1 /*
   2  * Copyright (c) 1999, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2012, 2017 SAP SE. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 // According to the AIX OS doc #pragma alloca must be used
  27 // with C++ compiler before referencing the function alloca()
  28 #pragma alloca
  29 
  30 // no precompiled headers
  31 #include "jvm.h"
  32 #include "classfile/classLoader.hpp"
  33 #include "classfile/systemDictionary.hpp"
  34 #include "classfile/vmSymbols.hpp"
  35 #include "code/icBuffer.hpp"
  36 #include "code/vtableStubs.hpp"
  37 #include "compiler/compileBroker.hpp"
  38 #include "interpreter/interpreter.hpp"
  39 #include "logging/log.hpp"
  40 #include "libo4.hpp"
  41 #include "libperfstat_aix.hpp"
  42 #include "libodm_aix.hpp"
  43 #include "loadlib_aix.hpp"
  44 #include "memory/allocation.inline.hpp"
  45 #include "memory/filemap.hpp"
  46 #include "misc_aix.hpp"
  47 #include "oops/oop.inline.hpp"
  48 #include "os_aix.inline.hpp"
  49 #include "os_share_aix.hpp"
  50 #include "porting_aix.hpp"
  51 #include "prims/jniFastGetField.hpp"
  52 #include "prims/jvm_misc.hpp"
  53 #include "runtime/arguments.hpp"
  54 #include "runtime/atomic.hpp"
  55 #include "runtime/extendedPC.hpp"
  56 #include "runtime/globals.hpp"
  57 #include "runtime/interfaceSupport.hpp"
  58 #include "runtime/java.hpp"
  59 #include "runtime/javaCalls.hpp"
  60 #include "runtime/mutexLocker.hpp"
  61 #include "runtime/objectMonitor.hpp"
  62 #include "runtime/orderAccess.inline.hpp"
  63 #include "runtime/os.hpp"
  64 #include "runtime/osThread.hpp"
  65 #include "runtime/perfMemory.hpp"
  66 #include "runtime/sharedRuntime.hpp"
  67 #include "runtime/statSampler.hpp"
  68 #include "runtime/stubRoutines.hpp"
  69 #include "runtime/thread.inline.hpp"
  70 #include "runtime/threadCritical.hpp"
  71 #include "runtime/timer.hpp"
  72 #include "runtime/vm_version.hpp"
  73 #include "services/attachListener.hpp"
  74 #include "services/runtimeService.hpp"
  75 #include "utilities/align.hpp"
  76 #include "utilities/decoder.hpp"
  77 #include "utilities/defaultStream.hpp"
  78 #include "utilities/events.hpp"
  79 #include "utilities/growableArray.hpp"
  80 #include "utilities/vmError.hpp"
  81 
  82 // put OS-includes here (sorted alphabetically)
  83 #include <errno.h>
  84 #include <fcntl.h>
  85 #include <inttypes.h>
  86 #include <poll.h>
  87 #include <procinfo.h>
  88 #include <pthread.h>
  89 #include <pwd.h>
  90 #include <semaphore.h>
  91 #include <signal.h>
  92 #include <stdint.h>
  93 #include <stdio.h>
  94 #include <string.h>
  95 #include <unistd.h>
  96 #include <sys/ioctl.h>
  97 #include <sys/ipc.h>
  98 #include <sys/mman.h>
  99 #include <sys/resource.h>
 100 #include <sys/select.h>
 101 #include <sys/shm.h>
 102 #include <sys/socket.h>
 103 #include <sys/stat.h>
 104 #include <sys/sysinfo.h>
 105 #include <sys/systemcfg.h>
 106 #include <sys/time.h>
 107 #include <sys/times.h>
 108 #include <sys/types.h>
 109 #include <sys/utsname.h>
 110 #include <sys/vminfo.h>
 111 #include <sys/wait.h>
 112 
 113 // Missing prototypes for various system APIs.
 114 extern "C"
 115 int mread_real_time(timebasestruct_t *t, size_t size_of_timebasestruct_t);
 116 
 117 #if !defined(_AIXVERSION_610)
 118 extern "C" int getthrds64(pid_t, struct thrdentry64*, int, tid64_t*, int);
 119 extern "C" int getprocs64(procentry64*, int, fdsinfo*, int, pid_t*, int);
 120 extern "C" int getargs   (procsinfo*, int, char*, int);
 121 #endif
 122 
 123 #define MAX_PATH (2 * K)
 124 
 125 // for timer info max values which include all bits
 126 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 127 // for multipage initialization error analysis (in 'g_multipage_error')
 128 #define ERROR_MP_OS_TOO_OLD                          100
 129 #define ERROR_MP_EXTSHM_ACTIVE                       101
 130 #define ERROR_MP_VMGETINFO_FAILED                    102
 131 #define ERROR_MP_VMGETINFO_CLAIMS_NO_SUPPORT_FOR_64K 103
 132 
 133 static address resolve_function_descriptor_to_code_pointer(address p);
 134 
 135 static void vmembk_print_on(outputStream* os);
 136 
 137 ////////////////////////////////////////////////////////////////////////////////
 138 // global variables (for a description see os_aix.hpp)
 139 
 140 julong    os::Aix::_physical_memory = 0;
 141 
 142 pthread_t os::Aix::_main_thread = ((pthread_t)0);
 143 int       os::Aix::_page_size = -1;
 144 
 145 // -1 = uninitialized, 0 if AIX, 1 if OS/400 pase
 146 int       os::Aix::_on_pase = -1;
 147 
 148 // 0 = uninitialized, otherwise 32 bit number:
 149 //  0xVVRRTTSS
 150 //  VV - major version
 151 //  RR - minor version
 152 //  TT - tech level, if known, 0 otherwise
 153 //  SS - service pack, if known, 0 otherwise
 154 uint32_t  os::Aix::_os_version = 0;
 155 
 156 // -1 = uninitialized, 0 - no, 1 - yes
 157 int       os::Aix::_xpg_sus_mode = -1;
 158 
 159 // -1 = uninitialized, 0 - no, 1 - yes
 160 int       os::Aix::_extshm = -1;
 161 
 162 ////////////////////////////////////////////////////////////////////////////////
 163 // local variables
 164 
 165 static jlong    initial_time_count = 0;
 166 static int      clock_tics_per_sec = 100;
 167 static sigset_t check_signal_done;         // For diagnostics to print a message once (see run_periodic_checks)
 168 static bool     check_signals      = true;
 169 static int      SR_signum          = SIGUSR2; // Signal used to suspend/resume a thread (must be > SIGSEGV, see 4355769)
 170 static sigset_t SR_sigset;
 171 
 172 // Process break recorded at startup.
 173 static address g_brk_at_startup = NULL;
 174 
 175 // This describes the state of multipage support of the underlying
 176 // OS. Note that this is of no interest to the outsize world and
 177 // therefore should not be defined in AIX class.
 178 //
 179 // AIX supports four different page sizes - 4K, 64K, 16MB, 16GB. The
 180 // latter two (16M "large" resp. 16G "huge" pages) require special
 181 // setup and are normally not available.
 182 //
 183 // AIX supports multiple page sizes per process, for:
 184 //  - Stack (of the primordial thread, so not relevant for us)
 185 //  - Data - data, bss, heap, for us also pthread stacks
 186 //  - Text - text code
 187 //  - shared memory
 188 //
 189 // Default page sizes can be set via linker options (-bdatapsize, -bstacksize, ...)
 190 // and via environment variable LDR_CNTRL (DATAPSIZE, STACKPSIZE, ...).
 191 //
 192 // For shared memory, page size can be set dynamically via
 193 // shmctl(). Different shared memory regions can have different page
 194 // sizes.
 195 //
 196 // More information can be found at AIBM info center:
 197 //   http://publib.boulder.ibm.com/infocenter/aix/v6r1/index.jsp?topic=/com.ibm.aix.prftungd/doc/prftungd/multiple_page_size_app_support.htm
 198 //
 199 static struct {
 200   size_t pagesize;            // sysconf _SC_PAGESIZE (4K)
 201   size_t datapsize;           // default data page size (LDR_CNTRL DATAPSIZE)
 202   size_t shmpsize;            // default shared memory page size (LDR_CNTRL SHMPSIZE)
 203   size_t pthr_stack_pagesize; // stack page size of pthread threads
 204   size_t textpsize;           // default text page size (LDR_CNTRL STACKPSIZE)
 205   bool can_use_64K_pages;     // True if we can alloc 64K pages dynamically with Sys V shm.
 206   bool can_use_16M_pages;     // True if we can alloc 16M pages dynamically with Sys V shm.
 207   int error;                  // Error describing if something went wrong at multipage init.
 208 } g_multipage_support = {
 209   (size_t) -1,
 210   (size_t) -1,
 211   (size_t) -1,
 212   (size_t) -1,
 213   (size_t) -1,
 214   false, false,
 215   0
 216 };
 217 
 218 // We must not accidentally allocate memory close to the BRK - even if
 219 // that would work - because then we prevent the BRK segment from
 220 // growing which may result in a malloc OOM even though there is
 221 // enough memory. The problem only arises if we shmat() or mmap() at
 222 // a specific wish address, e.g. to place the heap in a
 223 // compressed-oops-friendly way.
 224 static bool is_close_to_brk(address a) {
 225   assert0(g_brk_at_startup != NULL);
 226   if (a >= g_brk_at_startup &&
 227       a < (g_brk_at_startup + MaxExpectedDataSegmentSize)) {
 228     return true;
 229   }
 230   return false;
 231 }
 232 
 233 julong os::available_memory() {
 234   return Aix::available_memory();
 235 }
 236 
 237 julong os::Aix::available_memory() {
 238   // Avoid expensive API call here, as returned value will always be null.
 239   if (os::Aix::on_pase()) {
 240     return 0x0LL;
 241   }
 242   os::Aix::meminfo_t mi;
 243   if (os::Aix::get_meminfo(&mi)) {
 244     return mi.real_free;
 245   } else {
 246     return ULONG_MAX;
 247   }
 248 }
 249 
 250 julong os::physical_memory() {
 251   return Aix::physical_memory();
 252 }
 253 
 254 // Return true if user is running as root.
 255 
 256 bool os::have_special_privileges() {
 257   static bool init = false;
 258   static bool privileges = false;
 259   if (!init) {
 260     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 261     init = true;
 262   }
 263   return privileges;
 264 }
 265 
 266 // Helper function, emulates disclaim64 using multiple 32bit disclaims
 267 // because we cannot use disclaim64() on AS/400 and old AIX releases.
 268 static bool my_disclaim64(char* addr, size_t size) {
 269 
 270   if (size == 0) {
 271     return true;
 272   }
 273 
 274   // Maximum size 32bit disclaim() accepts. (Theoretically 4GB, but I just do not trust that.)
 275   const unsigned int maxDisclaimSize = 0x40000000;
 276 
 277   const unsigned int numFullDisclaimsNeeded = (size / maxDisclaimSize);
 278   const unsigned int lastDisclaimSize = (size % maxDisclaimSize);
 279 
 280   char* p = addr;
 281 
 282   for (int i = 0; i < numFullDisclaimsNeeded; i ++) {
 283     if (::disclaim(p, maxDisclaimSize, DISCLAIM_ZEROMEM) != 0) {
 284       trcVerbose("Cannot disclaim %p - %p (errno %d)\n", p, p + maxDisclaimSize, errno);
 285       return false;
 286     }
 287     p += maxDisclaimSize;
 288   }
 289 
 290   if (lastDisclaimSize > 0) {
 291     if (::disclaim(p, lastDisclaimSize, DISCLAIM_ZEROMEM) != 0) {
 292       trcVerbose("Cannot disclaim %p - %p (errno %d)\n", p, p + lastDisclaimSize, errno);
 293       return false;
 294     }
 295   }
 296 
 297   return true;
 298 }
 299 
 300 // Cpu architecture string
 301 #if defined(PPC32)
 302 static char cpu_arch[] = "ppc";
 303 #elif defined(PPC64)
 304 static char cpu_arch[] = "ppc64";
 305 #else
 306 #error Add appropriate cpu_arch setting
 307 #endif
 308 
 309 // Wrap the function "vmgetinfo" which is not available on older OS releases.
 310 static int checked_vmgetinfo(void *out, int command, int arg) {
 311   if (os::Aix::on_pase() && os::Aix::os_version_short() < 0x0601) {
 312     guarantee(false, "cannot call vmgetinfo on AS/400 older than V6R1");
 313   }
 314   return ::vmgetinfo(out, command, arg);
 315 }
 316 
 317 // Given an address, returns the size of the page backing that address.
 318 size_t os::Aix::query_pagesize(void* addr) {
 319 
 320   if (os::Aix::on_pase() && os::Aix::os_version_short() < 0x0601) {
 321     // AS/400 older than V6R1: no vmgetinfo here, default to 4K
 322     return 4*K;
 323   }
 324 
 325   vm_page_info pi;
 326   pi.addr = (uint64_t)addr;
 327   if (checked_vmgetinfo(&pi, VM_PAGE_INFO, sizeof(pi)) == 0) {
 328     return pi.pagesize;
 329   } else {
 330     assert(false, "vmgetinfo failed to retrieve page size");
 331     return 4*K;
 332   }
 333 }
 334 
 335 void os::Aix::initialize_system_info() {
 336 
 337   // Get the number of online(logical) cpus instead of configured.
 338   os::_processor_count = sysconf(_SC_NPROCESSORS_ONLN);
 339   assert(_processor_count > 0, "_processor_count must be > 0");
 340 
 341   // Retrieve total physical storage.
 342   os::Aix::meminfo_t mi;
 343   if (!os::Aix::get_meminfo(&mi)) {
 344     assert(false, "os::Aix::get_meminfo failed.");
 345   }
 346   _physical_memory = (julong) mi.real_total;
 347 }
 348 
 349 // Helper function for tracing page sizes.
 350 static const char* describe_pagesize(size_t pagesize) {
 351   switch (pagesize) {
 352     case 4*K : return "4K";
 353     case 64*K: return "64K";
 354     case 16*M: return "16M";
 355     case 16*G: return "16G";
 356     default:
 357       assert(false, "surprise");
 358       return "??";
 359   }
 360 }
 361 
 362 // Probe OS for multipage support.
 363 // Will fill the global g_multipage_support structure.
 364 // Must be called before calling os::large_page_init().
 365 static void query_multipage_support() {
 366 
 367   guarantee(g_multipage_support.pagesize == -1,
 368             "do not call twice");
 369 
 370   g_multipage_support.pagesize = ::sysconf(_SC_PAGESIZE);
 371 
 372   // This really would surprise me.
 373   assert(g_multipage_support.pagesize == 4*K, "surprise!");
 374 
 375   // Query default data page size (default page size for C-Heap, pthread stacks and .bss).
 376   // Default data page size is defined either by linker options (-bdatapsize)
 377   // or by environment variable LDR_CNTRL (suboption DATAPSIZE). If none is given,
 378   // default should be 4K.
 379   {
 380     void* p = ::malloc(16*M);
 381     g_multipage_support.datapsize = os::Aix::query_pagesize(p);
 382     ::free(p);
 383   }
 384 
 385   // Query default shm page size (LDR_CNTRL SHMPSIZE).
 386   // Note that this is pure curiosity. We do not rely on default page size but set
 387   // our own page size after allocated.
 388   {
 389     const int shmid = ::shmget(IPC_PRIVATE, 1, IPC_CREAT | S_IRUSR | S_IWUSR);
 390     guarantee(shmid != -1, "shmget failed");
 391     void* p = ::shmat(shmid, NULL, 0);
 392     ::shmctl(shmid, IPC_RMID, NULL);
 393     guarantee(p != (void*) -1, "shmat failed");
 394     g_multipage_support.shmpsize = os::Aix::query_pagesize(p);
 395     ::shmdt(p);
 396   }
 397 
 398   // Before querying the stack page size, make sure we are not running as primordial
 399   // thread (because primordial thread's stack may have different page size than
 400   // pthread thread stacks). Running a VM on the primordial thread won't work for a
 401   // number of reasons so we may just as well guarantee it here.
 402   guarantee0(!os::is_primordial_thread());
 403 
 404   // Query pthread stack page size. Should be the same as data page size because
 405   // pthread stacks are allocated from C-Heap.
 406   {
 407     int dummy = 0;
 408     g_multipage_support.pthr_stack_pagesize = os::Aix::query_pagesize(&dummy);
 409   }
 410 
 411   // Query default text page size (LDR_CNTRL TEXTPSIZE).
 412   {
 413     address any_function =
 414       resolve_function_descriptor_to_code_pointer((address)describe_pagesize);
 415     g_multipage_support.textpsize = os::Aix::query_pagesize(any_function);
 416   }
 417 
 418   // Now probe for support of 64K pages and 16M pages.
 419 
 420   // Before OS/400 V6R1, there is no support for pages other than 4K.
 421   if (os::Aix::on_pase_V5R4_or_older()) {
 422     trcVerbose("OS/400 < V6R1 - no large page support.");
 423     g_multipage_support.error = ERROR_MP_OS_TOO_OLD;
 424     goto query_multipage_support_end;
 425   }
 426 
 427   // Now check which page sizes the OS claims it supports, and of those, which actually can be used.
 428   {
 429     const int MAX_PAGE_SIZES = 4;
 430     psize_t sizes[MAX_PAGE_SIZES];
 431     const int num_psizes = checked_vmgetinfo(sizes, VMINFO_GETPSIZES, MAX_PAGE_SIZES);
 432     if (num_psizes == -1) {
 433       trcVerbose("vmgetinfo(VMINFO_GETPSIZES) failed (errno: %d)", errno);
 434       trcVerbose("disabling multipage support.");
 435       g_multipage_support.error = ERROR_MP_VMGETINFO_FAILED;
 436       goto query_multipage_support_end;
 437     }
 438     guarantee(num_psizes > 0, "vmgetinfo(.., VMINFO_GETPSIZES, ...) failed.");
 439     assert(num_psizes <= MAX_PAGE_SIZES, "Surprise! more than 4 page sizes?");
 440     trcVerbose("vmgetinfo(.., VMINFO_GETPSIZES, ...) returns %d supported page sizes: ", num_psizes);
 441     for (int i = 0; i < num_psizes; i ++) {
 442       trcVerbose(" %s ", describe_pagesize(sizes[i]));
 443     }
 444 
 445     // Can we use 64K, 16M pages?
 446     for (int i = 0; i < num_psizes; i ++) {
 447       const size_t pagesize = sizes[i];
 448       if (pagesize != 64*K && pagesize != 16*M) {
 449         continue;
 450       }
 451       bool can_use = false;
 452       trcVerbose("Probing support for %s pages...", describe_pagesize(pagesize));
 453       const int shmid = ::shmget(IPC_PRIVATE, pagesize,
 454         IPC_CREAT | S_IRUSR | S_IWUSR);
 455       guarantee0(shmid != -1); // Should always work.
 456       // Try to set pagesize.
 457       struct shmid_ds shm_buf = { 0 };
 458       shm_buf.shm_pagesize = pagesize;
 459       if (::shmctl(shmid, SHM_PAGESIZE, &shm_buf) != 0) {
 460         const int en = errno;
 461         ::shmctl(shmid, IPC_RMID, NULL); // As early as possible!
 462         trcVerbose("shmctl(SHM_PAGESIZE) failed with errno=%n",
 463           errno);
 464       } else {
 465         // Attach and double check pageisze.
 466         void* p = ::shmat(shmid, NULL, 0);
 467         ::shmctl(shmid, IPC_RMID, NULL); // As early as possible!
 468         guarantee0(p != (void*) -1); // Should always work.
 469         const size_t real_pagesize = os::Aix::query_pagesize(p);
 470         if (real_pagesize != pagesize) {
 471           trcVerbose("real page size (0x%llX) differs.", real_pagesize);
 472         } else {
 473           can_use = true;
 474         }
 475         ::shmdt(p);
 476       }
 477       trcVerbose("Can use: %s", (can_use ? "yes" : "no"));
 478       if (pagesize == 64*K) {
 479         g_multipage_support.can_use_64K_pages = can_use;
 480       } else if (pagesize == 16*M) {
 481         g_multipage_support.can_use_16M_pages = can_use;
 482       }
 483     }
 484 
 485   } // end: check which pages can be used for shared memory
 486 
 487 query_multipage_support_end:
 488 
 489   trcVerbose("base page size (sysconf _SC_PAGESIZE): %s",
 490       describe_pagesize(g_multipage_support.pagesize));
 491   trcVerbose("Data page size (C-Heap, bss, etc): %s",
 492       describe_pagesize(g_multipage_support.datapsize));
 493   trcVerbose("Text page size: %s",
 494       describe_pagesize(g_multipage_support.textpsize));
 495   trcVerbose("Thread stack page size (pthread): %s",
 496       describe_pagesize(g_multipage_support.pthr_stack_pagesize));
 497   trcVerbose("Default shared memory page size: %s",
 498       describe_pagesize(g_multipage_support.shmpsize));
 499   trcVerbose("Can use 64K pages dynamically with shared meory: %s",
 500       (g_multipage_support.can_use_64K_pages ? "yes" :"no"));
 501   trcVerbose("Can use 16M pages dynamically with shared memory: %s",
 502       (g_multipage_support.can_use_16M_pages ? "yes" :"no"));
 503   trcVerbose("Multipage error details: %d",
 504       g_multipage_support.error);
 505 
 506   // sanity checks
 507   assert0(g_multipage_support.pagesize == 4*K);
 508   assert0(g_multipage_support.datapsize == 4*K || g_multipage_support.datapsize == 64*K);
 509   assert0(g_multipage_support.textpsize == 4*K || g_multipage_support.textpsize == 64*K);
 510   assert0(g_multipage_support.pthr_stack_pagesize == g_multipage_support.datapsize);
 511   assert0(g_multipage_support.shmpsize == 4*K || g_multipage_support.shmpsize == 64*K);
 512 
 513 }
 514 
 515 void os::init_system_properties_values() {
 516 
 517 #define DEFAULT_LIBPATH "/lib:/usr/lib"
 518 #define EXTENSIONS_DIR  "/lib/ext"
 519 
 520   // Buffer that fits several sprintfs.
 521   // Note that the space for the trailing null is provided
 522   // by the nulls included by the sizeof operator.
 523   const size_t bufsize =
 524     MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
 525          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR)); // extensions dir
 526   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 527 
 528   // sysclasspath, java_home, dll_dir
 529   {
 530     char *pslash;
 531     os::jvm_path(buf, bufsize);
 532 
 533     // Found the full path to libjvm.so.
 534     // Now cut the path to <java_home>/jre if we can.
 535     pslash = strrchr(buf, '/');
 536     if (pslash != NULL) {
 537       *pslash = '\0';            // Get rid of /libjvm.so.
 538     }
 539     pslash = strrchr(buf, '/');
 540     if (pslash != NULL) {
 541       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 542     }
 543     Arguments::set_dll_dir(buf);
 544 
 545     if (pslash != NULL) {
 546       pslash = strrchr(buf, '/');
 547       if (pslash != NULL) {
 548         *pslash = '\0';        // Get rid of /lib.
 549       }
 550     }
 551     Arguments::set_java_home(buf);
 552     set_boot_path('/', ':');
 553   }
 554 
 555   // Where to look for native libraries.
 556 
 557   // On Aix we get the user setting of LIBPATH.
 558   // Eventually, all the library path setting will be done here.
 559   // Get the user setting of LIBPATH.
 560   const char *v = ::getenv("LIBPATH");
 561   const char *v_colon = ":";
 562   if (v == NULL) { v = ""; v_colon = ""; }
 563 
 564   // Concatenate user and invariant part of ld_library_path.
 565   // That's +1 for the colon and +1 for the trailing '\0'.
 566   char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char, strlen(v) + 1 + sizeof(DEFAULT_LIBPATH) + 1, mtInternal);
 567   sprintf(ld_library_path, "%s%s" DEFAULT_LIBPATH, v, v_colon);
 568   Arguments::set_library_path(ld_library_path);
 569   FREE_C_HEAP_ARRAY(char, ld_library_path);
 570 
 571   // Extensions directories.
 572   sprintf(buf, "%s" EXTENSIONS_DIR, Arguments::get_java_home());
 573   Arguments::set_ext_dirs(buf);
 574 
 575   FREE_C_HEAP_ARRAY(char, buf);
 576 
 577 #undef DEFAULT_LIBPATH
 578 #undef EXTENSIONS_DIR
 579 }
 580 
 581 ////////////////////////////////////////////////////////////////////////////////
 582 // breakpoint support
 583 
 584 void os::breakpoint() {
 585   BREAKPOINT;
 586 }
 587 
 588 extern "C" void breakpoint() {
 589   // use debugger to set breakpoint here
 590 }
 591 
 592 ////////////////////////////////////////////////////////////////////////////////
 593 // signal support
 594 
 595 debug_only(static bool signal_sets_initialized = false);
 596 static sigset_t unblocked_sigs, vm_sigs;
 597 
 598 bool os::Aix::is_sig_ignored(int sig) {
 599   struct sigaction oact;
 600   sigaction(sig, (struct sigaction*)NULL, &oact);
 601   void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*, oact.sa_sigaction)
 602     : CAST_FROM_FN_PTR(void*, oact.sa_handler);
 603   if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
 604     return true;
 605   } else {
 606     return false;
 607   }
 608 }
 609 
 610 void os::Aix::signal_sets_init() {
 611   // Should also have an assertion stating we are still single-threaded.
 612   assert(!signal_sets_initialized, "Already initialized");
 613   // Fill in signals that are necessarily unblocked for all threads in
 614   // the VM. Currently, we unblock the following signals:
 615   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 616   //                         by -Xrs (=ReduceSignalUsage));
 617   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 618   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 619   // the dispositions or masks wrt these signals.
 620   // Programs embedding the VM that want to use the above signals for their
 621   // own purposes must, at this time, use the "-Xrs" option to prevent
 622   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 623   // (See bug 4345157, and other related bugs).
 624   // In reality, though, unblocking these signals is really a nop, since
 625   // these signals are not blocked by default.
 626   sigemptyset(&unblocked_sigs);
 627   sigaddset(&unblocked_sigs, SIGILL);
 628   sigaddset(&unblocked_sigs, SIGSEGV);
 629   sigaddset(&unblocked_sigs, SIGBUS);
 630   sigaddset(&unblocked_sigs, SIGFPE);
 631   sigaddset(&unblocked_sigs, SIGTRAP);
 632   sigaddset(&unblocked_sigs, SR_signum);
 633 
 634   if (!ReduceSignalUsage) {
 635    if (!os::Aix::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 636      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 637    }
 638    if (!os::Aix::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 639      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 640    }
 641    if (!os::Aix::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 642      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 643    }
 644   }
 645   // Fill in signals that are blocked by all but the VM thread.
 646   sigemptyset(&vm_sigs);
 647   if (!ReduceSignalUsage)
 648     sigaddset(&vm_sigs, BREAK_SIGNAL);
 649   debug_only(signal_sets_initialized = true);
 650 }
 651 
 652 // These are signals that are unblocked while a thread is running Java.
 653 // (For some reason, they get blocked by default.)
 654 sigset_t* os::Aix::unblocked_signals() {
 655   assert(signal_sets_initialized, "Not initialized");
 656   return &unblocked_sigs;
 657 }
 658 
 659 // These are the signals that are blocked while a (non-VM) thread is
 660 // running Java. Only the VM thread handles these signals.
 661 sigset_t* os::Aix::vm_signals() {
 662   assert(signal_sets_initialized, "Not initialized");
 663   return &vm_sigs;
 664 }
 665 
 666 void os::Aix::hotspot_sigmask(Thread* thread) {
 667 
 668   //Save caller's signal mask before setting VM signal mask
 669   sigset_t caller_sigmask;
 670   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 671 
 672   OSThread* osthread = thread->osthread();
 673   osthread->set_caller_sigmask(caller_sigmask);
 674 
 675   pthread_sigmask(SIG_UNBLOCK, os::Aix::unblocked_signals(), NULL);
 676 
 677   if (!ReduceSignalUsage) {
 678     if (thread->is_VM_thread()) {
 679       // Only the VM thread handles BREAK_SIGNAL ...
 680       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 681     } else {
 682       // ... all other threads block BREAK_SIGNAL
 683       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 684     }
 685   }
 686 }
 687 
 688 // retrieve memory information.
 689 // Returns false if something went wrong;
 690 // content of pmi undefined in this case.
 691 bool os::Aix::get_meminfo(meminfo_t* pmi) {
 692 
 693   assert(pmi, "get_meminfo: invalid parameter");
 694 
 695   memset(pmi, 0, sizeof(meminfo_t));
 696 
 697   if (os::Aix::on_pase()) {
 698     // On PASE, use the libo4 porting library.
 699 
 700     unsigned long long virt_total = 0;
 701     unsigned long long real_total = 0;
 702     unsigned long long real_free = 0;
 703     unsigned long long pgsp_total = 0;
 704     unsigned long long pgsp_free = 0;
 705     if (libo4::get_memory_info(&virt_total, &real_total, &real_free, &pgsp_total, &pgsp_free)) {
 706       pmi->virt_total = virt_total;
 707       pmi->real_total = real_total;
 708       pmi->real_free = real_free;
 709       pmi->pgsp_total = pgsp_total;
 710       pmi->pgsp_free = pgsp_free;
 711       return true;
 712     }
 713     return false;
 714 
 715   } else {
 716 
 717     // On AIX, I use the (dynamically loaded) perfstat library to retrieve memory statistics
 718     // See:
 719     // http://publib.boulder.ibm.com/infocenter/systems/index.jsp
 720     //        ?topic=/com.ibm.aix.basetechref/doc/basetrf1/perfstat_memtot.htm
 721     // http://publib.boulder.ibm.com/infocenter/systems/index.jsp
 722     //        ?topic=/com.ibm.aix.files/doc/aixfiles/libperfstat.h.htm
 723 
 724     perfstat_memory_total_t psmt;
 725     memset (&psmt, '\0', sizeof(psmt));
 726     const int rc = libperfstat::perfstat_memory_total(NULL, &psmt, sizeof(psmt), 1);
 727     if (rc == -1) {
 728       trcVerbose("perfstat_memory_total() failed (errno=%d)", errno);
 729       assert(0, "perfstat_memory_total() failed");
 730       return false;
 731     }
 732 
 733     assert(rc == 1, "perfstat_memory_total() - weird return code");
 734 
 735     // excerpt from
 736     // http://publib.boulder.ibm.com/infocenter/systems/index.jsp
 737     //        ?topic=/com.ibm.aix.files/doc/aixfiles/libperfstat.h.htm
 738     // The fields of perfstat_memory_total_t:
 739     // u_longlong_t virt_total         Total virtual memory (in 4 KB pages).
 740     // u_longlong_t real_total         Total real memory (in 4 KB pages).
 741     // u_longlong_t real_free          Free real memory (in 4 KB pages).
 742     // u_longlong_t pgsp_total         Total paging space (in 4 KB pages).
 743     // u_longlong_t pgsp_free          Free paging space (in 4 KB pages).
 744 
 745     pmi->virt_total = psmt.virt_total * 4096;
 746     pmi->real_total = psmt.real_total * 4096;
 747     pmi->real_free = psmt.real_free * 4096;
 748     pmi->pgsp_total = psmt.pgsp_total * 4096;
 749     pmi->pgsp_free = psmt.pgsp_free * 4096;
 750 
 751     return true;
 752 
 753   }
 754 } // end os::Aix::get_meminfo
 755 
 756 //////////////////////////////////////////////////////////////////////////////
 757 // create new thread
 758 
 759 // Thread start routine for all newly created threads
 760 static void *thread_native_entry(Thread *thread) {
 761 
 762   // find out my own stack dimensions
 763   {
 764     // actually, this should do exactly the same as thread->record_stack_base_and_size...
 765     thread->set_stack_base(os::current_stack_base());
 766     thread->set_stack_size(os::current_stack_size());
 767   }
 768 
 769   const pthread_t pthread_id = ::pthread_self();
 770   const tid_t kernel_thread_id = ::thread_self();
 771 
 772   LogTarget(Info, os, thread) lt;
 773   if (lt.is_enabled()) {
 774     address low_address = thread->stack_end();
 775     address high_address = thread->stack_base();
 776     lt.print("Thread is alive (tid: " UINTX_FORMAT ", kernel thread id: " UINTX_FORMAT
 777              ", stack [" PTR_FORMAT " - " PTR_FORMAT " (" SIZE_FORMAT "k using %uk pages)).",
 778              os::current_thread_id(), (uintx) kernel_thread_id, low_address, high_address,
 779              (high_address - low_address) / K, os::Aix::query_pagesize(low_address) / K);
 780   }
 781 
 782   // Normally, pthread stacks on AIX live in the data segment (are allocated with malloc()
 783   // by the pthread library). In rare cases, this may not be the case, e.g. when third-party
 784   // tools hook pthread_create(). In this case, we may run into problems establishing
 785   // guard pages on those stacks, because the stacks may reside in memory which is not
 786   // protectable (shmated).
 787   if (thread->stack_base() > ::sbrk(0)) {
 788     log_warning(os, thread)("Thread stack not in data segment.");
 789   }
 790 
 791   // Try to randomize the cache line index of hot stack frames.
 792   // This helps when threads of the same stack traces evict each other's
 793   // cache lines. The threads can be either from the same JVM instance, or
 794   // from different JVM instances. The benefit is especially true for
 795   // processors with hyperthreading technology.
 796 
 797   static int counter = 0;
 798   int pid = os::current_process_id();
 799   alloca(((pid ^ counter++) & 7) * 128);
 800 
 801   thread->initialize_thread_current();
 802 
 803   OSThread* osthread = thread->osthread();
 804 
 805   // Thread_id is pthread id.
 806   osthread->set_thread_id(pthread_id);
 807 
 808   // .. but keep kernel thread id too for diagnostics
 809   osthread->set_kernel_thread_id(kernel_thread_id);
 810 
 811   // Initialize signal mask for this thread.
 812   os::Aix::hotspot_sigmask(thread);
 813 
 814   // Initialize floating point control register.
 815   os::Aix::init_thread_fpu_state();
 816 
 817   assert(osthread->get_state() == RUNNABLE, "invalid os thread state");
 818 
 819   // Call one more level start routine.
 820   thread->run();
 821 
 822   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ", kernel thread id: " UINTX_FORMAT ").",
 823     os::current_thread_id(), (uintx) kernel_thread_id);
 824 
 825   // If a thread has not deleted itself ("delete this") as part of its
 826   // termination sequence, we have to ensure thread-local-storage is
 827   // cleared before we actually terminate. No threads should ever be
 828   // deleted asynchronously with respect to their termination.
 829   if (Thread::current_or_null_safe() != NULL) {
 830     assert(Thread::current_or_null_safe() == thread, "current thread is wrong");
 831     thread->clear_thread_current();
 832   }
 833 
 834   return 0;
 835 }
 836 
 837 bool os::create_thread(Thread* thread, ThreadType thr_type,
 838                        size_t req_stack_size) {
 839 
 840   assert(thread->osthread() == NULL, "caller responsible");
 841 
 842   // Allocate the OSThread object.
 843   OSThread* osthread = new OSThread(NULL, NULL);
 844   if (osthread == NULL) {
 845     return false;
 846   }
 847 
 848   // Set the correct thread state.
 849   osthread->set_thread_type(thr_type);
 850 
 851   // Initial state is ALLOCATED but not INITIALIZED
 852   osthread->set_state(ALLOCATED);
 853 
 854   thread->set_osthread(osthread);
 855 
 856   // Init thread attributes.
 857   pthread_attr_t attr;
 858   pthread_attr_init(&attr);
 859   guarantee(pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED) == 0, "???");
 860 
 861   // Make sure we run in 1:1 kernel-user-thread mode.
 862   if (os::Aix::on_aix()) {
 863     guarantee(pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM) == 0, "???");
 864     guarantee(pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED) == 0, "???");
 865   }
 866 
 867   // Start in suspended state, and in os::thread_start, wake the thread up.
 868   guarantee(pthread_attr_setsuspendstate_np(&attr, PTHREAD_CREATE_SUSPENDED_NP) == 0, "???");
 869 
 870   // Calculate stack size if it's not specified by caller.
 871   size_t stack_size = os::Posix::get_initial_stack_size(thr_type, req_stack_size);
 872 
 873   // JDK-8187028: It was observed that on some configurations (4K backed thread stacks)
 874   // the real thread stack size may be smaller than the requested stack size, by as much as 64K.
 875   // This very much looks like a pthread lib error. As a workaround, increase the stack size
 876   // by 64K for small thread stacks (arbitrarily choosen to be < 4MB)
 877   if (stack_size < 4096 * K) {
 878     stack_size += 64 * K;
 879   }
 880 
 881   // On Aix, pthread_attr_setstacksize fails with huge values and leaves the
 882   // thread size in attr unchanged. If this is the minimal stack size as set
 883   // by pthread_attr_init this leads to crashes after thread creation. E.g. the
 884   // guard pages might not fit on the tiny stack created.
 885   int ret = pthread_attr_setstacksize(&attr, stack_size);
 886   if (ret != 0) {
 887     log_warning(os, thread)("The thread stack size specified is invalid: " SIZE_FORMAT "k",
 888                             stack_size / K);
 889   }
 890 
 891   // Save some cycles and a page by disabling OS guard pages where we have our own
 892   // VM guard pages (in java threads). For other threads, keep system default guard
 893   // pages in place.
 894   if (thr_type == java_thread || thr_type == compiler_thread) {
 895     ret = pthread_attr_setguardsize(&attr, 0);
 896   }
 897 
 898   pthread_t tid = 0;
 899   if (ret == 0) {
 900     ret = pthread_create(&tid, &attr, (void* (*)(void*)) thread_native_entry, thread);
 901   }
 902 
 903   if (ret == 0) {
 904     char buf[64];
 905     log_info(os, thread)("Thread started (pthread id: " UINTX_FORMAT ", attributes: %s). ",
 906       (uintx) tid, os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 907   } else {
 908     char buf[64];
 909     log_warning(os, thread)("Failed to start thread - pthread_create failed (%d=%s) for attributes: %s.",
 910       ret, os::errno_name(ret), os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 911   }
 912 
 913   pthread_attr_destroy(&attr);
 914 
 915   if (ret != 0) {
 916     // Need to clean up stuff we've allocated so far.
 917     thread->set_osthread(NULL);
 918     delete osthread;
 919     return false;
 920   }
 921 
 922   // OSThread::thread_id is the pthread id.
 923   osthread->set_thread_id(tid);
 924 
 925   return true;
 926 }
 927 
 928 /////////////////////////////////////////////////////////////////////////////
 929 // attach existing thread
 930 
 931 // bootstrap the main thread
 932 bool os::create_main_thread(JavaThread* thread) {
 933   assert(os::Aix::_main_thread == pthread_self(), "should be called inside main thread");
 934   return create_attached_thread(thread);
 935 }
 936 
 937 bool os::create_attached_thread(JavaThread* thread) {
 938 #ifdef ASSERT
 939     thread->verify_not_published();
 940 #endif
 941 
 942   // Allocate the OSThread object
 943   OSThread* osthread = new OSThread(NULL, NULL);
 944 
 945   if (osthread == NULL) {
 946     return false;
 947   }
 948 
 949   const pthread_t pthread_id = ::pthread_self();
 950   const tid_t kernel_thread_id = ::thread_self();
 951 
 952   // OSThread::thread_id is the pthread id.
 953   osthread->set_thread_id(pthread_id);
 954 
 955   // .. but keep kernel thread id too for diagnostics
 956   osthread->set_kernel_thread_id(kernel_thread_id);
 957 
 958   // initialize floating point control register
 959   os::Aix::init_thread_fpu_state();
 960 
 961   // Initial thread state is RUNNABLE
 962   osthread->set_state(RUNNABLE);
 963 
 964   thread->set_osthread(osthread);
 965 
 966   if (UseNUMA) {
 967     int lgrp_id = os::numa_get_group_id();
 968     if (lgrp_id != -1) {
 969       thread->set_lgrp_id(lgrp_id);
 970     }
 971   }
 972 
 973   // initialize signal mask for this thread
 974   // and save the caller's signal mask
 975   os::Aix::hotspot_sigmask(thread);
 976 
 977   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ", kernel thread id: " UINTX_FORMAT ").",
 978     os::current_thread_id(), (uintx) kernel_thread_id);
 979 
 980   return true;
 981 }
 982 
 983 void os::pd_start_thread(Thread* thread) {
 984   int status = pthread_continue_np(thread->osthread()->pthread_id());
 985   assert(status == 0, "thr_continue failed");
 986 }
 987 
 988 // Free OS resources related to the OSThread
 989 void os::free_thread(OSThread* osthread) {
 990   assert(osthread != NULL, "osthread not set");
 991 
 992   // We are told to free resources of the argument thread,
 993   // but we can only really operate on the current thread.
 994   assert(Thread::current()->osthread() == osthread,
 995          "os::free_thread but not current thread");
 996 
 997   // Restore caller's signal mask
 998   sigset_t sigmask = osthread->caller_sigmask();
 999   pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1000 
1001   delete osthread;
1002 }
1003 
1004 ////////////////////////////////////////////////////////////////////////////////
1005 // time support
1006 
1007 // Time since start-up in seconds to a fine granularity.
1008 // Used by VMSelfDestructTimer and the MemProfiler.
1009 double os::elapsedTime() {
1010   return (double)(os::elapsed_counter()) * 0.000001;
1011 }
1012 
1013 jlong os::elapsed_counter() {
1014   timeval time;
1015   int status = gettimeofday(&time, NULL);
1016   return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
1017 }
1018 
1019 jlong os::elapsed_frequency() {
1020   return (1000 * 1000);
1021 }
1022 
1023 bool os::supports_vtime() { return true; }
1024 bool os::enable_vtime()   { return false; }
1025 bool os::vtime_enabled()  { return false; }
1026 
1027 double os::elapsedVTime() {
1028   struct rusage usage;
1029   int retval = getrusage(RUSAGE_THREAD, &usage);
1030   if (retval == 0) {
1031     return usage.ru_utime.tv_sec + usage.ru_stime.tv_sec + (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000.0 * 1000);
1032   } else {
1033     // better than nothing, but not much
1034     return elapsedTime();
1035   }
1036 }
1037 
1038 jlong os::javaTimeMillis() {
1039   timeval time;
1040   int status = gettimeofday(&time, NULL);
1041   assert(status != -1, "aix error at gettimeofday()");
1042   return jlong(time.tv_sec) * 1000 + jlong(time.tv_usec / 1000);
1043 }
1044 
1045 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1046   timeval time;
1047   int status = gettimeofday(&time, NULL);
1048   assert(status != -1, "aix error at gettimeofday()");
1049   seconds = jlong(time.tv_sec);
1050   nanos = jlong(time.tv_usec) * 1000;
1051 }
1052 
1053 jlong os::javaTimeNanos() {
1054   if (os::Aix::on_pase()) {
1055 
1056     timeval time;
1057     int status = gettimeofday(&time, NULL);
1058     assert(status != -1, "PASE error at gettimeofday()");
1059     jlong usecs = jlong((unsigned long long) time.tv_sec * (1000 * 1000) + time.tv_usec);
1060     return 1000 * usecs;
1061 
1062   } else {
1063     // On AIX use the precision of processors real time clock
1064     // or time base registers.
1065     timebasestruct_t time;
1066     int rc;
1067 
1068     // If the CPU has a time register, it will be used and
1069     // we have to convert to real time first. After convertion we have following data:
1070     // time.tb_high [seconds since 00:00:00 UTC on 1.1.1970]
1071     // time.tb_low  [nanoseconds after the last full second above]
1072     // We better use mread_real_time here instead of read_real_time
1073     // to ensure that we will get a monotonic increasing time.
1074     if (mread_real_time(&time, TIMEBASE_SZ) != RTC_POWER) {
1075       rc = time_base_to_time(&time, TIMEBASE_SZ);
1076       assert(rc != -1, "aix error at time_base_to_time()");
1077     }
1078     return jlong(time.tb_high) * (1000 * 1000 * 1000) + jlong(time.tb_low);
1079   }
1080 }
1081 
1082 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1083   info_ptr->max_value = ALL_64_BITS;
1084   // mread_real_time() is monotonic (see 'os::javaTimeNanos()')
1085   info_ptr->may_skip_backward = false;
1086   info_ptr->may_skip_forward = false;
1087   info_ptr->kind = JVMTI_TIMER_ELAPSED;    // elapsed not CPU time
1088 }
1089 
1090 // Return the real, user, and system times in seconds from an
1091 // arbitrary fixed point in the past.
1092 bool os::getTimesSecs(double* process_real_time,
1093                       double* process_user_time,
1094                       double* process_system_time) {
1095   struct tms ticks;
1096   clock_t real_ticks = times(&ticks);
1097 
1098   if (real_ticks == (clock_t) (-1)) {
1099     return false;
1100   } else {
1101     double ticks_per_second = (double) clock_tics_per_sec;
1102     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1103     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1104     *process_real_time = ((double) real_ticks) / ticks_per_second;
1105 
1106     return true;
1107   }
1108 }
1109 
1110 char * os::local_time_string(char *buf, size_t buflen) {
1111   struct tm t;
1112   time_t long_time;
1113   time(&long_time);
1114   localtime_r(&long_time, &t);
1115   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1116                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1117                t.tm_hour, t.tm_min, t.tm_sec);
1118   return buf;
1119 }
1120 
1121 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
1122   return localtime_r(clock, res);
1123 }
1124 
1125 ////////////////////////////////////////////////////////////////////////////////
1126 // runtime exit support
1127 
1128 // Note: os::shutdown() might be called very early during initialization, or
1129 // called from signal handler. Before adding something to os::shutdown(), make
1130 // sure it is async-safe and can handle partially initialized VM.
1131 void os::shutdown() {
1132 
1133   // allow PerfMemory to attempt cleanup of any persistent resources
1134   perfMemory_exit();
1135 
1136   // needs to remove object in file system
1137   AttachListener::abort();
1138 
1139   // flush buffered output, finish log files
1140   ostream_abort();
1141 
1142   // Check for abort hook
1143   abort_hook_t abort_hook = Arguments::abort_hook();
1144   if (abort_hook != NULL) {
1145     abort_hook();
1146   }
1147 }
1148 
1149 // Note: os::abort() might be called very early during initialization, or
1150 // called from signal handler. Before adding something to os::abort(), make
1151 // sure it is async-safe and can handle partially initialized VM.
1152 void os::abort(bool dump_core, void* siginfo, const void* context) {
1153   os::shutdown();
1154   if (dump_core) {
1155 #ifndef PRODUCT
1156     fdStream out(defaultStream::output_fd());
1157     out.print_raw("Current thread is ");
1158     char buf[16];
1159     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1160     out.print_raw_cr(buf);
1161     out.print_raw_cr("Dumping core ...");
1162 #endif
1163     ::abort(); // dump core
1164   }
1165 
1166   ::exit(1);
1167 }
1168 
1169 // Die immediately, no exit hook, no abort hook, no cleanup.
1170 void os::die() {
1171   ::abort();
1172 }
1173 
1174 // This method is a copy of JDK's sysGetLastErrorString
1175 // from src/solaris/hpi/src/system_md.c
1176 
1177 size_t os::lasterror(char *buf, size_t len) {
1178   if (errno == 0) return 0;
1179 
1180   const char *s = os::strerror(errno);
1181   size_t n = ::strlen(s);
1182   if (n >= len) {
1183     n = len - 1;
1184   }
1185   ::strncpy(buf, s, n);
1186   buf[n] = '\0';
1187   return n;
1188 }
1189 
1190 intx os::current_thread_id() {
1191   return (intx)pthread_self();
1192 }
1193 
1194 int os::current_process_id() {
1195   return getpid();
1196 }
1197 
1198 // DLL functions
1199 
1200 const char* os::dll_file_extension() { return ".so"; }
1201 
1202 // This must be hard coded because it's the system's temporary
1203 // directory not the java application's temp directory, ala java.io.tmpdir.
1204 const char* os::get_temp_directory() { return "/tmp"; }
1205 
1206 // Check if addr is inside libjvm.so.
1207 bool os::address_is_in_vm(address addr) {
1208 
1209   // Input could be a real pc or a function pointer literal. The latter
1210   // would be a function descriptor residing in the data segment of a module.
1211   loaded_module_t lm;
1212   if (LoadedLibraries::find_for_text_address(addr, &lm) != NULL) {
1213     return lm.is_in_vm;
1214   } else if (LoadedLibraries::find_for_data_address(addr, &lm) != NULL) {
1215     return lm.is_in_vm;
1216   } else {
1217     return false;
1218   }
1219 
1220 }
1221 
1222 // Resolve an AIX function descriptor literal to a code pointer.
1223 // If the input is a valid code pointer to a text segment of a loaded module,
1224 //   it is returned unchanged.
1225 // If the input is a valid AIX function descriptor, it is resolved to the
1226 //   code entry point.
1227 // If the input is neither a valid function descriptor nor a valid code pointer,
1228 //   NULL is returned.
1229 static address resolve_function_descriptor_to_code_pointer(address p) {
1230 
1231   if (LoadedLibraries::find_for_text_address(p, NULL) != NULL) {
1232     // It is a real code pointer.
1233     return p;
1234   } else if (LoadedLibraries::find_for_data_address(p, NULL) != NULL) {
1235     // Pointer to data segment, potential function descriptor.
1236     address code_entry = (address)(((FunctionDescriptor*)p)->entry());
1237     if (LoadedLibraries::find_for_text_address(code_entry, NULL) != NULL) {
1238       // It is a function descriptor.
1239       return code_entry;
1240     }
1241   }
1242 
1243   return NULL;
1244 }
1245 
1246 bool os::dll_address_to_function_name(address addr, char *buf,
1247                                       int buflen, int *offset,
1248                                       bool demangle) {
1249   if (offset) {
1250     *offset = -1;
1251   }
1252   // Buf is not optional, but offset is optional.
1253   assert(buf != NULL, "sanity check");
1254   buf[0] = '\0';
1255 
1256   // Resolve function ptr literals first.
1257   addr = resolve_function_descriptor_to_code_pointer(addr);
1258   if (!addr) {
1259     return false;
1260   }
1261 
1262   return AixSymbols::get_function_name(addr, buf, buflen, offset, NULL, demangle);
1263 }
1264 
1265 bool os::dll_address_to_library_name(address addr, char* buf,
1266                                      int buflen, int* offset) {
1267   if (offset) {
1268     *offset = -1;
1269   }
1270   // Buf is not optional, but offset is optional.
1271   assert(buf != NULL, "sanity check");
1272   buf[0] = '\0';
1273 
1274   // Resolve function ptr literals first.
1275   addr = resolve_function_descriptor_to_code_pointer(addr);
1276   if (!addr) {
1277     return false;
1278   }
1279 
1280   return AixSymbols::get_module_name(addr, buf, buflen);
1281 }
1282 
1283 // Loads .dll/.so and in case of error it checks if .dll/.so was built
1284 // for the same architecture as Hotspot is running on.
1285 void *os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1286 
1287   if (ebuf && ebuflen > 0) {
1288     ebuf[0] = '\0';
1289     ebuf[ebuflen - 1] = '\0';
1290   }
1291 
1292   if (!filename || strlen(filename) == 0) {
1293     ::strncpy(ebuf, "dll_load: empty filename specified", ebuflen - 1);
1294     return NULL;
1295   }
1296 
1297   // RTLD_LAZY is currently not implemented. The dl is loaded immediately with all its dependants.
1298   void * result= ::dlopen(filename, RTLD_LAZY);
1299   if (result != NULL) {
1300     // Reload dll cache. Don't do this in signal handling.
1301     LoadedLibraries::reload();
1302     return result;
1303   } else {
1304     // error analysis when dlopen fails
1305     const char* const error_report = ::dlerror();
1306     if (error_report && ebuf && ebuflen > 0) {
1307       snprintf(ebuf, ebuflen - 1, "%s, LIBPATH=%s, LD_LIBRARY_PATH=%s : %s",
1308                filename, ::getenv("LIBPATH"), ::getenv("LD_LIBRARY_PATH"), error_report);
1309     }
1310   }
1311   return NULL;
1312 }
1313 
1314 void* os::dll_lookup(void* handle, const char* name) {
1315   void* res = dlsym(handle, name);
1316   return res;
1317 }
1318 
1319 void* os::get_default_process_handle() {
1320   return (void*)::dlopen(NULL, RTLD_LAZY);
1321 }
1322 
1323 void os::print_dll_info(outputStream *st) {
1324   st->print_cr("Dynamic libraries:");
1325   LoadedLibraries::print(st);
1326 }
1327 
1328 void os::get_summary_os_info(char* buf, size_t buflen) {
1329   // There might be something more readable than uname results for AIX.
1330   struct utsname name;
1331   uname(&name);
1332   snprintf(buf, buflen, "%s %s", name.release, name.version);
1333 }
1334 
1335 void os::print_os_info(outputStream* st) {
1336   st->print("OS:");
1337 
1338   st->print("uname:");
1339   struct utsname name;
1340   uname(&name);
1341   st->print(name.sysname); st->print(" ");
1342   st->print(name.nodename); st->print(" ");
1343   st->print(name.release); st->print(" ");
1344   st->print(name.version); st->print(" ");
1345   st->print(name.machine);
1346   st->cr();
1347 
1348   uint32_t ver = os::Aix::os_version();
1349   st->print_cr("AIX kernel version %u.%u.%u.%u",
1350                (ver >> 24) & 0xFF, (ver >> 16) & 0xFF, (ver >> 8) & 0xFF, ver & 0xFF);
1351 
1352   os::Posix::print_rlimit_info(st);
1353 
1354   // load average
1355   st->print("load average:");
1356   double loadavg[3] = {-1.L, -1.L, -1.L};
1357   os::loadavg(loadavg, 3);
1358   st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
1359   st->cr();
1360 
1361   // print wpar info
1362   libperfstat::wparinfo_t wi;
1363   if (libperfstat::get_wparinfo(&wi)) {
1364     st->print_cr("wpar info");
1365     st->print_cr("name: %s", wi.name);
1366     st->print_cr("id:   %d", wi.wpar_id);
1367     st->print_cr("type: %s", (wi.app_wpar ? "application" : "system"));
1368   }
1369 
1370   // print partition info
1371   libperfstat::partitioninfo_t pi;
1372   if (libperfstat::get_partitioninfo(&pi)) {
1373     st->print_cr("partition info");
1374     st->print_cr(" name: %s", pi.name);
1375   }
1376 
1377 }
1378 
1379 void os::print_memory_info(outputStream* st) {
1380 
1381   st->print_cr("Memory:");
1382 
1383   st->print_cr("  Base page size (sysconf _SC_PAGESIZE):  %s",
1384     describe_pagesize(g_multipage_support.pagesize));
1385   st->print_cr("  Data page size (C-Heap, bss, etc):      %s",
1386     describe_pagesize(g_multipage_support.datapsize));
1387   st->print_cr("  Text page size:                         %s",
1388     describe_pagesize(g_multipage_support.textpsize));
1389   st->print_cr("  Thread stack page size (pthread):       %s",
1390     describe_pagesize(g_multipage_support.pthr_stack_pagesize));
1391   st->print_cr("  Default shared memory page size:        %s",
1392     describe_pagesize(g_multipage_support.shmpsize));
1393   st->print_cr("  Can use 64K pages dynamically with shared meory:  %s",
1394     (g_multipage_support.can_use_64K_pages ? "yes" :"no"));
1395   st->print_cr("  Can use 16M pages dynamically with shared memory: %s",
1396     (g_multipage_support.can_use_16M_pages ? "yes" :"no"));
1397   st->print_cr("  Multipage error: %d",
1398     g_multipage_support.error);
1399   st->cr();
1400   st->print_cr("  os::vm_page_size:       %s", describe_pagesize(os::vm_page_size()));
1401 
1402   // print out LDR_CNTRL because it affects the default page sizes
1403   const char* const ldr_cntrl = ::getenv("LDR_CNTRL");
1404   st->print_cr("  LDR_CNTRL=%s.", ldr_cntrl ? ldr_cntrl : "<unset>");
1405 
1406   // Print out EXTSHM because it is an unsupported setting.
1407   const char* const extshm = ::getenv("EXTSHM");
1408   st->print_cr("  EXTSHM=%s.", extshm ? extshm : "<unset>");
1409   if ( (strcmp(extshm, "on") == 0) || (strcmp(extshm, "ON") == 0) ) {
1410     st->print_cr("  *** Unsupported! Please remove EXTSHM from your environment! ***");
1411   }
1412 
1413   // Print out AIXTHREAD_GUARDPAGES because it affects the size of pthread stacks.
1414   const char* const aixthread_guardpages = ::getenv("AIXTHREAD_GUARDPAGES");
1415   st->print_cr("  AIXTHREAD_GUARDPAGES=%s.",
1416       aixthread_guardpages ? aixthread_guardpages : "<unset>");
1417 
1418   os::Aix::meminfo_t mi;
1419   if (os::Aix::get_meminfo(&mi)) {
1420     char buffer[256];
1421     if (os::Aix::on_aix()) {
1422       st->print_cr("physical total : " SIZE_FORMAT, mi.real_total);
1423       st->print_cr("physical free  : " SIZE_FORMAT, mi.real_free);
1424       st->print_cr("swap total     : " SIZE_FORMAT, mi.pgsp_total);
1425       st->print_cr("swap free      : " SIZE_FORMAT, mi.pgsp_free);
1426     } else {
1427       // PASE - Numbers are result of QWCRSSTS; they mean:
1428       // real_total: Sum of all system pools
1429       // real_free: always 0
1430       // pgsp_total: we take the size of the system ASP
1431       // pgsp_free: size of system ASP times percentage of system ASP unused
1432       st->print_cr("physical total     : " SIZE_FORMAT, mi.real_total);
1433       st->print_cr("system asp total   : " SIZE_FORMAT, mi.pgsp_total);
1434       st->print_cr("%% system asp used : " SIZE_FORMAT,
1435         mi.pgsp_total ? (100.0f * (mi.pgsp_total - mi.pgsp_free) / mi.pgsp_total) : -1.0f);
1436     }
1437     st->print_raw(buffer);
1438   }
1439   st->cr();
1440 
1441   // Print segments allocated with os::reserve_memory.
1442   st->print_cr("internal virtual memory regions used by vm:");
1443   vmembk_print_on(st);
1444 }
1445 
1446 // Get a string for the cpuinfo that is a summary of the cpu type
1447 void os::get_summary_cpu_info(char* buf, size_t buflen) {
1448   // This looks good
1449   libperfstat::cpuinfo_t ci;
1450   if (libperfstat::get_cpuinfo(&ci)) {
1451     strncpy(buf, ci.version, buflen);
1452   } else {
1453     strncpy(buf, "AIX", buflen);
1454   }
1455 }
1456 
1457 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
1458   // Nothing to do beyond what os::print_cpu_info() does.
1459 }
1460 
1461 static void print_signal_handler(outputStream* st, int sig,
1462                                  char* buf, size_t buflen);
1463 
1464 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1465   st->print_cr("Signal Handlers:");
1466   print_signal_handler(st, SIGSEGV, buf, buflen);
1467   print_signal_handler(st, SIGBUS , buf, buflen);
1468   print_signal_handler(st, SIGFPE , buf, buflen);
1469   print_signal_handler(st, SIGPIPE, buf, buflen);
1470   print_signal_handler(st, SIGXFSZ, buf, buflen);
1471   print_signal_handler(st, SIGILL , buf, buflen);
1472   print_signal_handler(st, SR_signum, buf, buflen);
1473   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
1474   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
1475   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
1476   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
1477   print_signal_handler(st, SIGTRAP, buf, buflen);
1478   // We also want to know if someone else adds a SIGDANGER handler because
1479   // that will interfere with OOM killling.
1480   print_signal_handler(st, SIGDANGER, buf, buflen);
1481 }
1482 
1483 static char saved_jvm_path[MAXPATHLEN] = {0};
1484 
1485 // Find the full path to the current module, libjvm.so.
1486 void os::jvm_path(char *buf, jint buflen) {
1487   // Error checking.
1488   if (buflen < MAXPATHLEN) {
1489     assert(false, "must use a large-enough buffer");
1490     buf[0] = '\0';
1491     return;
1492   }
1493   // Lazy resolve the path to current module.
1494   if (saved_jvm_path[0] != 0) {
1495     strcpy(buf, saved_jvm_path);
1496     return;
1497   }
1498 
1499   Dl_info dlinfo;
1500   int ret = dladdr(CAST_FROM_FN_PTR(void *, os::jvm_path), &dlinfo);
1501   assert(ret != 0, "cannot locate libjvm");
1502   char* rp = os::Posix::realpath((char *)dlinfo.dli_fname, buf, buflen);
1503   assert(rp != NULL, "error in realpath(): maybe the 'path' argument is too long?");
1504 
1505   if (Arguments::sun_java_launcher_is_altjvm()) {
1506     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
1507     // value for buf is "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.so".
1508     // If "/jre/lib/" appears at the right place in the string, then
1509     // assume we are installed in a JDK and we're done. Otherwise, check
1510     // for a JAVA_HOME environment variable and fix up the path so it
1511     // looks like libjvm.so is installed there (append a fake suffix
1512     // hotspot/libjvm.so).
1513     const char *p = buf + strlen(buf) - 1;
1514     for (int count = 0; p > buf && count < 4; ++count) {
1515       for (--p; p > buf && *p != '/'; --p)
1516         /* empty */ ;
1517     }
1518 
1519     if (strncmp(p, "/jre/lib/", 9) != 0) {
1520       // Look for JAVA_HOME in the environment.
1521       char* java_home_var = ::getenv("JAVA_HOME");
1522       if (java_home_var != NULL && java_home_var[0] != 0) {
1523         char* jrelib_p;
1524         int len;
1525 
1526         // Check the current module name "libjvm.so".
1527         p = strrchr(buf, '/');
1528         if (p == NULL) {
1529           return;
1530         }
1531         assert(strstr(p, "/libjvm") == p, "invalid library name");
1532 
1533         rp = os::Posix::realpath(java_home_var, buf, buflen);
1534         if (rp == NULL) {
1535           return;
1536         }
1537 
1538         // determine if this is a legacy image or modules image
1539         // modules image doesn't have "jre" subdirectory
1540         len = strlen(buf);
1541         assert(len < buflen, "Ran out of buffer room");
1542         jrelib_p = buf + len;
1543         snprintf(jrelib_p, buflen-len, "/jre/lib");
1544         if (0 != access(buf, F_OK)) {
1545           snprintf(jrelib_p, buflen-len, "/lib");
1546         }
1547 
1548         if (0 == access(buf, F_OK)) {
1549           // Use current module name "libjvm.so"
1550           len = strlen(buf);
1551           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
1552         } else {
1553           // Go back to path of .so
1554           rp = os::Posix::realpath((char *)dlinfo.dli_fname, buf, buflen);
1555           if (rp == NULL) {
1556             return;
1557           }
1558         }
1559       }
1560     }
1561   }
1562 
1563   strncpy(saved_jvm_path, buf, sizeof(saved_jvm_path));
1564   saved_jvm_path[sizeof(saved_jvm_path) - 1] = '\0';
1565 }
1566 
1567 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1568   // no prefix required, not even "_"
1569 }
1570 
1571 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1572   // no suffix required
1573 }
1574 
1575 ////////////////////////////////////////////////////////////////////////////////
1576 // sun.misc.Signal support
1577 
1578 static volatile jint sigint_count = 0;
1579 
1580 static void
1581 UserHandler(int sig, void *siginfo, void *context) {
1582   // 4511530 - sem_post is serialized and handled by the manager thread. When
1583   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
1584   // don't want to flood the manager thread with sem_post requests.
1585   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
1586     return;
1587 
1588   // Ctrl-C is pressed during error reporting, likely because the error
1589   // handler fails to abort. Let VM die immediately.
1590   if (sig == SIGINT && VMError::is_error_reported()) {
1591     os::die();
1592   }
1593 
1594   os::signal_notify(sig);
1595 }
1596 
1597 void* os::user_handler() {
1598   return CAST_FROM_FN_PTR(void*, UserHandler);
1599 }
1600 
1601 extern "C" {
1602   typedef void (*sa_handler_t)(int);
1603   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
1604 }
1605 
1606 void* os::signal(int signal_number, void* handler) {
1607   struct sigaction sigAct, oldSigAct;
1608 
1609   sigfillset(&(sigAct.sa_mask));
1610 
1611   // Do not block out synchronous signals in the signal handler.
1612   // Blocking synchronous signals only makes sense if you can really
1613   // be sure that those signals won't happen during signal handling,
1614   // when the blocking applies. Normal signal handlers are lean and
1615   // do not cause signals. But our signal handlers tend to be "risky"
1616   // - secondary SIGSEGV, SIGILL, SIGBUS' may and do happen.
1617   // On AIX, PASE there was a case where a SIGSEGV happened, followed
1618   // by a SIGILL, which was blocked due to the signal mask. The process
1619   // just hung forever. Better to crash from a secondary signal than to hang.
1620   sigdelset(&(sigAct.sa_mask), SIGSEGV);
1621   sigdelset(&(sigAct.sa_mask), SIGBUS);
1622   sigdelset(&(sigAct.sa_mask), SIGILL);
1623   sigdelset(&(sigAct.sa_mask), SIGFPE);
1624   sigdelset(&(sigAct.sa_mask), SIGTRAP);
1625 
1626   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
1627 
1628   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
1629 
1630   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
1631     // -1 means registration failed
1632     return (void *)-1;
1633   }
1634 
1635   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
1636 }
1637 
1638 void os::signal_raise(int signal_number) {
1639   ::raise(signal_number);
1640 }
1641 
1642 //
1643 // The following code is moved from os.cpp for making this
1644 // code platform specific, which it is by its very nature.
1645 //
1646 
1647 // Will be modified when max signal is changed to be dynamic
1648 int os::sigexitnum_pd() {
1649   return NSIG;
1650 }
1651 
1652 // a counter for each possible signal value
1653 static volatile jint pending_signals[NSIG+1] = { 0 };
1654 
1655 // Wrapper functions for: sem_init(), sem_post(), sem_wait()
1656 // On AIX, we use sem_init(), sem_post(), sem_wait()
1657 // On Pase, we need to use msem_lock() and msem_unlock(), because Posix Semaphores
1658 // do not seem to work at all on PASE (unimplemented, will cause SIGILL).
1659 // Note that just using msem_.. APIs for both PASE and AIX is not an option either, as
1660 // on AIX, msem_..() calls are suspected of causing problems.
1661 static sem_t sig_sem;
1662 static msemaphore* p_sig_msem = 0;
1663 
1664 static void local_sem_init() {
1665   if (os::Aix::on_aix()) {
1666     int rc = ::sem_init(&sig_sem, 0, 0);
1667     guarantee(rc != -1, "sem_init failed");
1668   } else {
1669     // Memory semaphores must live in shared mem.
1670     guarantee0(p_sig_msem == NULL);
1671     p_sig_msem = (msemaphore*)os::reserve_memory(sizeof(msemaphore), NULL);
1672     guarantee(p_sig_msem, "Cannot allocate memory for memory semaphore");
1673     guarantee(::msem_init(p_sig_msem, 0) == p_sig_msem, "msem_init failed");
1674   }
1675 }
1676 
1677 static void local_sem_post() {
1678   static bool warn_only_once = false;
1679   if (os::Aix::on_aix()) {
1680     int rc = ::sem_post(&sig_sem);
1681     if (rc == -1 && !warn_only_once) {
1682       trcVerbose("sem_post failed (errno = %d, %s)", errno, os::errno_name(errno));
1683       warn_only_once = true;
1684     }
1685   } else {
1686     guarantee0(p_sig_msem != NULL);
1687     int rc = ::msem_unlock(p_sig_msem, 0);
1688     if (rc == -1 && !warn_only_once) {
1689       trcVerbose("msem_unlock failed (errno = %d, %s)", errno, os::errno_name(errno));
1690       warn_only_once = true;
1691     }
1692   }
1693 }
1694 
1695 static void local_sem_wait() {
1696   static bool warn_only_once = false;
1697   if (os::Aix::on_aix()) {
1698     int rc = ::sem_wait(&sig_sem);
1699     if (rc == -1 && !warn_only_once) {
1700       trcVerbose("sem_wait failed (errno = %d, %s)", errno, os::errno_name(errno));
1701       warn_only_once = true;
1702     }
1703   } else {
1704     guarantee0(p_sig_msem != NULL); // must init before use
1705     int rc = ::msem_lock(p_sig_msem, 0);
1706     if (rc == -1 && !warn_only_once) {
1707       trcVerbose("msem_lock failed (errno = %d, %s)", errno, os::errno_name(errno));
1708       warn_only_once = true;
1709     }
1710   }
1711 }
1712 
1713 void os::signal_init_pd() {
1714   // Initialize signal structures
1715   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
1716 
1717   // Initialize signal semaphore
1718   local_sem_init();
1719 }
1720 
1721 void os::signal_notify(int sig) {
1722   Atomic::inc(&pending_signals[sig]);
1723   local_sem_post();
1724 }
1725 
1726 static int check_pending_signals(bool wait) {
1727   Atomic::store(0, &sigint_count);
1728   for (;;) {
1729     for (int i = 0; i < NSIG + 1; i++) {
1730       jint n = pending_signals[i];
1731       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
1732         return i;
1733       }
1734     }
1735     if (!wait) {
1736       return -1;
1737     }
1738     JavaThread *thread = JavaThread::current();
1739     ThreadBlockInVM tbivm(thread);
1740 
1741     bool threadIsSuspended;
1742     do {
1743       thread->set_suspend_equivalent();
1744       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
1745 
1746       local_sem_wait();
1747 
1748       // were we externally suspended while we were waiting?
1749       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
1750       if (threadIsSuspended) {
1751         //
1752         // The semaphore has been incremented, but while we were waiting
1753         // another thread suspended us. We don't want to continue running
1754         // while suspended because that would surprise the thread that
1755         // suspended us.
1756         //
1757 
1758         local_sem_post();
1759 
1760         thread->java_suspend_self();
1761       }
1762     } while (threadIsSuspended);
1763   }
1764 }
1765 
1766 int os::signal_lookup() {
1767   return check_pending_signals(false);
1768 }
1769 
1770 int os::signal_wait() {
1771   return check_pending_signals(true);
1772 }
1773 
1774 ////////////////////////////////////////////////////////////////////////////////
1775 // Virtual Memory
1776 
1777 // We need to keep small simple bookkeeping for os::reserve_memory and friends.
1778 
1779 #define VMEM_MAPPED  1
1780 #define VMEM_SHMATED 2
1781 
1782 struct vmembk_t {
1783   int type;         // 1 - mmap, 2 - shmat
1784   char* addr;
1785   size_t size;      // Real size, may be larger than usersize.
1786   size_t pagesize;  // page size of area
1787   vmembk_t* next;
1788 
1789   bool contains_addr(char* p) const {
1790     return p >= addr && p < (addr + size);
1791   }
1792 
1793   bool contains_range(char* p, size_t s) const {
1794     return contains_addr(p) && contains_addr(p + s - 1);
1795   }
1796 
1797   void print_on(outputStream* os) const {
1798     os->print("[" PTR_FORMAT " - " PTR_FORMAT "] (" UINTX_FORMAT
1799       " bytes, %d %s pages), %s",
1800       addr, addr + size - 1, size, size / pagesize, describe_pagesize(pagesize),
1801       (type == VMEM_SHMATED ? "shmat" : "mmap")
1802     );
1803   }
1804 
1805   // Check that range is a sub range of memory block (or equal to memory block);
1806   // also check that range is fully page aligned to the page size if the block.
1807   void assert_is_valid_subrange(char* p, size_t s) const {
1808     if (!contains_range(p, s)) {
1809       trcVerbose("[" PTR_FORMAT " - " PTR_FORMAT "] is not a sub "
1810               "range of [" PTR_FORMAT " - " PTR_FORMAT "].",
1811               p, p + s, addr, addr + size);
1812       guarantee0(false);
1813     }
1814     if (!is_aligned_to(p, pagesize) || !is_aligned_to(p + s, pagesize)) {
1815       trcVerbose("range [" PTR_FORMAT " - " PTR_FORMAT "] is not"
1816               " aligned to pagesize (%lu)", p, p + s, (unsigned long) pagesize);
1817       guarantee0(false);
1818     }
1819   }
1820 };
1821 
1822 static struct {
1823   vmembk_t* first;
1824   MiscUtils::CritSect cs;
1825 } vmem;
1826 
1827 static void vmembk_add(char* addr, size_t size, size_t pagesize, int type) {
1828   vmembk_t* p = (vmembk_t*) ::malloc(sizeof(vmembk_t));
1829   assert0(p);
1830   if (p) {
1831     MiscUtils::AutoCritSect lck(&vmem.cs);
1832     p->addr = addr; p->size = size;
1833     p->pagesize = pagesize;
1834     p->type = type;
1835     p->next = vmem.first;
1836     vmem.first = p;
1837   }
1838 }
1839 
1840 static vmembk_t* vmembk_find(char* addr) {
1841   MiscUtils::AutoCritSect lck(&vmem.cs);
1842   for (vmembk_t* p = vmem.first; p; p = p->next) {
1843     if (p->addr <= addr && (p->addr + p->size) > addr) {
1844       return p;
1845     }
1846   }
1847   return NULL;
1848 }
1849 
1850 static void vmembk_remove(vmembk_t* p0) {
1851   MiscUtils::AutoCritSect lck(&vmem.cs);
1852   assert0(p0);
1853   assert0(vmem.first); // List should not be empty.
1854   for (vmembk_t** pp = &(vmem.first); *pp; pp = &((*pp)->next)) {
1855     if (*pp == p0) {
1856       *pp = p0->next;
1857       ::free(p0);
1858       return;
1859     }
1860   }
1861   assert0(false); // Not found?
1862 }
1863 
1864 static void vmembk_print_on(outputStream* os) {
1865   MiscUtils::AutoCritSect lck(&vmem.cs);
1866   for (vmembk_t* vmi = vmem.first; vmi; vmi = vmi->next) {
1867     vmi->print_on(os);
1868     os->cr();
1869   }
1870 }
1871 
1872 // Reserve and attach a section of System V memory.
1873 // If <requested_addr> is not NULL, function will attempt to attach the memory at the given
1874 // address. Failing that, it will attach the memory anywhere.
1875 // If <requested_addr> is NULL, function will attach the memory anywhere.
1876 //
1877 // <alignment_hint> is being ignored by this function. It is very probable however that the
1878 // alignment requirements are met anyway, because shmat() attaches at 256M boundaries.
1879 // Should this be not enogh, we can put more work into it.
1880 static char* reserve_shmated_memory (
1881   size_t bytes,
1882   char* requested_addr,
1883   size_t alignment_hint) {
1884 
1885   trcVerbose("reserve_shmated_memory " UINTX_FORMAT " bytes, wishaddress "
1886     PTR_FORMAT ", alignment_hint " UINTX_FORMAT "...",
1887     bytes, requested_addr, alignment_hint);
1888 
1889   // Either give me wish address or wish alignment but not both.
1890   assert0(!(requested_addr != NULL && alignment_hint != 0));
1891 
1892   // We must prevent anyone from attaching too close to the
1893   // BRK because that may cause malloc OOM.
1894   if (requested_addr != NULL && is_close_to_brk((address)requested_addr)) {
1895     trcVerbose("Wish address " PTR_FORMAT " is too close to the BRK segment. "
1896       "Will attach anywhere.", requested_addr);
1897     // Act like the OS refused to attach there.
1898     requested_addr = NULL;
1899   }
1900 
1901   // For old AS/400's (V5R4 and older) we should not even be here - System V shared memory is not
1902   // really supported (max size 4GB), so reserve_mmapped_memory should have been used instead.
1903   if (os::Aix::on_pase_V5R4_or_older()) {
1904     ShouldNotReachHere();
1905   }
1906 
1907   // Align size of shm up to 64K to avoid errors if we later try to change the page size.
1908   const size_t size = align_up(bytes, 64*K);
1909 
1910   // Reserve the shared segment.
1911   int shmid = shmget(IPC_PRIVATE, size, IPC_CREAT | S_IRUSR | S_IWUSR);
1912   if (shmid == -1) {
1913     trcVerbose("shmget(.., " UINTX_FORMAT ", ..) failed (errno: %d).", size, errno);
1914     return NULL;
1915   }
1916 
1917   // Important note:
1918   // It is very important that we, upon leaving this function, do not leave a shm segment alive.
1919   // We must right after attaching it remove it from the system. System V shm segments are global and
1920   // survive the process.
1921   // So, from here on: Do not assert, do not return, until we have called shmctl(IPC_RMID) (A).
1922 
1923   struct shmid_ds shmbuf;
1924   memset(&shmbuf, 0, sizeof(shmbuf));
1925   shmbuf.shm_pagesize = 64*K;
1926   if (shmctl(shmid, SHM_PAGESIZE, &shmbuf) != 0) {
1927     trcVerbose("Failed to set page size (need " UINTX_FORMAT " 64K pages) - shmctl failed with %d.",
1928                size / (64*K), errno);
1929     // I want to know if this ever happens.
1930     assert(false, "failed to set page size for shmat");
1931   }
1932 
1933   // Now attach the shared segment.
1934   // Note that I attach with SHM_RND - which means that the requested address is rounded down, if
1935   // needed, to the next lowest segment boundary. Otherwise the attach would fail if the address
1936   // were not a segment boundary.
1937   char* const addr = (char*) shmat(shmid, requested_addr, SHM_RND);
1938   const int errno_shmat = errno;
1939 
1940   // (A) Right after shmat and before handing shmat errors delete the shm segment.
1941   if (::shmctl(shmid, IPC_RMID, NULL) == -1) {
1942     trcVerbose("shmctl(%u, IPC_RMID) failed (%d)\n", shmid, errno);
1943     assert(false, "failed to remove shared memory segment!");
1944   }
1945 
1946   // Handle shmat error. If we failed to attach, just return.
1947   if (addr == (char*)-1) {
1948     trcVerbose("Failed to attach segment at " PTR_FORMAT " (%d).", requested_addr, errno_shmat);
1949     return NULL;
1950   }
1951 
1952   // Just for info: query the real page size. In case setting the page size did not
1953   // work (see above), the system may have given us something other then 4K (LDR_CNTRL).
1954   const size_t real_pagesize = os::Aix::query_pagesize(addr);
1955   if (real_pagesize != shmbuf.shm_pagesize) {
1956     trcVerbose("pagesize is, surprisingly, %h.", real_pagesize);
1957   }
1958 
1959   if (addr) {
1960     trcVerbose("shm-allocated " PTR_FORMAT " .. " PTR_FORMAT " (" UINTX_FORMAT " bytes, " UINTX_FORMAT " %s pages)",
1961       addr, addr + size - 1, size, size/real_pagesize, describe_pagesize(real_pagesize));
1962   } else {
1963     if (requested_addr != NULL) {
1964       trcVerbose("failed to shm-allocate " UINTX_FORMAT " bytes at with address " PTR_FORMAT ".", size, requested_addr);
1965     } else {
1966       trcVerbose("failed to shm-allocate " UINTX_FORMAT " bytes at any address.", size);
1967     }
1968   }
1969 
1970   // book-keeping
1971   vmembk_add(addr, size, real_pagesize, VMEM_SHMATED);
1972   assert0(is_aligned_to(addr, os::vm_page_size()));
1973 
1974   return addr;
1975 }
1976 
1977 static bool release_shmated_memory(char* addr, size_t size) {
1978 
1979   trcVerbose("release_shmated_memory [" PTR_FORMAT " - " PTR_FORMAT "].",
1980     addr, addr + size - 1);
1981 
1982   bool rc = false;
1983 
1984   // TODO: is there a way to verify shm size without doing bookkeeping?
1985   if (::shmdt(addr) != 0) {
1986     trcVerbose("error (%d).", errno);
1987   } else {
1988     trcVerbose("ok.");
1989     rc = true;
1990   }
1991   return rc;
1992 }
1993 
1994 static bool uncommit_shmated_memory(char* addr, size_t size) {
1995   trcVerbose("uncommit_shmated_memory [" PTR_FORMAT " - " PTR_FORMAT "].",
1996     addr, addr + size - 1);
1997 
1998   const bool rc = my_disclaim64(addr, size);
1999 
2000   if (!rc) {
2001     trcVerbose("my_disclaim64(" PTR_FORMAT ", " UINTX_FORMAT ") failed.\n", addr, size);
2002     return false;
2003   }
2004   return true;
2005 }
2006 
2007 ////////////////////////////////  mmap-based routines /////////////////////////////////
2008 
2009 // Reserve memory via mmap.
2010 // If <requested_addr> is given, an attempt is made to attach at the given address.
2011 // Failing that, memory is allocated at any address.
2012 // If <alignment_hint> is given and <requested_addr> is NULL, an attempt is made to
2013 // allocate at an address aligned with the given alignment. Failing that, memory
2014 // is aligned anywhere.
2015 static char* reserve_mmaped_memory(size_t bytes, char* requested_addr, size_t alignment_hint) {
2016   trcVerbose("reserve_mmaped_memory " UINTX_FORMAT " bytes, wishaddress " PTR_FORMAT ", "
2017     "alignment_hint " UINTX_FORMAT "...",
2018     bytes, requested_addr, alignment_hint);
2019 
2020   // If a wish address is given, but not aligned to 4K page boundary, mmap will fail.
2021   if (requested_addr && !is_aligned_to(requested_addr, os::vm_page_size()) != 0) {
2022     trcVerbose("Wish address " PTR_FORMAT " not aligned to page boundary.", requested_addr);
2023     return NULL;
2024   }
2025 
2026   // We must prevent anyone from attaching too close to the
2027   // BRK because that may cause malloc OOM.
2028   if (requested_addr != NULL && is_close_to_brk((address)requested_addr)) {
2029     trcVerbose("Wish address " PTR_FORMAT " is too close to the BRK segment. "
2030       "Will attach anywhere.", requested_addr);
2031     // Act like the OS refused to attach there.
2032     requested_addr = NULL;
2033   }
2034 
2035   // Specify one or the other but not both.
2036   assert0(!(requested_addr != NULL && alignment_hint > 0));
2037 
2038   // In 64K mode, we claim the global page size (os::vm_page_size())
2039   // is 64K. This is one of the few points where that illusion may
2040   // break, because mmap() will always return memory aligned to 4K. So
2041   // we must ensure we only ever return memory aligned to 64k.
2042   if (alignment_hint) {
2043     alignment_hint = lcm(alignment_hint, os::vm_page_size());
2044   } else {
2045     alignment_hint = os::vm_page_size();
2046   }
2047 
2048   // Size shall always be a multiple of os::vm_page_size (esp. in 64K mode).
2049   const size_t size = align_up(bytes, os::vm_page_size());
2050 
2051   // alignment: Allocate memory large enough to include an aligned range of the right size and
2052   // cut off the leading and trailing waste pages.
2053   assert0(alignment_hint != 0 && is_aligned_to(alignment_hint, os::vm_page_size())); // see above
2054   const size_t extra_size = size + alignment_hint;
2055 
2056   // Note: MAP_SHARED (instead of MAP_PRIVATE) needed to be able to
2057   // later use msync(MS_INVALIDATE) (see os::uncommit_memory).
2058   int flags = MAP_ANONYMOUS | MAP_SHARED;
2059 
2060   // MAP_FIXED is needed to enforce requested_addr - manpage is vague about what
2061   // it means if wishaddress is given but MAP_FIXED is not set.
2062   //
2063   // Important! Behaviour differs depending on whether SPEC1170 mode is active or not.
2064   // SPEC1170 mode active: behaviour like POSIX, MAP_FIXED will clobber existing mappings.
2065   // SPEC1170 mode not active: behaviour, unlike POSIX, is that no existing mappings will
2066   // get clobbered.
2067   if (requested_addr != NULL) {
2068     if (!os::Aix::xpg_sus_mode()) {  // not SPEC1170 Behaviour
2069       flags |= MAP_FIXED;
2070     }
2071   }
2072 
2073   char* addr = (char*)::mmap(requested_addr, extra_size,
2074       PROT_READ|PROT_WRITE|PROT_EXEC, flags, -1, 0);
2075 
2076   if (addr == MAP_FAILED) {
2077     trcVerbose("mmap(" PTR_FORMAT ", " UINTX_FORMAT ", ..) failed (%d)", requested_addr, size, errno);
2078     return NULL;
2079   }
2080 
2081   // Handle alignment.
2082   char* const addr_aligned = align_up(addr, alignment_hint);
2083   const size_t waste_pre = addr_aligned - addr;
2084   char* const addr_aligned_end = addr_aligned + size;
2085   const size_t waste_post = extra_size - waste_pre - size;
2086   if (waste_pre > 0) {
2087     ::munmap(addr, waste_pre);
2088   }
2089   if (waste_post > 0) {
2090     ::munmap(addr_aligned_end, waste_post);
2091   }
2092   addr = addr_aligned;
2093 
2094   if (addr) {
2095     trcVerbose("mmap-allocated " PTR_FORMAT " .. " PTR_FORMAT " (" UINTX_FORMAT " bytes)",
2096       addr, addr + bytes, bytes);
2097   } else {
2098     if (requested_addr != NULL) {
2099       trcVerbose("failed to mmap-allocate " UINTX_FORMAT " bytes at wish address " PTR_FORMAT ".", bytes, requested_addr);
2100     } else {
2101       trcVerbose("failed to mmap-allocate " UINTX_FORMAT " bytes at any address.", bytes);
2102     }
2103   }
2104 
2105   // bookkeeping
2106   vmembk_add(addr, size, 4*K, VMEM_MAPPED);
2107 
2108   // Test alignment, see above.
2109   assert0(is_aligned_to(addr, os::vm_page_size()));
2110 
2111   return addr;
2112 }
2113 
2114 static bool release_mmaped_memory(char* addr, size_t size) {
2115   assert0(is_aligned_to(addr, os::vm_page_size()));
2116   assert0(is_aligned_to(size, os::vm_page_size()));
2117 
2118   trcVerbose("release_mmaped_memory [" PTR_FORMAT " - " PTR_FORMAT "].",
2119     addr, addr + size - 1);
2120   bool rc = false;
2121 
2122   if (::munmap(addr, size) != 0) {
2123     trcVerbose("failed (%d)\n", errno);
2124     rc = false;
2125   } else {
2126     trcVerbose("ok.");
2127     rc = true;
2128   }
2129 
2130   return rc;
2131 }
2132 
2133 static bool uncommit_mmaped_memory(char* addr, size_t size) {
2134 
2135   assert0(is_aligned_to(addr, os::vm_page_size()));
2136   assert0(is_aligned_to(size, os::vm_page_size()));
2137 
2138   trcVerbose("uncommit_mmaped_memory [" PTR_FORMAT " - " PTR_FORMAT "].",
2139     addr, addr + size - 1);
2140   bool rc = false;
2141 
2142   // Uncommit mmap memory with msync MS_INVALIDATE.
2143   if (::msync(addr, size, MS_INVALIDATE) != 0) {
2144     trcVerbose("failed (%d)\n", errno);
2145     rc = false;
2146   } else {
2147     trcVerbose("ok.");
2148     rc = true;
2149   }
2150 
2151   return rc;
2152 }
2153 
2154 int os::vm_page_size() {
2155   // Seems redundant as all get out.
2156   assert(os::Aix::page_size() != -1, "must call os::init");
2157   return os::Aix::page_size();
2158 }
2159 
2160 // Aix allocates memory by pages.
2161 int os::vm_allocation_granularity() {
2162   assert(os::Aix::page_size() != -1, "must call os::init");
2163   return os::Aix::page_size();
2164 }
2165 
2166 #ifdef PRODUCT
2167 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2168                                     int err) {
2169   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2170           ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2171           os::errno_name(err), err);
2172 }
2173 #endif
2174 
2175 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2176                                   const char* mesg) {
2177   assert(mesg != NULL, "mesg must be specified");
2178   if (!pd_commit_memory(addr, size, exec)) {
2179     // Add extra info in product mode for vm_exit_out_of_memory():
2180     PRODUCT_ONLY(warn_fail_commit_memory(addr, size, exec, errno);)
2181     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2182   }
2183 }
2184 
2185 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2186 
2187   assert(is_aligned_to(addr, os::vm_page_size()),
2188     "addr " PTR_FORMAT " not aligned to vm_page_size (" PTR_FORMAT ")",
2189     p2i(addr), os::vm_page_size());
2190   assert(is_aligned_to(size, os::vm_page_size()),
2191     "size " PTR_FORMAT " not aligned to vm_page_size (" PTR_FORMAT ")",
2192     size, os::vm_page_size());
2193 
2194   vmembk_t* const vmi = vmembk_find(addr);
2195   guarantee0(vmi);
2196   vmi->assert_is_valid_subrange(addr, size);
2197 
2198   trcVerbose("commit_memory [" PTR_FORMAT " - " PTR_FORMAT "].", addr, addr + size - 1);
2199 
2200   if (UseExplicitCommit) {
2201     // AIX commits memory on touch. So, touch all pages to be committed.
2202     for (char* p = addr; p < (addr + size); p += 4*K) {
2203       *p = '\0';
2204     }
2205   }
2206 
2207   return true;
2208 }
2209 
2210 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint, bool exec) {
2211   return pd_commit_memory(addr, size, exec);
2212 }
2213 
2214 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2215                                   size_t alignment_hint, bool exec,
2216                                   const char* mesg) {
2217   // Alignment_hint is ignored on this OS.
2218   pd_commit_memory_or_exit(addr, size, exec, mesg);
2219 }
2220 
2221 bool os::pd_uncommit_memory(char* addr, size_t size) {
2222   assert(is_aligned_to(addr, os::vm_page_size()),
2223     "addr " PTR_FORMAT " not aligned to vm_page_size (" PTR_FORMAT ")",
2224     p2i(addr), os::vm_page_size());
2225   assert(is_aligned_to(size, os::vm_page_size()),
2226     "size " PTR_FORMAT " not aligned to vm_page_size (" PTR_FORMAT ")",
2227     size, os::vm_page_size());
2228 
2229   // Dynamically do different things for mmap/shmat.
2230   const vmembk_t* const vmi = vmembk_find(addr);
2231   guarantee0(vmi);
2232   vmi->assert_is_valid_subrange(addr, size);
2233 
2234   if (vmi->type == VMEM_SHMATED) {
2235     return uncommit_shmated_memory(addr, size);
2236   } else {
2237     return uncommit_mmaped_memory(addr, size);
2238   }
2239 }
2240 
2241 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2242   // Do not call this; no need to commit stack pages on AIX.
2243   ShouldNotReachHere();
2244   return true;
2245 }
2246 
2247 bool os::remove_stack_guard_pages(char* addr, size_t size) {
2248   // Do not call this; no need to commit stack pages on AIX.
2249   ShouldNotReachHere();
2250   return true;
2251 }
2252 
2253 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2254 }
2255 
2256 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2257 }
2258 
2259 void os::numa_make_global(char *addr, size_t bytes) {
2260 }
2261 
2262 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2263 }
2264 
2265 bool os::numa_topology_changed() {
2266   return false;
2267 }
2268 
2269 size_t os::numa_get_groups_num() {
2270   return 1;
2271 }
2272 
2273 int os::numa_get_group_id() {
2274   return 0;
2275 }
2276 
2277 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2278   if (size > 0) {
2279     ids[0] = 0;
2280     return 1;
2281   }
2282   return 0;
2283 }
2284 
2285 bool os::get_page_info(char *start, page_info* info) {
2286   return false;
2287 }
2288 
2289 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2290   return end;
2291 }
2292 
2293 // Reserves and attaches a shared memory segment.
2294 // Will assert if a wish address is given and could not be obtained.
2295 char* os::pd_reserve_memory(size_t bytes, char* requested_addr, size_t alignment_hint) {
2296 
2297   // All other Unices do a mmap(MAP_FIXED) if the addr is given,
2298   // thereby clobbering old mappings at that place. That is probably
2299   // not intended, never used and almost certainly an error were it
2300   // ever be used this way (to try attaching at a specified address
2301   // without clobbering old mappings an alternate API exists,
2302   // os::attempt_reserve_memory_at()).
2303   // Instead of mimicking the dangerous coding of the other platforms, here I
2304   // just ignore the request address (release) or assert(debug).
2305   assert0(requested_addr == NULL);
2306 
2307   // Always round to os::vm_page_size(), which may be larger than 4K.
2308   bytes = align_up(bytes, os::vm_page_size());
2309   const size_t alignment_hint0 =
2310     alignment_hint ? align_up(alignment_hint, os::vm_page_size()) : 0;
2311 
2312   // In 4K mode always use mmap.
2313   // In 64K mode allocate small sizes with mmap, large ones with 64K shmatted.
2314   if (os::vm_page_size() == 4*K) {
2315     return reserve_mmaped_memory(bytes, requested_addr, alignment_hint);
2316   } else {
2317     if (bytes >= Use64KPagesThreshold) {
2318       return reserve_shmated_memory(bytes, requested_addr, alignment_hint);
2319     } else {
2320       return reserve_mmaped_memory(bytes, requested_addr, alignment_hint);
2321     }
2322   }
2323 }
2324 
2325 bool os::pd_release_memory(char* addr, size_t size) {
2326 
2327   // Dynamically do different things for mmap/shmat.
2328   vmembk_t* const vmi = vmembk_find(addr);
2329   guarantee0(vmi);
2330 
2331   // Always round to os::vm_page_size(), which may be larger than 4K.
2332   size = align_up(size, os::vm_page_size());
2333   addr = align_up(addr, os::vm_page_size());
2334 
2335   bool rc = false;
2336   bool remove_bookkeeping = false;
2337   if (vmi->type == VMEM_SHMATED) {
2338     // For shmatted memory, we do:
2339     // - If user wants to release the whole range, release the memory (shmdt).
2340     // - If user only wants to release a partial range, uncommit (disclaim) that
2341     //   range. That way, at least, we do not use memory anymore (bust still page
2342     //   table space).
2343     vmi->assert_is_valid_subrange(addr, size);
2344     if (addr == vmi->addr && size == vmi->size) {
2345       rc = release_shmated_memory(addr, size);
2346       remove_bookkeeping = true;
2347     } else {
2348       rc = uncommit_shmated_memory(addr, size);
2349     }
2350   } else {
2351     // User may unmap partial regions but region has to be fully contained.
2352 #ifdef ASSERT
2353     vmi->assert_is_valid_subrange(addr, size);
2354 #endif
2355     rc = release_mmaped_memory(addr, size);
2356     remove_bookkeeping = true;
2357   }
2358 
2359   // update bookkeeping
2360   if (rc && remove_bookkeeping) {
2361     vmembk_remove(vmi);
2362   }
2363 
2364   return rc;
2365 }
2366 
2367 static bool checked_mprotect(char* addr, size_t size, int prot) {
2368 
2369   // Little problem here: if SPEC1170 behaviour is off, mprotect() on AIX will
2370   // not tell me if protection failed when trying to protect an un-protectable range.
2371   //
2372   // This means if the memory was allocated using shmget/shmat, protection wont work
2373   // but mprotect will still return 0:
2374   //
2375   // See http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.aix.basetechref/doc/basetrf1/mprotect.htm
2376 
2377   bool rc = ::mprotect(addr, size, prot) == 0 ? true : false;
2378 
2379   if (!rc) {
2380     const char* const s_errno = os::errno_name(errno);
2381     warning("mprotect(" PTR_FORMAT "-" PTR_FORMAT ", 0x%X) failed (%s).", addr, addr + size, prot, s_errno);
2382     return false;
2383   }
2384 
2385   // mprotect success check
2386   //
2387   // Mprotect said it changed the protection but can I believe it?
2388   //
2389   // To be sure I need to check the protection afterwards. Try to
2390   // read from protected memory and check whether that causes a segfault.
2391   //
2392   if (!os::Aix::xpg_sus_mode()) {
2393 
2394     if (CanUseSafeFetch32()) {
2395 
2396       const bool read_protected =
2397         (SafeFetch32((int*)addr, 0x12345678) == 0x12345678 &&
2398          SafeFetch32((int*)addr, 0x76543210) == 0x76543210) ? true : false;
2399 
2400       if (prot & PROT_READ) {
2401         rc = !read_protected;
2402       } else {
2403         rc = read_protected;
2404       }
2405 
2406       if (!rc) {
2407         if (os::Aix::on_pase()) {
2408           // There is an issue on older PASE systems where mprotect() will return success but the
2409           // memory will not be protected.
2410           // This has nothing to do with the problem of using mproect() on SPEC1170 incompatible
2411           // machines; we only see it rarely, when using mprotect() to protect the guard page of
2412           // a stack. It is an OS error.
2413           //
2414           // A valid strategy is just to try again. This usually works. :-/
2415 
2416           ::usleep(1000);
2417           if (::mprotect(addr, size, prot) == 0) {
2418             const bool read_protected_2 =
2419               (SafeFetch32((int*)addr, 0x12345678) == 0x12345678 &&
2420               SafeFetch32((int*)addr, 0x76543210) == 0x76543210) ? true : false;
2421             rc = true;
2422           }
2423         }
2424       }
2425     }
2426   }
2427 
2428   assert(rc == true, "mprotect failed.");
2429 
2430   return rc;
2431 }
2432 
2433 // Set protections specified
2434 bool os::protect_memory(char* addr, size_t size, ProtType prot, bool is_committed) {
2435   unsigned int p = 0;
2436   switch (prot) {
2437   case MEM_PROT_NONE: p = PROT_NONE; break;
2438   case MEM_PROT_READ: p = PROT_READ; break;
2439   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2440   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2441   default:
2442     ShouldNotReachHere();
2443   }
2444   // is_committed is unused.
2445   return checked_mprotect(addr, size, p);
2446 }
2447 
2448 bool os::guard_memory(char* addr, size_t size) {
2449   return checked_mprotect(addr, size, PROT_NONE);
2450 }
2451 
2452 bool os::unguard_memory(char* addr, size_t size) {
2453   return checked_mprotect(addr, size, PROT_READ|PROT_WRITE|PROT_EXEC);
2454 }
2455 
2456 // Large page support
2457 
2458 static size_t _large_page_size = 0;
2459 
2460 // Enable large page support if OS allows that.
2461 void os::large_page_init() {
2462   return; // Nothing to do. See query_multipage_support and friends.
2463 }
2464 
2465 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
2466   // reserve_memory_special() is used to allocate large paged memory. On AIX, we implement
2467   // 64k paged memory reservation using the normal memory allocation paths (os::reserve_memory()),
2468   // so this is not needed.
2469   assert(false, "should not be called on AIX");
2470   return NULL;
2471 }
2472 
2473 bool os::release_memory_special(char* base, size_t bytes) {
2474   // Detaching the SHM segment will also delete it, see reserve_memory_special().
2475   Unimplemented();
2476   return false;
2477 }
2478 
2479 size_t os::large_page_size() {
2480   return _large_page_size;
2481 }
2482 
2483 bool os::can_commit_large_page_memory() {
2484   // Does not matter, we do not support huge pages.
2485   return false;
2486 }
2487 
2488 bool os::can_execute_large_page_memory() {
2489   // Does not matter, we do not support huge pages.
2490   return false;
2491 }
2492 
2493 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr, int file_desc) {
2494   assert(file_desc >= 0, "file_desc is not valid");
2495   char* result = NULL;
2496 
2497   // Always round to os::vm_page_size(), which may be larger than 4K.
2498   bytes = align_up(bytes, os::vm_page_size());
2499   result = reserve_mmaped_memory(bytes, requested_addr, 0);
2500 
2501   if (result != NULL) {
2502     if (replace_existing_mapping_with_file_mapping(result, bytes, file_desc) == NULL) {
2503       vm_exit_during_initialization(err_msg("Error in mapping Java heap at the given filesystem directory"));
2504     }
2505   }
2506   return result;
2507 }
2508 
2509 // Reserve memory at an arbitrary address, only if that area is
2510 // available (and not reserved for something else).
2511 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2512   char* addr = NULL;
2513 
2514   // Always round to os::vm_page_size(), which may be larger than 4K.
2515   bytes = align_up(bytes, os::vm_page_size());
2516 
2517   // In 4K mode always use mmap.
2518   // In 64K mode allocate small sizes with mmap, large ones with 64K shmatted.
2519   if (os::vm_page_size() == 4*K) {
2520     return reserve_mmaped_memory(bytes, requested_addr, 0);
2521   } else {
2522     if (bytes >= Use64KPagesThreshold) {
2523       return reserve_shmated_memory(bytes, requested_addr, 0);
2524     } else {
2525       return reserve_mmaped_memory(bytes, requested_addr, 0);
2526     }
2527   }
2528 
2529   return addr;
2530 }
2531 
2532 size_t os::read(int fd, void *buf, unsigned int nBytes) {
2533   return ::read(fd, buf, nBytes);
2534 }
2535 
2536 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
2537   return ::pread(fd, buf, nBytes, offset);
2538 }
2539 
2540 void os::naked_short_sleep(jlong ms) {
2541   struct timespec req;
2542 
2543   assert(ms < 1000, "Un-interruptable sleep, short time use only");
2544   req.tv_sec = 0;
2545   if (ms > 0) {
2546     req.tv_nsec = (ms % 1000) * 1000000;
2547   }
2548   else {
2549     req.tv_nsec = 1;
2550   }
2551 
2552   nanosleep(&req, NULL);
2553 
2554   return;
2555 }
2556 
2557 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
2558 void os::infinite_sleep() {
2559   while (true) {    // sleep forever ...
2560     ::sleep(100);   // ... 100 seconds at a time
2561   }
2562 }
2563 
2564 // Used to convert frequent JVM_Yield() to nops
2565 bool os::dont_yield() {
2566   return DontYieldALot;
2567 }
2568 
2569 void os::naked_yield() {
2570   sched_yield();
2571 }
2572 
2573 ////////////////////////////////////////////////////////////////////////////////
2574 // thread priority support
2575 
2576 // From AIX manpage to pthread_setschedparam
2577 // (see: http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?
2578 //    topic=/com.ibm.aix.basetechref/doc/basetrf1/pthread_setschedparam.htm):
2579 //
2580 // "If schedpolicy is SCHED_OTHER, then sched_priority must be in the
2581 // range from 40 to 80, where 40 is the least favored priority and 80
2582 // is the most favored."
2583 //
2584 // (Actually, I doubt this even has an impact on AIX, as we do kernel
2585 // scheduling there; however, this still leaves iSeries.)
2586 //
2587 // We use the same values for AIX and PASE.
2588 int os::java_to_os_priority[CriticalPriority + 1] = {
2589   54,             // 0 Entry should never be used
2590 
2591   55,             // 1 MinPriority
2592   55,             // 2
2593   56,             // 3
2594 
2595   56,             // 4
2596   57,             // 5 NormPriority
2597   57,             // 6
2598 
2599   58,             // 7
2600   58,             // 8
2601   59,             // 9 NearMaxPriority
2602 
2603   60,             // 10 MaxPriority
2604 
2605   60              // 11 CriticalPriority
2606 };
2607 
2608 OSReturn os::set_native_priority(Thread* thread, int newpri) {
2609   if (!UseThreadPriorities) return OS_OK;
2610   pthread_t thr = thread->osthread()->pthread_id();
2611   int policy = SCHED_OTHER;
2612   struct sched_param param;
2613   param.sched_priority = newpri;
2614   int ret = pthread_setschedparam(thr, policy, &param);
2615 
2616   if (ret != 0) {
2617     trcVerbose("Could not change priority for thread %d to %d (error %d, %s)",
2618         (int)thr, newpri, ret, os::errno_name(ret));
2619   }
2620   return (ret == 0) ? OS_OK : OS_ERR;
2621 }
2622 
2623 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
2624   if (!UseThreadPriorities) {
2625     *priority_ptr = java_to_os_priority[NormPriority];
2626     return OS_OK;
2627   }
2628   pthread_t thr = thread->osthread()->pthread_id();
2629   int policy = SCHED_OTHER;
2630   struct sched_param param;
2631   int ret = pthread_getschedparam(thr, &policy, &param);
2632   *priority_ptr = param.sched_priority;
2633 
2634   return (ret == 0) ? OS_OK : OS_ERR;
2635 }
2636 
2637 // Hint to the underlying OS that a task switch would not be good.
2638 // Void return because it's a hint and can fail.
2639 void os::hint_no_preempt() {}
2640 
2641 ////////////////////////////////////////////////////////////////////////////////
2642 // suspend/resume support
2643 
2644 //  The low-level signal-based suspend/resume support is a remnant from the
2645 //  old VM-suspension that used to be for java-suspension, safepoints etc,
2646 //  within hotspot. Currently used by JFR's OSThreadSampler
2647 //
2648 //  The remaining code is greatly simplified from the more general suspension
2649 //  code that used to be used.
2650 //
2651 //  The protocol is quite simple:
2652 //  - suspend:
2653 //      - sends a signal to the target thread
2654 //      - polls the suspend state of the osthread using a yield loop
2655 //      - target thread signal handler (SR_handler) sets suspend state
2656 //        and blocks in sigsuspend until continued
2657 //  - resume:
2658 //      - sets target osthread state to continue
2659 //      - sends signal to end the sigsuspend loop in the SR_handler
2660 //
2661 //  Note that the SR_lock plays no role in this suspend/resume protocol,
2662 //  but is checked for NULL in SR_handler as a thread termination indicator.
2663 //  The SR_lock is, however, used by JavaThread::java_suspend()/java_resume() APIs.
2664 //
2665 //  Note that resume_clear_context() and suspend_save_context() are needed
2666 //  by SR_handler(), so that fetch_frame_from_ucontext() works,
2667 //  which in part is used by:
2668 //    - Forte Analyzer: AsyncGetCallTrace()
2669 //    - StackBanging: get_frame_at_stack_banging_point()
2670 
2671 static void resume_clear_context(OSThread *osthread) {
2672   osthread->set_ucontext(NULL);
2673   osthread->set_siginfo(NULL);
2674 }
2675 
2676 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
2677   osthread->set_ucontext(context);
2678   osthread->set_siginfo(siginfo);
2679 }
2680 
2681 //
2682 // Handler function invoked when a thread's execution is suspended or
2683 // resumed. We have to be careful that only async-safe functions are
2684 // called here (Note: most pthread functions are not async safe and
2685 // should be avoided.)
2686 //
2687 // Note: sigwait() is a more natural fit than sigsuspend() from an
2688 // interface point of view, but sigwait() prevents the signal hander
2689 // from being run. libpthread would get very confused by not having
2690 // its signal handlers run and prevents sigwait()'s use with the
2691 // mutex granting granting signal.
2692 //
2693 // Currently only ever called on the VMThread and JavaThreads (PC sampling).
2694 //
2695 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
2696   // Save and restore errno to avoid confusing native code with EINTR
2697   // after sigsuspend.
2698   int old_errno = errno;
2699 
2700   Thread* thread = Thread::current_or_null_safe();
2701   assert(thread != NULL, "Missing current thread in SR_handler");
2702 
2703   // On some systems we have seen signal delivery get "stuck" until the signal
2704   // mask is changed as part of thread termination. Check that the current thread
2705   // has not already terminated (via SR_lock()) - else the following assertion
2706   // will fail because the thread is no longer a JavaThread as the ~JavaThread
2707   // destructor has completed.
2708 
2709   if (thread->SR_lock() == NULL) {
2710     return;
2711   }
2712 
2713   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
2714 
2715   OSThread* osthread = thread->osthread();
2716 
2717   os::SuspendResume::State current = osthread->sr.state();
2718   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
2719     suspend_save_context(osthread, siginfo, context);
2720 
2721     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
2722     os::SuspendResume::State state = osthread->sr.suspended();
2723     if (state == os::SuspendResume::SR_SUSPENDED) {
2724       sigset_t suspend_set;  // signals for sigsuspend()
2725 
2726       // get current set of blocked signals and unblock resume signal
2727       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
2728       sigdelset(&suspend_set, SR_signum);
2729 
2730       // wait here until we are resumed
2731       while (1) {
2732         sigsuspend(&suspend_set);
2733 
2734         os::SuspendResume::State result = osthread->sr.running();
2735         if (result == os::SuspendResume::SR_RUNNING) {
2736           break;
2737         }
2738       }
2739 
2740     } else if (state == os::SuspendResume::SR_RUNNING) {
2741       // request was cancelled, continue
2742     } else {
2743       ShouldNotReachHere();
2744     }
2745 
2746     resume_clear_context(osthread);
2747   } else if (current == os::SuspendResume::SR_RUNNING) {
2748     // request was cancelled, continue
2749   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
2750     // ignore
2751   } else {
2752     ShouldNotReachHere();
2753   }
2754 
2755   errno = old_errno;
2756 }
2757 
2758 static int SR_initialize() {
2759   struct sigaction act;
2760   char *s;
2761   // Get signal number to use for suspend/resume
2762   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
2763     int sig = ::strtol(s, 0, 10);
2764     if (sig > MAX2(SIGSEGV, SIGBUS) &&  // See 4355769.
2765         sig < NSIG) {                   // Must be legal signal and fit into sigflags[].
2766       SR_signum = sig;
2767     } else {
2768       warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
2769               sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
2770     }
2771   }
2772 
2773   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
2774         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
2775 
2776   sigemptyset(&SR_sigset);
2777   sigaddset(&SR_sigset, SR_signum);
2778 
2779   // Set up signal handler for suspend/resume.
2780   act.sa_flags = SA_RESTART|SA_SIGINFO;
2781   act.sa_handler = (void (*)(int)) SR_handler;
2782 
2783   // SR_signum is blocked by default.
2784   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
2785 
2786   if (sigaction(SR_signum, &act, 0) == -1) {
2787     return -1;
2788   }
2789 
2790   // Save signal flag
2791   os::Aix::set_our_sigflags(SR_signum, act.sa_flags);
2792   return 0;
2793 }
2794 
2795 static int SR_finalize() {
2796   return 0;
2797 }
2798 
2799 static int sr_notify(OSThread* osthread) {
2800   int status = pthread_kill(osthread->pthread_id(), SR_signum);
2801   assert_status(status == 0, status, "pthread_kill");
2802   return status;
2803 }
2804 
2805 // "Randomly" selected value for how long we want to spin
2806 // before bailing out on suspending a thread, also how often
2807 // we send a signal to a thread we want to resume
2808 static const int RANDOMLY_LARGE_INTEGER = 1000000;
2809 static const int RANDOMLY_LARGE_INTEGER2 = 100;
2810 
2811 // returns true on success and false on error - really an error is fatal
2812 // but this seems the normal response to library errors
2813 static bool do_suspend(OSThread* osthread) {
2814   assert(osthread->sr.is_running(), "thread should be running");
2815   // mark as suspended and send signal
2816 
2817   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
2818     // failed to switch, state wasn't running?
2819     ShouldNotReachHere();
2820     return false;
2821   }
2822 
2823   if (sr_notify(osthread) != 0) {
2824     // try to cancel, switch to running
2825 
2826     os::SuspendResume::State result = osthread->sr.cancel_suspend();
2827     if (result == os::SuspendResume::SR_RUNNING) {
2828       // cancelled
2829       return false;
2830     } else if (result == os::SuspendResume::SR_SUSPENDED) {
2831       // somehow managed to suspend
2832       return true;
2833     } else {
2834       ShouldNotReachHere();
2835       return false;
2836     }
2837   }
2838 
2839   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
2840 
2841   for (int n = 0; !osthread->sr.is_suspended(); n++) {
2842     for (int i = 0; i < RANDOMLY_LARGE_INTEGER2 && !osthread->sr.is_suspended(); i++) {
2843       os::naked_yield();
2844     }
2845 
2846     // timeout, try to cancel the request
2847     if (n >= RANDOMLY_LARGE_INTEGER) {
2848       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
2849       if (cancelled == os::SuspendResume::SR_RUNNING) {
2850         return false;
2851       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
2852         return true;
2853       } else {
2854         ShouldNotReachHere();
2855         return false;
2856       }
2857     }
2858   }
2859 
2860   guarantee(osthread->sr.is_suspended(), "Must be suspended");
2861   return true;
2862 }
2863 
2864 static void do_resume(OSThread* osthread) {
2865   //assert(osthread->sr.is_suspended(), "thread should be suspended");
2866 
2867   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
2868     // failed to switch to WAKEUP_REQUEST
2869     ShouldNotReachHere();
2870     return;
2871   }
2872 
2873   while (!osthread->sr.is_running()) {
2874     if (sr_notify(osthread) == 0) {
2875       for (int n = 0; n < RANDOMLY_LARGE_INTEGER && !osthread->sr.is_running(); n++) {
2876         for (int i = 0; i < 100 && !osthread->sr.is_running(); i++) {
2877           os::naked_yield();
2878         }
2879       }
2880     } else {
2881       ShouldNotReachHere();
2882     }
2883   }
2884 
2885   guarantee(osthread->sr.is_running(), "Must be running!");
2886 }
2887 
2888 ///////////////////////////////////////////////////////////////////////////////////
2889 // signal handling (except suspend/resume)
2890 
2891 // This routine may be used by user applications as a "hook" to catch signals.
2892 // The user-defined signal handler must pass unrecognized signals to this
2893 // routine, and if it returns true (non-zero), then the signal handler must
2894 // return immediately. If the flag "abort_if_unrecognized" is true, then this
2895 // routine will never retun false (zero), but instead will execute a VM panic
2896 // routine kill the process.
2897 //
2898 // If this routine returns false, it is OK to call it again. This allows
2899 // the user-defined signal handler to perform checks either before or after
2900 // the VM performs its own checks. Naturally, the user code would be making
2901 // a serious error if it tried to handle an exception (such as a null check
2902 // or breakpoint) that the VM was generating for its own correct operation.
2903 //
2904 // This routine may recognize any of the following kinds of signals:
2905 //   SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
2906 // It should be consulted by handlers for any of those signals.
2907 //
2908 // The caller of this routine must pass in the three arguments supplied
2909 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
2910 // field of the structure passed to sigaction(). This routine assumes that
2911 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
2912 //
2913 // Note that the VM will print warnings if it detects conflicting signal
2914 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
2915 //
2916 extern "C" JNIEXPORT int
2917 JVM_handle_aix_signal(int signo, siginfo_t* siginfo, void* ucontext, int abort_if_unrecognized);
2918 
2919 // Set thread signal mask (for some reason on AIX sigthreadmask() seems
2920 // to be the thing to call; documentation is not terribly clear about whether
2921 // pthread_sigmask also works, and if it does, whether it does the same.
2922 bool set_thread_signal_mask(int how, const sigset_t* set, sigset_t* oset) {
2923   const int rc = ::pthread_sigmask(how, set, oset);
2924   // return value semantics differ slightly for error case:
2925   // pthread_sigmask returns error number, sigthreadmask -1 and sets global errno
2926   // (so, pthread_sigmask is more theadsafe for error handling)
2927   // But success is always 0.
2928   return rc == 0 ? true : false;
2929 }
2930 
2931 // Function to unblock all signals which are, according
2932 // to POSIX, typical program error signals. If they happen while being blocked,
2933 // they typically will bring down the process immediately.
2934 bool unblock_program_error_signals() {
2935   sigset_t set;
2936   ::sigemptyset(&set);
2937   ::sigaddset(&set, SIGILL);
2938   ::sigaddset(&set, SIGBUS);
2939   ::sigaddset(&set, SIGFPE);
2940   ::sigaddset(&set, SIGSEGV);
2941   return set_thread_signal_mask(SIG_UNBLOCK, &set, NULL);
2942 }
2943 
2944 // Renamed from 'signalHandler' to avoid collision with other shared libs.
2945 void javaSignalHandler(int sig, siginfo_t* info, void* uc) {
2946   assert(info != NULL && uc != NULL, "it must be old kernel");
2947 
2948   // Never leave program error signals blocked;
2949   // on all our platforms they would bring down the process immediately when
2950   // getting raised while being blocked.
2951   unblock_program_error_signals();
2952 
2953   int orig_errno = errno;  // Preserve errno value over signal handler.
2954   JVM_handle_aix_signal(sig, info, uc, true);
2955   errno = orig_errno;
2956 }
2957 
2958 // This boolean allows users to forward their own non-matching signals
2959 // to JVM_handle_aix_signal, harmlessly.
2960 bool os::Aix::signal_handlers_are_installed = false;
2961 
2962 // For signal-chaining
2963 struct sigaction sigact[NSIG];
2964 sigset_t sigs;
2965 bool os::Aix::libjsig_is_loaded = false;
2966 typedef struct sigaction *(*get_signal_t)(int);
2967 get_signal_t os::Aix::get_signal_action = NULL;
2968 
2969 struct sigaction* os::Aix::get_chained_signal_action(int sig) {
2970   struct sigaction *actp = NULL;
2971 
2972   if (libjsig_is_loaded) {
2973     // Retrieve the old signal handler from libjsig
2974     actp = (*get_signal_action)(sig);
2975   }
2976   if (actp == NULL) {
2977     // Retrieve the preinstalled signal handler from jvm
2978     actp = get_preinstalled_handler(sig);
2979   }
2980 
2981   return actp;
2982 }
2983 
2984 static bool call_chained_handler(struct sigaction *actp, int sig,
2985                                  siginfo_t *siginfo, void *context) {
2986   // Call the old signal handler
2987   if (actp->sa_handler == SIG_DFL) {
2988     // It's more reasonable to let jvm treat it as an unexpected exception
2989     // instead of taking the default action.
2990     return false;
2991   } else if (actp->sa_handler != SIG_IGN) {
2992     if ((actp->sa_flags & SA_NODEFER) == 0) {
2993       // automaticlly block the signal
2994       sigaddset(&(actp->sa_mask), sig);
2995     }
2996 
2997     sa_handler_t hand = NULL;
2998     sa_sigaction_t sa = NULL;
2999     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3000     // retrieve the chained handler
3001     if (siginfo_flag_set) {
3002       sa = actp->sa_sigaction;
3003     } else {
3004       hand = actp->sa_handler;
3005     }
3006 
3007     if ((actp->sa_flags & SA_RESETHAND) != 0) {
3008       actp->sa_handler = SIG_DFL;
3009     }
3010 
3011     // try to honor the signal mask
3012     sigset_t oset;
3013     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3014 
3015     // call into the chained handler
3016     if (siginfo_flag_set) {
3017       (*sa)(sig, siginfo, context);
3018     } else {
3019       (*hand)(sig);
3020     }
3021 
3022     // restore the signal mask
3023     pthread_sigmask(SIG_SETMASK, &oset, 0);
3024   }
3025   // Tell jvm's signal handler the signal is taken care of.
3026   return true;
3027 }
3028 
3029 bool os::Aix::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3030   bool chained = false;
3031   // signal-chaining
3032   if (UseSignalChaining) {
3033     struct sigaction *actp = get_chained_signal_action(sig);
3034     if (actp != NULL) {
3035       chained = call_chained_handler(actp, sig, siginfo, context);
3036     }
3037   }
3038   return chained;
3039 }
3040 
3041 struct sigaction* os::Aix::get_preinstalled_handler(int sig) {
3042   if (sigismember(&sigs, sig)) {
3043     return &sigact[sig];
3044   }
3045   return NULL;
3046 }
3047 
3048 void os::Aix::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3049   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3050   sigact[sig] = oldAct;
3051   sigaddset(&sigs, sig);
3052 }
3053 
3054 // for diagnostic
3055 int sigflags[NSIG];
3056 
3057 int os::Aix::get_our_sigflags(int sig) {
3058   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3059   return sigflags[sig];
3060 }
3061 
3062 void os::Aix::set_our_sigflags(int sig, int flags) {
3063   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3064   if (sig > 0 && sig < NSIG) {
3065     sigflags[sig] = flags;
3066   }
3067 }
3068 
3069 void os::Aix::set_signal_handler(int sig, bool set_installed) {
3070   // Check for overwrite.
3071   struct sigaction oldAct;
3072   sigaction(sig, (struct sigaction*)NULL, &oldAct);
3073 
3074   void* oldhand = oldAct.sa_sigaction
3075     ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3076     : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3077   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3078       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3079       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)javaSignalHandler)) {
3080     if (AllowUserSignalHandlers || !set_installed) {
3081       // Do not overwrite; user takes responsibility to forward to us.
3082       return;
3083     } else if (UseSignalChaining) {
3084       // save the old handler in jvm
3085       save_preinstalled_handler(sig, oldAct);
3086       // libjsig also interposes the sigaction() call below and saves the
3087       // old sigaction on it own.
3088     } else {
3089       fatal("Encountered unexpected pre-existing sigaction handler "
3090             "%#lx for signal %d.", (long)oldhand, sig);
3091     }
3092   }
3093 
3094   struct sigaction sigAct;
3095   sigfillset(&(sigAct.sa_mask));
3096   if (!set_installed) {
3097     sigAct.sa_handler = SIG_DFL;
3098     sigAct.sa_flags = SA_RESTART;
3099   } else {
3100     sigAct.sa_sigaction = javaSignalHandler;
3101     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3102   }
3103   // Save flags, which are set by ours
3104   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3105   sigflags[sig] = sigAct.sa_flags;
3106 
3107   int ret = sigaction(sig, &sigAct, &oldAct);
3108   assert(ret == 0, "check");
3109 
3110   void* oldhand2 = oldAct.sa_sigaction
3111                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3112                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3113   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3114 }
3115 
3116 // install signal handlers for signals that HotSpot needs to
3117 // handle in order to support Java-level exception handling.
3118 void os::Aix::install_signal_handlers() {
3119   if (!signal_handlers_are_installed) {
3120     signal_handlers_are_installed = true;
3121 
3122     // signal-chaining
3123     typedef void (*signal_setting_t)();
3124     signal_setting_t begin_signal_setting = NULL;
3125     signal_setting_t end_signal_setting = NULL;
3126     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3127                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3128     if (begin_signal_setting != NULL) {
3129       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3130                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3131       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3132                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3133       libjsig_is_loaded = true;
3134       assert(UseSignalChaining, "should enable signal-chaining");
3135     }
3136     if (libjsig_is_loaded) {
3137       // Tell libjsig jvm is setting signal handlers.
3138       (*begin_signal_setting)();
3139     }
3140 
3141     ::sigemptyset(&sigs);
3142     set_signal_handler(SIGSEGV, true);
3143     set_signal_handler(SIGPIPE, true);
3144     set_signal_handler(SIGBUS, true);
3145     set_signal_handler(SIGILL, true);
3146     set_signal_handler(SIGFPE, true);
3147     set_signal_handler(SIGTRAP, true);
3148     set_signal_handler(SIGXFSZ, true);
3149 
3150     if (libjsig_is_loaded) {
3151       // Tell libjsig jvm finishes setting signal handlers.
3152       (*end_signal_setting)();
3153     }
3154 
3155     // We don't activate signal checker if libjsig is in place, we trust ourselves
3156     // and if UserSignalHandler is installed all bets are off.
3157     // Log that signal checking is off only if -verbose:jni is specified.
3158     if (CheckJNICalls) {
3159       if (libjsig_is_loaded) {
3160         tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3161         check_signals = false;
3162       }
3163       if (AllowUserSignalHandlers) {
3164         tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3165         check_signals = false;
3166       }
3167       // Need to initialize check_signal_done.
3168       ::sigemptyset(&check_signal_done);
3169     }
3170   }
3171 }
3172 
3173 static const char* get_signal_handler_name(address handler,
3174                                            char* buf, int buflen) {
3175   int offset;
3176   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3177   if (found) {
3178     // skip directory names
3179     const char *p1, *p2;
3180     p1 = buf;
3181     size_t len = strlen(os::file_separator());
3182     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3183     // The way os::dll_address_to_library_name is implemented on Aix
3184     // right now, it always returns -1 for the offset which is not
3185     // terribly informative.
3186     // Will fix that. For now, omit the offset.
3187     jio_snprintf(buf, buflen, "%s", p1);
3188   } else {
3189     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3190   }
3191   return buf;
3192 }
3193 
3194 static void print_signal_handler(outputStream* st, int sig,
3195                                  char* buf, size_t buflen) {
3196   struct sigaction sa;
3197   sigaction(sig, NULL, &sa);
3198 
3199   st->print("%s: ", os::exception_name(sig, buf, buflen));
3200 
3201   address handler = (sa.sa_flags & SA_SIGINFO)
3202     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3203     : CAST_FROM_FN_PTR(address, sa.sa_handler);
3204 
3205   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3206     st->print("SIG_DFL");
3207   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3208     st->print("SIG_IGN");
3209   } else {
3210     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3211   }
3212 
3213   // Print readable mask.
3214   st->print(", sa_mask[0]=");
3215   os::Posix::print_signal_set_short(st, &sa.sa_mask);
3216 
3217   address rh = VMError::get_resetted_sighandler(sig);
3218   // May be, handler was resetted by VMError?
3219   if (rh != NULL) {
3220     handler = rh;
3221     sa.sa_flags = VMError::get_resetted_sigflags(sig);
3222   }
3223 
3224   // Print textual representation of sa_flags.
3225   st->print(", sa_flags=");
3226   os::Posix::print_sa_flags(st, sa.sa_flags);
3227 
3228   // Check: is it our handler?
3229   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)javaSignalHandler) ||
3230       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3231     // It is our signal handler.
3232     // Check for flags, reset system-used one!
3233     if ((int)sa.sa_flags != os::Aix::get_our_sigflags(sig)) {
3234       st->print(", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3235                 os::Aix::get_our_sigflags(sig));
3236     }
3237   }
3238   st->cr();
3239 }
3240 
3241 #define DO_SIGNAL_CHECK(sig) \
3242   if (!sigismember(&check_signal_done, sig)) \
3243     os::Aix::check_signal_handler(sig)
3244 
3245 // This method is a periodic task to check for misbehaving JNI applications
3246 // under CheckJNI, we can add any periodic checks here
3247 
3248 void os::run_periodic_checks() {
3249 
3250   if (check_signals == false) return;
3251 
3252   // SEGV and BUS if overridden could potentially prevent
3253   // generation of hs*.log in the event of a crash, debugging
3254   // such a case can be very challenging, so we absolutely
3255   // check the following for a good measure:
3256   DO_SIGNAL_CHECK(SIGSEGV);
3257   DO_SIGNAL_CHECK(SIGILL);
3258   DO_SIGNAL_CHECK(SIGFPE);
3259   DO_SIGNAL_CHECK(SIGBUS);
3260   DO_SIGNAL_CHECK(SIGPIPE);
3261   DO_SIGNAL_CHECK(SIGXFSZ);
3262   if (UseSIGTRAP) {
3263     DO_SIGNAL_CHECK(SIGTRAP);
3264   }
3265 
3266   // ReduceSignalUsage allows the user to override these handlers
3267   // see comments at the very top and jvm_md.h
3268   if (!ReduceSignalUsage) {
3269     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3270     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3271     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3272     DO_SIGNAL_CHECK(BREAK_SIGNAL);
3273   }
3274 
3275   DO_SIGNAL_CHECK(SR_signum);
3276 }
3277 
3278 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3279 
3280 static os_sigaction_t os_sigaction = NULL;
3281 
3282 void os::Aix::check_signal_handler(int sig) {
3283   char buf[O_BUFLEN];
3284   address jvmHandler = NULL;
3285 
3286   struct sigaction act;
3287   if (os_sigaction == NULL) {
3288     // only trust the default sigaction, in case it has been interposed
3289     os_sigaction = CAST_TO_FN_PTR(os_sigaction_t, dlsym(RTLD_DEFAULT, "sigaction"));
3290     if (os_sigaction == NULL) return;
3291   }
3292 
3293   os_sigaction(sig, (struct sigaction*)NULL, &act);
3294 
3295   address thisHandler = (act.sa_flags & SA_SIGINFO)
3296     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3297     : CAST_FROM_FN_PTR(address, act.sa_handler);
3298 
3299   switch(sig) {
3300   case SIGSEGV:
3301   case SIGBUS:
3302   case SIGFPE:
3303   case SIGPIPE:
3304   case SIGILL:
3305   case SIGXFSZ:
3306     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)javaSignalHandler);
3307     break;
3308 
3309   case SHUTDOWN1_SIGNAL:
3310   case SHUTDOWN2_SIGNAL:
3311   case SHUTDOWN3_SIGNAL:
3312   case BREAK_SIGNAL:
3313     jvmHandler = (address)user_handler();
3314     break;
3315 
3316   default:
3317     if (sig == SR_signum) {
3318       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
3319     } else {
3320       return;
3321     }
3322     break;
3323   }
3324 
3325   if (thisHandler != jvmHandler) {
3326     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3327     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3328     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3329     // No need to check this sig any longer
3330     sigaddset(&check_signal_done, sig);
3331     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
3332     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
3333       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
3334                     exception_name(sig, buf, O_BUFLEN));
3335     }
3336   } else if (os::Aix::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Aix::get_our_sigflags(sig)) {
3337     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3338     tty->print("expected:");
3339     os::Posix::print_sa_flags(tty, os::Aix::get_our_sigflags(sig));
3340     tty->cr();
3341     tty->print("  found:");
3342     os::Posix::print_sa_flags(tty, act.sa_flags);
3343     tty->cr();
3344     // No need to check this sig any longer
3345     sigaddset(&check_signal_done, sig);
3346   }
3347 
3348   // Dump all the signal
3349   if (sigismember(&check_signal_done, sig)) {
3350     print_signal_handlers(tty, buf, O_BUFLEN);
3351   }
3352 }
3353 
3354 // To install functions for atexit system call
3355 extern "C" {
3356   static void perfMemory_exit_helper() {
3357     perfMemory_exit();
3358   }
3359 }
3360 
3361 // This is called _before_ the most of global arguments have been parsed.
3362 void os::init(void) {
3363   // This is basic, we want to know if that ever changes.
3364   // (Shared memory boundary is supposed to be a 256M aligned.)
3365   assert(SHMLBA == ((uint64_t)0x10000000ULL)/*256M*/, "unexpected");
3366 
3367   // Record process break at startup.
3368   g_brk_at_startup = (address) ::sbrk(0);
3369   assert(g_brk_at_startup != (address) -1, "sbrk failed");
3370 
3371   // First off, we need to know whether we run on AIX or PASE, and
3372   // the OS level we run on.
3373   os::Aix::initialize_os_info();
3374 
3375   // Scan environment (SPEC1170 behaviour, etc).
3376   os::Aix::scan_environment();
3377 
3378   // Probe multipage support.
3379   query_multipage_support();
3380 
3381   // Act like we only have one page size by eliminating corner cases which
3382   // we did not support very well anyway.
3383   // We have two input conditions:
3384   // 1) Data segment page size. This is controlled by linker setting (datapsize) on the
3385   //    launcher, and/or by LDR_CNTRL environment variable. The latter overrules the linker
3386   //    setting.
3387   //    Data segment page size is important for us because it defines the thread stack page
3388   //    size, which is needed for guard page handling, stack banging etc.
3389   // 2) The ability to allocate 64k pages dynamically. If this is a given, java heap can
3390   //    and should be allocated with 64k pages.
3391   //
3392   // So, we do the following:
3393   // LDR_CNTRL    can_use_64K_pages_dynamically       what we do                      remarks
3394   // 4K           no                                  4K                              old systems (aix 5.2, as/400 v5r4) or new systems with AME activated
3395   // 4k           yes                                 64k (treat 4k stacks as 64k)    different loader than java and standard settings
3396   // 64k          no              --- AIX 5.2 ? ---
3397   // 64k          yes                                 64k                             new systems and standard java loader (we set datapsize=64k when linking)
3398 
3399   // We explicitly leave no option to change page size, because only upgrading would work,
3400   // not downgrading (if stack page size is 64k you cannot pretend its 4k).
3401 
3402   if (g_multipage_support.datapsize == 4*K) {
3403     // datapsize = 4K. Data segment, thread stacks are 4K paged.
3404     if (g_multipage_support.can_use_64K_pages) {
3405       // .. but we are able to use 64K pages dynamically.
3406       // This would be typical for java launchers which are not linked
3407       // with datapsize=64K (like, any other launcher but our own).
3408       //
3409       // In this case it would be smart to allocate the java heap with 64K
3410       // to get the performance benefit, and to fake 64k pages for the
3411       // data segment (when dealing with thread stacks).
3412       //
3413       // However, leave a possibility to downgrade to 4K, using
3414       // -XX:-Use64KPages.
3415       if (Use64KPages) {
3416         trcVerbose("64K page mode (faked for data segment)");
3417         Aix::_page_size = 64*K;
3418       } else {
3419         trcVerbose("4K page mode (Use64KPages=off)");
3420         Aix::_page_size = 4*K;
3421       }
3422     } else {
3423       // .. and not able to allocate 64k pages dynamically. Here, just
3424       // fall back to 4K paged mode and use mmap for everything.
3425       trcVerbose("4K page mode");
3426       Aix::_page_size = 4*K;
3427       FLAG_SET_ERGO(bool, Use64KPages, false);
3428     }
3429   } else {
3430     // datapsize = 64k. Data segment, thread stacks are 64k paged.
3431     // This normally means that we can allocate 64k pages dynamically.
3432     // (There is one special case where this may be false: EXTSHM=on.
3433     // but we decided to not support that mode).
3434     assert0(g_multipage_support.can_use_64K_pages);
3435     Aix::_page_size = 64*K;
3436     trcVerbose("64K page mode");
3437     FLAG_SET_ERGO(bool, Use64KPages, true);
3438   }
3439 
3440   // For now UseLargePages is just ignored.
3441   FLAG_SET_ERGO(bool, UseLargePages, false);
3442   _page_sizes[0] = 0;
3443 
3444   // debug trace
3445   trcVerbose("os::vm_page_size %s", describe_pagesize(os::vm_page_size()));
3446 
3447   // Next, we need to initialize libo4 and libperfstat libraries.
3448   if (os::Aix::on_pase()) {
3449     os::Aix::initialize_libo4();
3450   } else {
3451     os::Aix::initialize_libperfstat();
3452   }
3453 
3454   // Reset the perfstat information provided by ODM.
3455   if (os::Aix::on_aix()) {
3456     libperfstat::perfstat_reset();
3457   }
3458 
3459   // Now initialze basic system properties. Note that for some of the values we
3460   // need libperfstat etc.
3461   os::Aix::initialize_system_info();
3462 
3463   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
3464 
3465   init_random(1234567);
3466 
3467   // _main_thread points to the thread that created/loaded the JVM.
3468   Aix::_main_thread = pthread_self();
3469 
3470   initial_time_count = os::elapsed_counter();
3471 
3472   os::Posix::init();
3473 }
3474 
3475 // This is called _after_ the global arguments have been parsed.
3476 jint os::init_2(void) {
3477 
3478   os::Posix::init_2();
3479 
3480   if (os::Aix::on_pase()) {
3481     trcVerbose("Running on PASE.");
3482   } else {
3483     trcVerbose("Running on AIX (not PASE).");
3484   }
3485 
3486   trcVerbose("processor count: %d", os::_processor_count);
3487   trcVerbose("physical memory: %lu", Aix::_physical_memory);
3488 
3489   // Initially build up the loaded dll map.
3490   LoadedLibraries::reload();
3491   if (Verbose) {
3492     trcVerbose("Loaded Libraries: ");
3493     LoadedLibraries::print(tty);
3494   }
3495 
3496   // initialize suspend/resume support - must do this before signal_sets_init()
3497   if (SR_initialize() != 0) {
3498     perror("SR_initialize failed");
3499     return JNI_ERR;
3500   }
3501 
3502   Aix::signal_sets_init();
3503   Aix::install_signal_handlers();
3504 
3505   // Check and sets minimum stack sizes against command line options
3506   if (Posix::set_minimum_stack_sizes() == JNI_ERR) {
3507     return JNI_ERR;
3508   }
3509 
3510   if (UseNUMA) {
3511     UseNUMA = false;
3512     warning("NUMA optimizations are not available on this OS.");
3513   }
3514 
3515   if (MaxFDLimit) {
3516     // Set the number of file descriptors to max. print out error
3517     // if getrlimit/setrlimit fails but continue regardless.
3518     struct rlimit nbr_files;
3519     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
3520     if (status != 0) {
3521       log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
3522     } else {
3523       nbr_files.rlim_cur = nbr_files.rlim_max;
3524       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
3525       if (status != 0) {
3526         log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
3527       }
3528     }
3529   }
3530 
3531   if (PerfAllowAtExitRegistration) {
3532     // Only register atexit functions if PerfAllowAtExitRegistration is set.
3533     // At exit functions can be delayed until process exit time, which
3534     // can be problematic for embedded VM situations. Embedded VMs should
3535     // call DestroyJavaVM() to assure that VM resources are released.
3536 
3537     // Note: perfMemory_exit_helper atexit function may be removed in
3538     // the future if the appropriate cleanup code can be added to the
3539     // VM_Exit VMOperation's doit method.
3540     if (atexit(perfMemory_exit_helper) != 0) {
3541       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
3542     }
3543   }
3544 
3545   return JNI_OK;
3546 }
3547 
3548 // Mark the polling page as unreadable
3549 void os::make_polling_page_unreadable(void) {
3550   if (!guard_memory((char*)_polling_page, Aix::page_size())) {
3551     fatal("Could not disable polling page");
3552   }
3553 };
3554 
3555 // Mark the polling page as readable
3556 void os::make_polling_page_readable(void) {
3557   // Changed according to os_linux.cpp.
3558   if (!checked_mprotect((char *)_polling_page, Aix::page_size(), PROT_READ)) {
3559     fatal("Could not enable polling page at " PTR_FORMAT, _polling_page);
3560   }
3561 };
3562 
3563 int os::active_processor_count() {
3564   // User has overridden the number of active processors
3565   if (ActiveProcessorCount > 0) {
3566     log_trace(os)("active_processor_count: "
3567                   "active processor count set by user : %d",
3568                   ActiveProcessorCount);
3569     return ActiveProcessorCount;
3570   }
3571 
3572   int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
3573   assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
3574   return online_cpus;
3575 }
3576 
3577 void os::set_native_thread_name(const char *name) {
3578   // Not yet implemented.
3579   return;
3580 }
3581 
3582 bool os::distribute_processes(uint length, uint* distribution) {
3583   // Not yet implemented.
3584   return false;
3585 }
3586 
3587 bool os::bind_to_processor(uint processor_id) {
3588   // Not yet implemented.
3589   return false;
3590 }
3591 
3592 void os::SuspendedThreadTask::internal_do_task() {
3593   if (do_suspend(_thread->osthread())) {
3594     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
3595     do_task(context);
3596     do_resume(_thread->osthread());
3597   }
3598 }
3599 
3600 ////////////////////////////////////////////////////////////////////////////////
3601 // debug support
3602 
3603 bool os::find(address addr, outputStream* st) {
3604 
3605   st->print(PTR_FORMAT ": ", addr);
3606 
3607   loaded_module_t lm;
3608   if (LoadedLibraries::find_for_text_address(addr, &lm) != NULL ||
3609       LoadedLibraries::find_for_data_address(addr, &lm) != NULL) {
3610     st->print_cr("%s", lm.path);
3611     return true;
3612   }
3613 
3614   return false;
3615 }
3616 
3617 ////////////////////////////////////////////////////////////////////////////////
3618 // misc
3619 
3620 // This does not do anything on Aix. This is basically a hook for being
3621 // able to use structured exception handling (thread-local exception filters)
3622 // on, e.g., Win32.
3623 void
3624 os::os_exception_wrapper(java_call_t f, JavaValue* value, const methodHandle& method,
3625                          JavaCallArguments* args, Thread* thread) {
3626   f(value, method, args, thread);
3627 }
3628 
3629 void os::print_statistics() {
3630 }
3631 
3632 bool os::message_box(const char* title, const char* message) {
3633   int i;
3634   fdStream err(defaultStream::error_fd());
3635   for (i = 0; i < 78; i++) err.print_raw("=");
3636   err.cr();
3637   err.print_raw_cr(title);
3638   for (i = 0; i < 78; i++) err.print_raw("-");
3639   err.cr();
3640   err.print_raw_cr(message);
3641   for (i = 0; i < 78; i++) err.print_raw("=");
3642   err.cr();
3643 
3644   char buf[16];
3645   // Prevent process from exiting upon "read error" without consuming all CPU
3646   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3647 
3648   return buf[0] == 'y' || buf[0] == 'Y';
3649 }
3650 
3651 int os::stat(const char *path, struct stat *sbuf) {
3652   char pathbuf[MAX_PATH];
3653   if (strlen(path) > MAX_PATH - 1) {
3654     errno = ENAMETOOLONG;
3655     return -1;
3656   }
3657   os::native_path(strcpy(pathbuf, path));
3658   return ::stat(pathbuf, sbuf);
3659 }
3660 
3661 // Is a (classpath) directory empty?
3662 bool os::dir_is_empty(const char* path) {
3663   DIR *dir = NULL;
3664   struct dirent *ptr;
3665 
3666   dir = opendir(path);
3667   if (dir == NULL) return true;
3668 
3669   /* Scan the directory */
3670   bool result = true;
3671   char buf[sizeof(struct dirent) + MAX_PATH];
3672   while (result && (ptr = ::readdir(dir)) != NULL) {
3673     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
3674       result = false;
3675     }
3676   }
3677   closedir(dir);
3678   return result;
3679 }
3680 
3681 // This code originates from JDK's sysOpen and open64_w
3682 // from src/solaris/hpi/src/system_md.c
3683 
3684 int os::open(const char *path, int oflag, int mode) {
3685 
3686   if (strlen(path) > MAX_PATH - 1) {
3687     errno = ENAMETOOLONG;
3688     return -1;
3689   }
3690   int fd;
3691 
3692   fd = ::open64(path, oflag, mode);
3693   if (fd == -1) return -1;
3694 
3695   // If the open succeeded, the file might still be a directory.
3696   {
3697     struct stat64 buf64;
3698     int ret = ::fstat64(fd, &buf64);
3699     int st_mode = buf64.st_mode;
3700 
3701     if (ret != -1) {
3702       if ((st_mode & S_IFMT) == S_IFDIR) {
3703         errno = EISDIR;
3704         ::close(fd);
3705         return -1;
3706       }
3707     } else {
3708       ::close(fd);
3709       return -1;
3710     }
3711   }
3712 
3713   // All file descriptors that are opened in the JVM and not
3714   // specifically destined for a subprocess should have the
3715   // close-on-exec flag set. If we don't set it, then careless 3rd
3716   // party native code might fork and exec without closing all
3717   // appropriate file descriptors (e.g. as we do in closeDescriptors in
3718   // UNIXProcess.c), and this in turn might:
3719   //
3720   // - cause end-of-file to fail to be detected on some file
3721   //   descriptors, resulting in mysterious hangs, or
3722   //
3723   // - might cause an fopen in the subprocess to fail on a system
3724   //   suffering from bug 1085341.
3725   //
3726   // (Yes, the default setting of the close-on-exec flag is a Unix
3727   // design flaw.)
3728   //
3729   // See:
3730   // 1085341: 32-bit stdio routines should support file descriptors >255
3731   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
3732   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
3733 #ifdef FD_CLOEXEC
3734   {
3735     int flags = ::fcntl(fd, F_GETFD);
3736     if (flags != -1)
3737       ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
3738   }
3739 #endif
3740 
3741   return fd;
3742 }
3743 
3744 // create binary file, rewriting existing file if required
3745 int os::create_binary_file(const char* path, bool rewrite_existing) {
3746   int oflags = O_WRONLY | O_CREAT;
3747   if (!rewrite_existing) {
3748     oflags |= O_EXCL;
3749   }
3750   return ::open64(path, oflags, S_IREAD | S_IWRITE);
3751 }
3752 
3753 // return current position of file pointer
3754 jlong os::current_file_offset(int fd) {
3755   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
3756 }
3757 
3758 // move file pointer to the specified offset
3759 jlong os::seek_to_file_offset(int fd, jlong offset) {
3760   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
3761 }
3762 
3763 // This code originates from JDK's sysAvailable
3764 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
3765 
3766 int os::available(int fd, jlong *bytes) {
3767   jlong cur, end;
3768   int mode;
3769   struct stat64 buf64;
3770 
3771   if (::fstat64(fd, &buf64) >= 0) {
3772     mode = buf64.st_mode;
3773     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
3774       int n;
3775       if (::ioctl(fd, FIONREAD, &n) >= 0) {
3776         *bytes = n;
3777         return 1;
3778       }
3779     }
3780   }
3781   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
3782     return 0;
3783   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
3784     return 0;
3785   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
3786     return 0;
3787   }
3788   *bytes = end - cur;
3789   return 1;
3790 }
3791 
3792 // Map a block of memory.
3793 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
3794                         char *addr, size_t bytes, bool read_only,
3795                         bool allow_exec) {
3796   int prot;
3797   int flags = MAP_PRIVATE;
3798 
3799   if (read_only) {
3800     prot = PROT_READ;
3801     flags = MAP_SHARED;
3802   } else {
3803     prot = PROT_READ | PROT_WRITE;
3804     flags = MAP_PRIVATE;
3805   }
3806 
3807   if (allow_exec) {
3808     prot |= PROT_EXEC;
3809   }
3810 
3811   if (addr != NULL) {
3812     flags |= MAP_FIXED;
3813   }
3814 
3815   // Allow anonymous mappings if 'fd' is -1.
3816   if (fd == -1) {
3817     flags |= MAP_ANONYMOUS;
3818   }
3819 
3820   char* mapped_address = (char*)::mmap(addr, (size_t)bytes, prot, flags,
3821                                      fd, file_offset);
3822   if (mapped_address == MAP_FAILED) {
3823     return NULL;
3824   }
3825   return mapped_address;
3826 }
3827 
3828 // Remap a block of memory.
3829 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
3830                           char *addr, size_t bytes, bool read_only,
3831                           bool allow_exec) {
3832   // same as map_memory() on this OS
3833   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
3834                         allow_exec);
3835 }
3836 
3837 // Unmap a block of memory.
3838 bool os::pd_unmap_memory(char* addr, size_t bytes) {
3839   return munmap(addr, bytes) == 0;
3840 }
3841 
3842 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
3843 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
3844 // of a thread.
3845 //
3846 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
3847 // the fast estimate available on the platform.
3848 
3849 jlong os::current_thread_cpu_time() {
3850   // return user + sys since the cost is the same
3851   const jlong n = os::thread_cpu_time(Thread::current(), true /* user + sys */);
3852   assert(n >= 0, "negative CPU time");
3853   return n;
3854 }
3855 
3856 jlong os::thread_cpu_time(Thread* thread) {
3857   // consistent with what current_thread_cpu_time() returns
3858   const jlong n = os::thread_cpu_time(thread, true /* user + sys */);
3859   assert(n >= 0, "negative CPU time");
3860   return n;
3861 }
3862 
3863 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
3864   const jlong n = os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
3865   assert(n >= 0, "negative CPU time");
3866   return n;
3867 }
3868 
3869 static bool thread_cpu_time_unchecked(Thread* thread, jlong* p_sys_time, jlong* p_user_time) {
3870   bool error = false;
3871 
3872   jlong sys_time = 0;
3873   jlong user_time = 0;
3874 
3875   // Reimplemented using getthrds64().
3876   //
3877   // Works like this:
3878   // For the thread in question, get the kernel thread id. Then get the
3879   // kernel thread statistics using that id.
3880   //
3881   // This only works of course when no pthread scheduling is used,
3882   // i.e. there is a 1:1 relationship to kernel threads.
3883   // On AIX, see AIXTHREAD_SCOPE variable.
3884 
3885   pthread_t pthtid = thread->osthread()->pthread_id();
3886 
3887   // retrieve kernel thread id for the pthread:
3888   tid64_t tid = 0;
3889   struct __pthrdsinfo pinfo;
3890   // I just love those otherworldly IBM APIs which force me to hand down
3891   // dummy buffers for stuff I dont care for...
3892   char dummy[1];
3893   int dummy_size = sizeof(dummy);
3894   if (pthread_getthrds_np(&pthtid, PTHRDSINFO_QUERY_TID, &pinfo, sizeof(pinfo),
3895                           dummy, &dummy_size) == 0) {
3896     tid = pinfo.__pi_tid;
3897   } else {
3898     tty->print_cr("pthread_getthrds_np failed.");
3899     error = true;
3900   }
3901 
3902   // retrieve kernel timing info for that kernel thread
3903   if (!error) {
3904     struct thrdentry64 thrdentry;
3905     if (getthrds64(getpid(), &thrdentry, sizeof(thrdentry), &tid, 1) == 1) {
3906       sys_time = thrdentry.ti_ru.ru_stime.tv_sec * 1000000000LL + thrdentry.ti_ru.ru_stime.tv_usec * 1000LL;
3907       user_time = thrdentry.ti_ru.ru_utime.tv_sec * 1000000000LL + thrdentry.ti_ru.ru_utime.tv_usec * 1000LL;
3908     } else {
3909       tty->print_cr("pthread_getthrds_np failed.");
3910       error = true;
3911     }
3912   }
3913 
3914   if (p_sys_time) {
3915     *p_sys_time = sys_time;
3916   }
3917 
3918   if (p_user_time) {
3919     *p_user_time = user_time;
3920   }
3921 
3922   if (error) {
3923     return false;
3924   }
3925 
3926   return true;
3927 }
3928 
3929 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
3930   jlong sys_time;
3931   jlong user_time;
3932 
3933   if (!thread_cpu_time_unchecked(thread, &sys_time, &user_time)) {
3934     return -1;
3935   }
3936 
3937   return user_sys_cpu_time ? sys_time + user_time : user_time;
3938 }
3939 
3940 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
3941   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
3942   info_ptr->may_skip_backward = false;     // elapsed time not wall time
3943   info_ptr->may_skip_forward = false;      // elapsed time not wall time
3944   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
3945 }
3946 
3947 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
3948   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
3949   info_ptr->may_skip_backward = false;     // elapsed time not wall time
3950   info_ptr->may_skip_forward = false;      // elapsed time not wall time
3951   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
3952 }
3953 
3954 bool os::is_thread_cpu_time_supported() {
3955   return true;
3956 }
3957 
3958 // System loadavg support. Returns -1 if load average cannot be obtained.
3959 // For now just return the system wide load average (no processor sets).
3960 int os::loadavg(double values[], int nelem) {
3961 
3962   guarantee(nelem >= 0 && nelem <= 3, "argument error");
3963   guarantee(values, "argument error");
3964 
3965   if (os::Aix::on_pase()) {
3966 
3967     // AS/400 PASE: use libo4 porting library
3968     double v[3] = { 0.0, 0.0, 0.0 };
3969 
3970     if (libo4::get_load_avg(v, v + 1, v + 2)) {
3971       for (int i = 0; i < nelem; i ++) {
3972         values[i] = v[i];
3973       }
3974       return nelem;
3975     } else {
3976       return -1;
3977     }
3978 
3979   } else {
3980 
3981     // AIX: use libperfstat
3982     libperfstat::cpuinfo_t ci;
3983     if (libperfstat::get_cpuinfo(&ci)) {
3984       for (int i = 0; i < nelem; i++) {
3985         values[i] = ci.loadavg[i];
3986       }
3987     } else {
3988       return -1;
3989     }
3990     return nelem;
3991   }
3992 }
3993 
3994 void os::pause() {
3995   char filename[MAX_PATH];
3996   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
3997     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
3998   } else {
3999     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4000   }
4001 
4002   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4003   if (fd != -1) {
4004     struct stat buf;
4005     ::close(fd);
4006     while (::stat(filename, &buf) == 0) {
4007       (void)::poll(NULL, 0, 100);
4008     }
4009   } else {
4010     trcVerbose("Could not open pause file '%s', continuing immediately.", filename);
4011   }
4012 }
4013 
4014 bool os::is_primordial_thread(void) {
4015   if (pthread_self() == (pthread_t)1) {
4016     return true;
4017   } else {
4018     return false;
4019   }
4020 }
4021 
4022 // OS recognitions (PASE/AIX, OS level) call this before calling any
4023 // one of Aix::on_pase(), Aix::os_version() static
4024 void os::Aix::initialize_os_info() {
4025 
4026   assert(_on_pase == -1 && _os_version == 0, "already called.");
4027 
4028   struct utsname uts;
4029   memset(&uts, 0, sizeof(uts));
4030   strcpy(uts.sysname, "?");
4031   if (::uname(&uts) == -1) {
4032     trcVerbose("uname failed (%d)", errno);
4033     guarantee(0, "Could not determine whether we run on AIX or PASE");
4034   } else {
4035     trcVerbose("uname says: sysname \"%s\" version \"%s\" release \"%s\" "
4036                "node \"%s\" machine \"%s\"\n",
4037                uts.sysname, uts.version, uts.release, uts.nodename, uts.machine);
4038     const int major = atoi(uts.version);
4039     assert(major > 0, "invalid OS version");
4040     const int minor = atoi(uts.release);
4041     assert(minor > 0, "invalid OS release");
4042     _os_version = (major << 24) | (minor << 16);
4043     char ver_str[20] = {0};
4044     char *name_str = "unknown OS";
4045     if (strcmp(uts.sysname, "OS400") == 0) {
4046       // We run on AS/400 PASE. We do not support versions older than V5R4M0.
4047       _on_pase = 1;
4048       if (os_version_short() < 0x0504) {
4049         trcVerbose("OS/400 releases older than V5R4M0 not supported.");
4050         assert(false, "OS/400 release too old.");
4051       }
4052       name_str = "OS/400 (pase)";
4053       jio_snprintf(ver_str, sizeof(ver_str), "%u.%u", major, minor);
4054     } else if (strcmp(uts.sysname, "AIX") == 0) {
4055       // We run on AIX. We do not support versions older than AIX 5.3.
4056       _on_pase = 0;
4057       // Determine detailed AIX version: Version, Release, Modification, Fix Level.
4058       odmWrapper::determine_os_kernel_version(&_os_version);
4059       if (os_version_short() < 0x0503) {
4060         trcVerbose("AIX release older than AIX 5.3 not supported.");
4061         assert(false, "AIX release too old.");
4062       }
4063       name_str = "AIX";
4064       jio_snprintf(ver_str, sizeof(ver_str), "%u.%u.%u.%u",
4065                    major, minor, (_os_version >> 8) & 0xFF, _os_version & 0xFF);
4066     } else {
4067       assert(false, name_str);
4068     }
4069     trcVerbose("We run on %s %s", name_str, ver_str);
4070   }
4071 
4072   guarantee(_on_pase != -1 && _os_version, "Could not determine AIX/OS400 release");
4073 } // end: os::Aix::initialize_os_info()
4074 
4075 // Scan environment for important settings which might effect the VM.
4076 // Trace out settings. Warn about invalid settings and/or correct them.
4077 //
4078 // Must run after os::Aix::initialue_os_info().
4079 void os::Aix::scan_environment() {
4080 
4081   char* p;
4082   int rc;
4083 
4084   // Warn explicity if EXTSHM=ON is used. That switch changes how
4085   // System V shared memory behaves. One effect is that page size of
4086   // shared memory cannot be change dynamically, effectivly preventing
4087   // large pages from working.
4088   // This switch was needed on AIX 32bit, but on AIX 64bit the general
4089   // recommendation is (in OSS notes) to switch it off.
4090   p = ::getenv("EXTSHM");
4091   trcVerbose("EXTSHM=%s.", p ? p : "<unset>");
4092   if (p && strcasecmp(p, "ON") == 0) {
4093     _extshm = 1;
4094     trcVerbose("*** Unsupported mode! Please remove EXTSHM from your environment! ***");
4095     if (!AllowExtshm) {
4096       // We allow under certain conditions the user to continue. However, we want this
4097       // to be a fatal error by default. On certain AIX systems, leaving EXTSHM=ON means
4098       // that the VM is not able to allocate 64k pages for the heap.
4099       // We do not want to run with reduced performance.
4100       vm_exit_during_initialization("EXTSHM is ON. Please remove EXTSHM from your environment.");
4101     }
4102   } else {
4103     _extshm = 0;
4104   }
4105 
4106   // SPEC1170 behaviour: will change the behaviour of a number of POSIX APIs.
4107   // Not tested, not supported.
4108   //
4109   // Note that it might be worth the trouble to test and to require it, if only to
4110   // get useful return codes for mprotect.
4111   //
4112   // Note: Setting XPG_SUS_ENV in the process is too late. Must be set earlier (before
4113   // exec() ? before loading the libjvm ? ....)
4114   p = ::getenv("XPG_SUS_ENV");
4115   trcVerbose("XPG_SUS_ENV=%s.", p ? p : "<unset>");
4116   if (p && strcmp(p, "ON") == 0) {
4117     _xpg_sus_mode = 1;
4118     trcVerbose("Unsupported setting: XPG_SUS_ENV=ON");
4119     // This is not supported. Worst of all, it changes behaviour of mmap MAP_FIXED to
4120     // clobber address ranges. If we ever want to support that, we have to do some
4121     // testing first.
4122     guarantee(false, "XPG_SUS_ENV=ON not supported");
4123   } else {
4124     _xpg_sus_mode = 0;
4125   }
4126 
4127   if (os::Aix::on_pase()) {
4128     p = ::getenv("QIBM_MULTI_THREADED");
4129     trcVerbose("QIBM_MULTI_THREADED=%s.", p ? p : "<unset>");
4130   }
4131 
4132   p = ::getenv("LDR_CNTRL");
4133   trcVerbose("LDR_CNTRL=%s.", p ? p : "<unset>");
4134   if (os::Aix::on_pase() && os::Aix::os_version_short() == 0x0701) {
4135     if (p && ::strstr(p, "TEXTPSIZE")) {
4136       trcVerbose("*** WARNING - LDR_CNTRL contains TEXTPSIZE. "
4137         "you may experience hangs or crashes on OS/400 V7R1.");
4138     }
4139   }
4140 
4141   p = ::getenv("AIXTHREAD_GUARDPAGES");
4142   trcVerbose("AIXTHREAD_GUARDPAGES=%s.", p ? p : "<unset>");
4143 
4144 } // end: os::Aix::scan_environment()
4145 
4146 // PASE: initialize the libo4 library (PASE porting library).
4147 void os::Aix::initialize_libo4() {
4148   guarantee(os::Aix::on_pase(), "OS/400 only.");
4149   if (!libo4::init()) {
4150     trcVerbose("libo4 initialization failed.");
4151     assert(false, "libo4 initialization failed");
4152   } else {
4153     trcVerbose("libo4 initialized.");
4154   }
4155 }
4156 
4157 // AIX: initialize the libperfstat library.
4158 void os::Aix::initialize_libperfstat() {
4159   assert(os::Aix::on_aix(), "AIX only");
4160   if (!libperfstat::init()) {
4161     trcVerbose("libperfstat initialization failed.");
4162     assert(false, "libperfstat initialization failed");
4163   } else {
4164     trcVerbose("libperfstat initialized.");
4165   }
4166 }
4167 
4168 /////////////////////////////////////////////////////////////////////////////
4169 // thread stack
4170 
4171 // Get the current stack base from the OS (actually, the pthread library).
4172 // Note: usually not page aligned.
4173 address os::current_stack_base() {
4174   AixMisc::stackbounds_t bounds;
4175   bool rc = AixMisc::query_stack_bounds_for_current_thread(&bounds);
4176   guarantee(rc, "Unable to retrieve stack bounds.");
4177   return bounds.base;
4178 }
4179 
4180 // Get the current stack size from the OS (actually, the pthread library).
4181 // Returned size is such that (base - size) is always aligned to page size.
4182 size_t os::current_stack_size() {
4183   AixMisc::stackbounds_t bounds;
4184   bool rc = AixMisc::query_stack_bounds_for_current_thread(&bounds);
4185   guarantee(rc, "Unable to retrieve stack bounds.");
4186   // Align the returned stack size such that the stack low address
4187   // is aligned to page size (Note: base is usually not and we do not care).
4188   // We need to do this because caller code will assume stack low address is
4189   // page aligned and will place guard pages without checking.
4190   address low = bounds.base - bounds.size;
4191   address low_aligned = (address)align_up(low, os::vm_page_size());
4192   size_t s = bounds.base - low_aligned;
4193   return s;
4194 }
4195 
4196 extern char** environ;
4197 
4198 // Run the specified command in a separate process. Return its exit value,
4199 // or -1 on failure (e.g. can't fork a new process).
4200 // Unlike system(), this function can be called from signal handler. It
4201 // doesn't block SIGINT et al.
4202 int os::fork_and_exec(char* cmd) {
4203   char * argv[4] = {"sh", "-c", cmd, NULL};
4204 
4205   pid_t pid = fork();
4206 
4207   if (pid < 0) {
4208     // fork failed
4209     return -1;
4210 
4211   } else if (pid == 0) {
4212     // child process
4213 
4214     // Try to be consistent with system(), which uses "/usr/bin/sh" on AIX.
4215     execve("/usr/bin/sh", argv, environ);
4216 
4217     // execve failed
4218     _exit(-1);
4219 
4220   } else {
4221     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
4222     // care about the actual exit code, for now.
4223 
4224     int status;
4225 
4226     // Wait for the child process to exit. This returns immediately if
4227     // the child has already exited. */
4228     while (waitpid(pid, &status, 0) < 0) {
4229       switch (errno) {
4230         case ECHILD: return 0;
4231         case EINTR: break;
4232         default: return -1;
4233       }
4234     }
4235 
4236     if (WIFEXITED(status)) {
4237       // The child exited normally; get its exit code.
4238       return WEXITSTATUS(status);
4239     } else if (WIFSIGNALED(status)) {
4240       // The child exited because of a signal.
4241       // The best value to return is 0x80 + signal number,
4242       // because that is what all Unix shells do, and because
4243       // it allows callers to distinguish between process exit and
4244       // process death by signal.
4245       return 0x80 + WTERMSIG(status);
4246     } else {
4247       // Unknown exit code; pass it through.
4248       return status;
4249     }
4250   }
4251   return -1;
4252 }
4253 
4254 // is_headless_jre()
4255 //
4256 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
4257 // in order to report if we are running in a headless jre.
4258 //
4259 // Since JDK8 xawt/libmawt.so is moved into the same directory
4260 // as libawt.so, and renamed libawt_xawt.so
4261 bool os::is_headless_jre() {
4262   struct stat statbuf;
4263   char buf[MAXPATHLEN];
4264   char libmawtpath[MAXPATHLEN];
4265   const char *xawtstr = "/xawt/libmawt.so";
4266   const char *new_xawtstr = "/libawt_xawt.so";
4267 
4268   char *p;
4269 
4270   // Get path to libjvm.so
4271   os::jvm_path(buf, sizeof(buf));
4272 
4273   // Get rid of libjvm.so
4274   p = strrchr(buf, '/');
4275   if (p == NULL) return false;
4276   else *p = '\0';
4277 
4278   // Get rid of client or server
4279   p = strrchr(buf, '/');
4280   if (p == NULL) return false;
4281   else *p = '\0';
4282 
4283   // check xawt/libmawt.so
4284   strcpy(libmawtpath, buf);
4285   strcat(libmawtpath, xawtstr);
4286   if (::stat(libmawtpath, &statbuf) == 0) return false;
4287 
4288   // check libawt_xawt.so
4289   strcpy(libmawtpath, buf);
4290   strcat(libmawtpath, new_xawtstr);
4291   if (::stat(libmawtpath, &statbuf) == 0) return false;
4292 
4293   return true;
4294 }
4295 
4296 // Get the default path to the core file
4297 // Returns the length of the string
4298 int os::get_core_path(char* buffer, size_t bufferSize) {
4299   const char* p = get_current_directory(buffer, bufferSize);
4300 
4301   if (p == NULL) {
4302     assert(p != NULL, "failed to get current directory");
4303     return 0;
4304   }
4305 
4306   jio_snprintf(buffer, bufferSize, "%s/core or core.%d",
4307                                                p, current_process_id());
4308 
4309   return strlen(buffer);
4310 }
4311 
4312 #ifndef PRODUCT
4313 void TestReserveMemorySpecial_test() {
4314   // No tests available for this platform
4315 }
4316 #endif
4317 
4318 bool os::start_debugging(char *buf, int buflen) {
4319   int len = (int)strlen(buf);
4320   char *p = &buf[len];
4321 
4322   jio_snprintf(p, buflen -len,
4323                  "\n\n"
4324                  "Do you want to debug the problem?\n\n"
4325                  "To debug, run 'dbx -a %d'; then switch to thread tid " INTX_FORMAT ", k-tid " INTX_FORMAT "\n"
4326                  "Enter 'yes' to launch dbx automatically (PATH must include dbx)\n"
4327                  "Otherwise, press RETURN to abort...",
4328                  os::current_process_id(),
4329                  os::current_thread_id(), thread_self());
4330 
4331   bool yes = os::message_box("Unexpected Error", buf);
4332 
4333   if (yes) {
4334     // yes, user asked VM to launch debugger
4335     jio_snprintf(buf, buflen, "dbx -a %d", os::current_process_id());
4336 
4337     os::fork_and_exec(buf);
4338     yes = false;
4339   }
4340   return yes;
4341 }
4342 
4343 static inline time_t get_mtime(const char* filename) {
4344   struct stat st;
4345   int ret = os::stat(filename, &st);
4346   assert(ret == 0, "failed to stat() file '%s': %s", filename, strerror(errno));
4347   return st.st_mtime;
4348 }
4349 
4350 int os::compare_file_modified_times(const char* file1, const char* file2) {
4351   time_t t1 = get_mtime(file1);
4352   time_t t2 = get_mtime(file2);
4353   return t1 - t2;
4354 }