src/cpu/ppc/vm/templateInterpreter_ppc.cpp
Index Unified diffs Context diffs Sdiffs Patch New Old Previous File Next File 8144534.02 Cdiff src/cpu/ppc/vm/templateInterpreter_ppc.cpp

src/cpu/ppc/vm/templateInterpreter_ppc.cpp

Print this page

        

*** 22,1408 **** * questions. * */ #include "precompiled.hpp" - #ifndef CC_INTERP - #include "asm/macroAssembler.inline.hpp" - #include "interpreter/bytecodeHistogram.hpp" #include "interpreter/interpreter.hpp" ! #include "interpreter/interpreterGenerator.hpp" ! #include "interpreter/interpreterRuntime.hpp" ! #include "interpreter/interp_masm.hpp" ! #include "interpreter/templateTable.hpp" ! #include "oops/arrayOop.hpp" ! #include "oops/methodData.hpp" #include "oops/method.hpp" - #include "oops/oop.inline.hpp" - #include "prims/jvmtiExport.hpp" - #include "prims/jvmtiThreadState.hpp" - #include "runtime/arguments.hpp" - #include "runtime/deoptimization.hpp" #include "runtime/frame.inline.hpp" - #include "runtime/sharedRuntime.hpp" - #include "runtime/stubRoutines.hpp" - #include "runtime/synchronizer.hpp" - #include "runtime/timer.hpp" - #include "runtime/vframeArray.hpp" #include "utilities/debug.hpp" #include "utilities/macros.hpp" - #undef __ - #define __ _masm-> ! #ifdef PRODUCT ! #define BLOCK_COMMENT(str) /* nothing */ ! #else ! #define BLOCK_COMMENT(str) __ block_comment(str) ! #endif ! ! #define BIND(label) __ bind(label); BLOCK_COMMENT(#label ":") ! ! //----------------------------------------------------------------------------- ! ! // Actually we should never reach here since we do stack overflow checks before pushing any frame. ! address TemplateInterpreterGenerator::generate_StackOverflowError_handler() { ! address entry = __ pc(); ! __ unimplemented("generate_StackOverflowError_handler"); ! return entry; ! } ! ! address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(const char* name) { ! address entry = __ pc(); ! __ empty_expression_stack(); ! __ load_const_optimized(R4_ARG2, (address) name); ! // Index is in R17_tos. ! __ mr(R5_ARG3, R17_tos); ! __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException)); ! return entry; ! } ! ! #if 0 ! // Call special ClassCastException constructor taking object to cast ! // and target class as arguments. ! address TemplateInterpreterGenerator::generate_ClassCastException_verbose_handler() { ! address entry = __ pc(); ! ! // Expression stack must be empty before entering the VM if an ! // exception happened. ! __ empty_expression_stack(); ! ! // Thread will be loaded to R3_ARG1. ! // Target class oop is in register R5_ARG3 by convention! ! __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ClassCastException_verbose), R17_tos, R5_ARG3); ! // Above call must not return here since exception pending. ! DEBUG_ONLY(__ should_not_reach_here();) ! return entry; ! } ! #endif ! ! address TemplateInterpreterGenerator::generate_ClassCastException_handler() { ! address entry = __ pc(); ! // Expression stack must be empty before entering the VM if an ! // exception happened. ! __ empty_expression_stack(); ! ! // Load exception object. ! // Thread will be loaded to R3_ARG1. ! __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ClassCastException), R17_tos); ! #ifdef ASSERT ! // Above call must not return here since exception pending. ! __ should_not_reach_here(); ! #endif ! return entry; ! } ! ! address TemplateInterpreterGenerator::generate_exception_handler_common(const char* name, const char* message, bool pass_oop) { ! address entry = __ pc(); ! //__ untested("generate_exception_handler_common"); ! Register Rexception = R17_tos; ! ! // Expression stack must be empty before entering the VM if an exception happened. ! __ empty_expression_stack(); ! ! __ load_const_optimized(R4_ARG2, (address) name, R11_scratch1); ! if (pass_oop) { ! __ mr(R5_ARG3, Rexception); ! __ call_VM(Rexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception), false); ! } else { ! __ load_const_optimized(R5_ARG3, (address) message, R11_scratch1); ! __ call_VM(Rexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), false); ! } ! ! // Throw exception. ! __ mr(R3_ARG1, Rexception); ! __ load_const_optimized(R11_scratch1, Interpreter::throw_exception_entry(), R12_scratch2); ! __ mtctr(R11_scratch1); ! __ bctr(); ! ! return entry; ! } ! ! address TemplateInterpreterGenerator::generate_continuation_for(TosState state) { ! address entry = __ pc(); ! __ unimplemented("generate_continuation_for"); ! return entry; ! } ! ! // This entry is returned to when a call returns to the interpreter. ! // When we arrive here, we expect that the callee stack frame is already popped. ! address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step, size_t index_size) { ! address entry = __ pc(); ! ! // Move the value out of the return register back to the TOS cache of current frame. ! switch (state) { ! case ltos: ! case btos: ! case ctos: ! case stos: ! case atos: ! case itos: __ mr(R17_tos, R3_RET); break; // RET -> TOS cache ! case ftos: ! case dtos: __ fmr(F15_ftos, F1_RET); break; // TOS cache -> GR_FRET ! case vtos: break; // Nothing to do, this was a void return. default : ShouldNotReachHere(); } ! ! __ restore_interpreter_state(R11_scratch1); // Sets R11_scratch1 = fp. ! __ ld(R12_scratch2, _ijava_state_neg(top_frame_sp), R11_scratch1); ! __ resize_frame_absolute(R12_scratch2, R11_scratch1, R0); ! ! // Compiled code destroys templateTableBase, reload. ! __ load_const_optimized(R25_templateTableBase, (address)Interpreter::dispatch_table((TosState)0), R12_scratch2); ! ! if (state == atos) { ! __ profile_return_type(R3_RET, R11_scratch1, R12_scratch2); ! } ! ! const Register cache = R11_scratch1; ! const Register size = R12_scratch2; ! __ get_cache_and_index_at_bcp(cache, 1, index_size); ! ! // Get least significant byte of 64 bit value: ! #if defined(VM_LITTLE_ENDIAN) ! __ lbz(size, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset()), cache); ! #else ! __ lbz(size, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset()) + 7, cache); ! #endif ! __ sldi(size, size, Interpreter::logStackElementSize); ! __ add(R15_esp, R15_esp, size); ! __ dispatch_next(state, step); ! return entry; ! } ! ! address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, int step) { ! address entry = __ pc(); ! // If state != vtos, we're returning from a native method, which put it's result ! // into the result register. So move the value out of the return register back ! // to the TOS cache of current frame. ! ! switch (state) { ! case ltos: ! case btos: ! case ctos: ! case stos: ! case atos: ! case itos: __ mr(R17_tos, R3_RET); break; // GR_RET -> TOS cache ! case ftos: ! case dtos: __ fmr(F15_ftos, F1_RET); break; // TOS cache -> GR_FRET ! case vtos: break; // Nothing to do, this was a void return. ! default : ShouldNotReachHere(); ! } ! ! // Load LcpoolCache @@@ should be already set! ! __ get_constant_pool_cache(R27_constPoolCache); ! ! // Handle a pending exception, fall through if none. ! __ check_and_forward_exception(R11_scratch1, R12_scratch2); ! ! // Start executing bytecodes. ! __ dispatch_next(state, step); ! ! return entry; ! } ! ! // A result handler converts the native result into java format. ! // Use the shared code between c++ and template interpreter. ! address TemplateInterpreterGenerator::generate_result_handler_for(BasicType type) { ! return AbstractInterpreterGenerator::generate_result_handler_for(type); ! } ! ! address TemplateInterpreterGenerator::generate_safept_entry_for(TosState state, address runtime_entry) { ! address entry = __ pc(); ! ! __ push(state); ! __ call_VM(noreg, runtime_entry); ! __ dispatch_via(vtos, Interpreter::_normal_table.table_for(vtos)); ! ! return entry; ! } ! ! // Helpers for commoning out cases in the various type of method entries. ! ! // Increment invocation count & check for overflow. ! // ! // Note: checking for negative value instead of overflow ! // so we have a 'sticky' overflow test. ! // ! void TemplateInterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) { ! // Note: In tiered we increment either counters in method or in MDO depending if we're profiling or not. ! Register Rscratch1 = R11_scratch1; ! Register Rscratch2 = R12_scratch2; ! Register R3_counters = R3_ARG1; ! Label done; ! ! if (TieredCompilation) { ! const int increment = InvocationCounter::count_increment; ! const int mask = ((1 << Tier0InvokeNotifyFreqLog) - 1) << InvocationCounter::count_shift; ! Label no_mdo; ! if (ProfileInterpreter) { ! const Register Rmdo = Rscratch1; ! // If no method data exists, go to profile_continue. ! __ ld(Rmdo, in_bytes(Method::method_data_offset()), R19_method); ! __ cmpdi(CCR0, Rmdo, 0); ! __ beq(CCR0, no_mdo); ! ! // Increment backedge counter in the MDO. ! const int mdo_bc_offs = in_bytes(MethodData::backedge_counter_offset()) + in_bytes(InvocationCounter::counter_offset()); ! __ lwz(Rscratch2, mdo_bc_offs, Rmdo); ! __ addi(Rscratch2, Rscratch2, increment); ! __ stw(Rscratch2, mdo_bc_offs, Rmdo); ! __ load_const_optimized(Rscratch1, mask, R0); ! __ and_(Rscratch1, Rscratch2, Rscratch1); ! __ bne(CCR0, done); ! __ b(*overflow); ! } ! ! // Increment counter in MethodCounters*. ! const int mo_bc_offs = in_bytes(MethodCounters::backedge_counter_offset()) + in_bytes(InvocationCounter::counter_offset()); ! __ bind(no_mdo); ! __ get_method_counters(R19_method, R3_counters, done); ! __ lwz(Rscratch2, mo_bc_offs, R3_counters); ! __ addi(Rscratch2, Rscratch2, increment); ! __ stw(Rscratch2, mo_bc_offs, R3_counters); ! __ load_const_optimized(Rscratch1, mask, R0); ! __ and_(Rscratch1, Rscratch2, Rscratch1); ! __ beq(CCR0, *overflow); ! ! __ bind(done); ! ! } else { ! ! // Update standard invocation counters. ! Register Rsum_ivc_bec = R4_ARG2; ! __ get_method_counters(R19_method, R3_counters, done); ! __ increment_invocation_counter(R3_counters, Rsum_ivc_bec, R12_scratch2); ! // Increment interpreter invocation counter. ! if (ProfileInterpreter) { // %%% Merge this into methodDataOop. ! __ lwz(R12_scratch2, in_bytes(MethodCounters::interpreter_invocation_counter_offset()), R3_counters); ! __ addi(R12_scratch2, R12_scratch2, 1); ! __ stw(R12_scratch2, in_bytes(MethodCounters::interpreter_invocation_counter_offset()), R3_counters); ! } ! // Check if we must create a method data obj. ! if (ProfileInterpreter && profile_method != NULL) { ! const Register profile_limit = Rscratch1; ! int pl_offs = __ load_const_optimized(profile_limit, &InvocationCounter::InterpreterProfileLimit, R0, true); ! __ lwz(profile_limit, pl_offs, profile_limit); ! // Test to see if we should create a method data oop. ! __ cmpw(CCR0, Rsum_ivc_bec, profile_limit); ! __ blt(CCR0, *profile_method_continue); ! // If no method data exists, go to profile_method. ! __ test_method_data_pointer(*profile_method); ! } ! // Finally check for counter overflow. ! if (overflow) { ! const Register invocation_limit = Rscratch1; ! int il_offs = __ load_const_optimized(invocation_limit, &InvocationCounter::InterpreterInvocationLimit, R0, true); ! __ lwz(invocation_limit, il_offs, invocation_limit); ! assert(4 == sizeof(InvocationCounter::InterpreterInvocationLimit), "unexpected field size"); ! __ cmpw(CCR0, Rsum_ivc_bec, invocation_limit); ! __ bge(CCR0, *overflow); ! } ! ! __ bind(done); ! } ! } ! ! // Generate code to initiate compilation on invocation counter overflow. ! void TemplateInterpreterGenerator::generate_counter_overflow(Label& continue_entry) { ! // Generate code to initiate compilation on the counter overflow. ! ! // InterpreterRuntime::frequency_counter_overflow takes one arguments, ! // which indicates if the counter overflow occurs at a backwards branch (NULL bcp) ! // We pass zero in. ! // The call returns the address of the verified entry point for the method or NULL ! // if the compilation did not complete (either went background or bailed out). ! // ! // Unlike the C++ interpreter above: Check exceptions! ! // Assumption: Caller must set the flag "do_not_unlock_if_sychronized" if the monitor of a sync'ed ! // method has not yet been created. Thus, no unlocking of a non-existing monitor can occur. ! ! __ li(R4_ARG2, 0); ! __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), R4_ARG2, true); ! ! // Returns verified_entry_point or NULL. ! // We ignore it in any case. ! __ b(continue_entry); ! } ! ! void TemplateInterpreterGenerator::generate_stack_overflow_check(Register Rmem_frame_size, Register Rscratch1) { ! assert_different_registers(Rmem_frame_size, Rscratch1); ! __ generate_stack_overflow_check_with_compare_and_throw(Rmem_frame_size, Rscratch1); ! } ! ! void TemplateInterpreterGenerator::unlock_method(bool check_exceptions) { ! __ unlock_object(R26_monitor, check_exceptions); ! } ! ! // Lock the current method, interpreter register window must be set up! ! void TemplateInterpreterGenerator::lock_method(Register Rflags, Register Rscratch1, Register Rscratch2, bool flags_preloaded) { ! const Register Robj_to_lock = Rscratch2; ! ! { ! if (!flags_preloaded) { ! __ lwz(Rflags, method_(access_flags)); ! } ! ! #ifdef ASSERT ! // Check if methods needs synchronization. ! { ! Label Lok; ! __ testbitdi(CCR0, R0, Rflags, JVM_ACC_SYNCHRONIZED_BIT); ! __ btrue(CCR0,Lok); ! __ stop("method doesn't need synchronization"); ! __ bind(Lok); ! } ! #endif // ASSERT ! } ! ! // Get synchronization object to Rscratch2. ! { ! const int mirror_offset = in_bytes(Klass::java_mirror_offset()); ! Label Lstatic; ! Label Ldone; ! ! __ testbitdi(CCR0, R0, Rflags, JVM_ACC_STATIC_BIT); ! __ btrue(CCR0, Lstatic); ! ! // Non-static case: load receiver obj from stack and we're done. ! __ ld(Robj_to_lock, R18_locals); ! __ b(Ldone); ! ! __ bind(Lstatic); // Static case: Lock the java mirror ! __ ld(Robj_to_lock, in_bytes(Method::const_offset()), R19_method); ! __ ld(Robj_to_lock, in_bytes(ConstMethod::constants_offset()), Robj_to_lock); ! __ ld(Robj_to_lock, ConstantPool::pool_holder_offset_in_bytes(), Robj_to_lock); ! __ ld(Robj_to_lock, mirror_offset, Robj_to_lock); ! ! __ bind(Ldone); ! __ verify_oop(Robj_to_lock); ! } ! ! // Got the oop to lock => execute! ! __ add_monitor_to_stack(true, Rscratch1, R0); ! ! __ std(Robj_to_lock, BasicObjectLock::obj_offset_in_bytes(), R26_monitor); ! __ lock_object(R26_monitor, Robj_to_lock); ! } ! ! // Generate a fixed interpreter frame for pure interpreter ! // and I2N native transition frames. ! // ! // Before (stack grows downwards): ! // ! // | ... | ! // |------------- | ! // | java arg0 | ! // | ... | ! // | java argn | ! // | | <- R15_esp ! // | | ! // |--------------| ! // | abi_112 | ! // | | <- R1_SP ! // |==============| ! // ! // ! // After: ! // ! // | ... | ! // | java arg0 |<- R18_locals ! // | ... | ! // | java argn | ! // |--------------| ! // | | ! // | java locals | ! // | | ! // |--------------| ! // | abi_48 | ! // |==============| ! // | | ! // | istate | ! // | | ! // |--------------| ! // | monitor |<- R26_monitor ! // |--------------| ! // | |<- R15_esp ! // | expression | ! // | stack | ! // | | ! // |--------------| ! // | | ! // | abi_112 |<- R1_SP ! // |==============| ! // ! // The top most frame needs an abi space of 112 bytes. This space is needed, ! // since we call to c. The c function may spill their arguments to the caller ! // frame. When we call to java, we don't need these spill slots. In order to save ! // space on the stack, we resize the caller. However, java local reside in ! // the caller frame and the frame has to be increased. The frame_size for the ! // current frame was calculated based on max_stack as size for the expression ! // stack. At the call, just a part of the expression stack might be used. ! // We don't want to waste this space and cut the frame back accordingly. ! // The resulting amount for resizing is calculated as follows: ! // resize = (number_of_locals - number_of_arguments) * slot_size ! // + (R1_SP - R15_esp) + 48 ! // ! // The size for the callee frame is calculated: ! // framesize = 112 + max_stack + monitor + state_size ! // ! // maxstack: Max number of slots on the expression stack, loaded from the method. ! // monitor: We statically reserve room for one monitor object. ! // state_size: We save the current state of the interpreter to this area. ! // ! void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call, Register Rsize_of_parameters, Register Rsize_of_locals) { ! Register parent_frame_resize = R6_ARG4, // Frame will grow by this number of bytes. ! top_frame_size = R7_ARG5, ! Rconst_method = R8_ARG6; ! ! assert_different_registers(Rsize_of_parameters, Rsize_of_locals, parent_frame_resize, top_frame_size); ! ! __ ld(Rconst_method, method_(const)); ! __ lhz(Rsize_of_parameters /* number of params */, ! in_bytes(ConstMethod::size_of_parameters_offset()), Rconst_method); ! if (native_call) { ! // If we're calling a native method, we reserve space for the worst-case signature ! // handler varargs vector, which is max(Argument::n_register_parameters, parameter_count+2). ! // We add two slots to the parameter_count, one for the jni ! // environment and one for a possible native mirror. ! Label skip_native_calculate_max_stack; ! __ addi(top_frame_size, Rsize_of_parameters, 2); ! __ cmpwi(CCR0, top_frame_size, Argument::n_register_parameters); ! __ bge(CCR0, skip_native_calculate_max_stack); ! __ li(top_frame_size, Argument::n_register_parameters); ! __ bind(skip_native_calculate_max_stack); ! __ sldi(Rsize_of_parameters, Rsize_of_parameters, Interpreter::logStackElementSize); ! __ sldi(top_frame_size, top_frame_size, Interpreter::logStackElementSize); ! __ sub(parent_frame_resize, R1_SP, R15_esp); // <0, off by Interpreter::stackElementSize! ! assert(Rsize_of_locals == noreg, "Rsize_of_locals not initialized"); // Only relevant value is Rsize_of_parameters. ! } else { ! __ lhz(Rsize_of_locals /* number of params */, in_bytes(ConstMethod::size_of_locals_offset()), Rconst_method); ! __ sldi(Rsize_of_parameters, Rsize_of_parameters, Interpreter::logStackElementSize); ! __ sldi(Rsize_of_locals, Rsize_of_locals, Interpreter::logStackElementSize); ! __ lhz(top_frame_size, in_bytes(ConstMethod::max_stack_offset()), Rconst_method); ! __ sub(R11_scratch1, Rsize_of_locals, Rsize_of_parameters); // >=0 ! __ sub(parent_frame_resize, R1_SP, R15_esp); // <0, off by Interpreter::stackElementSize! ! __ sldi(top_frame_size, top_frame_size, Interpreter::logStackElementSize); ! __ add(parent_frame_resize, parent_frame_resize, R11_scratch1); ! } ! ! // Compute top frame size. ! __ addi(top_frame_size, top_frame_size, frame::abi_reg_args_size + frame::ijava_state_size); ! ! // Cut back area between esp and max_stack. ! __ addi(parent_frame_resize, parent_frame_resize, frame::abi_minframe_size - Interpreter::stackElementSize); ! ! __ round_to(top_frame_size, frame::alignment_in_bytes); ! __ round_to(parent_frame_resize, frame::alignment_in_bytes); ! // parent_frame_resize = (locals-parameters) - (ESP-SP-ABI48) Rounded to frame alignment size. ! // Enlarge by locals-parameters (not in case of native_call), shrink by ESP-SP-ABI48. ! ! { ! // -------------------------------------------------------------------------- ! // Stack overflow check ! ! Label cont; ! __ add(R11_scratch1, parent_frame_resize, top_frame_size); ! generate_stack_overflow_check(R11_scratch1, R12_scratch2); ! } ! ! // Set up interpreter state registers. ! ! __ add(R18_locals, R15_esp, Rsize_of_parameters); ! __ ld(R27_constPoolCache, in_bytes(ConstMethod::constants_offset()), Rconst_method); ! __ ld(R27_constPoolCache, ConstantPool::cache_offset_in_bytes(), R27_constPoolCache); ! ! // Set method data pointer. ! if (ProfileInterpreter) { ! Label zero_continue; ! __ ld(R28_mdx, method_(method_data)); ! __ cmpdi(CCR0, R28_mdx, 0); ! __ beq(CCR0, zero_continue); ! __ addi(R28_mdx, R28_mdx, in_bytes(MethodData::data_offset())); ! __ bind(zero_continue); ! } ! ! if (native_call) { ! __ li(R14_bcp, 0); // Must initialize. ! } else { ! __ add(R14_bcp, in_bytes(ConstMethod::codes_offset()), Rconst_method); ! } ! ! // Resize parent frame. ! __ mflr(R12_scratch2); ! __ neg(parent_frame_resize, parent_frame_resize); ! __ resize_frame(parent_frame_resize, R11_scratch1); ! __ std(R12_scratch2, _abi(lr), R1_SP); ! ! __ addi(R26_monitor, R1_SP, - frame::ijava_state_size); ! __ addi(R15_esp, R26_monitor, - Interpreter::stackElementSize); ! ! // Store values. ! // R15_esp, R14_bcp, R26_monitor, R28_mdx are saved at java calls ! // in InterpreterMacroAssembler::call_from_interpreter. ! __ std(R19_method, _ijava_state_neg(method), R1_SP); ! __ std(R21_sender_SP, _ijava_state_neg(sender_sp), R1_SP); ! __ std(R27_constPoolCache, _ijava_state_neg(cpoolCache), R1_SP); ! __ std(R18_locals, _ijava_state_neg(locals), R1_SP); ! ! // Note: esp, bcp, monitor, mdx live in registers. Hence, the correct version can only ! // be found in the frame after save_interpreter_state is done. This is always true ! // for non-top frames. But when a signal occurs, dumping the top frame can go wrong, ! // because e.g. frame::interpreter_frame_bcp() will not access the correct value ! // (Enhanced Stack Trace). ! // The signal handler does not save the interpreter state into the frame. ! __ li(R0, 0); ! #ifdef ASSERT ! // Fill remaining slots with constants. ! __ load_const_optimized(R11_scratch1, 0x5afe); ! __ load_const_optimized(R12_scratch2, 0xdead); ! #endif ! // We have to initialize some frame slots for native calls (accessed by GC). ! if (native_call) { ! __ std(R26_monitor, _ijava_state_neg(monitors), R1_SP); ! __ std(R14_bcp, _ijava_state_neg(bcp), R1_SP); ! if (ProfileInterpreter) { __ std(R28_mdx, _ijava_state_neg(mdx), R1_SP); } ! } ! #ifdef ASSERT ! else { ! __ std(R12_scratch2, _ijava_state_neg(monitors), R1_SP); ! __ std(R12_scratch2, _ijava_state_neg(bcp), R1_SP); ! __ std(R12_scratch2, _ijava_state_neg(mdx), R1_SP); ! } ! __ std(R11_scratch1, _ijava_state_neg(ijava_reserved), R1_SP); ! __ std(R12_scratch2, _ijava_state_neg(esp), R1_SP); ! __ std(R12_scratch2, _ijava_state_neg(lresult), R1_SP); ! __ std(R12_scratch2, _ijava_state_neg(fresult), R1_SP); ! #endif ! __ subf(R12_scratch2, top_frame_size, R1_SP); ! __ std(R0, _ijava_state_neg(oop_tmp), R1_SP); ! __ std(R12_scratch2, _ijava_state_neg(top_frame_sp), R1_SP); ! ! // Push top frame. ! __ push_frame(top_frame_size, R11_scratch1); ! } ! ! // End of helpers ! ! ! // Support abs and sqrt like in compiler. ! // For others we can use a normal (native) entry. ! ! inline bool math_entry_available(AbstractInterpreter::MethodKind kind) { ! if (!InlineIntrinsics) return false; ! ! return ((kind==Interpreter::java_lang_math_sqrt && VM_Version::has_fsqrt()) || ! (kind==Interpreter::java_lang_math_abs)); ! } ! ! address TemplateInterpreterGenerator::generate_math_entry(AbstractInterpreter::MethodKind kind) { ! if (!math_entry_available(kind)) { ! NOT_PRODUCT(__ should_not_reach_here();) ! return NULL; ! } ! ! address entry = __ pc(); ! ! __ lfd(F1_RET, Interpreter::stackElementSize, R15_esp); ! ! // Pop c2i arguments (if any) off when we return. ! #ifdef ASSERT ! __ ld(R9_ARG7, 0, R1_SP); ! __ ld(R10_ARG8, 0, R21_sender_SP); ! __ cmpd(CCR0, R9_ARG7, R10_ARG8); ! __ asm_assert_eq("backlink", 0x545); ! #endif // ASSERT ! __ mr(R1_SP, R21_sender_SP); // Cut the stack back to where the caller started. ! ! if (kind == Interpreter::java_lang_math_sqrt) { ! __ fsqrt(F1_RET, F1_RET); ! } else if (kind == Interpreter::java_lang_math_abs) { ! __ fabs(F1_RET, F1_RET); ! } else { ! ShouldNotReachHere(); ! } ! ! // And we're done. ! __ blr(); ! ! __ flush(); ! ! return entry; ! } ! ! // Interpreter stub for calling a native method. (asm interpreter) ! // This sets up a somewhat different looking stack for calling the ! // native method than the typical interpreter frame setup. ! // ! // On entry: ! // R19_method - method ! // R16_thread - JavaThread* ! // R15_esp - intptr_t* sender tos ! // ! // abstract stack (grows up) ! // [ IJava (caller of JNI callee) ] <-- ASP ! // ... ! address TemplateInterpreterGenerator::generate_native_entry(bool synchronized) { ! ! address entry = __ pc(); ! ! const bool inc_counter = UseCompiler || CountCompiledCalls || LogTouchedMethods; ! ! // ----------------------------------------------------------------------------- ! // Allocate a new frame that represents the native callee (i2n frame). ! // This is not a full-blown interpreter frame, but in particular, the ! // following registers are valid after this: ! // - R19_method ! // - R18_local (points to start of argumuments to native function) ! // ! // abstract stack (grows up) ! // [ IJava (caller of JNI callee) ] <-- ASP ! // ... ! ! const Register signature_handler_fd = R11_scratch1; ! const Register pending_exception = R0; ! const Register result_handler_addr = R31; ! const Register native_method_fd = R11_scratch1; ! const Register access_flags = R22_tmp2; ! const Register active_handles = R11_scratch1; // R26_monitor saved to state. ! const Register sync_state = R12_scratch2; ! const Register sync_state_addr = sync_state; // Address is dead after use. ! const Register suspend_flags = R11_scratch1; ! ! //============================================================================= ! // Allocate new frame and initialize interpreter state. ! ! Label exception_return; ! Label exception_return_sync_check; ! Label stack_overflow_return; ! ! // Generate new interpreter state and jump to stack_overflow_return in case of ! // a stack overflow. ! //generate_compute_interpreter_state(stack_overflow_return); ! ! Register size_of_parameters = R22_tmp2; ! ! generate_fixed_frame(true, size_of_parameters, noreg /* unused */); ! ! //============================================================================= ! // Increment invocation counter. On overflow, entry to JNI method ! // will be compiled. ! Label invocation_counter_overflow, continue_after_compile; ! if (inc_counter) { ! if (synchronized) { ! // Since at this point in the method invocation the exception handler ! // would try to exit the monitor of synchronized methods which hasn't ! // been entered yet, we set the thread local variable ! // _do_not_unlock_if_synchronized to true. If any exception was thrown by ! // runtime, exception handling i.e. unlock_if_synchronized_method will ! // check this thread local flag. ! // This flag has two effects, one is to force an unwind in the topmost ! // interpreter frame and not perform an unlock while doing so. ! __ li(R0, 1); ! __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread); ! } ! generate_counter_incr(&invocation_counter_overflow, NULL, NULL); ! ! BIND(continue_after_compile); ! // Reset the _do_not_unlock_if_synchronized flag. ! if (synchronized) { ! __ li(R0, 0); ! __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread); ! } ! } ! ! // access_flags = method->access_flags(); ! // Load access flags. ! assert(access_flags->is_nonvolatile(), ! "access_flags must be in a non-volatile register"); ! // Type check. ! assert(4 == sizeof(AccessFlags), "unexpected field size"); ! __ lwz(access_flags, method_(access_flags)); ! ! // We don't want to reload R19_method and access_flags after calls ! // to some helper functions. ! assert(R19_method->is_nonvolatile(), ! "R19_method must be a non-volatile register"); ! ! // Check for synchronized methods. Must happen AFTER invocation counter ! // check, so method is not locked if counter overflows. ! ! if (synchronized) { ! lock_method(access_flags, R11_scratch1, R12_scratch2, true); ! ! // Update monitor in state. ! __ ld(R11_scratch1, 0, R1_SP); ! __ std(R26_monitor, _ijava_state_neg(monitors), R11_scratch1); ! } ! ! // jvmti/jvmpi support ! __ notify_method_entry(); ! ! //============================================================================= ! // Get and call the signature handler. ! ! __ ld(signature_handler_fd, method_(signature_handler)); ! Label call_signature_handler; ! ! __ cmpdi(CCR0, signature_handler_fd, 0); ! __ bne(CCR0, call_signature_handler); ! ! // Method has never been called. Either generate a specialized ! // handler or point to the slow one. ! // ! // Pass parameter 'false' to avoid exception check in call_VM. ! __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), R19_method, false); ! ! // Check for an exception while looking up the target method. If we ! // incurred one, bail. ! __ ld(pending_exception, thread_(pending_exception)); ! __ cmpdi(CCR0, pending_exception, 0); ! __ bne(CCR0, exception_return_sync_check); // Has pending exception. ! ! // Reload signature handler, it may have been created/assigned in the meanwhile. ! __ ld(signature_handler_fd, method_(signature_handler)); ! __ twi_0(signature_handler_fd); // Order wrt. load of klass mirror and entry point (isync is below). ! ! BIND(call_signature_handler); ! ! // Before we call the signature handler we push a new frame to ! // protect the interpreter frame volatile registers when we return ! // from jni but before we can get back to Java. ! ! // First set the frame anchor while the SP/FP registers are ! // convenient and the slow signature handler can use this same frame ! // anchor. ! ! // We have a TOP_IJAVA_FRAME here, which belongs to us. ! __ set_top_ijava_frame_at_SP_as_last_Java_frame(R1_SP, R12_scratch2/*tmp*/); ! ! // Now the interpreter frame (and its call chain) have been ! // invalidated and flushed. We are now protected against eager ! // being enabled in native code. Even if it goes eager the ! // registers will be reloaded as clean and we will invalidate after ! // the call so no spurious flush should be possible. ! ! // Call signature handler and pass locals address. ! // ! // Our signature handlers copy required arguments to the C stack ! // (outgoing C args), R3_ARG1 to R10_ARG8, and FARG1 to FARG13. ! __ mr(R3_ARG1, R18_locals); ! #if !defined(ABI_ELFv2) ! __ ld(signature_handler_fd, 0, signature_handler_fd); ! #endif ! ! __ call_stub(signature_handler_fd); ! ! // Remove the register parameter varargs slots we allocated in ! // compute_interpreter_state. SP+16 ends up pointing to the ABI ! // outgoing argument area. ! // ! // Not needed on PPC64. ! //__ add(SP, SP, Argument::n_register_parameters*BytesPerWord); ! ! assert(result_handler_addr->is_nonvolatile(), "result_handler_addr must be in a non-volatile register"); ! // Save across call to native method. ! __ mr(result_handler_addr, R3_RET); ! ! __ isync(); // Acquire signature handler before trying to fetch the native entry point and klass mirror. ! ! // Set up fixed parameters and call the native method. ! // If the method is static, get mirror into R4_ARG2. ! { ! Label method_is_not_static; ! // Access_flags is non-volatile and still, no need to restore it. ! ! // Restore access flags. ! __ testbitdi(CCR0, R0, access_flags, JVM_ACC_STATIC_BIT); ! __ bfalse(CCR0, method_is_not_static); ! ! // constants = method->constants(); ! __ ld(R11_scratch1, in_bytes(Method::const_offset()), R19_method); ! __ ld(R11_scratch1, in_bytes(ConstMethod::constants_offset()), R11_scratch1); ! // pool_holder = method->constants()->pool_holder(); ! __ ld(R11_scratch1/*pool_holder*/, ConstantPool::pool_holder_offset_in_bytes(), ! R11_scratch1/*constants*/); ! ! const int mirror_offset = in_bytes(Klass::java_mirror_offset()); ! ! // mirror = pool_holder->klass_part()->java_mirror(); ! __ ld(R0/*mirror*/, mirror_offset, R11_scratch1/*pool_holder*/); ! // state->_native_mirror = mirror; ! ! __ ld(R11_scratch1, 0, R1_SP); ! __ std(R0/*mirror*/, _ijava_state_neg(oop_tmp), R11_scratch1); ! // R4_ARG2 = &state->_oop_temp; ! __ addi(R4_ARG2, R11_scratch1, _ijava_state_neg(oop_tmp)); ! BIND(method_is_not_static); ! } ! ! // At this point, arguments have been copied off the stack into ! // their JNI positions. Oops are boxed in-place on the stack, with ! // handles copied to arguments. The result handler address is in a ! // register. ! ! // Pass JNIEnv address as first parameter. ! __ addir(R3_ARG1, thread_(jni_environment)); ! ! // Load the native_method entry before we change the thread state. ! __ ld(native_method_fd, method_(native_function)); ! ! //============================================================================= ! // Transition from _thread_in_Java to _thread_in_native. As soon as ! // we make this change the safepoint code needs to be certain that ! // the last Java frame we established is good. The pc in that frame ! // just needs to be near here not an actual return address. ! ! // We use release_store_fence to update values like the thread state, where ! // we don't want the current thread to continue until all our prior memory ! // accesses (including the new thread state) are visible to other threads. ! __ li(R0, _thread_in_native); ! __ release(); ! ! // TODO PPC port assert(4 == JavaThread::sz_thread_state(), "unexpected field size"); ! __ stw(R0, thread_(thread_state)); ! ! if (UseMembar) { ! __ fence(); ! } ! ! //============================================================================= ! // Call the native method. Argument registers must not have been ! // overwritten since "__ call_stub(signature_handler);" (except for ! // ARG1 and ARG2 for static methods). ! __ call_c(native_method_fd); ! ! __ li(R0, 0); ! __ ld(R11_scratch1, 0, R1_SP); ! __ std(R3_RET, _ijava_state_neg(lresult), R11_scratch1); ! __ stfd(F1_RET, _ijava_state_neg(fresult), R11_scratch1); ! __ std(R0/*mirror*/, _ijava_state_neg(oop_tmp), R11_scratch1); // reset ! ! // Note: C++ interpreter needs the following here: ! // The frame_manager_lr field, which we use for setting the last ! // java frame, gets overwritten by the signature handler. Restore ! // it now. ! //__ get_PC_trash_LR(R11_scratch1); ! //__ std(R11_scratch1, _top_ijava_frame_abi(frame_manager_lr), R1_SP); ! ! // Because of GC R19_method may no longer be valid. ! ! // Block, if necessary, before resuming in _thread_in_Java state. ! // In order for GC to work, don't clear the last_Java_sp until after ! // blocking. ! ! //============================================================================= ! // Switch thread to "native transition" state before reading the ! // synchronization state. This additional state is necessary ! // because reading and testing the synchronization state is not ! // atomic w.r.t. GC, as this scenario demonstrates: Java thread A, ! // in _thread_in_native state, loads _not_synchronized and is ! // preempted. VM thread changes sync state to synchronizing and ! // suspends threads for GC. Thread A is resumed to finish this ! // native method, but doesn't block here since it didn't see any ! // synchronization in progress, and escapes. ! ! // We use release_store_fence to update values like the thread state, where ! // we don't want the current thread to continue until all our prior memory ! // accesses (including the new thread state) are visible to other threads. ! __ li(R0/*thread_state*/, _thread_in_native_trans); ! __ release(); ! __ stw(R0/*thread_state*/, thread_(thread_state)); ! if (UseMembar) { ! __ fence(); ! } ! // Write serialization page so that the VM thread can do a pseudo remote ! // membar. We use the current thread pointer to calculate a thread ! // specific offset to write to within the page. This minimizes bus ! // traffic due to cache line collision. ! else { ! __ serialize_memory(R16_thread, R11_scratch1, R12_scratch2); ! } ! ! // Now before we return to java we must look for a current safepoint ! // (a new safepoint can not start since we entered native_trans). ! // We must check here because a current safepoint could be modifying ! // the callers registers right this moment. ! ! // Acquire isn't strictly necessary here because of the fence, but ! // sync_state is declared to be volatile, so we do it anyway ! // (cmp-br-isync on one path, release (same as acquire on PPC64) on the other path). ! int sync_state_offs = __ load_const_optimized(sync_state_addr, SafepointSynchronize::address_of_state(), /*temp*/R0, true); ! ! // TODO PPC port assert(4 == SafepointSynchronize::sz_state(), "unexpected field size"); ! __ lwz(sync_state, sync_state_offs, sync_state_addr); ! ! // TODO PPC port assert(4 == Thread::sz_suspend_flags(), "unexpected field size"); ! __ lwz(suspend_flags, thread_(suspend_flags)); ! ! Label sync_check_done; ! Label do_safepoint; ! // No synchronization in progress nor yet synchronized. ! __ cmpwi(CCR0, sync_state, SafepointSynchronize::_not_synchronized); ! // Not suspended. ! __ cmpwi(CCR1, suspend_flags, 0); ! ! __ bne(CCR0, do_safepoint); ! __ beq(CCR1, sync_check_done); ! __ bind(do_safepoint); ! __ isync(); ! // Block. We do the call directly and leave the current ! // last_Java_frame setup undisturbed. We must save any possible ! // native result across the call. No oop is present. ! ! __ mr(R3_ARG1, R16_thread); ! #if defined(ABI_ELFv2) ! __ call_c(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans), ! relocInfo::none); ! #else ! __ call_c(CAST_FROM_FN_PTR(FunctionDescriptor*, JavaThread::check_special_condition_for_native_trans), ! relocInfo::none); ! #endif ! ! __ bind(sync_check_done); ! ! //============================================================================= ! // <<<<<< Back in Interpreter Frame >>>>> ! ! // We are in thread_in_native_trans here and back in the normal ! // interpreter frame. We don't have to do anything special about ! // safepoints and we can switch to Java mode anytime we are ready. ! ! // Note: frame::interpreter_frame_result has a dependency on how the ! // method result is saved across the call to post_method_exit. For ! // native methods it assumes that the non-FPU/non-void result is ! // saved in _native_lresult and a FPU result in _native_fresult. If ! // this changes then the interpreter_frame_result implementation ! // will need to be updated too. ! ! // On PPC64, we have stored the result directly after the native call. ! ! //============================================================================= ! // Back in Java ! ! // We use release_store_fence to update values like the thread state, where ! // we don't want the current thread to continue until all our prior memory ! // accesses (including the new thread state) are visible to other threads. ! __ li(R0/*thread_state*/, _thread_in_Java); ! __ release(); ! __ stw(R0/*thread_state*/, thread_(thread_state)); ! if (UseMembar) { ! __ fence(); ! } ! ! __ reset_last_Java_frame(); ! ! // Jvmdi/jvmpi support. Whether we've got an exception pending or ! // not, and whether unlocking throws an exception or not, we notify ! // on native method exit. If we do have an exception, we'll end up ! // in the caller's context to handle it, so if we don't do the ! // notify here, we'll drop it on the floor. ! __ notify_method_exit(true/*native method*/, ! ilgl /*illegal state (not used for native methods)*/, ! InterpreterMacroAssembler::NotifyJVMTI, ! false /*check_exceptions*/); ! ! //============================================================================= ! // Handle exceptions ! ! if (synchronized) { ! // Don't check for exceptions since we're still in the i2n frame. Do that ! // manually afterwards. ! unlock_method(false); ! } ! ! // Reset active handles after returning from native. ! // thread->active_handles()->clear(); ! __ ld(active_handles, thread_(active_handles)); ! // TODO PPC port assert(4 == JNIHandleBlock::top_size_in_bytes(), "unexpected field size"); ! __ li(R0, 0); ! __ stw(R0, JNIHandleBlock::top_offset_in_bytes(), active_handles); ! ! Label exception_return_sync_check_already_unlocked; ! __ ld(R0/*pending_exception*/, thread_(pending_exception)); ! __ cmpdi(CCR0, R0/*pending_exception*/, 0); ! __ bne(CCR0, exception_return_sync_check_already_unlocked); ! ! //----------------------------------------------------------------------------- ! // No exception pending. ! ! // Move native method result back into proper registers and return. ! // Invoke result handler (may unbox/promote). ! __ ld(R11_scratch1, 0, R1_SP); ! __ ld(R3_RET, _ijava_state_neg(lresult), R11_scratch1); ! __ lfd(F1_RET, _ijava_state_neg(fresult), R11_scratch1); ! __ call_stub(result_handler_addr); ! ! __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ R0, R11_scratch1, R12_scratch2); ! ! // Must use the return pc which was loaded from the caller's frame ! // as the VM uses return-pc-patching for deoptimization. ! __ mtlr(R0); ! __ blr(); ! ! //----------------------------------------------------------------------------- ! // An exception is pending. We call into the runtime only if the ! // caller was not interpreted. If it was interpreted the ! // interpreter will do the correct thing. If it isn't interpreted ! // (call stub/compiled code) we will change our return and continue. ! ! BIND(exception_return_sync_check); ! ! if (synchronized) { ! // Don't check for exceptions since we're still in the i2n frame. Do that ! // manually afterwards. ! unlock_method(false); ! } ! BIND(exception_return_sync_check_already_unlocked); ! ! const Register return_pc = R31; ! ! __ ld(return_pc, 0, R1_SP); ! __ ld(return_pc, _abi(lr), return_pc); ! ! // Get the address of the exception handler. ! __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), ! R16_thread, ! return_pc /* return pc */); ! __ merge_frames(/*top_frame_sp*/ R21_sender_SP, noreg, R11_scratch1, R12_scratch2); ! ! // Load the PC of the the exception handler into LR. ! __ mtlr(R3_RET); ! ! // Load exception into R3_ARG1 and clear pending exception in thread. ! __ ld(R3_ARG1/*exception*/, thread_(pending_exception)); ! __ li(R4_ARG2, 0); ! __ std(R4_ARG2, thread_(pending_exception)); ! ! // Load the original return pc into R4_ARG2. ! __ mr(R4_ARG2/*issuing_pc*/, return_pc); ! ! // Return to exception handler. ! __ blr(); ! ! //============================================================================= ! // Counter overflow. ! ! if (inc_counter) { ! // Handle invocation counter overflow. ! __ bind(invocation_counter_overflow); ! ! generate_counter_overflow(continue_after_compile); ! } ! ! return entry; ! } ! ! // Generic interpreted method entry to (asm) interpreter. ! // ! address TemplateInterpreterGenerator::generate_normal_entry(bool synchronized) { ! bool inc_counter = UseCompiler || CountCompiledCalls || LogTouchedMethods; ! address entry = __ pc(); ! // Generate the code to allocate the interpreter stack frame. ! Register Rsize_of_parameters = R4_ARG2, // Written by generate_fixed_frame. ! Rsize_of_locals = R5_ARG3; // Written by generate_fixed_frame. ! ! generate_fixed_frame(false, Rsize_of_parameters, Rsize_of_locals); ! ! // -------------------------------------------------------------------------- ! // Zero out non-parameter locals. ! // Note: *Always* zero out non-parameter locals as Sparc does. It's not ! // worth to ask the flag, just do it. ! Register Rslot_addr = R6_ARG4, ! Rnum = R7_ARG5; ! Label Lno_locals, Lzero_loop; ! ! // Set up the zeroing loop. ! __ subf(Rnum, Rsize_of_parameters, Rsize_of_locals); ! __ subf(Rslot_addr, Rsize_of_parameters, R18_locals); ! __ srdi_(Rnum, Rnum, Interpreter::logStackElementSize); ! __ beq(CCR0, Lno_locals); ! __ li(R0, 0); ! __ mtctr(Rnum); ! ! // The zero locals loop. ! __ bind(Lzero_loop); ! __ std(R0, 0, Rslot_addr); ! __ addi(Rslot_addr, Rslot_addr, -Interpreter::stackElementSize); ! __ bdnz(Lzero_loop); ! ! __ bind(Lno_locals); ! ! // -------------------------------------------------------------------------- ! // Counter increment and overflow check. ! Label invocation_counter_overflow, ! profile_method, ! profile_method_continue; ! if (inc_counter || ProfileInterpreter) { ! ! Register Rdo_not_unlock_if_synchronized_addr = R11_scratch1; ! if (synchronized) { ! // Since at this point in the method invocation the exception handler ! // would try to exit the monitor of synchronized methods which hasn't ! // been entered yet, we set the thread local variable ! // _do_not_unlock_if_synchronized to true. If any exception was thrown by ! // runtime, exception handling i.e. unlock_if_synchronized_method will ! // check this thread local flag. ! // This flag has two effects, one is to force an unwind in the topmost ! // interpreter frame and not perform an unlock while doing so. ! __ li(R0, 1); ! __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread); ! } ! ! // Argument and return type profiling. ! __ profile_parameters_type(R3_ARG1, R4_ARG2, R5_ARG3, R6_ARG4); ! ! // Increment invocation counter and check for overflow. ! if (inc_counter) { ! generate_counter_incr(&invocation_counter_overflow, &profile_method, &profile_method_continue); ! } ! ! __ bind(profile_method_continue); ! ! // Reset the _do_not_unlock_if_synchronized flag. ! if (synchronized) { ! __ li(R0, 0); ! __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread); ! } ! } ! ! // -------------------------------------------------------------------------- ! // Locking of synchronized methods. Must happen AFTER invocation_counter ! // check and stack overflow check, so method is not locked if overflows. ! if (synchronized) { ! lock_method(R3_ARG1, R4_ARG2, R5_ARG3); ! } ! #ifdef ASSERT ! else { ! Label Lok; ! __ lwz(R0, in_bytes(Method::access_flags_offset()), R19_method); ! __ andi_(R0, R0, JVM_ACC_SYNCHRONIZED); ! __ asm_assert_eq("method needs synchronization", 0x8521); ! __ bind(Lok); ! } ! #endif // ASSERT ! ! __ verify_thread(); ! ! // -------------------------------------------------------------------------- ! // JVMTI support ! __ notify_method_entry(); ! ! // -------------------------------------------------------------------------- ! // Start executing instructions. ! __ dispatch_next(vtos); ! ! // -------------------------------------------------------------------------- ! // Out of line counter overflow and MDO creation code. ! if (ProfileInterpreter) { ! // We have decided to profile this method in the interpreter. ! __ bind(profile_method); ! __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method)); ! __ set_method_data_pointer_for_bcp(); ! __ b(profile_method_continue); ! } ! ! if (inc_counter) { ! // Handle invocation counter overflow. ! __ bind(invocation_counter_overflow); ! generate_counter_overflow(profile_method_continue); ! } ! return entry; ! } ! ! // CRC32 Intrinsics. ! // ! // Contract on scratch and work registers. ! // ======================================= ! // ! // On ppc, the register set {R2..R12} is available in the interpreter as scratch/work registers. ! // You should, however, keep in mind that {R3_ARG1..R10_ARG8} is the C-ABI argument register set. ! // You can't rely on these registers across calls. ! // ! // The generators for CRC32_update and for CRC32_updateBytes use the ! // scratch/work register set internally, passing the work registers ! // as arguments to the MacroAssembler emitters as required. ! // ! // R3_ARG1..R6_ARG4 are preset to hold the incoming java arguments. ! // Their contents is not constant but may change according to the requirements ! // of the emitted code. ! // ! // All other registers from the scratch/work register set are used "internally" ! // and contain garbage (i.e. unpredictable values) once blr() is reached. ! // Basically, only R3_RET contains a defined value which is the function result. ! // ! /** ! * Method entry for static native methods: ! * int java.util.zip.CRC32.update(int crc, int b) ! */ ! address InterpreterGenerator::generate_CRC32_update_entry() { ! if (UseCRC32Intrinsics) { ! address start = __ pc(); // Remember stub start address (is rtn value). ! Label slow_path; ! ! // Safepoint check ! const Register sync_state = R11_scratch1; ! int sync_state_offs = __ load_const_optimized(sync_state, SafepointSynchronize::address_of_state(), /*temp*/R0, true); ! __ lwz(sync_state, sync_state_offs, sync_state); ! __ cmpwi(CCR0, sync_state, SafepointSynchronize::_not_synchronized); ! __ bne(CCR0, slow_path); ! ! // We don't generate local frame and don't align stack because ! // we not even call stub code (we generate the code inline) ! // and there is no safepoint on this path. ! ! // Load java parameters. ! // R15_esp is callers operand stack pointer, i.e. it points to the parameters. ! const Register argP = R15_esp; ! const Register crc = R3_ARG1; // crc value ! const Register data = R4_ARG2; // address of java byte value (kernel_crc32 needs address) ! const Register dataLen = R5_ARG3; // source data len (1 byte). Not used because calling the single-byte emitter. ! const Register table = R6_ARG4; // address of crc32 table ! const Register tmp = dataLen; // Reuse unused len register to show we don't actually need a separate tmp here. ! ! BLOCK_COMMENT("CRC32_update {"); ! ! // Arguments are reversed on java expression stack ! #ifdef VM_LITTLE_ENDIAN ! __ addi(data, argP, 0+1*wordSize); // (stack) address of byte value. Emitter expects address, not value. ! // Being passed as an int, the single byte is at offset +0. ! #else ! __ addi(data, argP, 3+1*wordSize); // (stack) address of byte value. Emitter expects address, not value. ! // Being passed from java as an int, the single byte is at offset +3. ! #endif ! __ lwz(crc, 2*wordSize, argP); // Current crc state, zero extend to 64 bit to have a clean register. ! ! StubRoutines::ppc64::generate_load_crc_table_addr(_masm, table); ! __ kernel_crc32_singleByte(crc, data, dataLen, table, tmp); ! ! // Restore caller sp for c2i case and return. ! __ mr(R1_SP, R21_sender_SP); // Cut the stack back to where the caller started. ! __ blr(); ! ! // Generate a vanilla native entry as the slow path. ! BLOCK_COMMENT("} CRC32_update"); ! BIND(slow_path); ! __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native), R11_scratch1); ! return start; ! } ! ! return NULL; ! } ! ! // CRC32 Intrinsics. ! /** ! * Method entry for static native methods: ! * int java.util.zip.CRC32.updateBytes( int crc, byte[] b, int off, int len) ! * int java.util.zip.CRC32.updateByteBuffer(int crc, long* buf, int off, int len) ! */ ! address InterpreterGenerator::generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind) { ! if (UseCRC32Intrinsics) { ! address start = __ pc(); // Remember stub start address (is rtn value). ! Label slow_path; ! ! // Safepoint check ! const Register sync_state = R11_scratch1; ! int sync_state_offs = __ load_const_optimized(sync_state, SafepointSynchronize::address_of_state(), /*temp*/R0, true); ! __ lwz(sync_state, sync_state_offs, sync_state); ! __ cmpwi(CCR0, sync_state, SafepointSynchronize::_not_synchronized); ! __ bne(CCR0, slow_path); ! ! // We don't generate local frame and don't align stack because ! // we not even call stub code (we generate the code inline) ! // and there is no safepoint on this path. ! ! // Load parameters. ! // Z_esp is callers operand stack pointer, i.e. it points to the parameters. ! const Register argP = R15_esp; ! const Register crc = R3_ARG1; // crc value ! const Register data = R4_ARG2; // address of java byte array ! const Register dataLen = R5_ARG3; // source data len ! const Register table = R6_ARG4; // address of crc32 table ! ! const Register t0 = R9; // scratch registers for crc calculation ! const Register t1 = R10; ! const Register t2 = R11; ! const Register t3 = R12; ! ! const Register tc0 = R2; // registers to hold pre-calculated column addresses ! const Register tc1 = R7; ! const Register tc2 = R8; ! const Register tc3 = table; // table address is reconstructed at the end of kernel_crc32_* emitters ! ! const Register tmp = t0; // Only used very locally to calculate byte buffer address. ! ! // Arguments are reversed on java expression stack. ! // Calculate address of start element. ! if (kind == Interpreter::java_util_zip_CRC32_updateByteBuffer) { // Used for "updateByteBuffer direct". ! BLOCK_COMMENT("CRC32_updateByteBuffer {"); ! // crc @ (SP + 5W) (32bit) ! // buf @ (SP + 3W) (64bit ptr to long array) ! // off @ (SP + 2W) (32bit) ! // dataLen @ (SP + 1W) (32bit) ! // data = buf + off ! __ ld( data, 3*wordSize, argP); // start of byte buffer ! __ lwa( tmp, 2*wordSize, argP); // byte buffer offset ! __ lwa( dataLen, 1*wordSize, argP); // #bytes to process ! __ lwz( crc, 5*wordSize, argP); // current crc state ! __ add( data, data, tmp); // Add byte buffer offset. ! } else { // Used for "updateBytes update". ! BLOCK_COMMENT("CRC32_updateBytes {"); ! // crc @ (SP + 4W) (32bit) ! // buf @ (SP + 3W) (64bit ptr to byte array) ! // off @ (SP + 2W) (32bit) ! // dataLen @ (SP + 1W) (32bit) ! // data = buf + off + base_offset ! __ ld( data, 3*wordSize, argP); // start of byte buffer ! __ lwa( tmp, 2*wordSize, argP); // byte buffer offset ! __ lwa( dataLen, 1*wordSize, argP); // #bytes to process ! __ add( data, data, tmp); // add byte buffer offset ! __ lwz( crc, 4*wordSize, argP); // current crc state ! __ addi(data, data, arrayOopDesc::base_offset_in_bytes(T_BYTE)); ! } ! ! StubRoutines::ppc64::generate_load_crc_table_addr(_masm, table); ! ! // Performance measurements show the 1word and 2word variants to be almost equivalent, ! // with very light advantages for the 1word variant. We chose the 1word variant for ! // code compactness. ! __ kernel_crc32_1word(crc, data, dataLen, table, t0, t1, t2, t3, tc0, tc1, tc2, tc3); ! ! // Restore caller sp for c2i case and return. ! __ mr(R1_SP, R21_sender_SP); // Cut the stack back to where the caller started. ! __ blr(); ! ! // Generate a vanilla native entry as the slow path. ! BLOCK_COMMENT("} CRC32_updateBytes(Buffer)"); ! BIND(slow_path); ! __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native), R11_scratch1); ! return start; ! } ! ! return NULL; } // These should never be compiled since the interpreter will prefer // the compiled version to the intrinsic version. bool AbstractInterpreter::can_be_compiled(methodHandle m) { --- 22,57 ---- * questions. * */ #include "precompiled.hpp" #include "interpreter/interpreter.hpp" ! #include "oops/constMethod.hpp" #include "oops/method.hpp" #include "runtime/frame.inline.hpp" #include "utilities/debug.hpp" #include "utilities/macros.hpp" ! int AbstractInterpreter::BasicType_as_index(BasicType type) { ! int i = 0; ! switch (type) { ! case T_BOOLEAN: i = 0; break; ! case T_CHAR : i = 1; break; ! case T_BYTE : i = 2; break; ! case T_SHORT : i = 3; break; ! case T_INT : i = 4; break; ! case T_LONG : i = 5; break; ! case T_VOID : i = 6; break; ! case T_FLOAT : i = 7; break; ! case T_DOUBLE : i = 8; break; ! case T_OBJECT : i = 9; break; ! case T_ARRAY : i = 9; break; default : ShouldNotReachHere(); } ! assert(0 <= i && i < AbstractInterpreter::number_of_result_handlers, "index out of bounds"); ! return i; } // These should never be compiled since the interpreter will prefer // the compiled version to the intrinsic version. bool AbstractInterpreter::can_be_compiled(methodHandle m) {
*** 1503,1915 **** if (!is_bottom_frame) { interpreter_frame->interpreter_frame_set_sender_sp(sender_sp); } } ! // ============================================================================= ! // Exceptions ! ! void TemplateInterpreterGenerator::generate_throw_exception() { ! Register Rexception = R17_tos, ! Rcontinuation = R3_RET; ! ! // -------------------------------------------------------------------------- ! // Entry point if an method returns with a pending exception (rethrow). ! Interpreter::_rethrow_exception_entry = __ pc(); ! { ! __ restore_interpreter_state(R11_scratch1); // Sets R11_scratch1 = fp. ! __ ld(R12_scratch2, _ijava_state_neg(top_frame_sp), R11_scratch1); ! __ resize_frame_absolute(R12_scratch2, R11_scratch1, R0); ! ! // Compiled code destroys templateTableBase, reload. ! __ load_const_optimized(R25_templateTableBase, (address)Interpreter::dispatch_table((TosState)0), R11_scratch1); ! } ! ! // Entry point if a interpreted method throws an exception (throw). ! Interpreter::_throw_exception_entry = __ pc(); ! { ! __ mr(Rexception, R3_RET); ! ! __ verify_thread(); ! __ verify_oop(Rexception); ! ! // Expression stack must be empty before entering the VM in case of an exception. ! __ empty_expression_stack(); ! // Find exception handler address and preserve exception oop. ! // Call C routine to find handler and jump to it. ! __ call_VM(Rexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception), Rexception); ! __ mtctr(Rcontinuation); ! // Push exception for exception handler bytecodes. ! __ push_ptr(Rexception); ! ! // Jump to exception handler (may be remove activation entry!). ! __ bctr(); ! } ! ! // If the exception is not handled in the current frame the frame is ! // removed and the exception is rethrown (i.e. exception ! // continuation is _rethrow_exception). ! // ! // Note: At this point the bci is still the bxi for the instruction ! // which caused the exception and the expression stack is ! // empty. Thus, for any VM calls at this point, GC will find a legal ! // oop map (with empty expression stack). ! ! // In current activation ! // tos: exception ! // bcp: exception bcp ! ! // -------------------------------------------------------------------------- ! // JVMTI PopFrame support ! ! Interpreter::_remove_activation_preserving_args_entry = __ pc(); ! { ! // Set the popframe_processing bit in popframe_condition indicating that we are ! // currently handling popframe, so that call_VMs that may happen later do not ! // trigger new popframe handling cycles. ! __ lwz(R11_scratch1, in_bytes(JavaThread::popframe_condition_offset()), R16_thread); ! __ ori(R11_scratch1, R11_scratch1, JavaThread::popframe_processing_bit); ! __ stw(R11_scratch1, in_bytes(JavaThread::popframe_condition_offset()), R16_thread); ! ! // Empty the expression stack, as in normal exception handling. ! __ empty_expression_stack(); ! __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false, /* install_monitor_exception */ false); ! ! // Check to see whether we are returning to a deoptimized frame. ! // (The PopFrame call ensures that the caller of the popped frame is ! // either interpreted or compiled and deoptimizes it if compiled.) ! // Note that we don't compare the return PC against the ! // deoptimization blob's unpack entry because of the presence of ! // adapter frames in C2. ! Label Lcaller_not_deoptimized; ! Register return_pc = R3_ARG1; ! __ ld(return_pc, 0, R1_SP); ! __ ld(return_pc, _abi(lr), return_pc); ! __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), return_pc); ! __ cmpdi(CCR0, R3_RET, 0); ! __ bne(CCR0, Lcaller_not_deoptimized); ! ! // The deoptimized case. ! // In this case, we can't call dispatch_next() after the frame is ! // popped, but instead must save the incoming arguments and restore ! // them after deoptimization has occurred. ! __ ld(R4_ARG2, in_bytes(Method::const_offset()), R19_method); ! __ lhz(R4_ARG2 /* number of params */, in_bytes(ConstMethod::size_of_parameters_offset()), R4_ARG2); ! __ slwi(R4_ARG2, R4_ARG2, Interpreter::logStackElementSize); ! __ addi(R5_ARG3, R18_locals, Interpreter::stackElementSize); ! __ subf(R5_ARG3, R4_ARG2, R5_ARG3); ! // Save these arguments. ! __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args), R16_thread, R4_ARG2, R5_ARG3); ! ! // Inform deoptimization that it is responsible for restoring these arguments. ! __ load_const_optimized(R11_scratch1, JavaThread::popframe_force_deopt_reexecution_bit); ! __ stw(R11_scratch1, in_bytes(JavaThread::popframe_condition_offset()), R16_thread); ! ! // Return from the current method into the deoptimization blob. Will eventually ! // end up in the deopt interpeter entry, deoptimization prepared everything that ! // we will reexecute the call that called us. ! __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*reload return_pc*/ return_pc, R11_scratch1, R12_scratch2); ! __ mtlr(return_pc); ! __ blr(); ! ! // The non-deoptimized case. ! __ bind(Lcaller_not_deoptimized); ! ! // Clear the popframe condition flag. ! __ li(R0, 0); ! __ stw(R0, in_bytes(JavaThread::popframe_condition_offset()), R16_thread); ! ! // Get out of the current method and re-execute the call that called us. ! __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ noreg, R11_scratch1, R12_scratch2); ! __ restore_interpreter_state(R11_scratch1); ! __ ld(R12_scratch2, _ijava_state_neg(top_frame_sp), R11_scratch1); ! __ resize_frame_absolute(R12_scratch2, R11_scratch1, R0); ! if (ProfileInterpreter) { ! __ set_method_data_pointer_for_bcp(); ! __ ld(R11_scratch1, 0, R1_SP); ! __ std(R28_mdx, _ijava_state_neg(mdx), R11_scratch1); ! } ! #if INCLUDE_JVMTI ! Label L_done; ! ! __ lbz(R11_scratch1, 0, R14_bcp); ! __ cmpwi(CCR0, R11_scratch1, Bytecodes::_invokestatic); ! __ bne(CCR0, L_done); ! ! // The member name argument must be restored if _invokestatic is re-executed after a PopFrame call. ! // Detect such a case in the InterpreterRuntime function and return the member name argument, or NULL. ! __ ld(R4_ARG2, 0, R18_locals); ! __ MacroAssembler::call_VM(R4_ARG2, CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null), R4_ARG2, R19_method, R14_bcp, false); ! __ restore_interpreter_state(R11_scratch1, /*bcp_and_mdx_only*/ true); ! __ cmpdi(CCR0, R4_ARG2, 0); ! __ beq(CCR0, L_done); ! __ std(R4_ARG2, wordSize, R15_esp); ! __ bind(L_done); ! #endif // INCLUDE_JVMTI ! __ dispatch_next(vtos); ! } ! // end of JVMTI PopFrame support ! ! // -------------------------------------------------------------------------- ! // Remove activation exception entry. ! // This is jumped to if an interpreted method can't handle an exception itself ! // (we come from the throw/rethrow exception entry above). We're going to call ! // into the VM to find the exception handler in the caller, pop the current ! // frame and return the handler we calculated. ! Interpreter::_remove_activation_entry = __ pc(); ! { ! __ pop_ptr(Rexception); ! __ verify_thread(); ! __ verify_oop(Rexception); ! __ std(Rexception, in_bytes(JavaThread::vm_result_offset()), R16_thread); ! ! __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false, true); ! __ notify_method_exit(false, vtos, InterpreterMacroAssembler::SkipNotifyJVMTI, false); ! ! __ get_vm_result(Rexception); ! ! // We are done with this activation frame; find out where to go next. ! // The continuation point will be an exception handler, which expects ! // the following registers set up: ! // ! // RET: exception oop ! // ARG2: Issuing PC (see generate_exception_blob()), only used if the caller is compiled. ! ! Register return_pc = R31; // Needs to survive the runtime call. ! __ ld(return_pc, 0, R1_SP); ! __ ld(return_pc, _abi(lr), return_pc); ! __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), R16_thread, return_pc); ! ! // Remove the current activation. ! __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ noreg, R11_scratch1, R12_scratch2); ! ! __ mr(R4_ARG2, return_pc); ! __ mtlr(R3_RET); ! __ mr(R3_RET, Rexception); ! __ blr(); ! } ! } ! ! // JVMTI ForceEarlyReturn support. ! // Returns "in the middle" of a method with a "fake" return value. ! address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) { ! ! Register Rscratch1 = R11_scratch1, ! Rscratch2 = R12_scratch2; ! ! address entry = __ pc(); ! __ empty_expression_stack(); ! ! __ load_earlyret_value(state, Rscratch1); ! ! __ ld(Rscratch1, in_bytes(JavaThread::jvmti_thread_state_offset()), R16_thread); ! // Clear the earlyret state. ! __ li(R0, 0); ! __ stw(R0, in_bytes(JvmtiThreadState::earlyret_state_offset()), Rscratch1); ! ! __ remove_activation(state, false, false); ! // Copied from TemplateTable::_return. ! // Restoration of lr done by remove_activation. ! switch (state) { ! case ltos: ! case btos: ! case ctos: ! case stos: ! case atos: ! case itos: __ mr(R3_RET, R17_tos); break; ! case ftos: ! case dtos: __ fmr(F1_RET, F15_ftos); break; ! case vtos: // This might be a constructor. Final fields (and volatile fields on PPC64) need ! // to get visible before the reference to the object gets stored anywhere. ! __ membar(Assembler::StoreStore); break; ! default : ShouldNotReachHere(); ! } ! __ blr(); ! ! return entry; ! } // end of ForceEarlyReturn support ! ! //----------------------------------------------------------------------------- ! // Helper for vtos entry point generation ! ! void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t, ! address& bep, ! address& cep, ! address& sep, ! address& aep, ! address& iep, ! address& lep, ! address& fep, ! address& dep, ! address& vep) { ! assert(t->is_valid() && t->tos_in() == vtos, "illegal template"); ! Label L; ! ! aep = __ pc(); __ push_ptr(); __ b(L); ! fep = __ pc(); __ push_f(); __ b(L); ! dep = __ pc(); __ push_d(); __ b(L); ! lep = __ pc(); __ push_l(); __ b(L); ! __ align(32, 12, 24); // align L ! bep = cep = sep = ! iep = __ pc(); __ push_i(); ! vep = __ pc(); ! __ bind(L); ! generate_and_dispatch(t); ! } ! ! //----------------------------------------------------------------------------- ! // Generation of individual instructions ! ! // helpers for generate_and_dispatch ! ! InterpreterGenerator::InterpreterGenerator(StubQueue* code) ! : TemplateInterpreterGenerator(code) { ! generate_all(); // Down here so it can be "virtual". ! } ! ! //----------------------------------------------------------------------------- ! ! // Non-product code ! #ifndef PRODUCT ! address TemplateInterpreterGenerator::generate_trace_code(TosState state) { ! //__ flush_bundle(); ! address entry = __ pc(); ! ! const char *bname = NULL; ! uint tsize = 0; ! switch(state) { ! case ftos: ! bname = "trace_code_ftos {"; ! tsize = 2; ! break; ! case btos: ! bname = "trace_code_btos {"; ! tsize = 2; ! break; ! case ctos: ! bname = "trace_code_ctos {"; ! tsize = 2; ! break; ! case stos: ! bname = "trace_code_stos {"; ! tsize = 2; ! break; ! case itos: ! bname = "trace_code_itos {"; ! tsize = 2; ! break; ! case ltos: ! bname = "trace_code_ltos {"; ! tsize = 3; ! break; ! case atos: ! bname = "trace_code_atos {"; ! tsize = 2; ! break; ! case vtos: ! // Note: In case of vtos, the topmost of stack value could be a int or doubl ! // In case of a double (2 slots) we won't see the 2nd stack value. ! // Maybe we simply should print the topmost 3 stack slots to cope with the problem. ! bname = "trace_code_vtos {"; ! tsize = 2; ! ! break; ! case dtos: ! bname = "trace_code_dtos {"; ! tsize = 3; ! break; ! default: ! ShouldNotReachHere(); ! } ! BLOCK_COMMENT(bname); ! ! // Support short-cut for TraceBytecodesAt. ! // Don't call into the VM if we don't want to trace to speed up things. ! Label Lskip_vm_call; ! if (TraceBytecodesAt > 0 && TraceBytecodesAt < max_intx) { ! int offs1 = __ load_const_optimized(R11_scratch1, (address) &TraceBytecodesAt, R0, true); ! int offs2 = __ load_const_optimized(R12_scratch2, (address) &BytecodeCounter::_counter_value, R0, true); ! __ ld(R11_scratch1, offs1, R11_scratch1); ! __ lwa(R12_scratch2, offs2, R12_scratch2); ! __ cmpd(CCR0, R12_scratch2, R11_scratch1); ! __ blt(CCR0, Lskip_vm_call); ! } ! ! __ push(state); ! // Load 2 topmost expression stack values. ! __ ld(R6_ARG4, tsize*Interpreter::stackElementSize, R15_esp); ! __ ld(R5_ARG3, Interpreter::stackElementSize, R15_esp); ! __ mflr(R31); ! __ call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::trace_bytecode), /* unused */ R4_ARG2, R5_ARG3, R6_ARG4, false); ! __ mtlr(R31); ! __ pop(state); ! ! if (TraceBytecodesAt > 0 && TraceBytecodesAt < max_intx) { ! __ bind(Lskip_vm_call); ! } ! __ blr(); ! BLOCK_COMMENT("} trace_code"); ! return entry; ! } ! ! void TemplateInterpreterGenerator::count_bytecode() { ! int offs = __ load_const_optimized(R11_scratch1, (address) &BytecodeCounter::_counter_value, R12_scratch2, true); ! __ lwz(R12_scratch2, offs, R11_scratch1); ! __ addi(R12_scratch2, R12_scratch2, 1); ! __ stw(R12_scratch2, offs, R11_scratch1); ! } ! ! void TemplateInterpreterGenerator::histogram_bytecode(Template* t) { ! int offs = __ load_const_optimized(R11_scratch1, (address) &BytecodeHistogram::_counters[t->bytecode()], R12_scratch2, true); ! __ lwz(R12_scratch2, offs, R11_scratch1); ! __ addi(R12_scratch2, R12_scratch2, 1); ! __ stw(R12_scratch2, offs, R11_scratch1); ! } ! ! void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) { ! const Register addr = R11_scratch1, ! tmp = R12_scratch2; ! // Get index, shift out old bytecode, bring in new bytecode, and store it. ! // _index = (_index >> log2_number_of_codes) | ! // (bytecode << log2_number_of_codes); ! int offs1 = __ load_const_optimized(addr, (address)&BytecodePairHistogram::_index, tmp, true); ! __ lwz(tmp, offs1, addr); ! __ srwi(tmp, tmp, BytecodePairHistogram::log2_number_of_codes); ! __ ori(tmp, tmp, ((int) t->bytecode()) << BytecodePairHistogram::log2_number_of_codes); ! __ stw(tmp, offs1, addr); ! ! // Bump bucket contents. ! // _counters[_index] ++; ! int offs2 = __ load_const_optimized(addr, (address)&BytecodePairHistogram::_counters, R0, true); ! __ sldi(tmp, tmp, LogBytesPerInt); ! __ add(addr, tmp, addr); ! __ lwz(tmp, offs2, addr); ! __ addi(tmp, tmp, 1); ! __ stw(tmp, offs2, addr); ! } ! ! void TemplateInterpreterGenerator::trace_bytecode(Template* t) { ! // Call a little run-time stub to avoid blow-up for each bytecode. ! // The run-time runtime saves the right registers, depending on ! // the tosca in-state for the given template. ! assert(Interpreter::trace_code(t->tos_in()) != NULL, ! "entry must have been generated"); ! // Note: we destroy LR here. ! __ bl(Interpreter::trace_code(t->tos_in())); } - void TemplateInterpreterGenerator::stop_interpreter_at() { - Label L; - int offs1 = __ load_const_optimized(R11_scratch1, (address) &StopInterpreterAt, R0, true); - int offs2 = __ load_const_optimized(R12_scratch2, (address) &BytecodeCounter::_counter_value, R0, true); - __ ld(R11_scratch1, offs1, R11_scratch1); - __ lwa(R12_scratch2, offs2, R12_scratch2); - __ cmpd(CCR0, R12_scratch2, R11_scratch1); - __ bne(CCR0, L); - __ illtrap(); - __ bind(L); - } - #endif // !PRODUCT - #endif // !CC_INTERP --- 152,167 ---- if (!is_bottom_frame) { interpreter_frame->interpreter_frame_set_sender_sp(sender_sp); } } ! // Support abs and sqrt like in compiler. ! // For others we can use a normal (native) entry. ! bool TemplateInterpreter::math_entry_available(AbstractInterpreter::MethodKind kind) { ! if (!InlineIntrinsics) return false; ! return ((kind==Interpreter::java_lang_math_sqrt && VM_Version::has_fsqrt()) || ! (kind==Interpreter::java_lang_math_abs)); }
src/cpu/ppc/vm/templateInterpreter_ppc.cpp
Index Unified diffs Context diffs Sdiffs Patch New Old Previous File Next File