1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "interpreter/bytecodeHistogram.hpp"
  28 #include "interpreter/interpreter.hpp"
  29 #include "interpreter/interpreterGenerator.hpp"
  30 #include "interpreter/interpreterRuntime.hpp"
  31 #include "interpreter/interp_masm.hpp"
  32 #include "interpreter/templateTable.hpp"
  33 #include "oops/arrayOop.hpp"
  34 #include "oops/methodData.hpp"
  35 #include "oops/method.hpp"
  36 #include "oops/oop.inline.hpp"
  37 #include "prims/jvmtiExport.hpp"
  38 #include "prims/jvmtiThreadState.hpp"
  39 #include "runtime/arguments.hpp"
  40 #include "runtime/deoptimization.hpp"
  41 #include "runtime/frame.inline.hpp"
  42 #include "runtime/sharedRuntime.hpp"
  43 #include "runtime/stubRoutines.hpp"
  44 #include "runtime/synchronizer.hpp"
  45 #include "runtime/timer.hpp"
  46 #include "runtime/vframeArray.hpp"
  47 #include "utilities/debug.hpp"
  48 #include "utilities/macros.hpp"
  49 
  50 #ifndef CC_INTERP
  51 #ifndef FAST_DISPATCH
  52 #define FAST_DISPATCH 1
  53 #endif
  54 #undef FAST_DISPATCH
  55 
  56 
  57 // Generation of Interpreter
  58 //
  59 // The InterpreterGenerator generates the interpreter into Interpreter::_code.
  60 
  61 
  62 #define __ _masm->
  63 
  64 
  65 //----------------------------------------------------------------------------------------------------
  66 
  67 
  68 void InterpreterGenerator::save_native_result(void) {
  69   // result potentially in O0/O1: save it across calls
  70   const Address& l_tmp = InterpreterMacroAssembler::l_tmp;
  71 
  72   // result potentially in F0/F1: save it across calls
  73   const Address& d_tmp = InterpreterMacroAssembler::d_tmp;
  74 
  75   // save and restore any potential method result value around the unlocking operation
  76   __ stf(FloatRegisterImpl::D, F0, d_tmp);
  77 #ifdef _LP64
  78   __ stx(O0, l_tmp);
  79 #else
  80   __ std(O0, l_tmp);
  81 #endif
  82 }
  83 
  84 void InterpreterGenerator::restore_native_result(void) {
  85   const Address& l_tmp = InterpreterMacroAssembler::l_tmp;
  86   const Address& d_tmp = InterpreterMacroAssembler::d_tmp;
  87 
  88   // Restore any method result value
  89   __ ldf(FloatRegisterImpl::D, d_tmp, F0);
  90 #ifdef _LP64
  91   __ ldx(l_tmp, O0);
  92 #else
  93   __ ldd(l_tmp, O0);
  94 #endif
  95 }
  96 
  97 address TemplateInterpreterGenerator::generate_exception_handler_common(const char* name, const char* message, bool pass_oop) {
  98   assert(!pass_oop || message == NULL, "either oop or message but not both");
  99   address entry = __ pc();
 100   // expression stack must be empty before entering the VM if an exception happened
 101   __ empty_expression_stack();
 102   // load exception object
 103   __ set((intptr_t)name, G3_scratch);
 104   if (pass_oop) {
 105     __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception), G3_scratch, Otos_i);
 106   } else {
 107     __ set((intptr_t)message, G4_scratch);
 108     __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), G3_scratch, G4_scratch);
 109   }
 110   // throw exception
 111   assert(Interpreter::throw_exception_entry() != NULL, "generate it first");
 112   AddressLiteral thrower(Interpreter::throw_exception_entry());
 113   __ jump_to(thrower, G3_scratch);
 114   __ delayed()->nop();
 115   return entry;
 116 }
 117 
 118 address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
 119   address entry = __ pc();
 120   // expression stack must be empty before entering the VM if an exception
 121   // happened
 122   __ empty_expression_stack();
 123   // load exception object
 124   __ call_VM(Oexception,
 125              CAST_FROM_FN_PTR(address,
 126                               InterpreterRuntime::throw_ClassCastException),
 127              Otos_i);
 128   __ should_not_reach_here();
 129   return entry;
 130 }
 131 
 132 
 133 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(const char* name) {
 134   address entry = __ pc();
 135   // expression stack must be empty before entering the VM if an exception happened
 136   __ empty_expression_stack();
 137   // convention: expect aberrant index in register G3_scratch, then shuffle the
 138   // index to G4_scratch for the VM call
 139   __ mov(G3_scratch, G4_scratch);
 140   __ set((intptr_t)name, G3_scratch);
 141   __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException), G3_scratch, G4_scratch);
 142   __ should_not_reach_here();
 143   return entry;
 144 }
 145 
 146 
 147 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
 148   address entry = __ pc();
 149   // expression stack must be empty before entering the VM if an exception happened
 150   __ empty_expression_stack();
 151   __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
 152   __ should_not_reach_here();
 153   return entry;
 154 }
 155 
 156 
 157 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step, size_t index_size) {
 158   address entry = __ pc();
 159 
 160   if (state == atos) {
 161     __ profile_return_type(O0, G3_scratch, G1_scratch);
 162   }
 163 
 164 #if !defined(_LP64) && defined(COMPILER2)
 165   // All return values are where we want them, except for Longs.  C2 returns
 166   // longs in G1 in the 32-bit build whereas the interpreter wants them in O0/O1.
 167   // Since the interpreter will return longs in G1 and O0/O1 in the 32bit
 168   // build even if we are returning from interpreted we just do a little
 169   // stupid shuffing.
 170   // Note: I tried to make c2 return longs in O0/O1 and G1 so we wouldn't have to
 171   // do this here. Unfortunately if we did a rethrow we'd see an machepilog node
 172   // first which would move g1 -> O0/O1 and destroy the exception we were throwing.
 173 
 174   if (state == ltos) {
 175     __ srl (G1,  0, O1);
 176     __ srlx(G1, 32, O0);
 177   }
 178 #endif // !_LP64 && COMPILER2
 179 
 180   // The callee returns with the stack possibly adjusted by adapter transition
 181   // We remove that possible adjustment here.
 182   // All interpreter local registers are untouched. Any result is passed back
 183   // in the O0/O1 or float registers. Before continuing, the arguments must be
 184   // popped from the java expression stack; i.e., Lesp must be adjusted.
 185 
 186   __ mov(Llast_SP, SP);   // Remove any adapter added stack space.
 187 
 188   const Register cache = G3_scratch;
 189   const Register index  = G1_scratch;
 190   __ get_cache_and_index_at_bcp(cache, index, 1, index_size);
 191 
 192   const Register flags = cache;
 193   __ ld_ptr(cache, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset(), flags);
 194   const Register parameter_size = flags;
 195   __ and3(flags, ConstantPoolCacheEntry::parameter_size_mask, parameter_size);  // argument size in words
 196   __ sll(parameter_size, Interpreter::logStackElementSize, parameter_size);     // each argument size in bytes
 197   __ add(Lesp, parameter_size, Lesp);                                           // pop arguments
 198   __ dispatch_next(state, step);
 199 
 200   return entry;
 201 }
 202 
 203 
 204 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, int step) {
 205   address entry = __ pc();
 206   __ get_constant_pool_cache(LcpoolCache); // load LcpoolCache
 207 #if INCLUDE_JVMCI
 208   // Check if we need to take lock at entry of synchronized method.
 209   if (UseJVMCICompiler) {
 210     Label L;
 211     Address pending_monitor_enter_addr(G2_thread, JavaThread::pending_monitorenter_offset());
 212     __ ldbool(pending_monitor_enter_addr, Gtemp);  // Load if pending monitor enter
 213     __ cmp_and_br_short(Gtemp, G0, Assembler::equal, Assembler::pn, L);
 214     // Clear flag.
 215     __ stbool(G0, pending_monitor_enter_addr);
 216     // Take lock.
 217     lock_method();
 218     __ bind(L);
 219   }
 220 #endif
 221   { Label L;
 222     Address exception_addr(G2_thread, Thread::pending_exception_offset());
 223     __ ld_ptr(exception_addr, Gtemp);  // Load pending exception.
 224     __ br_null_short(Gtemp, Assembler::pt, L);
 225     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception));
 226     __ should_not_reach_here();
 227     __ bind(L);
 228   }
 229   __ dispatch_next(state, step);
 230   return entry;
 231 }
 232 
 233 // A result handler converts/unboxes a native call result into
 234 // a java interpreter/compiler result. The current frame is an
 235 // interpreter frame. The activation frame unwind code must be
 236 // consistent with that of TemplateTable::_return(...). In the
 237 // case of native methods, the caller's SP was not modified.
 238 address TemplateInterpreterGenerator::generate_result_handler_for(BasicType type) {
 239   address entry = __ pc();
 240   Register Itos_i  = Otos_i ->after_save();
 241   Register Itos_l  = Otos_l ->after_save();
 242   Register Itos_l1 = Otos_l1->after_save();
 243   Register Itos_l2 = Otos_l2->after_save();
 244   switch (type) {
 245     case T_BOOLEAN: __ subcc(G0, O0, G0); __ addc(G0, 0, Itos_i); break; // !0 => true; 0 => false
 246     case T_CHAR   : __ sll(O0, 16, O0); __ srl(O0, 16, Itos_i);   break; // cannot use and3, 0xFFFF too big as immediate value!
 247     case T_BYTE   : __ sll(O0, 24, O0); __ sra(O0, 24, Itos_i);   break;
 248     case T_SHORT  : __ sll(O0, 16, O0); __ sra(O0, 16, Itos_i);   break;
 249     case T_LONG   :
 250 #ifndef _LP64
 251                     __ mov(O1, Itos_l2);  // move other half of long
 252 #endif              // ifdef or no ifdef, fall through to the T_INT case
 253     case T_INT    : __ mov(O0, Itos_i);                         break;
 254     case T_VOID   : /* nothing to do */                         break;
 255     case T_FLOAT  : assert(F0 == Ftos_f, "fix this code" );     break;
 256     case T_DOUBLE : assert(F0 == Ftos_d, "fix this code" );     break;
 257     case T_OBJECT :
 258       __ ld_ptr(FP, (frame::interpreter_frame_oop_temp_offset*wordSize) + STACK_BIAS, Itos_i);
 259       __ verify_oop(Itos_i);
 260       break;
 261     default       : ShouldNotReachHere();
 262   }
 263   __ ret();                           // return from interpreter activation
 264   __ delayed()->restore(I5_savedSP, G0, SP);  // remove interpreter frame
 265   NOT_PRODUCT(__ emit_int32(0);)       // marker for disassembly
 266   return entry;
 267 }
 268 
 269 address TemplateInterpreterGenerator::generate_safept_entry_for(TosState state, address runtime_entry) {
 270   address entry = __ pc();
 271   __ push(state);
 272   __ call_VM(noreg, runtime_entry);
 273   __ dispatch_via(vtos, Interpreter::normal_table(vtos));
 274   return entry;
 275 }
 276 
 277 
 278 address TemplateInterpreterGenerator::generate_continuation_for(TosState state) {
 279   address entry = __ pc();
 280   __ dispatch_next(state);
 281   return entry;
 282 }
 283 
 284 //
 285 // Helpers for commoning out cases in the various type of method entries.
 286 //
 287 
 288 // increment invocation count & check for overflow
 289 //
 290 // Note: checking for negative value instead of overflow
 291 //       so we have a 'sticky' overflow test
 292 //
 293 // Lmethod: method
 294 // ??: invocation counter
 295 //
 296 void InterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
 297   // Note: In tiered we increment either counters in MethodCounters* or in
 298   // MDO depending if we're profiling or not.
 299   const Register G3_method_counters = G3_scratch;
 300   Label done;
 301 
 302   if (TieredCompilation) {
 303     const int increment = InvocationCounter::count_increment;
 304     Label no_mdo;
 305     if (ProfileInterpreter) {
 306       // If no method data exists, go to profile_continue.
 307       __ ld_ptr(Lmethod, Method::method_data_offset(), G4_scratch);
 308       __ br_null_short(G4_scratch, Assembler::pn, no_mdo);
 309       // Increment counter
 310       Address mdo_invocation_counter(G4_scratch,
 311                                      in_bytes(MethodData::invocation_counter_offset()) +
 312                                      in_bytes(InvocationCounter::counter_offset()));
 313       Address mask(G4_scratch, in_bytes(MethodData::invoke_mask_offset()));
 314       __ increment_mask_and_jump(mdo_invocation_counter, increment, mask,
 315                                  G3_scratch, Lscratch,
 316                                  Assembler::zero, overflow);
 317       __ ba_short(done);
 318     }
 319 
 320     // Increment counter in MethodCounters*
 321     __ bind(no_mdo);
 322     Address invocation_counter(G3_method_counters,
 323             in_bytes(MethodCounters::invocation_counter_offset()) +
 324             in_bytes(InvocationCounter::counter_offset()));
 325     __ get_method_counters(Lmethod, G3_method_counters, done);
 326     Address mask(G3_method_counters, in_bytes(MethodCounters::invoke_mask_offset()));
 327     __ increment_mask_and_jump(invocation_counter, increment, mask,
 328                                G4_scratch, Lscratch,
 329                                Assembler::zero, overflow);
 330     __ bind(done);
 331   } else { // not TieredCompilation
 332     // Update standard invocation counters
 333     __ get_method_counters(Lmethod, G3_method_counters, done);
 334     __ increment_invocation_counter(G3_method_counters, O0, G4_scratch);
 335     if (ProfileInterpreter) {
 336       Address interpreter_invocation_counter(G3_method_counters,
 337             in_bytes(MethodCounters::interpreter_invocation_counter_offset()));
 338       __ ld(interpreter_invocation_counter, G4_scratch);
 339       __ inc(G4_scratch);
 340       __ st(G4_scratch, interpreter_invocation_counter);
 341     }
 342 
 343     if (ProfileInterpreter && profile_method != NULL) {
 344       // Test to see if we should create a method data oop
 345       Address profile_limit(G3_method_counters, in_bytes(MethodCounters::interpreter_profile_limit_offset()));
 346       __ ld(profile_limit, G1_scratch);
 347       __ cmp_and_br_short(O0, G1_scratch, Assembler::lessUnsigned, Assembler::pn, *profile_method_continue);
 348 
 349       // if no method data exists, go to profile_method
 350       __ test_method_data_pointer(*profile_method);
 351     }
 352 
 353     Address invocation_limit(G3_method_counters, in_bytes(MethodCounters::interpreter_invocation_limit_offset()));
 354     __ ld(invocation_limit, G3_scratch);
 355     __ cmp(O0, G3_scratch);
 356     __ br(Assembler::greaterEqualUnsigned, false, Assembler::pn, *overflow); // Far distance
 357     __ delayed()->nop();
 358     __ bind(done);
 359   }
 360 
 361 }
 362 
 363 // Allocate monitor and lock method (asm interpreter)
 364 // ebx - Method*
 365 //
 366 void TemplateInterpreterGenerator::lock_method() {
 367   __ ld(Lmethod, in_bytes(Method::access_flags_offset()), O0);  // Load access flags.
 368 
 369 #ifdef ASSERT
 370  { Label ok;
 371    __ btst(JVM_ACC_SYNCHRONIZED, O0);
 372    __ br( Assembler::notZero, false, Assembler::pt, ok);
 373    __ delayed()->nop();
 374    __ stop("method doesn't need synchronization");
 375    __ bind(ok);
 376   }
 377 #endif // ASSERT
 378 
 379   // get synchronization object to O0
 380   { Label done;
 381     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
 382     __ btst(JVM_ACC_STATIC, O0);
 383     __ br( Assembler::zero, true, Assembler::pt, done);
 384     __ delayed()->ld_ptr(Llocals, Interpreter::local_offset_in_bytes(0), O0); // get receiver for not-static case
 385 
 386     __ ld_ptr( Lmethod, in_bytes(Method::const_offset()), O0);
 387     __ ld_ptr( O0, in_bytes(ConstMethod::constants_offset()), O0);
 388     __ ld_ptr( O0, ConstantPool::pool_holder_offset_in_bytes(), O0);
 389 
 390     // lock the mirror, not the Klass*
 391     __ ld_ptr( O0, mirror_offset, O0);
 392 
 393 #ifdef ASSERT
 394     __ tst(O0);
 395     __ breakpoint_trap(Assembler::zero, Assembler::ptr_cc);
 396 #endif // ASSERT
 397 
 398     __ bind(done);
 399   }
 400 
 401   __ add_monitor_to_stack(true, noreg, noreg);  // allocate monitor elem
 402   __ st_ptr( O0, Lmonitors, BasicObjectLock::obj_offset_in_bytes());   // store object
 403   // __ untested("lock_object from method entry");
 404   __ lock_object(Lmonitors, O0);
 405 }
 406 
 407 
 408 void TemplateInterpreterGenerator::generate_stack_overflow_check(Register Rframe_size,
 409                                                          Register Rscratch,
 410                                                          Register Rscratch2) {
 411   const int page_size = os::vm_page_size();
 412   Label after_frame_check;
 413 
 414   assert_different_registers(Rframe_size, Rscratch, Rscratch2);
 415 
 416   __ set(page_size, Rscratch);
 417   __ cmp_and_br_short(Rframe_size, Rscratch, Assembler::lessEqual, Assembler::pt, after_frame_check);
 418 
 419   // get the stack base, and in debug, verify it is non-zero
 420   __ ld_ptr( G2_thread, Thread::stack_base_offset(), Rscratch );
 421 #ifdef ASSERT
 422   Label base_not_zero;
 423   __ br_notnull_short(Rscratch, Assembler::pn, base_not_zero);
 424   __ stop("stack base is zero in generate_stack_overflow_check");
 425   __ bind(base_not_zero);
 426 #endif
 427 
 428   // get the stack size, and in debug, verify it is non-zero
 429   assert( sizeof(size_t) == sizeof(intptr_t), "wrong load size" );
 430   __ ld_ptr( G2_thread, Thread::stack_size_offset(), Rscratch2 );
 431 #ifdef ASSERT
 432   Label size_not_zero;
 433   __ br_notnull_short(Rscratch2, Assembler::pn, size_not_zero);
 434   __ stop("stack size is zero in generate_stack_overflow_check");
 435   __ bind(size_not_zero);
 436 #endif
 437 
 438   // compute the beginning of the protected zone minus the requested frame size
 439   __ sub( Rscratch, Rscratch2,   Rscratch );
 440   __ set( (StackRedPages+StackYellowPages) * page_size, Rscratch2 );
 441   __ add( Rscratch, Rscratch2,   Rscratch );
 442 
 443   // Add in the size of the frame (which is the same as subtracting it from the
 444   // SP, which would take another register
 445   __ add( Rscratch, Rframe_size, Rscratch );
 446 
 447   // the frame is greater than one page in size, so check against
 448   // the bottom of the stack
 449   __ cmp_and_brx_short(SP, Rscratch, Assembler::greaterUnsigned, Assembler::pt, after_frame_check);
 450 
 451   // the stack will overflow, throw an exception
 452 
 453   // Note that SP is restored to sender's sp (in the delay slot). This
 454   // is necessary if the sender's frame is an extended compiled frame
 455   // (see gen_c2i_adapter()) and safer anyway in case of JSR292
 456   // adaptations.
 457 
 458   // Note also that the restored frame is not necessarily interpreted.
 459   // Use the shared runtime version of the StackOverflowError.
 460   assert(StubRoutines::throw_StackOverflowError_entry() != NULL, "stub not yet generated");
 461   AddressLiteral stub(StubRoutines::throw_StackOverflowError_entry());
 462   __ jump_to(stub, Rscratch);
 463   __ delayed()->mov(O5_savedSP, SP);
 464 
 465   // if you get to here, then there is enough stack space
 466   __ bind( after_frame_check );
 467 }
 468 
 469 
 470 //
 471 // Generate a fixed interpreter frame. This is identical setup for interpreted
 472 // methods and for native methods hence the shared code.
 473 
 474 
 475 //----------------------------------------------------------------------------------------------------
 476 // Stack frame layout
 477 //
 478 // When control flow reaches any of the entry types for the interpreter
 479 // the following holds ->
 480 //
 481 // C2 Calling Conventions:
 482 //
 483 // The entry code below assumes that the following registers are set
 484 // when coming in:
 485 //    G5_method: holds the Method* of the method to call
 486 //    Lesp:    points to the TOS of the callers expression stack
 487 //             after having pushed all the parameters
 488 //
 489 // The entry code does the following to setup an interpreter frame
 490 //   pop parameters from the callers stack by adjusting Lesp
 491 //   set O0 to Lesp
 492 //   compute X = (max_locals - num_parameters)
 493 //   bump SP up by X to accomadate the extra locals
 494 //   compute X = max_expression_stack
 495 //               + vm_local_words
 496 //               + 16 words of register save area
 497 //   save frame doing a save sp, -X, sp growing towards lower addresses
 498 //   set Lbcp, Lmethod, LcpoolCache
 499 //   set Llocals to i0
 500 //   set Lmonitors to FP - rounded_vm_local_words
 501 //   set Lesp to Lmonitors - 4
 502 //
 503 //  The frame has now been setup to do the rest of the entry code
 504 
 505 // Try this optimization:  Most method entries could live in a
 506 // "one size fits all" stack frame without all the dynamic size
 507 // calculations.  It might be profitable to do all this calculation
 508 // statically and approximately for "small enough" methods.
 509 
 510 //-----------------------------------------------------------------------------------------------
 511 
 512 // C1 Calling conventions
 513 //
 514 // Upon method entry, the following registers are setup:
 515 //
 516 // g2 G2_thread: current thread
 517 // g5 G5_method: method to activate
 518 // g4 Gargs  : pointer to last argument
 519 //
 520 //
 521 // Stack:
 522 //
 523 // +---------------+ <--- sp
 524 // |               |
 525 // : reg save area :
 526 // |               |
 527 // +---------------+ <--- sp + 0x40
 528 // |               |
 529 // : extra 7 slots :      note: these slots are not really needed for the interpreter (fix later)
 530 // |               |
 531 // +---------------+ <--- sp + 0x5c
 532 // |               |
 533 // :     free      :
 534 // |               |
 535 // +---------------+ <--- Gargs
 536 // |               |
 537 // :   arguments   :
 538 // |               |
 539 // +---------------+
 540 // |               |
 541 //
 542 //
 543 //
 544 // AFTER FRAME HAS BEEN SETUP for method interpretation the stack looks like:
 545 //
 546 // +---------------+ <--- sp
 547 // |               |
 548 // : reg save area :
 549 // |               |
 550 // +---------------+ <--- sp + 0x40
 551 // |               |
 552 // : extra 7 slots :      note: these slots are not really needed for the interpreter (fix later)
 553 // |               |
 554 // +---------------+ <--- sp + 0x5c
 555 // |               |
 556 // :               :
 557 // |               | <--- Lesp
 558 // +---------------+ <--- Lmonitors (fp - 0x18)
 559 // |   VM locals   |
 560 // +---------------+ <--- fp
 561 // |               |
 562 // : reg save area :
 563 // |               |
 564 // +---------------+ <--- fp + 0x40
 565 // |               |
 566 // : extra 7 slots :      note: these slots are not really needed for the interpreter (fix later)
 567 // |               |
 568 // +---------------+ <--- fp + 0x5c
 569 // |               |
 570 // :     free      :
 571 // |               |
 572 // +---------------+
 573 // |               |
 574 // : nonarg locals :
 575 // |               |
 576 // +---------------+
 577 // |               |
 578 // :   arguments   :
 579 // |               | <--- Llocals
 580 // +---------------+ <--- Gargs
 581 // |               |
 582 
 583 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
 584   //
 585   //
 586   // The entry code sets up a new interpreter frame in 4 steps:
 587   //
 588   // 1) Increase caller's SP by for the extra local space needed:
 589   //    (check for overflow)
 590   //    Efficient implementation of xload/xstore bytecodes requires
 591   //    that arguments and non-argument locals are in a contigously
 592   //    addressable memory block => non-argument locals must be
 593   //    allocated in the caller's frame.
 594   //
 595   // 2) Create a new stack frame and register window:
 596   //    The new stack frame must provide space for the standard
 597   //    register save area, the maximum java expression stack size,
 598   //    the monitor slots (0 slots initially), and some frame local
 599   //    scratch locations.
 600   //
 601   // 3) The following interpreter activation registers must be setup:
 602   //    Lesp       : expression stack pointer
 603   //    Lbcp       : bytecode pointer
 604   //    Lmethod    : method
 605   //    Llocals    : locals pointer
 606   //    Lmonitors  : monitor pointer
 607   //    LcpoolCache: constant pool cache
 608   //
 609   // 4) Initialize the non-argument locals if necessary:
 610   //    Non-argument locals may need to be initialized to NULL
 611   //    for GC to work. If the oop-map information is accurate
 612   //    (in the absence of the JSR problem), no initialization
 613   //    is necessary.
 614   //
 615   // (gri - 2/25/2000)
 616 
 617 
 618   int rounded_vm_local_words = round_to( frame::interpreter_frame_vm_local_words, WordsPerLong );
 619 
 620   const int extra_space =
 621     rounded_vm_local_words +                   // frame local scratch space
 622     Method::extra_stack_entries() +            // extra stack for jsr 292
 623     frame::memory_parameter_word_sp_offset +   // register save area
 624     (native_call ? frame::interpreter_frame_extra_outgoing_argument_words : 0);
 625 
 626   const Register Glocals_size = G3;
 627   const Register RconstMethod = Glocals_size;
 628   const Register Otmp1 = O3;
 629   const Register Otmp2 = O4;
 630   // Lscratch can't be used as a temporary because the call_stub uses
 631   // it to assert that the stack frame was setup correctly.
 632   const Address constMethod       (G5_method, Method::const_offset());
 633   const Address size_of_parameters(RconstMethod, ConstMethod::size_of_parameters_offset());
 634 
 635   __ ld_ptr( constMethod, RconstMethod );
 636   __ lduh( size_of_parameters, Glocals_size);
 637 
 638   // Gargs points to first local + BytesPerWord
 639   // Set the saved SP after the register window save
 640   //
 641   assert_different_registers(Gargs, Glocals_size, Gframe_size, O5_savedSP);
 642   __ sll(Glocals_size, Interpreter::logStackElementSize, Otmp1);
 643   __ add(Gargs, Otmp1, Gargs);
 644 
 645   if (native_call) {
 646     __ calc_mem_param_words( Glocals_size, Gframe_size );
 647     __ add( Gframe_size,  extra_space, Gframe_size);
 648     __ round_to( Gframe_size, WordsPerLong );
 649     __ sll( Gframe_size, LogBytesPerWord, Gframe_size );
 650   } else {
 651 
 652     //
 653     // Compute number of locals in method apart from incoming parameters
 654     //
 655     const Address size_of_locals    (Otmp1, ConstMethod::size_of_locals_offset());
 656     __ ld_ptr( constMethod, Otmp1 );
 657     __ lduh( size_of_locals, Otmp1 );
 658     __ sub( Otmp1, Glocals_size, Glocals_size );
 659     __ round_to( Glocals_size, WordsPerLong );
 660     __ sll( Glocals_size, Interpreter::logStackElementSize, Glocals_size );
 661 
 662     // see if the frame is greater than one page in size. If so,
 663     // then we need to verify there is enough stack space remaining
 664     // Frame_size = (max_stack + extra_space) * BytesPerWord;
 665     __ ld_ptr( constMethod, Gframe_size );
 666     __ lduh( Gframe_size, in_bytes(ConstMethod::max_stack_offset()), Gframe_size );
 667     __ add( Gframe_size, extra_space, Gframe_size );
 668     __ round_to( Gframe_size, WordsPerLong );
 669     __ sll( Gframe_size, Interpreter::logStackElementSize, Gframe_size);
 670 
 671     // Add in java locals size for stack overflow check only
 672     __ add( Gframe_size, Glocals_size, Gframe_size );
 673 
 674     const Register Otmp2 = O4;
 675     assert_different_registers(Otmp1, Otmp2, O5_savedSP);
 676     generate_stack_overflow_check(Gframe_size, Otmp1, Otmp2);
 677 
 678     __ sub( Gframe_size, Glocals_size, Gframe_size);
 679 
 680     //
 681     // bump SP to accomodate the extra locals
 682     //
 683     __ sub( SP, Glocals_size, SP );
 684   }
 685 
 686   //
 687   // now set up a stack frame with the size computed above
 688   //
 689   __ neg( Gframe_size );
 690   __ save( SP, Gframe_size, SP );
 691 
 692   //
 693   // now set up all the local cache registers
 694   //
 695   // NOTE: At this point, Lbyte_code/Lscratch has been modified. Note
 696   // that all present references to Lbyte_code initialize the register
 697   // immediately before use
 698   if (native_call) {
 699     __ mov(G0, Lbcp);
 700   } else {
 701     __ ld_ptr(G5_method, Method::const_offset(), Lbcp);
 702     __ add(Lbcp, in_bytes(ConstMethod::codes_offset()), Lbcp);
 703   }
 704   __ mov( G5_method, Lmethod);                 // set Lmethod
 705   __ get_constant_pool_cache( LcpoolCache );   // set LcpoolCache
 706   __ sub(FP, rounded_vm_local_words * BytesPerWord, Lmonitors ); // set Lmonitors
 707 #ifdef _LP64
 708   __ add( Lmonitors, STACK_BIAS, Lmonitors );   // Account for 64 bit stack bias
 709 #endif
 710   __ sub(Lmonitors, BytesPerWord, Lesp);       // set Lesp
 711 
 712   // setup interpreter activation registers
 713   __ sub(Gargs, BytesPerWord, Llocals);        // set Llocals
 714 
 715   if (ProfileInterpreter) {
 716 #ifdef FAST_DISPATCH
 717     // FAST_DISPATCH and ProfileInterpreter are mutually exclusive since
 718     // they both use I2.
 719     assert(0, "FAST_DISPATCH and +ProfileInterpreter are mutually exclusive");
 720 #endif // FAST_DISPATCH
 721     __ set_method_data_pointer();
 722   }
 723 
 724 }
 725 
 726 // Method entry for java.lang.ref.Reference.get.
 727 address InterpreterGenerator::generate_Reference_get_entry(void) {
 728 #if INCLUDE_ALL_GCS
 729   // Code: _aload_0, _getfield, _areturn
 730   // parameter size = 1
 731   //
 732   // The code that gets generated by this routine is split into 2 parts:
 733   //    1. The "intrinsified" code for G1 (or any SATB based GC),
 734   //    2. The slow path - which is an expansion of the regular method entry.
 735   //
 736   // Notes:-
 737   // * In the G1 code we do not check whether we need to block for
 738   //   a safepoint. If G1 is enabled then we must execute the specialized
 739   //   code for Reference.get (except when the Reference object is null)
 740   //   so that we can log the value in the referent field with an SATB
 741   //   update buffer.
 742   //   If the code for the getfield template is modified so that the
 743   //   G1 pre-barrier code is executed when the current method is
 744   //   Reference.get() then going through the normal method entry
 745   //   will be fine.
 746   // * The G1 code can, however, check the receiver object (the instance
 747   //   of java.lang.Reference) and jump to the slow path if null. If the
 748   //   Reference object is null then we obviously cannot fetch the referent
 749   //   and so we don't need to call the G1 pre-barrier. Thus we can use the
 750   //   regular method entry code to generate the NPE.
 751   //
 752   // This code is based on generate_accessor_enty.
 753 
 754   address entry = __ pc();
 755 
 756   const int referent_offset = java_lang_ref_Reference::referent_offset;
 757   guarantee(referent_offset > 0, "referent offset not initialized");
 758 
 759   if (UseG1GC) {
 760      Label slow_path;
 761 
 762     // In the G1 code we don't check if we need to reach a safepoint. We
 763     // continue and the thread will safepoint at the next bytecode dispatch.
 764 
 765     // Check if local 0 != NULL
 766     // If the receiver is null then it is OK to jump to the slow path.
 767     __ ld_ptr(Gargs, G0, Otos_i ); // get local 0
 768     // check if local 0 == NULL and go the slow path
 769     __ cmp_and_brx_short(Otos_i, 0, Assembler::equal, Assembler::pn, slow_path);
 770 
 771 
 772     // Load the value of the referent field.
 773     if (Assembler::is_simm13(referent_offset)) {
 774       __ load_heap_oop(Otos_i, referent_offset, Otos_i);
 775     } else {
 776       __ set(referent_offset, G3_scratch);
 777       __ load_heap_oop(Otos_i, G3_scratch, Otos_i);
 778     }
 779 
 780     // Generate the G1 pre-barrier code to log the value of
 781     // the referent field in an SATB buffer. Note with
 782     // these parameters the pre-barrier does not generate
 783     // the load of the previous value
 784 
 785     __ g1_write_barrier_pre(noreg /* obj */, noreg /* index */, 0 /* offset */,
 786                             Otos_i /* pre_val */,
 787                             G3_scratch /* tmp */,
 788                             true /* preserve_o_regs */);
 789 
 790     // _areturn
 791     __ retl();                      // return from leaf routine
 792     __ delayed()->mov(O5_savedSP, SP);
 793 
 794     // Generate regular method entry
 795     __ bind(slow_path);
 796     __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::zerolocals));
 797     return entry;
 798   }
 799 #endif // INCLUDE_ALL_GCS
 800 
 801   // If G1 is not enabled then attempt to go through the accessor entry point
 802   // Reference.get is an accessor
 803   return NULL;
 804 }
 805 
 806 //
 807 // Interpreter stub for calling a native method. (asm interpreter)
 808 // This sets up a somewhat different looking stack for calling the native method
 809 // than the typical interpreter frame setup.
 810 //
 811 
 812 address InterpreterGenerator::generate_native_entry(bool synchronized) {
 813   address entry = __ pc();
 814 
 815   // the following temporary registers are used during frame creation
 816   const Register Gtmp1 = G3_scratch ;
 817   const Register Gtmp2 = G1_scratch;
 818   bool inc_counter  = UseCompiler || CountCompiledCalls || LogTouchedMethods;
 819 
 820   // make sure registers are different!
 821   assert_different_registers(G2_thread, G5_method, Gargs, Gtmp1, Gtmp2);
 822 
 823   const Address Laccess_flags(Lmethod, Method::access_flags_offset());
 824 
 825   const Register Glocals_size = G3;
 826   assert_different_registers(Glocals_size, G4_scratch, Gframe_size);
 827 
 828   // make sure method is native & not abstract
 829   // rethink these assertions - they can be simplified and shared (gri 2/25/2000)
 830 #ifdef ASSERT
 831   __ ld(G5_method, Method::access_flags_offset(), Gtmp1);
 832   {
 833     Label L;
 834     __ btst(JVM_ACC_NATIVE, Gtmp1);
 835     __ br(Assembler::notZero, false, Assembler::pt, L);
 836     __ delayed()->nop();
 837     __ stop("tried to execute non-native method as native");
 838     __ bind(L);
 839   }
 840   { Label L;
 841     __ btst(JVM_ACC_ABSTRACT, Gtmp1);
 842     __ br(Assembler::zero, false, Assembler::pt, L);
 843     __ delayed()->nop();
 844     __ stop("tried to execute abstract method as non-abstract");
 845     __ bind(L);
 846   }
 847 #endif // ASSERT
 848 
 849  // generate the code to allocate the interpreter stack frame
 850   generate_fixed_frame(true);
 851 
 852   //
 853   // No locals to initialize for native method
 854   //
 855 
 856   // this slot will be set later, we initialize it to null here just in
 857   // case we get a GC before the actual value is stored later
 858   __ st_ptr(G0, FP, (frame::interpreter_frame_oop_temp_offset * wordSize) + STACK_BIAS);
 859 
 860   const Address do_not_unlock_if_synchronized(G2_thread,
 861     JavaThread::do_not_unlock_if_synchronized_offset());
 862   // Since at this point in the method invocation the exception handler
 863   // would try to exit the monitor of synchronized methods which hasn't
 864   // been entered yet, we set the thread local variable
 865   // _do_not_unlock_if_synchronized to true. If any exception was thrown by
 866   // runtime, exception handling i.e. unlock_if_synchronized_method will
 867   // check this thread local flag.
 868   // This flag has two effects, one is to force an unwind in the topmost
 869   // interpreter frame and not perform an unlock while doing so.
 870 
 871   __ movbool(true, G3_scratch);
 872   __ stbool(G3_scratch, do_not_unlock_if_synchronized);
 873 
 874   // increment invocation counter and check for overflow
 875   //
 876   // Note: checking for negative value instead of overflow
 877   //       so we have a 'sticky' overflow test (may be of
 878   //       importance as soon as we have true MT/MP)
 879   Label invocation_counter_overflow;
 880   Label Lcontinue;
 881   if (inc_counter) {
 882     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
 883 
 884   }
 885   __ bind(Lcontinue);
 886 
 887   bang_stack_shadow_pages(true);
 888 
 889   // reset the _do_not_unlock_if_synchronized flag
 890   __ stbool(G0, do_not_unlock_if_synchronized);
 891 
 892   // check for synchronized methods
 893   // Must happen AFTER invocation_counter check and stack overflow check,
 894   // so method is not locked if overflows.
 895 
 896   if (synchronized) {
 897     lock_method();
 898   } else {
 899 #ifdef ASSERT
 900     { Label ok;
 901       __ ld(Laccess_flags, O0);
 902       __ btst(JVM_ACC_SYNCHRONIZED, O0);
 903       __ br( Assembler::zero, false, Assembler::pt, ok);
 904       __ delayed()->nop();
 905       __ stop("method needs synchronization");
 906       __ bind(ok);
 907     }
 908 #endif // ASSERT
 909   }
 910 
 911 
 912   // start execution
 913   __ verify_thread();
 914 
 915   // JVMTI support
 916   __ notify_method_entry();
 917 
 918   // native call
 919 
 920   // (note that O0 is never an oop--at most it is a handle)
 921   // It is important not to smash any handles created by this call,
 922   // until any oop handle in O0 is dereferenced.
 923 
 924   // (note that the space for outgoing params is preallocated)
 925 
 926   // get signature handler
 927   { Label L;
 928     Address signature_handler(Lmethod, Method::signature_handler_offset());
 929     __ ld_ptr(signature_handler, G3_scratch);
 930     __ br_notnull_short(G3_scratch, Assembler::pt, L);
 931     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), Lmethod);
 932     __ ld_ptr(signature_handler, G3_scratch);
 933     __ bind(L);
 934   }
 935 
 936   // Push a new frame so that the args will really be stored in
 937   // Copy a few locals across so the new frame has the variables
 938   // we need but these values will be dead at the jni call and
 939   // therefore not gc volatile like the values in the current
 940   // frame (Lmethod in particular)
 941 
 942   // Flush the method pointer to the register save area
 943   __ st_ptr(Lmethod, SP, (Lmethod->sp_offset_in_saved_window() * wordSize) + STACK_BIAS);
 944   __ mov(Llocals, O1);
 945 
 946   // calculate where the mirror handle body is allocated in the interpreter frame:
 947   __ add(FP, (frame::interpreter_frame_oop_temp_offset * wordSize) + STACK_BIAS, O2);
 948 
 949   // Calculate current frame size
 950   __ sub(SP, FP, O3);         // Calculate negative of current frame size
 951   __ save(SP, O3, SP);        // Allocate an identical sized frame
 952 
 953   // Note I7 has leftover trash. Slow signature handler will fill it in
 954   // should we get there. Normal jni call will set reasonable last_Java_pc
 955   // below (and fix I7 so the stack trace doesn't have a meaningless frame
 956   // in it).
 957 
 958   // Load interpreter frame's Lmethod into same register here
 959 
 960   __ ld_ptr(FP, (Lmethod->sp_offset_in_saved_window() * wordSize) + STACK_BIAS, Lmethod);
 961 
 962   __ mov(I1, Llocals);
 963   __ mov(I2, Lscratch2);     // save the address of the mirror
 964 
 965 
 966   // ONLY Lmethod and Llocals are valid here!
 967 
 968   // call signature handler, It will move the arg properly since Llocals in current frame
 969   // matches that in outer frame
 970 
 971   __ callr(G3_scratch, 0);
 972   __ delayed()->nop();
 973 
 974   // Result handler is in Lscratch
 975 
 976   // Reload interpreter frame's Lmethod since slow signature handler may block
 977   __ ld_ptr(FP, (Lmethod->sp_offset_in_saved_window() * wordSize) + STACK_BIAS, Lmethod);
 978 
 979   { Label not_static;
 980 
 981     __ ld(Laccess_flags, O0);
 982     __ btst(JVM_ACC_STATIC, O0);
 983     __ br( Assembler::zero, false, Assembler::pt, not_static);
 984     // get native function entry point(O0 is a good temp until the very end)
 985     __ delayed()->ld_ptr(Lmethod, in_bytes(Method::native_function_offset()), O0);
 986     // for static methods insert the mirror argument
 987     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
 988 
 989     __ ld_ptr(Lmethod, Method:: const_offset(), O1);
 990     __ ld_ptr(O1, ConstMethod::constants_offset(), O1);
 991     __ ld_ptr(O1, ConstantPool::pool_holder_offset_in_bytes(), O1);
 992     __ ld_ptr(O1, mirror_offset, O1);
 993 #ifdef ASSERT
 994     if (!PrintSignatureHandlers)  // do not dirty the output with this
 995     { Label L;
 996       __ br_notnull_short(O1, Assembler::pt, L);
 997       __ stop("mirror is missing");
 998       __ bind(L);
 999     }
1000 #endif // ASSERT
1001     __ st_ptr(O1, Lscratch2, 0);
1002     __ mov(Lscratch2, O1);
1003     __ bind(not_static);
1004   }
1005 
1006   // At this point, arguments have been copied off of stack into
1007   // their JNI positions, which are O1..O5 and SP[68..].
1008   // Oops are boxed in-place on the stack, with handles copied to arguments.
1009   // The result handler is in Lscratch.  O0 will shortly hold the JNIEnv*.
1010 
1011 #ifdef ASSERT
1012   { Label L;
1013     __ br_notnull_short(O0, Assembler::pt, L);
1014     __ stop("native entry point is missing");
1015     __ bind(L);
1016   }
1017 #endif // ASSERT
1018 
1019   //
1020   // setup the frame anchor
1021   //
1022   // The scavenge function only needs to know that the PC of this frame is
1023   // in the interpreter method entry code, it doesn't need to know the exact
1024   // PC and hence we can use O7 which points to the return address from the
1025   // previous call in the code stream (signature handler function)
1026   //
1027   // The other trick is we set last_Java_sp to FP instead of the usual SP because
1028   // we have pushed the extra frame in order to protect the volatile register(s)
1029   // in that frame when we return from the jni call
1030   //
1031 
1032   __ set_last_Java_frame(FP, O7);
1033   __ mov(O7, I7);  // make dummy interpreter frame look like one above,
1034                    // not meaningless information that'll confuse me.
1035 
1036   // flush the windows now. We don't care about the current (protection) frame
1037   // only the outer frames
1038 
1039   __ flushw();
1040 
1041   // mark windows as flushed
1042   Address flags(G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::flags_offset());
1043   __ set(JavaFrameAnchor::flushed, G3_scratch);
1044   __ st(G3_scratch, flags);
1045 
1046   // Transition from _thread_in_Java to _thread_in_native. We are already safepoint ready.
1047 
1048   Address thread_state(G2_thread, JavaThread::thread_state_offset());
1049 #ifdef ASSERT
1050   { Label L;
1051     __ ld(thread_state, G3_scratch);
1052     __ cmp_and_br_short(G3_scratch, _thread_in_Java, Assembler::equal, Assembler::pt, L);
1053     __ stop("Wrong thread state in native stub");
1054     __ bind(L);
1055   }
1056 #endif // ASSERT
1057   __ set(_thread_in_native, G3_scratch);
1058   __ st(G3_scratch, thread_state);
1059 
1060   // Call the jni method, using the delay slot to set the JNIEnv* argument.
1061   __ save_thread(L7_thread_cache); // save Gthread
1062   __ callr(O0, 0);
1063   __ delayed()->
1064      add(L7_thread_cache, in_bytes(JavaThread::jni_environment_offset()), O0);
1065 
1066   // Back from jni method Lmethod in this frame is DEAD, DEAD, DEAD
1067 
1068   __ restore_thread(L7_thread_cache); // restore G2_thread
1069   __ reinit_heapbase();
1070 
1071   // must we block?
1072 
1073   // Block, if necessary, before resuming in _thread_in_Java state.
1074   // In order for GC to work, don't clear the last_Java_sp until after blocking.
1075   { Label no_block;
1076     AddressLiteral sync_state(SafepointSynchronize::address_of_state());
1077 
1078     // Switch thread to "native transition" state before reading the synchronization state.
1079     // This additional state is necessary because reading and testing the synchronization
1080     // state is not atomic w.r.t. GC, as this scenario demonstrates:
1081     //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
1082     //     VM thread changes sync state to synchronizing and suspends threads for GC.
1083     //     Thread A is resumed to finish this native method, but doesn't block here since it
1084     //     didn't see any synchronization is progress, and escapes.
1085     __ set(_thread_in_native_trans, G3_scratch);
1086     __ st(G3_scratch, thread_state);
1087     if(os::is_MP()) {
1088       if (UseMembar) {
1089         // Force this write out before the read below
1090         __ membar(Assembler::StoreLoad);
1091       } else {
1092         // Write serialization page so VM thread can do a pseudo remote membar.
1093         // We use the current thread pointer to calculate a thread specific
1094         // offset to write to within the page. This minimizes bus traffic
1095         // due to cache line collision.
1096         __ serialize_memory(G2_thread, G1_scratch, G3_scratch);
1097       }
1098     }
1099     __ load_contents(sync_state, G3_scratch);
1100     __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
1101 
1102     Label L;
1103     __ br(Assembler::notEqual, false, Assembler::pn, L);
1104     __ delayed()->ld(G2_thread, JavaThread::suspend_flags_offset(), G3_scratch);
1105     __ cmp_and_br_short(G3_scratch, 0, Assembler::equal, Assembler::pt, no_block);
1106     __ bind(L);
1107 
1108     // Block.  Save any potential method result value before the operation and
1109     // use a leaf call to leave the last_Java_frame setup undisturbed.
1110     save_native_result();
1111     __ call_VM_leaf(L7_thread_cache,
1112                     CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans),
1113                     G2_thread);
1114 
1115     // Restore any method result value
1116     restore_native_result();
1117     __ bind(no_block);
1118   }
1119 
1120   // Clear the frame anchor now
1121 
1122   __ reset_last_Java_frame();
1123 
1124   // Move the result handler address
1125   __ mov(Lscratch, G3_scratch);
1126   // return possible result to the outer frame
1127 #ifndef __LP64
1128   __ mov(O0, I0);
1129   __ restore(O1, G0, O1);
1130 #else
1131   __ restore(O0, G0, O0);
1132 #endif /* __LP64 */
1133 
1134   // Move result handler to expected register
1135   __ mov(G3_scratch, Lscratch);
1136 
1137   // Back in normal (native) interpreter frame. State is thread_in_native_trans
1138   // switch to thread_in_Java.
1139 
1140   __ set(_thread_in_Java, G3_scratch);
1141   __ st(G3_scratch, thread_state);
1142 
1143   // reset handle block
1144   __ ld_ptr(G2_thread, JavaThread::active_handles_offset(), G3_scratch);
1145   __ st(G0, G3_scratch, JNIHandleBlock::top_offset_in_bytes());
1146 
1147   // If we have an oop result store it where it will be safe for any further gc
1148   // until we return now that we've released the handle it might be protected by
1149 
1150   {
1151     Label no_oop, store_result;
1152 
1153     __ set((intptr_t)AbstractInterpreter::result_handler(T_OBJECT), G3_scratch);
1154     __ cmp_and_brx_short(G3_scratch, Lscratch, Assembler::notEqual, Assembler::pt, no_oop);
1155     __ addcc(G0, O0, O0);
1156     __ brx(Assembler::notZero, true, Assembler::pt, store_result);     // if result is not NULL:
1157     __ delayed()->ld_ptr(O0, 0, O0);                                   // unbox it
1158     __ mov(G0, O0);
1159 
1160     __ bind(store_result);
1161     // Store it where gc will look for it and result handler expects it.
1162     __ st_ptr(O0, FP, (frame::interpreter_frame_oop_temp_offset*wordSize) + STACK_BIAS);
1163 
1164     __ bind(no_oop);
1165 
1166   }
1167 
1168 
1169   // handle exceptions (exception handling will handle unlocking!)
1170   { Label L;
1171     Address exception_addr(G2_thread, Thread::pending_exception_offset());
1172     __ ld_ptr(exception_addr, Gtemp);
1173     __ br_null_short(Gtemp, Assembler::pt, L);
1174     // Note: This could be handled more efficiently since we know that the native
1175     //       method doesn't have an exception handler. We could directly return
1176     //       to the exception handler for the caller.
1177     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception));
1178     __ should_not_reach_here();
1179     __ bind(L);
1180   }
1181 
1182   // JVMTI support (preserves thread register)
1183   __ notify_method_exit(true, ilgl, InterpreterMacroAssembler::NotifyJVMTI);
1184 
1185   if (synchronized) {
1186     // save and restore any potential method result value around the unlocking operation
1187     save_native_result();
1188 
1189     __ add( __ top_most_monitor(), O1);
1190     __ unlock_object(O1);
1191 
1192     restore_native_result();
1193   }
1194 
1195 #if defined(COMPILER2) && !defined(_LP64)
1196 
1197   // C2 expects long results in G1 we can't tell if we're returning to interpreted
1198   // or compiled so just be safe.
1199 
1200   __ sllx(O0, 32, G1);          // Shift bits into high G1
1201   __ srl (O1, 0, O1);           // Zero extend O1
1202   __ or3 (O1, G1, G1);          // OR 64 bits into G1
1203 
1204 #endif /* COMPILER2 && !_LP64 */
1205 
1206   // dispose of return address and remove activation
1207 #ifdef ASSERT
1208   {
1209     Label ok;
1210     __ cmp_and_brx_short(I5_savedSP, FP, Assembler::greaterEqualUnsigned, Assembler::pt, ok);
1211     __ stop("bad I5_savedSP value");
1212     __ should_not_reach_here();
1213     __ bind(ok);
1214   }
1215 #endif
1216   if (TraceJumps) {
1217     // Move target to register that is recordable
1218     __ mov(Lscratch, G3_scratch);
1219     __ JMP(G3_scratch, 0);
1220   } else {
1221     __ jmp(Lscratch, 0);
1222   }
1223   __ delayed()->nop();
1224 
1225 
1226   if (inc_counter) {
1227     // handle invocation counter overflow
1228     __ bind(invocation_counter_overflow);
1229     generate_counter_overflow(Lcontinue);
1230   }
1231 
1232 
1233 
1234   return entry;
1235 }
1236 
1237 
1238 // Generic method entry to (asm) interpreter
1239 address InterpreterGenerator::generate_normal_entry(bool synchronized) {
1240   address entry = __ pc();
1241 
1242   bool inc_counter  = UseCompiler || CountCompiledCalls || LogTouchedMethods;
1243 
1244   // the following temporary registers are used during frame creation
1245   const Register Gtmp1 = G3_scratch ;
1246   const Register Gtmp2 = G1_scratch;
1247 
1248   // make sure registers are different!
1249   assert_different_registers(G2_thread, G5_method, Gargs, Gtmp1, Gtmp2);
1250 
1251   const Address constMethod       (G5_method, Method::const_offset());
1252   // Seems like G5_method is live at the point this is used. So we could make this look consistent
1253   // and use in the asserts.
1254   const Address access_flags      (Lmethod,   Method::access_flags_offset());
1255 
1256   const Register Glocals_size = G3;
1257   assert_different_registers(Glocals_size, G4_scratch, Gframe_size);
1258 
1259   // make sure method is not native & not abstract
1260   // rethink these assertions - they can be simplified and shared (gri 2/25/2000)
1261 #ifdef ASSERT
1262   __ ld(G5_method, Method::access_flags_offset(), Gtmp1);
1263   {
1264     Label L;
1265     __ btst(JVM_ACC_NATIVE, Gtmp1);
1266     __ br(Assembler::zero, false, Assembler::pt, L);
1267     __ delayed()->nop();
1268     __ stop("tried to execute native method as non-native");
1269     __ bind(L);
1270   }
1271   { Label L;
1272     __ btst(JVM_ACC_ABSTRACT, Gtmp1);
1273     __ br(Assembler::zero, false, Assembler::pt, L);
1274     __ delayed()->nop();
1275     __ stop("tried to execute abstract method as non-abstract");
1276     __ bind(L);
1277   }
1278 #endif // ASSERT
1279 
1280   // generate the code to allocate the interpreter stack frame
1281 
1282   generate_fixed_frame(false);
1283 
1284 #ifdef FAST_DISPATCH
1285   __ set((intptr_t)Interpreter::dispatch_table(), IdispatchTables);
1286                                           // set bytecode dispatch table base
1287 #endif
1288 
1289   //
1290   // Code to initialize the extra (i.e. non-parm) locals
1291   //
1292   Register init_value = noreg;    // will be G0 if we must clear locals
1293   // The way the code was setup before zerolocals was always true for vanilla java entries.
1294   // It could only be false for the specialized entries like accessor or empty which have
1295   // no extra locals so the testing was a waste of time and the extra locals were always
1296   // initialized. We removed this extra complication to already over complicated code.
1297 
1298   init_value = G0;
1299   Label clear_loop;
1300 
1301   const Register RconstMethod = O1;
1302   const Address size_of_parameters(RconstMethod, ConstMethod::size_of_parameters_offset());
1303   const Address size_of_locals    (RconstMethod, ConstMethod::size_of_locals_offset());
1304 
1305   // NOTE: If you change the frame layout, this code will need to
1306   // be updated!
1307   __ ld_ptr( constMethod, RconstMethod );
1308   __ lduh( size_of_locals, O2 );
1309   __ lduh( size_of_parameters, O1 );
1310   __ sll( O2, Interpreter::logStackElementSize, O2);
1311   __ sll( O1, Interpreter::logStackElementSize, O1 );
1312   __ sub( Llocals, O2, O2 );
1313   __ sub( Llocals, O1, O1 );
1314 
1315   __ bind( clear_loop );
1316   __ inc( O2, wordSize );
1317 
1318   __ cmp( O2, O1 );
1319   __ brx( Assembler::lessEqualUnsigned, true, Assembler::pt, clear_loop );
1320   __ delayed()->st_ptr( init_value, O2, 0 );
1321 
1322   const Address do_not_unlock_if_synchronized(G2_thread,
1323     JavaThread::do_not_unlock_if_synchronized_offset());
1324   // Since at this point in the method invocation the exception handler
1325   // would try to exit the monitor of synchronized methods which hasn't
1326   // been entered yet, we set the thread local variable
1327   // _do_not_unlock_if_synchronized to true. If any exception was thrown by
1328   // runtime, exception handling i.e. unlock_if_synchronized_method will
1329   // check this thread local flag.
1330   __ movbool(true, G3_scratch);
1331   __ stbool(G3_scratch, do_not_unlock_if_synchronized);
1332 
1333   __ profile_parameters_type(G1_scratch, G3_scratch, G4_scratch, Lscratch);
1334   // increment invocation counter and check for overflow
1335   //
1336   // Note: checking for negative value instead of overflow
1337   //       so we have a 'sticky' overflow test (may be of
1338   //       importance as soon as we have true MT/MP)
1339   Label invocation_counter_overflow;
1340   Label profile_method;
1341   Label profile_method_continue;
1342   Label Lcontinue;
1343   if (inc_counter) {
1344     generate_counter_incr(&invocation_counter_overflow, &profile_method, &profile_method_continue);
1345     if (ProfileInterpreter) {
1346       __ bind(profile_method_continue);
1347     }
1348   }
1349   __ bind(Lcontinue);
1350 
1351   bang_stack_shadow_pages(false);
1352 
1353   // reset the _do_not_unlock_if_synchronized flag
1354   __ stbool(G0, do_not_unlock_if_synchronized);
1355 
1356   // check for synchronized methods
1357   // Must happen AFTER invocation_counter check and stack overflow check,
1358   // so method is not locked if overflows.
1359 
1360   if (synchronized) {
1361     lock_method();
1362   } else {
1363 #ifdef ASSERT
1364     { Label ok;
1365       __ ld(access_flags, O0);
1366       __ btst(JVM_ACC_SYNCHRONIZED, O0);
1367       __ br( Assembler::zero, false, Assembler::pt, ok);
1368       __ delayed()->nop();
1369       __ stop("method needs synchronization");
1370       __ bind(ok);
1371     }
1372 #endif // ASSERT
1373   }
1374 
1375   // start execution
1376 
1377   __ verify_thread();
1378 
1379   // jvmti support
1380   __ notify_method_entry();
1381 
1382   // start executing instructions
1383   __ dispatch_next(vtos);
1384 
1385 
1386   if (inc_counter) {
1387     if (ProfileInterpreter) {
1388       // We have decided to profile this method in the interpreter
1389       __ bind(profile_method);
1390 
1391       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
1392       __ set_method_data_pointer_for_bcp();
1393       __ ba_short(profile_method_continue);
1394     }
1395 
1396     // handle invocation counter overflow
1397     __ bind(invocation_counter_overflow);
1398     generate_counter_overflow(Lcontinue);
1399   }
1400 
1401 
1402   return entry;
1403 }
1404 
1405 static int size_activation_helper(int callee_extra_locals, int max_stack, int monitor_size) {
1406 
1407   // Figure out the size of an interpreter frame (in words) given that we have a fully allocated
1408   // expression stack, the callee will have callee_extra_locals (so we can account for
1409   // frame extension) and monitor_size for monitors. Basically we need to calculate
1410   // this exactly like generate_fixed_frame/generate_compute_interpreter_state.
1411   //
1412   //
1413   // The big complicating thing here is that we must ensure that the stack stays properly
1414   // aligned. This would be even uglier if monitor size wasn't modulo what the stack
1415   // needs to be aligned for). We are given that the sp (fp) is already aligned by
1416   // the caller so we must ensure that it is properly aligned for our callee.
1417   //
1418   const int rounded_vm_local_words =
1419        round_to(frame::interpreter_frame_vm_local_words,WordsPerLong);
1420   // callee_locals and max_stack are counts, not the size in frame.
1421   const int locals_size =
1422        round_to(callee_extra_locals * Interpreter::stackElementWords, WordsPerLong);
1423   const int max_stack_words = max_stack * Interpreter::stackElementWords;
1424   return (round_to((max_stack_words
1425                    + rounded_vm_local_words
1426                    + frame::memory_parameter_word_sp_offset), WordsPerLong)
1427                    // already rounded
1428                    + locals_size + monitor_size);
1429 }
1430 
1431 // How much stack a method top interpreter activation needs in words.
1432 int AbstractInterpreter::size_top_interpreter_activation(Method* method) {
1433 
1434   // See call_stub code
1435   int call_stub_size  = round_to(7 + frame::memory_parameter_word_sp_offset,
1436                                  WordsPerLong);    // 7 + register save area
1437 
1438   // Save space for one monitor to get into the interpreted method in case
1439   // the method is synchronized
1440   int monitor_size    = method->is_synchronized() ?
1441                                 1*frame::interpreter_frame_monitor_size() : 0;
1442   return size_activation_helper(method->max_locals(), method->max_stack(),
1443                                 monitor_size) + call_stub_size;
1444 }
1445 
1446 int AbstractInterpreter::size_activation(int max_stack,
1447                                          int temps,
1448                                          int extra_args,
1449                                          int monitors,
1450                                          int callee_params,
1451                                          int callee_locals,
1452                                          bool is_top_frame) {
1453   // Note: This calculation must exactly parallel the frame setup
1454   // in InterpreterGenerator::generate_fixed_frame.
1455 
1456   int monitor_size           = monitors * frame::interpreter_frame_monitor_size();
1457 
1458   assert(monitor_size == round_to(monitor_size, WordsPerLong), "must align");
1459 
1460   //
1461   // Note: if you look closely this appears to be doing something much different
1462   // than generate_fixed_frame. What is happening is this. On sparc we have to do
1463   // this dance with interpreter_sp_adjustment because the window save area would
1464   // appear just below the bottom (tos) of the caller's java expression stack. Because
1465   // the interpreter want to have the locals completely contiguous generate_fixed_frame
1466   // will adjust the caller's sp for the "extra locals" (max_locals - parameter_size).
1467   // Now in generate_fixed_frame the extension of the caller's sp happens in the callee.
1468   // In this code the opposite occurs the caller adjusts it's own stack base on the callee.
1469   // This is mostly ok but it does cause a problem when we get to the initial frame (the oldest)
1470   // because the oldest frame would have adjust its callers frame and yet that frame
1471   // already exists and isn't part of this array of frames we are unpacking. So at first
1472   // glance this would seem to mess up that frame. However Deoptimization::fetch_unroll_info_helper()
1473   // will after it calculates all of the frame's on_stack_size()'s will then figure out the
1474   // amount to adjust the caller of the initial (oldest) frame and the calculation will all
1475   // add up. It does seem like it simpler to account for the adjustment here (and remove the
1476   // callee... parameters here). However this would mean that this routine would have to take
1477   // the caller frame as input so we could adjust its sp (and set it's interpreter_sp_adjustment)
1478   // and run the calling loop in the reverse order. This would also would appear to mean making
1479   // this code aware of what the interactions are when that initial caller fram was an osr or
1480   // other adapter frame. deoptimization is complicated enough and  hard enough to debug that
1481   // there is no sense in messing working code.
1482   //
1483 
1484   int rounded_cls = round_to((callee_locals - callee_params), WordsPerLong);
1485   assert(rounded_cls == round_to(rounded_cls, WordsPerLong), "must align");
1486 
1487   int raw_frame_size = size_activation_helper(rounded_cls, max_stack, monitor_size);
1488 
1489   return raw_frame_size;
1490 }
1491 
1492 void AbstractInterpreter::layout_activation(Method* method,
1493                                             int tempcount,
1494                                             int popframe_extra_args,
1495                                             int moncount,
1496                                             int caller_actual_parameters,
1497                                             int callee_param_count,
1498                                             int callee_local_count,
1499                                             frame* caller,
1500                                             frame* interpreter_frame,
1501                                             bool is_top_frame,
1502                                             bool is_bottom_frame) {
1503   // Set up the following variables:
1504   //   - Lmethod
1505   //   - Llocals
1506   //   - Lmonitors (to the indicated number of monitors)
1507   //   - Lesp (to the indicated number of temps)
1508   // The frame caller on entry is a description of the caller of the
1509   // frame we are about to layout. We are guaranteed that we will be
1510   // able to fill in a new interpreter frame as its callee (i.e. the
1511   // stack space is allocated and the amount was determined by an
1512   // earlier call to the size_activation() method).  On return caller
1513   // while describe the interpreter frame we just layed out.
1514 
1515   // The skeleton frame must already look like an interpreter frame
1516   // even if not fully filled out.
1517   assert(interpreter_frame->is_interpreted_frame(), "Must be interpreted frame");
1518 
1519   int rounded_vm_local_words = round_to(frame::interpreter_frame_vm_local_words,WordsPerLong);
1520   int monitor_size           = moncount * frame::interpreter_frame_monitor_size();
1521   assert(monitor_size == round_to(monitor_size, WordsPerLong), "must align");
1522 
1523   intptr_t* fp = interpreter_frame->fp();
1524 
1525   JavaThread* thread = JavaThread::current();
1526   RegisterMap map(thread, false);
1527   // More verification that skeleton frame is properly walkable
1528   assert(fp == caller->sp(), "fp must match");
1529 
1530   intptr_t* montop     = fp - rounded_vm_local_words;
1531 
1532   // preallocate monitors (cf. __ add_monitor_to_stack)
1533   intptr_t* monitors = montop - monitor_size;
1534 
1535   // preallocate stack space
1536   intptr_t*  esp = monitors - 1 -
1537     (tempcount * Interpreter::stackElementWords) -
1538     popframe_extra_args;
1539 
1540   int local_words = method->max_locals() * Interpreter::stackElementWords;
1541   NEEDS_CLEANUP;
1542   intptr_t* locals;
1543   if (caller->is_interpreted_frame()) {
1544     // Can force the locals area to end up properly overlapping the top of the expression stack.
1545     intptr_t* Lesp_ptr = caller->interpreter_frame_tos_address() - 1;
1546     // Note that this computation means we replace size_of_parameters() values from the caller
1547     // interpreter frame's expression stack with our argument locals
1548     int parm_words  = caller_actual_parameters * Interpreter::stackElementWords;
1549     locals = Lesp_ptr + parm_words;
1550     int delta = local_words - parm_words;
1551     int computed_sp_adjustment = (delta > 0) ? round_to(delta, WordsPerLong) : 0;
1552     *interpreter_frame->register_addr(I5_savedSP)    = (intptr_t) (fp + computed_sp_adjustment) - STACK_BIAS;
1553     if (!is_bottom_frame) {
1554       // Llast_SP is set below for the current frame to SP (with the
1555       // extra space for the callee's locals). Here we adjust
1556       // Llast_SP for the caller's frame, removing the extra space
1557       // for the current method's locals.
1558       *caller->register_addr(Llast_SP) = *interpreter_frame->register_addr(I5_savedSP);
1559     } else {
1560       assert(*caller->register_addr(Llast_SP) >= *interpreter_frame->register_addr(I5_savedSP), "strange Llast_SP");
1561     }
1562   } else {
1563     assert(caller->is_compiled_frame() || caller->is_entry_frame(), "only possible cases");
1564     // Don't have Lesp available; lay out locals block in the caller
1565     // adjacent to the register window save area.
1566     //
1567     // Compiled frames do not allocate a varargs area which is why this if
1568     // statement is needed.
1569     //
1570     if (caller->is_compiled_frame()) {
1571       locals = fp + frame::register_save_words + local_words - 1;
1572     } else {
1573       locals = fp + frame::memory_parameter_word_sp_offset + local_words - 1;
1574     }
1575     if (!caller->is_entry_frame()) {
1576       // Caller wants his own SP back
1577       int caller_frame_size = caller->cb()->frame_size();
1578       *interpreter_frame->register_addr(I5_savedSP) = (intptr_t)(caller->fp() - caller_frame_size) - STACK_BIAS;
1579     }
1580   }
1581   if (TraceDeoptimization) {
1582     if (caller->is_entry_frame()) {
1583       // make sure I5_savedSP and the entry frames notion of saved SP
1584       // agree.  This assertion duplicate a check in entry frame code
1585       // but catches the failure earlier.
1586       assert(*caller->register_addr(Lscratch) == *interpreter_frame->register_addr(I5_savedSP),
1587              "would change callers SP");
1588     }
1589     if (caller->is_entry_frame()) {
1590       tty->print("entry ");
1591     }
1592     if (caller->is_compiled_frame()) {
1593       tty->print("compiled ");
1594       if (caller->is_deoptimized_frame()) {
1595         tty->print("(deopt) ");
1596       }
1597     }
1598     if (caller->is_interpreted_frame()) {
1599       tty->print("interpreted ");
1600     }
1601     tty->print_cr("caller fp=" INTPTR_FORMAT " sp=" INTPTR_FORMAT, p2i(caller->fp()), p2i(caller->sp()));
1602     tty->print_cr("save area = " INTPTR_FORMAT ", " INTPTR_FORMAT, p2i(caller->sp()), p2i(caller->sp() + 16));
1603     tty->print_cr("save area = " INTPTR_FORMAT ", " INTPTR_FORMAT, p2i(caller->fp()), p2i(caller->fp() + 16));
1604     tty->print_cr("interpreter fp=" INTPTR_FORMAT ", " INTPTR_FORMAT, p2i(interpreter_frame->fp()), p2i(interpreter_frame->sp()));
1605     tty->print_cr("save area = " INTPTR_FORMAT ", " INTPTR_FORMAT, p2i(interpreter_frame->sp()), p2i(interpreter_frame->sp() + 16));
1606     tty->print_cr("save area = " INTPTR_FORMAT ", " INTPTR_FORMAT, p2i(interpreter_frame->fp()), p2i(interpreter_frame->fp() + 16));
1607     tty->print_cr("Llocals = " INTPTR_FORMAT, p2i(locals));
1608     tty->print_cr("Lesp = " INTPTR_FORMAT, p2i(esp));
1609     tty->print_cr("Lmonitors = " INTPTR_FORMAT, p2i(monitors));
1610   }
1611 
1612   if (method->max_locals() > 0) {
1613     assert(locals < caller->sp() || locals >= (caller->sp() + 16), "locals in save area");
1614     assert(locals < caller->fp() || locals > (caller->fp() + 16), "locals in save area");
1615     assert(locals < interpreter_frame->sp() || locals > (interpreter_frame->sp() + 16), "locals in save area");
1616     assert(locals < interpreter_frame->fp() || locals >= (interpreter_frame->fp() + 16), "locals in save area");
1617   }
1618 #ifdef _LP64
1619   assert(*interpreter_frame->register_addr(I5_savedSP) & 1, "must be odd");
1620 #endif
1621 
1622   *interpreter_frame->register_addr(Lmethod)     = (intptr_t) method;
1623   *interpreter_frame->register_addr(Llocals)     = (intptr_t) locals;
1624   *interpreter_frame->register_addr(Lmonitors)   = (intptr_t) monitors;
1625   *interpreter_frame->register_addr(Lesp)        = (intptr_t) esp;
1626   // Llast_SP will be same as SP as there is no adapter space
1627   *interpreter_frame->register_addr(Llast_SP)    = (intptr_t) interpreter_frame->sp() - STACK_BIAS;
1628   *interpreter_frame->register_addr(LcpoolCache) = (intptr_t) method->constants()->cache();
1629 #ifdef FAST_DISPATCH
1630   *interpreter_frame->register_addr(IdispatchTables) = (intptr_t) Interpreter::dispatch_table();
1631 #endif
1632 
1633 
1634 #ifdef ASSERT
1635   BasicObjectLock* mp = (BasicObjectLock*)monitors;
1636 
1637   assert(interpreter_frame->interpreter_frame_method() == method, "method matches");
1638   assert(interpreter_frame->interpreter_frame_local_at(9) == (intptr_t *)((intptr_t)locals - (9 * Interpreter::stackElementSize)), "locals match");
1639   assert(interpreter_frame->interpreter_frame_monitor_end()   == mp, "monitor_end matches");
1640   assert(((intptr_t *)interpreter_frame->interpreter_frame_monitor_begin()) == ((intptr_t *)mp)+monitor_size, "monitor_begin matches");
1641   assert(interpreter_frame->interpreter_frame_tos_address()-1 == esp, "esp matches");
1642 
1643   // check bounds
1644   intptr_t* lo = interpreter_frame->sp() + (frame::memory_parameter_word_sp_offset - 1);
1645   intptr_t* hi = interpreter_frame->fp() - rounded_vm_local_words;
1646   assert(lo < monitors && montop <= hi, "monitors in bounds");
1647   assert(lo <= esp && esp < monitors, "esp in bounds");
1648 #endif // ASSERT
1649 }
1650 
1651 //----------------------------------------------------------------------------------------------------
1652 // Exceptions
1653 void TemplateInterpreterGenerator::generate_throw_exception() {
1654 
1655   // Entry point in previous activation (i.e., if the caller was interpreted)
1656   Interpreter::_rethrow_exception_entry = __ pc();
1657   // O0: exception
1658 
1659   // entry point for exceptions thrown within interpreter code
1660   Interpreter::_throw_exception_entry = __ pc();
1661   __ verify_thread();
1662   // expression stack is undefined here
1663   // O0: exception, i.e. Oexception
1664   // Lbcp: exception bcp
1665   __ verify_oop(Oexception);
1666 
1667 
1668   // expression stack must be empty before entering the VM in case of an exception
1669   __ empty_expression_stack();
1670   // find exception handler address and preserve exception oop
1671   // call C routine to find handler and jump to it
1672   __ call_VM(O1, CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception), Oexception);
1673   __ push_ptr(O1); // push exception for exception handler bytecodes
1674 
1675   __ JMP(O0, 0); // jump to exception handler (may be remove activation entry!)
1676   __ delayed()->nop();
1677 
1678 
1679   // if the exception is not handled in the current frame
1680   // the frame is removed and the exception is rethrown
1681   // (i.e. exception continuation is _rethrow_exception)
1682   //
1683   // Note: At this point the bci is still the bxi for the instruction which caused
1684   //       the exception and the expression stack is empty. Thus, for any VM calls
1685   //       at this point, GC will find a legal oop map (with empty expression stack).
1686 
1687   // in current activation
1688   // tos: exception
1689   // Lbcp: exception bcp
1690 
1691   //
1692   // JVMTI PopFrame support
1693   //
1694 
1695   Interpreter::_remove_activation_preserving_args_entry = __ pc();
1696   Address popframe_condition_addr(G2_thread, JavaThread::popframe_condition_offset());
1697   // Set the popframe_processing bit in popframe_condition indicating that we are
1698   // currently handling popframe, so that call_VMs that may happen later do not trigger new
1699   // popframe handling cycles.
1700 
1701   __ ld(popframe_condition_addr, G3_scratch);
1702   __ or3(G3_scratch, JavaThread::popframe_processing_bit, G3_scratch);
1703   __ stw(G3_scratch, popframe_condition_addr);
1704 
1705   // Empty the expression stack, as in normal exception handling
1706   __ empty_expression_stack();
1707   __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false, /* install_monitor_exception */ false);
1708 
1709   {
1710     // Check to see whether we are returning to a deoptimized frame.
1711     // (The PopFrame call ensures that the caller of the popped frame is
1712     // either interpreted or compiled and deoptimizes it if compiled.)
1713     // In this case, we can't call dispatch_next() after the frame is
1714     // popped, but instead must save the incoming arguments and restore
1715     // them after deoptimization has occurred.
1716     //
1717     // Note that we don't compare the return PC against the
1718     // deoptimization blob's unpack entry because of the presence of
1719     // adapter frames in C2.
1720     Label caller_not_deoptimized;
1721     __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), I7);
1722     __ br_notnull_short(O0, Assembler::pt, caller_not_deoptimized);
1723 
1724     const Register Gtmp1 = G3_scratch;
1725     const Register Gtmp2 = G1_scratch;
1726     const Register RconstMethod = Gtmp1;
1727     const Address constMethod(Lmethod, Method::const_offset());
1728     const Address size_of_parameters(RconstMethod, ConstMethod::size_of_parameters_offset());
1729 
1730     // Compute size of arguments for saving when returning to deoptimized caller
1731     __ ld_ptr(constMethod, RconstMethod);
1732     __ lduh(size_of_parameters, Gtmp1);
1733     __ sll(Gtmp1, Interpreter::logStackElementSize, Gtmp1);
1734     __ sub(Llocals, Gtmp1, Gtmp2);
1735     __ add(Gtmp2, wordSize, Gtmp2);
1736     // Save these arguments
1737     __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args), G2_thread, Gtmp1, Gtmp2);
1738     // Inform deoptimization that it is responsible for restoring these arguments
1739     __ set(JavaThread::popframe_force_deopt_reexecution_bit, Gtmp1);
1740     Address popframe_condition_addr(G2_thread, JavaThread::popframe_condition_offset());
1741     __ st(Gtmp1, popframe_condition_addr);
1742 
1743     // Return from the current method
1744     // The caller's SP was adjusted upon method entry to accomodate
1745     // the callee's non-argument locals. Undo that adjustment.
1746     __ ret();
1747     __ delayed()->restore(I5_savedSP, G0, SP);
1748 
1749     __ bind(caller_not_deoptimized);
1750   }
1751 
1752   // Clear the popframe condition flag
1753   __ stw(G0 /* popframe_inactive */, popframe_condition_addr);
1754 
1755   // Get out of the current method (how this is done depends on the particular compiler calling
1756   // convention that the interpreter currently follows)
1757   // The caller's SP was adjusted upon method entry to accomodate
1758   // the callee's non-argument locals. Undo that adjustment.
1759   __ restore(I5_savedSP, G0, SP);
1760   // The method data pointer was incremented already during
1761   // call profiling. We have to restore the mdp for the current bcp.
1762   if (ProfileInterpreter) {
1763     __ set_method_data_pointer_for_bcp();
1764   }
1765 
1766 #if INCLUDE_JVMTI
1767   {
1768     Label L_done;
1769 
1770     __ ldub(Address(Lbcp, 0), G1_scratch);  // Load current bytecode
1771     __ cmp_and_br_short(G1_scratch, Bytecodes::_invokestatic, Assembler::notEqual, Assembler::pn, L_done);
1772 
1773     // The member name argument must be restored if _invokestatic is re-executed after a PopFrame call.
1774     // Detect such a case in the InterpreterRuntime function and return the member name argument, or NULL.
1775 
1776     __ call_VM(G1_scratch, CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null), I0, Lmethod, Lbcp);
1777 
1778     __ br_null(G1_scratch, false, Assembler::pn, L_done);
1779     __ delayed()->nop();
1780 
1781     __ st_ptr(G1_scratch, Lesp, wordSize);
1782     __ bind(L_done);
1783   }
1784 #endif // INCLUDE_JVMTI
1785 
1786   // Resume bytecode interpretation at the current bcp
1787   __ dispatch_next(vtos);
1788   // end of JVMTI PopFrame support
1789 
1790   Interpreter::_remove_activation_entry = __ pc();
1791 
1792   // preserve exception over this code sequence (remove activation calls the vm, but oopmaps are not correct here)
1793   __ pop_ptr(Oexception);                                  // get exception
1794 
1795   // Intel has the following comment:
1796   //// remove the activation (without doing throws on illegalMonitorExceptions)
1797   // They remove the activation without checking for bad monitor state.
1798   // %%% We should make sure this is the right semantics before implementing.
1799 
1800   __ set_vm_result(Oexception);
1801   __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false);
1802 
1803   __ notify_method_exit(false, vtos, InterpreterMacroAssembler::SkipNotifyJVMTI);
1804 
1805   __ get_vm_result(Oexception);
1806   __ verify_oop(Oexception);
1807 
1808     const int return_reg_adjustment = frame::pc_return_offset;
1809   Address issuing_pc_addr(I7, return_reg_adjustment);
1810 
1811   // We are done with this activation frame; find out where to go next.
1812   // The continuation point will be an exception handler, which expects
1813   // the following registers set up:
1814   //
1815   // Oexception: exception
1816   // Oissuing_pc: the local call that threw exception
1817   // Other On: garbage
1818   // In/Ln:  the contents of the caller's register window
1819   //
1820   // We do the required restore at the last possible moment, because we
1821   // need to preserve some state across a runtime call.
1822   // (Remember that the caller activation is unknown--it might not be
1823   // interpreted, so things like Lscratch are useless in the caller.)
1824 
1825   // Although the Intel version uses call_C, we can use the more
1826   // compact call_VM.  (The only real difference on SPARC is a
1827   // harmlessly ignored [re]set_last_Java_frame, compared with
1828   // the Intel code which lacks this.)
1829   __ mov(Oexception,      Oexception ->after_save());  // get exception in I0 so it will be on O0 after restore
1830   __ add(issuing_pc_addr, Oissuing_pc->after_save());  // likewise set I1 to a value local to the caller
1831   __ super_call_VM_leaf(L7_thread_cache,
1832                         CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address),
1833                         G2_thread, Oissuing_pc->after_save());
1834 
1835   // The caller's SP was adjusted upon method entry to accomodate
1836   // the callee's non-argument locals. Undo that adjustment.
1837   __ JMP(O0, 0);                         // return exception handler in caller
1838   __ delayed()->restore(I5_savedSP, G0, SP);
1839 
1840   // (same old exception object is already in Oexception; see above)
1841   // Note that an "issuing PC" is actually the next PC after the call
1842 }
1843 
1844 
1845 //
1846 // JVMTI ForceEarlyReturn support
1847 //
1848 
1849 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
1850   address entry = __ pc();
1851 
1852   __ empty_expression_stack();
1853   __ load_earlyret_value(state);
1854 
1855   __ ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), G3_scratch);
1856   Address cond_addr(G3_scratch, JvmtiThreadState::earlyret_state_offset());
1857 
1858   // Clear the earlyret state
1859   __ stw(G0 /* JvmtiThreadState::earlyret_inactive */, cond_addr);
1860 
1861   __ remove_activation(state,
1862                        /* throw_monitor_exception */ false,
1863                        /* install_monitor_exception */ false);
1864 
1865   // The caller's SP was adjusted upon method entry to accomodate
1866   // the callee's non-argument locals. Undo that adjustment.
1867   __ ret();                             // return to caller
1868   __ delayed()->restore(I5_savedSP, G0, SP);
1869 
1870   return entry;
1871 } // end of JVMTI ForceEarlyReturn support
1872 
1873 
1874 //------------------------------------------------------------------------------------------------------------------------
1875 // Helper for vtos entry point generation
1876 
1877 void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t, address& bep, address& cep, address& sep, address& aep, address& iep, address& lep, address& fep, address& dep, address& vep) {
1878   assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
1879   Label L;
1880   aep = __ pc(); __ push_ptr(); __ ba_short(L);
1881   fep = __ pc(); __ push_f();   __ ba_short(L);
1882   dep = __ pc(); __ push_d();   __ ba_short(L);
1883   lep = __ pc(); __ push_l();   __ ba_short(L);
1884   iep = __ pc(); __ push_i();
1885   bep = cep = sep = iep;                        // there aren't any
1886   vep = __ pc(); __ bind(L);                    // fall through
1887   generate_and_dispatch(t);
1888 }
1889 
1890 // --------------------------------------------------------------------------------
1891 
1892 
1893 InterpreterGenerator::InterpreterGenerator(StubQueue* code)
1894  : TemplateInterpreterGenerator(code) {
1895    generate_all(); // down here so it can be "virtual"
1896 }
1897 
1898 // --------------------------------------------------------------------------------
1899 
1900 // Non-product code
1901 #ifndef PRODUCT
1902 address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
1903   address entry = __ pc();
1904 
1905   __ push(state);
1906   __ mov(O7, Lscratch); // protect return address within interpreter
1907 
1908   // Pass a 0 (not used in sparc) and the top of stack to the bytecode tracer
1909   __ mov( Otos_l2, G3_scratch );
1910   __ call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::trace_bytecode), G0, Otos_l1, G3_scratch);
1911   __ mov(Lscratch, O7); // restore return address
1912   __ pop(state);
1913   __ retl();
1914   __ delayed()->nop();
1915 
1916   return entry;
1917 }
1918 
1919 
1920 // helpers for generate_and_dispatch
1921 
1922 void TemplateInterpreterGenerator::count_bytecode() {
1923   __ inc_counter(&BytecodeCounter::_counter_value, G3_scratch, G4_scratch);
1924 }
1925 
1926 
1927 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) {
1928   __ inc_counter(&BytecodeHistogram::_counters[t->bytecode()], G3_scratch, G4_scratch);
1929 }
1930 
1931 
1932 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) {
1933   AddressLiteral index   (&BytecodePairHistogram::_index);
1934   AddressLiteral counters((address) &BytecodePairHistogram::_counters);
1935 
1936   // get index, shift out old bytecode, bring in new bytecode, and store it
1937   // _index = (_index >> log2_number_of_codes) |
1938   //          (bytecode << log2_number_of_codes);
1939 
1940   __ load_contents(index, G4_scratch);
1941   __ srl( G4_scratch, BytecodePairHistogram::log2_number_of_codes, G4_scratch );
1942   __ set( ((int)t->bytecode()) << BytecodePairHistogram::log2_number_of_codes,  G3_scratch );
1943   __ or3( G3_scratch,  G4_scratch, G4_scratch );
1944   __ store_contents(G4_scratch, index, G3_scratch);
1945 
1946   // bump bucket contents
1947   // _counters[_index] ++;
1948 
1949   __ set(counters, G3_scratch);                       // loads into G3_scratch
1950   __ sll( G4_scratch, LogBytesPerWord, G4_scratch );  // Index is word address
1951   __ add (G3_scratch, G4_scratch, G3_scratch);        // Add in index
1952   __ ld (G3_scratch, 0, G4_scratch);
1953   __ inc (G4_scratch);
1954   __ st (G4_scratch, 0, G3_scratch);
1955 }
1956 
1957 
1958 void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
1959   // Call a little run-time stub to avoid blow-up for each bytecode.
1960   // The run-time runtime saves the right registers, depending on
1961   // the tosca in-state for the given template.
1962   address entry = Interpreter::trace_code(t->tos_in());
1963   guarantee(entry != NULL, "entry must have been generated");
1964   __ call(entry, relocInfo::none);
1965   __ delayed()->nop();
1966 }
1967 
1968 
1969 void TemplateInterpreterGenerator::stop_interpreter_at() {
1970   AddressLiteral counter(&BytecodeCounter::_counter_value);
1971   __ load_contents(counter, G3_scratch);
1972   AddressLiteral stop_at(&StopInterpreterAt);
1973   __ load_ptr_contents(stop_at, G4_scratch);
1974   __ cmp(G3_scratch, G4_scratch);
1975   __ breakpoint_trap(Assembler::equal, Assembler::icc);
1976 }
1977 #endif // not PRODUCT
1978 #endif // !CC_INTERP