736 
4737   if (!UseMembar) {
4738     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4739     guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
4740     os::set_memory_serialize_page(mem_serialize_page);
4741 
4742 #ifndef PRODUCT
4743     if (Verbose && PrintMiscellaneous) {
4744       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n",
4745                  (intptr_t)mem_serialize_page);
4746     }
4747 #endif
4748   }
4749 
4750   // initialize suspend/resume support - must do this before signal_sets_init()
4751   if (SR_initialize() != 0) {
4752     perror("SR_initialize failed");
4753     return JNI_ERR;
4754   }
4755 
4756   Linux::signal_sets_init();
4757   Linux::install_signal_handlers();
4758 
4759   // Check minimum allowable stack size for thread creation and to initialize
4760   // the java system classes, including StackOverflowError - depends on page
4761   // size.  Add a page for compiler2 recursion in main thread.
4762   // Add in 2*BytesPerWord times page size to account for VM stack during
4763   // class initialization depending on 32 or 64 bit VM.
4764   os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4765                                       (size_t)(StackYellowPages+StackRedPages+StackShadowPages) * Linux::page_size() +
4766                                       (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
4767 
4768   size_t threadStackSizeInBytes = ThreadStackSize * K;
4769   if (threadStackSizeInBytes != 0 &&
4770       threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4771     tty->print_cr("\nThe stack size specified is too small, "
4772                   "Specify at least %dk",
4773                   os::Linux::min_stack_allowed/ K);
4774     return JNI_ERR;
4775   }
4776 
4777   // Make the stack size a multiple of the page size so that
4778   // the yellow/red zones can be guarded.
4779   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4780                                                 vm_page_size()));
4781 
4782   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4783 
4784 #if defined(IA32)
4785   workaround_expand_exec_shield_cs_limit();
4786 #endif
4787 
4788   Linux::libpthread_init();
4789   if (PrintMiscellaneous && (Verbose || WizardMode)) {
4790     tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
4791                   Linux::glibc_version(), Linux::libpthread_version(),
4792                   Linux::is_floating_stack() ? "floating stack" : "fixed stack");
4793   }
4794 
4795   if (UseNUMA) {
4796     if (!Linux::libnuma_init()) {
4797       UseNUMA = false;
4798     } else {
4799       if ((Linux::numa_max_node() < 1)) {
4800         // There's only one node(they start from 0), disable NUMA.
4801         UseNUMA = false;
4802       }
4803     }
4804     // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
4805     // we can make the adaptive lgrp chunk resizing work. If the user specified
4806     // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
4807     // disable adaptive resizing.
4808     if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
4809       if (FLAG_IS_DEFAULT(UseNUMA)) {
4810         UseNUMA = false;
4811       } else {
4812         if (FLAG_IS_DEFAULT(UseLargePages) &&
4813             FLAG_IS_DEFAULT(UseSHM) &&
4814             FLAG_IS_DEFAULT(UseHugeTLBFS)) {
4815           UseLargePages = false;
4816         } else if (UseAdaptiveSizePolicy || UseAdaptiveNUMAChunkSizing) {
4817           warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing (-XX:-UseAdaptiveSizePolicy -XX:-UseAdaptiveNUMAChunkSizing)");
4818           UseAdaptiveSizePolicy = false;
4819           UseAdaptiveNUMAChunkSizing = false;
4820         }
4821       }
4822     }
4823     if (!UseNUMA && ForceNUMA) {
4824       UseNUMA = true;
4825     }
4826   }
4827 
4828   if (MaxFDLimit) {
4829     // set the number of file descriptors to max. print out error
4830     // if getrlimit/setrlimit fails but continue regardless.
4831     struct rlimit nbr_files;
4832     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4833     if (status != 0) {
4834       if (PrintMiscellaneous && (Verbose || WizardMode)) {
4835         perror("os::init_2 getrlimit failed");
4836       }
4837     } else {
4838       nbr_files.rlim_cur = nbr_files.rlim_max;
4839       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4840       if (status != 0) {
4841         if (PrintMiscellaneous && (Verbose || WizardMode)) {
4842           perror("os::init_2 setrlimit failed");
4843         }
4844       }
4845     }
4846   }
4847 
4848   // Initialize lock used to serialize thread creation (see os::create_thread)
4849   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4850 
4851   // at-exit methods are called in the reverse order of their registration.
4852   // atexit functions are called on return from main or as a result of a
4853   // call to exit(3C). There can be only 32 of these functions registered
4854   // and atexit() does not set errno.
4855 
4856   if (PerfAllowAtExitRegistration) {
4857     // only register atexit functions if PerfAllowAtExitRegistration is set.
4858     // atexit functions can be delayed until process exit time, which
4859     // can be problematic for embedded VM situations. Embedded VMs should
4860     // call DestroyJavaVM() to assure that VM resources are released.
4861 
4862     // note: perfMemory_exit_helper atexit function may be removed in
4863     // the future if the appropriate cleanup code can be added to the
4864     // VM_Exit VMOperation's doit method.
4865     if (atexit(perfMemory_exit_helper) != 0) {
4866       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4867     }
4868   }
4869 
4870   // initialize thread priority policy
4871   prio_init();
4872 
4873   return JNI_OK;
4874 }
4875 
4876 // Mark the polling page as unreadable
4877 void os::make_polling_page_unreadable(void) {
4878   if (!guard_memory((char*)_polling_page, Linux::page_size())) {
4879     fatal("Could not disable polling page");
4880   }
4881 }
4882 
4883 // Mark the polling page as readable
4884 void os::make_polling_page_readable(void) {
4885   if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4886     fatal("Could not enable polling page");
4887   }
4888 }
4889 
4890 int os::active_processor_count() {
4891   // Linux doesn't yet have a (official) notion of processor sets,
4892   // so just return the number of online processors.
4893   int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4894   assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4895   return online_cpus;
4896 }
4897 
4898 void os::set_native_thread_name(const char *name) {
4899   if (Linux::_pthread_setname_np) {
4900     char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
4901     snprintf(buf, sizeof(buf), "%s", name);
4902     buf[sizeof(buf) - 1] = '\0';
4903     const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
4904     // ERANGE should not happen; all other errors should just be ignored.
4905     assert(rc != ERANGE, "pthread_setname_np failed");
4906   }
4907 }
4908 
4909 bool os::distribute_processes(uint length, uint* distribution) {
4910   // Not yet implemented.
4911   return false;
4912 }
4913 
4914 bool os::bind_to_processor(uint processor_id) {
4915   // Not yet implemented.
4916   return false;
4917 }
4918 
4919 ///
4920 
4921 void os::SuspendedThreadTask::internal_do_task() {
4922   if (do_suspend(_thread->osthread())) {
4923     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
4924     do_task(context);
4925     do_resume(_thread->osthread());
4926   }
4927 }
4928 
4929 class PcFetcher : public os::SuspendedThreadTask {
4930  public:
4931   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
4932   ExtendedPC result();
4933  protected:
4934   void do_task(const os::SuspendedThreadTaskContext& context);
4935  private:
4936   ExtendedPC _epc;
4937 };
4938 
4939 ExtendedPC PcFetcher::result() {
4940   guarantee(is_done(), "task is not done yet.");
4941   return _epc;
4942 }
4943 
4944 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
4945   Thread* thread = context.thread();
4946   OSThread* osthread = thread->osthread();
4947   if (osthread->ucontext() != NULL) {
4948     _epc = os::Linux::ucontext_get_pc((ucontext_t *) context.ucontext());
4949   } else {
4950     // NULL context is unexpected, double-check this is the VMThread
4951     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4952   }
4953 }
4954 
4955 // Suspends the target using the signal mechanism and then grabs the PC before
4956 // resuming the target. Used by the flat-profiler only
4957 ExtendedPC os::get_thread_pc(Thread* thread) {
4958   // Make sure that it is called by the watcher for the VMThread
4959   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4960   assert(thread->is_VM_thread(), "Can only be called for VMThread");
4961 
4962   PcFetcher fetcher(thread);
4963   fetcher.run();
4964   return fetcher.result();
4965 }
4966 
4967 int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond,
4968                                    pthread_mutex_t *_mutex,
4969                                    const struct timespec *_abstime) {
4970   if (is_NPTL()) {
4971     return pthread_cond_timedwait(_cond, _mutex, _abstime);
4972   } else {
4973     // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
4974     // word back to default 64bit precision if condvar is signaled. Java
4975     // wants 53bit precision.  Save and restore current value.
4976     int fpu = get_fpu_control_word();
4977     int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
4978     set_fpu_control_word(fpu);
4979     return status;
4980   }
4981 }
4982 
4983 ////////////////////////////////////////////////////////////////////////////////
4984 // debug support
4985 
4986 bool os::find(address addr, outputStream* st) {
4987   Dl_info dlinfo;
4988   memset(&dlinfo, 0, sizeof(dlinfo));
4989   if (dladdr(addr, &dlinfo) != 0) {
4990     st->print(PTR_FORMAT ": ", addr);
4991     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
4992       st->print("%s+%#x", dlinfo.dli_sname,
4993                 addr - (intptr_t)dlinfo.dli_saddr);
4994     } else if (dlinfo.dli_fbase != NULL) {
4995       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
4996     } else {
4997       st->print("<absolute address>");
4998     }
4999     if (dlinfo.dli_fname != NULL) {
5000       st->print(" in %s", dlinfo.dli_fname);
5001     }
5002     if (dlinfo.dli_fbase != NULL) {
5003       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
5004     }
5005     st->cr();
5006 
5007     if (Verbose) {
5008       // decode some bytes around the PC
5009       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5010       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5011       address       lowest = (address) dlinfo.dli_sname;
5012       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5013       if (begin < lowest)  begin = lowest;
5014       Dl_info dlinfo2;
5015       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5016           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
5017         end = (address) dlinfo2.dli_saddr;
5018       }
5019       Disassembler::decode(begin, end, st);
5020     }
5021     return true;
5022   }
5023   return false;
5024 }
5025 
5026 ////////////////////////////////////////////////////////////////////////////////
5027 // misc
5028 
5029 // This does not do anything on Linux. This is basically a hook for being
5030 // able to use structured exception handling (thread-local exception filters)
5031 // on, e.g., Win32.
5032 void
5033 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
5034                          JavaCallArguments* args, Thread* thread) {
5035   f(value, method, args, thread);
5036 }
5037 
5038 void os::print_statistics() {
5039 }
5040 
5041 int os::message_box(const char* title, const char* message) {
5042   int i;
5043   fdStream err(defaultStream::error_fd());
5044   for (i = 0; i < 78; i++) err.print_raw("=");
5045   err.cr();
5046   err.print_raw_cr(title);
5047   for (i = 0; i < 78; i++) err.print_raw("-");
5048   err.cr();
5049   err.print_raw_cr(message);
5050   for (i = 0; i < 78; i++) err.print_raw("=");
5051   err.cr();
5052 
5053   char buf[16];
5054   // Prevent process from exiting upon "read error" without consuming all CPU
5055   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5056 
5057   return buf[0] == 'y' || buf[0] == 'Y';
5058 }
5059 
5060 int os::stat(const char *path, struct stat *sbuf) {
5061   char pathbuf[MAX_PATH];
5062   if (strlen(path) > MAX_PATH - 1) {
5063     errno = ENAMETOOLONG;
5064     return -1;
5065   }
5066   os::native_path(strcpy(pathbuf, path));
5067   return ::stat(pathbuf, sbuf);
5068 }
5069 
5070 bool os::check_heap(bool force) {
5071   return true;
5072 }
5073 
5074 // Is a (classpath) directory empty?
5075 bool os::dir_is_empty(const char* path) {
5076   DIR *dir = NULL;
5077   struct dirent *ptr;
5078 
5079   dir = opendir(path);
5080   if (dir == NULL) return true;
5081 
5082   // Scan the directory
5083   bool result = true;
5084   char buf[sizeof(struct dirent) + MAX_PATH];
5085   while (result && (ptr = ::readdir(dir)) != NULL) {
5086     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5087       result = false;
5088     }
5089   }
5090   closedir(dir);
5091   return result;
5092 }
5093 
5094 // This code originates from JDK's sysOpen and open64_w
5095 // from src/solaris/hpi/src/system_md.c
5096 
5097 int os::open(const char *path, int oflag, int mode) {
5098   if (strlen(path) > MAX_PATH - 1) {
5099     errno = ENAMETOOLONG;
5100     return -1;
5101   }
5102 
5103   // All file descriptors that are opened in the Java process and not
5104   // specifically destined for a subprocess should have the close-on-exec
5105   // flag set.  If we don't set it, then careless 3rd party native code
5106   // might fork and exec without closing all appropriate file descriptors
5107   // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
5108   // turn might:
5109   //
5110   // - cause end-of-file to fail to be detected on some file
5111   //   descriptors, resulting in mysterious hangs, or
5112   //
5113   // - might cause an fopen in the subprocess to fail on a system
5114   //   suffering from bug 1085341.
5115   //
5116   // (Yes, the default setting of the close-on-exec flag is a Unix
5117   // design flaw)
5118   //
5119   // See:
5120   // 1085341: 32-bit stdio routines should support file descriptors >255
5121   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5122   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5123   //
5124   // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
5125   // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
5126   // because it saves a system call and removes a small window where the flag
5127   // is unset.  On ancient Linux kernels the O_CLOEXEC flag will be ignored
5128   // and we fall back to using FD_CLOEXEC (see below).
5129 #ifdef O_CLOEXEC
5130   oflag |= O_CLOEXEC;
5131 #endif
5132 
5133   int fd = ::open64(path, oflag, mode);
5134   if (fd == -1) return -1;
5135 
5136   //If the open succeeded, the file might still be a directory
5137   {
5138     struct stat64 buf64;
5139     int ret = ::fstat64(fd, &buf64);
5140     int st_mode = buf64.st_mode;
5141 
5142     if (ret != -1) {
5143       if ((st_mode & S_IFMT) == S_IFDIR) {
5144         errno = EISDIR;
5145         ::close(fd);
5146         return -1;
5147       }
5148     } else {
5149       ::close(fd);
5150       return -1;
5151     }
5152   }
5153 
5154 #ifdef FD_CLOEXEC
5155   // Validate that the use of the O_CLOEXEC flag on open above worked.
5156   // With recent kernels, we will perform this check exactly once.
5157   static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
5158   if (!O_CLOEXEC_is_known_to_work) {
5159     int flags = ::fcntl(fd, F_GETFD);
5160     if (flags != -1) {
5161       if ((flags & FD_CLOEXEC) != 0)
5162         O_CLOEXEC_is_known_to_work = 1;
5163       else
5164         ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5165     }
5166   }
5167 #endif
5168 
5169   return fd;
5170 }
5171 
5172 
5173 // create binary file, rewriting existing file if required
5174 int os::create_binary_file(const char* path, bool rewrite_existing) {
5175   int oflags = O_WRONLY | O_CREAT;
5176   if (!rewrite_existing) {
5177     oflags |= O_EXCL;
5178   }
5179   return ::open64(path, oflags, S_IREAD | S_IWRITE);
5180 }
5181 
5182 // return current position of file pointer
5183 jlong os::current_file_offset(int fd) {
5184   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5185 }
5186 
5187 // move file pointer to the specified offset
5188 jlong os::seek_to_file_offset(int fd, jlong offset) {
5189   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5190 }
5191 
5192 // This code originates from JDK's sysAvailable
5193 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5194 
5195 int os::available(int fd, jlong *bytes) {
5196   jlong cur, end;
5197   int mode;
5198   struct stat64 buf64;
5199 
5200   if (::fstat64(fd, &buf64) >= 0) {
5201     mode = buf64.st_mode;
5202     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5203       // XXX: is the following call interruptible? If so, this might
5204       // need to go through the INTERRUPT_IO() wrapper as for other
5205       // blocking, interruptible calls in this file.
5206       int n;
5207       if (::ioctl(fd, FIONREAD, &n) >= 0) {
5208         *bytes = n;
5209         return 1;
5210       }
5211     }
5212   }
5213   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5214     return 0;
5215   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5216     return 0;
5217   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5218     return 0;
5219   }
5220   *bytes = end - cur;
5221   return 1;
5222 }
5223 
5224 // Map a block of memory.
5225 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5226                         char *addr, size_t bytes, bool read_only,
5227                         bool allow_exec) {
5228   int prot;
5229   int flags = MAP_PRIVATE;
5230 
5231   if (read_only) {
5232     prot = PROT_READ;
5233   } else {
5234     prot = PROT_READ | PROT_WRITE;
5235   }
5236 
5237   if (allow_exec) {
5238     prot |= PROT_EXEC;
5239   }
5240 
5241   if (addr != NULL) {
5242     flags |= MAP_FIXED;
5243   }
5244 
5245   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5246                                      fd, file_offset);
5247   if (mapped_address == MAP_FAILED) {
5248     return NULL;
5249   }
5250   return mapped_address;
5251 }
5252 
5253 
5254 // Remap a block of memory.
5255 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5256                           char *addr, size_t bytes, bool read_only,
5257                           bool allow_exec) {
5258   // same as map_memory() on this OS
5259   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5260                         allow_exec);
5261 }
5262 
5263 
5264 // Unmap a block of memory.
5265 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5266   return munmap(addr, bytes) == 0;
5267 }
5268 
5269 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5270 
5271 static clockid_t thread_cpu_clockid(Thread* thread) {
5272   pthread_t tid = thread->osthread()->pthread_id();
5273   clockid_t clockid;
5274 
5275   // Get thread clockid
5276   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5277   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5278   return clockid;
5279 }
5280 
5281 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5282 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5283 // of a thread.
5284 //
5285 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5286 // the fast estimate available on the platform.
5287 
5288 jlong os::current_thread_cpu_time() {
5289   if (os::Linux::supports_fast_thread_cpu_time()) {
5290     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5291   } else {
5292     // return user + sys since the cost is the same
5293     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5294   }
5295 }
5296 
5297 jlong os::thread_cpu_time(Thread* thread) {
5298   // consistent with what current_thread_cpu_time() returns
5299   if (os::Linux::supports_fast_thread_cpu_time()) {
5300     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5301   } else {
5302     return slow_thread_cpu_time(thread, true /* user + sys */);
5303   }
5304 }
5305 
5306 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5307   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5308     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5309   } else {
5310     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5311   }
5312 }
5313 
5314 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5315   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5316     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5317   } else {
5318     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5319   }
5320 }
5321 
5322 //  -1 on error.
5323 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5324   pid_t  tid = thread->osthread()->thread_id();
5325   char *s;
5326   char stat[2048];
5327   int statlen;
5328   char proc_name[64];
5329   int count;
5330   long sys_time, user_time;
5331   char cdummy;
5332   int idummy;
5333   long ldummy;
5334   FILE *fp;
5335 
5336   snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5337   fp = fopen(proc_name, "r");
5338   if (fp == NULL) return -1;
5339   statlen = fread(stat, 1, 2047, fp);
5340   stat[statlen] = '\0';
5341   fclose(fp);
5342 
5343   // Skip pid and the command string. Note that we could be dealing with
5344   // weird command names, e.g. user could decide to rename java launcher
5345   // to "java 1.4.2 :)", then the stat file would look like
5346   //                1234 (java 1.4.2 :)) R ... ...
5347   // We don't really need to know the command string, just find the last
5348   // occurrence of ")" and then start parsing from there. See bug 4726580.
5349   s = strrchr(stat, ')');
5350   if (s == NULL) return -1;
5351 
5352   // Skip blank chars
5353   do { s++; } while (s && isspace(*s));
5354 
5355   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5356                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5357                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5358                  &user_time, &sys_time);
5359   if (count != 13) return -1;
5360   if (user_sys_cpu_time) {
5361     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5362   } else {
5363     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5364   }
5365 }
5366 
5367 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5368   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5369   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5370   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5371   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5372 }
5373 
5374 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5375   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5376   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5377   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5378   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5379 }
5380 
5381 bool os::is_thread_cpu_time_supported() {
5382   return true;
5383 }
5384 
5385 // System loadavg support.  Returns -1 if load average cannot be obtained.
5386 // Linux doesn't yet have a (official) notion of processor sets,
5387 // so just return the system wide load average.
5388 int os::loadavg(double loadavg[], int nelem) {
5389   return ::getloadavg(loadavg, nelem);
5390 }
5391 
5392 void os::pause() {
5393   char filename[MAX_PATH];
5394   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5395     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
5396   } else {
5397     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5398   }
5399 
5400   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5401   if (fd != -1) {
5402     struct stat buf;
5403     ::close(fd);
5404     while (::stat(filename, &buf) == 0) {
5405       (void)::poll(NULL, 0, 100);
5406     }
5407   } else {
5408     jio_fprintf(stderr,
5409                 "Could not open pause file '%s', continuing immediately.\n", filename);
5410   }
5411 }
5412 
5413 
5414 // Refer to the comments in os_solaris.cpp park-unpark. The next two
5415 // comment paragraphs are worth repeating here:
5416 //
5417 // Assumption:
5418 //    Only one parker can exist on an event, which is why we allocate
5419 //    them per-thread. Multiple unparkers can coexist.
5420 //
5421 // _Event serves as a restricted-range semaphore.
5422 //   -1 : thread is blocked, i.e. there is a waiter
5423 //    0 : neutral: thread is running or ready,
5424 //        could have been signaled after a wait started
5425 //    1 : signaled - thread is running or ready
5426 //
5427 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
5428 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
5429 // For specifics regarding the bug see GLIBC BUGID 261237 :
5430 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
5431 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
5432 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
5433 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
5434 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
5435 // and monitorenter when we're using 1-0 locking.  All those operations may result in
5436 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
5437 // of libpthread avoids the problem, but isn't practical.
5438 //
5439 // Possible remedies:
5440 //
5441 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
5442 //      This is palliative and probabilistic, however.  If the thread is preempted
5443 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
5444 //      than the minimum period may have passed, and the abstime may be stale (in the
5445 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
5446 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
5447 //
5448 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
5449 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
5450 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
5451 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
5452 //      thread.
5453 //
5454 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
5455 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
5456 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
5457 //      This also works well.  In fact it avoids kernel-level scalability impediments
5458 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
5459 //      timers in a graceful fashion.
5460 //
5461 // 4.   When the abstime value is in the past it appears that control returns
5462 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
5463 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
5464 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
5465 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
5466 //      It may be possible to avoid reinitialization by checking the return
5467 //      value from pthread_cond_timedwait().  In addition to reinitializing the
5468 //      condvar we must establish the invariant that cond_signal() is only called
5469 //      within critical sections protected by the adjunct mutex.  This prevents
5470 //      cond_signal() from "seeing" a condvar that's in the midst of being
5471 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
5472 //      desirable signal-after-unlock optimization that avoids futile context switching.
5473 //
5474 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
5475 //      structure when a condvar is used or initialized.  cond_destroy()  would
5476 //      release the helper structure.  Our reinitialize-after-timedwait fix
5477 //      put excessive stress on malloc/free and locks protecting the c-heap.
5478 //
5479 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
5480 // It may be possible to refine (4) by checking the kernel and NTPL verisons
5481 // and only enabling the work-around for vulnerable environments.
5482 
5483 // utility to compute the abstime argument to timedwait:
5484 // millis is the relative timeout time
5485 // abstime will be the absolute timeout time
5486 // TODO: replace compute_abstime() with unpackTime()
5487 
5488 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
5489   if (millis < 0)  millis = 0;
5490 
5491   jlong seconds = millis / 1000;
5492   millis %= 1000;
5493   if (seconds > 50000000) { // see man cond_timedwait(3T)
5494     seconds = 50000000;
5495   }
5496 
5497   if (os::supports_monotonic_clock()) {
5498     struct timespec now;
5499     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5500     assert_status(status == 0, status, "clock_gettime");
5501     abstime->tv_sec = now.tv_sec  + seconds;
5502     long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
5503     if (nanos >= NANOSECS_PER_SEC) {
5504       abstime->tv_sec += 1;
5505       nanos -= NANOSECS_PER_SEC;
5506     }
5507     abstime->tv_nsec = nanos;
5508   } else {
5509     struct timeval now;
5510     int status = gettimeofday(&now, NULL);
5511     assert(status == 0, "gettimeofday");
5512     abstime->tv_sec = now.tv_sec  + seconds;
5513     long usec = now.tv_usec + millis * 1000;
5514     if (usec >= 1000000) {
5515       abstime->tv_sec += 1;
5516       usec -= 1000000;
5517     }
5518     abstime->tv_nsec = usec * 1000;
5519   }
5520   return abstime;
5521 }
5522 
5523 void os::PlatformEvent::park() {       // AKA "down()"
5524   // Transitions for _Event:
5525   //   -1 => -1 : illegal
5526   //    1 =>  0 : pass - return immediately
5527   //    0 => -1 : block; then set _Event to 0 before returning
5528 
5529   // Invariant: Only the thread associated with the Event/PlatformEvent
5530   // may call park().
5531   // TODO: assert that _Assoc != NULL or _Assoc == Self
5532   assert(_nParked == 0, "invariant");
5533 
5534   int v;
5535   for (;;) {
5536     v = _Event;
5537     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5538   }
5539   guarantee(v >= 0, "invariant");
5540   if (v == 0) {
5541     // Do this the hard way by blocking ...
5542     int status = pthread_mutex_lock(_mutex);
5543     assert_status(status == 0, status, "mutex_lock");
5544     guarantee(_nParked == 0, "invariant");
5545     ++_nParked;
5546     while (_Event < 0) {
5547       status = pthread_cond_wait(_cond, _mutex);
5548       // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5549       // Treat this the same as if the wait was interrupted
5550       if (status == ETIME) { status = EINTR; }
5551       assert_status(status == 0 || status == EINTR, status, "cond_wait");
5552     }
5553     --_nParked;
5554 
5555     _Event = 0;
5556     status = pthread_mutex_unlock(_mutex);
5557     assert_status(status == 0, status, "mutex_unlock");
5558     // Paranoia to ensure our locked and lock-free paths interact
5559     // correctly with each other.
5560     OrderAccess::fence();
5561   }
5562   guarantee(_Event >= 0, "invariant");
5563 }
5564 
5565 int os::PlatformEvent::park(jlong millis) {
5566   // Transitions for _Event:
5567   //   -1 => -1 : illegal
5568   //    1 =>  0 : pass - return immediately
5569   //    0 => -1 : block; then set _Event to 0 before returning
5570 
5571   guarantee(_nParked == 0, "invariant");
5572 
5573   int v;
5574   for (;;) {
5575     v = _Event;
5576     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5577   }
5578   guarantee(v >= 0, "invariant");
5579   if (v != 0) return OS_OK;
5580 
5581   // We do this the hard way, by blocking the thread.
5582   // Consider enforcing a minimum timeout value.
5583   struct timespec abst;
5584   compute_abstime(&abst, millis);
5585 
5586   int ret = OS_TIMEOUT;
5587   int status = pthread_mutex_lock(_mutex);
5588   assert_status(status == 0, status, "mutex_lock");
5589   guarantee(_nParked == 0, "invariant");
5590   ++_nParked;
5591 
5592   // Object.wait(timo) will return because of
5593   // (a) notification
5594   // (b) timeout
5595   // (c) thread.interrupt
5596   //
5597   // Thread.interrupt and object.notify{All} both call Event::set.
5598   // That is, we treat thread.interrupt as a special case of notification.
5599   // We ignore spurious OS wakeups unless FilterSpuriousWakeups is false.
5600   // We assume all ETIME returns are valid.
5601   //
5602   // TODO: properly differentiate simultaneous notify+interrupt.
5603   // In that case, we should propagate the notify to another waiter.
5604 
5605   while (_Event < 0) {
5606     status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
5607     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5608       pthread_cond_destroy(_cond);
5609       pthread_cond_init(_cond, os::Linux::condAttr());
5610     }
5611     assert_status(status == 0 || status == EINTR ||
5612                   status == ETIME || status == ETIMEDOUT,
5613                   status, "cond_timedwait");
5614     if (!FilterSpuriousWakeups) break;                 // previous semantics
5615     if (status == ETIME || status == ETIMEDOUT) break;
5616     // We consume and ignore EINTR and spurious wakeups.
5617   }
5618   --_nParked;
5619   if (_Event >= 0) {
5620     ret = OS_OK;
5621   }
5622   _Event = 0;
5623   status = pthread_mutex_unlock(_mutex);
5624   assert_status(status == 0, status, "mutex_unlock");
5625   assert(_nParked == 0, "invariant");
5626   // Paranoia to ensure our locked and lock-free paths interact
5627   // correctly with each other.
5628   OrderAccess::fence();
5629   return ret;
5630 }
5631 
5632 void os::PlatformEvent::unpark() {
5633   // Transitions for _Event:
5634   //    0 => 1 : just return
5635   //    1 => 1 : just return
5636   //   -1 => either 0 or 1; must signal target thread
5637   //         That is, we can safely transition _Event from -1 to either
5638   //         0 or 1.
5639   // See also: "Semaphores in Plan 9" by Mullender & Cox
5640   //
5641   // Note: Forcing a transition from "-1" to "1" on an unpark() means
5642   // that it will take two back-to-back park() calls for the owning
5643   // thread to block. This has the benefit of forcing a spurious return
5644   // from the first park() call after an unpark() call which will help
5645   // shake out uses of park() and unpark() without condition variables.
5646 
5647   if (Atomic::xchg(1, &_Event) >= 0) return;
5648 
5649   // Wait for the thread associated with the event to vacate
5650   int status = pthread_mutex_lock(_mutex);
5651   assert_status(status == 0, status, "mutex_lock");
5652   int AnyWaiters = _nParked;
5653   assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5654   if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
5655     AnyWaiters = 0;
5656     pthread_cond_signal(_cond);
5657   }
5658   status = pthread_mutex_unlock(_mutex);
5659   assert_status(status == 0, status, "mutex_unlock");
5660   if (AnyWaiters != 0) {
5661     // Note that we signal() *after* dropping the lock for "immortal" Events.
5662     // This is safe and avoids a common class of  futile wakeups.  In rare
5663     // circumstances this can cause a thread to return prematurely from
5664     // cond_{timed}wait() but the spurious wakeup is benign and the victim
5665     // will simply re-test the condition and re-park itself.
5666     // This provides particular benefit if the underlying platform does not
5667     // provide wait morphing.
5668     status = pthread_cond_signal(_cond);
5669     assert_status(status == 0, status, "cond_signal");
5670   }
5671 }
5672 
5673 
5674 // JSR166
5675 // -------------------------------------------------------
5676 
5677 // The solaris and linux implementations of park/unpark are fairly
5678 // conservative for now, but can be improved. They currently use a
5679 // mutex/condvar pair, plus a a count.
5680 // Park decrements count if > 0, else does a condvar wait.  Unpark
5681 // sets count to 1 and signals condvar.  Only one thread ever waits
5682 // on the condvar. Contention seen when trying to park implies that someone
5683 // is unparking you, so don't wait. And spurious returns are fine, so there
5684 // is no need to track notifications.
5685 
5686 // This code is common to linux and solaris and will be moved to a
5687 // common place in dolphin.
5688 //
5689 // The passed in time value is either a relative time in nanoseconds
5690 // or an absolute time in milliseconds. Either way it has to be unpacked
5691 // into suitable seconds and nanoseconds components and stored in the
5692 // given timespec structure.
5693 // Given time is a 64-bit value and the time_t used in the timespec is only
5694 // a signed-32-bit value (except on 64-bit Linux) we have to watch for
5695 // overflow if times way in the future are given. Further on Solaris versions
5696 // prior to 10 there is a restriction (see cond_timedwait) that the specified
5697 // number of seconds, in abstime, is less than current_time  + 100,000,000.
5698 // As it will be 28 years before "now + 100000000" will overflow we can
5699 // ignore overflow and just impose a hard-limit on seconds using the value
5700 // of "now + 100,000,000". This places a limit on the timeout of about 3.17
5701 // years from "now".
5702 
5703 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5704   assert(time > 0, "convertTime");
5705   time_t max_secs = 0;
5706 
5707   if (!os::supports_monotonic_clock() || isAbsolute) {
5708     struct timeval now;
5709     int status = gettimeofday(&now, NULL);
5710     assert(status == 0, "gettimeofday");
5711 
5712     max_secs = now.tv_sec + MAX_SECS;
5713 
5714     if (isAbsolute) {
5715       jlong secs = time / 1000;
5716       if (secs > max_secs) {
5717         absTime->tv_sec = max_secs;
5718       } else {
5719         absTime->tv_sec = secs;
5720       }
5721       absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5722     } else {
5723       jlong secs = time / NANOSECS_PER_SEC;
5724       if (secs >= MAX_SECS) {
5725         absTime->tv_sec = max_secs;
5726         absTime->tv_nsec = 0;
5727       } else {
5728         absTime->tv_sec = now.tv_sec + secs;
5729         absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5730         if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5731           absTime->tv_nsec -= NANOSECS_PER_SEC;
5732           ++absTime->tv_sec; // note: this must be <= max_secs
5733         }
5734       }
5735     }
5736   } else {
5737     // must be relative using monotonic clock
5738     struct timespec now;
5739     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5740     assert_status(status == 0, status, "clock_gettime");
5741     max_secs = now.tv_sec + MAX_SECS;
5742     jlong secs = time / NANOSECS_PER_SEC;
5743     if (secs >= MAX_SECS) {
5744       absTime->tv_sec = max_secs;
5745       absTime->tv_nsec = 0;
5746     } else {
5747       absTime->tv_sec = now.tv_sec + secs;
5748       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
5749       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5750         absTime->tv_nsec -= NANOSECS_PER_SEC;
5751         ++absTime->tv_sec; // note: this must be <= max_secs
5752       }
5753     }
5754   }
5755   assert(absTime->tv_sec >= 0, "tv_sec < 0");
5756   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5757   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5758   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5759 }
5760 
5761 void Parker::park(bool isAbsolute, jlong time) {
5762   // Ideally we'd do something useful while spinning, such
5763   // as calling unpackTime().
5764 
5765   // Optional fast-path check:
5766   // Return immediately if a permit is available.
5767   // We depend on Atomic::xchg() having full barrier semantics
5768   // since we are doing a lock-free update to _counter.
5769   if (Atomic::xchg(0, &_counter) > 0) return;
5770 
5771   Thread* thread = Thread::current();
5772   assert(thread->is_Java_thread(), "Must be JavaThread");
5773   JavaThread *jt = (JavaThread *)thread;
5774 
5775   // Optional optimization -- avoid state transitions if there's an interrupt pending.
5776   // Check interrupt before trying to wait
5777   if (Thread::is_interrupted(thread, false)) {
5778     return;
5779   }
5780 
5781   // Next, demultiplex/decode time arguments
5782   timespec absTime;
5783   if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
5784     return;
5785   }
5786   if (time > 0) {
5787     unpackTime(&absTime, isAbsolute, time);
5788   }
5789 
5790 
5791   // Enter safepoint region
5792   // Beware of deadlocks such as 6317397.
5793   // The per-thread Parker:: mutex is a classic leaf-lock.
5794   // In particular a thread must never block on the Threads_lock while
5795   // holding the Parker:: mutex.  If safepoints are pending both the
5796   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5797   ThreadBlockInVM tbivm(jt);
5798 
5799   // Don't wait if cannot get lock since interference arises from
5800   // unblocking.  Also. check interrupt before trying wait
5801   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5802     return;
5803   }
5804 
5805   int status;
5806   if (_counter > 0)  { // no wait needed
5807     _counter = 0;
5808     status = pthread_mutex_unlock(_mutex);
5809     assert(status == 0, "invariant");
5810     // Paranoia to ensure our locked and lock-free paths interact
5811     // correctly with each other and Java-level accesses.
5812     OrderAccess::fence();
5813     return;
5814   }
5815 
5816 #ifdef ASSERT
5817   // Don't catch signals while blocked; let the running threads have the signals.
5818   // (This allows a debugger to break into the running thread.)
5819   sigset_t oldsigs;
5820   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5821   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5822 #endif
5823 
5824   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5825   jt->set_suspend_equivalent();
5826   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5827 
5828   assert(_cur_index == -1, "invariant");
5829   if (time == 0) {
5830     _cur_index = REL_INDEX; // arbitrary choice when not timed
5831     status = pthread_cond_wait(&_cond[_cur_index], _mutex);
5832   } else {
5833     _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
5834     status = os::Linux::safe_cond_timedwait(&_cond[_cur_index], _mutex, &absTime);
5835     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5836       pthread_cond_destroy(&_cond[_cur_index]);
5837       pthread_cond_init(&_cond[_cur_index], isAbsolute ? NULL : os::Linux::condAttr());
5838     }
5839   }
5840   _cur_index = -1;
5841   assert_status(status == 0 || status == EINTR ||
5842                 status == ETIME || status == ETIMEDOUT,
5843                 status, "cond_timedwait");
5844 
5845 #ifdef ASSERT
5846   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5847 #endif
5848 
5849   _counter = 0;
5850   status = pthread_mutex_unlock(_mutex);
5851   assert_status(status == 0, status, "invariant");
5852   // Paranoia to ensure our locked and lock-free paths interact
5853   // correctly with each other and Java-level accesses.
5854   OrderAccess::fence();
5855 
5856   // If externally suspended while waiting, re-suspend
5857   if (jt->handle_special_suspend_equivalent_condition()) {
5858     jt->java_suspend_self();
5859   }
5860 }
5861 
5862 void Parker::unpark() {
5863   int status = pthread_mutex_lock(_mutex);
5864   assert(status == 0, "invariant");
5865   const int s = _counter;
5866   _counter = 1;
5867   if (s < 1) {
5868     // thread might be parked
5869     if (_cur_index != -1) {
5870       // thread is definitely parked
5871       if (WorkAroundNPTLTimedWaitHang) {
5872         status = pthread_cond_signal(&_cond[_cur_index]);
5873         assert(status == 0, "invariant");
5874         status = pthread_mutex_unlock(_mutex);
5875         assert(status == 0, "invariant");
5876       } else {
5877         status = pthread_mutex_unlock(_mutex);
5878         assert(status == 0, "invariant");
5879         status = pthread_cond_signal(&_cond[_cur_index]);
5880         assert(status == 0, "invariant");
5881       }
5882     } else {
5883       pthread_mutex_unlock(_mutex);
5884       assert(status == 0, "invariant");
5885     }
5886   } else {
5887     pthread_mutex_unlock(_mutex);
5888     assert(status == 0, "invariant");
5889   }
5890 }
5891 
5892 
5893 extern char** environ;
5894 
5895 // Run the specified command in a separate process. Return its exit value,
5896 // or -1 on failure (e.g. can't fork a new process).
5897 // Unlike system(), this function can be called from signal handler. It
5898 // doesn't block SIGINT et al.
5899 int os::fork_and_exec(char* cmd) {
5900   const char * argv[4] = {"sh", "-c", cmd, NULL};
5901 
5902   pid_t pid = fork();
5903 
5904   if (pid < 0) {
5905     // fork failed
5906     return -1;
5907 
5908   } else if (pid == 0) {
5909     // child process
5910 
5911     execve("/bin/sh", (char* const*)argv, environ);
5912 
5913     // execve failed
5914     _exit(-1);
5915 
5916   } else  {
5917     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5918     // care about the actual exit code, for now.
5919 
5920     int status;
5921 
5922     // Wait for the child process to exit.  This returns immediately if
5923     // the child has already exited. */
5924     while (waitpid(pid, &status, 0) < 0) {
5925       switch (errno) {
5926       case ECHILD: return 0;
5927       case EINTR: break;
5928       default: return -1;
5929       }
5930     }
5931 
5932     if (WIFEXITED(status)) {
5933       // The child exited normally; get its exit code.
5934       return WEXITSTATUS(status);
5935     } else if (WIFSIGNALED(status)) {
5936       // The child exited because of a signal
5937       // The best value to return is 0x80 + signal number,
5938       // because that is what all Unix shells do, and because
5939       // it allows callers to distinguish between process exit and
5940       // process death by signal.
5941       return 0x80 + WTERMSIG(status);
5942     } else {
5943       // Unknown exit code; pass it through
5944       return status;
5945     }
5946   }
5947 }
5948 
5949 // is_headless_jre()
5950 //
5951 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
5952 // in order to report if we are running in a headless jre
5953 //
5954 // Since JDK8 xawt/libmawt.so was moved into the same directory
5955 // as libawt.so, and renamed libawt_xawt.so
5956 //
5957 bool os::is_headless_jre() {
5958   struct stat statbuf;
5959   char buf[MAXPATHLEN];
5960   char libmawtpath[MAXPATHLEN];
5961   const char *xawtstr  = "/xawt/libmawt.so";
5962   const char *new_xawtstr = "/libawt_xawt.so";
5963   char *p;
5964 
5965   // Get path to libjvm.so
5966   os::jvm_path(buf, sizeof(buf));
5967 
5968   // Get rid of libjvm.so
5969   p = strrchr(buf, '/');
5970   if (p == NULL) {
5971     return false;
5972   } else {
5973     *p = '\0';
5974   }
5975 
5976   // Get rid of client or server
5977   p = strrchr(buf, '/');
5978   if (p == NULL) {
5979     return false;
5980   } else {
5981     *p = '\0';
5982   }
5983 
5984   // check xawt/libmawt.so
5985   strcpy(libmawtpath, buf);
5986   strcat(libmawtpath, xawtstr);
5987   if (::stat(libmawtpath, &statbuf) == 0) return false;
5988 
5989   // check libawt_xawt.so
5990   strcpy(libmawtpath, buf);
5991   strcat(libmawtpath, new_xawtstr);
5992   if (::stat(libmawtpath, &statbuf) == 0) return false;
5993 
5994   return true;
5995 }
5996 
5997 // Get the default path to the core file
5998 // Returns the length of the string
5999 int os::get_core_path(char* buffer, size_t bufferSize) {
6000   /*
6001    * Max length of /proc/sys/kernel/core_pattern is 128 characters.
6002    * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
6003    */
6004   const int core_pattern_len = 129;
6005   char core_pattern[core_pattern_len] = {0};
6006 
6007   int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
6008   if (core_pattern_file != -1) {
6009     ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
6010     ::close(core_pattern_file);
6011 
6012     if (ret > 0) {
6013       char *last_char = core_pattern + strlen(core_pattern) - 1;
6014 
6015       if (*last_char == '\n') {
6016         *last_char = '\0';
6017       }
6018     }
6019   }
6020 
6021   if (strlen(core_pattern) == 0) {
6022     return -1;
6023   }
6024 
6025   char *pid_pos = strstr(core_pattern, "%p");
6026   int written;
6027 
6028   if (core_pattern[0] == '/') {
6029     written = jio_snprintf(buffer, bufferSize, core_pattern);
6030   } else {
6031     char cwd[PATH_MAX];
6032 
6033     const char* p = get_current_directory(cwd, PATH_MAX);
6034     if (p == NULL) {
6035       return -1;
6036     }
6037 
6038     if (core_pattern[0] == '|') {
6039       written = jio_snprintf(buffer, bufferSize,
6040                         "\"%s\" (or dumping to %s/core.%d)",
6041                                      &core_pattern[1], p, current_process_id());
6042     } else {
6043       written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
6044     }
6045   }
6046 
6047   if (written < 0) {
6048     return -1;
6049   }
6050 
6051   if (((size_t)written < bufferSize) && (pid_pos == NULL) && (core_pattern[0] != '|')) {
6052     int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
6053 
6054     if (core_uses_pid_file != -1) {
6055       char core_uses_pid = 0;
6056       ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
6057       ::close(core_uses_pid_file);
6058 
6059       if (core_uses_pid == '1') {
6060         jio_snprintf(buffer + written, bufferSize - written,
6061                                           ".%d", current_process_id());
6062       }
6063     }
6064   }
6065 
6066   return strlen(buffer);
6067 }
6068 
6069 /////////////// Unit tests ///////////////
6070 
6071 #ifndef PRODUCT
6072 
6073 #define test_log(...)              \
6074   do {                             \
6075     if (VerboseInternalVMTests) {  \
6076       tty->print_cr(__VA_ARGS__);  \
6077       tty->flush();                \
6078     }                              \
6079   } while (false)
6080 
6081 class TestReserveMemorySpecial : AllStatic {
6082  public:
6083   static void small_page_write(void* addr, size_t size) {
6084     size_t page_size = os::vm_page_size();
6085 
6086     char* end = (char*)addr + size;
6087     for (char* p = (char*)addr; p < end; p += page_size) {
6088       *p = 1;
6089     }
6090   }
6091 
6092   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6093     if (!UseHugeTLBFS) {
6094       return;
6095     }
6096 
6097     test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
6098 
6099     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6100 
6101     if (addr != NULL) {
6102       small_page_write(addr, size);
6103 
6104       os::Linux::release_memory_special_huge_tlbfs(addr, size);
6105     }
6106   }
6107 
6108   static void test_reserve_memory_special_huge_tlbfs_only() {
6109     if (!UseHugeTLBFS) {
6110       return;
6111     }
6112 
6113     size_t lp = os::large_page_size();
6114 
6115     for (size_t size = lp; size <= lp * 10; size += lp) {
6116       test_reserve_memory_special_huge_tlbfs_only(size);
6117     }
6118   }
6119 
6120   static void test_reserve_memory_special_huge_tlbfs_mixed() {
6121     size_t lp = os::large_page_size();
6122     size_t ag = os::vm_allocation_granularity();
6123 
6124     // sizes to test
6125     const size_t sizes[] = {
6126       lp, lp + ag, lp + lp / 2, lp * 2,
6127       lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
6128       lp * 10, lp * 10 + lp / 2
6129     };
6130     const int num_sizes = sizeof(sizes) / sizeof(size_t);
6131 
6132     // For each size/alignment combination, we test three scenarios:
6133     // 1) with req_addr == NULL
6134     // 2) with a non-null req_addr at which we expect to successfully allocate
6135     // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
6136     //    expect the allocation to either fail or to ignore req_addr
6137 
6138     // Pre-allocate two areas; they shall be as large as the largest allocation
6139     //  and aligned to the largest alignment we will be testing.
6140     const size_t mapping_size = sizes[num_sizes - 1] * 2;
6141     char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
6142       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6143       -1, 0);
6144     assert(mapping1 != MAP_FAILED, "should work");
6145 
6146     char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
6147       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6148       -1, 0);
6149     assert(mapping2 != MAP_FAILED, "should work");
6150 
6151     // Unmap the first mapping, but leave the second mapping intact: the first
6152     // mapping will serve as a value for a "good" req_addr (case 2). The second
6153     // mapping, still intact, as "bad" req_addr (case 3).
6154     ::munmap(mapping1, mapping_size);
6155 
6156     // Case 1
6157     test_log("%s, req_addr NULL:", __FUNCTION__);
6158     test_log("size            align           result");
6159 
6160     for (int i = 0; i < num_sizes; i++) {
6161       const size_t size = sizes[i];
6162       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6163         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6164         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " ->  " PTR_FORMAT " %s",
6165             size, alignment, p, (p != NULL ? "" : "(failed)"));
6166         if (p != NULL) {
6167           assert(is_ptr_aligned(p, alignment), "must be");
6168           small_page_write(p, size);
6169           os::Linux::release_memory_special_huge_tlbfs(p, size);
6170         }
6171       }
6172     }
6173 
6174     // Case 2
6175     test_log("%s, req_addr non-NULL:", __FUNCTION__);
6176     test_log("size            align           req_addr         result");
6177 
6178     for (int i = 0; i < num_sizes; i++) {
6179       const size_t size = sizes[i];
6180       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6181         char* const req_addr = (char*) align_ptr_up(mapping1, alignment);
6182         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6183         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6184             size, alignment, req_addr, p,
6185             ((p != NULL ? (p == req_addr ? "(exact match)" : "") : "(failed)")));
6186         if (p != NULL) {
6187           assert(p == req_addr, "must be");
6188           small_page_write(p, size);
6189           os::Linux::release_memory_special_huge_tlbfs(p, size);
6190         }
6191       }
6192     }
6193 
6194     // Case 3
6195     test_log("%s, req_addr non-NULL with preexisting mapping:", __FUNCTION__);
6196     test_log("size            align           req_addr         result");
6197 
6198     for (int i = 0; i < num_sizes; i++) {
6199       const size_t size = sizes[i];
6200       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6201         char* const req_addr = (char*) align_ptr_up(mapping2, alignment);
6202         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6203         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6204             size, alignment, req_addr, p,
6205             ((p != NULL ? "" : "(failed)")));
6206         // as the area around req_addr contains already existing mappings, the API should always
6207         // return NULL (as per contract, it cannot return another address)
6208         assert(p == NULL, "must be");
6209       }
6210     }
6211 
6212     ::munmap(mapping2, mapping_size);
6213 
6214   }
6215 
6216   static void test_reserve_memory_special_huge_tlbfs() {
6217     if (!UseHugeTLBFS) {
6218       return;
6219     }
6220 
6221     test_reserve_memory_special_huge_tlbfs_only();
6222     test_reserve_memory_special_huge_tlbfs_mixed();
6223   }
6224 
6225   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6226     if (!UseSHM) {
6227       return;
6228     }
6229 
6230     test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6231 
6232     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6233 
6234     if (addr != NULL) {
6235       assert(is_ptr_aligned(addr, alignment), "Check");
6236       assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
6237 
6238       small_page_write(addr, size);
6239 
6240       os::Linux::release_memory_special_shm(addr, size);
6241     }
6242   }
6243 
6244   static void test_reserve_memory_special_shm() {
6245     size_t lp = os::large_page_size();
6246     size_t ag = os::vm_allocation_granularity();
6247 
6248     for (size_t size = ag; size < lp * 3; size += ag) {
6249       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6250         test_reserve_memory_special_shm(size, alignment);
6251       }
6252     }
6253   }
6254 
6255   static void test() {
6256     test_reserve_memory_special_huge_tlbfs();
6257     test_reserve_memory_special_shm();
6258   }
6259 };
6260 
6261 void TestReserveMemorySpecial_test() {
6262   TestReserveMemorySpecial::test();
6263 }
6264 
6265 #endif