1 /*
   2  * Copyright (c) 1999, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "jvm.h"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/vtableStubs.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/disassembler.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "logging/log.hpp"
  36 #include "memory/allocation.inline.hpp"
  37 #include "memory/filemap.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_linux.inline.hpp"
  40 #include "os_share_linux.hpp"
  41 #include "osContainer_linux.hpp"
  42 #include "prims/jniFastGetField.hpp"
  43 #include "prims/jvm_misc.hpp"
  44 #include "runtime/arguments.hpp"
  45 #include "runtime/atomic.hpp"
  46 #include "runtime/extendedPC.hpp"
  47 #include "runtime/globals.hpp"
  48 #include "runtime/interfaceSupport.hpp"
  49 #include "runtime/init.hpp"
  50 #include "runtime/java.hpp"
  51 #include "runtime/javaCalls.hpp"
  52 #include "runtime/mutexLocker.hpp"
  53 #include "runtime/objectMonitor.hpp"
  54 #include "runtime/orderAccess.inline.hpp"
  55 #include "runtime/osThread.hpp"
  56 #include "runtime/perfMemory.hpp"
  57 #include "runtime/sharedRuntime.hpp"
  58 #include "runtime/statSampler.hpp"
  59 #include "runtime/stubRoutines.hpp"
  60 #include "runtime/thread.inline.hpp"
  61 #include "runtime/threadCritical.hpp"
  62 #include "runtime/threadSMR.hpp"
  63 #include "runtime/timer.hpp"
  64 #include "semaphore_posix.hpp"
  65 #include "services/attachListener.hpp"
  66 #include "services/memTracker.hpp"
  67 #include "services/runtimeService.hpp"
  68 #include "utilities/align.hpp"
  69 #include "utilities/decoder.hpp"
  70 #include "utilities/defaultStream.hpp"
  71 #include "utilities/events.hpp"
  72 #include "utilities/elfFile.hpp"
  73 #include "utilities/growableArray.hpp"
  74 #include "utilities/macros.hpp"
  75 #include "utilities/vmError.hpp"
  76 
  77 // put OS-includes here
  78 # include <sys/types.h>
  79 # include <sys/mman.h>
  80 # include <sys/stat.h>
  81 # include <sys/select.h>
  82 # include <pthread.h>
  83 # include <signal.h>
  84 # include <errno.h>
  85 # include <dlfcn.h>
  86 # include <stdio.h>
  87 # include <unistd.h>
  88 # include <sys/resource.h>
  89 # include <pthread.h>
  90 # include <sys/stat.h>
  91 # include <sys/time.h>
  92 # include <sys/times.h>
  93 # include <sys/utsname.h>
  94 # include <sys/socket.h>
  95 # include <sys/wait.h>
  96 # include <pwd.h>
  97 # include <poll.h>
  98 # include <fcntl.h>
  99 # include <string.h>
 100 # include <syscall.h>
 101 # include <sys/sysinfo.h>
 102 # include <gnu/libc-version.h>
 103 # include <sys/ipc.h>
 104 # include <sys/shm.h>
 105 # include <link.h>
 106 # include <stdint.h>
 107 # include <inttypes.h>
 108 # include <sys/ioctl.h>
 109 
 110 #ifndef _GNU_SOURCE
 111   #define _GNU_SOURCE
 112   #include <sched.h>
 113   #undef _GNU_SOURCE
 114 #else
 115   #include <sched.h>
 116 #endif
 117 
 118 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 119 // getrusage() is prepared to handle the associated failure.
 120 #ifndef RUSAGE_THREAD
 121   #define RUSAGE_THREAD   (1)               /* only the calling thread */
 122 #endif
 123 
 124 #define MAX_PATH    (2 * K)
 125 
 126 #define MAX_SECS 100000000
 127 
 128 // for timer info max values which include all bits
 129 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 130 
 131 #define LARGEPAGES_BIT (1 << 6)
 132 #define DAX_SHARED_BIT (1 << 8)
 133 ////////////////////////////////////////////////////////////////////////////////
 134 // global variables
 135 julong os::Linux::_physical_memory = 0;
 136 
 137 address   os::Linux::_initial_thread_stack_bottom = NULL;
 138 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 139 
 140 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 141 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 142 int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
 143 Mutex* os::Linux::_createThread_lock = NULL;
 144 pthread_t os::Linux::_main_thread;
 145 int os::Linux::_page_size = -1;
 146 bool os::Linux::_supports_fast_thread_cpu_time = false;
 147 uint32_t os::Linux::_os_version = 0;
 148 const char * os::Linux::_glibc_version = NULL;
 149 const char * os::Linux::_libpthread_version = NULL;
 150 
 151 static jlong initial_time_count=0;
 152 
 153 static int clock_tics_per_sec = 100;
 154 
 155 // For diagnostics to print a message once. see run_periodic_checks
 156 static sigset_t check_signal_done;
 157 static bool check_signals = true;
 158 
 159 // Signal number used to suspend/resume a thread
 160 
 161 // do not use any signal number less than SIGSEGV, see 4355769
 162 static int SR_signum = SIGUSR2;
 163 sigset_t SR_sigset;
 164 
 165 // utility functions
 166 
 167 static int SR_initialize();
 168 
 169 julong os::available_memory() {
 170   return Linux::available_memory();
 171 }
 172 
 173 julong os::Linux::available_memory() {
 174   // values in struct sysinfo are "unsigned long"
 175   struct sysinfo si;
 176   julong avail_mem;
 177 
 178   if (OSContainer::is_containerized()) {
 179     jlong mem_limit, mem_usage;
 180     if ((mem_limit = OSContainer::memory_limit_in_bytes()) > 0) {
 181       if ((mem_usage = OSContainer::memory_usage_in_bytes()) > 0) {
 182         if (mem_limit > mem_usage) {
 183           avail_mem = (julong)mem_limit - (julong)mem_usage;
 184         } else {
 185           avail_mem = 0;
 186         }
 187         log_trace(os)("available container memory: " JULONG_FORMAT, avail_mem);
 188         return avail_mem;
 189       } else {
 190         log_debug(os,container)("container memory usage call failed: " JLONG_FORMAT, mem_usage);
 191       }
 192     } else {
 193       log_debug(os,container)("container memory unlimited or failed: " JLONG_FORMAT, mem_limit);
 194     }
 195   }
 196 
 197   sysinfo(&si);
 198   avail_mem = (julong)si.freeram * si.mem_unit;
 199   log_trace(os)("available memory: " JULONG_FORMAT, avail_mem);
 200   return avail_mem;
 201 }
 202 
 203 julong os::physical_memory() {
 204   if (OSContainer::is_containerized()) {
 205     jlong mem_limit;
 206     if ((mem_limit = OSContainer::memory_limit_in_bytes()) > 0) {
 207       log_trace(os)("total container memory: " JLONG_FORMAT, mem_limit);
 208       return (julong)mem_limit;
 209     } else {
 210       if (mem_limit == OSCONTAINER_ERROR) {
 211         log_debug(os,container)("container memory limit call failed");
 212       }
 213       if (mem_limit == -1) {
 214         log_debug(os,container)("container memory unlimited, using host value");
 215       }
 216     }
 217   }
 218 
 219   jlong phys_mem = Linux::physical_memory();
 220   log_trace(os)("total system memory: " JLONG_FORMAT, phys_mem);
 221   return phys_mem;
 222 }
 223 
 224 // Return true if user is running as root.
 225 
 226 bool os::have_special_privileges() {
 227   static bool init = false;
 228   static bool privileges = false;
 229   if (!init) {
 230     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 231     init = true;
 232   }
 233   return privileges;
 234 }
 235 
 236 
 237 #ifndef SYS_gettid
 238 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 239   #ifdef __ia64__
 240     #define SYS_gettid 1105
 241   #else
 242     #ifdef __i386__
 243       #define SYS_gettid 224
 244     #else
 245       #ifdef __amd64__
 246         #define SYS_gettid 186
 247       #else
 248         #ifdef __sparc__
 249           #define SYS_gettid 143
 250         #else
 251           #error define gettid for the arch
 252         #endif
 253       #endif
 254     #endif
 255   #endif
 256 #endif
 257 
 258 
 259 // pid_t gettid()
 260 //
 261 // Returns the kernel thread id of the currently running thread. Kernel
 262 // thread id is used to access /proc.
 263 pid_t os::Linux::gettid() {
 264   int rslt = syscall(SYS_gettid);
 265   assert(rslt != -1, "must be."); // old linuxthreads implementation?
 266   return (pid_t)rslt;
 267 }
 268 
 269 // Most versions of linux have a bug where the number of processors are
 270 // determined by looking at the /proc file system.  In a chroot environment,
 271 // the system call returns 1.  This causes the VM to act as if it is
 272 // a single processor and elide locking (see is_MP() call).
 273 static bool unsafe_chroot_detected = false;
 274 static const char *unstable_chroot_error = "/proc file system not found.\n"
 275                      "Java may be unstable running multithreaded in a chroot "
 276                      "environment on Linux when /proc filesystem is not mounted.";
 277 
 278 void os::Linux::initialize_system_info() {
 279   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 280   if (processor_count() == 1) {
 281     pid_t pid = os::Linux::gettid();
 282     char fname[32];
 283     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 284     FILE *fp = fopen(fname, "r");
 285     if (fp == NULL) {
 286       unsafe_chroot_detected = true;
 287     } else {
 288       fclose(fp);
 289     }
 290   }
 291   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 292   assert(processor_count() > 0, "linux error");
 293 }
 294 
 295 void os::init_system_properties_values() {
 296   // The next steps are taken in the product version:
 297   //
 298   // Obtain the JAVA_HOME value from the location of libjvm.so.
 299   // This library should be located at:
 300   // <JAVA_HOME>/lib/{client|server}/libjvm.so.
 301   //
 302   // If "/jre/lib/" appears at the right place in the path, then we
 303   // assume libjvm.so is installed in a JDK and we use this path.
 304   //
 305   // Otherwise exit with message: "Could not create the Java virtual machine."
 306   //
 307   // The following extra steps are taken in the debugging version:
 308   //
 309   // If "/jre/lib/" does NOT appear at the right place in the path
 310   // instead of exit check for $JAVA_HOME environment variable.
 311   //
 312   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 313   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 314   // it looks like libjvm.so is installed there
 315   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 316   //
 317   // Otherwise exit.
 318   //
 319   // Important note: if the location of libjvm.so changes this
 320   // code needs to be changed accordingly.
 321 
 322   // See ld(1):
 323   //      The linker uses the following search paths to locate required
 324   //      shared libraries:
 325   //        1: ...
 326   //        ...
 327   //        7: The default directories, normally /lib and /usr/lib.
 328 #if defined(AMD64) || (defined(_LP64) && defined(SPARC)) || defined(PPC64) || defined(S390)
 329   #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 330 #else
 331   #define DEFAULT_LIBPATH "/lib:/usr/lib"
 332 #endif
 333 
 334 // Base path of extensions installed on the system.
 335 #define SYS_EXT_DIR     "/usr/java/packages"
 336 #define EXTENSIONS_DIR  "/lib/ext"
 337 
 338   // Buffer that fits several sprintfs.
 339   // Note that the space for the colon and the trailing null are provided
 340   // by the nulls included by the sizeof operator.
 341   const size_t bufsize =
 342     MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
 343          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
 344   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 345 
 346   // sysclasspath, java_home, dll_dir
 347   {
 348     char *pslash;
 349     os::jvm_path(buf, bufsize);
 350 
 351     // Found the full path to libjvm.so.
 352     // Now cut the path to <java_home>/jre if we can.
 353     pslash = strrchr(buf, '/');
 354     if (pslash != NULL) {
 355       *pslash = '\0';            // Get rid of /libjvm.so.
 356     }
 357     pslash = strrchr(buf, '/');
 358     if (pslash != NULL) {
 359       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 360     }
 361     Arguments::set_dll_dir(buf);
 362 
 363     if (pslash != NULL) {
 364       pslash = strrchr(buf, '/');
 365       if (pslash != NULL) {
 366         *pslash = '\0';        // Get rid of /lib.
 367       }
 368     }
 369     Arguments::set_java_home(buf);
 370     set_boot_path('/', ':');
 371   }
 372 
 373   // Where to look for native libraries.
 374   //
 375   // Note: Due to a legacy implementation, most of the library path
 376   // is set in the launcher. This was to accomodate linking restrictions
 377   // on legacy Linux implementations (which are no longer supported).
 378   // Eventually, all the library path setting will be done here.
 379   //
 380   // However, to prevent the proliferation of improperly built native
 381   // libraries, the new path component /usr/java/packages is added here.
 382   // Eventually, all the library path setting will be done here.
 383   {
 384     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 385     // should always exist (until the legacy problem cited above is
 386     // addressed).
 387     const char *v = ::getenv("LD_LIBRARY_PATH");
 388     const char *v_colon = ":";
 389     if (v == NULL) { v = ""; v_colon = ""; }
 390     // That's +1 for the colon and +1 for the trailing '\0'.
 391     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 392                                                      strlen(v) + 1 +
 393                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + sizeof(DEFAULT_LIBPATH) + 1,
 394                                                      mtInternal);
 395     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib:" DEFAULT_LIBPATH, v, v_colon);
 396     Arguments::set_library_path(ld_library_path);
 397     FREE_C_HEAP_ARRAY(char, ld_library_path);
 398   }
 399 
 400   // Extensions directories.
 401   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 402   Arguments::set_ext_dirs(buf);
 403 
 404   FREE_C_HEAP_ARRAY(char, buf);
 405 
 406 #undef DEFAULT_LIBPATH
 407 #undef SYS_EXT_DIR
 408 #undef EXTENSIONS_DIR
 409 }
 410 
 411 ////////////////////////////////////////////////////////////////////////////////
 412 // breakpoint support
 413 
 414 void os::breakpoint() {
 415   BREAKPOINT;
 416 }
 417 
 418 extern "C" void breakpoint() {
 419   // use debugger to set breakpoint here
 420 }
 421 
 422 ////////////////////////////////////////////////////////////////////////////////
 423 // signal support
 424 
 425 debug_only(static bool signal_sets_initialized = false);
 426 static sigset_t unblocked_sigs, vm_sigs;
 427 
 428 bool os::Linux::is_sig_ignored(int sig) {
 429   struct sigaction oact;
 430   sigaction(sig, (struct sigaction*)NULL, &oact);
 431   void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 432                                  : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 433   if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
 434     return true;
 435   } else {
 436     return false;
 437   }
 438 }
 439 
 440 void os::Linux::signal_sets_init() {
 441   // Should also have an assertion stating we are still single-threaded.
 442   assert(!signal_sets_initialized, "Already initialized");
 443   // Fill in signals that are necessarily unblocked for all threads in
 444   // the VM. Currently, we unblock the following signals:
 445   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 446   //                         by -Xrs (=ReduceSignalUsage));
 447   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 448   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 449   // the dispositions or masks wrt these signals.
 450   // Programs embedding the VM that want to use the above signals for their
 451   // own purposes must, at this time, use the "-Xrs" option to prevent
 452   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 453   // (See bug 4345157, and other related bugs).
 454   // In reality, though, unblocking these signals is really a nop, since
 455   // these signals are not blocked by default.
 456   sigemptyset(&unblocked_sigs);
 457   sigaddset(&unblocked_sigs, SIGILL);
 458   sigaddset(&unblocked_sigs, SIGSEGV);
 459   sigaddset(&unblocked_sigs, SIGBUS);
 460   sigaddset(&unblocked_sigs, SIGFPE);
 461 #if defined(PPC64)
 462   sigaddset(&unblocked_sigs, SIGTRAP);
 463 #endif
 464   sigaddset(&unblocked_sigs, SR_signum);
 465 
 466   if (!ReduceSignalUsage) {
 467     if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 468       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 469     }
 470     if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 471       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 472     }
 473     if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 474       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 475     }
 476   }
 477   // Fill in signals that are blocked by all but the VM thread.
 478   sigemptyset(&vm_sigs);
 479   if (!ReduceSignalUsage) {
 480     sigaddset(&vm_sigs, BREAK_SIGNAL);
 481   }
 482   debug_only(signal_sets_initialized = true);
 483 
 484 }
 485 
 486 // These are signals that are unblocked while a thread is running Java.
 487 // (For some reason, they get blocked by default.)
 488 sigset_t* os::Linux::unblocked_signals() {
 489   assert(signal_sets_initialized, "Not initialized");
 490   return &unblocked_sigs;
 491 }
 492 
 493 // These are the signals that are blocked while a (non-VM) thread is
 494 // running Java. Only the VM thread handles these signals.
 495 sigset_t* os::Linux::vm_signals() {
 496   assert(signal_sets_initialized, "Not initialized");
 497   return &vm_sigs;
 498 }
 499 
 500 void os::Linux::hotspot_sigmask(Thread* thread) {
 501 
 502   //Save caller's signal mask before setting VM signal mask
 503   sigset_t caller_sigmask;
 504   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 505 
 506   OSThread* osthread = thread->osthread();
 507   osthread->set_caller_sigmask(caller_sigmask);
 508 
 509   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 510 
 511   if (!ReduceSignalUsage) {
 512     if (thread->is_VM_thread()) {
 513       // Only the VM thread handles BREAK_SIGNAL ...
 514       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 515     } else {
 516       // ... all other threads block BREAK_SIGNAL
 517       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 518     }
 519   }
 520 }
 521 
 522 //////////////////////////////////////////////////////////////////////////////
 523 // detecting pthread library
 524 
 525 void os::Linux::libpthread_init() {
 526   // Save glibc and pthread version strings.
 527 #if !defined(_CS_GNU_LIBC_VERSION) || \
 528     !defined(_CS_GNU_LIBPTHREAD_VERSION)
 529   #error "glibc too old (< 2.3.2)"
 530 #endif
 531 
 532   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 533   assert(n > 0, "cannot retrieve glibc version");
 534   char *str = (char *)malloc(n, mtInternal);
 535   confstr(_CS_GNU_LIBC_VERSION, str, n);
 536   os::Linux::set_glibc_version(str);
 537 
 538   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 539   assert(n > 0, "cannot retrieve pthread version");
 540   str = (char *)malloc(n, mtInternal);
 541   confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 542   os::Linux::set_libpthread_version(str);
 543 }
 544 
 545 /////////////////////////////////////////////////////////////////////////////
 546 // thread stack expansion
 547 
 548 // os::Linux::manually_expand_stack() takes care of expanding the thread
 549 // stack. Note that this is normally not needed: pthread stacks allocate
 550 // thread stack using mmap() without MAP_NORESERVE, so the stack is already
 551 // committed. Therefore it is not necessary to expand the stack manually.
 552 //
 553 // Manually expanding the stack was historically needed on LinuxThreads
 554 // thread stacks, which were allocated with mmap(MAP_GROWSDOWN). Nowadays
 555 // it is kept to deal with very rare corner cases:
 556 //
 557 // For one, user may run the VM on an own implementation of threads
 558 // whose stacks are - like the old LinuxThreads - implemented using
 559 // mmap(MAP_GROWSDOWN).
 560 //
 561 // Also, this coding may be needed if the VM is running on the primordial
 562 // thread. Normally we avoid running on the primordial thread; however,
 563 // user may still invoke the VM on the primordial thread.
 564 //
 565 // The following historical comment describes the details about running
 566 // on a thread stack allocated with mmap(MAP_GROWSDOWN):
 567 
 568 
 569 // Force Linux kernel to expand current thread stack. If "bottom" is close
 570 // to the stack guard, caller should block all signals.
 571 //
 572 // MAP_GROWSDOWN:
 573 //   A special mmap() flag that is used to implement thread stacks. It tells
 574 //   kernel that the memory region should extend downwards when needed. This
 575 //   allows early versions of LinuxThreads to only mmap the first few pages
 576 //   when creating a new thread. Linux kernel will automatically expand thread
 577 //   stack as needed (on page faults).
 578 //
 579 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 580 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 581 //   region, it's hard to tell if the fault is due to a legitimate stack
 582 //   access or because of reading/writing non-exist memory (e.g. buffer
 583 //   overrun). As a rule, if the fault happens below current stack pointer,
 584 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 585 //   application (see Linux kernel fault.c).
 586 //
 587 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 588 //   stack overflow detection.
 589 //
 590 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 591 //   not use MAP_GROWSDOWN.
 592 //
 593 // To get around the problem and allow stack banging on Linux, we need to
 594 // manually expand thread stack after receiving the SIGSEGV.
 595 //
 596 // There are two ways to expand thread stack to address "bottom", we used
 597 // both of them in JVM before 1.5:
 598 //   1. adjust stack pointer first so that it is below "bottom", and then
 599 //      touch "bottom"
 600 //   2. mmap() the page in question
 601 //
 602 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 603 // if current sp is already near the lower end of page 101, and we need to
 604 // call mmap() to map page 100, it is possible that part of the mmap() frame
 605 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 606 // That will destroy the mmap() frame and cause VM to crash.
 607 //
 608 // The following code works by adjusting sp first, then accessing the "bottom"
 609 // page to force a page fault. Linux kernel will then automatically expand the
 610 // stack mapping.
 611 //
 612 // _expand_stack_to() assumes its frame size is less than page size, which
 613 // should always be true if the function is not inlined.
 614 
 615 static void NOINLINE _expand_stack_to(address bottom) {
 616   address sp;
 617   size_t size;
 618   volatile char *p;
 619 
 620   // Adjust bottom to point to the largest address within the same page, it
 621   // gives us a one-page buffer if alloca() allocates slightly more memory.
 622   bottom = (address)align_down((uintptr_t)bottom, os::Linux::page_size());
 623   bottom += os::Linux::page_size() - 1;
 624 
 625   // sp might be slightly above current stack pointer; if that's the case, we
 626   // will alloca() a little more space than necessary, which is OK. Don't use
 627   // os::current_stack_pointer(), as its result can be slightly below current
 628   // stack pointer, causing us to not alloca enough to reach "bottom".
 629   sp = (address)&sp;
 630 
 631   if (sp > bottom) {
 632     size = sp - bottom;
 633     p = (volatile char *)alloca(size);
 634     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 635     p[0] = '\0';
 636   }
 637 }
 638 
 639 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 640   assert(t!=NULL, "just checking");
 641   assert(t->osthread()->expanding_stack(), "expand should be set");
 642   assert(t->stack_base() != NULL, "stack_base was not initialized");
 643 
 644   if (addr <  t->stack_base() && addr >= t->stack_reserved_zone_base()) {
 645     sigset_t mask_all, old_sigset;
 646     sigfillset(&mask_all);
 647     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 648     _expand_stack_to(addr);
 649     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 650     return true;
 651   }
 652   return false;
 653 }
 654 
 655 //////////////////////////////////////////////////////////////////////////////
 656 // create new thread
 657 
 658 // Thread start routine for all newly created threads
 659 static void *thread_native_entry(Thread *thread) {
 660   // Try to randomize the cache line index of hot stack frames.
 661   // This helps when threads of the same stack traces evict each other's
 662   // cache lines. The threads can be either from the same JVM instance, or
 663   // from different JVM instances. The benefit is especially true for
 664   // processors with hyperthreading technology.
 665   static int counter = 0;
 666   int pid = os::current_process_id();
 667   alloca(((pid ^ counter++) & 7) * 128);
 668 
 669   thread->initialize_thread_current();
 670 
 671   OSThread* osthread = thread->osthread();
 672   Monitor* sync = osthread->startThread_lock();
 673 
 674   osthread->set_thread_id(os::current_thread_id());
 675 
 676   log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 677     os::current_thread_id(), (uintx) pthread_self());
 678 
 679   if (UseNUMA) {
 680     int lgrp_id = os::numa_get_group_id();
 681     if (lgrp_id != -1) {
 682       thread->set_lgrp_id(lgrp_id);
 683     }
 684   }
 685   // initialize signal mask for this thread
 686   os::Linux::hotspot_sigmask(thread);
 687 
 688   // initialize floating point control register
 689   os::Linux::init_thread_fpu_state();
 690 
 691   // handshaking with parent thread
 692   {
 693     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 694 
 695     // notify parent thread
 696     osthread->set_state(INITIALIZED);
 697     sync->notify_all();
 698 
 699     // wait until os::start_thread()
 700     while (osthread->get_state() == INITIALIZED) {
 701       sync->wait(Mutex::_no_safepoint_check_flag);
 702     }
 703   }
 704 
 705   // call one more level start routine
 706   thread->run();
 707 
 708   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 709     os::current_thread_id(), (uintx) pthread_self());
 710 
 711   // If a thread has not deleted itself ("delete this") as part of its
 712   // termination sequence, we have to ensure thread-local-storage is
 713   // cleared before we actually terminate. No threads should ever be
 714   // deleted asynchronously with respect to their termination.
 715   if (Thread::current_or_null_safe() != NULL) {
 716     assert(Thread::current_or_null_safe() == thread, "current thread is wrong");
 717     thread->clear_thread_current();
 718   }
 719 
 720   return 0;
 721 }
 722 
 723 bool os::create_thread(Thread* thread, ThreadType thr_type,
 724                        size_t req_stack_size) {
 725   assert(thread->osthread() == NULL, "caller responsible");
 726 
 727   // Allocate the OSThread object
 728   OSThread* osthread = new OSThread(NULL, NULL);
 729   if (osthread == NULL) {
 730     return false;
 731   }
 732 
 733   // set the correct thread state
 734   osthread->set_thread_type(thr_type);
 735 
 736   // Initial state is ALLOCATED but not INITIALIZED
 737   osthread->set_state(ALLOCATED);
 738 
 739   thread->set_osthread(osthread);
 740 
 741   // init thread attributes
 742   pthread_attr_t attr;
 743   pthread_attr_init(&attr);
 744   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 745 
 746   // Calculate stack size if it's not specified by caller.
 747   size_t stack_size = os::Posix::get_initial_stack_size(thr_type, req_stack_size);
 748   // In the Linux NPTL pthread implementation the guard size mechanism
 749   // is not implemented properly. The posix standard requires adding
 750   // the size of the guard pages to the stack size, instead Linux
 751   // takes the space out of 'stacksize'. Thus we adapt the requested
 752   // stack_size by the size of the guard pages to mimick proper
 753   // behaviour. However, be careful not to end up with a size
 754   // of zero due to overflow. Don't add the guard page in that case.
 755   size_t guard_size = os::Linux::default_guard_size(thr_type);
 756   if (stack_size <= SIZE_MAX - guard_size) {
 757     stack_size += guard_size;
 758   }
 759   assert(is_aligned(stack_size, os::vm_page_size()), "stack_size not aligned");
 760 
 761   int status = pthread_attr_setstacksize(&attr, stack_size);
 762   assert_status(status == 0, status, "pthread_attr_setstacksize");
 763 
 764   // Configure glibc guard page.
 765   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 766 
 767   ThreadState state;
 768 
 769   {
 770     pthread_t tid;
 771     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) thread_native_entry, thread);
 772 
 773     char buf[64];
 774     if (ret == 0) {
 775       log_info(os, thread)("Thread started (pthread id: " UINTX_FORMAT ", attributes: %s). ",
 776         (uintx) tid, os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 777     } else {
 778       log_warning(os, thread)("Failed to start thread - pthread_create failed (%s) for attributes: %s.",
 779         os::errno_name(ret), os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 780     }
 781 
 782     pthread_attr_destroy(&attr);
 783 
 784     if (ret != 0) {
 785       // Need to clean up stuff we've allocated so far
 786       thread->set_osthread(NULL);
 787       delete osthread;
 788       return false;
 789     }
 790 
 791     // Store pthread info into the OSThread
 792     osthread->set_pthread_id(tid);
 793 
 794     // Wait until child thread is either initialized or aborted
 795     {
 796       Monitor* sync_with_child = osthread->startThread_lock();
 797       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 798       while ((state = osthread->get_state()) == ALLOCATED) {
 799         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 800       }
 801     }
 802   }
 803 
 804   // Aborted due to thread limit being reached
 805   if (state == ZOMBIE) {
 806     thread->set_osthread(NULL);
 807     delete osthread;
 808     return false;
 809   }
 810 
 811   // The thread is returned suspended (in state INITIALIZED),
 812   // and is started higher up in the call chain
 813   assert(state == INITIALIZED, "race condition");
 814   return true;
 815 }
 816 
 817 /////////////////////////////////////////////////////////////////////////////
 818 // attach existing thread
 819 
 820 // bootstrap the main thread
 821 bool os::create_main_thread(JavaThread* thread) {
 822   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 823   return create_attached_thread(thread);
 824 }
 825 
 826 bool os::create_attached_thread(JavaThread* thread) {
 827 #ifdef ASSERT
 828   thread->verify_not_published();
 829 #endif
 830 
 831   // Allocate the OSThread object
 832   OSThread* osthread = new OSThread(NULL, NULL);
 833 
 834   if (osthread == NULL) {
 835     return false;
 836   }
 837 
 838   // Store pthread info into the OSThread
 839   osthread->set_thread_id(os::Linux::gettid());
 840   osthread->set_pthread_id(::pthread_self());
 841 
 842   // initialize floating point control register
 843   os::Linux::init_thread_fpu_state();
 844 
 845   // Initial thread state is RUNNABLE
 846   osthread->set_state(RUNNABLE);
 847 
 848   thread->set_osthread(osthread);
 849 
 850   if (UseNUMA) {
 851     int lgrp_id = os::numa_get_group_id();
 852     if (lgrp_id != -1) {
 853       thread->set_lgrp_id(lgrp_id);
 854     }
 855   }
 856 
 857   if (os::is_primordial_thread()) {
 858     // If current thread is primordial thread, its stack is mapped on demand,
 859     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
 860     // the entire stack region to avoid SEGV in stack banging.
 861     // It is also useful to get around the heap-stack-gap problem on SuSE
 862     // kernel (see 4821821 for details). We first expand stack to the top
 863     // of yellow zone, then enable stack yellow zone (order is significant,
 864     // enabling yellow zone first will crash JVM on SuSE Linux), so there
 865     // is no gap between the last two virtual memory regions.
 866 
 867     JavaThread *jt = (JavaThread *)thread;
 868     address addr = jt->stack_reserved_zone_base();
 869     assert(addr != NULL, "initialization problem?");
 870     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
 871 
 872     osthread->set_expanding_stack();
 873     os::Linux::manually_expand_stack(jt, addr);
 874     osthread->clear_expanding_stack();
 875   }
 876 
 877   // initialize signal mask for this thread
 878   // and save the caller's signal mask
 879   os::Linux::hotspot_sigmask(thread);
 880 
 881   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 882     os::current_thread_id(), (uintx) pthread_self());
 883 
 884   return true;
 885 }
 886 
 887 void os::pd_start_thread(Thread* thread) {
 888   OSThread * osthread = thread->osthread();
 889   assert(osthread->get_state() != INITIALIZED, "just checking");
 890   Monitor* sync_with_child = osthread->startThread_lock();
 891   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 892   sync_with_child->notify();
 893 }
 894 
 895 // Free Linux resources related to the OSThread
 896 void os::free_thread(OSThread* osthread) {
 897   assert(osthread != NULL, "osthread not set");
 898 
 899   // We are told to free resources of the argument thread,
 900   // but we can only really operate on the current thread.
 901   assert(Thread::current()->osthread() == osthread,
 902          "os::free_thread but not current thread");
 903 
 904 #ifdef ASSERT
 905   sigset_t current;
 906   sigemptyset(&current);
 907   pthread_sigmask(SIG_SETMASK, NULL, &current);
 908   assert(!sigismember(&current, SR_signum), "SR signal should not be blocked!");
 909 #endif
 910 
 911   // Restore caller's signal mask
 912   sigset_t sigmask = osthread->caller_sigmask();
 913   pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
 914 
 915   delete osthread;
 916 }
 917 
 918 //////////////////////////////////////////////////////////////////////////////
 919 // primordial thread
 920 
 921 // Check if current thread is the primordial thread, similar to Solaris thr_main.
 922 bool os::is_primordial_thread(void) {
 923   char dummy;
 924   // If called before init complete, thread stack bottom will be null.
 925   // Can be called if fatal error occurs before initialization.
 926   if (os::Linux::initial_thread_stack_bottom() == NULL) return false;
 927   assert(os::Linux::initial_thread_stack_bottom() != NULL &&
 928          os::Linux::initial_thread_stack_size()   != 0,
 929          "os::init did not locate primordial thread's stack region");
 930   if ((address)&dummy >= os::Linux::initial_thread_stack_bottom() &&
 931       (address)&dummy < os::Linux::initial_thread_stack_bottom() +
 932                         os::Linux::initial_thread_stack_size()) {
 933     return true;
 934   } else {
 935     return false;
 936   }
 937 }
 938 
 939 // Find the virtual memory area that contains addr
 940 static bool find_vma(address addr, address* vma_low, address* vma_high) {
 941   FILE *fp = fopen("/proc/self/maps", "r");
 942   if (fp) {
 943     address low, high;
 944     while (!feof(fp)) {
 945       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
 946         if (low <= addr && addr < high) {
 947           if (vma_low)  *vma_low  = low;
 948           if (vma_high) *vma_high = high;
 949           fclose(fp);
 950           return true;
 951         }
 952       }
 953       for (;;) {
 954         int ch = fgetc(fp);
 955         if (ch == EOF || ch == (int)'\n') break;
 956       }
 957     }
 958     fclose(fp);
 959   }
 960   return false;
 961 }
 962 
 963 // Locate primordial thread stack. This special handling of primordial thread stack
 964 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
 965 // bogus value for the primordial process thread. While the launcher has created
 966 // the VM in a new thread since JDK 6, we still have to allow for the use of the
 967 // JNI invocation API from a primordial thread.
 968 void os::Linux::capture_initial_stack(size_t max_size) {
 969 
 970   // max_size is either 0 (which means accept OS default for thread stacks) or
 971   // a user-specified value known to be at least the minimum needed. If we
 972   // are actually on the primordial thread we can make it appear that we have a
 973   // smaller max_size stack by inserting the guard pages at that location. But we
 974   // cannot do anything to emulate a larger stack than what has been provided by
 975   // the OS or threading library. In fact if we try to use a stack greater than
 976   // what is set by rlimit then we will crash the hosting process.
 977 
 978   // Maximum stack size is the easy part, get it from RLIMIT_STACK.
 979   // If this is "unlimited" then it will be a huge value.
 980   struct rlimit rlim;
 981   getrlimit(RLIMIT_STACK, &rlim);
 982   size_t stack_size = rlim.rlim_cur;
 983 
 984   // 6308388: a bug in ld.so will relocate its own .data section to the
 985   //   lower end of primordial stack; reduce ulimit -s value a little bit
 986   //   so we won't install guard page on ld.so's data section.
 987   //   But ensure we don't underflow the stack size - allow 1 page spare
 988   if (stack_size >= (size_t)(3 * page_size())) {
 989     stack_size -= 2 * page_size();
 990   }
 991 
 992   // Try to figure out where the stack base (top) is. This is harder.
 993   //
 994   // When an application is started, glibc saves the initial stack pointer in
 995   // a global variable "__libc_stack_end", which is then used by system
 996   // libraries. __libc_stack_end should be pretty close to stack top. The
 997   // variable is available since the very early days. However, because it is
 998   // a private interface, it could disappear in the future.
 999   //
1000   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1001   // to __libc_stack_end, it is very close to stack top, but isn't the real
1002   // stack top. Note that /proc may not exist if VM is running as a chroot
1003   // program, so reading /proc/<pid>/stat could fail. Also the contents of
1004   // /proc/<pid>/stat could change in the future (though unlikely).
1005   //
1006   // We try __libc_stack_end first. If that doesn't work, look for
1007   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1008   // as a hint, which should work well in most cases.
1009 
1010   uintptr_t stack_start;
1011 
1012   // try __libc_stack_end first
1013   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1014   if (p && *p) {
1015     stack_start = *p;
1016   } else {
1017     // see if we can get the start_stack field from /proc/self/stat
1018     FILE *fp;
1019     int pid;
1020     char state;
1021     int ppid;
1022     int pgrp;
1023     int session;
1024     int nr;
1025     int tpgrp;
1026     unsigned long flags;
1027     unsigned long minflt;
1028     unsigned long cminflt;
1029     unsigned long majflt;
1030     unsigned long cmajflt;
1031     unsigned long utime;
1032     unsigned long stime;
1033     long cutime;
1034     long cstime;
1035     long prio;
1036     long nice;
1037     long junk;
1038     long it_real;
1039     uintptr_t start;
1040     uintptr_t vsize;
1041     intptr_t rss;
1042     uintptr_t rsslim;
1043     uintptr_t scodes;
1044     uintptr_t ecode;
1045     int i;
1046 
1047     // Figure what the primordial thread stack base is. Code is inspired
1048     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1049     // followed by command name surrounded by parentheses, state, etc.
1050     char stat[2048];
1051     int statlen;
1052 
1053     fp = fopen("/proc/self/stat", "r");
1054     if (fp) {
1055       statlen = fread(stat, 1, 2047, fp);
1056       stat[statlen] = '\0';
1057       fclose(fp);
1058 
1059       // Skip pid and the command string. Note that we could be dealing with
1060       // weird command names, e.g. user could decide to rename java launcher
1061       // to "java 1.4.2 :)", then the stat file would look like
1062       //                1234 (java 1.4.2 :)) R ... ...
1063       // We don't really need to know the command string, just find the last
1064       // occurrence of ")" and then start parsing from there. See bug 4726580.
1065       char * s = strrchr(stat, ')');
1066 
1067       i = 0;
1068       if (s) {
1069         // Skip blank chars
1070         do { s++; } while (s && isspace(*s));
1071 
1072 #define _UFM UINTX_FORMAT
1073 #define _DFM INTX_FORMAT
1074 
1075         //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1076         //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1077         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1078                    &state,          // 3  %c
1079                    &ppid,           // 4  %d
1080                    &pgrp,           // 5  %d
1081                    &session,        // 6  %d
1082                    &nr,             // 7  %d
1083                    &tpgrp,          // 8  %d
1084                    &flags,          // 9  %lu
1085                    &minflt,         // 10 %lu
1086                    &cminflt,        // 11 %lu
1087                    &majflt,         // 12 %lu
1088                    &cmajflt,        // 13 %lu
1089                    &utime,          // 14 %lu
1090                    &stime,          // 15 %lu
1091                    &cutime,         // 16 %ld
1092                    &cstime,         // 17 %ld
1093                    &prio,           // 18 %ld
1094                    &nice,           // 19 %ld
1095                    &junk,           // 20 %ld
1096                    &it_real,        // 21 %ld
1097                    &start,          // 22 UINTX_FORMAT
1098                    &vsize,          // 23 UINTX_FORMAT
1099                    &rss,            // 24 INTX_FORMAT
1100                    &rsslim,         // 25 UINTX_FORMAT
1101                    &scodes,         // 26 UINTX_FORMAT
1102                    &ecode,          // 27 UINTX_FORMAT
1103                    &stack_start);   // 28 UINTX_FORMAT
1104       }
1105 
1106 #undef _UFM
1107 #undef _DFM
1108 
1109       if (i != 28 - 2) {
1110         assert(false, "Bad conversion from /proc/self/stat");
1111         // product mode - assume we are the primordial thread, good luck in the
1112         // embedded case.
1113         warning("Can't detect primordial thread stack location - bad conversion");
1114         stack_start = (uintptr_t) &rlim;
1115       }
1116     } else {
1117       // For some reason we can't open /proc/self/stat (for example, running on
1118       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1119       // most cases, so don't abort:
1120       warning("Can't detect primordial thread stack location - no /proc/self/stat");
1121       stack_start = (uintptr_t) &rlim;
1122     }
1123   }
1124 
1125   // Now we have a pointer (stack_start) very close to the stack top, the
1126   // next thing to do is to figure out the exact location of stack top. We
1127   // can find out the virtual memory area that contains stack_start by
1128   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1129   // and its upper limit is the real stack top. (again, this would fail if
1130   // running inside chroot, because /proc may not exist.)
1131 
1132   uintptr_t stack_top;
1133   address low, high;
1134   if (find_vma((address)stack_start, &low, &high)) {
1135     // success, "high" is the true stack top. (ignore "low", because initial
1136     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1137     stack_top = (uintptr_t)high;
1138   } else {
1139     // failed, likely because /proc/self/maps does not exist
1140     warning("Can't detect primordial thread stack location - find_vma failed");
1141     // best effort: stack_start is normally within a few pages below the real
1142     // stack top, use it as stack top, and reduce stack size so we won't put
1143     // guard page outside stack.
1144     stack_top = stack_start;
1145     stack_size -= 16 * page_size();
1146   }
1147 
1148   // stack_top could be partially down the page so align it
1149   stack_top = align_up(stack_top, page_size());
1150 
1151   // Allowed stack value is minimum of max_size and what we derived from rlimit
1152   if (max_size > 0) {
1153     _initial_thread_stack_size = MIN2(max_size, stack_size);
1154   } else {
1155     // Accept the rlimit max, but if stack is unlimited then it will be huge, so
1156     // clamp it at 8MB as we do on Solaris
1157     _initial_thread_stack_size = MIN2(stack_size, 8*M);
1158   }
1159   _initial_thread_stack_size = align_down(_initial_thread_stack_size, page_size());
1160   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1161 
1162   assert(_initial_thread_stack_bottom < (address)stack_top, "overflow!");
1163 
1164   if (log_is_enabled(Info, os, thread)) {
1165     // See if we seem to be on primordial process thread
1166     bool primordial = uintptr_t(&rlim) > uintptr_t(_initial_thread_stack_bottom) &&
1167                       uintptr_t(&rlim) < stack_top;
1168 
1169     log_info(os, thread)("Capturing initial stack in %s thread: req. size: " SIZE_FORMAT "K, actual size: "
1170                          SIZE_FORMAT "K, top=" INTPTR_FORMAT ", bottom=" INTPTR_FORMAT,
1171                          primordial ? "primordial" : "user", max_size / K,  _initial_thread_stack_size / K,
1172                          stack_top, intptr_t(_initial_thread_stack_bottom));
1173   }
1174 }
1175 
1176 ////////////////////////////////////////////////////////////////////////////////
1177 // time support
1178 
1179 // Time since start-up in seconds to a fine granularity.
1180 // Used by VMSelfDestructTimer and the MemProfiler.
1181 double os::elapsedTime() {
1182 
1183   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1184 }
1185 
1186 jlong os::elapsed_counter() {
1187   return javaTimeNanos() - initial_time_count;
1188 }
1189 
1190 jlong os::elapsed_frequency() {
1191   return NANOSECS_PER_SEC; // nanosecond resolution
1192 }
1193 
1194 bool os::supports_vtime() { return true; }
1195 bool os::enable_vtime()   { return false; }
1196 bool os::vtime_enabled()  { return false; }
1197 
1198 double os::elapsedVTime() {
1199   struct rusage usage;
1200   int retval = getrusage(RUSAGE_THREAD, &usage);
1201   if (retval == 0) {
1202     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1203   } else {
1204     // better than nothing, but not much
1205     return elapsedTime();
1206   }
1207 }
1208 
1209 jlong os::javaTimeMillis() {
1210   timeval time;
1211   int status = gettimeofday(&time, NULL);
1212   assert(status != -1, "linux error");
1213   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1214 }
1215 
1216 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1217   timeval time;
1218   int status = gettimeofday(&time, NULL);
1219   assert(status != -1, "linux error");
1220   seconds = jlong(time.tv_sec);
1221   nanos = jlong(time.tv_usec) * 1000;
1222 }
1223 
1224 
1225 #ifndef CLOCK_MONOTONIC
1226   #define CLOCK_MONOTONIC (1)
1227 #endif
1228 
1229 void os::Linux::clock_init() {
1230   // we do dlopen's in this particular order due to bug in linux
1231   // dynamical loader (see 6348968) leading to crash on exit
1232   void* handle = dlopen("librt.so.1", RTLD_LAZY);
1233   if (handle == NULL) {
1234     handle = dlopen("librt.so", RTLD_LAZY);
1235   }
1236 
1237   if (handle) {
1238     int (*clock_getres_func)(clockid_t, struct timespec*) =
1239            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1240     int (*clock_gettime_func)(clockid_t, struct timespec*) =
1241            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1242     if (clock_getres_func && clock_gettime_func) {
1243       // See if monotonic clock is supported by the kernel. Note that some
1244       // early implementations simply return kernel jiffies (updated every
1245       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1246       // for nano time (though the monotonic property is still nice to have).
1247       // It's fixed in newer kernels, however clock_getres() still returns
1248       // 1/HZ. We check if clock_getres() works, but will ignore its reported
1249       // resolution for now. Hopefully as people move to new kernels, this
1250       // won't be a problem.
1251       struct timespec res;
1252       struct timespec tp;
1253       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1254           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1255         // yes, monotonic clock is supported
1256         _clock_gettime = clock_gettime_func;
1257         return;
1258       } else {
1259         // close librt if there is no monotonic clock
1260         dlclose(handle);
1261       }
1262     }
1263   }
1264   warning("No monotonic clock was available - timed services may " \
1265           "be adversely affected if the time-of-day clock changes");
1266 }
1267 
1268 #ifndef SYS_clock_getres
1269   #if defined(X86) || defined(PPC64) || defined(S390)
1270     #define SYS_clock_getres AMD64_ONLY(229) IA32_ONLY(266) PPC64_ONLY(247) S390_ONLY(261)
1271     #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1272   #else
1273     #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1274     #define sys_clock_getres(x,y)  -1
1275   #endif
1276 #else
1277   #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1278 #endif
1279 
1280 void os::Linux::fast_thread_clock_init() {
1281   if (!UseLinuxPosixThreadCPUClocks) {
1282     return;
1283   }
1284   clockid_t clockid;
1285   struct timespec tp;
1286   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1287       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1288 
1289   // Switch to using fast clocks for thread cpu time if
1290   // the sys_clock_getres() returns 0 error code.
1291   // Note, that some kernels may support the current thread
1292   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1293   // returned by the pthread_getcpuclockid().
1294   // If the fast Posix clocks are supported then the sys_clock_getres()
1295   // must return at least tp.tv_sec == 0 which means a resolution
1296   // better than 1 sec. This is extra check for reliability.
1297 
1298   if (pthread_getcpuclockid_func &&
1299       pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1300       sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1301     _supports_fast_thread_cpu_time = true;
1302     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1303   }
1304 }
1305 
1306 jlong os::javaTimeNanos() {
1307   if (os::supports_monotonic_clock()) {
1308     struct timespec tp;
1309     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1310     assert(status == 0, "gettime error");
1311     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1312     return result;
1313   } else {
1314     timeval time;
1315     int status = gettimeofday(&time, NULL);
1316     assert(status != -1, "linux error");
1317     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1318     return 1000 * usecs;
1319   }
1320 }
1321 
1322 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1323   if (os::supports_monotonic_clock()) {
1324     info_ptr->max_value = ALL_64_BITS;
1325 
1326     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1327     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1328     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1329   } else {
1330     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1331     info_ptr->max_value = ALL_64_BITS;
1332 
1333     // gettimeofday is a real time clock so it skips
1334     info_ptr->may_skip_backward = true;
1335     info_ptr->may_skip_forward = true;
1336   }
1337 
1338   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1339 }
1340 
1341 // Return the real, user, and system times in seconds from an
1342 // arbitrary fixed point in the past.
1343 bool os::getTimesSecs(double* process_real_time,
1344                       double* process_user_time,
1345                       double* process_system_time) {
1346   struct tms ticks;
1347   clock_t real_ticks = times(&ticks);
1348 
1349   if (real_ticks == (clock_t) (-1)) {
1350     return false;
1351   } else {
1352     double ticks_per_second = (double) clock_tics_per_sec;
1353     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1354     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1355     *process_real_time = ((double) real_ticks) / ticks_per_second;
1356 
1357     return true;
1358   }
1359 }
1360 
1361 
1362 char * os::local_time_string(char *buf, size_t buflen) {
1363   struct tm t;
1364   time_t long_time;
1365   time(&long_time);
1366   localtime_r(&long_time, &t);
1367   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1368                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1369                t.tm_hour, t.tm_min, t.tm_sec);
1370   return buf;
1371 }
1372 
1373 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1374   return localtime_r(clock, res);
1375 }
1376 
1377 ////////////////////////////////////////////////////////////////////////////////
1378 // runtime exit support
1379 
1380 // Note: os::shutdown() might be called very early during initialization, or
1381 // called from signal handler. Before adding something to os::shutdown(), make
1382 // sure it is async-safe and can handle partially initialized VM.
1383 void os::shutdown() {
1384 
1385   // allow PerfMemory to attempt cleanup of any persistent resources
1386   perfMemory_exit();
1387 
1388   // needs to remove object in file system
1389   AttachListener::abort();
1390 
1391   // flush buffered output, finish log files
1392   ostream_abort();
1393 
1394   // Check for abort hook
1395   abort_hook_t abort_hook = Arguments::abort_hook();
1396   if (abort_hook != NULL) {
1397     abort_hook();
1398   }
1399 
1400 }
1401 
1402 // Note: os::abort() might be called very early during initialization, or
1403 // called from signal handler. Before adding something to os::abort(), make
1404 // sure it is async-safe and can handle partially initialized VM.
1405 void os::abort(bool dump_core, void* siginfo, const void* context) {
1406   os::shutdown();
1407   if (dump_core) {
1408 #ifndef PRODUCT
1409     fdStream out(defaultStream::output_fd());
1410     out.print_raw("Current thread is ");
1411     char buf[16];
1412     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1413     out.print_raw_cr(buf);
1414     out.print_raw_cr("Dumping core ...");
1415 #endif
1416     ::abort(); // dump core
1417   }
1418 
1419   ::exit(1);
1420 }
1421 
1422 // Die immediately, no exit hook, no abort hook, no cleanup.
1423 void os::die() {
1424   ::abort();
1425 }
1426 
1427 
1428 // This method is a copy of JDK's sysGetLastErrorString
1429 // from src/solaris/hpi/src/system_md.c
1430 
1431 size_t os::lasterror(char *buf, size_t len) {
1432   if (errno == 0)  return 0;
1433 
1434   const char *s = os::strerror(errno);
1435   size_t n = ::strlen(s);
1436   if (n >= len) {
1437     n = len - 1;
1438   }
1439   ::strncpy(buf, s, n);
1440   buf[n] = '\0';
1441   return n;
1442 }
1443 
1444 // thread_id is kernel thread id (similar to Solaris LWP id)
1445 intx os::current_thread_id() { return os::Linux::gettid(); }
1446 int os::current_process_id() {
1447   return ::getpid();
1448 }
1449 
1450 // DLL functions
1451 
1452 const char* os::dll_file_extension() { return ".so"; }
1453 
1454 // This must be hard coded because it's the system's temporary
1455 // directory not the java application's temp directory, ala java.io.tmpdir.
1456 const char* os::get_temp_directory() { return "/tmp"; }
1457 
1458 static bool file_exists(const char* filename) {
1459   struct stat statbuf;
1460   if (filename == NULL || strlen(filename) == 0) {
1461     return false;
1462   }
1463   return os::stat(filename, &statbuf) == 0;
1464 }
1465 
1466 // check if addr is inside libjvm.so
1467 bool os::address_is_in_vm(address addr) {
1468   static address libjvm_base_addr;
1469   Dl_info dlinfo;
1470 
1471   if (libjvm_base_addr == NULL) {
1472     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1473       libjvm_base_addr = (address)dlinfo.dli_fbase;
1474     }
1475     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1476   }
1477 
1478   if (dladdr((void *)addr, &dlinfo) != 0) {
1479     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1480   }
1481 
1482   return false;
1483 }
1484 
1485 bool os::dll_address_to_function_name(address addr, char *buf,
1486                                       int buflen, int *offset,
1487                                       bool demangle) {
1488   // buf is not optional, but offset is optional
1489   assert(buf != NULL, "sanity check");
1490 
1491   Dl_info dlinfo;
1492 
1493   if (dladdr((void*)addr, &dlinfo) != 0) {
1494     // see if we have a matching symbol
1495     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1496       if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1497         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1498       }
1499       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1500       return true;
1501     }
1502     // no matching symbol so try for just file info
1503     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1504       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1505                           buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1506         return true;
1507       }
1508     }
1509   }
1510 
1511   buf[0] = '\0';
1512   if (offset != NULL) *offset = -1;
1513   return false;
1514 }
1515 
1516 struct _address_to_library_name {
1517   address addr;          // input : memory address
1518   size_t  buflen;        //         size of fname
1519   char*   fname;         // output: library name
1520   address base;          //         library base addr
1521 };
1522 
1523 static int address_to_library_name_callback(struct dl_phdr_info *info,
1524                                             size_t size, void *data) {
1525   int i;
1526   bool found = false;
1527   address libbase = NULL;
1528   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1529 
1530   // iterate through all loadable segments
1531   for (i = 0; i < info->dlpi_phnum; i++) {
1532     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1533     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1534       // base address of a library is the lowest address of its loaded
1535       // segments.
1536       if (libbase == NULL || libbase > segbase) {
1537         libbase = segbase;
1538       }
1539       // see if 'addr' is within current segment
1540       if (segbase <= d->addr &&
1541           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1542         found = true;
1543       }
1544     }
1545   }
1546 
1547   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1548   // so dll_address_to_library_name() can fall through to use dladdr() which
1549   // can figure out executable name from argv[0].
1550   if (found && info->dlpi_name && info->dlpi_name[0]) {
1551     d->base = libbase;
1552     if (d->fname) {
1553       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1554     }
1555     return 1;
1556   }
1557   return 0;
1558 }
1559 
1560 bool os::dll_address_to_library_name(address addr, char* buf,
1561                                      int buflen, int* offset) {
1562   // buf is not optional, but offset is optional
1563   assert(buf != NULL, "sanity check");
1564 
1565   Dl_info dlinfo;
1566   struct _address_to_library_name data;
1567 
1568   // There is a bug in old glibc dladdr() implementation that it could resolve
1569   // to wrong library name if the .so file has a base address != NULL. Here
1570   // we iterate through the program headers of all loaded libraries to find
1571   // out which library 'addr' really belongs to. This workaround can be
1572   // removed once the minimum requirement for glibc is moved to 2.3.x.
1573   data.addr = addr;
1574   data.fname = buf;
1575   data.buflen = buflen;
1576   data.base = NULL;
1577   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1578 
1579   if (rslt) {
1580     // buf already contains library name
1581     if (offset) *offset = addr - data.base;
1582     return true;
1583   }
1584   if (dladdr((void*)addr, &dlinfo) != 0) {
1585     if (dlinfo.dli_fname != NULL) {
1586       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1587     }
1588     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1589       *offset = addr - (address)dlinfo.dli_fbase;
1590     }
1591     return true;
1592   }
1593 
1594   buf[0] = '\0';
1595   if (offset) *offset = -1;
1596   return false;
1597 }
1598 
1599 // Loads .dll/.so and
1600 // in case of error it checks if .dll/.so was built for the
1601 // same architecture as Hotspot is running on
1602 
1603 
1604 // Remember the stack's state. The Linux dynamic linker will change
1605 // the stack to 'executable' at most once, so we must safepoint only once.
1606 bool os::Linux::_stack_is_executable = false;
1607 
1608 // VM operation that loads a library.  This is necessary if stack protection
1609 // of the Java stacks can be lost during loading the library.  If we
1610 // do not stop the Java threads, they can stack overflow before the stacks
1611 // are protected again.
1612 class VM_LinuxDllLoad: public VM_Operation {
1613  private:
1614   const char *_filename;
1615   char *_ebuf;
1616   int _ebuflen;
1617   void *_lib;
1618  public:
1619   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1620     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1621   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1622   void doit() {
1623     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1624     os::Linux::_stack_is_executable = true;
1625   }
1626   void* loaded_library() { return _lib; }
1627 };
1628 
1629 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1630   void * result = NULL;
1631   bool load_attempted = false;
1632 
1633   // Check whether the library to load might change execution rights
1634   // of the stack. If they are changed, the protection of the stack
1635   // guard pages will be lost. We need a safepoint to fix this.
1636   //
1637   // See Linux man page execstack(8) for more info.
1638   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1639     if (!ElfFile::specifies_noexecstack(filename)) {
1640       if (!is_init_completed()) {
1641         os::Linux::_stack_is_executable = true;
1642         // This is OK - No Java threads have been created yet, and hence no
1643         // stack guard pages to fix.
1644         //
1645         // This should happen only when you are building JDK7 using a very
1646         // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1647         //
1648         // Dynamic loader will make all stacks executable after
1649         // this function returns, and will not do that again.
1650 #ifdef ASSERT
1651         ThreadsListHandle tlh;
1652         assert(tlh.length() == 0, "no Java threads should exist yet.");
1653 #endif
1654       } else {
1655         warning("You have loaded library %s which might have disabled stack guard. "
1656                 "The VM will try to fix the stack guard now.\n"
1657                 "It's highly recommended that you fix the library with "
1658                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1659                 filename);
1660 
1661         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1662         JavaThread *jt = JavaThread::current();
1663         if (jt->thread_state() != _thread_in_native) {
1664           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1665           // that requires ExecStack. Cannot enter safe point. Let's give up.
1666           warning("Unable to fix stack guard. Giving up.");
1667         } else {
1668           if (!LoadExecStackDllInVMThread) {
1669             // This is for the case where the DLL has an static
1670             // constructor function that executes JNI code. We cannot
1671             // load such DLLs in the VMThread.
1672             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1673           }
1674 
1675           ThreadInVMfromNative tiv(jt);
1676           debug_only(VMNativeEntryWrapper vew;)
1677 
1678           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1679           VMThread::execute(&op);
1680           if (LoadExecStackDllInVMThread) {
1681             result = op.loaded_library();
1682           }
1683           load_attempted = true;
1684         }
1685       }
1686     }
1687   }
1688 
1689   if (!load_attempted) {
1690     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1691   }
1692 
1693   if (result != NULL) {
1694     // Successful loading
1695     return result;
1696   }
1697 
1698   Elf32_Ehdr elf_head;
1699   int diag_msg_max_length=ebuflen-strlen(ebuf);
1700   char* diag_msg_buf=ebuf+strlen(ebuf);
1701 
1702   if (diag_msg_max_length==0) {
1703     // No more space in ebuf for additional diagnostics message
1704     return NULL;
1705   }
1706 
1707 
1708   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1709 
1710   if (file_descriptor < 0) {
1711     // Can't open library, report dlerror() message
1712     return NULL;
1713   }
1714 
1715   bool failed_to_read_elf_head=
1716     (sizeof(elf_head)!=
1717      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1718 
1719   ::close(file_descriptor);
1720   if (failed_to_read_elf_head) {
1721     // file i/o error - report dlerror() msg
1722     return NULL;
1723   }
1724 
1725   typedef struct {
1726     Elf32_Half    code;         // Actual value as defined in elf.h
1727     Elf32_Half    compat_class; // Compatibility of archs at VM's sense
1728     unsigned char elf_class;    // 32 or 64 bit
1729     unsigned char endianess;    // MSB or LSB
1730     char*         name;         // String representation
1731   } arch_t;
1732 
1733 #ifndef EM_486
1734   #define EM_486          6               /* Intel 80486 */
1735 #endif
1736 #ifndef EM_AARCH64
1737   #define EM_AARCH64    183               /* ARM AARCH64 */
1738 #endif
1739 
1740   static const arch_t arch_array[]={
1741     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1742     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1743     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1744     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1745     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1746     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1747     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1748     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1749 #if defined(VM_LITTLE_ENDIAN)
1750     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64 LE"},
1751     {EM_SH,          EM_SH,      ELFCLASS32, ELFDATA2LSB, (char*)"SuperH"},
1752 #else
1753     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1754     {EM_SH,          EM_SH,      ELFCLASS32, ELFDATA2MSB, (char*)"SuperH BE"},
1755 #endif
1756     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1757     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1758     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1759     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1760     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1761     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1762     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"},
1763     {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"},
1764   };
1765 
1766 #if  (defined IA32)
1767   static  Elf32_Half running_arch_code=EM_386;
1768 #elif   (defined AMD64)
1769   static  Elf32_Half running_arch_code=EM_X86_64;
1770 #elif  (defined IA64)
1771   static  Elf32_Half running_arch_code=EM_IA_64;
1772 #elif  (defined __sparc) && (defined _LP64)
1773   static  Elf32_Half running_arch_code=EM_SPARCV9;
1774 #elif  (defined __sparc) && (!defined _LP64)
1775   static  Elf32_Half running_arch_code=EM_SPARC;
1776 #elif  (defined __powerpc64__)
1777   static  Elf32_Half running_arch_code=EM_PPC64;
1778 #elif  (defined __powerpc__)
1779   static  Elf32_Half running_arch_code=EM_PPC;
1780 #elif  (defined AARCH64)
1781   static  Elf32_Half running_arch_code=EM_AARCH64;
1782 #elif  (defined ARM)
1783   static  Elf32_Half running_arch_code=EM_ARM;
1784 #elif  (defined S390)
1785   static  Elf32_Half running_arch_code=EM_S390;
1786 #elif  (defined ALPHA)
1787   static  Elf32_Half running_arch_code=EM_ALPHA;
1788 #elif  (defined MIPSEL)
1789   static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1790 #elif  (defined PARISC)
1791   static  Elf32_Half running_arch_code=EM_PARISC;
1792 #elif  (defined MIPS)
1793   static  Elf32_Half running_arch_code=EM_MIPS;
1794 #elif  (defined M68K)
1795   static  Elf32_Half running_arch_code=EM_68K;
1796 #elif  (defined SH)
1797   static  Elf32_Half running_arch_code=EM_SH;
1798 #else
1799     #error Method os::dll_load requires that one of following is defined:\
1800         AARCH64, ALPHA, ARM, AMD64, IA32, IA64, M68K, MIPS, MIPSEL, PARISC, __powerpc__, __powerpc64__, S390, SH, __sparc
1801 #endif
1802 
1803   // Identify compatability class for VM's architecture and library's architecture
1804   // Obtain string descriptions for architectures
1805 
1806   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1807   int running_arch_index=-1;
1808 
1809   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1810     if (running_arch_code == arch_array[i].code) {
1811       running_arch_index    = i;
1812     }
1813     if (lib_arch.code == arch_array[i].code) {
1814       lib_arch.compat_class = arch_array[i].compat_class;
1815       lib_arch.name         = arch_array[i].name;
1816     }
1817   }
1818 
1819   assert(running_arch_index != -1,
1820          "Didn't find running architecture code (running_arch_code) in arch_array");
1821   if (running_arch_index == -1) {
1822     // Even though running architecture detection failed
1823     // we may still continue with reporting dlerror() message
1824     return NULL;
1825   }
1826 
1827   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1828     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1829     return NULL;
1830   }
1831 
1832 #ifndef S390
1833   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1834     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1835     return NULL;
1836   }
1837 #endif // !S390
1838 
1839   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1840     if (lib_arch.name!=NULL) {
1841       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1842                  " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1843                  lib_arch.name, arch_array[running_arch_index].name);
1844     } else {
1845       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1846                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1847                  lib_arch.code,
1848                  arch_array[running_arch_index].name);
1849     }
1850   }
1851 
1852   return NULL;
1853 }
1854 
1855 void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
1856                                 int ebuflen) {
1857   void * result = ::dlopen(filename, RTLD_LAZY);
1858   if (result == NULL) {
1859     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
1860     ebuf[ebuflen-1] = '\0';
1861   }
1862   return result;
1863 }
1864 
1865 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
1866                                        int ebuflen) {
1867   void * result = NULL;
1868   if (LoadExecStackDllInVMThread) {
1869     result = dlopen_helper(filename, ebuf, ebuflen);
1870   }
1871 
1872   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
1873   // library that requires an executable stack, or which does not have this
1874   // stack attribute set, dlopen changes the stack attribute to executable. The
1875   // read protection of the guard pages gets lost.
1876   //
1877   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
1878   // may have been queued at the same time.
1879 
1880   if (!_stack_is_executable) {
1881     for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
1882       if (!jt->stack_guard_zone_unused() &&     // Stack not yet fully initialized
1883           jt->stack_guards_enabled()) {         // No pending stack overflow exceptions
1884         if (!os::guard_memory((char *)jt->stack_end(), jt->stack_guard_zone_size())) {
1885           warning("Attempt to reguard stack yellow zone failed.");
1886         }
1887       }
1888     }
1889   }
1890 
1891   return result;
1892 }
1893 
1894 void* os::dll_lookup(void* handle, const char* name) {
1895   void* res = dlsym(handle, name);
1896   return res;
1897 }
1898 
1899 void* os::get_default_process_handle() {
1900   return (void*)::dlopen(NULL, RTLD_LAZY);
1901 }
1902 
1903 static bool _print_ascii_file(const char* filename, outputStream* st) {
1904   int fd = ::open(filename, O_RDONLY);
1905   if (fd == -1) {
1906     return false;
1907   }
1908 
1909   char buf[33];
1910   int bytes;
1911   buf[32] = '\0';
1912   while ((bytes = ::read(fd, buf, sizeof(buf)-1)) > 0) {
1913     st->print_raw(buf, bytes);
1914   }
1915 
1916   ::close(fd);
1917 
1918   return true;
1919 }
1920 
1921 void os::print_dll_info(outputStream *st) {
1922   st->print_cr("Dynamic libraries:");
1923 
1924   char fname[32];
1925   pid_t pid = os::Linux::gettid();
1926 
1927   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
1928 
1929   if (!_print_ascii_file(fname, st)) {
1930     st->print("Can not get library information for pid = %d\n", pid);
1931   }
1932 }
1933 
1934 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1935   FILE *procmapsFile = NULL;
1936 
1937   // Open the procfs maps file for the current process
1938   if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
1939     // Allocate PATH_MAX for file name plus a reasonable size for other fields.
1940     char line[PATH_MAX + 100];
1941 
1942     // Read line by line from 'file'
1943     while (fgets(line, sizeof(line), procmapsFile) != NULL) {
1944       u8 base, top, offset, inode;
1945       char permissions[5];
1946       char device[6];
1947       char name[PATH_MAX + 1];
1948 
1949       // Parse fields from line
1950       sscanf(line, UINT64_FORMAT_X "-" UINT64_FORMAT_X " %4s " UINT64_FORMAT_X " %5s " INT64_FORMAT " %s",
1951              &base, &top, permissions, &offset, device, &inode, name);
1952 
1953       // Filter by device id '00:00' so that we only get file system mapped files.
1954       if (strcmp(device, "00:00") != 0) {
1955 
1956         // Call callback with the fields of interest
1957         if(callback(name, (address)base, (address)top, param)) {
1958           // Oops abort, callback aborted
1959           fclose(procmapsFile);
1960           return 1;
1961         }
1962       }
1963     }
1964     fclose(procmapsFile);
1965   }
1966   return 0;
1967 }
1968 
1969 void os::print_os_info_brief(outputStream* st) {
1970   os::Linux::print_distro_info(st);
1971 
1972   os::Posix::print_uname_info(st);
1973 
1974   os::Linux::print_libversion_info(st);
1975 
1976 }
1977 
1978 void os::print_os_info(outputStream* st) {
1979   st->print("OS:");
1980 
1981   os::Linux::print_distro_info(st);
1982 
1983   os::Posix::print_uname_info(st);
1984 
1985   // Print warning if unsafe chroot environment detected
1986   if (unsafe_chroot_detected) {
1987     st->print("WARNING!! ");
1988     st->print_cr("%s", unstable_chroot_error);
1989   }
1990 
1991   os::Linux::print_libversion_info(st);
1992 
1993   os::Posix::print_rlimit_info(st);
1994 
1995   os::Posix::print_load_average(st);
1996 
1997   os::Linux::print_full_memory_info(st);
1998 
1999   os::Linux::print_container_info(st);
2000 }
2001 
2002 // Try to identify popular distros.
2003 // Most Linux distributions have a /etc/XXX-release file, which contains
2004 // the OS version string. Newer Linux distributions have a /etc/lsb-release
2005 // file that also contains the OS version string. Some have more than one
2006 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2007 // /etc/redhat-release.), so the order is important.
2008 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2009 // their own specific XXX-release file as well as a redhat-release file.
2010 // Because of this the XXX-release file needs to be searched for before the
2011 // redhat-release file.
2012 // Since Red Hat and SuSE have an lsb-release file that is not very descriptive the
2013 // search for redhat-release / SuSE-release needs to be before lsb-release.
2014 // Since the lsb-release file is the new standard it needs to be searched
2015 // before the older style release files.
2016 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
2017 // next to last resort.  The os-release file is a new standard that contains
2018 // distribution information and the system-release file seems to be an old
2019 // standard that has been replaced by the lsb-release and os-release files.
2020 // Searching for the debian_version file is the last resort.  It contains
2021 // an informative string like "6.0.6" or "wheezy/sid". Because of this
2022 // "Debian " is printed before the contents of the debian_version file.
2023 
2024 const char* distro_files[] = {
2025   "/etc/oracle-release",
2026   "/etc/mandriva-release",
2027   "/etc/mandrake-release",
2028   "/etc/sun-release",
2029   "/etc/redhat-release",
2030   "/etc/SuSE-release",
2031   "/etc/lsb-release",
2032   "/etc/turbolinux-release",
2033   "/etc/gentoo-release",
2034   "/etc/ltib-release",
2035   "/etc/angstrom-version",
2036   "/etc/system-release",
2037   "/etc/os-release",
2038   NULL };
2039 
2040 void os::Linux::print_distro_info(outputStream* st) {
2041   for (int i = 0;; i++) {
2042     const char* file = distro_files[i];
2043     if (file == NULL) {
2044       break;  // done
2045     }
2046     // If file prints, we found it.
2047     if (_print_ascii_file(file, st)) {
2048       return;
2049     }
2050   }
2051 
2052   if (file_exists("/etc/debian_version")) {
2053     st->print("Debian ");
2054     _print_ascii_file("/etc/debian_version", st);
2055   } else {
2056     st->print("Linux");
2057   }
2058   st->cr();
2059 }
2060 
2061 static void parse_os_info_helper(FILE* fp, char* distro, size_t length, bool get_first_line) {
2062   char buf[256];
2063   while (fgets(buf, sizeof(buf), fp)) {
2064     // Edit out extra stuff in expected format
2065     if (strstr(buf, "DISTRIB_DESCRIPTION=") != NULL || strstr(buf, "PRETTY_NAME=") != NULL) {
2066       char* ptr = strstr(buf, "\"");  // the name is in quotes
2067       if (ptr != NULL) {
2068         ptr++; // go beyond first quote
2069         char* nl = strchr(ptr, '\"');
2070         if (nl != NULL) *nl = '\0';
2071         strncpy(distro, ptr, length);
2072       } else {
2073         ptr = strstr(buf, "=");
2074         ptr++; // go beyond equals then
2075         char* nl = strchr(ptr, '\n');
2076         if (nl != NULL) *nl = '\0';
2077         strncpy(distro, ptr, length);
2078       }
2079       return;
2080     } else if (get_first_line) {
2081       char* nl = strchr(buf, '\n');
2082       if (nl != NULL) *nl = '\0';
2083       strncpy(distro, buf, length);
2084       return;
2085     }
2086   }
2087   // print last line and close
2088   char* nl = strchr(buf, '\n');
2089   if (nl != NULL) *nl = '\0';
2090   strncpy(distro, buf, length);
2091 }
2092 
2093 static void parse_os_info(char* distro, size_t length, const char* file) {
2094   FILE* fp = fopen(file, "r");
2095   if (fp != NULL) {
2096     // if suse format, print out first line
2097     bool get_first_line = (strcmp(file, "/etc/SuSE-release") == 0);
2098     parse_os_info_helper(fp, distro, length, get_first_line);
2099     fclose(fp);
2100   }
2101 }
2102 
2103 void os::get_summary_os_info(char* buf, size_t buflen) {
2104   for (int i = 0;; i++) {
2105     const char* file = distro_files[i];
2106     if (file == NULL) {
2107       break; // ran out of distro_files
2108     }
2109     if (file_exists(file)) {
2110       parse_os_info(buf, buflen, file);
2111       return;
2112     }
2113   }
2114   // special case for debian
2115   if (file_exists("/etc/debian_version")) {
2116     strncpy(buf, "Debian ", buflen);
2117     parse_os_info(&buf[7], buflen-7, "/etc/debian_version");
2118   } else {
2119     strncpy(buf, "Linux", buflen);
2120   }
2121 }
2122 
2123 void os::Linux::print_libversion_info(outputStream* st) {
2124   // libc, pthread
2125   st->print("libc:");
2126   st->print("%s ", os::Linux::glibc_version());
2127   st->print("%s ", os::Linux::libpthread_version());
2128   st->cr();
2129 }
2130 
2131 void os::Linux::print_full_memory_info(outputStream* st) {
2132   st->print("\n/proc/meminfo:\n");
2133   _print_ascii_file("/proc/meminfo", st);
2134   st->cr();
2135 }
2136 
2137 void os::Linux::print_container_info(outputStream* st) {
2138   if (OSContainer::is_containerized()) {
2139     st->print("container (cgroup) information:\n");
2140 
2141     char *p = OSContainer::container_type();
2142     if (p == NULL)
2143       st->print("container_type() failed\n");
2144     else {
2145       st->print("container_type: %s\n", p);
2146     }
2147 
2148     p = OSContainer::cpu_cpuset_cpus();
2149     if (p == NULL)
2150       st->print("cpu_cpuset_cpus() failed\n");
2151     else {
2152       st->print("cpu_cpuset_cpus: %s\n", p);
2153       free(p);
2154     }
2155 
2156     p = OSContainer::cpu_cpuset_memory_nodes();
2157     if (p < 0)
2158       st->print("cpu_memory_nodes() failed\n");
2159     else {
2160       st->print("cpu_memory_nodes: %s\n", p);
2161       free(p);
2162     }
2163 
2164     int i = OSContainer::active_processor_count();
2165     if (i < 0)
2166       st->print("active_processor_count() failed\n");
2167     else
2168       st->print("active_processor_count: %d\n", i);
2169 
2170     i = OSContainer::cpu_quota();
2171     st->print("cpu_quota: %d\n", i);
2172 
2173     i = OSContainer::cpu_period();
2174     st->print("cpu_period: %d\n", i);
2175 
2176     i = OSContainer::cpu_shares();
2177     st->print("cpu_shares: %d\n", i);
2178 
2179     jlong j = OSContainer::memory_limit_in_bytes();
2180     st->print("memory_limit_in_bytes: " JLONG_FORMAT "\n", j);
2181 
2182     j = OSContainer::memory_and_swap_limit_in_bytes();
2183     st->print("memory_and_swap_limit_in_bytes: " JLONG_FORMAT "\n", j);
2184 
2185     j = OSContainer::memory_soft_limit_in_bytes();
2186     st->print("memory_soft_limit_in_bytes: " JLONG_FORMAT "\n", j);
2187 
2188     j = OSContainer::OSContainer::memory_usage_in_bytes();
2189     st->print("memory_usage_in_bytes: " JLONG_FORMAT "\n", j);
2190 
2191     j = OSContainer::OSContainer::memory_max_usage_in_bytes();
2192     st->print("memory_max_usage_in_bytes: " JLONG_FORMAT "\n", j);
2193     st->cr();
2194   }
2195 }
2196 
2197 void os::print_memory_info(outputStream* st) {
2198 
2199   st->print("Memory:");
2200   st->print(" %dk page", os::vm_page_size()>>10);
2201 
2202   // values in struct sysinfo are "unsigned long"
2203   struct sysinfo si;
2204   sysinfo(&si);
2205 
2206   st->print(", physical " UINT64_FORMAT "k",
2207             os::physical_memory() >> 10);
2208   st->print("(" UINT64_FORMAT "k free)",
2209             os::available_memory() >> 10);
2210   st->print(", swap " UINT64_FORMAT "k",
2211             ((jlong)si.totalswap * si.mem_unit) >> 10);
2212   st->print("(" UINT64_FORMAT "k free)",
2213             ((jlong)si.freeswap * si.mem_unit) >> 10);
2214   st->cr();
2215 }
2216 
2217 // Print the first "model name" line and the first "flags" line
2218 // that we find and nothing more. We assume "model name" comes
2219 // before "flags" so if we find a second "model name", then the
2220 // "flags" field is considered missing.
2221 static bool print_model_name_and_flags(outputStream* st, char* buf, size_t buflen) {
2222 #if defined(IA32) || defined(AMD64)
2223   // Other platforms have less repetitive cpuinfo files
2224   FILE *fp = fopen("/proc/cpuinfo", "r");
2225   if (fp) {
2226     while (!feof(fp)) {
2227       if (fgets(buf, buflen, fp)) {
2228         // Assume model name comes before flags
2229         bool model_name_printed = false;
2230         if (strstr(buf, "model name") != NULL) {
2231           if (!model_name_printed) {
2232             st->print_raw("CPU Model and flags from /proc/cpuinfo:\n");
2233             st->print_raw(buf);
2234             model_name_printed = true;
2235           } else {
2236             // model name printed but not flags?  Odd, just return
2237             fclose(fp);
2238             return true;
2239           }
2240         }
2241         // print the flags line too
2242         if (strstr(buf, "flags") != NULL) {
2243           st->print_raw(buf);
2244           fclose(fp);
2245           return true;
2246         }
2247       }
2248     }
2249     fclose(fp);
2250   }
2251 #endif // x86 platforms
2252   return false;
2253 }
2254 
2255 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
2256   // Only print the model name if the platform provides this as a summary
2257   if (!print_model_name_and_flags(st, buf, buflen)) {
2258     st->print("\n/proc/cpuinfo:\n");
2259     if (!_print_ascii_file("/proc/cpuinfo", st)) {
2260       st->print_cr("  <Not Available>");
2261     }
2262   }
2263 }
2264 
2265 #if defined(AMD64) || defined(IA32) || defined(X32)
2266 const char* search_string = "model name";
2267 #elif defined(M68K)
2268 const char* search_string = "CPU";
2269 #elif defined(PPC64)
2270 const char* search_string = "cpu";
2271 #elif defined(S390)
2272 const char* search_string = "processor";
2273 #elif defined(SPARC)
2274 const char* search_string = "cpu";
2275 #else
2276 const char* search_string = "Processor";
2277 #endif
2278 
2279 // Parses the cpuinfo file for string representing the model name.
2280 void os::get_summary_cpu_info(char* cpuinfo, size_t length) {
2281   FILE* fp = fopen("/proc/cpuinfo", "r");
2282   if (fp != NULL) {
2283     while (!feof(fp)) {
2284       char buf[256];
2285       if (fgets(buf, sizeof(buf), fp)) {
2286         char* start = strstr(buf, search_string);
2287         if (start != NULL) {
2288           char *ptr = start + strlen(search_string);
2289           char *end = buf + strlen(buf);
2290           while (ptr != end) {
2291              // skip whitespace and colon for the rest of the name.
2292              if (*ptr != ' ' && *ptr != '\t' && *ptr != ':') {
2293                break;
2294              }
2295              ptr++;
2296           }
2297           if (ptr != end) {
2298             // reasonable string, get rid of newline and keep the rest
2299             char* nl = strchr(buf, '\n');
2300             if (nl != NULL) *nl = '\0';
2301             strncpy(cpuinfo, ptr, length);
2302             fclose(fp);
2303             return;
2304           }
2305         }
2306       }
2307     }
2308     fclose(fp);
2309   }
2310   // cpuinfo not found or parsing failed, just print generic string.  The entire
2311   // /proc/cpuinfo file will be printed later in the file (or enough of it for x86)
2312 #if   defined(AARCH64)
2313   strncpy(cpuinfo, "AArch64", length);
2314 #elif defined(AMD64)
2315   strncpy(cpuinfo, "x86_64", length);
2316 #elif defined(ARM)  // Order wrt. AARCH64 is relevant!
2317   strncpy(cpuinfo, "ARM", length);
2318 #elif defined(IA32)
2319   strncpy(cpuinfo, "x86_32", length);
2320 #elif defined(IA64)
2321   strncpy(cpuinfo, "IA64", length);
2322 #elif defined(PPC)
2323   strncpy(cpuinfo, "PPC64", length);
2324 #elif defined(S390)
2325   strncpy(cpuinfo, "S390", length);
2326 #elif defined(SPARC)
2327   strncpy(cpuinfo, "sparcv9", length);
2328 #elif defined(ZERO_LIBARCH)
2329   strncpy(cpuinfo, ZERO_LIBARCH, length);
2330 #else
2331   strncpy(cpuinfo, "unknown", length);
2332 #endif
2333 }
2334 
2335 static void print_signal_handler(outputStream* st, int sig,
2336                                  char* buf, size_t buflen);
2337 
2338 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2339   st->print_cr("Signal Handlers:");
2340   print_signal_handler(st, SIGSEGV, buf, buflen);
2341   print_signal_handler(st, SIGBUS , buf, buflen);
2342   print_signal_handler(st, SIGFPE , buf, buflen);
2343   print_signal_handler(st, SIGPIPE, buf, buflen);
2344   print_signal_handler(st, SIGXFSZ, buf, buflen);
2345   print_signal_handler(st, SIGILL , buf, buflen);
2346   print_signal_handler(st, SR_signum, buf, buflen);
2347   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2348   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2349   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2350   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2351 #if defined(PPC64)
2352   print_signal_handler(st, SIGTRAP, buf, buflen);
2353 #endif
2354 }
2355 
2356 static char saved_jvm_path[MAXPATHLEN] = {0};
2357 
2358 // Find the full path to the current module, libjvm.so
2359 void os::jvm_path(char *buf, jint buflen) {
2360   // Error checking.
2361   if (buflen < MAXPATHLEN) {
2362     assert(false, "must use a large-enough buffer");
2363     buf[0] = '\0';
2364     return;
2365   }
2366   // Lazy resolve the path to current module.
2367   if (saved_jvm_path[0] != 0) {
2368     strcpy(buf, saved_jvm_path);
2369     return;
2370   }
2371 
2372   char dli_fname[MAXPATHLEN];
2373   bool ret = dll_address_to_library_name(
2374                                          CAST_FROM_FN_PTR(address, os::jvm_path),
2375                                          dli_fname, sizeof(dli_fname), NULL);
2376   assert(ret, "cannot locate libjvm");
2377   char *rp = NULL;
2378   if (ret && dli_fname[0] != '\0') {
2379     rp = os::Posix::realpath(dli_fname, buf, buflen);
2380   }
2381   if (rp == NULL) {
2382     return;
2383   }
2384 
2385   if (Arguments::sun_java_launcher_is_altjvm()) {
2386     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2387     // value for buf is "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.so".
2388     // If "/jre/lib/" appears at the right place in the string, then
2389     // assume we are installed in a JDK and we're done. Otherwise, check
2390     // for a JAVA_HOME environment variable and fix up the path so it
2391     // looks like libjvm.so is installed there (append a fake suffix
2392     // hotspot/libjvm.so).
2393     const char *p = buf + strlen(buf) - 1;
2394     for (int count = 0; p > buf && count < 5; ++count) {
2395       for (--p; p > buf && *p != '/'; --p)
2396         /* empty */ ;
2397     }
2398 
2399     if (strncmp(p, "/jre/lib/", 9) != 0) {
2400       // Look for JAVA_HOME in the environment.
2401       char* java_home_var = ::getenv("JAVA_HOME");
2402       if (java_home_var != NULL && java_home_var[0] != 0) {
2403         char* jrelib_p;
2404         int len;
2405 
2406         // Check the current module name "libjvm.so".
2407         p = strrchr(buf, '/');
2408         if (p == NULL) {
2409           return;
2410         }
2411         assert(strstr(p, "/libjvm") == p, "invalid library name");
2412 
2413         rp = os::Posix::realpath(java_home_var, buf, buflen);
2414         if (rp == NULL) {
2415           return;
2416         }
2417 
2418         // determine if this is a legacy image or modules image
2419         // modules image doesn't have "jre" subdirectory
2420         len = strlen(buf);
2421         assert(len < buflen, "Ran out of buffer room");
2422         jrelib_p = buf + len;
2423         snprintf(jrelib_p, buflen-len, "/jre/lib");
2424         if (0 != access(buf, F_OK)) {
2425           snprintf(jrelib_p, buflen-len, "/lib");
2426         }
2427 
2428         if (0 == access(buf, F_OK)) {
2429           // Use current module name "libjvm.so"
2430           len = strlen(buf);
2431           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2432         } else {
2433           // Go back to path of .so
2434           rp = os::Posix::realpath(dli_fname, buf, buflen);
2435           if (rp == NULL) {
2436             return;
2437           }
2438         }
2439       }
2440     }
2441   }
2442 
2443   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2444   saved_jvm_path[MAXPATHLEN - 1] = '\0';
2445 }
2446 
2447 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2448   // no prefix required, not even "_"
2449 }
2450 
2451 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2452   // no suffix required
2453 }
2454 
2455 ////////////////////////////////////////////////////////////////////////////////
2456 // sun.misc.Signal support
2457 
2458 static volatile jint sigint_count = 0;
2459 
2460 static void UserHandler(int sig, void *siginfo, void *context) {
2461   // 4511530 - sem_post is serialized and handled by the manager thread. When
2462   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2463   // don't want to flood the manager thread with sem_post requests.
2464   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
2465     return;
2466   }
2467 
2468   // Ctrl-C is pressed during error reporting, likely because the error
2469   // handler fails to abort. Let VM die immediately.
2470   if (sig == SIGINT && VMError::is_error_reported()) {
2471     os::die();
2472   }
2473 
2474   os::signal_notify(sig);
2475 }
2476 
2477 void* os::user_handler() {
2478   return CAST_FROM_FN_PTR(void*, UserHandler);
2479 }
2480 
2481 static struct timespec create_timespec(unsigned int sec, int nsec) {
2482   struct timespec ts;
2483   // Semaphore's are always associated with CLOCK_REALTIME
2484   os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2485   // see unpackTime for discussion on overflow checking
2486   if (sec >= MAX_SECS) {
2487     ts.tv_sec += MAX_SECS;
2488     ts.tv_nsec = 0;
2489   } else {
2490     ts.tv_sec += sec;
2491     ts.tv_nsec += nsec;
2492     if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2493       ts.tv_nsec -= NANOSECS_PER_SEC;
2494       ++ts.tv_sec; // note: this must be <= max_secs
2495     }
2496   }
2497 
2498   return ts;
2499 }
2500 
2501 extern "C" {
2502   typedef void (*sa_handler_t)(int);
2503   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2504 }
2505 
2506 void* os::signal(int signal_number, void* handler) {
2507   struct sigaction sigAct, oldSigAct;
2508 
2509   sigfillset(&(sigAct.sa_mask));
2510   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2511   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2512 
2513   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2514     // -1 means registration failed
2515     return (void *)-1;
2516   }
2517 
2518   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2519 }
2520 
2521 void os::signal_raise(int signal_number) {
2522   ::raise(signal_number);
2523 }
2524 
2525 // The following code is moved from os.cpp for making this
2526 // code platform specific, which it is by its very nature.
2527 
2528 // Will be modified when max signal is changed to be dynamic
2529 int os::sigexitnum_pd() {
2530   return NSIG;
2531 }
2532 
2533 // a counter for each possible signal value
2534 static volatile jint pending_signals[NSIG+1] = { 0 };
2535 
2536 // Linux(POSIX) specific hand shaking semaphore.
2537 static Semaphore* sig_sem = NULL;
2538 static PosixSemaphore sr_semaphore;
2539 
2540 void os::signal_init_pd() {
2541   // Initialize signal structures
2542   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2543 
2544   // Initialize signal semaphore
2545   sig_sem = new Semaphore();
2546 }
2547 
2548 void os::signal_notify(int sig) {
2549   if (sig_sem != NULL) {
2550     Atomic::inc(&pending_signals[sig]);
2551     sig_sem->signal();
2552   } else {
2553     // Signal thread is not created with ReduceSignalUsage and signal_init_pd
2554     // initialization isn't called.
2555     assert(ReduceSignalUsage, "signal semaphore should be created");
2556   }
2557 }
2558 
2559 static int check_pending_signals(bool wait) {
2560   Atomic::store(0, &sigint_count);
2561   for (;;) {
2562     for (int i = 0; i < NSIG + 1; i++) {
2563       jint n = pending_signals[i];
2564       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2565         return i;
2566       }
2567     }
2568     if (!wait) {
2569       return -1;
2570     }
2571     JavaThread *thread = JavaThread::current();
2572     ThreadBlockInVM tbivm(thread);
2573 
2574     bool threadIsSuspended;
2575     do {
2576       thread->set_suspend_equivalent();
2577       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2578       sig_sem->wait();
2579 
2580       // were we externally suspended while we were waiting?
2581       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2582       if (threadIsSuspended) {
2583         // The semaphore has been incremented, but while we were waiting
2584         // another thread suspended us. We don't want to continue running
2585         // while suspended because that would surprise the thread that
2586         // suspended us.
2587         sig_sem->signal();
2588 
2589         thread->java_suspend_self();
2590       }
2591     } while (threadIsSuspended);
2592   }
2593 }
2594 
2595 int os::signal_wait() {
2596   return check_pending_signals(true);
2597 }
2598 
2599 ////////////////////////////////////////////////////////////////////////////////
2600 // Virtual Memory
2601 
2602 int os::vm_page_size() {
2603   // Seems redundant as all get out
2604   assert(os::Linux::page_size() != -1, "must call os::init");
2605   return os::Linux::page_size();
2606 }
2607 
2608 // Solaris allocates memory by pages.
2609 int os::vm_allocation_granularity() {
2610   assert(os::Linux::page_size() != -1, "must call os::init");
2611   return os::Linux::page_size();
2612 }
2613 
2614 // Rationale behind this function:
2615 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2616 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2617 //  samples for JITted code. Here we create private executable mapping over the code cache
2618 //  and then we can use standard (well, almost, as mapping can change) way to provide
2619 //  info for the reporting script by storing timestamp and location of symbol
2620 void linux_wrap_code(char* base, size_t size) {
2621   static volatile jint cnt = 0;
2622 
2623   if (!UseOprofile) {
2624     return;
2625   }
2626 
2627   char buf[PATH_MAX+1];
2628   int num = Atomic::add(1, &cnt);
2629 
2630   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2631            os::get_temp_directory(), os::current_process_id(), num);
2632   unlink(buf);
2633 
2634   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2635 
2636   if (fd != -1) {
2637     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2638     if (rv != (off_t)-1) {
2639       if (::write(fd, "", 1) == 1) {
2640         mmap(base, size,
2641              PROT_READ|PROT_WRITE|PROT_EXEC,
2642              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2643       }
2644     }
2645     ::close(fd);
2646     unlink(buf);
2647   }
2648 }
2649 
2650 static bool recoverable_mmap_error(int err) {
2651   // See if the error is one we can let the caller handle. This
2652   // list of errno values comes from JBS-6843484. I can't find a
2653   // Linux man page that documents this specific set of errno
2654   // values so while this list currently matches Solaris, it may
2655   // change as we gain experience with this failure mode.
2656   switch (err) {
2657   case EBADF:
2658   case EINVAL:
2659   case ENOTSUP:
2660     // let the caller deal with these errors
2661     return true;
2662 
2663   default:
2664     // Any remaining errors on this OS can cause our reserved mapping
2665     // to be lost. That can cause confusion where different data
2666     // structures think they have the same memory mapped. The worst
2667     // scenario is if both the VM and a library think they have the
2668     // same memory mapped.
2669     return false;
2670   }
2671 }
2672 
2673 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2674                                     int err) {
2675   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2676           ", %d) failed; error='%s' (errno=%d)", p2i(addr), size, exec,
2677           os::strerror(err), err);
2678 }
2679 
2680 static void warn_fail_commit_memory(char* addr, size_t size,
2681                                     size_t alignment_hint, bool exec,
2682                                     int err) {
2683   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2684           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", p2i(addr), size,
2685           alignment_hint, exec, os::strerror(err), err);
2686 }
2687 
2688 // NOTE: Linux kernel does not really reserve the pages for us.
2689 //       All it does is to check if there are enough free pages
2690 //       left at the time of mmap(). This could be a potential
2691 //       problem.
2692 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2693   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2694   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2695                                      MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2696   if (res != (uintptr_t) MAP_FAILED) {
2697     if (UseNUMAInterleaving) {
2698       numa_make_global(addr, size);
2699     }
2700     return 0;
2701   }
2702 
2703   int err = errno;  // save errno from mmap() call above
2704 
2705   if (!recoverable_mmap_error(err)) {
2706     warn_fail_commit_memory(addr, size, exec, err);
2707     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2708   }
2709 
2710   return err;
2711 }
2712 
2713 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2714   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2715 }
2716 
2717 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2718                                   const char* mesg) {
2719   assert(mesg != NULL, "mesg must be specified");
2720   int err = os::Linux::commit_memory_impl(addr, size, exec);
2721   if (err != 0) {
2722     // the caller wants all commit errors to exit with the specified mesg:
2723     warn_fail_commit_memory(addr, size, exec, err);
2724     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2725   }
2726 }
2727 
2728 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2729 #ifndef MAP_HUGETLB
2730   #define MAP_HUGETLB 0x40000
2731 #endif
2732 
2733 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2734 #ifndef MADV_HUGEPAGE
2735   #define MADV_HUGEPAGE 14
2736 #endif
2737 
2738 int os::Linux::commit_memory_impl(char* addr, size_t size,
2739                                   size_t alignment_hint, bool exec) {
2740   int err = os::Linux::commit_memory_impl(addr, size, exec);
2741   if (err == 0) {
2742     realign_memory(addr, size, alignment_hint);
2743   }
2744   return err;
2745 }
2746 
2747 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2748                           bool exec) {
2749   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2750 }
2751 
2752 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2753                                   size_t alignment_hint, bool exec,
2754                                   const char* mesg) {
2755   assert(mesg != NULL, "mesg must be specified");
2756   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2757   if (err != 0) {
2758     // the caller wants all commit errors to exit with the specified mesg:
2759     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2760     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2761   }
2762 }
2763 
2764 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2765   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2766     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2767     // be supported or the memory may already be backed by huge pages.
2768     ::madvise(addr, bytes, MADV_HUGEPAGE);
2769   }
2770 }
2771 
2772 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2773   // This method works by doing an mmap over an existing mmaping and effectively discarding
2774   // the existing pages. However it won't work for SHM-based large pages that cannot be
2775   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2776   // small pages on top of the SHM segment. This method always works for small pages, so we
2777   // allow that in any case.
2778   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2779     commit_memory(addr, bytes, alignment_hint, !ExecMem);
2780   }
2781 }
2782 
2783 void os::numa_make_global(char *addr, size_t bytes) {
2784   Linux::numa_interleave_memory(addr, bytes);
2785 }
2786 
2787 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2788 // bind policy to MPOL_PREFERRED for the current thread.
2789 #define USE_MPOL_PREFERRED 0
2790 
2791 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2792   // To make NUMA and large pages more robust when both enabled, we need to ease
2793   // the requirements on where the memory should be allocated. MPOL_BIND is the
2794   // default policy and it will force memory to be allocated on the specified
2795   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2796   // the specified node, but will not force it. Using this policy will prevent
2797   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2798   // free large pages.
2799   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2800   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2801 }
2802 
2803 bool os::numa_topology_changed() { return false; }
2804 
2805 size_t os::numa_get_groups_num() {
2806   // Return just the number of nodes in which it's possible to allocate memory
2807   // (in numa terminology, configured nodes).
2808   return Linux::numa_num_configured_nodes();
2809 }
2810 
2811 int os::numa_get_group_id() {
2812   int cpu_id = Linux::sched_getcpu();
2813   if (cpu_id != -1) {
2814     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2815     if (lgrp_id != -1) {
2816       return lgrp_id;
2817     }
2818   }
2819   return 0;
2820 }
2821 
2822 int os::Linux::get_existing_num_nodes() {
2823   size_t node;
2824   size_t highest_node_number = Linux::numa_max_node();
2825   int num_nodes = 0;
2826 
2827   // Get the total number of nodes in the system including nodes without memory.
2828   for (node = 0; node <= highest_node_number; node++) {
2829     if (isnode_in_existing_nodes(node)) {
2830       num_nodes++;
2831     }
2832   }
2833   return num_nodes;
2834 }
2835 
2836 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2837   size_t highest_node_number = Linux::numa_max_node();
2838   size_t i = 0;
2839 
2840   // Map all node ids in which is possible to allocate memory. Also nodes are
2841   // not always consecutively available, i.e. available from 0 to the highest
2842   // node number.
2843   for (size_t node = 0; node <= highest_node_number; node++) {
2844     if (Linux::isnode_in_configured_nodes(node)) {
2845       ids[i++] = node;
2846     }
2847   }
2848   return i;
2849 }
2850 
2851 bool os::get_page_info(char *start, page_info* info) {
2852   return false;
2853 }
2854 
2855 char *os::scan_pages(char *start, char* end, page_info* page_expected,
2856                      page_info* page_found) {
2857   return end;
2858 }
2859 
2860 
2861 int os::Linux::sched_getcpu_syscall(void) {
2862   unsigned int cpu = 0;
2863   int retval = -1;
2864 
2865 #if defined(IA32)
2866   #ifndef SYS_getcpu
2867     #define SYS_getcpu 318
2868   #endif
2869   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2870 #elif defined(AMD64)
2871 // Unfortunately we have to bring all these macros here from vsyscall.h
2872 // to be able to compile on old linuxes.
2873   #define __NR_vgetcpu 2
2874   #define VSYSCALL_START (-10UL << 20)
2875   #define VSYSCALL_SIZE 1024
2876   #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2877   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2878   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2879   retval = vgetcpu(&cpu, NULL, NULL);
2880 #endif
2881 
2882   return (retval == -1) ? retval : cpu;
2883 }
2884 
2885 void os::Linux::sched_getcpu_init() {
2886   // sched_getcpu() should be in libc.
2887   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2888                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2889 
2890   // If it's not, try a direct syscall.
2891   if (sched_getcpu() == -1) {
2892     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2893                                     (void*)&sched_getcpu_syscall));
2894   }
2895 }
2896 
2897 // Something to do with the numa-aware allocator needs these symbols
2898 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2899 extern "C" JNIEXPORT void numa_error(char *where) { }
2900 
2901 // Handle request to load libnuma symbol version 1.1 (API v1). If it fails
2902 // load symbol from base version instead.
2903 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2904   void *f = dlvsym(handle, name, "libnuma_1.1");
2905   if (f == NULL) {
2906     f = dlsym(handle, name);
2907   }
2908   return f;
2909 }
2910 
2911 // Handle request to load libnuma symbol version 1.2 (API v2) only.
2912 // Return NULL if the symbol is not defined in this particular version.
2913 void* os::Linux::libnuma_v2_dlsym(void* handle, const char* name) {
2914   return dlvsym(handle, name, "libnuma_1.2");
2915 }
2916 
2917 bool os::Linux::libnuma_init() {
2918   if (sched_getcpu() != -1) { // Requires sched_getcpu() support
2919     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2920     if (handle != NULL) {
2921       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2922                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
2923       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2924                                        libnuma_dlsym(handle, "numa_max_node")));
2925       set_numa_num_configured_nodes(CAST_TO_FN_PTR(numa_num_configured_nodes_func_t,
2926                                                    libnuma_dlsym(handle, "numa_num_configured_nodes")));
2927       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2928                                         libnuma_dlsym(handle, "numa_available")));
2929       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2930                                             libnuma_dlsym(handle, "numa_tonode_memory")));
2931       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2932                                                 libnuma_dlsym(handle, "numa_interleave_memory")));
2933       set_numa_interleave_memory_v2(CAST_TO_FN_PTR(numa_interleave_memory_v2_func_t,
2934                                                 libnuma_v2_dlsym(handle, "numa_interleave_memory")));
2935       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2936                                               libnuma_dlsym(handle, "numa_set_bind_policy")));
2937       set_numa_bitmask_isbitset(CAST_TO_FN_PTR(numa_bitmask_isbitset_func_t,
2938                                                libnuma_dlsym(handle, "numa_bitmask_isbitset")));
2939       set_numa_distance(CAST_TO_FN_PTR(numa_distance_func_t,
2940                                        libnuma_dlsym(handle, "numa_distance")));
2941 
2942       if (numa_available() != -1) {
2943         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2944         set_numa_all_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_all_nodes_ptr"));
2945         set_numa_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_nodes_ptr"));
2946         // Create an index -> node mapping, since nodes are not always consecutive
2947         _nindex_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2948         rebuild_nindex_to_node_map();
2949         // Create a cpu -> node mapping
2950         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2951         rebuild_cpu_to_node_map();
2952         return true;
2953       }
2954     }
2955   }
2956   return false;
2957 }
2958 
2959 size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
2960   // Creating guard page is very expensive. Java thread has HotSpot
2961   // guard pages, only enable glibc guard page for non-Java threads.
2962   // (Remember: compiler thread is a Java thread, too!)
2963   return ((thr_type == java_thread || thr_type == compiler_thread) ? 0 : page_size());
2964 }
2965 
2966 void os::Linux::rebuild_nindex_to_node_map() {
2967   int highest_node_number = Linux::numa_max_node();
2968 
2969   nindex_to_node()->clear();
2970   for (int node = 0; node <= highest_node_number; node++) {
2971     if (Linux::isnode_in_existing_nodes(node)) {
2972       nindex_to_node()->append(node);
2973     }
2974   }
2975 }
2976 
2977 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2978 // The table is later used in get_node_by_cpu().
2979 void os::Linux::rebuild_cpu_to_node_map() {
2980   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2981                               // in libnuma (possible values are starting from 16,
2982                               // and continuing up with every other power of 2, but less
2983                               // than the maximum number of CPUs supported by kernel), and
2984                               // is a subject to change (in libnuma version 2 the requirements
2985                               // are more reasonable) we'll just hardcode the number they use
2986                               // in the library.
2987   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2988 
2989   size_t cpu_num = processor_count();
2990   size_t cpu_map_size = NCPUS / BitsPerCLong;
2991   size_t cpu_map_valid_size =
2992     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2993 
2994   cpu_to_node()->clear();
2995   cpu_to_node()->at_grow(cpu_num - 1);
2996 
2997   size_t node_num = get_existing_num_nodes();
2998 
2999   int distance = 0;
3000   int closest_distance = INT_MAX;
3001   int closest_node = 0;
3002   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
3003   for (size_t i = 0; i < node_num; i++) {
3004     // Check if node is configured (not a memory-less node). If it is not, find
3005     // the closest configured node.
3006     if (!isnode_in_configured_nodes(nindex_to_node()->at(i))) {
3007       closest_distance = INT_MAX;
3008       // Check distance from all remaining nodes in the system. Ignore distance
3009       // from itself and from another non-configured node.
3010       for (size_t m = 0; m < node_num; m++) {
3011         if (m != i && isnode_in_configured_nodes(nindex_to_node()->at(m))) {
3012           distance = numa_distance(nindex_to_node()->at(i), nindex_to_node()->at(m));
3013           // If a closest node is found, update. There is always at least one
3014           // configured node in the system so there is always at least one node
3015           // close.
3016           if (distance != 0 && distance < closest_distance) {
3017             closest_distance = distance;
3018             closest_node = nindex_to_node()->at(m);
3019           }
3020         }
3021       }
3022      } else {
3023        // Current node is already a configured node.
3024        closest_node = nindex_to_node()->at(i);
3025      }
3026 
3027     // Get cpus from the original node and map them to the closest node. If node
3028     // is a configured node (not a memory-less node), then original node and
3029     // closest node are the same.
3030     if (numa_node_to_cpus(nindex_to_node()->at(i), cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
3031       for (size_t j = 0; j < cpu_map_valid_size; j++) {
3032         if (cpu_map[j] != 0) {
3033           for (size_t k = 0; k < BitsPerCLong; k++) {
3034             if (cpu_map[j] & (1UL << k)) {
3035               cpu_to_node()->at_put(j * BitsPerCLong + k, closest_node);
3036             }
3037           }
3038         }
3039       }
3040     }
3041   }
3042   FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
3043 }
3044 
3045 int os::Linux::get_node_by_cpu(int cpu_id) {
3046   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
3047     return cpu_to_node()->at(cpu_id);
3048   }
3049   return -1;
3050 }
3051 
3052 GrowableArray<int>* os::Linux::_cpu_to_node;
3053 GrowableArray<int>* os::Linux::_nindex_to_node;
3054 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
3055 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
3056 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
3057 os::Linux::numa_num_configured_nodes_func_t os::Linux::_numa_num_configured_nodes;
3058 os::Linux::numa_available_func_t os::Linux::_numa_available;
3059 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
3060 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
3061 os::Linux::numa_interleave_memory_v2_func_t os::Linux::_numa_interleave_memory_v2;
3062 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
3063 os::Linux::numa_bitmask_isbitset_func_t os::Linux::_numa_bitmask_isbitset;
3064 os::Linux::numa_distance_func_t os::Linux::_numa_distance;
3065 unsigned long* os::Linux::_numa_all_nodes;
3066 struct bitmask* os::Linux::_numa_all_nodes_ptr;
3067 struct bitmask* os::Linux::_numa_nodes_ptr;
3068 
3069 bool os::pd_uncommit_memory(char* addr, size_t size) {
3070   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
3071                                      MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
3072   return res  != (uintptr_t) MAP_FAILED;
3073 }
3074 
3075 static address get_stack_commited_bottom(address bottom, size_t size) {
3076   address nbot = bottom;
3077   address ntop = bottom + size;
3078 
3079   size_t page_sz = os::vm_page_size();
3080   unsigned pages = size / page_sz;
3081 
3082   unsigned char vec[1];
3083   unsigned imin = 1, imax = pages + 1, imid;
3084   int mincore_return_value = 0;
3085 
3086   assert(imin <= imax, "Unexpected page size");
3087 
3088   while (imin < imax) {
3089     imid = (imax + imin) / 2;
3090     nbot = ntop - (imid * page_sz);
3091 
3092     // Use a trick with mincore to check whether the page is mapped or not.
3093     // mincore sets vec to 1 if page resides in memory and to 0 if page
3094     // is swapped output but if page we are asking for is unmapped
3095     // it returns -1,ENOMEM
3096     mincore_return_value = mincore(nbot, page_sz, vec);
3097 
3098     if (mincore_return_value == -1) {
3099       // Page is not mapped go up
3100       // to find first mapped page
3101       if (errno != EAGAIN) {
3102         assert(errno == ENOMEM, "Unexpected mincore errno");
3103         imax = imid;
3104       }
3105     } else {
3106       // Page is mapped go down
3107       // to find first not mapped page
3108       imin = imid + 1;
3109     }
3110   }
3111 
3112   nbot = nbot + page_sz;
3113 
3114   // Adjust stack bottom one page up if last checked page is not mapped
3115   if (mincore_return_value == -1) {
3116     nbot = nbot + page_sz;
3117   }
3118 
3119   return nbot;
3120 }
3121 
3122 
3123 // Linux uses a growable mapping for the stack, and if the mapping for
3124 // the stack guard pages is not removed when we detach a thread the
3125 // stack cannot grow beyond the pages where the stack guard was
3126 // mapped.  If at some point later in the process the stack expands to
3127 // that point, the Linux kernel cannot expand the stack any further
3128 // because the guard pages are in the way, and a segfault occurs.
3129 //
3130 // However, it's essential not to split the stack region by unmapping
3131 // a region (leaving a hole) that's already part of the stack mapping,
3132 // so if the stack mapping has already grown beyond the guard pages at
3133 // the time we create them, we have to truncate the stack mapping.
3134 // So, we need to know the extent of the stack mapping when
3135 // create_stack_guard_pages() is called.
3136 
3137 // We only need this for stacks that are growable: at the time of
3138 // writing thread stacks don't use growable mappings (i.e. those
3139 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
3140 // only applies to the main thread.
3141 
3142 // If the (growable) stack mapping already extends beyond the point
3143 // where we're going to put our guard pages, truncate the mapping at
3144 // that point by munmap()ping it.  This ensures that when we later
3145 // munmap() the guard pages we don't leave a hole in the stack
3146 // mapping. This only affects the main/primordial thread
3147 
3148 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3149   if (os::is_primordial_thread()) {
3150     // As we manually grow stack up to bottom inside create_attached_thread(),
3151     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3152     // we don't need to do anything special.
3153     // Check it first, before calling heavy function.
3154     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3155     unsigned char vec[1];
3156 
3157     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3158       // Fallback to slow path on all errors, including EAGAIN
3159       stack_extent = (uintptr_t) get_stack_commited_bottom(
3160                                                            os::Linux::initial_thread_stack_bottom(),
3161                                                            (size_t)addr - stack_extent);
3162     }
3163 
3164     if (stack_extent < (uintptr_t)addr) {
3165       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3166     }
3167   }
3168 
3169   return os::commit_memory(addr, size, !ExecMem);
3170 }
3171 
3172 // If this is a growable mapping, remove the guard pages entirely by
3173 // munmap()ping them.  If not, just call uncommit_memory(). This only
3174 // affects the main/primordial thread, but guard against future OS changes.
3175 // It's safe to always unmap guard pages for primordial thread because we
3176 // always place it right after end of the mapped region.
3177 
3178 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3179   uintptr_t stack_extent, stack_base;
3180 
3181   if (os::is_primordial_thread()) {
3182     return ::munmap(addr, size) == 0;
3183   }
3184 
3185   return os::uncommit_memory(addr, size);
3186 }
3187 
3188 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3189 // at 'requested_addr'. If there are existing memory mappings at the same
3190 // location, however, they will be overwritten. If 'fixed' is false,
3191 // 'requested_addr' is only treated as a hint, the return value may or
3192 // may not start from the requested address. Unlike Linux mmap(), this
3193 // function returns NULL to indicate failure.
3194 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3195   char * addr;
3196   int flags;
3197 
3198   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3199   if (fixed) {
3200     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3201     flags |= MAP_FIXED;
3202   }
3203 
3204   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3205   // touch an uncommitted page. Otherwise, the read/write might
3206   // succeed if we have enough swap space to back the physical page.
3207   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3208                        flags, -1, 0);
3209 
3210   return addr == MAP_FAILED ? NULL : addr;
3211 }
3212 
3213 // Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
3214 //   (req_addr != NULL) or with a given alignment.
3215 //  - bytes shall be a multiple of alignment.
3216 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3217 //  - alignment sets the alignment at which memory shall be allocated.
3218 //     It must be a multiple of allocation granularity.
3219 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3220 //  req_addr or NULL.
3221 static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
3222 
3223   size_t extra_size = bytes;
3224   if (req_addr == NULL && alignment > 0) {
3225     extra_size += alignment;
3226   }
3227 
3228   char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
3229     MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
3230     -1, 0);
3231   if (start == MAP_FAILED) {
3232     start = NULL;
3233   } else {
3234     if (req_addr != NULL) {
3235       if (start != req_addr) {
3236         ::munmap(start, extra_size);
3237         start = NULL;
3238       }
3239     } else {
3240       char* const start_aligned = align_up(start, alignment);
3241       char* const end_aligned = start_aligned + bytes;
3242       char* const end = start + extra_size;
3243       if (start_aligned > start) {
3244         ::munmap(start, start_aligned - start);
3245       }
3246       if (end_aligned < end) {
3247         ::munmap(end_aligned, end - end_aligned);
3248       }
3249       start = start_aligned;
3250     }
3251   }
3252   return start;
3253 }
3254 
3255 static int anon_munmap(char * addr, size_t size) {
3256   return ::munmap(addr, size) == 0;
3257 }
3258 
3259 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3260                             size_t alignment_hint) {
3261   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3262 }
3263 
3264 bool os::pd_release_memory(char* addr, size_t size) {
3265   return anon_munmap(addr, size);
3266 }
3267 
3268 static bool linux_mprotect(char* addr, size_t size, int prot) {
3269   // Linux wants the mprotect address argument to be page aligned.
3270   char* bottom = (char*)align_down((intptr_t)addr, os::Linux::page_size());
3271 
3272   // According to SUSv3, mprotect() should only be used with mappings
3273   // established by mmap(), and mmap() always maps whole pages. Unaligned
3274   // 'addr' likely indicates problem in the VM (e.g. trying to change
3275   // protection of malloc'ed or statically allocated memory). Check the
3276   // caller if you hit this assert.
3277   assert(addr == bottom, "sanity check");
3278 
3279   size = align_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3280   return ::mprotect(bottom, size, prot) == 0;
3281 }
3282 
3283 // Set protections specified
3284 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3285                         bool is_committed) {
3286   unsigned int p = 0;
3287   switch (prot) {
3288   case MEM_PROT_NONE: p = PROT_NONE; break;
3289   case MEM_PROT_READ: p = PROT_READ; break;
3290   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3291   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3292   default:
3293     ShouldNotReachHere();
3294   }
3295   // is_committed is unused.
3296   return linux_mprotect(addr, bytes, p);
3297 }
3298 
3299 bool os::guard_memory(char* addr, size_t size) {
3300   return linux_mprotect(addr, size, PROT_NONE);
3301 }
3302 
3303 bool os::unguard_memory(char* addr, size_t size) {
3304   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3305 }
3306 
3307 bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3308                                                     size_t page_size) {
3309   bool result = false;
3310   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3311                  MAP_ANONYMOUS|MAP_PRIVATE,
3312                  -1, 0);
3313   if (p != MAP_FAILED) {
3314     void *aligned_p = align_up(p, page_size);
3315 
3316     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3317 
3318     munmap(p, page_size * 2);
3319   }
3320 
3321   if (warn && !result) {
3322     warning("TransparentHugePages is not supported by the operating system.");
3323   }
3324 
3325   return result;
3326 }
3327 
3328 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3329   bool result = false;
3330   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3331                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3332                  -1, 0);
3333 
3334   if (p != MAP_FAILED) {
3335     // We don't know if this really is a huge page or not.
3336     FILE *fp = fopen("/proc/self/maps", "r");
3337     if (fp) {
3338       while (!feof(fp)) {
3339         char chars[257];
3340         long x = 0;
3341         if (fgets(chars, sizeof(chars), fp)) {
3342           if (sscanf(chars, "%lx-%*x", &x) == 1
3343               && x == (long)p) {
3344             if (strstr (chars, "hugepage")) {
3345               result = true;
3346               break;
3347             }
3348           }
3349         }
3350       }
3351       fclose(fp);
3352     }
3353     munmap(p, page_size);
3354   }
3355 
3356   if (warn && !result) {
3357     warning("HugeTLBFS is not supported by the operating system.");
3358   }
3359 
3360   return result;
3361 }
3362 
3363 // Set the coredump_filter bits to include largepages in core dump (bit 6)
3364 //
3365 // From the coredump_filter documentation:
3366 //
3367 // - (bit 0) anonymous private memory
3368 // - (bit 1) anonymous shared memory
3369 // - (bit 2) file-backed private memory
3370 // - (bit 3) file-backed shared memory
3371 // - (bit 4) ELF header pages in file-backed private memory areas (it is
3372 //           effective only if the bit 2 is cleared)
3373 // - (bit 5) hugetlb private memory
3374 // - (bit 6) hugetlb shared memory
3375 // - (bit 7) dax private memory
3376 // - (bit 8) dax shared memory
3377 //
3378 static void set_coredump_filter(bool largepages, bool dax_shared) {
3379   FILE *f;
3380   long cdm;
3381   bool filter_changed = false;
3382 
3383   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3384     return;
3385   }
3386 
3387   if (fscanf(f, "%lx", &cdm) != 1) {
3388     fclose(f);
3389     return;
3390   }
3391 
3392   rewind(f);
3393 
3394   if (largepages && (cdm & LARGEPAGES_BIT) == 0) {
3395     cdm |= LARGEPAGES_BIT;
3396     filter_changed = true;
3397   }
3398   if (dax_shared && (cdm & DAX_SHARED_BIT) == 0) {
3399     cdm |= DAX_SHARED_BIT;
3400     filter_changed = true;
3401   }
3402   if (filter_changed) {
3403     fprintf(f, "%#lx", cdm);
3404   }
3405 
3406   fclose(f);
3407 }
3408 
3409 // Large page support
3410 
3411 static size_t _large_page_size = 0;
3412 
3413 size_t os::Linux::find_large_page_size() {
3414   size_t large_page_size = 0;
3415 
3416   // large_page_size on Linux is used to round up heap size. x86 uses either
3417   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3418   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3419   // page as large as 256M.
3420   //
3421   // Here we try to figure out page size by parsing /proc/meminfo and looking
3422   // for a line with the following format:
3423   //    Hugepagesize:     2048 kB
3424   //
3425   // If we can't determine the value (e.g. /proc is not mounted, or the text
3426   // format has been changed), we'll use the largest page size supported by
3427   // the processor.
3428 
3429 #ifndef ZERO
3430   large_page_size =
3431     AARCH64_ONLY(2 * M)
3432     AMD64_ONLY(2 * M)
3433     ARM32_ONLY(2 * M)
3434     IA32_ONLY(4 * M)
3435     IA64_ONLY(256 * M)
3436     PPC_ONLY(4 * M)
3437     S390_ONLY(1 * M)
3438     SPARC_ONLY(4 * M);
3439 #endif // ZERO
3440 
3441   FILE *fp = fopen("/proc/meminfo", "r");
3442   if (fp) {
3443     while (!feof(fp)) {
3444       int x = 0;
3445       char buf[16];
3446       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3447         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3448           large_page_size = x * K;
3449           break;
3450         }
3451       } else {
3452         // skip to next line
3453         for (;;) {
3454           int ch = fgetc(fp);
3455           if (ch == EOF || ch == (int)'\n') break;
3456         }
3457       }
3458     }
3459     fclose(fp);
3460   }
3461 
3462   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3463     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3464             SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3465             proper_unit_for_byte_size(large_page_size));
3466   }
3467 
3468   return large_page_size;
3469 }
3470 
3471 size_t os::Linux::setup_large_page_size() {
3472   _large_page_size = Linux::find_large_page_size();
3473   const size_t default_page_size = (size_t)Linux::page_size();
3474   if (_large_page_size > default_page_size) {
3475     _page_sizes[0] = _large_page_size;
3476     _page_sizes[1] = default_page_size;
3477     _page_sizes[2] = 0;
3478   }
3479 
3480   return _large_page_size;
3481 }
3482 
3483 bool os::Linux::setup_large_page_type(size_t page_size) {
3484   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3485       FLAG_IS_DEFAULT(UseSHM) &&
3486       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3487 
3488     // The type of large pages has not been specified by the user.
3489 
3490     // Try UseHugeTLBFS and then UseSHM.
3491     UseHugeTLBFS = UseSHM = true;
3492 
3493     // Don't try UseTransparentHugePages since there are known
3494     // performance issues with it turned on. This might change in the future.
3495     UseTransparentHugePages = false;
3496   }
3497 
3498   if (UseTransparentHugePages) {
3499     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3500     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3501       UseHugeTLBFS = false;
3502       UseSHM = false;
3503       return true;
3504     }
3505     UseTransparentHugePages = false;
3506   }
3507 
3508   if (UseHugeTLBFS) {
3509     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3510     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3511       UseSHM = false;
3512       return true;
3513     }
3514     UseHugeTLBFS = false;
3515   }
3516 
3517   return UseSHM;
3518 }
3519 
3520 void os::large_page_init() {
3521   if (!UseLargePages &&
3522       !UseTransparentHugePages &&
3523       !UseHugeTLBFS &&
3524       !UseSHM) {
3525     // Not using large pages.
3526     return;
3527   }
3528 
3529   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3530     // The user explicitly turned off large pages.
3531     // Ignore the rest of the large pages flags.
3532     UseTransparentHugePages = false;
3533     UseHugeTLBFS = false;
3534     UseSHM = false;
3535     return;
3536   }
3537 
3538   size_t large_page_size = Linux::setup_large_page_size();
3539   UseLargePages          = Linux::setup_large_page_type(large_page_size);
3540 
3541   set_coredump_filter(true /*largepages*/, false /*dax_shared*/);
3542 }
3543 
3544 #ifndef SHM_HUGETLB
3545   #define SHM_HUGETLB 04000
3546 #endif
3547 
3548 #define shm_warning_format(format, ...)              \
3549   do {                                               \
3550     if (UseLargePages &&                             \
3551         (!FLAG_IS_DEFAULT(UseLargePages) ||          \
3552          !FLAG_IS_DEFAULT(UseSHM) ||                 \
3553          !FLAG_IS_DEFAULT(LargePageSizeInBytes))) {  \
3554       warning(format, __VA_ARGS__);                  \
3555     }                                                \
3556   } while (0)
3557 
3558 #define shm_warning(str) shm_warning_format("%s", str)
3559 
3560 #define shm_warning_with_errno(str)                \
3561   do {                                             \
3562     int err = errno;                               \
3563     shm_warning_format(str " (error = %d)", err);  \
3564   } while (0)
3565 
3566 static char* shmat_with_alignment(int shmid, size_t bytes, size_t alignment) {
3567   assert(is_aligned(bytes, alignment), "Must be divisible by the alignment");
3568 
3569   if (!is_aligned(alignment, SHMLBA)) {
3570     assert(false, "Code below assumes that alignment is at least SHMLBA aligned");
3571     return NULL;
3572   }
3573 
3574   // To ensure that we get 'alignment' aligned memory from shmat,
3575   // we pre-reserve aligned virtual memory and then attach to that.
3576 
3577   char* pre_reserved_addr = anon_mmap_aligned(bytes, alignment, NULL);
3578   if (pre_reserved_addr == NULL) {
3579     // Couldn't pre-reserve aligned memory.
3580     shm_warning("Failed to pre-reserve aligned memory for shmat.");
3581     return NULL;
3582   }
3583 
3584   // SHM_REMAP is needed to allow shmat to map over an existing mapping.
3585   char* addr = (char*)shmat(shmid, pre_reserved_addr, SHM_REMAP);
3586 
3587   if ((intptr_t)addr == -1) {
3588     int err = errno;
3589     shm_warning_with_errno("Failed to attach shared memory.");
3590 
3591     assert(err != EACCES, "Unexpected error");
3592     assert(err != EIDRM,  "Unexpected error");
3593     assert(err != EINVAL, "Unexpected error");
3594 
3595     // Since we don't know if the kernel unmapped the pre-reserved memory area
3596     // we can't unmap it, since that would potentially unmap memory that was
3597     // mapped from other threads.
3598     return NULL;
3599   }
3600 
3601   return addr;
3602 }
3603 
3604 static char* shmat_at_address(int shmid, char* req_addr) {
3605   if (!is_aligned(req_addr, SHMLBA)) {
3606     assert(false, "Requested address needs to be SHMLBA aligned");
3607     return NULL;
3608   }
3609 
3610   char* addr = (char*)shmat(shmid, req_addr, 0);
3611 
3612   if ((intptr_t)addr == -1) {
3613     shm_warning_with_errno("Failed to attach shared memory.");
3614     return NULL;
3615   }
3616 
3617   return addr;
3618 }
3619 
3620 static char* shmat_large_pages(int shmid, size_t bytes, size_t alignment, char* req_addr) {
3621   // If a req_addr has been provided, we assume that the caller has already aligned the address.
3622   if (req_addr != NULL) {
3623     assert(is_aligned(req_addr, os::large_page_size()), "Must be divisible by the large page size");
3624     assert(is_aligned(req_addr, alignment), "Must be divisible by given alignment");
3625     return shmat_at_address(shmid, req_addr);
3626   }
3627 
3628   // Since shmid has been setup with SHM_HUGETLB, shmat will automatically
3629   // return large page size aligned memory addresses when req_addr == NULL.
3630   // However, if the alignment is larger than the large page size, we have
3631   // to manually ensure that the memory returned is 'alignment' aligned.
3632   if (alignment > os::large_page_size()) {
3633     assert(is_aligned(alignment, os::large_page_size()), "Must be divisible by the large page size");
3634     return shmat_with_alignment(shmid, bytes, alignment);
3635   } else {
3636     return shmat_at_address(shmid, NULL);
3637   }
3638 }
3639 
3640 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
3641                                             char* req_addr, bool exec) {
3642   // "exec" is passed in but not used.  Creating the shared image for
3643   // the code cache doesn't have an SHM_X executable permission to check.
3644   assert(UseLargePages && UseSHM, "only for SHM large pages");
3645   assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address");
3646   assert(is_aligned(req_addr, alignment), "Unaligned address");
3647 
3648   if (!is_aligned(bytes, os::large_page_size())) {
3649     return NULL; // Fallback to small pages.
3650   }
3651 
3652   // Create a large shared memory region to attach to based on size.
3653   // Currently, size is the total size of the heap.
3654   int shmid = shmget(IPC_PRIVATE, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3655   if (shmid == -1) {
3656     // Possible reasons for shmget failure:
3657     // 1. shmmax is too small for Java heap.
3658     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3659     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3660     // 2. not enough large page memory.
3661     //    > check available large pages: cat /proc/meminfo
3662     //    > increase amount of large pages:
3663     //          echo new_value > /proc/sys/vm/nr_hugepages
3664     //      Note 1: different Linux may use different name for this property,
3665     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3666     //      Note 2: it's possible there's enough physical memory available but
3667     //            they are so fragmented after a long run that they can't
3668     //            coalesce into large pages. Try to reserve large pages when
3669     //            the system is still "fresh".
3670     shm_warning_with_errno("Failed to reserve shared memory.");
3671     return NULL;
3672   }
3673 
3674   // Attach to the region.
3675   char* addr = shmat_large_pages(shmid, bytes, alignment, req_addr);
3676 
3677   // Remove shmid. If shmat() is successful, the actual shared memory segment
3678   // will be deleted when it's detached by shmdt() or when the process
3679   // terminates. If shmat() is not successful this will remove the shared
3680   // segment immediately.
3681   shmctl(shmid, IPC_RMID, NULL);
3682 
3683   return addr;
3684 }
3685 
3686 static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
3687                                         int error) {
3688   assert(error == ENOMEM, "Only expect to fail if no memory is available");
3689 
3690   bool warn_on_failure = UseLargePages &&
3691       (!FLAG_IS_DEFAULT(UseLargePages) ||
3692        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3693        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3694 
3695   if (warn_on_failure) {
3696     char msg[128];
3697     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3698                  PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3699     warning("%s", msg);
3700   }
3701 }
3702 
3703 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
3704                                                         char* req_addr,
3705                                                         bool exec) {
3706   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3707   assert(is_aligned(bytes, os::large_page_size()), "Unaligned size");
3708   assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address");
3709 
3710   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3711   char* addr = (char*)::mmap(req_addr, bytes, prot,
3712                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3713                              -1, 0);
3714 
3715   if (addr == MAP_FAILED) {
3716     warn_on_large_pages_failure(req_addr, bytes, errno);
3717     return NULL;
3718   }
3719 
3720   assert(is_aligned(addr, os::large_page_size()), "Must be");
3721 
3722   return addr;
3723 }
3724 
3725 // Reserve memory using mmap(MAP_HUGETLB).
3726 //  - bytes shall be a multiple of alignment.
3727 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3728 //  - alignment sets the alignment at which memory shall be allocated.
3729 //     It must be a multiple of allocation granularity.
3730 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3731 //  req_addr or NULL.
3732 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
3733                                                          size_t alignment,
3734                                                          char* req_addr,
3735                                                          bool exec) {
3736   size_t large_page_size = os::large_page_size();
3737   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3738 
3739   assert(is_aligned(req_addr, alignment), "Must be");
3740   assert(is_aligned(bytes, alignment), "Must be");
3741 
3742   // First reserve - but not commit - the address range in small pages.
3743   char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
3744 
3745   if (start == NULL) {
3746     return NULL;
3747   }
3748 
3749   assert(is_aligned(start, alignment), "Must be");
3750 
3751   char* end = start + bytes;
3752 
3753   // Find the regions of the allocated chunk that can be promoted to large pages.
3754   char* lp_start = align_up(start, large_page_size);
3755   char* lp_end   = align_down(end, large_page_size);
3756 
3757   size_t lp_bytes = lp_end - lp_start;
3758 
3759   assert(is_aligned(lp_bytes, large_page_size), "Must be");
3760 
3761   if (lp_bytes == 0) {
3762     // The mapped region doesn't even span the start and the end of a large page.
3763     // Fall back to allocate a non-special area.
3764     ::munmap(start, end - start);
3765     return NULL;
3766   }
3767 
3768   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3769 
3770   void* result;
3771 
3772   // Commit small-paged leading area.
3773   if (start != lp_start) {
3774     result = ::mmap(start, lp_start - start, prot,
3775                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3776                     -1, 0);
3777     if (result == MAP_FAILED) {
3778       ::munmap(lp_start, end - lp_start);
3779       return NULL;
3780     }
3781   }
3782 
3783   // Commit large-paged area.
3784   result = ::mmap(lp_start, lp_bytes, prot,
3785                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3786                   -1, 0);
3787   if (result == MAP_FAILED) {
3788     warn_on_large_pages_failure(lp_start, lp_bytes, errno);
3789     // If the mmap above fails, the large pages region will be unmapped and we
3790     // have regions before and after with small pages. Release these regions.
3791     //
3792     // |  mapped  |  unmapped  |  mapped  |
3793     // ^          ^            ^          ^
3794     // start      lp_start     lp_end     end
3795     //
3796     ::munmap(start, lp_start - start);
3797     ::munmap(lp_end, end - lp_end);
3798     return NULL;
3799   }
3800 
3801   // Commit small-paged trailing area.
3802   if (lp_end != end) {
3803     result = ::mmap(lp_end, end - lp_end, prot,
3804                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3805                     -1, 0);
3806     if (result == MAP_FAILED) {
3807       ::munmap(start, lp_end - start);
3808       return NULL;
3809     }
3810   }
3811 
3812   return start;
3813 }
3814 
3815 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
3816                                                    size_t alignment,
3817                                                    char* req_addr,
3818                                                    bool exec) {
3819   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3820   assert(is_aligned(req_addr, alignment), "Must be");
3821   assert(is_aligned(alignment, os::vm_allocation_granularity()), "Must be");
3822   assert(is_power_of_2(os::large_page_size()), "Must be");
3823   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3824 
3825   if (is_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3826     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3827   } else {
3828     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3829   }
3830 }
3831 
3832 char* os::reserve_memory_special(size_t bytes, size_t alignment,
3833                                  char* req_addr, bool exec) {
3834   assert(UseLargePages, "only for large pages");
3835 
3836   char* addr;
3837   if (UseSHM) {
3838     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3839   } else {
3840     assert(UseHugeTLBFS, "must be");
3841     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3842   }
3843 
3844   if (addr != NULL) {
3845     if (UseNUMAInterleaving) {
3846       numa_make_global(addr, bytes);
3847     }
3848 
3849     // The memory is committed
3850     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3851   }
3852 
3853   return addr;
3854 }
3855 
3856 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3857   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3858   return shmdt(base) == 0;
3859 }
3860 
3861 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3862   return pd_release_memory(base, bytes);
3863 }
3864 
3865 bool os::release_memory_special(char* base, size_t bytes) {
3866   bool res;
3867   if (MemTracker::tracking_level() > NMT_minimal) {
3868     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3869     res = os::Linux::release_memory_special_impl(base, bytes);
3870     if (res) {
3871       tkr.record((address)base, bytes);
3872     }
3873 
3874   } else {
3875     res = os::Linux::release_memory_special_impl(base, bytes);
3876   }
3877   return res;
3878 }
3879 
3880 bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3881   assert(UseLargePages, "only for large pages");
3882   bool res;
3883 
3884   if (UseSHM) {
3885     res = os::Linux::release_memory_special_shm(base, bytes);
3886   } else {
3887     assert(UseHugeTLBFS, "must be");
3888     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3889   }
3890   return res;
3891 }
3892 
3893 size_t os::large_page_size() {
3894   return _large_page_size;
3895 }
3896 
3897 // With SysV SHM the entire memory region must be allocated as shared
3898 // memory.
3899 // HugeTLBFS allows application to commit large page memory on demand.
3900 // However, when committing memory with HugeTLBFS fails, the region
3901 // that was supposed to be committed will lose the old reservation
3902 // and allow other threads to steal that memory region. Because of this
3903 // behavior we can't commit HugeTLBFS memory.
3904 bool os::can_commit_large_page_memory() {
3905   return UseTransparentHugePages;
3906 }
3907 
3908 bool os::can_execute_large_page_memory() {
3909   return UseTransparentHugePages || UseHugeTLBFS;
3910 }
3911 
3912 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr, int file_desc) {
3913   assert(file_desc >= 0, "file_desc is not valid");
3914   char* result = pd_attempt_reserve_memory_at(bytes, requested_addr);
3915   if (result != NULL) {
3916     if (replace_existing_mapping_with_file_mapping(result, bytes, file_desc) == NULL) {
3917       vm_exit_during_initialization(err_msg("Error in mapping Java heap at the given filesystem directory"));
3918     }
3919   }
3920   return result;
3921 }
3922 
3923 // Reserve memory at an arbitrary address, only if that area is
3924 // available (and not reserved for something else).
3925 
3926 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3927   const int max_tries = 10;
3928   char* base[max_tries];
3929   size_t size[max_tries];
3930   const size_t gap = 0x000000;
3931 
3932   // Assert only that the size is a multiple of the page size, since
3933   // that's all that mmap requires, and since that's all we really know
3934   // about at this low abstraction level.  If we need higher alignment,
3935   // we can either pass an alignment to this method or verify alignment
3936   // in one of the methods further up the call chain.  See bug 5044738.
3937   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3938 
3939   // Repeatedly allocate blocks until the block is allocated at the
3940   // right spot.
3941 
3942   // Linux mmap allows caller to pass an address as hint; give it a try first,
3943   // if kernel honors the hint then we can return immediately.
3944   char * addr = anon_mmap(requested_addr, bytes, false);
3945   if (addr == requested_addr) {
3946     return requested_addr;
3947   }
3948 
3949   if (addr != NULL) {
3950     // mmap() is successful but it fails to reserve at the requested address
3951     anon_munmap(addr, bytes);
3952   }
3953 
3954   int i;
3955   for (i = 0; i < max_tries; ++i) {
3956     base[i] = reserve_memory(bytes);
3957 
3958     if (base[i] != NULL) {
3959       // Is this the block we wanted?
3960       if (base[i] == requested_addr) {
3961         size[i] = bytes;
3962         break;
3963       }
3964 
3965       // Does this overlap the block we wanted? Give back the overlapped
3966       // parts and try again.
3967 
3968       ptrdiff_t top_overlap = requested_addr + (bytes + gap) - base[i];
3969       if (top_overlap >= 0 && (size_t)top_overlap < bytes) {
3970         unmap_memory(base[i], top_overlap);
3971         base[i] += top_overlap;
3972         size[i] = bytes - top_overlap;
3973       } else {
3974         ptrdiff_t bottom_overlap = base[i] + bytes - requested_addr;
3975         if (bottom_overlap >= 0 && (size_t)bottom_overlap < bytes) {
3976           unmap_memory(requested_addr, bottom_overlap);
3977           size[i] = bytes - bottom_overlap;
3978         } else {
3979           size[i] = bytes;
3980         }
3981       }
3982     }
3983   }
3984 
3985   // Give back the unused reserved pieces.
3986 
3987   for (int j = 0; j < i; ++j) {
3988     if (base[j] != NULL) {
3989       unmap_memory(base[j], size[j]);
3990     }
3991   }
3992 
3993   if (i < max_tries) {
3994     return requested_addr;
3995   } else {
3996     return NULL;
3997   }
3998 }
3999 
4000 size_t os::read(int fd, void *buf, unsigned int nBytes) {
4001   return ::read(fd, buf, nBytes);
4002 }
4003 
4004 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
4005   return ::pread(fd, buf, nBytes, offset);
4006 }
4007 
4008 // Short sleep, direct OS call.
4009 //
4010 // Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
4011 // sched_yield(2) will actually give up the CPU:
4012 //
4013 //   * Alone on this pariticular CPU, keeps running.
4014 //   * Before the introduction of "skip_buddy" with "compat_yield" disabled
4015 //     (pre 2.6.39).
4016 //
4017 // So calling this with 0 is an alternative.
4018 //
4019 void os::naked_short_sleep(jlong ms) {
4020   struct timespec req;
4021 
4022   assert(ms < 1000, "Un-interruptable sleep, short time use only");
4023   req.tv_sec = 0;
4024   if (ms > 0) {
4025     req.tv_nsec = (ms % 1000) * 1000000;
4026   } else {
4027     req.tv_nsec = 1;
4028   }
4029 
4030   nanosleep(&req, NULL);
4031 
4032   return;
4033 }
4034 
4035 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
4036 void os::infinite_sleep() {
4037   while (true) {    // sleep forever ...
4038     ::sleep(100);   // ... 100 seconds at a time
4039   }
4040 }
4041 
4042 // Used to convert frequent JVM_Yield() to nops
4043 bool os::dont_yield() {
4044   return DontYieldALot;
4045 }
4046 
4047 void os::naked_yield() {
4048   sched_yield();
4049 }
4050 
4051 ////////////////////////////////////////////////////////////////////////////////
4052 // thread priority support
4053 
4054 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
4055 // only supports dynamic priority, static priority must be zero. For real-time
4056 // applications, Linux supports SCHED_RR which allows static priority (1-99).
4057 // However, for large multi-threaded applications, SCHED_RR is not only slower
4058 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
4059 // of 5 runs - Sep 2005).
4060 //
4061 // The following code actually changes the niceness of kernel-thread/LWP. It
4062 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
4063 // not the entire user process, and user level threads are 1:1 mapped to kernel
4064 // threads. It has always been the case, but could change in the future. For
4065 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
4066 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
4067 
4068 int os::java_to_os_priority[CriticalPriority + 1] = {
4069   19,              // 0 Entry should never be used
4070 
4071    4,              // 1 MinPriority
4072    3,              // 2
4073    2,              // 3
4074 
4075    1,              // 4
4076    0,              // 5 NormPriority
4077   -1,              // 6
4078 
4079   -2,              // 7
4080   -3,              // 8
4081   -4,              // 9 NearMaxPriority
4082 
4083   -5,              // 10 MaxPriority
4084 
4085   -5               // 11 CriticalPriority
4086 };
4087 
4088 static int prio_init() {
4089   if (ThreadPriorityPolicy == 1) {
4090     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
4091     // if effective uid is not root. Perhaps, a more elegant way of doing
4092     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
4093     if (geteuid() != 0) {
4094       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
4095         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
4096       }
4097       ThreadPriorityPolicy = 0;
4098     }
4099   }
4100   if (UseCriticalJavaThreadPriority) {
4101     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
4102   }
4103   return 0;
4104 }
4105 
4106 OSReturn os::set_native_priority(Thread* thread, int newpri) {
4107   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
4108 
4109   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
4110   return (ret == 0) ? OS_OK : OS_ERR;
4111 }
4112 
4113 OSReturn os::get_native_priority(const Thread* const thread,
4114                                  int *priority_ptr) {
4115   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
4116     *priority_ptr = java_to_os_priority[NormPriority];
4117     return OS_OK;
4118   }
4119 
4120   errno = 0;
4121   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
4122   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
4123 }
4124 
4125 // Hint to the underlying OS that a task switch would not be good.
4126 // Void return because it's a hint and can fail.
4127 void os::hint_no_preempt() {}
4128 
4129 ////////////////////////////////////////////////////////////////////////////////
4130 // suspend/resume support
4131 
4132 //  The low-level signal-based suspend/resume support is a remnant from the
4133 //  old VM-suspension that used to be for java-suspension, safepoints etc,
4134 //  within hotspot. Currently used by JFR's OSThreadSampler
4135 //
4136 //  The remaining code is greatly simplified from the more general suspension
4137 //  code that used to be used.
4138 //
4139 //  The protocol is quite simple:
4140 //  - suspend:
4141 //      - sends a signal to the target thread
4142 //      - polls the suspend state of the osthread using a yield loop
4143 //      - target thread signal handler (SR_handler) sets suspend state
4144 //        and blocks in sigsuspend until continued
4145 //  - resume:
4146 //      - sets target osthread state to continue
4147 //      - sends signal to end the sigsuspend loop in the SR_handler
4148 //
4149 //  Note that the SR_lock plays no role in this suspend/resume protocol,
4150 //  but is checked for NULL in SR_handler as a thread termination indicator.
4151 //  The SR_lock is, however, used by JavaThread::java_suspend()/java_resume() APIs.
4152 //
4153 //  Note that resume_clear_context() and suspend_save_context() are needed
4154 //  by SR_handler(), so that fetch_frame_from_ucontext() works,
4155 //  which in part is used by:
4156 //    - Forte Analyzer: AsyncGetCallTrace()
4157 //    - StackBanging: get_frame_at_stack_banging_point()
4158 
4159 static void resume_clear_context(OSThread *osthread) {
4160   osthread->set_ucontext(NULL);
4161   osthread->set_siginfo(NULL);
4162 }
4163 
4164 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
4165                                  ucontext_t* context) {
4166   osthread->set_ucontext(context);
4167   osthread->set_siginfo(siginfo);
4168 }
4169 
4170 // Handler function invoked when a thread's execution is suspended or
4171 // resumed. We have to be careful that only async-safe functions are
4172 // called here (Note: most pthread functions are not async safe and
4173 // should be avoided.)
4174 //
4175 // Note: sigwait() is a more natural fit than sigsuspend() from an
4176 // interface point of view, but sigwait() prevents the signal hander
4177 // from being run. libpthread would get very confused by not having
4178 // its signal handlers run and prevents sigwait()'s use with the
4179 // mutex granting granting signal.
4180 //
4181 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
4182 //
4183 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
4184   // Save and restore errno to avoid confusing native code with EINTR
4185   // after sigsuspend.
4186   int old_errno = errno;
4187 
4188   Thread* thread = Thread::current_or_null_safe();
4189   assert(thread != NULL, "Missing current thread in SR_handler");
4190 
4191   // On some systems we have seen signal delivery get "stuck" until the signal
4192   // mask is changed as part of thread termination. Check that the current thread
4193   // has not already terminated (via SR_lock()) - else the following assertion
4194   // will fail because the thread is no longer a JavaThread as the ~JavaThread
4195   // destructor has completed.
4196 
4197   if (thread->SR_lock() == NULL) {
4198     return;
4199   }
4200 
4201   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
4202 
4203   OSThread* osthread = thread->osthread();
4204 
4205   os::SuspendResume::State current = osthread->sr.state();
4206   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
4207     suspend_save_context(osthread, siginfo, context);
4208 
4209     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
4210     os::SuspendResume::State state = osthread->sr.suspended();
4211     if (state == os::SuspendResume::SR_SUSPENDED) {
4212       sigset_t suspend_set;  // signals for sigsuspend()
4213       sigemptyset(&suspend_set);
4214       // get current set of blocked signals and unblock resume signal
4215       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
4216       sigdelset(&suspend_set, SR_signum);
4217 
4218       sr_semaphore.signal();
4219       // wait here until we are resumed
4220       while (1) {
4221         sigsuspend(&suspend_set);
4222 
4223         os::SuspendResume::State result = osthread->sr.running();
4224         if (result == os::SuspendResume::SR_RUNNING) {
4225           sr_semaphore.signal();
4226           break;
4227         }
4228       }
4229 
4230     } else if (state == os::SuspendResume::SR_RUNNING) {
4231       // request was cancelled, continue
4232     } else {
4233       ShouldNotReachHere();
4234     }
4235 
4236     resume_clear_context(osthread);
4237   } else if (current == os::SuspendResume::SR_RUNNING) {
4238     // request was cancelled, continue
4239   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4240     // ignore
4241   } else {
4242     // ignore
4243   }
4244 
4245   errno = old_errno;
4246 }
4247 
4248 static int SR_initialize() {
4249   struct sigaction act;
4250   char *s;
4251 
4252   // Get signal number to use for suspend/resume
4253   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4254     int sig = ::strtol(s, 0, 10);
4255     if (sig > MAX2(SIGSEGV, SIGBUS) &&  // See 4355769.
4256         sig < NSIG) {                   // Must be legal signal and fit into sigflags[].
4257       SR_signum = sig;
4258     } else {
4259       warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
4260               sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
4261     }
4262   }
4263 
4264   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4265          "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4266 
4267   sigemptyset(&SR_sigset);
4268   sigaddset(&SR_sigset, SR_signum);
4269 
4270   // Set up signal handler for suspend/resume
4271   act.sa_flags = SA_RESTART|SA_SIGINFO;
4272   act.sa_handler = (void (*)(int)) SR_handler;
4273 
4274   // SR_signum is blocked by default.
4275   // 4528190 - We also need to block pthread restart signal (32 on all
4276   // supported Linux platforms). Note that LinuxThreads need to block
4277   // this signal for all threads to work properly. So we don't have
4278   // to use hard-coded signal number when setting up the mask.
4279   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4280 
4281   if (sigaction(SR_signum, &act, 0) == -1) {
4282     return -1;
4283   }
4284 
4285   // Save signal flag
4286   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4287   return 0;
4288 }
4289 
4290 static int sr_notify(OSThread* osthread) {
4291   int status = pthread_kill(osthread->pthread_id(), SR_signum);
4292   assert_status(status == 0, status, "pthread_kill");
4293   return status;
4294 }
4295 
4296 // "Randomly" selected value for how long we want to spin
4297 // before bailing out on suspending a thread, also how often
4298 // we send a signal to a thread we want to resume
4299 static const int RANDOMLY_LARGE_INTEGER = 1000000;
4300 static const int RANDOMLY_LARGE_INTEGER2 = 100;
4301 
4302 // returns true on success and false on error - really an error is fatal
4303 // but this seems the normal response to library errors
4304 static bool do_suspend(OSThread* osthread) {
4305   assert(osthread->sr.is_running(), "thread should be running");
4306   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4307 
4308   // mark as suspended and send signal
4309   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4310     // failed to switch, state wasn't running?
4311     ShouldNotReachHere();
4312     return false;
4313   }
4314 
4315   if (sr_notify(osthread) != 0) {
4316     ShouldNotReachHere();
4317   }
4318 
4319   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4320   while (true) {
4321     if (sr_semaphore.timedwait(create_timespec(0, 2 * NANOSECS_PER_MILLISEC))) {
4322       break;
4323     } else {
4324       // timeout
4325       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4326       if (cancelled == os::SuspendResume::SR_RUNNING) {
4327         return false;
4328       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4329         // make sure that we consume the signal on the semaphore as well
4330         sr_semaphore.wait();
4331         break;
4332       } else {
4333         ShouldNotReachHere();
4334         return false;
4335       }
4336     }
4337   }
4338 
4339   guarantee(osthread->sr.is_suspended(), "Must be suspended");
4340   return true;
4341 }
4342 
4343 static void do_resume(OSThread* osthread) {
4344   assert(osthread->sr.is_suspended(), "thread should be suspended");
4345   assert(!sr_semaphore.trywait(), "invalid semaphore state");
4346 
4347   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4348     // failed to switch to WAKEUP_REQUEST
4349     ShouldNotReachHere();
4350     return;
4351   }
4352 
4353   while (true) {
4354     if (sr_notify(osthread) == 0) {
4355       if (sr_semaphore.timedwait(create_timespec(0, 2 * NANOSECS_PER_MILLISEC))) {
4356         if (osthread->sr.is_running()) {
4357           return;
4358         }
4359       }
4360     } else {
4361       ShouldNotReachHere();
4362     }
4363   }
4364 
4365   guarantee(osthread->sr.is_running(), "Must be running!");
4366 }
4367 
4368 ///////////////////////////////////////////////////////////////////////////////////
4369 // signal handling (except suspend/resume)
4370 
4371 // This routine may be used by user applications as a "hook" to catch signals.
4372 // The user-defined signal handler must pass unrecognized signals to this
4373 // routine, and if it returns true (non-zero), then the signal handler must
4374 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
4375 // routine will never retun false (zero), but instead will execute a VM panic
4376 // routine kill the process.
4377 //
4378 // If this routine returns false, it is OK to call it again.  This allows
4379 // the user-defined signal handler to perform checks either before or after
4380 // the VM performs its own checks.  Naturally, the user code would be making
4381 // a serious error if it tried to handle an exception (such as a null check
4382 // or breakpoint) that the VM was generating for its own correct operation.
4383 //
4384 // This routine may recognize any of the following kinds of signals:
4385 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4386 // It should be consulted by handlers for any of those signals.
4387 //
4388 // The caller of this routine must pass in the three arguments supplied
4389 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
4390 // field of the structure passed to sigaction().  This routine assumes that
4391 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4392 //
4393 // Note that the VM will print warnings if it detects conflicting signal
4394 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4395 //
4396 extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4397                                                  siginfo_t* siginfo,
4398                                                  void* ucontext,
4399                                                  int abort_if_unrecognized);
4400 
4401 void signalHandler(int sig, siginfo_t* info, void* uc) {
4402   assert(info != NULL && uc != NULL, "it must be old kernel");
4403   int orig_errno = errno;  // Preserve errno value over signal handler.
4404   JVM_handle_linux_signal(sig, info, uc, true);
4405   errno = orig_errno;
4406 }
4407 
4408 
4409 // This boolean allows users to forward their own non-matching signals
4410 // to JVM_handle_linux_signal, harmlessly.
4411 bool os::Linux::signal_handlers_are_installed = false;
4412 
4413 // For signal-chaining
4414 struct sigaction sigact[NSIG];
4415 uint64_t sigs = 0;
4416 #if (64 < NSIG-1)
4417 #error "Not all signals can be encoded in sigs. Adapt its type!"
4418 #endif
4419 bool os::Linux::libjsig_is_loaded = false;
4420 typedef struct sigaction *(*get_signal_t)(int);
4421 get_signal_t os::Linux::get_signal_action = NULL;
4422 
4423 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4424   struct sigaction *actp = NULL;
4425 
4426   if (libjsig_is_loaded) {
4427     // Retrieve the old signal handler from libjsig
4428     actp = (*get_signal_action)(sig);
4429   }
4430   if (actp == NULL) {
4431     // Retrieve the preinstalled signal handler from jvm
4432     actp = get_preinstalled_handler(sig);
4433   }
4434 
4435   return actp;
4436 }
4437 
4438 static bool call_chained_handler(struct sigaction *actp, int sig,
4439                                  siginfo_t *siginfo, void *context) {
4440   // Call the old signal handler
4441   if (actp->sa_handler == SIG_DFL) {
4442     // It's more reasonable to let jvm treat it as an unexpected exception
4443     // instead of taking the default action.
4444     return false;
4445   } else if (actp->sa_handler != SIG_IGN) {
4446     if ((actp->sa_flags & SA_NODEFER) == 0) {
4447       // automaticlly block the signal
4448       sigaddset(&(actp->sa_mask), sig);
4449     }
4450 
4451     sa_handler_t hand = NULL;
4452     sa_sigaction_t sa = NULL;
4453     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4454     // retrieve the chained handler
4455     if (siginfo_flag_set) {
4456       sa = actp->sa_sigaction;
4457     } else {
4458       hand = actp->sa_handler;
4459     }
4460 
4461     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4462       actp->sa_handler = SIG_DFL;
4463     }
4464 
4465     // try to honor the signal mask
4466     sigset_t oset;
4467     sigemptyset(&oset);
4468     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4469 
4470     // call into the chained handler
4471     if (siginfo_flag_set) {
4472       (*sa)(sig, siginfo, context);
4473     } else {
4474       (*hand)(sig);
4475     }
4476 
4477     // restore the signal mask
4478     pthread_sigmask(SIG_SETMASK, &oset, NULL);
4479   }
4480   // Tell jvm's signal handler the signal is taken care of.
4481   return true;
4482 }
4483 
4484 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4485   bool chained = false;
4486   // signal-chaining
4487   if (UseSignalChaining) {
4488     struct sigaction *actp = get_chained_signal_action(sig);
4489     if (actp != NULL) {
4490       chained = call_chained_handler(actp, sig, siginfo, context);
4491     }
4492   }
4493   return chained;
4494 }
4495 
4496 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4497   if ((((uint64_t)1 << (sig-1)) & sigs) != 0) {
4498     return &sigact[sig];
4499   }
4500   return NULL;
4501 }
4502 
4503 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4504   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4505   sigact[sig] = oldAct;
4506   sigs |= (uint64_t)1 << (sig-1);
4507 }
4508 
4509 // for diagnostic
4510 int sigflags[NSIG];
4511 
4512 int os::Linux::get_our_sigflags(int sig) {
4513   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4514   return sigflags[sig];
4515 }
4516 
4517 void os::Linux::set_our_sigflags(int sig, int flags) {
4518   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4519   if (sig > 0 && sig < NSIG) {
4520     sigflags[sig] = flags;
4521   }
4522 }
4523 
4524 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4525   // Check for overwrite.
4526   struct sigaction oldAct;
4527   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4528 
4529   void* oldhand = oldAct.sa_sigaction
4530                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4531                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4532   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4533       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4534       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4535     if (AllowUserSignalHandlers || !set_installed) {
4536       // Do not overwrite; user takes responsibility to forward to us.
4537       return;
4538     } else if (UseSignalChaining) {
4539       // save the old handler in jvm
4540       save_preinstalled_handler(sig, oldAct);
4541       // libjsig also interposes the sigaction() call below and saves the
4542       // old sigaction on it own.
4543     } else {
4544       fatal("Encountered unexpected pre-existing sigaction handler "
4545             "%#lx for signal %d.", (long)oldhand, sig);
4546     }
4547   }
4548 
4549   struct sigaction sigAct;
4550   sigfillset(&(sigAct.sa_mask));
4551   sigAct.sa_handler = SIG_DFL;
4552   if (!set_installed) {
4553     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4554   } else {
4555     sigAct.sa_sigaction = signalHandler;
4556     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4557   }
4558   // Save flags, which are set by ours
4559   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4560   sigflags[sig] = sigAct.sa_flags;
4561 
4562   int ret = sigaction(sig, &sigAct, &oldAct);
4563   assert(ret == 0, "check");
4564 
4565   void* oldhand2  = oldAct.sa_sigaction
4566                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4567                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4568   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4569 }
4570 
4571 // install signal handlers for signals that HotSpot needs to
4572 // handle in order to support Java-level exception handling.
4573 
4574 void os::Linux::install_signal_handlers() {
4575   if (!signal_handlers_are_installed) {
4576     signal_handlers_are_installed = true;
4577 
4578     // signal-chaining
4579     typedef void (*signal_setting_t)();
4580     signal_setting_t begin_signal_setting = NULL;
4581     signal_setting_t end_signal_setting = NULL;
4582     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4583                                           dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4584     if (begin_signal_setting != NULL) {
4585       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4586                                           dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4587       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4588                                          dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4589       libjsig_is_loaded = true;
4590       assert(UseSignalChaining, "should enable signal-chaining");
4591     }
4592     if (libjsig_is_loaded) {
4593       // Tell libjsig jvm is setting signal handlers
4594       (*begin_signal_setting)();
4595     }
4596 
4597     set_signal_handler(SIGSEGV, true);
4598     set_signal_handler(SIGPIPE, true);
4599     set_signal_handler(SIGBUS, true);
4600     set_signal_handler(SIGILL, true);
4601     set_signal_handler(SIGFPE, true);
4602 #if defined(PPC64)
4603     set_signal_handler(SIGTRAP, true);
4604 #endif
4605     set_signal_handler(SIGXFSZ, true);
4606 
4607     if (libjsig_is_loaded) {
4608       // Tell libjsig jvm finishes setting signal handlers
4609       (*end_signal_setting)();
4610     }
4611 
4612     // We don't activate signal checker if libjsig is in place, we trust ourselves
4613     // and if UserSignalHandler is installed all bets are off.
4614     // Log that signal checking is off only if -verbose:jni is specified.
4615     if (CheckJNICalls) {
4616       if (libjsig_is_loaded) {
4617         if (PrintJNIResolving) {
4618           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4619         }
4620         check_signals = false;
4621       }
4622       if (AllowUserSignalHandlers) {
4623         if (PrintJNIResolving) {
4624           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4625         }
4626         check_signals = false;
4627       }
4628     }
4629   }
4630 }
4631 
4632 // This is the fastest way to get thread cpu time on Linux.
4633 // Returns cpu time (user+sys) for any thread, not only for current.
4634 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4635 // It might work on 2.6.10+ with a special kernel/glibc patch.
4636 // For reference, please, see IEEE Std 1003.1-2004:
4637 //   http://www.unix.org/single_unix_specification
4638 
4639 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4640   struct timespec tp;
4641   int rc = os::Linux::clock_gettime(clockid, &tp);
4642   assert(rc == 0, "clock_gettime is expected to return 0 code");
4643 
4644   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4645 }
4646 
4647 void os::Linux::initialize_os_info() {
4648   assert(_os_version == 0, "OS info already initialized");
4649 
4650   struct utsname _uname;
4651 
4652   uint32_t major;
4653   uint32_t minor;
4654   uint32_t fix;
4655 
4656   int rc;
4657 
4658   // Kernel version is unknown if
4659   // verification below fails.
4660   _os_version = 0x01000000;
4661 
4662   rc = uname(&_uname);
4663   if (rc != -1) {
4664 
4665     rc = sscanf(_uname.release,"%d.%d.%d", &major, &minor, &fix);
4666     if (rc == 3) {
4667 
4668       if (major < 256 && minor < 256 && fix < 256) {
4669         // Kernel version format is as expected,
4670         // set it overriding unknown state.
4671         _os_version = (major << 16) |
4672                       (minor << 8 ) |
4673                       (fix   << 0 ) ;
4674       }
4675     }
4676   }
4677 }
4678 
4679 uint32_t os::Linux::os_version() {
4680   assert(_os_version != 0, "not initialized");
4681   return _os_version & 0x00FFFFFF;
4682 }
4683 
4684 bool os::Linux::os_version_is_known() {
4685   assert(_os_version != 0, "not initialized");
4686   return _os_version & 0x01000000 ? false : true;
4687 }
4688 
4689 /////
4690 // glibc on Linux platform uses non-documented flag
4691 // to indicate, that some special sort of signal
4692 // trampoline is used.
4693 // We will never set this flag, and we should
4694 // ignore this flag in our diagnostic
4695 #ifdef SIGNIFICANT_SIGNAL_MASK
4696   #undef SIGNIFICANT_SIGNAL_MASK
4697 #endif
4698 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4699 
4700 static const char* get_signal_handler_name(address handler,
4701                                            char* buf, int buflen) {
4702   int offset = 0;
4703   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4704   if (found) {
4705     // skip directory names
4706     const char *p1, *p2;
4707     p1 = buf;
4708     size_t len = strlen(os::file_separator());
4709     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4710     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4711   } else {
4712     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4713   }
4714   return buf;
4715 }
4716 
4717 static void print_signal_handler(outputStream* st, int sig,
4718                                  char* buf, size_t buflen) {
4719   struct sigaction sa;
4720 
4721   sigaction(sig, NULL, &sa);
4722 
4723   // See comment for SIGNIFICANT_SIGNAL_MASK define
4724   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4725 
4726   st->print("%s: ", os::exception_name(sig, buf, buflen));
4727 
4728   address handler = (sa.sa_flags & SA_SIGINFO)
4729     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4730     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4731 
4732   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4733     st->print("SIG_DFL");
4734   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4735     st->print("SIG_IGN");
4736   } else {
4737     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4738   }
4739 
4740   st->print(", sa_mask[0]=");
4741   os::Posix::print_signal_set_short(st, &sa.sa_mask);
4742 
4743   address rh = VMError::get_resetted_sighandler(sig);
4744   // May be, handler was resetted by VMError?
4745   if (rh != NULL) {
4746     handler = rh;
4747     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4748   }
4749 
4750   st->print(", sa_flags=");
4751   os::Posix::print_sa_flags(st, sa.sa_flags);
4752 
4753   // Check: is it our handler?
4754   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4755       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4756     // It is our signal handler
4757     // check for flags, reset system-used one!
4758     if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4759       st->print(
4760                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4761                 os::Linux::get_our_sigflags(sig));
4762     }
4763   }
4764   st->cr();
4765 }
4766 
4767 
4768 #define DO_SIGNAL_CHECK(sig)                      \
4769   do {                                            \
4770     if (!sigismember(&check_signal_done, sig)) {  \
4771       os::Linux::check_signal_handler(sig);       \
4772     }                                             \
4773   } while (0)
4774 
4775 // This method is a periodic task to check for misbehaving JNI applications
4776 // under CheckJNI, we can add any periodic checks here
4777 
4778 void os::run_periodic_checks() {
4779   if (check_signals == false) return;
4780 
4781   // SEGV and BUS if overridden could potentially prevent
4782   // generation of hs*.log in the event of a crash, debugging
4783   // such a case can be very challenging, so we absolutely
4784   // check the following for a good measure:
4785   DO_SIGNAL_CHECK(SIGSEGV);
4786   DO_SIGNAL_CHECK(SIGILL);
4787   DO_SIGNAL_CHECK(SIGFPE);
4788   DO_SIGNAL_CHECK(SIGBUS);
4789   DO_SIGNAL_CHECK(SIGPIPE);
4790   DO_SIGNAL_CHECK(SIGXFSZ);
4791 #if defined(PPC64)
4792   DO_SIGNAL_CHECK(SIGTRAP);
4793 #endif
4794 
4795   // ReduceSignalUsage allows the user to override these handlers
4796   // see comments at the very top and jvm_md.h
4797   if (!ReduceSignalUsage) {
4798     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4799     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4800     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4801     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4802   }
4803 
4804   DO_SIGNAL_CHECK(SR_signum);
4805 }
4806 
4807 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4808 
4809 static os_sigaction_t os_sigaction = NULL;
4810 
4811 void os::Linux::check_signal_handler(int sig) {
4812   char buf[O_BUFLEN];
4813   address jvmHandler = NULL;
4814 
4815 
4816   struct sigaction act;
4817   if (os_sigaction == NULL) {
4818     // only trust the default sigaction, in case it has been interposed
4819     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4820     if (os_sigaction == NULL) return;
4821   }
4822 
4823   os_sigaction(sig, (struct sigaction*)NULL, &act);
4824 
4825 
4826   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4827 
4828   address thisHandler = (act.sa_flags & SA_SIGINFO)
4829     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4830     : CAST_FROM_FN_PTR(address, act.sa_handler);
4831 
4832 
4833   switch (sig) {
4834   case SIGSEGV:
4835   case SIGBUS:
4836   case SIGFPE:
4837   case SIGPIPE:
4838   case SIGILL:
4839   case SIGXFSZ:
4840     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4841     break;
4842 
4843   case SHUTDOWN1_SIGNAL:
4844   case SHUTDOWN2_SIGNAL:
4845   case SHUTDOWN3_SIGNAL:
4846   case BREAK_SIGNAL:
4847     jvmHandler = (address)user_handler();
4848     break;
4849 
4850   default:
4851     if (sig == SR_signum) {
4852       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4853     } else {
4854       return;
4855     }
4856     break;
4857   }
4858 
4859   if (thisHandler != jvmHandler) {
4860     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4861     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4862     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4863     // No need to check this sig any longer
4864     sigaddset(&check_signal_done, sig);
4865     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4866     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4867       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4868                     exception_name(sig, buf, O_BUFLEN));
4869     }
4870   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4871     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4872     tty->print("expected:");
4873     os::Posix::print_sa_flags(tty, os::Linux::get_our_sigflags(sig));
4874     tty->cr();
4875     tty->print("  found:");
4876     os::Posix::print_sa_flags(tty, act.sa_flags);
4877     tty->cr();
4878     // No need to check this sig any longer
4879     sigaddset(&check_signal_done, sig);
4880   }
4881 
4882   // Dump all the signal
4883   if (sigismember(&check_signal_done, sig)) {
4884     print_signal_handlers(tty, buf, O_BUFLEN);
4885   }
4886 }
4887 
4888 extern void report_error(char* file_name, int line_no, char* title,
4889                          char* format, ...);
4890 
4891 // this is called _before_ most of the global arguments have been parsed
4892 void os::init(void) {
4893   char dummy;   // used to get a guess on initial stack address
4894 
4895   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4896 
4897   init_random(1234567);
4898 
4899   Linux::set_page_size(sysconf(_SC_PAGESIZE));
4900   if (Linux::page_size() == -1) {
4901     fatal("os_linux.cpp: os::init: sysconf failed (%s)",
4902           os::strerror(errno));
4903   }
4904   init_page_sizes((size_t) Linux::page_size());
4905 
4906   Linux::initialize_system_info();
4907 
4908   Linux::initialize_os_info();
4909 
4910   // _main_thread points to the thread that created/loaded the JVM.
4911   Linux::_main_thread = pthread_self();
4912 
4913   Linux::clock_init();
4914   initial_time_count = javaTimeNanos();
4915 
4916   // retrieve entry point for pthread_setname_np
4917   Linux::_pthread_setname_np =
4918     (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
4919 
4920   os::Posix::init();
4921 }
4922 
4923 // To install functions for atexit system call
4924 extern "C" {
4925   static void perfMemory_exit_helper() {
4926     perfMemory_exit();
4927   }
4928 }
4929 
4930 void os::pd_init_container_support() {
4931   OSContainer::init();
4932 }
4933 
4934 // this is called _after_ the global arguments have been parsed
4935 jint os::init_2(void) {
4936 
4937   os::Posix::init_2();
4938 
4939   Linux::fast_thread_clock_init();
4940 
4941   // initialize suspend/resume support - must do this before signal_sets_init()
4942   if (SR_initialize() != 0) {
4943     perror("SR_initialize failed");
4944     return JNI_ERR;
4945   }
4946 
4947   Linux::signal_sets_init();
4948   Linux::install_signal_handlers();
4949 
4950   // Check and sets minimum stack sizes against command line options
4951   if (Posix::set_minimum_stack_sizes() == JNI_ERR) {
4952     return JNI_ERR;
4953   }
4954   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4955 
4956 #if defined(IA32)
4957   workaround_expand_exec_shield_cs_limit();
4958 #endif
4959 
4960   Linux::libpthread_init();
4961   Linux::sched_getcpu_init();
4962   log_info(os)("HotSpot is running with %s, %s",
4963                Linux::glibc_version(), Linux::libpthread_version());
4964 
4965   if (UseNUMA) {
4966     if (!Linux::libnuma_init()) {
4967       UseNUMA = false;
4968     } else {
4969       if ((Linux::numa_max_node() < 1)) {
4970         // There's only one node(they start from 0), disable NUMA.
4971         UseNUMA = false;
4972       }
4973     }
4974 
4975     if (UseParallelGC && UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
4976       // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
4977       // we can make the adaptive lgrp chunk resizing work. If the user specified both
4978       // UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn
4979       // and disable adaptive resizing.
4980       if (UseAdaptiveSizePolicy || UseAdaptiveNUMAChunkSizing) {
4981         warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, "
4982                 "disabling adaptive resizing (-XX:-UseAdaptiveSizePolicy -XX:-UseAdaptiveNUMAChunkSizing)");
4983         UseAdaptiveSizePolicy = false;
4984         UseAdaptiveNUMAChunkSizing = false;
4985       }
4986     }
4987 
4988     if (!UseNUMA && ForceNUMA) {
4989       UseNUMA = true;
4990     }
4991   }
4992 
4993   if (MaxFDLimit) {
4994     // set the number of file descriptors to max. print out error
4995     // if getrlimit/setrlimit fails but continue regardless.
4996     struct rlimit nbr_files;
4997     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4998     if (status != 0) {
4999       log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
5000     } else {
5001       nbr_files.rlim_cur = nbr_files.rlim_max;
5002       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
5003       if (status != 0) {
5004         log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
5005       }
5006     }
5007   }
5008 
5009   // Initialize lock used to serialize thread creation (see os::create_thread)
5010   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
5011 
5012   // at-exit methods are called in the reverse order of their registration.
5013   // atexit functions are called on return from main or as a result of a
5014   // call to exit(3C). There can be only 32 of these functions registered
5015   // and atexit() does not set errno.
5016 
5017   if (PerfAllowAtExitRegistration) {
5018     // only register atexit functions if PerfAllowAtExitRegistration is set.
5019     // atexit functions can be delayed until process exit time, which
5020     // can be problematic for embedded VM situations. Embedded VMs should
5021     // call DestroyJavaVM() to assure that VM resources are released.
5022 
5023     // note: perfMemory_exit_helper atexit function may be removed in
5024     // the future if the appropriate cleanup code can be added to the
5025     // VM_Exit VMOperation's doit method.
5026     if (atexit(perfMemory_exit_helper) != 0) {
5027       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
5028     }
5029   }
5030 
5031   // initialize thread priority policy
5032   prio_init();
5033 
5034   if (!FLAG_IS_DEFAULT(AllocateHeapAt)) {
5035     set_coredump_filter(false /*largepages*/, true /*dax_shared*/);
5036   }
5037   return JNI_OK;
5038 }
5039 
5040 // Mark the polling page as unreadable
5041 void os::make_polling_page_unreadable(void) {
5042   if (!guard_memory((char*)_polling_page, Linux::page_size())) {
5043     fatal("Could not disable polling page");
5044   }
5045 }
5046 
5047 // Mark the polling page as readable
5048 void os::make_polling_page_readable(void) {
5049   if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
5050     fatal("Could not enable polling page");
5051   }
5052 }
5053 
5054 // older glibc versions don't have this macro (which expands to
5055 // an optimized bit-counting function) so we have to roll our own
5056 #ifndef CPU_COUNT
5057 
5058 static int _cpu_count(const cpu_set_t* cpus) {
5059   int count = 0;
5060   // only look up to the number of configured processors
5061   for (int i = 0; i < os::processor_count(); i++) {
5062     if (CPU_ISSET(i, cpus)) {
5063       count++;
5064     }
5065   }
5066   return count;
5067 }
5068 
5069 #define CPU_COUNT(cpus) _cpu_count(cpus)
5070 
5071 #endif // CPU_COUNT
5072 
5073 // Get the current number of available processors for this process.
5074 // This value can change at any time during a process's lifetime.
5075 // sched_getaffinity gives an accurate answer as it accounts for cpusets.
5076 // If it appears there may be more than 1024 processors then we do a
5077 // dynamic check - see 6515172 for details.
5078 // If anything goes wrong we fallback to returning the number of online
5079 // processors - which can be greater than the number available to the process.
5080 int os::Linux::active_processor_count() {
5081   cpu_set_t cpus;  // can represent at most 1024 (CPU_SETSIZE) processors
5082   cpu_set_t* cpus_p = &cpus;
5083   int cpus_size = sizeof(cpu_set_t);
5084 
5085   int configured_cpus = os::processor_count();  // upper bound on available cpus
5086   int cpu_count = 0;
5087 
5088 // old build platforms may not support dynamic cpu sets
5089 #ifdef CPU_ALLOC
5090 
5091   // To enable easy testing of the dynamic path on different platforms we
5092   // introduce a diagnostic flag: UseCpuAllocPath
5093   if (configured_cpus >= CPU_SETSIZE || UseCpuAllocPath) {
5094     // kernel may use a mask bigger than cpu_set_t
5095     log_trace(os)("active_processor_count: using dynamic path %s"
5096                   "- configured processors: %d",
5097                   UseCpuAllocPath ? "(forced) " : "",
5098                   configured_cpus);
5099     cpus_p = CPU_ALLOC(configured_cpus);
5100     if (cpus_p != NULL) {
5101       cpus_size = CPU_ALLOC_SIZE(configured_cpus);
5102       // zero it just to be safe
5103       CPU_ZERO_S(cpus_size, cpus_p);
5104     }
5105     else {
5106        // failed to allocate so fallback to online cpus
5107        int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
5108        log_trace(os)("active_processor_count: "
5109                      "CPU_ALLOC failed (%s) - using "
5110                      "online processor count: %d",
5111                      os::strerror(errno), online_cpus);
5112        return online_cpus;
5113     }
5114   }
5115   else {
5116     log_trace(os)("active_processor_count: using static path - configured processors: %d",
5117                   configured_cpus);
5118   }
5119 #else // CPU_ALLOC
5120 // these stubs won't be executed
5121 #define CPU_COUNT_S(size, cpus) -1
5122 #define CPU_FREE(cpus)
5123 
5124   log_trace(os)("active_processor_count: only static path available - configured processors: %d",
5125                 configured_cpus);
5126 #endif // CPU_ALLOC
5127 
5128   // pid 0 means the current thread - which we have to assume represents the process
5129   if (sched_getaffinity(0, cpus_size, cpus_p) == 0) {
5130     if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5131       cpu_count = CPU_COUNT_S(cpus_size, cpus_p);
5132     }
5133     else {
5134       cpu_count = CPU_COUNT(cpus_p);
5135     }
5136     log_trace(os)("active_processor_count: sched_getaffinity processor count: %d", cpu_count);
5137   }
5138   else {
5139     cpu_count = ::sysconf(_SC_NPROCESSORS_ONLN);
5140     warning("sched_getaffinity failed (%s)- using online processor count (%d) "
5141             "which may exceed available processors", os::strerror(errno), cpu_count);
5142   }
5143 
5144   if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5145     CPU_FREE(cpus_p);
5146   }
5147 
5148   assert(cpu_count > 0 && cpu_count <= os::processor_count(), "sanity check");
5149   return cpu_count;
5150 }
5151 
5152 // Determine the active processor count from one of
5153 // three different sources:
5154 //
5155 // 1. User option -XX:ActiveProcessorCount
5156 // 2. kernel os calls (sched_getaffinity or sysconf(_SC_NPROCESSORS_ONLN)
5157 // 3. extracted from cgroup cpu subsystem (shares and quotas)
5158 //
5159 // Option 1, if specified, will always override.
5160 // If the cgroup subsystem is active and configured, we
5161 // will return the min of the cgroup and option 2 results.
5162 // This is required since tools, such as numactl, that
5163 // alter cpu affinity do not update cgroup subsystem
5164 // cpuset configuration files.
5165 int os::active_processor_count() {
5166   // User has overridden the number of active processors
5167   if (ActiveProcessorCount > 0) {
5168     log_trace(os)("active_processor_count: "
5169                   "active processor count set by user : %d",
5170                   ActiveProcessorCount);
5171     return ActiveProcessorCount;
5172   }
5173 
5174   int active_cpus;
5175   if (OSContainer::is_containerized()) {
5176     active_cpus = OSContainer::active_processor_count();
5177     log_trace(os)("active_processor_count: determined by OSContainer: %d",
5178                    active_cpus);
5179   } else {
5180     active_cpus = os::Linux::active_processor_count();
5181   }
5182 
5183   return active_cpus;
5184 }
5185 
5186 void os::set_native_thread_name(const char *name) {
5187   if (Linux::_pthread_setname_np) {
5188     char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
5189     snprintf(buf, sizeof(buf), "%s", name);
5190     buf[sizeof(buf) - 1] = '\0';
5191     const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
5192     // ERANGE should not happen; all other errors should just be ignored.
5193     assert(rc != ERANGE, "pthread_setname_np failed");
5194   }
5195 }
5196 
5197 bool os::distribute_processes(uint length, uint* distribution) {
5198   // Not yet implemented.
5199   return false;
5200 }
5201 
5202 bool os::bind_to_processor(uint processor_id) {
5203   // Not yet implemented.
5204   return false;
5205 }
5206 
5207 ///
5208 
5209 void os::SuspendedThreadTask::internal_do_task() {
5210   if (do_suspend(_thread->osthread())) {
5211     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
5212     do_task(context);
5213     do_resume(_thread->osthread());
5214   }
5215 }
5216 
5217 ////////////////////////////////////////////////////////////////////////////////
5218 // debug support
5219 
5220 bool os::find(address addr, outputStream* st) {
5221   Dl_info dlinfo;
5222   memset(&dlinfo, 0, sizeof(dlinfo));
5223   if (dladdr(addr, &dlinfo) != 0) {
5224     st->print(PTR_FORMAT ": ", p2i(addr));
5225     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5226       st->print("%s+" PTR_FORMAT, dlinfo.dli_sname,
5227                 p2i(addr) - p2i(dlinfo.dli_saddr));
5228     } else if (dlinfo.dli_fbase != NULL) {
5229       st->print("<offset " PTR_FORMAT ">", p2i(addr) - p2i(dlinfo.dli_fbase));
5230     } else {
5231       st->print("<absolute address>");
5232     }
5233     if (dlinfo.dli_fname != NULL) {
5234       st->print(" in %s", dlinfo.dli_fname);
5235     }
5236     if (dlinfo.dli_fbase != NULL) {
5237       st->print(" at " PTR_FORMAT, p2i(dlinfo.dli_fbase));
5238     }
5239     st->cr();
5240 
5241     if (Verbose) {
5242       // decode some bytes around the PC
5243       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5244       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5245       address       lowest = (address) dlinfo.dli_sname;
5246       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5247       if (begin < lowest)  begin = lowest;
5248       Dl_info dlinfo2;
5249       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5250           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
5251         end = (address) dlinfo2.dli_saddr;
5252       }
5253       Disassembler::decode(begin, end, st);
5254     }
5255     return true;
5256   }
5257   return false;
5258 }
5259 
5260 ////////////////////////////////////////////////////////////////////////////////
5261 // misc
5262 
5263 // This does not do anything on Linux. This is basically a hook for being
5264 // able to use structured exception handling (thread-local exception filters)
5265 // on, e.g., Win32.
5266 void
5267 os::os_exception_wrapper(java_call_t f, JavaValue* value, const methodHandle& method,
5268                          JavaCallArguments* args, Thread* thread) {
5269   f(value, method, args, thread);
5270 }
5271 
5272 void os::print_statistics() {
5273 }
5274 
5275 bool os::message_box(const char* title, const char* message) {
5276   int i;
5277   fdStream err(defaultStream::error_fd());
5278   for (i = 0; i < 78; i++) err.print_raw("=");
5279   err.cr();
5280   err.print_raw_cr(title);
5281   for (i = 0; i < 78; i++) err.print_raw("-");
5282   err.cr();
5283   err.print_raw_cr(message);
5284   for (i = 0; i < 78; i++) err.print_raw("=");
5285   err.cr();
5286 
5287   char buf[16];
5288   // Prevent process from exiting upon "read error" without consuming all CPU
5289   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5290 
5291   return buf[0] == 'y' || buf[0] == 'Y';
5292 }
5293 
5294 int os::stat(const char *path, struct stat *sbuf) {
5295   char pathbuf[MAX_PATH];
5296   if (strlen(path) > MAX_PATH - 1) {
5297     errno = ENAMETOOLONG;
5298     return -1;
5299   }
5300   os::native_path(strcpy(pathbuf, path));
5301   return ::stat(pathbuf, sbuf);
5302 }
5303 
5304 // Is a (classpath) directory empty?
5305 bool os::dir_is_empty(const char* path) {
5306   DIR *dir = NULL;
5307   struct dirent *ptr;
5308 
5309   dir = opendir(path);
5310   if (dir == NULL) return true;
5311 
5312   // Scan the directory
5313   bool result = true;
5314   char buf[sizeof(struct dirent) + MAX_PATH];
5315   while (result && (ptr = ::readdir(dir)) != NULL) {
5316     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5317       result = false;
5318     }
5319   }
5320   closedir(dir);
5321   return result;
5322 }
5323 
5324 // This code originates from JDK's sysOpen and open64_w
5325 // from src/solaris/hpi/src/system_md.c
5326 
5327 int os::open(const char *path, int oflag, int mode) {
5328   if (strlen(path) > MAX_PATH - 1) {
5329     errno = ENAMETOOLONG;
5330     return -1;
5331   }
5332 
5333   // All file descriptors that are opened in the Java process and not
5334   // specifically destined for a subprocess should have the close-on-exec
5335   // flag set.  If we don't set it, then careless 3rd party native code
5336   // might fork and exec without closing all appropriate file descriptors
5337   // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
5338   // turn might:
5339   //
5340   // - cause end-of-file to fail to be detected on some file
5341   //   descriptors, resulting in mysterious hangs, or
5342   //
5343   // - might cause an fopen in the subprocess to fail on a system
5344   //   suffering from bug 1085341.
5345   //
5346   // (Yes, the default setting of the close-on-exec flag is a Unix
5347   // design flaw)
5348   //
5349   // See:
5350   // 1085341: 32-bit stdio routines should support file descriptors >255
5351   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5352   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5353   //
5354   // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
5355   // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
5356   // because it saves a system call and removes a small window where the flag
5357   // is unset.  On ancient Linux kernels the O_CLOEXEC flag will be ignored
5358   // and we fall back to using FD_CLOEXEC (see below).
5359 #ifdef O_CLOEXEC
5360   oflag |= O_CLOEXEC;
5361 #endif
5362 
5363   int fd = ::open64(path, oflag, mode);
5364   if (fd == -1) return -1;
5365 
5366   //If the open succeeded, the file might still be a directory
5367   {
5368     struct stat64 buf64;
5369     int ret = ::fstat64(fd, &buf64);
5370     int st_mode = buf64.st_mode;
5371 
5372     if (ret != -1) {
5373       if ((st_mode & S_IFMT) == S_IFDIR) {
5374         errno = EISDIR;
5375         ::close(fd);
5376         return -1;
5377       }
5378     } else {
5379       ::close(fd);
5380       return -1;
5381     }
5382   }
5383 
5384 #ifdef FD_CLOEXEC
5385   // Validate that the use of the O_CLOEXEC flag on open above worked.
5386   // With recent kernels, we will perform this check exactly once.
5387   static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
5388   if (!O_CLOEXEC_is_known_to_work) {
5389     int flags = ::fcntl(fd, F_GETFD);
5390     if (flags != -1) {
5391       if ((flags & FD_CLOEXEC) != 0)
5392         O_CLOEXEC_is_known_to_work = 1;
5393       else
5394         ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5395     }
5396   }
5397 #endif
5398 
5399   return fd;
5400 }
5401 
5402 
5403 // create binary file, rewriting existing file if required
5404 int os::create_binary_file(const char* path, bool rewrite_existing) {
5405   int oflags = O_WRONLY | O_CREAT;
5406   if (!rewrite_existing) {
5407     oflags |= O_EXCL;
5408   }
5409   return ::open64(path, oflags, S_IREAD | S_IWRITE);
5410 }
5411 
5412 // return current position of file pointer
5413 jlong os::current_file_offset(int fd) {
5414   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5415 }
5416 
5417 // move file pointer to the specified offset
5418 jlong os::seek_to_file_offset(int fd, jlong offset) {
5419   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5420 }
5421 
5422 // This code originates from JDK's sysAvailable
5423 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5424 
5425 int os::available(int fd, jlong *bytes) {
5426   jlong cur, end;
5427   int mode;
5428   struct stat64 buf64;
5429 
5430   if (::fstat64(fd, &buf64) >= 0) {
5431     mode = buf64.st_mode;
5432     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5433       int n;
5434       if (::ioctl(fd, FIONREAD, &n) >= 0) {
5435         *bytes = n;
5436         return 1;
5437       }
5438     }
5439   }
5440   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5441     return 0;
5442   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5443     return 0;
5444   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5445     return 0;
5446   }
5447   *bytes = end - cur;
5448   return 1;
5449 }
5450 
5451 // Map a block of memory.
5452 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5453                         char *addr, size_t bytes, bool read_only,
5454                         bool allow_exec) {
5455   int prot;
5456   int flags = MAP_PRIVATE;
5457 
5458   if (read_only) {
5459     prot = PROT_READ;
5460   } else {
5461     prot = PROT_READ | PROT_WRITE;
5462   }
5463 
5464   if (allow_exec) {
5465     prot |= PROT_EXEC;
5466   }
5467 
5468   if (addr != NULL) {
5469     flags |= MAP_FIXED;
5470   }
5471 
5472   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5473                                      fd, file_offset);
5474   if (mapped_address == MAP_FAILED) {
5475     return NULL;
5476   }
5477   return mapped_address;
5478 }
5479 
5480 
5481 // Remap a block of memory.
5482 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5483                           char *addr, size_t bytes, bool read_only,
5484                           bool allow_exec) {
5485   // same as map_memory() on this OS
5486   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5487                         allow_exec);
5488 }
5489 
5490 
5491 // Unmap a block of memory.
5492 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5493   return munmap(addr, bytes) == 0;
5494 }
5495 
5496 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5497 
5498 static clockid_t thread_cpu_clockid(Thread* thread) {
5499   pthread_t tid = thread->osthread()->pthread_id();
5500   clockid_t clockid;
5501 
5502   // Get thread clockid
5503   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5504   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5505   return clockid;
5506 }
5507 
5508 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5509 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5510 // of a thread.
5511 //
5512 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5513 // the fast estimate available on the platform.
5514 
5515 jlong os::current_thread_cpu_time() {
5516   if (os::Linux::supports_fast_thread_cpu_time()) {
5517     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5518   } else {
5519     // return user + sys since the cost is the same
5520     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5521   }
5522 }
5523 
5524 jlong os::thread_cpu_time(Thread* thread) {
5525   // consistent with what current_thread_cpu_time() returns
5526   if (os::Linux::supports_fast_thread_cpu_time()) {
5527     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5528   } else {
5529     return slow_thread_cpu_time(thread, true /* user + sys */);
5530   }
5531 }
5532 
5533 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5534   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5535     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5536   } else {
5537     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5538   }
5539 }
5540 
5541 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5542   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5543     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5544   } else {
5545     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5546   }
5547 }
5548 
5549 //  -1 on error.
5550 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5551   pid_t  tid = thread->osthread()->thread_id();
5552   char *s;
5553   char stat[2048];
5554   int statlen;
5555   char proc_name[64];
5556   int count;
5557   long sys_time, user_time;
5558   char cdummy;
5559   int idummy;
5560   long ldummy;
5561   FILE *fp;
5562 
5563   snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5564   fp = fopen(proc_name, "r");
5565   if (fp == NULL) return -1;
5566   statlen = fread(stat, 1, 2047, fp);
5567   stat[statlen] = '\0';
5568   fclose(fp);
5569 
5570   // Skip pid and the command string. Note that we could be dealing with
5571   // weird command names, e.g. user could decide to rename java launcher
5572   // to "java 1.4.2 :)", then the stat file would look like
5573   //                1234 (java 1.4.2 :)) R ... ...
5574   // We don't really need to know the command string, just find the last
5575   // occurrence of ")" and then start parsing from there. See bug 4726580.
5576   s = strrchr(stat, ')');
5577   if (s == NULL) return -1;
5578 
5579   // Skip blank chars
5580   do { s++; } while (s && isspace(*s));
5581 
5582   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5583                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5584                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5585                  &user_time, &sys_time);
5586   if (count != 13) return -1;
5587   if (user_sys_cpu_time) {
5588     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5589   } else {
5590     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5591   }
5592 }
5593 
5594 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5595   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5596   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5597   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5598   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5599 }
5600 
5601 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5602   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5603   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5604   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5605   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5606 }
5607 
5608 bool os::is_thread_cpu_time_supported() {
5609   return true;
5610 }
5611 
5612 // System loadavg support.  Returns -1 if load average cannot be obtained.
5613 // Linux doesn't yet have a (official) notion of processor sets,
5614 // so just return the system wide load average.
5615 int os::loadavg(double loadavg[], int nelem) {
5616   return ::getloadavg(loadavg, nelem);
5617 }
5618 
5619 void os::pause() {
5620   char filename[MAX_PATH];
5621   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5622     jio_snprintf(filename, MAX_PATH, "%s", PauseAtStartupFile);
5623   } else {
5624     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5625   }
5626 
5627   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5628   if (fd != -1) {
5629     struct stat buf;
5630     ::close(fd);
5631     while (::stat(filename, &buf) == 0) {
5632       (void)::poll(NULL, 0, 100);
5633     }
5634   } else {
5635     jio_fprintf(stderr,
5636                 "Could not open pause file '%s', continuing immediately.\n", filename);
5637   }
5638 }
5639 
5640 extern char** environ;
5641 
5642 // Run the specified command in a separate process. Return its exit value,
5643 // or -1 on failure (e.g. can't fork a new process).
5644 // Unlike system(), this function can be called from signal handler. It
5645 // doesn't block SIGINT et al.
5646 int os::fork_and_exec(char* cmd) {
5647   const char * argv[4] = {"sh", "-c", cmd, NULL};
5648 
5649   pid_t pid = fork();
5650 
5651   if (pid < 0) {
5652     // fork failed
5653     return -1;
5654 
5655   } else if (pid == 0) {
5656     // child process
5657 
5658     execve("/bin/sh", (char* const*)argv, environ);
5659 
5660     // execve failed
5661     _exit(-1);
5662 
5663   } else  {
5664     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5665     // care about the actual exit code, for now.
5666 
5667     int status;
5668 
5669     // Wait for the child process to exit.  This returns immediately if
5670     // the child has already exited. */
5671     while (waitpid(pid, &status, 0) < 0) {
5672       switch (errno) {
5673       case ECHILD: return 0;
5674       case EINTR: break;
5675       default: return -1;
5676       }
5677     }
5678 
5679     if (WIFEXITED(status)) {
5680       // The child exited normally; get its exit code.
5681       return WEXITSTATUS(status);
5682     } else if (WIFSIGNALED(status)) {
5683       // The child exited because of a signal
5684       // The best value to return is 0x80 + signal number,
5685       // because that is what all Unix shells do, and because
5686       // it allows callers to distinguish between process exit and
5687       // process death by signal.
5688       return 0x80 + WTERMSIG(status);
5689     } else {
5690       // Unknown exit code; pass it through
5691       return status;
5692     }
5693   }
5694 }
5695 
5696 // is_headless_jre()
5697 //
5698 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
5699 // in order to report if we are running in a headless jre
5700 //
5701 // Since JDK8 xawt/libmawt.so was moved into the same directory
5702 // as libawt.so, and renamed libawt_xawt.so
5703 //
5704 bool os::is_headless_jre() {
5705   struct stat statbuf;
5706   char buf[MAXPATHLEN];
5707   char libmawtpath[MAXPATHLEN];
5708   const char *xawtstr  = "/xawt/libmawt.so";
5709   const char *new_xawtstr = "/libawt_xawt.so";
5710   char *p;
5711 
5712   // Get path to libjvm.so
5713   os::jvm_path(buf, sizeof(buf));
5714 
5715   // Get rid of libjvm.so
5716   p = strrchr(buf, '/');
5717   if (p == NULL) {
5718     return false;
5719   } else {
5720     *p = '\0';
5721   }
5722 
5723   // Get rid of client or server
5724   p = strrchr(buf, '/');
5725   if (p == NULL) {
5726     return false;
5727   } else {
5728     *p = '\0';
5729   }
5730 
5731   // check xawt/libmawt.so
5732   strcpy(libmawtpath, buf);
5733   strcat(libmawtpath, xawtstr);
5734   if (::stat(libmawtpath, &statbuf) == 0) return false;
5735 
5736   // check libawt_xawt.so
5737   strcpy(libmawtpath, buf);
5738   strcat(libmawtpath, new_xawtstr);
5739   if (::stat(libmawtpath, &statbuf) == 0) return false;
5740 
5741   return true;
5742 }
5743 
5744 // Get the default path to the core file
5745 // Returns the length of the string
5746 int os::get_core_path(char* buffer, size_t bufferSize) {
5747   /*
5748    * Max length of /proc/sys/kernel/core_pattern is 128 characters.
5749    * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
5750    */
5751   const int core_pattern_len = 129;
5752   char core_pattern[core_pattern_len] = {0};
5753 
5754   int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
5755   if (core_pattern_file == -1) {
5756     return -1;
5757   }
5758 
5759   ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
5760   ::close(core_pattern_file);
5761   if (ret <= 0 || ret >= core_pattern_len || core_pattern[0] == '\n') {
5762     return -1;
5763   }
5764   if (core_pattern[ret-1] == '\n') {
5765     core_pattern[ret-1] = '\0';
5766   } else {
5767     core_pattern[ret] = '\0';
5768   }
5769 
5770   char *pid_pos = strstr(core_pattern, "%p");
5771   int written;
5772 
5773   if (core_pattern[0] == '/') {
5774     written = jio_snprintf(buffer, bufferSize, "%s", core_pattern);
5775   } else {
5776     char cwd[PATH_MAX];
5777 
5778     const char* p = get_current_directory(cwd, PATH_MAX);
5779     if (p == NULL) {
5780       return -1;
5781     }
5782 
5783     if (core_pattern[0] == '|') {
5784       written = jio_snprintf(buffer, bufferSize,
5785                              "\"%s\" (or dumping to %s/core.%d)",
5786                              &core_pattern[1], p, current_process_id());
5787     } else {
5788       written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
5789     }
5790   }
5791 
5792   if (written < 0) {
5793     return -1;
5794   }
5795 
5796   if (((size_t)written < bufferSize) && (pid_pos == NULL) && (core_pattern[0] != '|')) {
5797     int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
5798 
5799     if (core_uses_pid_file != -1) {
5800       char core_uses_pid = 0;
5801       ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
5802       ::close(core_uses_pid_file);
5803 
5804       if (core_uses_pid == '1') {
5805         jio_snprintf(buffer + written, bufferSize - written,
5806                                           ".%d", current_process_id());
5807       }
5808     }
5809   }
5810 
5811   return strlen(buffer);
5812 }
5813 
5814 bool os::start_debugging(char *buf, int buflen) {
5815   int len = (int)strlen(buf);
5816   char *p = &buf[len];
5817 
5818   jio_snprintf(p, buflen-len,
5819                "\n\n"
5820                "Do you want to debug the problem?\n\n"
5821                "To debug, run 'gdb /proc/%d/exe %d'; then switch to thread " UINTX_FORMAT " (" INTPTR_FORMAT ")\n"
5822                "Enter 'yes' to launch gdb automatically (PATH must include gdb)\n"
5823                "Otherwise, press RETURN to abort...",
5824                os::current_process_id(), os::current_process_id(),
5825                os::current_thread_id(), os::current_thread_id());
5826 
5827   bool yes = os::message_box("Unexpected Error", buf);
5828 
5829   if (yes) {
5830     // yes, user asked VM to launch debugger
5831     jio_snprintf(buf, sizeof(char)*buflen, "gdb /proc/%d/exe %d",
5832                  os::current_process_id(), os::current_process_id());
5833 
5834     os::fork_and_exec(buf);
5835     yes = false;
5836   }
5837   return yes;
5838 }
5839 
5840 
5841 // Java/Compiler thread:
5842 //
5843 //   Low memory addresses
5844 // P0 +------------------------+
5845 //    |                        |\  Java thread created by VM does not have glibc
5846 //    |    glibc guard page    | - guard page, attached Java thread usually has
5847 //    |                        |/  1 glibc guard page.
5848 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
5849 //    |                        |\
5850 //    |  HotSpot Guard Pages   | - red, yellow and reserved pages
5851 //    |                        |/
5852 //    +------------------------+ JavaThread::stack_reserved_zone_base()
5853 //    |                        |\
5854 //    |      Normal Stack      | -
5855 //    |                        |/
5856 // P2 +------------------------+ Thread::stack_base()
5857 //
5858 // Non-Java thread:
5859 //
5860 //   Low memory addresses
5861 // P0 +------------------------+
5862 //    |                        |\
5863 //    |  glibc guard page      | - usually 1 page
5864 //    |                        |/
5865 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
5866 //    |                        |\
5867 //    |      Normal Stack      | -
5868 //    |                        |/
5869 // P2 +------------------------+ Thread::stack_base()
5870 //
5871 // ** P1 (aka bottom) and size (P2 = P1 - size) are the address and stack size
5872 //    returned from pthread_attr_getstack().
5873 // ** Due to NPTL implementation error, linux takes the glibc guard page out
5874 //    of the stack size given in pthread_attr. We work around this for
5875 //    threads created by the VM. (We adapt bottom to be P1 and size accordingly.)
5876 //
5877 #ifndef ZERO
5878 static void current_stack_region(address * bottom, size_t * size) {
5879   if (os::is_primordial_thread()) {
5880     // primordial thread needs special handling because pthread_getattr_np()
5881     // may return bogus value.
5882     *bottom = os::Linux::initial_thread_stack_bottom();
5883     *size   = os::Linux::initial_thread_stack_size();
5884   } else {
5885     pthread_attr_t attr;
5886 
5887     int rslt = pthread_getattr_np(pthread_self(), &attr);
5888 
5889     // JVM needs to know exact stack location, abort if it fails
5890     if (rslt != 0) {
5891       if (rslt == ENOMEM) {
5892         vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "pthread_getattr_np");
5893       } else {
5894         fatal("pthread_getattr_np failed with error = %d", rslt);
5895       }
5896     }
5897 
5898     if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) {
5899       fatal("Cannot locate current stack attributes!");
5900     }
5901 
5902     // Work around NPTL stack guard error.
5903     size_t guard_size = 0;
5904     rslt = pthread_attr_getguardsize(&attr, &guard_size);
5905     if (rslt != 0) {
5906       fatal("pthread_attr_getguardsize failed with error = %d", rslt);
5907     }
5908     *bottom += guard_size;
5909     *size   -= guard_size;
5910 
5911     pthread_attr_destroy(&attr);
5912 
5913   }
5914   assert(os::current_stack_pointer() >= *bottom &&
5915          os::current_stack_pointer() < *bottom + *size, "just checking");
5916 }
5917 
5918 address os::current_stack_base() {
5919   address bottom;
5920   size_t size;
5921   current_stack_region(&bottom, &size);
5922   return (bottom + size);
5923 }
5924 
5925 size_t os::current_stack_size() {
5926   // This stack size includes the usable stack and HotSpot guard pages
5927   // (for the threads that have Hotspot guard pages).
5928   address bottom;
5929   size_t size;
5930   current_stack_region(&bottom, &size);
5931   return size;
5932 }
5933 #endif
5934 
5935 static inline struct timespec get_mtime(const char* filename) {
5936   struct stat st;
5937   int ret = os::stat(filename, &st);
5938   assert(ret == 0, "failed to stat() file '%s': %s", filename, strerror(errno));
5939   return st.st_mtim;
5940 }
5941 
5942 int os::compare_file_modified_times(const char* file1, const char* file2) {
5943   struct timespec filetime1 = get_mtime(file1);
5944   struct timespec filetime2 = get_mtime(file2);
5945   int diff = filetime1.tv_sec - filetime2.tv_sec;
5946   if (diff == 0) {
5947     return filetime1.tv_nsec - filetime2.tv_nsec;
5948   }
5949   return diff;
5950 }
5951 
5952 /////////////// Unit tests ///////////////
5953 
5954 #ifndef PRODUCT
5955 
5956 #define test_log(...)              \
5957   do {                             \
5958     if (VerboseInternalVMTests) {  \
5959       tty->print_cr(__VA_ARGS__);  \
5960       tty->flush();                \
5961     }                              \
5962   } while (false)
5963 
5964 class TestReserveMemorySpecial : AllStatic {
5965  public:
5966   static void small_page_write(void* addr, size_t size) {
5967     size_t page_size = os::vm_page_size();
5968 
5969     char* end = (char*)addr + size;
5970     for (char* p = (char*)addr; p < end; p += page_size) {
5971       *p = 1;
5972     }
5973   }
5974 
5975   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
5976     if (!UseHugeTLBFS) {
5977       return;
5978     }
5979 
5980     test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
5981 
5982     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
5983 
5984     if (addr != NULL) {
5985       small_page_write(addr, size);
5986 
5987       os::Linux::release_memory_special_huge_tlbfs(addr, size);
5988     }
5989   }
5990 
5991   static void test_reserve_memory_special_huge_tlbfs_only() {
5992     if (!UseHugeTLBFS) {
5993       return;
5994     }
5995 
5996     size_t lp = os::large_page_size();
5997 
5998     for (size_t size = lp; size <= lp * 10; size += lp) {
5999       test_reserve_memory_special_huge_tlbfs_only(size);
6000     }
6001   }
6002 
6003   static void test_reserve_memory_special_huge_tlbfs_mixed() {
6004     size_t lp = os::large_page_size();
6005     size_t ag = os::vm_allocation_granularity();
6006 
6007     // sizes to test
6008     const size_t sizes[] = {
6009       lp, lp + ag, lp + lp / 2, lp * 2,
6010       lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
6011       lp * 10, lp * 10 + lp / 2
6012     };
6013     const int num_sizes = sizeof(sizes) / sizeof(size_t);
6014 
6015     // For each size/alignment combination, we test three scenarios:
6016     // 1) with req_addr == NULL
6017     // 2) with a non-null req_addr at which we expect to successfully allocate
6018     // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
6019     //    expect the allocation to either fail or to ignore req_addr
6020 
6021     // Pre-allocate two areas; they shall be as large as the largest allocation
6022     //  and aligned to the largest alignment we will be testing.
6023     const size_t mapping_size = sizes[num_sizes - 1] * 2;
6024     char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
6025       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6026       -1, 0);
6027     assert(mapping1 != MAP_FAILED, "should work");
6028 
6029     char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
6030       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6031       -1, 0);
6032     assert(mapping2 != MAP_FAILED, "should work");
6033 
6034     // Unmap the first mapping, but leave the second mapping intact: the first
6035     // mapping will serve as a value for a "good" req_addr (case 2). The second
6036     // mapping, still intact, as "bad" req_addr (case 3).
6037     ::munmap(mapping1, mapping_size);
6038 
6039     // Case 1
6040     test_log("%s, req_addr NULL:", __FUNCTION__);
6041     test_log("size            align           result");
6042 
6043     for (int i = 0; i < num_sizes; i++) {
6044       const size_t size = sizes[i];
6045       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6046         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6047         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " ->  " PTR_FORMAT " %s",
6048                  size, alignment, p2i(p), (p != NULL ? "" : "(failed)"));
6049         if (p != NULL) {
6050           assert(is_aligned(p, alignment), "must be");
6051           small_page_write(p, size);
6052           os::Linux::release_memory_special_huge_tlbfs(p, size);
6053         }
6054       }
6055     }
6056 
6057     // Case 2
6058     test_log("%s, req_addr non-NULL:", __FUNCTION__);
6059     test_log("size            align           req_addr         result");
6060 
6061     for (int i = 0; i < num_sizes; i++) {
6062       const size_t size = sizes[i];
6063       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6064         char* const req_addr = align_up(mapping1, alignment);
6065         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6066         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6067                  size, alignment, p2i(req_addr), p2i(p),
6068                  ((p != NULL ? (p == req_addr ? "(exact match)" : "") : "(failed)")));
6069         if (p != NULL) {
6070           assert(p == req_addr, "must be");
6071           small_page_write(p, size);
6072           os::Linux::release_memory_special_huge_tlbfs(p, size);
6073         }
6074       }
6075     }
6076 
6077     // Case 3
6078     test_log("%s, req_addr non-NULL with preexisting mapping:", __FUNCTION__);
6079     test_log("size            align           req_addr         result");
6080 
6081     for (int i = 0; i < num_sizes; i++) {
6082       const size_t size = sizes[i];
6083       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6084         char* const req_addr = align_up(mapping2, alignment);
6085         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6086         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6087                  size, alignment, p2i(req_addr), p2i(p), ((p != NULL ? "" : "(failed)")));
6088         // as the area around req_addr contains already existing mappings, the API should always
6089         // return NULL (as per contract, it cannot return another address)
6090         assert(p == NULL, "must be");
6091       }
6092     }
6093 
6094     ::munmap(mapping2, mapping_size);
6095 
6096   }
6097 
6098   static void test_reserve_memory_special_huge_tlbfs() {
6099     if (!UseHugeTLBFS) {
6100       return;
6101     }
6102 
6103     test_reserve_memory_special_huge_tlbfs_only();
6104     test_reserve_memory_special_huge_tlbfs_mixed();
6105   }
6106 
6107   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6108     if (!UseSHM) {
6109       return;
6110     }
6111 
6112     test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6113 
6114     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6115 
6116     if (addr != NULL) {
6117       assert(is_aligned(addr, alignment), "Check");
6118       assert(is_aligned(addr, os::large_page_size()), "Check");
6119 
6120       small_page_write(addr, size);
6121 
6122       os::Linux::release_memory_special_shm(addr, size);
6123     }
6124   }
6125 
6126   static void test_reserve_memory_special_shm() {
6127     size_t lp = os::large_page_size();
6128     size_t ag = os::vm_allocation_granularity();
6129 
6130     for (size_t size = ag; size < lp * 3; size += ag) {
6131       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6132         test_reserve_memory_special_shm(size, alignment);
6133       }
6134     }
6135   }
6136 
6137   static void test() {
6138     test_reserve_memory_special_huge_tlbfs();
6139     test_reserve_memory_special_shm();
6140   }
6141 };
6142 
6143 void TestReserveMemorySpecial_test() {
6144   TestReserveMemorySpecial::test();
6145 }
6146 
6147 #endif