1 /*
   2  * Copyright (c) 2014, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/g1/g1Allocator.inline.hpp"
  27 #include "gc/g1/g1AllocRegion.inline.hpp"
  28 #include "gc/g1/g1EvacStats.inline.hpp"
  29 #include "gc/g1/g1CollectedHeap.inline.hpp"
  30 #include "gc/g1/g1CollectorPolicy.hpp"
  31 #include "gc/g1/g1MarkSweep.hpp"
  32 #include "gc/g1/heapRegion.inline.hpp"
  33 #include "gc/g1/heapRegionSet.inline.hpp"
  34 
  35 G1DefaultAllocator::G1DefaultAllocator(G1CollectedHeap* heap) :
  36   G1Allocator(heap),
  37   _retained_old_gc_alloc_region(NULL),
  38   _survivor_gc_alloc_region(heap->alloc_buffer_stats(InCSetState::Young)),
  39   _old_gc_alloc_region(heap->alloc_buffer_stats(InCSetState::Old)) {
  40 }
  41 
  42 void G1DefaultAllocator::init_mutator_alloc_region() {
  43   assert(_mutator_alloc_region.get() == NULL, "pre-condition");
  44   _mutator_alloc_region.init();
  45 }
  46 
  47 void G1DefaultAllocator::release_mutator_alloc_region() {
  48   _mutator_alloc_region.release();
  49   assert(_mutator_alloc_region.get() == NULL, "post-condition");
  50 }
  51 
  52 void G1Allocator::reuse_retained_old_region(EvacuationInfo& evacuation_info,
  53                                             OldGCAllocRegion* old,
  54                                             HeapRegion** retained_old) {
  55   HeapRegion* retained_region = *retained_old;
  56   *retained_old = NULL;
  57   assert(retained_region == NULL || !retained_region->is_archive(),
  58          "Archive region should not be alloc region (index %u)", retained_region->hrm_index());
  59 
  60   // We will discard the current GC alloc region if:
  61   // a) it's in the collection set (it can happen!),
  62   // b) it's already full (no point in using it),
  63   // c) it's empty (this means that it was emptied during
  64   // a cleanup and it should be on the free list now), or
  65   // d) it's humongous (this means that it was emptied
  66   // during a cleanup and was added to the free list, but
  67   // has been subsequently used to allocate a humongous
  68   // object that may be less than the region size).
  69   if (retained_region != NULL &&
  70       !retained_region->in_collection_set() &&
  71       !(retained_region->top() == retained_region->end()) &&
  72       !retained_region->is_empty() &&
  73       !retained_region->is_humongous()) {
  74     retained_region->record_timestamp();
  75     // The retained region was added to the old region set when it was
  76     // retired. We have to remove it now, since we don't allow regions
  77     // we allocate to in the region sets. We'll re-add it later, when
  78     // it's retired again.
  79     _g1h->old_set_remove(retained_region);
  80     bool during_im = _g1h->collector_state()->during_initial_mark_pause();
  81     retained_region->note_start_of_copying(during_im);
  82     old->set(retained_region);
  83     _g1h->hr_printer()->reuse(retained_region);
  84     evacuation_info.set_alloc_regions_used_before(retained_region->used());
  85   }
  86 }
  87 
  88 void G1DefaultAllocator::init_gc_alloc_regions(EvacuationInfo& evacuation_info) {
  89   assert_at_safepoint(true /* should_be_vm_thread */);
  90 
  91   G1Allocator::init_gc_alloc_regions(evacuation_info);
  92 
  93   _survivor_gc_alloc_region.init();
  94   _old_gc_alloc_region.init();
  95   reuse_retained_old_region(evacuation_info,
  96                             &_old_gc_alloc_region,
  97                             &_retained_old_gc_alloc_region);
  98 }
  99 
 100 void G1DefaultAllocator::release_gc_alloc_regions(EvacuationInfo& evacuation_info) {
 101   AllocationContext_t context = AllocationContext::current();
 102   evacuation_info.set_allocation_regions(survivor_gc_alloc_region(context)->count() +
 103                                          old_gc_alloc_region(context)->count());
 104   survivor_gc_alloc_region(context)->release();
 105   // If we have an old GC alloc region to release, we'll save it in
 106   // _retained_old_gc_alloc_region. If we don't
 107   // _retained_old_gc_alloc_region will become NULL. This is what we
 108   // want either way so no reason to check explicitly for either
 109   // condition.
 110   _retained_old_gc_alloc_region = old_gc_alloc_region(context)->release();
 111   if (_retained_old_gc_alloc_region != NULL) {
 112     _retained_old_gc_alloc_region->record_retained_region();
 113   }
 114 }
 115 
 116 void G1DefaultAllocator::abandon_gc_alloc_regions() {
 117   assert(survivor_gc_alloc_region(AllocationContext::current())->get() == NULL, "pre-condition");
 118   assert(old_gc_alloc_region(AllocationContext::current())->get() == NULL, "pre-condition");
 119   _retained_old_gc_alloc_region = NULL;
 120 }
 121 
 122 G1PLAB::G1PLAB(size_t gclab_word_size) :
 123   PLAB(gclab_word_size), _retired(true) { }
 124 
 125 size_t G1Allocator::unsafe_max_tlab_alloc(AllocationContext_t context) {
 126   // Return the remaining space in the cur alloc region, but not less than
 127   // the min TLAB size.
 128 
 129   // Also, this value can be at most the humongous object threshold,
 130   // since we can't allow tlabs to grow big enough to accommodate
 131   // humongous objects.
 132 
 133   HeapRegion* hr = mutator_alloc_region(context)->get();
 134   size_t max_tlab = _g1h->max_tlab_size() * wordSize;
 135   if (hr == NULL) {
 136     return max_tlab;
 137   } else {
 138     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab);
 139   }
 140 }
 141 
 142 HeapWord* G1Allocator::par_allocate_during_gc(InCSetState dest,
 143                                               size_t word_size,
 144                                               AllocationContext_t context) {
 145   size_t temp = 0;
 146   HeapWord* result = par_allocate_during_gc(dest, word_size, word_size, &temp, context);
 147   assert(result == NULL || temp == word_size,
 148          "Requested " SIZE_FORMAT " words, but got " SIZE_FORMAT " at " PTR_FORMAT,
 149          word_size, temp, p2i(result));
 150   return result;
 151 }
 152 
 153 HeapWord* G1Allocator::par_allocate_during_gc(InCSetState dest,
 154                                               size_t min_word_size,
 155                                               size_t desired_word_size,
 156                                               size_t* actual_word_size,
 157                                               AllocationContext_t context) {
 158   switch (dest.value()) {
 159     case InCSetState::Young:
 160       return survivor_attempt_allocation(min_word_size, desired_word_size, actual_word_size, context);
 161     case InCSetState::Old:
 162       return old_attempt_allocation(min_word_size, desired_word_size, actual_word_size, context);
 163     default:
 164       ShouldNotReachHere();
 165       return NULL; // Keep some compilers happy
 166   }
 167 }
 168 
 169 bool G1Allocator::survivor_is_full(AllocationContext_t context) const {
 170   return _survivor_is_full;
 171 }
 172 
 173 bool G1Allocator::old_is_full(AllocationContext_t context) const {
 174   return _old_is_full;
 175 }
 176 
 177 void G1Allocator::set_survivor_full(AllocationContext_t context) {
 178   _survivor_is_full = true;
 179 }
 180 
 181 void G1Allocator::set_old_full(AllocationContext_t context) {
 182   _old_is_full = true;
 183 }
 184 
 185 HeapWord* G1Allocator::survivor_attempt_allocation(size_t min_word_size,
 186                                                    size_t desired_word_size,
 187                                                    size_t* actual_word_size,
 188                                                    AllocationContext_t context) {
 189   assert(!_g1h->is_humongous(desired_word_size),
 190          "we should not be seeing humongous-size allocations in this path");
 191 
 192   HeapWord* result = survivor_gc_alloc_region(context)->attempt_allocation(min_word_size,
 193                                                                            desired_word_size,
 194                                                                            actual_word_size,
 195                                                                            false /* bot_updates */);
 196   if (result == NULL && !survivor_is_full(context)) {
 197     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
 198     result = survivor_gc_alloc_region(context)->attempt_allocation_locked(min_word_size,
 199                                                                           desired_word_size,
 200                                                                           actual_word_size,
 201                                                                           false /* bot_updates */);
 202     if (result == NULL) {
 203       set_survivor_full(context);
 204     }
 205   }
 206   if (result != NULL) {
 207     _g1h->dirty_young_block(result, *actual_word_size);
 208   }
 209   return result;
 210 }
 211 
 212 HeapWord* G1Allocator::old_attempt_allocation(size_t min_word_size,
 213                                               size_t desired_word_size,
 214                                               size_t* actual_word_size,
 215                                               AllocationContext_t context) {
 216   assert(!_g1h->is_humongous(desired_word_size),
 217          "we should not be seeing humongous-size allocations in this path");
 218 
 219   HeapWord* result = old_gc_alloc_region(context)->attempt_allocation(min_word_size,
 220                                                                       desired_word_size,
 221                                                                       actual_word_size,
 222                                                                       true /* bot_updates */);
 223   if (result == NULL && !old_is_full(context)) {
 224     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
 225     result = old_gc_alloc_region(context)->attempt_allocation_locked(min_word_size,
 226                                                                      desired_word_size,
 227                                                                      actual_word_size,
 228                                                                      true /* bot_updates */);
 229     if (result == NULL) {
 230       set_old_full(context);
 231     }
 232   }
 233   return result;
 234 }
 235 
 236 void G1Allocator::init_gc_alloc_regions(EvacuationInfo& evacuation_info) {
 237   _survivor_is_full = false;
 238   _old_is_full = false;
 239 }
 240 
 241 G1PLABAllocator::G1PLABAllocator(G1Allocator* allocator) :
 242   _g1h(G1CollectedHeap::heap()),
 243   _allocator(allocator),
 244   _survivor_alignment_bytes(calc_survivor_alignment_bytes()) {
 245   for (size_t i = 0; i < ARRAY_SIZE(_direct_allocated); i++) {
 246     _direct_allocated[i] = 0;
 247   }
 248 }
 249 
 250 bool G1PLABAllocator::may_throw_away_buffer(size_t const allocation_word_sz, size_t const buffer_size) const {
 251   return (allocation_word_sz * 100 < buffer_size * ParallelGCBufferWastePct);
 252 }
 253 
 254 HeapWord* G1PLABAllocator::allocate_direct_or_new_plab(InCSetState dest,
 255                                                        size_t word_sz,
 256                                                        AllocationContext_t context,
 257                                                        bool* plab_refill_failed) {
 258   size_t plab_word_size = G1CollectedHeap::heap()->desired_plab_sz(dest);
 259   size_t required_in_plab = PLAB::size_required_for_allocation(word_sz);
 260 
 261   // Only get a new PLAB if the allocation fits and it would not waste more than
 262   // ParallelGCBufferWastePct in the existing buffer.
 263   if ((required_in_plab <= plab_word_size) &&
 264     may_throw_away_buffer(required_in_plab, plab_word_size)) {
 265 
 266     G1PLAB* alloc_buf = alloc_buffer(dest, context);
 267     alloc_buf->retire();
 268 
 269     size_t actual_plab_size = 0;
 270     HeapWord* buf = _allocator->par_allocate_during_gc(dest,
 271                                                        required_in_plab,
 272                                                        plab_word_size,
 273                                                        &actual_plab_size,
 274                                                        context);
 275 
 276     assert(buf == NULL || ((actual_plab_size >= required_in_plab) && (actual_plab_size <= plab_word_size)),
 277            "Requested at minimum " SIZE_FORMAT ", desired " SIZE_FORMAT " words, but got " SIZE_FORMAT " at " PTR_FORMAT,
 278            required_in_plab, plab_word_size, actual_plab_size, p2i(buf));
 279 
 280     if (buf != NULL) {
 281       alloc_buf->set_buf(buf, actual_plab_size);
 282 
 283       HeapWord* const obj = alloc_buf->allocate(word_sz);
 284       assert(obj != NULL, "PLAB should have been big enough, tried to allocate "
 285                           SIZE_FORMAT " requiring " SIZE_FORMAT " PLAB size " SIZE_FORMAT,
 286                           word_sz, required_in_plab, plab_word_size);
 287       return obj;
 288     }
 289     // Otherwise.
 290     *plab_refill_failed = true;
 291   }
 292   // Try direct allocation.
 293   HeapWord* result = _allocator->par_allocate_during_gc(dest, word_sz, context);
 294   if (result != NULL) {
 295     _direct_allocated[dest.value()] += word_sz;
 296   }
 297   return result;
 298 }
 299 
 300 void G1PLABAllocator::undo_allocation(InCSetState dest, HeapWord* obj, size_t word_sz, AllocationContext_t context) {
 301   alloc_buffer(dest, context)->undo_allocation(obj, word_sz);
 302 }
 303 
 304 G1DefaultPLABAllocator::G1DefaultPLABAllocator(G1Allocator* allocator) :
 305   G1PLABAllocator(allocator),
 306   _surviving_alloc_buffer(_g1h->desired_plab_sz(InCSetState::Young)),
 307   _tenured_alloc_buffer(_g1h->desired_plab_sz(InCSetState::Old)) {
 308   for (uint state = 0; state < InCSetState::Num; state++) {
 309     _alloc_buffers[state] = NULL;
 310   }
 311   _alloc_buffers[InCSetState::Young] = &_surviving_alloc_buffer;
 312   _alloc_buffers[InCSetState::Old]  = &_tenured_alloc_buffer;
 313 }
 314 
 315 void G1DefaultPLABAllocator::flush_and_retire_stats() {
 316   for (uint state = 0; state < InCSetState::Num; state++) {
 317     G1PLAB* const buf = _alloc_buffers[state];
 318     if (buf != NULL) {
 319       G1EvacStats* stats = _g1h->alloc_buffer_stats(state);
 320       buf->flush_and_retire_stats(stats);
 321       stats->add_direct_allocated(_direct_allocated[state]);
 322       _direct_allocated[state] = 0;
 323     }
 324   }
 325 }
 326 
 327 void G1DefaultPLABAllocator::waste(size_t& wasted, size_t& undo_wasted) {
 328   wasted = 0;
 329   undo_wasted = 0;
 330   for (uint state = 0; state < InCSetState::Num; state++) {
 331     G1PLAB * const buf = _alloc_buffers[state];
 332     if (buf != NULL) {
 333       wasted += buf->waste();
 334       undo_wasted += buf->undo_waste();
 335     }
 336   }
 337 }
 338 
 339 G1ArchiveAllocator* G1ArchiveAllocator::create_allocator(G1CollectedHeap* g1h) {
 340   // Create the archive allocator, and also enable archive object checking
 341   // in mark-sweep, since we will be creating archive regions.
 342   G1ArchiveAllocator* result =  new G1ArchiveAllocator(g1h);
 343   G1MarkSweep::enable_archive_object_check();
 344   return result;
 345 }
 346 
 347 bool G1ArchiveAllocator::alloc_new_region() {
 348   // Allocate the highest free region in the reserved heap,
 349   // and add it to our list of allocated regions. It is marked
 350   // archive and added to the old set.
 351   HeapRegion* hr = _g1h->alloc_highest_free_region();
 352   if (hr == NULL) {
 353     return false;
 354   }
 355   assert(hr->is_empty(), "expected empty region (index %u)", hr->hrm_index());
 356   hr->set_archive();
 357   _g1h->old_set_add(hr);
 358   _g1h->hr_printer()->alloc(hr, G1HRPrinter::Archive);
 359   _allocated_regions.append(hr);
 360   _allocation_region = hr;
 361 
 362   // Set up _bottom and _max to begin allocating in the lowest
 363   // min_region_size'd chunk of the allocated G1 region.
 364   _bottom = hr->bottom();
 365   _max = _bottom + HeapRegion::min_region_size_in_words();
 366 
 367   // Tell mark-sweep that objects in this region are not to be marked.
 368   G1MarkSweep::set_range_archive(MemRegion(_bottom, HeapRegion::GrainWords), true);
 369 
 370   // Since we've modified the old set, call update_sizes.
 371   _g1h->g1mm()->update_sizes();
 372   return true;
 373 }
 374 
 375 HeapWord* G1ArchiveAllocator::archive_mem_allocate(size_t word_size) {
 376   assert(word_size != 0, "size must not be zero");
 377   if (_allocation_region == NULL) {
 378     if (!alloc_new_region()) {
 379       return NULL;
 380     }
 381   }
 382   HeapWord* old_top = _allocation_region->top();
 383   assert(_bottom >= _allocation_region->bottom(),
 384          "inconsistent allocation state: " PTR_FORMAT " < " PTR_FORMAT,
 385          p2i(_bottom), p2i(_allocation_region->bottom()));
 386   assert(_max <= _allocation_region->end(),
 387          "inconsistent allocation state: " PTR_FORMAT " > " PTR_FORMAT,
 388          p2i(_max), p2i(_allocation_region->end()));
 389   assert(_bottom <= old_top && old_top <= _max,
 390          "inconsistent allocation state: expected "
 391          PTR_FORMAT " <= " PTR_FORMAT " <= " PTR_FORMAT,
 392          p2i(_bottom), p2i(old_top), p2i(_max));
 393 
 394   // Allocate the next word_size words in the current allocation chunk.
 395   // If allocation would cross the _max boundary, insert a filler and begin
 396   // at the base of the next min_region_size'd chunk. Also advance to the next
 397   // chunk if we don't yet cross the boundary, but the remainder would be too
 398   // small to fill.
 399   HeapWord* new_top = old_top + word_size;
 400   size_t remainder = pointer_delta(_max, new_top);
 401   if ((new_top > _max) ||
 402       ((new_top < _max) && (remainder < CollectedHeap::min_fill_size()))) {
 403     if (old_top != _max) {
 404       size_t fill_size = pointer_delta(_max, old_top);
 405       CollectedHeap::fill_with_object(old_top, fill_size);
 406       _summary_bytes_used += fill_size * HeapWordSize;
 407     }
 408     _allocation_region->set_top(_max);
 409     old_top = _bottom = _max;
 410 
 411     // Check if we've just used up the last min_region_size'd chunk
 412     // in the current region, and if so, allocate a new one.
 413     if (_bottom != _allocation_region->end()) {
 414       _max = _bottom + HeapRegion::min_region_size_in_words();
 415     } else {
 416       if (!alloc_new_region()) {
 417         return NULL;
 418       }
 419       old_top = _allocation_region->bottom();
 420     }
 421   }
 422   _allocation_region->set_top(old_top + word_size);
 423   _summary_bytes_used += word_size * HeapWordSize;
 424 
 425   return old_top;
 426 }
 427 
 428 void G1ArchiveAllocator::complete_archive(GrowableArray<MemRegion>* ranges,
 429                                           size_t end_alignment_in_bytes) {
 430   assert((end_alignment_in_bytes >> LogHeapWordSize) < HeapRegion::min_region_size_in_words(),
 431          "alignment " SIZE_FORMAT " too large", end_alignment_in_bytes);
 432   assert(is_size_aligned(end_alignment_in_bytes, HeapWordSize),
 433          "alignment " SIZE_FORMAT " is not HeapWord (%u) aligned", end_alignment_in_bytes, HeapWordSize);
 434 
 435   // If we've allocated nothing, simply return.
 436   if (_allocation_region == NULL) {
 437     return;
 438   }
 439 
 440   // If an end alignment was requested, insert filler objects.
 441   if (end_alignment_in_bytes != 0) {
 442     HeapWord* currtop = _allocation_region->top();
 443     HeapWord* newtop = (HeapWord*)align_pointer_up(currtop, end_alignment_in_bytes);
 444     size_t fill_size = pointer_delta(newtop, currtop);
 445     if (fill_size != 0) {
 446       if (fill_size < CollectedHeap::min_fill_size()) {
 447         // If the required fill is smaller than we can represent,
 448         // bump up to the next aligned address. We know we won't exceed the current
 449         // region boundary because the max supported alignment is smaller than the min
 450         // region size, and because the allocation code never leaves space smaller than
 451         // the min_fill_size at the top of the current allocation region.
 452         newtop = (HeapWord*)align_pointer_up(currtop + CollectedHeap::min_fill_size(),
 453                                              end_alignment_in_bytes);
 454         fill_size = pointer_delta(newtop, currtop);
 455       }
 456       HeapWord* fill = archive_mem_allocate(fill_size);
 457       CollectedHeap::fill_with_objects(fill, fill_size);
 458     }
 459   }
 460 
 461   // Loop through the allocated regions, and create MemRegions summarizing
 462   // the allocated address range, combining contiguous ranges. Add the
 463   // MemRegions to the GrowableArray provided by the caller.
 464   int index = _allocated_regions.length() - 1;
 465   assert(_allocated_regions.at(index) == _allocation_region,
 466          "expected region %u at end of array, found %u",
 467          _allocation_region->hrm_index(), _allocated_regions.at(index)->hrm_index());
 468   HeapWord* base_address = _allocation_region->bottom();
 469   HeapWord* top = base_address;
 470 
 471   while (index >= 0) {
 472     HeapRegion* next = _allocated_regions.at(index);
 473     HeapWord* new_base = next->bottom();
 474     HeapWord* new_top = next->top();
 475     if (new_base != top) {
 476       ranges->append(MemRegion(base_address, pointer_delta(top, base_address)));
 477       base_address = new_base;
 478     }
 479     top = new_top;
 480     index = index - 1;
 481   }
 482 
 483   assert(top != base_address, "zero-sized range, address " PTR_FORMAT, p2i(base_address));
 484   ranges->append(MemRegion(base_address, pointer_delta(top, base_address)));
 485   _allocated_regions.clear();
 486   _allocation_region = NULL;
 487 };