1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "interpreter/bytecodeHistogram.hpp"
  28 #include "interpreter/interpreter.hpp"
  29 #include "interpreter/interpreterGenerator.hpp"
  30 #include "interpreter/interpreterRuntime.hpp"
  31 #include "interpreter/interp_masm.hpp"
  32 #include "interpreter/templateTable.hpp"
  33 #include "oops/arrayOop.hpp"
  34 #include "oops/methodData.hpp"
  35 #include "oops/method.hpp"
  36 #include "oops/oop.inline.hpp"
  37 #include "prims/jvmtiExport.hpp"
  38 #include "prims/jvmtiThreadState.hpp"
  39 #include "prims/methodHandles.hpp"
  40 #include "runtime/arguments.hpp"
  41 #include "runtime/deoptimization.hpp"
  42 #include "runtime/frame.inline.hpp"
  43 #include "runtime/sharedRuntime.hpp"
  44 #include "runtime/stubRoutines.hpp"
  45 #include "runtime/synchronizer.hpp"
  46 #include "runtime/timer.hpp"
  47 #include "runtime/vframeArray.hpp"
  48 #include "utilities/debug.hpp"
  49 #ifdef COMPILER1
  50 #include "c1/c1_Runtime1.hpp"
  51 #endif
  52 
  53 
  54 
  55 // Generation of Interpreter
  56 //
  57 // The InterpreterGenerator generates the interpreter into Interpreter::_code.
  58 
  59 
  60 #define __ _masm->
  61 
  62 
  63 //----------------------------------------------------------------------------------------------------
  64 
  65 
  66 
  67 
  68 int AbstractInterpreter::BasicType_as_index(BasicType type) {
  69   int i = 0;
  70   switch (type) {
  71     case T_BOOLEAN: i = 0; break;
  72     case T_CHAR   : i = 1; break;
  73     case T_BYTE   : i = 2; break;
  74     case T_SHORT  : i = 3; break;
  75     case T_INT    : i = 4; break;
  76     case T_LONG   : i = 5; break;
  77     case T_VOID   : i = 6; break;
  78     case T_FLOAT  : i = 7; break;
  79     case T_DOUBLE : i = 8; break;
  80     case T_OBJECT : i = 9; break;
  81     case T_ARRAY  : i = 9; break;
  82     default       : ShouldNotReachHere();
  83   }
  84   assert(0 <= i && i < AbstractInterpreter::number_of_result_handlers, "index out of bounds");
  85   return i;
  86 }
  87 
  88 
  89 #ifndef _LP64
  90 address AbstractInterpreterGenerator::generate_slow_signature_handler() {
  91   address entry = __ pc();
  92   Argument argv(0, true);
  93 
  94   // We are in the jni transition frame. Save the last_java_frame corresponding to the
  95   // outer interpreter frame
  96   //
  97   __ set_last_Java_frame(FP, noreg);
  98   // make sure the interpreter frame we've pushed has a valid return pc
  99   __ mov(O7, I7);
 100   __ mov(Lmethod, G3_scratch);
 101   __ mov(Llocals, G4_scratch);
 102   __ save_frame(0);
 103   __ mov(G2_thread, L7_thread_cache);
 104   __ add(argv.address_in_frame(), O3);
 105   __ mov(G2_thread, O0);
 106   __ mov(G3_scratch, O1);
 107   __ call(CAST_FROM_FN_PTR(address, InterpreterRuntime::slow_signature_handler), relocInfo::runtime_call_type);
 108   __ delayed()->mov(G4_scratch, O2);
 109   __ mov(L7_thread_cache, G2_thread);
 110   __ reset_last_Java_frame();
 111 
 112   // load the register arguments (the C code packed them as varargs)
 113   for (Argument ldarg = argv.successor(); ldarg.is_register(); ldarg = ldarg.successor()) {
 114       __ ld_ptr(ldarg.address_in_frame(), ldarg.as_register());
 115   }
 116   __ ret();
 117   __ delayed()->
 118      restore(O0, 0, Lscratch);  // caller's Lscratch gets the result handler
 119   return entry;
 120 }
 121 
 122 
 123 #else
 124 // LP64 passes floating point arguments in F1, F3, F5, etc. instead of
 125 // O0, O1, O2 etc..
 126 // Doubles are passed in D0, D2, D4
 127 // We store the signature of the first 16 arguments in the first argument
 128 // slot because it will be overwritten prior to calling the native
 129 // function, with the pointer to the JNIEnv.
 130 // If LP64 there can be up to 16 floating point arguments in registers
 131 // or 6 integer registers.
 132 address AbstractInterpreterGenerator::generate_slow_signature_handler() {
 133 
 134   enum {
 135     non_float  = 0,
 136     float_sig  = 1,
 137     double_sig = 2,
 138     sig_mask   = 3
 139   };
 140 
 141   address entry = __ pc();
 142   Argument argv(0, true);
 143 
 144   // We are in the jni transition frame. Save the last_java_frame corresponding to the
 145   // outer interpreter frame
 146   //
 147   __ set_last_Java_frame(FP, noreg);
 148   // make sure the interpreter frame we've pushed has a valid return pc
 149   __ mov(O7, I7);
 150   __ mov(Lmethod, G3_scratch);
 151   __ mov(Llocals, G4_scratch);
 152   __ save_frame(0);
 153   __ mov(G2_thread, L7_thread_cache);
 154   __ add(argv.address_in_frame(), O3);
 155   __ mov(G2_thread, O0);
 156   __ mov(G3_scratch, O1);
 157   __ call(CAST_FROM_FN_PTR(address, InterpreterRuntime::slow_signature_handler), relocInfo::runtime_call_type);
 158   __ delayed()->mov(G4_scratch, O2);
 159   __ mov(L7_thread_cache, G2_thread);
 160   __ reset_last_Java_frame();
 161 
 162 
 163   // load the register arguments (the C code packed them as varargs)
 164   Address Sig = argv.address_in_frame();        // Argument 0 holds the signature
 165   __ ld_ptr( Sig, G3_scratch );                   // Get register argument signature word into G3_scratch
 166   __ mov( G3_scratch, G4_scratch);
 167   __ srl( G4_scratch, 2, G4_scratch);             // Skip Arg 0
 168   Label done;
 169   for (Argument ldarg = argv.successor(); ldarg.is_float_register(); ldarg = ldarg.successor()) {
 170     Label NonFloatArg;
 171     Label LoadFloatArg;
 172     Label LoadDoubleArg;
 173     Label NextArg;
 174     Address a = ldarg.address_in_frame();
 175     __ andcc(G4_scratch, sig_mask, G3_scratch);
 176     __ br(Assembler::zero, false, Assembler::pt, NonFloatArg);
 177     __ delayed()->nop();
 178 
 179     __ cmp(G3_scratch, float_sig );
 180     __ br(Assembler::equal, false, Assembler::pt, LoadFloatArg);
 181     __ delayed()->nop();
 182 
 183     __ cmp(G3_scratch, double_sig );
 184     __ br(Assembler::equal, false, Assembler::pt, LoadDoubleArg);
 185     __ delayed()->nop();
 186 
 187     __ bind(NonFloatArg);
 188     // There are only 6 integer register arguments!
 189     if ( ldarg.is_register() )
 190       __ ld_ptr(ldarg.address_in_frame(), ldarg.as_register());
 191     else {
 192     // Optimization, see if there are any more args and get out prior to checking
 193     // all 16 float registers.  My guess is that this is rare.
 194     // If is_register is false, then we are done the first six integer args.
 195       __ br_null_short(G4_scratch, Assembler::pt, done);
 196     }
 197     __ ba(NextArg);
 198     __ delayed()->srl( G4_scratch, 2, G4_scratch );
 199 
 200     __ bind(LoadFloatArg);
 201     __ ldf( FloatRegisterImpl::S, a, ldarg.as_float_register(), 4);
 202     __ ba(NextArg);
 203     __ delayed()->srl( G4_scratch, 2, G4_scratch );
 204 
 205     __ bind(LoadDoubleArg);
 206     __ ldf( FloatRegisterImpl::D, a, ldarg.as_double_register() );
 207     __ ba(NextArg);
 208     __ delayed()->srl( G4_scratch, 2, G4_scratch );
 209 
 210     __ bind(NextArg);
 211 
 212   }
 213 
 214   __ bind(done);
 215   __ ret();
 216   __ delayed()->
 217      restore(O0, 0, Lscratch);  // caller's Lscratch gets the result handler
 218   return entry;
 219 }
 220 #endif
 221 
 222 void InterpreterGenerator::generate_counter_overflow(Label& Lcontinue) {
 223 
 224   // Generate code to initiate compilation on the counter overflow.
 225 
 226   // InterpreterRuntime::frequency_counter_overflow takes two arguments,
 227   // the first indicates if the counter overflow occurs at a backwards branch (NULL bcp)
 228   // and the second is only used when the first is true.  We pass zero for both.
 229   // The call returns the address of the verified entry point for the method or NULL
 230   // if the compilation did not complete (either went background or bailed out).
 231   __ set((int)false, O2);
 232   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), O2, O2, true);
 233   // returns verified_entry_point or NULL
 234   // we ignore it in any case
 235   __ ba_short(Lcontinue);
 236 
 237 }
 238 
 239 
 240 // End of helpers
 241 
 242 // Various method entries
 243 
 244 // Abstract method entry
 245 // Attempt to execute abstract method. Throw exception
 246 //
 247 address InterpreterGenerator::generate_abstract_entry(void) {
 248   address entry = __ pc();
 249   // abstract method entry
 250   // throw exception
 251   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
 252   // the call_VM checks for exception, so we should never return here.
 253   __ should_not_reach_here();
 254   return entry;
 255 
 256 }
 257 
 258 bool AbstractInterpreter::can_be_compiled(methodHandle m) {
 259   // No special entry points that preclude compilation
 260   return true;
 261 }
 262 
 263 void Deoptimization::unwind_callee_save_values(frame* f, vframeArray* vframe_array) {
 264 
 265   // This code is sort of the equivalent of C2IAdapter::setup_stack_frame back in
 266   // the days we had adapter frames. When we deoptimize a situation where a
 267   // compiled caller calls a compiled caller will have registers it expects
 268   // to survive the call to the callee. If we deoptimize the callee the only
 269   // way we can restore these registers is to have the oldest interpreter
 270   // frame that we create restore these values. That is what this routine
 271   // will accomplish.
 272 
 273   // At the moment we have modified c2 to not have any callee save registers
 274   // so this problem does not exist and this routine is just a place holder.
 275 
 276   assert(f->is_interpreted_frame(), "must be interpreted");
 277 }
 278 
 279 
 280 //----------------------------------------------------------------------------------------------------
 281 // Exceptions