1 /*
   2  * Copyright (c) 2014, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2015 SAP AG. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #ifndef CC_INTERP
  28 #include "asm/macroAssembler.inline.hpp"
  29 #include "interpreter/bytecodeHistogram.hpp"
  30 #include "interpreter/interpreter.hpp"
  31 #include "interpreter/interpreterGenerator.hpp"
  32 #include "interpreter/interpreterRuntime.hpp"
  33 #include "interpreter/interp_masm.hpp"
  34 #include "interpreter/templateTable.hpp"
  35 #include "oops/arrayOop.hpp"
  36 #include "oops/methodData.hpp"
  37 #include "oops/method.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "prims/jvmtiExport.hpp"
  40 #include "prims/jvmtiThreadState.hpp"
  41 #include "runtime/arguments.hpp"
  42 #include "runtime/deoptimization.hpp"
  43 #include "runtime/frame.inline.hpp"
  44 #include "runtime/sharedRuntime.hpp"
  45 #include "runtime/stubRoutines.hpp"
  46 #include "runtime/synchronizer.hpp"
  47 #include "runtime/timer.hpp"
  48 #include "runtime/vframeArray.hpp"
  49 #include "utilities/debug.hpp"
  50 #include "utilities/macros.hpp"
  51 
  52 #undef __
  53 #define __ _masm->
  54 
  55 #ifdef PRODUCT
  56 #define BLOCK_COMMENT(str) /* nothing */
  57 #else
  58 #define BLOCK_COMMENT(str) __ block_comment(str)
  59 #endif
  60 
  61 #define BIND(label)        __ bind(label); BLOCK_COMMENT(#label ":")
  62 
  63 //-----------------------------------------------------------------------------
  64 
  65 // Actually we should never reach here since we do stack overflow checks before pushing any frame.
  66 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
  67   address entry = __ pc();
  68   __ unimplemented("generate_StackOverflowError_handler");
  69   return entry;
  70 }
  71 
  72 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(const char* name) {
  73   address entry = __ pc();
  74   __ empty_expression_stack();
  75   __ load_const_optimized(R4_ARG2, (address) name);
  76   // Index is in R17_tos.
  77   __ mr(R5_ARG3, R17_tos);
  78   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException));
  79   return entry;
  80 }
  81 
  82 #if 0
  83 // Call special ClassCastException constructor taking object to cast
  84 // and target class as arguments.
  85 address TemplateInterpreterGenerator::generate_ClassCastException_verbose_handler() {
  86   address entry = __ pc();
  87 
  88   // Expression stack must be empty before entering the VM if an
  89   // exception happened.
  90   __ empty_expression_stack();
  91 
  92   // Thread will be loaded to R3_ARG1.
  93   // Target class oop is in register R5_ARG3 by convention!
  94   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ClassCastException_verbose), R17_tos, R5_ARG3);
  95   // Above call must not return here since exception pending.
  96   DEBUG_ONLY(__ should_not_reach_here();)
  97   return entry;
  98 }
  99 #endif
 100 
 101 address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
 102   address entry = __ pc();
 103   // Expression stack must be empty before entering the VM if an
 104   // exception happened.
 105   __ empty_expression_stack();
 106 
 107   // Load exception object.
 108   // Thread will be loaded to R3_ARG1.
 109   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ClassCastException), R17_tos);
 110 #ifdef ASSERT
 111   // Above call must not return here since exception pending.
 112   __ should_not_reach_here();
 113 #endif
 114   return entry;
 115 }
 116 
 117 address TemplateInterpreterGenerator::generate_exception_handler_common(const char* name, const char* message, bool pass_oop) {
 118   address entry = __ pc();
 119   //__ untested("generate_exception_handler_common");
 120   Register Rexception = R17_tos;
 121 
 122   // Expression stack must be empty before entering the VM if an exception happened.
 123   __ empty_expression_stack();
 124 
 125   __ load_const_optimized(R4_ARG2, (address) name, R11_scratch1);
 126   if (pass_oop) {
 127     __ mr(R5_ARG3, Rexception);
 128     __ call_VM(Rexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception), false);
 129   } else {
 130     __ load_const_optimized(R5_ARG3, (address) message, R11_scratch1);
 131     __ call_VM(Rexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), false);
 132   }
 133 
 134   // Throw exception.
 135   __ mr(R3_ARG1, Rexception);
 136   __ load_const_optimized(R11_scratch1, Interpreter::throw_exception_entry(), R12_scratch2);
 137   __ mtctr(R11_scratch1);
 138   __ bctr();
 139 
 140   return entry;
 141 }
 142 
 143 address TemplateInterpreterGenerator::generate_continuation_for(TosState state) {
 144   address entry = __ pc();
 145   __ unimplemented("generate_continuation_for");
 146   return entry;
 147 }
 148 
 149 // This entry is returned to when a call returns to the interpreter.
 150 // When we arrive here, we expect that the callee stack frame is already popped.
 151 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step, size_t index_size) {
 152   address entry = __ pc();
 153 
 154   // Move the value out of the return register back to the TOS cache of current frame.
 155   switch (state) {
 156     case ltos:
 157     case btos:
 158     case ctos:
 159     case stos:
 160     case atos:
 161     case itos: __ mr(R17_tos, R3_RET); break;   // RET -> TOS cache
 162     case ftos:
 163     case dtos: __ fmr(F15_ftos, F1_RET); break; // TOS cache -> GR_FRET
 164     case vtos: break;                           // Nothing to do, this was a void return.
 165     default  : ShouldNotReachHere();
 166   }
 167 
 168   __ restore_interpreter_state(R11_scratch1); // Sets R11_scratch1 = fp.
 169   __ ld(R12_scratch2, _ijava_state_neg(top_frame_sp), R11_scratch1);
 170   __ resize_frame_absolute(R12_scratch2, R11_scratch1, R0);
 171 
 172   // Compiled code destroys templateTableBase, reload.
 173   __ load_const_optimized(R25_templateTableBase, (address)Interpreter::dispatch_table((TosState)0), R12_scratch2);
 174 
 175   if (state == atos) {
 176     __ profile_return_type(R3_RET, R11_scratch1, R12_scratch2);
 177   }
 178 
 179   const Register cache = R11_scratch1;
 180   const Register size  = R12_scratch2;
 181   __ get_cache_and_index_at_bcp(cache, 1, index_size);
 182 
 183   // Get least significant byte of 64 bit value:
 184 #if defined(VM_LITTLE_ENDIAN)
 185   __ lbz(size, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset()), cache);
 186 #else
 187   __ lbz(size, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset()) + 7, cache);
 188 #endif
 189   __ sldi(size, size, Interpreter::logStackElementSize);
 190   __ add(R15_esp, R15_esp, size);
 191   __ dispatch_next(state, step);
 192   return entry;
 193 }
 194 
 195 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, int step) {
 196   address entry = __ pc();
 197   // If state != vtos, we're returning from a native method, which put it's result
 198   // into the result register. So move the value out of the return register back
 199   // to the TOS cache of current frame.
 200 
 201   switch (state) {
 202     case ltos:
 203     case btos:
 204     case ctos:
 205     case stos:
 206     case atos:
 207     case itos: __ mr(R17_tos, R3_RET); break;   // GR_RET -> TOS cache
 208     case ftos:
 209     case dtos: __ fmr(F15_ftos, F1_RET); break; // TOS cache -> GR_FRET
 210     case vtos: break;                           // Nothing to do, this was a void return.
 211     default  : ShouldNotReachHere();
 212   }
 213 
 214   // Load LcpoolCache @@@ should be already set!
 215   __ get_constant_pool_cache(R27_constPoolCache);
 216 
 217   // Handle a pending exception, fall through if none.
 218   __ check_and_forward_exception(R11_scratch1, R12_scratch2);
 219 
 220   // Start executing bytecodes.
 221   __ dispatch_next(state, step);
 222 
 223   return entry;
 224 }
 225 
 226 // A result handler converts the native result into java format.
 227 // Use the shared code between c++ and template interpreter.
 228 address TemplateInterpreterGenerator::generate_result_handler_for(BasicType type) {
 229   return AbstractInterpreterGenerator::generate_result_handler_for(type);
 230 }
 231 
 232 address TemplateInterpreterGenerator::generate_safept_entry_for(TosState state, address runtime_entry) {
 233   address entry = __ pc();
 234 
 235   __ push(state);
 236   __ call_VM(noreg, runtime_entry);
 237   __ dispatch_via(vtos, Interpreter::_normal_table.table_for(vtos));
 238 
 239   return entry;
 240 }
 241 
 242 // Helpers for commoning out cases in the various type of method entries.
 243 
 244 // Increment invocation count & check for overflow.
 245 //
 246 // Note: checking for negative value instead of overflow
 247 //       so we have a 'sticky' overflow test.
 248 //
 249 void TemplateInterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
 250   // Note: In tiered we increment either counters in method or in MDO depending if we're profiling or not.
 251   Register Rscratch1   = R11_scratch1;
 252   Register Rscratch2   = R12_scratch2;
 253   Register R3_counters = R3_ARG1;
 254   Label done;
 255 
 256   if (TieredCompilation) {
 257     const int increment = InvocationCounter::count_increment;
 258     const int mask = ((1 << Tier0InvokeNotifyFreqLog) - 1) << InvocationCounter::count_shift;
 259     Label no_mdo;
 260     if (ProfileInterpreter) {
 261       const Register Rmdo = Rscratch1;
 262       // If no method data exists, go to profile_continue.
 263       __ ld(Rmdo, in_bytes(Method::method_data_offset()), R19_method);
 264       __ cmpdi(CCR0, Rmdo, 0);
 265       __ beq(CCR0, no_mdo);
 266 
 267       // Increment backedge counter in the MDO.
 268       const int mdo_bc_offs = in_bytes(MethodData::backedge_counter_offset()) + in_bytes(InvocationCounter::counter_offset());
 269       __ lwz(Rscratch2, mdo_bc_offs, Rmdo);
 270       __ addi(Rscratch2, Rscratch2, increment);
 271       __ stw(Rscratch2, mdo_bc_offs, Rmdo);
 272       __ load_const_optimized(Rscratch1, mask, R0);
 273       __ and_(Rscratch1, Rscratch2, Rscratch1);
 274       __ bne(CCR0, done);
 275       __ b(*overflow);
 276     }
 277 
 278     // Increment counter in MethodCounters*.
 279     const int mo_bc_offs = in_bytes(MethodCounters::backedge_counter_offset()) + in_bytes(InvocationCounter::counter_offset());
 280     __ bind(no_mdo);
 281     __ get_method_counters(R19_method, R3_counters, done);
 282     __ lwz(Rscratch2, mo_bc_offs, R3_counters);
 283     __ addi(Rscratch2, Rscratch2, increment);
 284     __ stw(Rscratch2, mo_bc_offs, R3_counters);
 285     __ load_const_optimized(Rscratch1, mask, R0);
 286     __ and_(Rscratch1, Rscratch2, Rscratch1);
 287     __ beq(CCR0, *overflow);
 288 
 289     __ bind(done);
 290 
 291   } else {
 292 
 293     // Update standard invocation counters.
 294     Register Rsum_ivc_bec = R4_ARG2;
 295     __ get_method_counters(R19_method, R3_counters, done);
 296     __ increment_invocation_counter(R3_counters, Rsum_ivc_bec, R12_scratch2);
 297     // Increment interpreter invocation counter.
 298     if (ProfileInterpreter) {  // %%% Merge this into methodDataOop.
 299       __ lwz(R12_scratch2, in_bytes(MethodCounters::interpreter_invocation_counter_offset()), R3_counters);
 300       __ addi(R12_scratch2, R12_scratch2, 1);
 301       __ stw(R12_scratch2, in_bytes(MethodCounters::interpreter_invocation_counter_offset()), R3_counters);
 302     }
 303     // Check if we must create a method data obj.
 304     if (ProfileInterpreter && profile_method != NULL) {
 305       const Register profile_limit = Rscratch1;
 306       int pl_offs = __ load_const_optimized(profile_limit, &InvocationCounter::InterpreterProfileLimit, R0, true);
 307       __ lwz(profile_limit, pl_offs, profile_limit);
 308       // Test to see if we should create a method data oop.
 309       __ cmpw(CCR0, Rsum_ivc_bec, profile_limit);
 310       __ blt(CCR0, *profile_method_continue);
 311       // If no method data exists, go to profile_method.
 312       __ test_method_data_pointer(*profile_method);
 313     }
 314     // Finally check for counter overflow.
 315     if (overflow) {
 316       const Register invocation_limit = Rscratch1;
 317       int il_offs = __ load_const_optimized(invocation_limit, &InvocationCounter::InterpreterInvocationLimit, R0, true);
 318       __ lwz(invocation_limit, il_offs, invocation_limit);
 319       assert(4 == sizeof(InvocationCounter::InterpreterInvocationLimit), "unexpected field size");
 320       __ cmpw(CCR0, Rsum_ivc_bec, invocation_limit);
 321       __ bge(CCR0, *overflow);
 322     }
 323 
 324     __ bind(done);
 325   }
 326 }
 327 
 328 // Generate code to initiate compilation on invocation counter overflow.
 329 void TemplateInterpreterGenerator::generate_counter_overflow(Label& continue_entry) {
 330   // Generate code to initiate compilation on the counter overflow.
 331 
 332   // InterpreterRuntime::frequency_counter_overflow takes one arguments,
 333   // which indicates if the counter overflow occurs at a backwards branch (NULL bcp)
 334   // We pass zero in.
 335   // The call returns the address of the verified entry point for the method or NULL
 336   // if the compilation did not complete (either went background or bailed out).
 337   //
 338   // Unlike the C++ interpreter above: Check exceptions!
 339   // Assumption: Caller must set the flag "do_not_unlock_if_sychronized" if the monitor of a sync'ed
 340   // method has not yet been created. Thus, no unlocking of a non-existing monitor can occur.
 341 
 342   __ li(R4_ARG2, 0);
 343   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), R4_ARG2, true);
 344 
 345   // Returns verified_entry_point or NULL.
 346   // We ignore it in any case.
 347   __ b(continue_entry);
 348 }
 349 
 350 void TemplateInterpreterGenerator::generate_stack_overflow_check(Register Rmem_frame_size, Register Rscratch1) {
 351   assert_different_registers(Rmem_frame_size, Rscratch1);
 352   __ generate_stack_overflow_check_with_compare_and_throw(Rmem_frame_size, Rscratch1);
 353 }
 354 
 355 void TemplateInterpreterGenerator::unlock_method(bool check_exceptions) {
 356   __ unlock_object(R26_monitor, check_exceptions);
 357 }
 358 
 359 // Lock the current method, interpreter register window must be set up!
 360 void TemplateInterpreterGenerator::lock_method(Register Rflags, Register Rscratch1, Register Rscratch2, bool flags_preloaded) {
 361   const Register Robj_to_lock = Rscratch2;
 362 
 363   {
 364     if (!flags_preloaded) {
 365       __ lwz(Rflags, method_(access_flags));
 366     }
 367 
 368 #ifdef ASSERT
 369     // Check if methods needs synchronization.
 370     {
 371       Label Lok;
 372       __ testbitdi(CCR0, R0, Rflags, JVM_ACC_SYNCHRONIZED_BIT);
 373       __ btrue(CCR0,Lok);
 374       __ stop("method doesn't need synchronization");
 375       __ bind(Lok);
 376     }
 377 #endif // ASSERT
 378   }
 379 
 380   // Get synchronization object to Rscratch2.
 381   {
 382     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
 383     Label Lstatic;
 384     Label Ldone;
 385 
 386     __ testbitdi(CCR0, R0, Rflags, JVM_ACC_STATIC_BIT);
 387     __ btrue(CCR0, Lstatic);
 388 
 389     // Non-static case: load receiver obj from stack and we're done.
 390     __ ld(Robj_to_lock, R18_locals);
 391     __ b(Ldone);
 392 
 393     __ bind(Lstatic); // Static case: Lock the java mirror
 394     __ ld(Robj_to_lock, in_bytes(Method::const_offset()), R19_method);
 395     __ ld(Robj_to_lock, in_bytes(ConstMethod::constants_offset()), Robj_to_lock);
 396     __ ld(Robj_to_lock, ConstantPool::pool_holder_offset_in_bytes(), Robj_to_lock);
 397     __ ld(Robj_to_lock, mirror_offset, Robj_to_lock);
 398 
 399     __ bind(Ldone);
 400     __ verify_oop(Robj_to_lock);
 401   }
 402 
 403   // Got the oop to lock => execute!
 404   __ add_monitor_to_stack(true, Rscratch1, R0);
 405 
 406   __ std(Robj_to_lock, BasicObjectLock::obj_offset_in_bytes(), R26_monitor);
 407   __ lock_object(R26_monitor, Robj_to_lock);
 408 }
 409 
 410 // Generate a fixed interpreter frame for pure interpreter
 411 // and I2N native transition frames.
 412 //
 413 // Before (stack grows downwards):
 414 //
 415 //         |  ...         |
 416 //         |------------- |
 417 //         |  java arg0   |
 418 //         |  ...         |
 419 //         |  java argn   |
 420 //         |              |   <-   R15_esp
 421 //         |              |
 422 //         |--------------|
 423 //         | abi_112      |
 424 //         |              |   <-   R1_SP
 425 //         |==============|
 426 //
 427 //
 428 // After:
 429 //
 430 //         |  ...         |
 431 //         |  java arg0   |<-   R18_locals
 432 //         |  ...         |
 433 //         |  java argn   |
 434 //         |--------------|
 435 //         |              |
 436 //         |  java locals |
 437 //         |              |
 438 //         |--------------|
 439 //         |  abi_48      |
 440 //         |==============|
 441 //         |              |
 442 //         |   istate     |
 443 //         |              |
 444 //         |--------------|
 445 //         |   monitor    |<-   R26_monitor
 446 //         |--------------|
 447 //         |              |<-   R15_esp
 448 //         | expression   |
 449 //         | stack        |
 450 //         |              |
 451 //         |--------------|
 452 //         |              |
 453 //         | abi_112      |<-   R1_SP
 454 //         |==============|
 455 //
 456 // The top most frame needs an abi space of 112 bytes. This space is needed,
 457 // since we call to c. The c function may spill their arguments to the caller
 458 // frame. When we call to java, we don't need these spill slots. In order to save
 459 // space on the stack, we resize the caller. However, java local reside in
 460 // the caller frame and the frame has to be increased. The frame_size for the
 461 // current frame was calculated based on max_stack as size for the expression
 462 // stack. At the call, just a part of the expression stack might be used.
 463 // We don't want to waste this space and cut the frame back accordingly.
 464 // The resulting amount for resizing is calculated as follows:
 465 // resize =   (number_of_locals - number_of_arguments) * slot_size
 466 //          + (R1_SP - R15_esp) + 48
 467 //
 468 // The size for the callee frame is calculated:
 469 // framesize = 112 + max_stack + monitor + state_size
 470 //
 471 // maxstack:   Max number of slots on the expression stack, loaded from the method.
 472 // monitor:    We statically reserve room for one monitor object.
 473 // state_size: We save the current state of the interpreter to this area.
 474 //
 475 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call, Register Rsize_of_parameters, Register Rsize_of_locals) {
 476   Register parent_frame_resize = R6_ARG4, // Frame will grow by this number of bytes.
 477            top_frame_size      = R7_ARG5,
 478            Rconst_method       = R8_ARG6;
 479 
 480   assert_different_registers(Rsize_of_parameters, Rsize_of_locals, parent_frame_resize, top_frame_size);
 481 
 482   __ ld(Rconst_method, method_(const));
 483   __ lhz(Rsize_of_parameters /* number of params */,
 484          in_bytes(ConstMethod::size_of_parameters_offset()), Rconst_method);
 485   if (native_call) {
 486     // If we're calling a native method, we reserve space for the worst-case signature
 487     // handler varargs vector, which is max(Argument::n_register_parameters, parameter_count+2).
 488     // We add two slots to the parameter_count, one for the jni
 489     // environment and one for a possible native mirror.
 490     Label skip_native_calculate_max_stack;
 491     __ addi(top_frame_size, Rsize_of_parameters, 2);
 492     __ cmpwi(CCR0, top_frame_size, Argument::n_register_parameters);
 493     __ bge(CCR0, skip_native_calculate_max_stack);
 494     __ li(top_frame_size, Argument::n_register_parameters);
 495     __ bind(skip_native_calculate_max_stack);
 496     __ sldi(Rsize_of_parameters, Rsize_of_parameters, Interpreter::logStackElementSize);
 497     __ sldi(top_frame_size, top_frame_size, Interpreter::logStackElementSize);
 498     __ sub(parent_frame_resize, R1_SP, R15_esp); // <0, off by Interpreter::stackElementSize!
 499     assert(Rsize_of_locals == noreg, "Rsize_of_locals not initialized"); // Only relevant value is Rsize_of_parameters.
 500   } else {
 501     __ lhz(Rsize_of_locals /* number of params */, in_bytes(ConstMethod::size_of_locals_offset()), Rconst_method);
 502     __ sldi(Rsize_of_parameters, Rsize_of_parameters, Interpreter::logStackElementSize);
 503     __ sldi(Rsize_of_locals, Rsize_of_locals, Interpreter::logStackElementSize);
 504     __ lhz(top_frame_size, in_bytes(ConstMethod::max_stack_offset()), Rconst_method);
 505     __ sub(R11_scratch1, Rsize_of_locals, Rsize_of_parameters); // >=0
 506     __ sub(parent_frame_resize, R1_SP, R15_esp); // <0, off by Interpreter::stackElementSize!
 507     __ sldi(top_frame_size, top_frame_size, Interpreter::logStackElementSize);
 508     __ add(parent_frame_resize, parent_frame_resize, R11_scratch1);
 509   }
 510 
 511   // Compute top frame size.
 512   __ addi(top_frame_size, top_frame_size, frame::abi_reg_args_size + frame::ijava_state_size);
 513 
 514   // Cut back area between esp and max_stack.
 515   __ addi(parent_frame_resize, parent_frame_resize, frame::abi_minframe_size - Interpreter::stackElementSize);
 516 
 517   __ round_to(top_frame_size, frame::alignment_in_bytes);
 518   __ round_to(parent_frame_resize, frame::alignment_in_bytes);
 519   // parent_frame_resize = (locals-parameters) - (ESP-SP-ABI48) Rounded to frame alignment size.
 520   // Enlarge by locals-parameters (not in case of native_call), shrink by ESP-SP-ABI48.
 521 
 522   {
 523     // --------------------------------------------------------------------------
 524     // Stack overflow check
 525 
 526     Label cont;
 527     __ add(R11_scratch1, parent_frame_resize, top_frame_size);
 528     generate_stack_overflow_check(R11_scratch1, R12_scratch2);
 529   }
 530 
 531   // Set up interpreter state registers.
 532 
 533   __ add(R18_locals, R15_esp, Rsize_of_parameters);
 534   __ ld(R27_constPoolCache, in_bytes(ConstMethod::constants_offset()), Rconst_method);
 535   __ ld(R27_constPoolCache, ConstantPool::cache_offset_in_bytes(), R27_constPoolCache);
 536 
 537   // Set method data pointer.
 538   if (ProfileInterpreter) {
 539     Label zero_continue;
 540     __ ld(R28_mdx, method_(method_data));
 541     __ cmpdi(CCR0, R28_mdx, 0);
 542     __ beq(CCR0, zero_continue);
 543     __ addi(R28_mdx, R28_mdx, in_bytes(MethodData::data_offset()));
 544     __ bind(zero_continue);
 545   }
 546 
 547   if (native_call) {
 548     __ li(R14_bcp, 0); // Must initialize.
 549   } else {
 550     __ add(R14_bcp, in_bytes(ConstMethod::codes_offset()), Rconst_method);
 551   }
 552 
 553   // Resize parent frame.
 554   __ mflr(R12_scratch2);
 555   __ neg(parent_frame_resize, parent_frame_resize);
 556   __ resize_frame(parent_frame_resize, R11_scratch1);
 557   __ std(R12_scratch2, _abi(lr), R1_SP);
 558 
 559   __ addi(R26_monitor, R1_SP, - frame::ijava_state_size);
 560   __ addi(R15_esp, R26_monitor, - Interpreter::stackElementSize);
 561 
 562   // Store values.
 563   // R15_esp, R14_bcp, R26_monitor, R28_mdx are saved at java calls
 564   // in InterpreterMacroAssembler::call_from_interpreter.
 565   __ std(R19_method, _ijava_state_neg(method), R1_SP);
 566   __ std(R21_sender_SP, _ijava_state_neg(sender_sp), R1_SP);
 567   __ std(R27_constPoolCache, _ijava_state_neg(cpoolCache), R1_SP);
 568   __ std(R18_locals, _ijava_state_neg(locals), R1_SP);
 569 
 570   // Note: esp, bcp, monitor, mdx live in registers. Hence, the correct version can only
 571   // be found in the frame after save_interpreter_state is done. This is always true
 572   // for non-top frames. But when a signal occurs, dumping the top frame can go wrong,
 573   // because e.g. frame::interpreter_frame_bcp() will not access the correct value
 574   // (Enhanced Stack Trace).
 575   // The signal handler does not save the interpreter state into the frame.
 576   __ li(R0, 0);
 577 #ifdef ASSERT
 578   // Fill remaining slots with constants.
 579   __ load_const_optimized(R11_scratch1, 0x5afe);
 580   __ load_const_optimized(R12_scratch2, 0xdead);
 581 #endif
 582   // We have to initialize some frame slots for native calls (accessed by GC).
 583   if (native_call) {
 584     __ std(R26_monitor, _ijava_state_neg(monitors), R1_SP);
 585     __ std(R14_bcp, _ijava_state_neg(bcp), R1_SP);
 586     if (ProfileInterpreter) { __ std(R28_mdx, _ijava_state_neg(mdx), R1_SP); }
 587   }
 588 #ifdef ASSERT
 589   else {
 590     __ std(R12_scratch2, _ijava_state_neg(monitors), R1_SP);
 591     __ std(R12_scratch2, _ijava_state_neg(bcp), R1_SP);
 592     __ std(R12_scratch2, _ijava_state_neg(mdx), R1_SP);
 593   }
 594   __ std(R11_scratch1, _ijava_state_neg(ijava_reserved), R1_SP);
 595   __ std(R12_scratch2, _ijava_state_neg(esp), R1_SP);
 596   __ std(R12_scratch2, _ijava_state_neg(lresult), R1_SP);
 597   __ std(R12_scratch2, _ijava_state_neg(fresult), R1_SP);
 598 #endif
 599   __ subf(R12_scratch2, top_frame_size, R1_SP);
 600   __ std(R0, _ijava_state_neg(oop_tmp), R1_SP);
 601   __ std(R12_scratch2, _ijava_state_neg(top_frame_sp), R1_SP);
 602 
 603   // Push top frame.
 604   __ push_frame(top_frame_size, R11_scratch1);
 605 }
 606 
 607 // End of helpers
 608 
 609 address TemplateInterpreterGenerator::generate_math_entry(AbstractInterpreter::MethodKind kind) {
 610   if (!TemplateInterpreter::math_entry_available(kind)) {
 611     NOT_PRODUCT(__ should_not_reach_here();)
 612     return NULL;
 613   }
 614 
 615   address entry = __ pc();
 616 
 617   __ lfd(F1_RET, Interpreter::stackElementSize, R15_esp);
 618 
 619   // Pop c2i arguments (if any) off when we return.
 620 #ifdef ASSERT
 621   __ ld(R9_ARG7, 0, R1_SP);
 622   __ ld(R10_ARG8, 0, R21_sender_SP);
 623   __ cmpd(CCR0, R9_ARG7, R10_ARG8);
 624   __ asm_assert_eq("backlink", 0x545);
 625 #endif // ASSERT
 626   __ mr(R1_SP, R21_sender_SP); // Cut the stack back to where the caller started.
 627 
 628   if (kind == Interpreter::java_lang_math_sqrt) {
 629     __ fsqrt(F1_RET, F1_RET);
 630   } else if (kind == Interpreter::java_lang_math_abs) {
 631     __ fabs(F1_RET, F1_RET);
 632   } else {
 633     ShouldNotReachHere();
 634   }
 635 
 636   // And we're done.
 637   __ blr();
 638 
 639   __ flush();
 640 
 641   return entry;
 642 }
 643 
 644 // Interpreter stub for calling a native method. (asm interpreter)
 645 // This sets up a somewhat different looking stack for calling the
 646 // native method than the typical interpreter frame setup.
 647 //
 648 // On entry:
 649 //   R19_method    - method
 650 //   R16_thread    - JavaThread*
 651 //   R15_esp       - intptr_t* sender tos
 652 //
 653 //   abstract stack (grows up)
 654 //     [  IJava (caller of JNI callee)  ]  <-- ASP
 655 //        ...
 656 address TemplateInterpreterGenerator::generate_native_entry(bool synchronized) {
 657 
 658   address entry = __ pc();
 659 
 660   const bool inc_counter = UseCompiler || CountCompiledCalls || LogTouchedMethods;
 661 
 662   // -----------------------------------------------------------------------------
 663   // Allocate a new frame that represents the native callee (i2n frame).
 664   // This is not a full-blown interpreter frame, but in particular, the
 665   // following registers are valid after this:
 666   // - R19_method
 667   // - R18_local (points to start of argumuments to native function)
 668   //
 669   //   abstract stack (grows up)
 670   //     [  IJava (caller of JNI callee)  ]  <-- ASP
 671   //        ...
 672 
 673   const Register signature_handler_fd = R11_scratch1;
 674   const Register pending_exception    = R0;
 675   const Register result_handler_addr  = R31;
 676   const Register native_method_fd     = R11_scratch1;
 677   const Register access_flags         = R22_tmp2;
 678   const Register active_handles       = R11_scratch1; // R26_monitor saved to state.
 679   const Register sync_state           = R12_scratch2;
 680   const Register sync_state_addr      = sync_state;   // Address is dead after use.
 681   const Register suspend_flags        = R11_scratch1;
 682 
 683   //=============================================================================
 684   // Allocate new frame and initialize interpreter state.
 685 
 686   Label exception_return;
 687   Label exception_return_sync_check;
 688   Label stack_overflow_return;
 689 
 690   // Generate new interpreter state and jump to stack_overflow_return in case of
 691   // a stack overflow.
 692   //generate_compute_interpreter_state(stack_overflow_return);
 693 
 694   Register size_of_parameters = R22_tmp2;
 695 
 696   generate_fixed_frame(true, size_of_parameters, noreg /* unused */);
 697 
 698   //=============================================================================
 699   // Increment invocation counter. On overflow, entry to JNI method
 700   // will be compiled.
 701   Label invocation_counter_overflow, continue_after_compile;
 702   if (inc_counter) {
 703     if (synchronized) {
 704       // Since at this point in the method invocation the exception handler
 705       // would try to exit the monitor of synchronized methods which hasn't
 706       // been entered yet, we set the thread local variable
 707       // _do_not_unlock_if_synchronized to true. If any exception was thrown by
 708       // runtime, exception handling i.e. unlock_if_synchronized_method will
 709       // check this thread local flag.
 710       // This flag has two effects, one is to force an unwind in the topmost
 711       // interpreter frame and not perform an unlock while doing so.
 712       __ li(R0, 1);
 713       __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
 714     }
 715     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
 716 
 717     BIND(continue_after_compile);
 718     // Reset the _do_not_unlock_if_synchronized flag.
 719     if (synchronized) {
 720       __ li(R0, 0);
 721       __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
 722     }
 723   }
 724 
 725   // access_flags = method->access_flags();
 726   // Load access flags.
 727   assert(access_flags->is_nonvolatile(),
 728          "access_flags must be in a non-volatile register");
 729   // Type check.
 730   assert(4 == sizeof(AccessFlags), "unexpected field size");
 731   __ lwz(access_flags, method_(access_flags));
 732 
 733   // We don't want to reload R19_method and access_flags after calls
 734   // to some helper functions.
 735   assert(R19_method->is_nonvolatile(),
 736          "R19_method must be a non-volatile register");
 737 
 738   // Check for synchronized methods. Must happen AFTER invocation counter
 739   // check, so method is not locked if counter overflows.
 740 
 741   if (synchronized) {
 742     lock_method(access_flags, R11_scratch1, R12_scratch2, true);
 743 
 744     // Update monitor in state.
 745     __ ld(R11_scratch1, 0, R1_SP);
 746     __ std(R26_monitor, _ijava_state_neg(monitors), R11_scratch1);
 747   }
 748 
 749   // jvmti/jvmpi support
 750   __ notify_method_entry();
 751 
 752   //=============================================================================
 753   // Get and call the signature handler.
 754 
 755   __ ld(signature_handler_fd, method_(signature_handler));
 756   Label call_signature_handler;
 757 
 758   __ cmpdi(CCR0, signature_handler_fd, 0);
 759   __ bne(CCR0, call_signature_handler);
 760 
 761   // Method has never been called. Either generate a specialized
 762   // handler or point to the slow one.
 763   //
 764   // Pass parameter 'false' to avoid exception check in call_VM.
 765   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), R19_method, false);
 766 
 767   // Check for an exception while looking up the target method. If we
 768   // incurred one, bail.
 769   __ ld(pending_exception, thread_(pending_exception));
 770   __ cmpdi(CCR0, pending_exception, 0);
 771   __ bne(CCR0, exception_return_sync_check); // Has pending exception.
 772 
 773   // Reload signature handler, it may have been created/assigned in the meanwhile.
 774   __ ld(signature_handler_fd, method_(signature_handler));
 775   __ twi_0(signature_handler_fd); // Order wrt. load of klass mirror and entry point (isync is below).
 776 
 777   BIND(call_signature_handler);
 778 
 779   // Before we call the signature handler we push a new frame to
 780   // protect the interpreter frame volatile registers when we return
 781   // from jni but before we can get back to Java.
 782 
 783   // First set the frame anchor while the SP/FP registers are
 784   // convenient and the slow signature handler can use this same frame
 785   // anchor.
 786 
 787   // We have a TOP_IJAVA_FRAME here, which belongs to us.
 788   __ set_top_ijava_frame_at_SP_as_last_Java_frame(R1_SP, R12_scratch2/*tmp*/);
 789 
 790   // Now the interpreter frame (and its call chain) have been
 791   // invalidated and flushed. We are now protected against eager
 792   // being enabled in native code. Even if it goes eager the
 793   // registers will be reloaded as clean and we will invalidate after
 794   // the call so no spurious flush should be possible.
 795 
 796   // Call signature handler and pass locals address.
 797   //
 798   // Our signature handlers copy required arguments to the C stack
 799   // (outgoing C args), R3_ARG1 to R10_ARG8, and FARG1 to FARG13.
 800   __ mr(R3_ARG1, R18_locals);
 801 #if !defined(ABI_ELFv2)
 802   __ ld(signature_handler_fd, 0, signature_handler_fd);
 803 #endif
 804 
 805   __ call_stub(signature_handler_fd);
 806 
 807   // Remove the register parameter varargs slots we allocated in
 808   // compute_interpreter_state. SP+16 ends up pointing to the ABI
 809   // outgoing argument area.
 810   //
 811   // Not needed on PPC64.
 812   //__ add(SP, SP, Argument::n_register_parameters*BytesPerWord);
 813 
 814   assert(result_handler_addr->is_nonvolatile(), "result_handler_addr must be in a non-volatile register");
 815   // Save across call to native method.
 816   __ mr(result_handler_addr, R3_RET);
 817 
 818   __ isync(); // Acquire signature handler before trying to fetch the native entry point and klass mirror.
 819 
 820   // Set up fixed parameters and call the native method.
 821   // If the method is static, get mirror into R4_ARG2.
 822   {
 823     Label method_is_not_static;
 824     // Access_flags is non-volatile and still, no need to restore it.
 825 
 826     // Restore access flags.
 827     __ testbitdi(CCR0, R0, access_flags, JVM_ACC_STATIC_BIT);
 828     __ bfalse(CCR0, method_is_not_static);
 829 
 830     // constants = method->constants();
 831     __ ld(R11_scratch1, in_bytes(Method::const_offset()), R19_method);
 832     __ ld(R11_scratch1, in_bytes(ConstMethod::constants_offset()), R11_scratch1);
 833     // pool_holder = method->constants()->pool_holder();
 834     __ ld(R11_scratch1/*pool_holder*/, ConstantPool::pool_holder_offset_in_bytes(),
 835           R11_scratch1/*constants*/);
 836 
 837     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
 838 
 839     // mirror = pool_holder->klass_part()->java_mirror();
 840     __ ld(R0/*mirror*/, mirror_offset, R11_scratch1/*pool_holder*/);
 841     // state->_native_mirror = mirror;
 842 
 843     __ ld(R11_scratch1, 0, R1_SP);
 844     __ std(R0/*mirror*/, _ijava_state_neg(oop_tmp), R11_scratch1);
 845     // R4_ARG2 = &state->_oop_temp;
 846     __ addi(R4_ARG2, R11_scratch1, _ijava_state_neg(oop_tmp));
 847     BIND(method_is_not_static);
 848   }
 849 
 850   // At this point, arguments have been copied off the stack into
 851   // their JNI positions. Oops are boxed in-place on the stack, with
 852   // handles copied to arguments. The result handler address is in a
 853   // register.
 854 
 855   // Pass JNIEnv address as first parameter.
 856   __ addir(R3_ARG1, thread_(jni_environment));
 857 
 858   // Load the native_method entry before we change the thread state.
 859   __ ld(native_method_fd, method_(native_function));
 860 
 861   //=============================================================================
 862   // Transition from _thread_in_Java to _thread_in_native. As soon as
 863   // we make this change the safepoint code needs to be certain that
 864   // the last Java frame we established is good. The pc in that frame
 865   // just needs to be near here not an actual return address.
 866 
 867   // We use release_store_fence to update values like the thread state, where
 868   // we don't want the current thread to continue until all our prior memory
 869   // accesses (including the new thread state) are visible to other threads.
 870   __ li(R0, _thread_in_native);
 871   __ release();
 872 
 873   // TODO PPC port assert(4 == JavaThread::sz_thread_state(), "unexpected field size");
 874   __ stw(R0, thread_(thread_state));
 875 
 876   if (UseMembar) {
 877     __ fence();
 878   }
 879 
 880   //=============================================================================
 881   // Call the native method. Argument registers must not have been
 882   // overwritten since "__ call_stub(signature_handler);" (except for
 883   // ARG1 and ARG2 for static methods).
 884   __ call_c(native_method_fd);
 885 
 886   __ li(R0, 0);
 887   __ ld(R11_scratch1, 0, R1_SP);
 888   __ std(R3_RET, _ijava_state_neg(lresult), R11_scratch1);
 889   __ stfd(F1_RET, _ijava_state_neg(fresult), R11_scratch1);
 890   __ std(R0/*mirror*/, _ijava_state_neg(oop_tmp), R11_scratch1); // reset
 891 
 892   // Note: C++ interpreter needs the following here:
 893   // The frame_manager_lr field, which we use for setting the last
 894   // java frame, gets overwritten by the signature handler. Restore
 895   // it now.
 896   //__ get_PC_trash_LR(R11_scratch1);
 897   //__ std(R11_scratch1, _top_ijava_frame_abi(frame_manager_lr), R1_SP);
 898 
 899   // Because of GC R19_method may no longer be valid.
 900 
 901   // Block, if necessary, before resuming in _thread_in_Java state.
 902   // In order for GC to work, don't clear the last_Java_sp until after
 903   // blocking.
 904 
 905   //=============================================================================
 906   // Switch thread to "native transition" state before reading the
 907   // synchronization state. This additional state is necessary
 908   // because reading and testing the synchronization state is not
 909   // atomic w.r.t. GC, as this scenario demonstrates: Java thread A,
 910   // in _thread_in_native state, loads _not_synchronized and is
 911   // preempted. VM thread changes sync state to synchronizing and
 912   // suspends threads for GC. Thread A is resumed to finish this
 913   // native method, but doesn't block here since it didn't see any
 914   // synchronization in progress, and escapes.
 915 
 916   // We use release_store_fence to update values like the thread state, where
 917   // we don't want the current thread to continue until all our prior memory
 918   // accesses (including the new thread state) are visible to other threads.
 919   __ li(R0/*thread_state*/, _thread_in_native_trans);
 920   __ release();
 921   __ stw(R0/*thread_state*/, thread_(thread_state));
 922   if (UseMembar) {
 923     __ fence();
 924   }
 925   // Write serialization page so that the VM thread can do a pseudo remote
 926   // membar. We use the current thread pointer to calculate a thread
 927   // specific offset to write to within the page. This minimizes bus
 928   // traffic due to cache line collision.
 929   else {
 930     __ serialize_memory(R16_thread, R11_scratch1, R12_scratch2);
 931   }
 932 
 933   // Now before we return to java we must look for a current safepoint
 934   // (a new safepoint can not start since we entered native_trans).
 935   // We must check here because a current safepoint could be modifying
 936   // the callers registers right this moment.
 937 
 938   // Acquire isn't strictly necessary here because of the fence, but
 939   // sync_state is declared to be volatile, so we do it anyway
 940   // (cmp-br-isync on one path, release (same as acquire on PPC64) on the other path).
 941   int sync_state_offs = __ load_const_optimized(sync_state_addr, SafepointSynchronize::address_of_state(), /*temp*/R0, true);
 942 
 943   // TODO PPC port assert(4 == SafepointSynchronize::sz_state(), "unexpected field size");
 944   __ lwz(sync_state, sync_state_offs, sync_state_addr);
 945 
 946   // TODO PPC port assert(4 == Thread::sz_suspend_flags(), "unexpected field size");
 947   __ lwz(suspend_flags, thread_(suspend_flags));
 948 
 949   Label sync_check_done;
 950   Label do_safepoint;
 951   // No synchronization in progress nor yet synchronized.
 952   __ cmpwi(CCR0, sync_state, SafepointSynchronize::_not_synchronized);
 953   // Not suspended.
 954   __ cmpwi(CCR1, suspend_flags, 0);
 955 
 956   __ bne(CCR0, do_safepoint);
 957   __ beq(CCR1, sync_check_done);
 958   __ bind(do_safepoint);
 959   __ isync();
 960   // Block. We do the call directly and leave the current
 961   // last_Java_frame setup undisturbed. We must save any possible
 962   // native result across the call. No oop is present.
 963 
 964   __ mr(R3_ARG1, R16_thread);
 965 #if defined(ABI_ELFv2)
 966   __ call_c(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans),
 967             relocInfo::none);
 968 #else
 969   __ call_c(CAST_FROM_FN_PTR(FunctionDescriptor*, JavaThread::check_special_condition_for_native_trans),
 970             relocInfo::none);
 971 #endif
 972 
 973   __ bind(sync_check_done);
 974 
 975   //=============================================================================
 976   // <<<<<< Back in Interpreter Frame >>>>>
 977 
 978   // We are in thread_in_native_trans here and back in the normal
 979   // interpreter frame. We don't have to do anything special about
 980   // safepoints and we can switch to Java mode anytime we are ready.
 981 
 982   // Note: frame::interpreter_frame_result has a dependency on how the
 983   // method result is saved across the call to post_method_exit. For
 984   // native methods it assumes that the non-FPU/non-void result is
 985   // saved in _native_lresult and a FPU result in _native_fresult. If
 986   // this changes then the interpreter_frame_result implementation
 987   // will need to be updated too.
 988 
 989   // On PPC64, we have stored the result directly after the native call.
 990 
 991   //=============================================================================
 992   // Back in Java
 993 
 994   // We use release_store_fence to update values like the thread state, where
 995   // we don't want the current thread to continue until all our prior memory
 996   // accesses (including the new thread state) are visible to other threads.
 997   __ li(R0/*thread_state*/, _thread_in_Java);
 998   __ release();
 999   __ stw(R0/*thread_state*/, thread_(thread_state));
1000   if (UseMembar) {
1001     __ fence();
1002   }
1003 
1004   __ reset_last_Java_frame();
1005 
1006   // Jvmdi/jvmpi support. Whether we've got an exception pending or
1007   // not, and whether unlocking throws an exception or not, we notify
1008   // on native method exit. If we do have an exception, we'll end up
1009   // in the caller's context to handle it, so if we don't do the
1010   // notify here, we'll drop it on the floor.
1011   __ notify_method_exit(true/*native method*/,
1012                         ilgl /*illegal state (not used for native methods)*/,
1013                         InterpreterMacroAssembler::NotifyJVMTI,
1014                         false /*check_exceptions*/);
1015 
1016   //=============================================================================
1017   // Handle exceptions
1018 
1019   if (synchronized) {
1020     // Don't check for exceptions since we're still in the i2n frame. Do that
1021     // manually afterwards.
1022     unlock_method(false);
1023   }
1024 
1025   // Reset active handles after returning from native.
1026   // thread->active_handles()->clear();
1027   __ ld(active_handles, thread_(active_handles));
1028   // TODO PPC port assert(4 == JNIHandleBlock::top_size_in_bytes(), "unexpected field size");
1029   __ li(R0, 0);
1030   __ stw(R0, JNIHandleBlock::top_offset_in_bytes(), active_handles);
1031 
1032   Label exception_return_sync_check_already_unlocked;
1033   __ ld(R0/*pending_exception*/, thread_(pending_exception));
1034   __ cmpdi(CCR0, R0/*pending_exception*/, 0);
1035   __ bne(CCR0, exception_return_sync_check_already_unlocked);
1036 
1037   //-----------------------------------------------------------------------------
1038   // No exception pending.
1039 
1040   // Move native method result back into proper registers and return.
1041   // Invoke result handler (may unbox/promote).
1042   __ ld(R11_scratch1, 0, R1_SP);
1043   __ ld(R3_RET, _ijava_state_neg(lresult), R11_scratch1);
1044   __ lfd(F1_RET, _ijava_state_neg(fresult), R11_scratch1);
1045   __ call_stub(result_handler_addr);
1046 
1047   __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ R0, R11_scratch1, R12_scratch2);
1048 
1049   // Must use the return pc which was loaded from the caller's frame
1050   // as the VM uses return-pc-patching for deoptimization.
1051   __ mtlr(R0);
1052   __ blr();
1053 
1054   //-----------------------------------------------------------------------------
1055   // An exception is pending. We call into the runtime only if the
1056   // caller was not interpreted. If it was interpreted the
1057   // interpreter will do the correct thing. If it isn't interpreted
1058   // (call stub/compiled code) we will change our return and continue.
1059 
1060   BIND(exception_return_sync_check);
1061 
1062   if (synchronized) {
1063     // Don't check for exceptions since we're still in the i2n frame. Do that
1064     // manually afterwards.
1065     unlock_method(false);
1066   }
1067   BIND(exception_return_sync_check_already_unlocked);
1068 
1069   const Register return_pc = R31;
1070 
1071   __ ld(return_pc, 0, R1_SP);
1072   __ ld(return_pc, _abi(lr), return_pc);
1073 
1074   // Get the address of the exception handler.
1075   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address),
1076                   R16_thread,
1077                   return_pc /* return pc */);
1078   __ merge_frames(/*top_frame_sp*/ R21_sender_SP, noreg, R11_scratch1, R12_scratch2);
1079 
1080   // Load the PC of the the exception handler into LR.
1081   __ mtlr(R3_RET);
1082 
1083   // Load exception into R3_ARG1 and clear pending exception in thread.
1084   __ ld(R3_ARG1/*exception*/, thread_(pending_exception));
1085   __ li(R4_ARG2, 0);
1086   __ std(R4_ARG2, thread_(pending_exception));
1087 
1088   // Load the original return pc into R4_ARG2.
1089   __ mr(R4_ARG2/*issuing_pc*/, return_pc);
1090 
1091   // Return to exception handler.
1092   __ blr();
1093 
1094   //=============================================================================
1095   // Counter overflow.
1096 
1097   if (inc_counter) {
1098     // Handle invocation counter overflow.
1099     __ bind(invocation_counter_overflow);
1100 
1101     generate_counter_overflow(continue_after_compile);
1102   }
1103 
1104   return entry;
1105 }
1106 
1107 // Generic interpreted method entry to (asm) interpreter.
1108 //
1109 address TemplateInterpreterGenerator::generate_normal_entry(bool synchronized) {
1110   bool inc_counter = UseCompiler || CountCompiledCalls || LogTouchedMethods;
1111   address entry = __ pc();
1112   // Generate the code to allocate the interpreter stack frame.
1113   Register Rsize_of_parameters = R4_ARG2, // Written by generate_fixed_frame.
1114            Rsize_of_locals     = R5_ARG3; // Written by generate_fixed_frame.
1115 
1116   generate_fixed_frame(false, Rsize_of_parameters, Rsize_of_locals);
1117 
1118   // --------------------------------------------------------------------------
1119   // Zero out non-parameter locals.
1120   // Note: *Always* zero out non-parameter locals as Sparc does. It's not
1121   // worth to ask the flag, just do it.
1122   Register Rslot_addr = R6_ARG4,
1123            Rnum       = R7_ARG5;
1124   Label Lno_locals, Lzero_loop;
1125 
1126   // Set up the zeroing loop.
1127   __ subf(Rnum, Rsize_of_parameters, Rsize_of_locals);
1128   __ subf(Rslot_addr, Rsize_of_parameters, R18_locals);
1129   __ srdi_(Rnum, Rnum, Interpreter::logStackElementSize);
1130   __ beq(CCR0, Lno_locals);
1131   __ li(R0, 0);
1132   __ mtctr(Rnum);
1133 
1134   // The zero locals loop.
1135   __ bind(Lzero_loop);
1136   __ std(R0, 0, Rslot_addr);
1137   __ addi(Rslot_addr, Rslot_addr, -Interpreter::stackElementSize);
1138   __ bdnz(Lzero_loop);
1139 
1140   __ bind(Lno_locals);
1141 
1142   // --------------------------------------------------------------------------
1143   // Counter increment and overflow check.
1144   Label invocation_counter_overflow,
1145         profile_method,
1146         profile_method_continue;
1147   if (inc_counter || ProfileInterpreter) {
1148 
1149     Register Rdo_not_unlock_if_synchronized_addr = R11_scratch1;
1150     if (synchronized) {
1151       // Since at this point in the method invocation the exception handler
1152       // would try to exit the monitor of synchronized methods which hasn't
1153       // been entered yet, we set the thread local variable
1154       // _do_not_unlock_if_synchronized to true. If any exception was thrown by
1155       // runtime, exception handling i.e. unlock_if_synchronized_method will
1156       // check this thread local flag.
1157       // This flag has two effects, one is to force an unwind in the topmost
1158       // interpreter frame and not perform an unlock while doing so.
1159       __ li(R0, 1);
1160       __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
1161     }
1162 
1163     // Argument and return type profiling.
1164     __ profile_parameters_type(R3_ARG1, R4_ARG2, R5_ARG3, R6_ARG4);
1165 
1166     // Increment invocation counter and check for overflow.
1167     if (inc_counter) {
1168       generate_counter_incr(&invocation_counter_overflow, &profile_method, &profile_method_continue);
1169     }
1170 
1171     __ bind(profile_method_continue);
1172 
1173     // Reset the _do_not_unlock_if_synchronized flag.
1174     if (synchronized) {
1175       __ li(R0, 0);
1176       __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
1177     }
1178   }
1179 
1180   // --------------------------------------------------------------------------
1181   // Locking of synchronized methods. Must happen AFTER invocation_counter
1182   // check and stack overflow check, so method is not locked if overflows.
1183   if (synchronized) {
1184     lock_method(R3_ARG1, R4_ARG2, R5_ARG3);
1185   }
1186 #ifdef ASSERT
1187   else {
1188     Label Lok;
1189     __ lwz(R0, in_bytes(Method::access_flags_offset()), R19_method);
1190     __ andi_(R0, R0, JVM_ACC_SYNCHRONIZED);
1191     __ asm_assert_eq("method needs synchronization", 0x8521);
1192     __ bind(Lok);
1193   }
1194 #endif // ASSERT
1195 
1196   __ verify_thread();
1197 
1198   // --------------------------------------------------------------------------
1199   // JVMTI support
1200   __ notify_method_entry();
1201 
1202   // --------------------------------------------------------------------------
1203   // Start executing instructions.
1204   __ dispatch_next(vtos);
1205 
1206   // --------------------------------------------------------------------------
1207   // Out of line counter overflow and MDO creation code.
1208   if (ProfileInterpreter) {
1209     // We have decided to profile this method in the interpreter.
1210     __ bind(profile_method);
1211     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
1212     __ set_method_data_pointer_for_bcp();
1213     __ b(profile_method_continue);
1214   }
1215 
1216   if (inc_counter) {
1217     // Handle invocation counter overflow.
1218     __ bind(invocation_counter_overflow);
1219     generate_counter_overflow(profile_method_continue);
1220   }
1221   return entry;
1222 }
1223 
1224 // CRC32 Intrinsics.
1225 //
1226 // Contract on scratch and work registers.
1227 // =======================================
1228 //
1229 // On ppc, the register set {R2..R12} is available in the interpreter as scratch/work registers.
1230 // You should, however, keep in mind that {R3_ARG1..R10_ARG8} is the C-ABI argument register set.
1231 // You can't rely on these registers across calls.
1232 //
1233 // The generators for CRC32_update and for CRC32_updateBytes use the
1234 // scratch/work register set internally, passing the work registers
1235 // as arguments to the MacroAssembler emitters as required.
1236 //
1237 // R3_ARG1..R6_ARG4 are preset to hold the incoming java arguments.
1238 // Their contents is not constant but may change according to the requirements
1239 // of the emitted code.
1240 //
1241 // All other registers from the scratch/work register set are used "internally"
1242 // and contain garbage (i.e. unpredictable values) once blr() is reached.
1243 // Basically, only R3_RET contains a defined value which is the function result.
1244 //
1245 /**
1246  * Method entry for static native methods:
1247  *   int java.util.zip.CRC32.update(int crc, int b)
1248  */
1249 address InterpreterGenerator::generate_CRC32_update_entry() {
1250   if (UseCRC32Intrinsics) {
1251     address start = __ pc();  // Remember stub start address (is rtn value).
1252     Label slow_path;
1253 
1254     // Safepoint check
1255     const Register sync_state = R11_scratch1;
1256     int sync_state_offs = __ load_const_optimized(sync_state, SafepointSynchronize::address_of_state(), /*temp*/R0, true);
1257     __ lwz(sync_state, sync_state_offs, sync_state);
1258     __ cmpwi(CCR0, sync_state, SafepointSynchronize::_not_synchronized);
1259     __ bne(CCR0, slow_path);
1260 
1261     // We don't generate local frame and don't align stack because
1262     // we not even call stub code (we generate the code inline)
1263     // and there is no safepoint on this path.
1264 
1265     // Load java parameters.
1266     // R15_esp is callers operand stack pointer, i.e. it points to the parameters.
1267     const Register argP    = R15_esp;
1268     const Register crc     = R3_ARG1;  // crc value
1269     const Register data    = R4_ARG2;  // address of java byte value (kernel_crc32 needs address)
1270     const Register dataLen = R5_ARG3;  // source data len (1 byte). Not used because calling the single-byte emitter.
1271     const Register table   = R6_ARG4;  // address of crc32 table
1272     const Register tmp     = dataLen;  // Reuse unused len register to show we don't actually need a separate tmp here.
1273 
1274     BLOCK_COMMENT("CRC32_update {");
1275 
1276     // Arguments are reversed on java expression stack
1277 #ifdef VM_LITTLE_ENDIAN
1278     __ addi(data, argP, 0+1*wordSize); // (stack) address of byte value. Emitter expects address, not value.
1279                                        // Being passed as an int, the single byte is at offset +0.
1280 #else
1281     __ addi(data, argP, 3+1*wordSize); // (stack) address of byte value. Emitter expects address, not value.
1282                                        // Being passed from java as an int, the single byte is at offset +3.
1283 #endif
1284     __ lwz(crc,  2*wordSize, argP);    // Current crc state, zero extend to 64 bit to have a clean register.
1285 
1286     StubRoutines::ppc64::generate_load_crc_table_addr(_masm, table);
1287     __ kernel_crc32_singleByte(crc, data, dataLen, table, tmp);
1288 
1289     // Restore caller sp for c2i case and return.
1290     __ mr(R1_SP, R21_sender_SP); // Cut the stack back to where the caller started.
1291     __ blr();
1292 
1293     // Generate a vanilla native entry as the slow path.
1294     BLOCK_COMMENT("} CRC32_update");
1295     BIND(slow_path);
1296     __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native), R11_scratch1);
1297     return start;
1298   }
1299 
1300   return NULL;
1301 }
1302 
1303 // CRC32 Intrinsics.
1304 /**
1305  * Method entry for static native methods:
1306  *   int java.util.zip.CRC32.updateBytes(     int crc, byte[] b,  int off, int len)
1307  *   int java.util.zip.CRC32.updateByteBuffer(int crc, long* buf, int off, int len)
1308  */
1309 address InterpreterGenerator::generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
1310   if (UseCRC32Intrinsics) {
1311     address start = __ pc();  // Remember stub start address (is rtn value).
1312     Label slow_path;
1313 
1314     // Safepoint check
1315     const Register sync_state = R11_scratch1;
1316     int sync_state_offs = __ load_const_optimized(sync_state, SafepointSynchronize::address_of_state(), /*temp*/R0, true);
1317     __ lwz(sync_state, sync_state_offs, sync_state);
1318     __ cmpwi(CCR0, sync_state, SafepointSynchronize::_not_synchronized);
1319     __ bne(CCR0, slow_path);
1320 
1321     // We don't generate local frame and don't align stack because
1322     // we not even call stub code (we generate the code inline)
1323     // and there is no safepoint on this path.
1324 
1325     // Load parameters.
1326     // Z_esp is callers operand stack pointer, i.e. it points to the parameters.
1327     const Register argP    = R15_esp;
1328     const Register crc     = R3_ARG1;  // crc value
1329     const Register data    = R4_ARG2;  // address of java byte array
1330     const Register dataLen = R5_ARG3;  // source data len
1331     const Register table   = R6_ARG4;  // address of crc32 table
1332 
1333     const Register t0      = R9;       // scratch registers for crc calculation
1334     const Register t1      = R10;
1335     const Register t2      = R11;
1336     const Register t3      = R12;
1337 
1338     const Register tc0     = R2;       // registers to hold pre-calculated column addresses
1339     const Register tc1     = R7;
1340     const Register tc2     = R8;
1341     const Register tc3     = table;    // table address is reconstructed at the end of kernel_crc32_* emitters
1342 
1343     const Register tmp     = t0;       // Only used very locally to calculate byte buffer address.
1344 
1345     // Arguments are reversed on java expression stack.
1346     // Calculate address of start element.
1347     if (kind == Interpreter::java_util_zip_CRC32_updateByteBuffer) { // Used for "updateByteBuffer direct".
1348       BLOCK_COMMENT("CRC32_updateByteBuffer {");
1349       // crc     @ (SP + 5W) (32bit)
1350       // buf     @ (SP + 3W) (64bit ptr to long array)
1351       // off     @ (SP + 2W) (32bit)
1352       // dataLen @ (SP + 1W) (32bit)
1353       // data = buf + off
1354       __ ld(  data,    3*wordSize, argP);  // start of byte buffer
1355       __ lwa( tmp,     2*wordSize, argP);  // byte buffer offset
1356       __ lwa( dataLen, 1*wordSize, argP);  // #bytes to process
1357       __ lwz( crc,     5*wordSize, argP);  // current crc state
1358       __ add( data, data, tmp);            // Add byte buffer offset.
1359     } else {                                                         // Used for "updateBytes update".
1360       BLOCK_COMMENT("CRC32_updateBytes {");
1361       // crc     @ (SP + 4W) (32bit)
1362       // buf     @ (SP + 3W) (64bit ptr to byte array)
1363       // off     @ (SP + 2W) (32bit)
1364       // dataLen @ (SP + 1W) (32bit)
1365       // data = buf + off + base_offset
1366       __ ld(  data,    3*wordSize, argP);  // start of byte buffer
1367       __ lwa( tmp,     2*wordSize, argP);  // byte buffer offset
1368       __ lwa( dataLen, 1*wordSize, argP);  // #bytes to process
1369       __ add( data, data, tmp);            // add byte buffer offset
1370       __ lwz( crc,     4*wordSize, argP);  // current crc state
1371       __ addi(data, data, arrayOopDesc::base_offset_in_bytes(T_BYTE));
1372     }
1373 
1374     StubRoutines::ppc64::generate_load_crc_table_addr(_masm, table);
1375 
1376     // Performance measurements show the 1word and 2word variants to be almost equivalent,
1377     // with very light advantages for the 1word variant. We chose the 1word variant for
1378     // code compactness.
1379     __ kernel_crc32_1word(crc, data, dataLen, table, t0, t1, t2, t3, tc0, tc1, tc2, tc3);
1380 
1381     // Restore caller sp for c2i case and return.
1382     __ mr(R1_SP, R21_sender_SP); // Cut the stack back to where the caller started.
1383     __ blr();
1384 
1385     // Generate a vanilla native entry as the slow path.
1386     BLOCK_COMMENT("} CRC32_updateBytes(Buffer)");
1387     BIND(slow_path);
1388     __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native), R11_scratch1);
1389     return start;
1390   }
1391 
1392   return NULL;
1393 }
1394 
1395 // =============================================================================
1396 // Exceptions
1397 
1398 void TemplateInterpreterGenerator::generate_throw_exception() {
1399   Register Rexception    = R17_tos,
1400            Rcontinuation = R3_RET;
1401 
1402   // --------------------------------------------------------------------------
1403   // Entry point if an method returns with a pending exception (rethrow).
1404   Interpreter::_rethrow_exception_entry = __ pc();
1405   {
1406     __ restore_interpreter_state(R11_scratch1); // Sets R11_scratch1 = fp.
1407     __ ld(R12_scratch2, _ijava_state_neg(top_frame_sp), R11_scratch1);
1408     __ resize_frame_absolute(R12_scratch2, R11_scratch1, R0);
1409 
1410     // Compiled code destroys templateTableBase, reload.
1411     __ load_const_optimized(R25_templateTableBase, (address)Interpreter::dispatch_table((TosState)0), R11_scratch1);
1412   }
1413 
1414   // Entry point if a interpreted method throws an exception (throw).
1415   Interpreter::_throw_exception_entry = __ pc();
1416   {
1417     __ mr(Rexception, R3_RET);
1418 
1419     __ verify_thread();
1420     __ verify_oop(Rexception);
1421 
1422     // Expression stack must be empty before entering the VM in case of an exception.
1423     __ empty_expression_stack();
1424     // Find exception handler address and preserve exception oop.
1425     // Call C routine to find handler and jump to it.
1426     __ call_VM(Rexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception), Rexception);
1427     __ mtctr(Rcontinuation);
1428     // Push exception for exception handler bytecodes.
1429     __ push_ptr(Rexception);
1430 
1431     // Jump to exception handler (may be remove activation entry!).
1432     __ bctr();
1433   }
1434 
1435   // If the exception is not handled in the current frame the frame is
1436   // removed and the exception is rethrown (i.e. exception
1437   // continuation is _rethrow_exception).
1438   //
1439   // Note: At this point the bci is still the bxi for the instruction
1440   // which caused the exception and the expression stack is
1441   // empty. Thus, for any VM calls at this point, GC will find a legal
1442   // oop map (with empty expression stack).
1443 
1444   // In current activation
1445   // tos: exception
1446   // bcp: exception bcp
1447 
1448   // --------------------------------------------------------------------------
1449   // JVMTI PopFrame support
1450 
1451   Interpreter::_remove_activation_preserving_args_entry = __ pc();
1452   {
1453     // Set the popframe_processing bit in popframe_condition indicating that we are
1454     // currently handling popframe, so that call_VMs that may happen later do not
1455     // trigger new popframe handling cycles.
1456     __ lwz(R11_scratch1, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
1457     __ ori(R11_scratch1, R11_scratch1, JavaThread::popframe_processing_bit);
1458     __ stw(R11_scratch1, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
1459 
1460     // Empty the expression stack, as in normal exception handling.
1461     __ empty_expression_stack();
1462     __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false, /* install_monitor_exception */ false);
1463 
1464     // Check to see whether we are returning to a deoptimized frame.
1465     // (The PopFrame call ensures that the caller of the popped frame is
1466     // either interpreted or compiled and deoptimizes it if compiled.)
1467     // Note that we don't compare the return PC against the
1468     // deoptimization blob's unpack entry because of the presence of
1469     // adapter frames in C2.
1470     Label Lcaller_not_deoptimized;
1471     Register return_pc = R3_ARG1;
1472     __ ld(return_pc, 0, R1_SP);
1473     __ ld(return_pc, _abi(lr), return_pc);
1474     __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), return_pc);
1475     __ cmpdi(CCR0, R3_RET, 0);
1476     __ bne(CCR0, Lcaller_not_deoptimized);
1477 
1478     // The deoptimized case.
1479     // In this case, we can't call dispatch_next() after the frame is
1480     // popped, but instead must save the incoming arguments and restore
1481     // them after deoptimization has occurred.
1482     __ ld(R4_ARG2, in_bytes(Method::const_offset()), R19_method);
1483     __ lhz(R4_ARG2 /* number of params */, in_bytes(ConstMethod::size_of_parameters_offset()), R4_ARG2);
1484     __ slwi(R4_ARG2, R4_ARG2, Interpreter::logStackElementSize);
1485     __ addi(R5_ARG3, R18_locals, Interpreter::stackElementSize);
1486     __ subf(R5_ARG3, R4_ARG2, R5_ARG3);
1487     // Save these arguments.
1488     __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args), R16_thread, R4_ARG2, R5_ARG3);
1489 
1490     // Inform deoptimization that it is responsible for restoring these arguments.
1491     __ load_const_optimized(R11_scratch1, JavaThread::popframe_force_deopt_reexecution_bit);
1492     __ stw(R11_scratch1, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
1493 
1494     // Return from the current method into the deoptimization blob. Will eventually
1495     // end up in the deopt interpeter entry, deoptimization prepared everything that
1496     // we will reexecute the call that called us.
1497     __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*reload return_pc*/ return_pc, R11_scratch1, R12_scratch2);
1498     __ mtlr(return_pc);
1499     __ blr();
1500 
1501     // The non-deoptimized case.
1502     __ bind(Lcaller_not_deoptimized);
1503 
1504     // Clear the popframe condition flag.
1505     __ li(R0, 0);
1506     __ stw(R0, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
1507 
1508     // Get out of the current method and re-execute the call that called us.
1509     __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ noreg, R11_scratch1, R12_scratch2);
1510     __ restore_interpreter_state(R11_scratch1);
1511     __ ld(R12_scratch2, _ijava_state_neg(top_frame_sp), R11_scratch1);
1512     __ resize_frame_absolute(R12_scratch2, R11_scratch1, R0);
1513     if (ProfileInterpreter) {
1514       __ set_method_data_pointer_for_bcp();
1515       __ ld(R11_scratch1, 0, R1_SP);
1516       __ std(R28_mdx, _ijava_state_neg(mdx), R11_scratch1);
1517     }
1518 #if INCLUDE_JVMTI
1519     Label L_done;
1520 
1521     __ lbz(R11_scratch1, 0, R14_bcp);
1522     __ cmpwi(CCR0, R11_scratch1, Bytecodes::_invokestatic);
1523     __ bne(CCR0, L_done);
1524 
1525     // The member name argument must be restored if _invokestatic is re-executed after a PopFrame call.
1526     // Detect such a case in the InterpreterRuntime function and return the member name argument, or NULL.
1527     __ ld(R4_ARG2, 0, R18_locals);
1528     __ MacroAssembler::call_VM(R4_ARG2, CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null), R4_ARG2, R19_method, R14_bcp, false);
1529     __ restore_interpreter_state(R11_scratch1, /*bcp_and_mdx_only*/ true);
1530     __ cmpdi(CCR0, R4_ARG2, 0);
1531     __ beq(CCR0, L_done);
1532     __ std(R4_ARG2, wordSize, R15_esp);
1533     __ bind(L_done);
1534 #endif // INCLUDE_JVMTI
1535     __ dispatch_next(vtos);
1536   }
1537   // end of JVMTI PopFrame support
1538 
1539   // --------------------------------------------------------------------------
1540   // Remove activation exception entry.
1541   // This is jumped to if an interpreted method can't handle an exception itself
1542   // (we come from the throw/rethrow exception entry above). We're going to call
1543   // into the VM to find the exception handler in the caller, pop the current
1544   // frame and return the handler we calculated.
1545   Interpreter::_remove_activation_entry = __ pc();
1546   {
1547     __ pop_ptr(Rexception);
1548     __ verify_thread();
1549     __ verify_oop(Rexception);
1550     __ std(Rexception, in_bytes(JavaThread::vm_result_offset()), R16_thread);
1551 
1552     __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false, true);
1553     __ notify_method_exit(false, vtos, InterpreterMacroAssembler::SkipNotifyJVMTI, false);
1554 
1555     __ get_vm_result(Rexception);
1556 
1557     // We are done with this activation frame; find out where to go next.
1558     // The continuation point will be an exception handler, which expects
1559     // the following registers set up:
1560     //
1561     // RET:  exception oop
1562     // ARG2: Issuing PC (see generate_exception_blob()), only used if the caller is compiled.
1563 
1564     Register return_pc = R31; // Needs to survive the runtime call.
1565     __ ld(return_pc, 0, R1_SP);
1566     __ ld(return_pc, _abi(lr), return_pc);
1567     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), R16_thread, return_pc);
1568 
1569     // Remove the current activation.
1570     __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ noreg, R11_scratch1, R12_scratch2);
1571 
1572     __ mr(R4_ARG2, return_pc);
1573     __ mtlr(R3_RET);
1574     __ mr(R3_RET, Rexception);
1575     __ blr();
1576   }
1577 }
1578 
1579 // JVMTI ForceEarlyReturn support.
1580 // Returns "in the middle" of a method with a "fake" return value.
1581 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
1582 
1583   Register Rscratch1 = R11_scratch1,
1584            Rscratch2 = R12_scratch2;
1585 
1586   address entry = __ pc();
1587   __ empty_expression_stack();
1588 
1589   __ load_earlyret_value(state, Rscratch1);
1590 
1591   __ ld(Rscratch1, in_bytes(JavaThread::jvmti_thread_state_offset()), R16_thread);
1592   // Clear the earlyret state.
1593   __ li(R0, 0);
1594   __ stw(R0, in_bytes(JvmtiThreadState::earlyret_state_offset()), Rscratch1);
1595 
1596   __ remove_activation(state, false, false);
1597   // Copied from TemplateTable::_return.
1598   // Restoration of lr done by remove_activation.
1599   switch (state) {
1600     case ltos:
1601     case btos:
1602     case ctos:
1603     case stos:
1604     case atos:
1605     case itos: __ mr(R3_RET, R17_tos); break;
1606     case ftos:
1607     case dtos: __ fmr(F1_RET, F15_ftos); break;
1608     case vtos: // This might be a constructor. Final fields (and volatile fields on PPC64) need
1609                // to get visible before the reference to the object gets stored anywhere.
1610                __ membar(Assembler::StoreStore); break;
1611     default  : ShouldNotReachHere();
1612   }
1613   __ blr();
1614 
1615   return entry;
1616 } // end of ForceEarlyReturn support
1617 
1618 //-----------------------------------------------------------------------------
1619 // Helper for vtos entry point generation
1620 
1621 void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t,
1622                                                          address& bep,
1623                                                          address& cep,
1624                                                          address& sep,
1625                                                          address& aep,
1626                                                          address& iep,
1627                                                          address& lep,
1628                                                          address& fep,
1629                                                          address& dep,
1630                                                          address& vep) {
1631   assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
1632   Label L;
1633 
1634   aep = __ pc();  __ push_ptr();  __ b(L);
1635   fep = __ pc();  __ push_f();    __ b(L);
1636   dep = __ pc();  __ push_d();    __ b(L);
1637   lep = __ pc();  __ push_l();    __ b(L);
1638   __ align(32, 12, 24); // align L
1639   bep = cep = sep =
1640   iep = __ pc();  __ push_i();
1641   vep = __ pc();
1642   __ bind(L);
1643   generate_and_dispatch(t);
1644 }
1645 
1646 //-----------------------------------------------------------------------------
1647 // Generation of individual instructions
1648 
1649 // helpers for generate_and_dispatch
1650 
1651 InterpreterGenerator::InterpreterGenerator(StubQueue* code)
1652   : TemplateInterpreterGenerator(code) {
1653   generate_all(); // Down here so it can be "virtual".
1654 }
1655 
1656 //-----------------------------------------------------------------------------
1657 
1658 // Non-product code
1659 #ifndef PRODUCT
1660 address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
1661   //__ flush_bundle();
1662   address entry = __ pc();
1663 
1664   const char *bname = NULL;
1665   uint tsize = 0;
1666   switch(state) {
1667   case ftos:
1668     bname = "trace_code_ftos {";
1669     tsize = 2;
1670     break;
1671   case btos:
1672     bname = "trace_code_btos {";
1673     tsize = 2;
1674     break;
1675   case ctos:
1676     bname = "trace_code_ctos {";
1677     tsize = 2;
1678     break;
1679   case stos:
1680     bname = "trace_code_stos {";
1681     tsize = 2;
1682     break;
1683   case itos:
1684     bname = "trace_code_itos {";
1685     tsize = 2;
1686     break;
1687   case ltos:
1688     bname = "trace_code_ltos {";
1689     tsize = 3;
1690     break;
1691   case atos:
1692     bname = "trace_code_atos {";
1693     tsize = 2;
1694     break;
1695   case vtos:
1696     // Note: In case of vtos, the topmost of stack value could be a int or doubl
1697     // In case of a double (2 slots) we won't see the 2nd stack value.
1698     // Maybe we simply should print the topmost 3 stack slots to cope with the problem.
1699     bname = "trace_code_vtos {";
1700     tsize = 2;
1701 
1702     break;
1703   case dtos:
1704     bname = "trace_code_dtos {";
1705     tsize = 3;
1706     break;
1707   default:
1708     ShouldNotReachHere();
1709   }
1710   BLOCK_COMMENT(bname);
1711 
1712   // Support short-cut for TraceBytecodesAt.
1713   // Don't call into the VM if we don't want to trace to speed up things.
1714   Label Lskip_vm_call;
1715   if (TraceBytecodesAt > 0 && TraceBytecodesAt < max_intx) {
1716     int offs1 = __ load_const_optimized(R11_scratch1, (address) &TraceBytecodesAt, R0, true);
1717     int offs2 = __ load_const_optimized(R12_scratch2, (address) &BytecodeCounter::_counter_value, R0, true);
1718     __ ld(R11_scratch1, offs1, R11_scratch1);
1719     __ lwa(R12_scratch2, offs2, R12_scratch2);
1720     __ cmpd(CCR0, R12_scratch2, R11_scratch1);
1721     __ blt(CCR0, Lskip_vm_call);
1722   }
1723 
1724   __ push(state);
1725   // Load 2 topmost expression stack values.
1726   __ ld(R6_ARG4, tsize*Interpreter::stackElementSize, R15_esp);
1727   __ ld(R5_ARG3, Interpreter::stackElementSize, R15_esp);
1728   __ mflr(R31);
1729   __ call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::trace_bytecode), /* unused */ R4_ARG2, R5_ARG3, R6_ARG4, false);
1730   __ mtlr(R31);
1731   __ pop(state);
1732 
1733   if (TraceBytecodesAt > 0 && TraceBytecodesAt < max_intx) {
1734     __ bind(Lskip_vm_call);
1735   }
1736   __ blr();
1737   BLOCK_COMMENT("} trace_code");
1738   return entry;
1739 }
1740 
1741 void TemplateInterpreterGenerator::count_bytecode() {
1742   int offs = __ load_const_optimized(R11_scratch1, (address) &BytecodeCounter::_counter_value, R12_scratch2, true);
1743   __ lwz(R12_scratch2, offs, R11_scratch1);
1744   __ addi(R12_scratch2, R12_scratch2, 1);
1745   __ stw(R12_scratch2, offs, R11_scratch1);
1746 }
1747 
1748 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) {
1749   int offs = __ load_const_optimized(R11_scratch1, (address) &BytecodeHistogram::_counters[t->bytecode()], R12_scratch2, true);
1750   __ lwz(R12_scratch2, offs, R11_scratch1);
1751   __ addi(R12_scratch2, R12_scratch2, 1);
1752   __ stw(R12_scratch2, offs, R11_scratch1);
1753 }
1754 
1755 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) {
1756   const Register addr = R11_scratch1,
1757                  tmp  = R12_scratch2;
1758   // Get index, shift out old bytecode, bring in new bytecode, and store it.
1759   // _index = (_index >> log2_number_of_codes) |
1760   //          (bytecode << log2_number_of_codes);
1761   int offs1 = __ load_const_optimized(addr, (address)&BytecodePairHistogram::_index, tmp, true);
1762   __ lwz(tmp, offs1, addr);
1763   __ srwi(tmp, tmp, BytecodePairHistogram::log2_number_of_codes);
1764   __ ori(tmp, tmp, ((int) t->bytecode()) << BytecodePairHistogram::log2_number_of_codes);
1765   __ stw(tmp, offs1, addr);
1766 
1767   // Bump bucket contents.
1768   // _counters[_index] ++;
1769   int offs2 = __ load_const_optimized(addr, (address)&BytecodePairHistogram::_counters, R0, true);
1770   __ sldi(tmp, tmp, LogBytesPerInt);
1771   __ add(addr, tmp, addr);
1772   __ lwz(tmp, offs2, addr);
1773   __ addi(tmp, tmp, 1);
1774   __ stw(tmp, offs2, addr);
1775 }
1776 
1777 void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
1778   // Call a little run-time stub to avoid blow-up for each bytecode.
1779   // The run-time runtime saves the right registers, depending on
1780   // the tosca in-state for the given template.
1781 
1782   assert(Interpreter::trace_code(t->tos_in()) != NULL,
1783          "entry must have been generated");
1784 
1785   // Note: we destroy LR here.
1786   __ bl(Interpreter::trace_code(t->tos_in()));
1787 }
1788 
1789 void TemplateInterpreterGenerator::stop_interpreter_at() {
1790   Label L;
1791   int offs1 = __ load_const_optimized(R11_scratch1, (address) &StopInterpreterAt, R0, true);
1792   int offs2 = __ load_const_optimized(R12_scratch2, (address) &BytecodeCounter::_counter_value, R0, true);
1793   __ ld(R11_scratch1, offs1, R11_scratch1);
1794   __ lwa(R12_scratch2, offs2, R12_scratch2);
1795   __ cmpd(CCR0, R12_scratch2, R11_scratch1);
1796   __ bne(CCR0, L);
1797   __ illtrap();
1798   __ bind(L);
1799 }
1800 
1801 #endif // !PRODUCT
1802 #endif // !CC_INTERP