1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "code/codeCache.hpp"
  28 #include "code/debugInfoRec.hpp"
  29 #include "code/nmethod.hpp"
  30 #include "code/pcDesc.hpp"
  31 #include "code/scopeDesc.hpp"
  32 #include "interpreter/bytecode.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "interpreter/oopMapCache.hpp"
  35 #include "memory/allocation.inline.hpp"
  36 #include "memory/oopFactory.hpp"
  37 #include "memory/resourceArea.hpp"
  38 #include "oops/method.hpp"
  39 #include "oops/oop.inline.hpp"
  40 #include "oops/fieldStreams.hpp"
  41 #include "oops/verifyOopClosure.hpp"
  42 #include "prims/jvmtiThreadState.hpp"
  43 #include "runtime/biasedLocking.hpp"
  44 #include "runtime/compilationPolicy.hpp"
  45 #include "runtime/deoptimization.hpp"
  46 #include "runtime/interfaceSupport.hpp"
  47 #include "runtime/sharedRuntime.hpp"
  48 #include "runtime/signature.hpp"
  49 #include "runtime/stubRoutines.hpp"
  50 #include "runtime/thread.hpp"
  51 #include "runtime/vframe.hpp"
  52 #include "runtime/vframeArray.hpp"
  53 #include "runtime/vframe_hp.hpp"
  54 #include "utilities/events.hpp"
  55 #include "utilities/xmlstream.hpp"
  56 
  57 #if INCLUDE_JVMCI
  58 #include "jvmci/jvmciRuntime.hpp"
  59 #include "jvmci/jvmciJavaClasses.hpp"
  60 #endif
  61 
  62 
  63 bool DeoptimizationMarker::_is_active = false;
  64 
  65 Deoptimization::UnrollBlock::UnrollBlock(int  size_of_deoptimized_frame,
  66                                          int  caller_adjustment,
  67                                          int  caller_actual_parameters,
  68                                          int  number_of_frames,
  69                                          intptr_t* frame_sizes,
  70                                          address* frame_pcs,
  71                                          BasicType return_type) {
  72   _size_of_deoptimized_frame = size_of_deoptimized_frame;
  73   _caller_adjustment         = caller_adjustment;
  74   _caller_actual_parameters  = caller_actual_parameters;
  75   _number_of_frames          = number_of_frames;
  76   _frame_sizes               = frame_sizes;
  77   _frame_pcs                 = frame_pcs;
  78   _register_block            = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2, mtCompiler);
  79   _return_type               = return_type;
  80   _initial_info              = 0;
  81   // PD (x86 only)
  82   _counter_temp              = 0;
  83   _unpack_kind               = 0;
  84   _sender_sp_temp            = 0;
  85 
  86   _total_frame_sizes         = size_of_frames();
  87 }
  88 
  89 
  90 Deoptimization::UnrollBlock::~UnrollBlock() {
  91   FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes);
  92   FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs);
  93   FREE_C_HEAP_ARRAY(intptr_t, _register_block);
  94 }
  95 
  96 
  97 intptr_t* Deoptimization::UnrollBlock::value_addr_at(int register_number) const {
  98   assert(register_number < RegisterMap::reg_count, "checking register number");
  99   return &_register_block[register_number * 2];
 100 }
 101 
 102 
 103 
 104 int Deoptimization::UnrollBlock::size_of_frames() const {
 105   // Acount first for the adjustment of the initial frame
 106   int result = _caller_adjustment;
 107   for (int index = 0; index < number_of_frames(); index++) {
 108     result += frame_sizes()[index];
 109   }
 110   return result;
 111 }
 112 
 113 
 114 void Deoptimization::UnrollBlock::print() {
 115   ttyLocker ttyl;
 116   tty->print_cr("UnrollBlock");
 117   tty->print_cr("  size_of_deoptimized_frame = %d", _size_of_deoptimized_frame);
 118   tty->print(   "  frame_sizes: ");
 119   for (int index = 0; index < number_of_frames(); index++) {
 120     tty->print(INTX_FORMAT " ", frame_sizes()[index]);
 121   }
 122   tty->cr();
 123 }
 124 
 125 
 126 // In order to make fetch_unroll_info work properly with escape
 127 // analysis, The method was changed from JRT_LEAF to JRT_BLOCK_ENTRY and
 128 // ResetNoHandleMark and HandleMark were removed from it. The actual reallocation
 129 // of previously eliminated objects occurs in realloc_objects, which is
 130 // called from the method fetch_unroll_info_helper below.
 131 JRT_BLOCK_ENTRY(Deoptimization::UnrollBlock*, Deoptimization::fetch_unroll_info(JavaThread* thread))
 132   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
 133   // but makes the entry a little slower. There is however a little dance we have to
 134   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
 135 
 136   // fetch_unroll_info() is called at the beginning of the deoptimization
 137   // handler. Note this fact before we start generating temporary frames
 138   // that can confuse an asynchronous stack walker. This counter is
 139   // decremented at the end of unpack_frames().
 140   if (TraceDeoptimization) {
 141     tty->print_cr("Deoptimizing thread " INTPTR_FORMAT, p2i(thread));
 142   }
 143   thread->inc_in_deopt_handler();
 144 
 145   return fetch_unroll_info_helper(thread);
 146 JRT_END
 147 
 148 
 149 // This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap)
 150 Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* thread) {
 151 
 152   // Note: there is a safepoint safety issue here. No matter whether we enter
 153   // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once
 154   // the vframeArray is created.
 155   //
 156 
 157   // Allocate our special deoptimization ResourceMark
 158   DeoptResourceMark* dmark = new DeoptResourceMark(thread);
 159   assert(thread->deopt_mark() == NULL, "Pending deopt!");
 160   thread->set_deopt_mark(dmark);
 161 
 162   frame stub_frame = thread->last_frame(); // Makes stack walkable as side effect
 163   RegisterMap map(thread, true);
 164   RegisterMap dummy_map(thread, false);
 165   // Now get the deoptee with a valid map
 166   frame deoptee = stub_frame.sender(&map);
 167   // Set the deoptee nmethod
 168   assert(thread->deopt_nmethod() == NULL, "Pending deopt!");
 169   thread->set_deopt_nmethod(deoptee.cb()->as_nmethod_or_null());
 170   bool skip_internal = thread->deopt_nmethod() != NULL && !thread->deopt_nmethod()->compiler()->is_jvmci();
 171 
 172   if (VerifyStack) {
 173     thread->validate_frame_layout();
 174   }
 175 
 176   // Create a growable array of VFrames where each VFrame represents an inlined
 177   // Java frame.  This storage is allocated with the usual system arena.
 178   assert(deoptee.is_compiled_frame(), "Wrong frame type");
 179   GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10);
 180   vframe* vf = vframe::new_vframe(&deoptee, &map, thread);
 181   while (!vf->is_top()) {
 182     assert(vf->is_compiled_frame(), "Wrong frame type");
 183     chunk->push(compiledVFrame::cast(vf));
 184     vf = vf->sender();
 185   }
 186   assert(vf->is_compiled_frame(), "Wrong frame type");
 187   chunk->push(compiledVFrame::cast(vf));
 188 
 189   bool realloc_failures = false;
 190 
 191 #if defined(COMPILER2) || INCLUDE_JVMCI
 192   // Reallocate the non-escaping objects and restore their fields. Then
 193   // relock objects if synchronization on them was eliminated.
 194 #ifndef INCLUDE_JVMCI
 195   if (DoEscapeAnalysis || EliminateNestedLocks) {
 196     if (EliminateAllocations) {
 197 #endif // INCLUDE_JVMCI
 198       assert (chunk->at(0)->scope() != NULL,"expect only compiled java frames");
 199       GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects();
 200 
 201       // The flag return_oop() indicates call sites which return oop
 202       // in compiled code. Such sites include java method calls,
 203       // runtime calls (for example, used to allocate new objects/arrays
 204       // on slow code path) and any other calls generated in compiled code.
 205       // It is not guaranteed that we can get such information here only
 206       // by analyzing bytecode in deoptimized frames. This is why this flag
 207       // is set during method compilation (see Compile::Process_OopMap_Node()).
 208       // If the previous frame was popped, we don't have a result.
 209       bool save_oop_result = chunk->at(0)->scope()->return_oop() && !thread->popframe_forcing_deopt_reexecution();
 210       Handle return_value;
 211       if (save_oop_result) {
 212         // Reallocation may trigger GC. If deoptimization happened on return from
 213         // call which returns oop we need to save it since it is not in oopmap.
 214         oop result = deoptee.saved_oop_result(&map);
 215         assert(result == NULL || result->is_oop(), "must be oop");
 216         return_value = Handle(thread, result);
 217         assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
 218         if (TraceDeoptimization) {
 219           ttyLocker ttyl;
 220           tty->print_cr("SAVED OOP RESULT " INTPTR_FORMAT " in thread " INTPTR_FORMAT, p2i(result), p2i(thread));
 221         }
 222       }
 223       if (objects != NULL) {
 224         JRT_BLOCK
 225           realloc_failures = realloc_objects(thread, &deoptee, objects, THREAD);
 226         JRT_END
 227         reassign_fields(&deoptee, &map, objects, realloc_failures, skip_internal);
 228 #ifndef PRODUCT
 229         if (TraceDeoptimization) {
 230           ttyLocker ttyl;
 231           tty->print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, p2i(thread));
 232           print_objects(objects, realloc_failures);
 233         }
 234 #endif
 235       }
 236       if (save_oop_result) {
 237         // Restore result.
 238         deoptee.set_saved_oop_result(&map, return_value());
 239       }
 240 #ifndef INCLUDE_JVMCI
 241     }
 242     if (EliminateLocks) {
 243 #endif // INCLUDE_JVMCI
 244 #ifndef PRODUCT
 245       bool first = true;
 246 #endif
 247       for (int i = 0; i < chunk->length(); i++) {
 248         compiledVFrame* cvf = chunk->at(i);
 249         assert (cvf->scope() != NULL,"expect only compiled java frames");
 250         GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
 251         if (monitors->is_nonempty()) {
 252           relock_objects(monitors, thread, realloc_failures);
 253 #ifndef PRODUCT
 254           if (PrintDeoptimizationDetails) {
 255             ttyLocker ttyl;
 256             for (int j = 0; j < monitors->length(); j++) {
 257               MonitorInfo* mi = monitors->at(j);
 258               if (mi->eliminated()) {
 259                 if (first) {
 260                   first = false;
 261                   tty->print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, p2i(thread));
 262                 }
 263                 if (mi->owner_is_scalar_replaced()) {
 264                   Klass* k = java_lang_Class::as_Klass(mi->owner_klass());
 265                   tty->print_cr("     failed reallocation for klass %s", k->external_name());
 266                 } else {
 267                   tty->print_cr("     object <" INTPTR_FORMAT "> locked", p2i(mi->owner()));
 268                 }
 269               }
 270             }
 271           }
 272 #endif // !PRODUCT
 273         }
 274       }
 275 #ifndef INCLUDE_JVMCI
 276     }
 277   }
 278 #endif // INCLUDE_JVMCI
 279 #endif // COMPILER2 || INCLUDE_JVMCI
 280 
 281   // Ensure that no safepoint is taken after pointers have been stored
 282   // in fields of rematerialized objects.  If a safepoint occurs from here on
 283   // out the java state residing in the vframeArray will be missed.
 284   No_Safepoint_Verifier no_safepoint;
 285 
 286   vframeArray* array = create_vframeArray(thread, deoptee, &map, chunk, realloc_failures);
 287 #if defined(COMPILER2) || INCLUDE_JVMCI
 288   if (realloc_failures) {
 289     pop_frames_failed_reallocs(thread, array);
 290   }
 291 #endif
 292 
 293   assert(thread->vframe_array_head() == NULL, "Pending deopt!");
 294   thread->set_vframe_array_head(array);
 295 
 296   // Now that the vframeArray has been created if we have any deferred local writes
 297   // added by jvmti then we can free up that structure as the data is now in the
 298   // vframeArray
 299 
 300   if (thread->deferred_locals() != NULL) {
 301     GrowableArray<jvmtiDeferredLocalVariableSet*>* list = thread->deferred_locals();
 302     int i = 0;
 303     do {
 304       // Because of inlining we could have multiple vframes for a single frame
 305       // and several of the vframes could have deferred writes. Find them all.
 306       if (list->at(i)->id() == array->original().id()) {
 307         jvmtiDeferredLocalVariableSet* dlv = list->at(i);
 308         list->remove_at(i);
 309         // individual jvmtiDeferredLocalVariableSet are CHeapObj's
 310         delete dlv;
 311       } else {
 312         i++;
 313       }
 314     } while ( i < list->length() );
 315     if (list->length() == 0) {
 316       thread->set_deferred_locals(NULL);
 317       // free the list and elements back to C heap.
 318       delete list;
 319     }
 320 
 321   }
 322 
 323 #ifndef SHARK
 324   // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info.
 325   CodeBlob* cb = stub_frame.cb();
 326   // Verify we have the right vframeArray
 327   assert(cb->frame_size() >= 0, "Unexpected frame size");
 328   intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size();
 329 
 330   // If the deopt call site is a MethodHandle invoke call site we have
 331   // to adjust the unpack_sp.
 332   nmethod* deoptee_nm = deoptee.cb()->as_nmethod_or_null();
 333   if (deoptee_nm != NULL && deoptee_nm->is_method_handle_return(deoptee.pc()))
 334     unpack_sp = deoptee.unextended_sp();
 335 
 336 #ifdef ASSERT
 337   assert(cb->is_deoptimization_stub() ||
 338          cb->is_uncommon_trap_stub() ||
 339          strcmp("Stub<DeoptimizationStub.deoptimizationHandler>", cb->name()) == 0 ||
 340          strcmp("Stub<UncommonTrapStub.uncommonTrapHandler>", cb->name()) == 0,
 341          "unexpected code blob: %s", cb->name());
 342 #endif
 343 #else
 344   intptr_t* unpack_sp = stub_frame.sender(&dummy_map).unextended_sp();
 345 #endif // !SHARK
 346 
 347   // This is a guarantee instead of an assert because if vframe doesn't match
 348   // we will unpack the wrong deoptimized frame and wind up in strange places
 349   // where it will be very difficult to figure out what went wrong. Better
 350   // to die an early death here than some very obscure death later when the
 351   // trail is cold.
 352   // Note: on ia64 this guarantee can be fooled by frames with no memory stack
 353   // in that it will fail to detect a problem when there is one. This needs
 354   // more work in tiger timeframe.
 355   guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack");
 356 
 357   int number_of_frames = array->frames();
 358 
 359   // Compute the vframes' sizes.  Note that frame_sizes[] entries are ordered from outermost to innermost
 360   // virtual activation, which is the reverse of the elements in the vframes array.
 361   intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames, mtCompiler);
 362   // +1 because we always have an interpreter return address for the final slot.
 363   address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1, mtCompiler);
 364   int popframe_extra_args = 0;
 365   // Create an interpreter return address for the stub to use as its return
 366   // address so the skeletal frames are perfectly walkable
 367   frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0);
 368 
 369   // PopFrame requires that the preserved incoming arguments from the recently-popped topmost
 370   // activation be put back on the expression stack of the caller for reexecution
 371   if (JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) {
 372     popframe_extra_args = in_words(thread->popframe_preserved_args_size_in_words());
 373   }
 374 
 375   // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized
 376   // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather
 377   // than simply use array->sender.pc(). This requires us to walk the current set of frames
 378   //
 379   frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame
 380   deopt_sender = deopt_sender.sender(&dummy_map);     // Now deoptee caller
 381 
 382   // It's possible that the number of parameters at the call site is
 383   // different than number of arguments in the callee when method
 384   // handles are used.  If the caller is interpreted get the real
 385   // value so that the proper amount of space can be added to it's
 386   // frame.
 387   bool caller_was_method_handle = false;
 388   if (deopt_sender.is_interpreted_frame()) {
 389     methodHandle method = deopt_sender.interpreter_frame_method();
 390     Bytecode_invoke cur = Bytecode_invoke_check(method, deopt_sender.interpreter_frame_bci());
 391     if (cur.is_invokedynamic() || cur.is_invokehandle()) {
 392       // Method handle invokes may involve fairly arbitrary chains of
 393       // calls so it's impossible to know how much actual space the
 394       // caller has for locals.
 395       caller_was_method_handle = true;
 396     }
 397   }
 398 
 399   //
 400   // frame_sizes/frame_pcs[0] oldest frame (int or c2i)
 401   // frame_sizes/frame_pcs[1] next oldest frame (int)
 402   // frame_sizes/frame_pcs[n] youngest frame (int)
 403   //
 404   // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame
 405   // owns the space for the return address to it's caller).  Confusing ain't it.
 406   //
 407   // The vframe array can address vframes with indices running from
 408   // 0.._frames-1. Index  0 is the youngest frame and _frame - 1 is the oldest (root) frame.
 409   // When we create the skeletal frames we need the oldest frame to be in the zero slot
 410   // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk.
 411   // so things look a little strange in this loop.
 412   //
 413   int callee_parameters = 0;
 414   int callee_locals = 0;
 415   for (int index = 0; index < array->frames(); index++ ) {
 416     // frame[number_of_frames - 1 ] = on_stack_size(youngest)
 417     // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest))
 418     // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest)))
 419     frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(callee_parameters,
 420                                                                                                     callee_locals,
 421                                                                                                     index == 0,
 422                                                                                                     popframe_extra_args);
 423     // This pc doesn't have to be perfect just good enough to identify the frame
 424     // as interpreted so the skeleton frame will be walkable
 425     // The correct pc will be set when the skeleton frame is completely filled out
 426     // The final pc we store in the loop is wrong and will be overwritten below
 427     frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset;
 428 
 429     callee_parameters = array->element(index)->method()->size_of_parameters();
 430     callee_locals = array->element(index)->method()->max_locals();
 431     popframe_extra_args = 0;
 432   }
 433 
 434   // Compute whether the root vframe returns a float or double value.
 435   BasicType return_type;
 436   {
 437     HandleMark hm;
 438     methodHandle method(thread, array->element(0)->method());
 439     Bytecode_invoke invoke = Bytecode_invoke_check(method, array->element(0)->bci());
 440     return_type = invoke.is_valid() ? invoke.result_type() : T_ILLEGAL;
 441   }
 442 
 443   // Compute information for handling adapters and adjusting the frame size of the caller.
 444   int caller_adjustment = 0;
 445 
 446   // Compute the amount the oldest interpreter frame will have to adjust
 447   // its caller's stack by. If the caller is a compiled frame then
 448   // we pretend that the callee has no parameters so that the
 449   // extension counts for the full amount of locals and not just
 450   // locals-parms. This is because without a c2i adapter the parm
 451   // area as created by the compiled frame will not be usable by
 452   // the interpreter. (Depending on the calling convention there
 453   // may not even be enough space).
 454 
 455   // QQQ I'd rather see this pushed down into last_frame_adjust
 456   // and have it take the sender (aka caller).
 457 
 458   if (deopt_sender.is_compiled_frame() || caller_was_method_handle) {
 459     caller_adjustment = last_frame_adjust(0, callee_locals);
 460   } else if (callee_locals > callee_parameters) {
 461     // The caller frame may need extending to accommodate
 462     // non-parameter locals of the first unpacked interpreted frame.
 463     // Compute that adjustment.
 464     caller_adjustment = last_frame_adjust(callee_parameters, callee_locals);
 465   }
 466 
 467   // If the sender is deoptimized the we must retrieve the address of the handler
 468   // since the frame will "magically" show the original pc before the deopt
 469   // and we'd undo the deopt.
 470 
 471   frame_pcs[0] = deopt_sender.raw_pc();
 472 
 473 #ifndef SHARK
 474   assert(CodeCache::find_blob_unsafe(frame_pcs[0]) != NULL, "bad pc");
 475 #endif // SHARK
 476 
 477   UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord,
 478                                       caller_adjustment * BytesPerWord,
 479                                       caller_was_method_handle ? 0 : callee_parameters,
 480                                       number_of_frames,
 481                                       frame_sizes,
 482                                       frame_pcs,
 483                                       return_type);
 484   // On some platforms, we need a way to pass some platform dependent
 485   // information to the unpacking code so the skeletal frames come out
 486   // correct (initial fp value, unextended sp, ...)
 487   info->set_initial_info((intptr_t) array->sender().initial_deoptimization_info());
 488 
 489   if (array->frames() > 1) {
 490     if (VerifyStack && TraceDeoptimization) {
 491       ttyLocker ttyl;
 492       tty->print_cr("Deoptimizing method containing inlining");
 493     }
 494   }
 495 
 496   array->set_unroll_block(info);
 497   return info;
 498 }
 499 
 500 // Called to cleanup deoptimization data structures in normal case
 501 // after unpacking to stack and when stack overflow error occurs
 502 void Deoptimization::cleanup_deopt_info(JavaThread *thread,
 503                                         vframeArray *array) {
 504 
 505   // Get array if coming from exception
 506   if (array == NULL) {
 507     array = thread->vframe_array_head();
 508   }
 509   thread->set_vframe_array_head(NULL);
 510 
 511   // Free the previous UnrollBlock
 512   vframeArray* old_array = thread->vframe_array_last();
 513   thread->set_vframe_array_last(array);
 514 
 515   if (old_array != NULL) {
 516     UnrollBlock* old_info = old_array->unroll_block();
 517     old_array->set_unroll_block(NULL);
 518     delete old_info;
 519     delete old_array;
 520   }
 521 
 522   // Deallocate any resource creating in this routine and any ResourceObjs allocated
 523   // inside the vframeArray (StackValueCollections)
 524 
 525   delete thread->deopt_mark();
 526   thread->set_deopt_mark(NULL);
 527   thread->set_deopt_nmethod(NULL);
 528 
 529 
 530   if (JvmtiExport::can_pop_frame()) {
 531 #ifndef CC_INTERP
 532     // Regardless of whether we entered this routine with the pending
 533     // popframe condition bit set, we should always clear it now
 534     thread->clear_popframe_condition();
 535 #else
 536     // C++ interpreter will clear has_pending_popframe when it enters
 537     // with method_resume. For deopt_resume2 we clear it now.
 538     if (thread->popframe_forcing_deopt_reexecution())
 539         thread->clear_popframe_condition();
 540 #endif /* CC_INTERP */
 541   }
 542 
 543   // unpack_frames() is called at the end of the deoptimization handler
 544   // and (in C2) at the end of the uncommon trap handler. Note this fact
 545   // so that an asynchronous stack walker can work again. This counter is
 546   // incremented at the beginning of fetch_unroll_info() and (in C2) at
 547   // the beginning of uncommon_trap().
 548   thread->dec_in_deopt_handler();
 549 }
 550 
 551 // Moved from cpu directories because none of the cpus has callee save values.
 552 // If a cpu implements callee save values, move this to deoptimization_<cpu>.cpp.
 553 void Deoptimization::unwind_callee_save_values(frame* f, vframeArray* vframe_array) {
 554 
 555   // This code is sort of the equivalent of C2IAdapter::setup_stack_frame back in
 556   // the days we had adapter frames. When we deoptimize a situation where a
 557   // compiled caller calls a compiled caller will have registers it expects
 558   // to survive the call to the callee. If we deoptimize the callee the only
 559   // way we can restore these registers is to have the oldest interpreter
 560   // frame that we create restore these values. That is what this routine
 561   // will accomplish.
 562 
 563   // At the moment we have modified c2 to not have any callee save registers
 564   // so this problem does not exist and this routine is just a place holder.
 565 
 566   assert(f->is_interpreted_frame(), "must be interpreted");
 567 }
 568 
 569 // Return BasicType of value being returned
 570 JRT_LEAF(BasicType, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode))
 571 
 572   // We are already active int he special DeoptResourceMark any ResourceObj's we
 573   // allocate will be freed at the end of the routine.
 574 
 575   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
 576   // but makes the entry a little slower. There is however a little dance we have to
 577   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
 578   ResetNoHandleMark rnhm; // No-op in release/product versions
 579   HandleMark hm;
 580 
 581   frame stub_frame = thread->last_frame();
 582 
 583   // Since the frame to unpack is the top frame of this thread, the vframe_array_head
 584   // must point to the vframeArray for the unpack frame.
 585   vframeArray* array = thread->vframe_array_head();
 586 
 587 #ifndef PRODUCT
 588   if (TraceDeoptimization) {
 589     ttyLocker ttyl;
 590     tty->print_cr("DEOPT UNPACKING thread " INTPTR_FORMAT " vframeArray " INTPTR_FORMAT " mode %d",
 591                   p2i(thread), p2i(array), exec_mode);
 592   }
 593 #endif
 594   Events::log(thread, "DEOPT UNPACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT " mode %d",
 595               p2i(stub_frame.pc()), p2i(stub_frame.sp()), exec_mode);
 596 
 597   UnrollBlock* info = array->unroll_block();
 598 
 599   // Unpack the interpreter frames and any adapter frame (c2 only) we might create.
 600   array->unpack_to_stack(stub_frame, exec_mode, info->caller_actual_parameters());
 601 
 602   BasicType bt = info->return_type();
 603 
 604   // If we have an exception pending, claim that the return type is an oop
 605   // so the deopt_blob does not overwrite the exception_oop.
 606 
 607   if (exec_mode == Unpack_exception)
 608     bt = T_OBJECT;
 609 
 610   // Cleanup thread deopt data
 611   cleanup_deopt_info(thread, array);
 612 
 613 #ifndef PRODUCT
 614   if (VerifyStack) {
 615     ResourceMark res_mark;
 616 
 617     thread->validate_frame_layout();
 618 
 619     // Verify that the just-unpacked frames match the interpreter's
 620     // notions of expression stack and locals
 621     vframeArray* cur_array = thread->vframe_array_last();
 622     RegisterMap rm(thread, false);
 623     rm.set_include_argument_oops(false);
 624     bool is_top_frame = true;
 625     int callee_size_of_parameters = 0;
 626     int callee_max_locals = 0;
 627     for (int i = 0; i < cur_array->frames(); i++) {
 628       vframeArrayElement* el = cur_array->element(i);
 629       frame* iframe = el->iframe();
 630       guarantee(iframe->is_interpreted_frame(), "Wrong frame type");
 631 
 632       // Get the oop map for this bci
 633       InterpreterOopMap mask;
 634       int cur_invoke_parameter_size = 0;
 635       bool try_next_mask = false;
 636       int next_mask_expression_stack_size = -1;
 637       int top_frame_expression_stack_adjustment = 0;
 638       methodHandle mh(thread, iframe->interpreter_frame_method());
 639       OopMapCache::compute_one_oop_map(mh, iframe->interpreter_frame_bci(), &mask);
 640       BytecodeStream str(mh);
 641       str.set_start(iframe->interpreter_frame_bci());
 642       int max_bci = mh->code_size();
 643       // Get to the next bytecode if possible
 644       assert(str.bci() < max_bci, "bci in interpreter frame out of bounds");
 645       // Check to see if we can grab the number of outgoing arguments
 646       // at an uncommon trap for an invoke (where the compiler
 647       // generates debug info before the invoke has executed)
 648       Bytecodes::Code cur_code = str.next();
 649       if (cur_code == Bytecodes::_invokevirtual   ||
 650           cur_code == Bytecodes::_invokespecial   ||
 651           cur_code == Bytecodes::_invokestatic    ||
 652           cur_code == Bytecodes::_invokeinterface ||
 653           cur_code == Bytecodes::_invokedynamic) {
 654         Bytecode_invoke invoke(mh, iframe->interpreter_frame_bci());
 655         Symbol* signature = invoke.signature();
 656         ArgumentSizeComputer asc(signature);
 657         cur_invoke_parameter_size = asc.size();
 658         if (invoke.has_receiver()) {
 659           // Add in receiver
 660           ++cur_invoke_parameter_size;
 661         }
 662         if (i != 0 && !invoke.is_invokedynamic() && MethodHandles::has_member_arg(invoke.klass(), invoke.name())) {
 663           callee_size_of_parameters++;
 664         }
 665       }
 666       if (str.bci() < max_bci) {
 667         Bytecodes::Code bc = str.next();
 668         if (bc >= 0) {
 669           // The interpreter oop map generator reports results before
 670           // the current bytecode has executed except in the case of
 671           // calls. It seems to be hard to tell whether the compiler
 672           // has emitted debug information matching the "state before"
 673           // a given bytecode or the state after, so we try both
 674           switch (cur_code) {
 675             case Bytecodes::_invokevirtual:
 676             case Bytecodes::_invokespecial:
 677             case Bytecodes::_invokestatic:
 678             case Bytecodes::_invokeinterface:
 679             case Bytecodes::_invokedynamic:
 680             case Bytecodes::_athrow:
 681               break;
 682             default: {
 683               InterpreterOopMap next_mask;
 684               OopMapCache::compute_one_oop_map(mh, str.bci(), &next_mask);
 685               next_mask_expression_stack_size = next_mask.expression_stack_size();
 686               // Need to subtract off the size of the result type of
 687               // the bytecode because this is not described in the
 688               // debug info but returned to the interpreter in the TOS
 689               // caching register
 690               BasicType bytecode_result_type = Bytecodes::result_type(cur_code);
 691               if (bytecode_result_type != T_ILLEGAL) {
 692                 top_frame_expression_stack_adjustment = type2size[bytecode_result_type];
 693               }
 694               assert(top_frame_expression_stack_adjustment >= 0, "");
 695               try_next_mask = true;
 696               break;
 697             }
 698           }
 699         }
 700       }
 701 
 702       // Verify stack depth and oops in frame
 703       // This assertion may be dependent on the platform we're running on and may need modification (tested on x86 and sparc)
 704       if (!(
 705             /* SPARC */
 706             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_size_of_parameters) ||
 707             /* x86 */
 708             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_max_locals) ||
 709             (try_next_mask &&
 710              (iframe->interpreter_frame_expression_stack_size() == (next_mask_expression_stack_size -
 711                                                                     top_frame_expression_stack_adjustment))) ||
 712             (is_top_frame && (exec_mode == Unpack_exception) && iframe->interpreter_frame_expression_stack_size() == 0) ||
 713             (is_top_frame && (exec_mode == Unpack_uncommon_trap || exec_mode == Unpack_reexecute || el->should_reexecute()) &&
 714              (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + cur_invoke_parameter_size))
 715             )) {
 716         ttyLocker ttyl;
 717 
 718         // Print out some information that will help us debug the problem
 719         tty->print_cr("Wrong number of expression stack elements during deoptimization");
 720         tty->print_cr("  Error occurred while verifying frame %d (0..%d, 0 is topmost)", i, cur_array->frames() - 1);
 721         tty->print_cr("  Fabricated interpreter frame had %d expression stack elements",
 722                       iframe->interpreter_frame_expression_stack_size());
 723         tty->print_cr("  Interpreter oop map had %d expression stack elements", mask.expression_stack_size());
 724         tty->print_cr("  try_next_mask = %d", try_next_mask);
 725         tty->print_cr("  next_mask_expression_stack_size = %d", next_mask_expression_stack_size);
 726         tty->print_cr("  callee_size_of_parameters = %d", callee_size_of_parameters);
 727         tty->print_cr("  callee_max_locals = %d", callee_max_locals);
 728         tty->print_cr("  top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment);
 729         tty->print_cr("  exec_mode = %d", exec_mode);
 730         tty->print_cr("  cur_invoke_parameter_size = %d", cur_invoke_parameter_size);
 731         tty->print_cr("  Thread = " INTPTR_FORMAT ", thread ID = %d", p2i(thread), thread->osthread()->thread_id());
 732         tty->print_cr("  Interpreted frames:");
 733         for (int k = 0; k < cur_array->frames(); k++) {
 734           vframeArrayElement* el = cur_array->element(k);
 735           tty->print_cr("    %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci());
 736         }
 737         cur_array->print_on_2(tty);
 738         guarantee(false, "wrong number of expression stack elements during deopt");
 739       }
 740       VerifyOopClosure verify;
 741       iframe->oops_interpreted_do(&verify, NULL, &rm, false);
 742       callee_size_of_parameters = mh->size_of_parameters();
 743       callee_max_locals = mh->max_locals();
 744       is_top_frame = false;
 745     }
 746   }
 747 #endif /* !PRODUCT */
 748 
 749 
 750   return bt;
 751 JRT_END
 752 
 753 
 754 int Deoptimization::deoptimize_dependents() {
 755   Threads::deoptimized_wrt_marked_nmethods();
 756   return 0;
 757 }
 758 
 759 Deoptimization::DeoptAction Deoptimization::_unloaded_action
 760   = Deoptimization::Action_reinterpret;
 761 
 762 #if defined(COMPILER2) || INCLUDE_JVMCI
 763 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, GrowableArray<ScopeValue*>* objects, TRAPS) {
 764   Handle pending_exception(thread->pending_exception());
 765   const char* exception_file = thread->exception_file();
 766   int exception_line = thread->exception_line();
 767   thread->clear_pending_exception();
 768 
 769   bool failures = false;
 770 
 771   for (int i = 0; i < objects->length(); i++) {
 772     assert(objects->at(i)->is_object(), "invalid debug information");
 773     ObjectValue* sv = (ObjectValue*) objects->at(i);
 774 
 775     KlassHandle k(java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()));
 776     oop obj = NULL;
 777 
 778     if (k->is_instance_klass()) {
 779       InstanceKlass* ik = InstanceKlass::cast(k());
 780       obj = ik->allocate_instance(THREAD);
 781     } else if (k->is_typeArray_klass()) {
 782       TypeArrayKlass* ak = TypeArrayKlass::cast(k());
 783       assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length");
 784       int len = sv->field_size() / type2size[ak->element_type()];
 785       obj = ak->allocate(len, THREAD);
 786     } else if (k->is_objArray_klass()) {
 787       ObjArrayKlass* ak = ObjArrayKlass::cast(k());
 788       obj = ak->allocate(sv->field_size(), THREAD);
 789     }
 790 
 791     if (obj == NULL) {
 792       failures = true;
 793     }
 794 
 795     assert(sv->value().is_null(), "redundant reallocation");
 796     assert(obj != NULL || HAS_PENDING_EXCEPTION, "allocation should succeed or we should get an exception");
 797     CLEAR_PENDING_EXCEPTION;
 798     sv->set_value(obj);
 799   }
 800 
 801   if (failures) {
 802     THROW_OOP_(Universe::out_of_memory_error_realloc_objects(), failures);
 803   } else if (pending_exception.not_null()) {
 804     thread->set_pending_exception(pending_exception(), exception_file, exception_line);
 805   }
 806 
 807   return failures;
 808 }
 809 
 810 // restore elements of an eliminated type array
 811 void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) {
 812   int index = 0;
 813   intptr_t val;
 814 
 815   for (int i = 0; i < sv->field_size(); i++) {
 816     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
 817     switch(type) {
 818     case T_LONG: case T_DOUBLE: {
 819       assert(value->type() == T_INT, "Agreement.");
 820       StackValue* low =
 821         StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
 822 #ifdef _LP64
 823       jlong res = (jlong)low->get_int();
 824 #else
 825 #ifdef SPARC
 826       // For SPARC we have to swap high and low words.
 827       jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
 828 #else
 829       jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
 830 #endif //SPARC
 831 #endif
 832       obj->long_at_put(index, res);
 833       break;
 834     }
 835 
 836     // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
 837     case T_INT: case T_FLOAT: { // 4 bytes.
 838       assert(value->type() == T_INT, "Agreement.");
 839       bool big_value = false;
 840       if (i + 1 < sv->field_size() && type == T_INT) {
 841         if (sv->field_at(i)->is_location()) {
 842           Location::Type type = ((LocationValue*) sv->field_at(i))->location().type();
 843           if (type == Location::dbl || type == Location::lng) {
 844             big_value = true;
 845           }
 846         } else if (sv->field_at(i)->is_constant_int()) {
 847           ScopeValue* next_scope_field = sv->field_at(i + 1);
 848           if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) {
 849             big_value = true;
 850           }
 851         }
 852       }
 853 
 854       if (big_value) {
 855         StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
 856   #ifdef _LP64
 857         jlong res = (jlong)low->get_int();
 858   #else
 859   #ifdef SPARC
 860         // For SPARC we have to swap high and low words.
 861         jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
 862   #else
 863         jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
 864   #endif //SPARC
 865   #endif
 866         obj->int_at_put(index, (jint)*((jint*)&res));
 867         obj->int_at_put(++index, (jint)*(((jint*)&res) + 1));
 868       } else {
 869         val = value->get_int();
 870         obj->int_at_put(index, (jint)*((jint*)&val));
 871       }
 872       break;
 873     }
 874 
 875     case T_SHORT: case T_CHAR: // 2 bytes
 876       assert(value->type() == T_INT, "Agreement.");
 877       val = value->get_int();
 878       obj->short_at_put(index, (jshort)*((jint*)&val));
 879       break;
 880 
 881     case T_BOOLEAN: case T_BYTE: // 1 byte
 882       assert(value->type() == T_INT, "Agreement.");
 883       val = value->get_int();
 884       obj->bool_at_put(index, (jboolean)*((jint*)&val));
 885       break;
 886 
 887       default:
 888         ShouldNotReachHere();
 889     }
 890     index++;
 891   }
 892 }
 893 
 894 
 895 // restore fields of an eliminated object array
 896 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) {
 897   for (int i = 0; i < sv->field_size(); i++) {
 898     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
 899     assert(value->type() == T_OBJECT, "object element expected");
 900     obj->obj_at_put(i, value->get_obj()());
 901   }
 902 }
 903 
 904 class ReassignedField {
 905 public:
 906   int _offset;
 907   BasicType _type;
 908 public:
 909   ReassignedField() {
 910     _offset = 0;
 911     _type = T_ILLEGAL;
 912   }
 913 };
 914 
 915 int compare(ReassignedField* left, ReassignedField* right) {
 916   return left->_offset - right->_offset;
 917 }
 918 
 919 // Restore fields of an eliminated instance object using the same field order
 920 // returned by HotSpotResolvedObjectTypeImpl.getInstanceFields(true)
 921 static int reassign_fields_by_klass(InstanceKlass* klass, frame* fr, RegisterMap* reg_map, ObjectValue* sv, int svIndex, oop obj, bool skip_internal) {
 922   if (klass->superklass() != NULL) {
 923     svIndex = reassign_fields_by_klass(klass->superklass(), fr, reg_map, sv, svIndex, obj, skip_internal);
 924   }
 925 
 926   GrowableArray<ReassignedField>* fields = new GrowableArray<ReassignedField>();
 927   for (AllFieldStream fs(klass); !fs.done(); fs.next()) {
 928     if (!fs.access_flags().is_static() && (!skip_internal || !fs.access_flags().is_internal())) {
 929       ReassignedField field;
 930       field._offset = fs.offset();
 931       field._type = FieldType::basic_type(fs.signature());
 932       fields->append(field);
 933     }
 934   }
 935   fields->sort(compare);
 936   for (int i = 0; i < fields->length(); i++) {
 937     intptr_t val;
 938     ScopeValue* scope_field = sv->field_at(svIndex);
 939     StackValue* value = StackValue::create_stack_value(fr, reg_map, scope_field);
 940     int offset = fields->at(i)._offset;
 941     BasicType type = fields->at(i)._type;
 942     switch (type) {
 943       case T_OBJECT: case T_ARRAY:
 944         assert(value->type() == T_OBJECT, "Agreement.");
 945         obj->obj_field_put(offset, value->get_obj()());
 946         break;
 947 
 948       // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
 949       case T_INT: case T_FLOAT: { // 4 bytes.
 950         assert(value->type() == T_INT, "Agreement.");
 951         bool big_value = false;
 952         if (i+1 < fields->length() && fields->at(i+1)._type == T_INT) {
 953           if (scope_field->is_location()) {
 954             Location::Type type = ((LocationValue*) scope_field)->location().type();
 955             if (type == Location::dbl || type == Location::lng) {
 956               big_value = true;
 957             }
 958           }
 959           if (scope_field->is_constant_int()) {
 960             ScopeValue* next_scope_field = sv->field_at(svIndex + 1);
 961             if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) {
 962               big_value = true;
 963             }
 964           }
 965         }
 966 
 967         if (big_value) {
 968           i++;
 969           assert(i < fields->length(), "second T_INT field needed");
 970           assert(fields->at(i)._type == T_INT, "T_INT field needed");
 971         } else {
 972           val = value->get_int();
 973           obj->int_field_put(offset, (jint)*((jint*)&val));
 974           break;
 975         }
 976       }
 977         /* no break */
 978 
 979       case T_LONG: case T_DOUBLE: {
 980         assert(value->type() == T_INT, "Agreement.");
 981         StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++svIndex));
 982 #ifdef _LP64
 983         jlong res = (jlong)low->get_int();
 984 #else
 985 #ifdef SPARC
 986         // For SPARC we have to swap high and low words.
 987         jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
 988 #else
 989         jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
 990 #endif //SPARC
 991 #endif
 992         obj->long_field_put(offset, res);
 993         break;
 994       }
 995 
 996       case T_SHORT: case T_CHAR: // 2 bytes
 997         assert(value->type() == T_INT, "Agreement.");
 998         val = value->get_int();
 999         obj->short_field_put(offset, (jshort)*((jint*)&val));
1000         break;
1001 
1002       case T_BOOLEAN: case T_BYTE: // 1 byte
1003         assert(value->type() == T_INT, "Agreement.");
1004         val = value->get_int();
1005         obj->bool_field_put(offset, (jboolean)*((jint*)&val));
1006         break;
1007 
1008       default:
1009         ShouldNotReachHere();
1010     }
1011     svIndex++;
1012   }
1013   return svIndex;
1014 }
1015 
1016 // restore fields of all eliminated objects and arrays
1017 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, bool realloc_failures, bool skip_internal) {
1018   for (int i = 0; i < objects->length(); i++) {
1019     ObjectValue* sv = (ObjectValue*) objects->at(i);
1020     KlassHandle k(java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()));
1021     Handle obj = sv->value();
1022     assert(obj.not_null() || realloc_failures, "reallocation was missed");
1023     if (PrintDeoptimizationDetails) {
1024       tty->print_cr("reassign fields for object of type %s!", k->name()->as_C_string());
1025     }
1026     if (obj.is_null()) {
1027       continue;
1028     }
1029 
1030     if (k->is_instance_klass()) {
1031       InstanceKlass* ik = InstanceKlass::cast(k());
1032       reassign_fields_by_klass(ik, fr, reg_map, sv, 0, obj(), skip_internal);
1033     } else if (k->is_typeArray_klass()) {
1034       TypeArrayKlass* ak = TypeArrayKlass::cast(k());
1035       reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type());
1036     } else if (k->is_objArray_klass()) {
1037       reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj());
1038     }
1039   }
1040 }
1041 
1042 
1043 // relock objects for which synchronization was eliminated
1044 void Deoptimization::relock_objects(GrowableArray<MonitorInfo*>* monitors, JavaThread* thread, bool realloc_failures) {
1045   for (int i = 0; i < monitors->length(); i++) {
1046     MonitorInfo* mon_info = monitors->at(i);
1047     if (mon_info->eliminated()) {
1048       assert(!mon_info->owner_is_scalar_replaced() || realloc_failures, "reallocation was missed");
1049       if (!mon_info->owner_is_scalar_replaced()) {
1050         Handle obj = Handle(mon_info->owner());
1051         markOop mark = obj->mark();
1052         if (UseBiasedLocking && mark->has_bias_pattern()) {
1053           // New allocated objects may have the mark set to anonymously biased.
1054           // Also the deoptimized method may called methods with synchronization
1055           // where the thread-local object is bias locked to the current thread.
1056           assert(mark->is_biased_anonymously() ||
1057                  mark->biased_locker() == thread, "should be locked to current thread");
1058           // Reset mark word to unbiased prototype.
1059           markOop unbiased_prototype = markOopDesc::prototype()->set_age(mark->age());
1060           obj->set_mark(unbiased_prototype);
1061         }
1062         BasicLock* lock = mon_info->lock();
1063         ObjectSynchronizer::slow_enter(obj, lock, thread);
1064         assert(mon_info->owner()->is_locked(), "object must be locked now");
1065       }
1066     }
1067   }
1068 }
1069 
1070 
1071 #ifndef PRODUCT
1072 // print information about reallocated objects
1073 void Deoptimization::print_objects(GrowableArray<ScopeValue*>* objects, bool realloc_failures) {
1074   fieldDescriptor fd;
1075 
1076   for (int i = 0; i < objects->length(); i++) {
1077     ObjectValue* sv = (ObjectValue*) objects->at(i);
1078     KlassHandle k(java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()));
1079     Handle obj = sv->value();
1080 
1081     tty->print("     object <" INTPTR_FORMAT "> of type ", p2i(sv->value()()));
1082     k->print_value();
1083     assert(obj.not_null() || realloc_failures, "reallocation was missed");
1084     if (obj.is_null()) {
1085       tty->print(" allocation failed");
1086     } else {
1087       tty->print(" allocated (%d bytes)", obj->size() * HeapWordSize);
1088     }
1089     tty->cr();
1090 
1091     if (Verbose && !obj.is_null()) {
1092       k->oop_print_on(obj(), tty);
1093     }
1094   }
1095 }
1096 #endif
1097 #endif // COMPILER2 || INCLUDE_JVMCI
1098 
1099 vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures) {
1100   Events::log(thread, "DEOPT PACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT, p2i(fr.pc()), p2i(fr.sp()));
1101 
1102 #ifndef PRODUCT
1103   if (PrintDeoptimizationDetails) {
1104     ttyLocker ttyl;
1105     tty->print("DEOPT PACKING thread " INTPTR_FORMAT " ", p2i(thread));
1106     fr.print_on(tty);
1107     tty->print_cr("     Virtual frames (innermost first):");
1108     for (int index = 0; index < chunk->length(); index++) {
1109       compiledVFrame* vf = chunk->at(index);
1110       tty->print("       %2d - ", index);
1111       vf->print_value();
1112       int bci = chunk->at(index)->raw_bci();
1113       const char* code_name;
1114       if (bci == SynchronizationEntryBCI) {
1115         code_name = "sync entry";
1116       } else {
1117         Bytecodes::Code code = vf->method()->code_at(bci);
1118         code_name = Bytecodes::name(code);
1119       }
1120       tty->print(" - %s", code_name);
1121       tty->print_cr(" @ bci %d ", bci);
1122       if (Verbose) {
1123         vf->print();
1124         tty->cr();
1125       }
1126     }
1127   }
1128 #endif
1129 
1130   // Register map for next frame (used for stack crawl).  We capture
1131   // the state of the deopt'ing frame's caller.  Thus if we need to
1132   // stuff a C2I adapter we can properly fill in the callee-save
1133   // register locations.
1134   frame caller = fr.sender(reg_map);
1135   int frame_size = caller.sp() - fr.sp();
1136 
1137   frame sender = caller;
1138 
1139   // Since the Java thread being deoptimized will eventually adjust it's own stack,
1140   // the vframeArray containing the unpacking information is allocated in the C heap.
1141   // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames().
1142   vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr, realloc_failures);
1143 
1144   // Compare the vframeArray to the collected vframes
1145   assert(array->structural_compare(thread, chunk), "just checking");
1146 
1147 #ifndef PRODUCT
1148   if (PrintDeoptimizationDetails) {
1149     ttyLocker ttyl;
1150     tty->print_cr("     Created vframeArray " INTPTR_FORMAT, p2i(array));
1151   }
1152 #endif // PRODUCT
1153 
1154   return array;
1155 }
1156 
1157 #if defined(COMPILER2) || INCLUDE_JVMCI
1158 void Deoptimization::pop_frames_failed_reallocs(JavaThread* thread, vframeArray* array) {
1159   // Reallocation of some scalar replaced objects failed. Record
1160   // that we need to pop all the interpreter frames for the
1161   // deoptimized compiled frame.
1162   assert(thread->frames_to_pop_failed_realloc() == 0, "missed frames to pop?");
1163   thread->set_frames_to_pop_failed_realloc(array->frames());
1164   // Unlock all monitors here otherwise the interpreter will see a
1165   // mix of locked and unlocked monitors (because of failed
1166   // reallocations of synchronized objects) and be confused.
1167   for (int i = 0; i < array->frames(); i++) {
1168     MonitorChunk* monitors = array->element(i)->monitors();
1169     if (monitors != NULL) {
1170       for (int j = 0; j < monitors->number_of_monitors(); j++) {
1171         BasicObjectLock* src = monitors->at(j);
1172         if (src->obj() != NULL) {
1173           ObjectSynchronizer::fast_exit(src->obj(), src->lock(), thread);
1174         }
1175       }
1176       array->element(i)->free_monitors(thread);
1177 #ifdef ASSERT
1178       array->element(i)->set_removed_monitors();
1179 #endif
1180     }
1181   }
1182 }
1183 #endif
1184 
1185 static void collect_monitors(compiledVFrame* cvf, GrowableArray<Handle>* objects_to_revoke) {
1186   GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
1187   for (int i = 0; i < monitors->length(); i++) {
1188     MonitorInfo* mon_info = monitors->at(i);
1189     if (!mon_info->eliminated() && mon_info->owner() != NULL) {
1190       objects_to_revoke->append(Handle(mon_info->owner()));
1191     }
1192   }
1193 }
1194 
1195 
1196 void Deoptimization::revoke_biases_of_monitors(JavaThread* thread, frame fr, RegisterMap* map) {
1197   if (!UseBiasedLocking) {
1198     return;
1199   }
1200 
1201   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
1202 
1203   // Unfortunately we don't have a RegisterMap available in most of
1204   // the places we want to call this routine so we need to walk the
1205   // stack again to update the register map.
1206   if (map == NULL || !map->update_map()) {
1207     StackFrameStream sfs(thread, true);
1208     bool found = false;
1209     while (!found && !sfs.is_done()) {
1210       frame* cur = sfs.current();
1211       sfs.next();
1212       found = cur->id() == fr.id();
1213     }
1214     assert(found, "frame to be deoptimized not found on target thread's stack");
1215     map = sfs.register_map();
1216   }
1217 
1218   vframe* vf = vframe::new_vframe(&fr, map, thread);
1219   compiledVFrame* cvf = compiledVFrame::cast(vf);
1220   // Revoke monitors' biases in all scopes
1221   while (!cvf->is_top()) {
1222     collect_monitors(cvf, objects_to_revoke);
1223     cvf = compiledVFrame::cast(cvf->sender());
1224   }
1225   collect_monitors(cvf, objects_to_revoke);
1226 
1227   if (SafepointSynchronize::is_at_safepoint()) {
1228     BiasedLocking::revoke_at_safepoint(objects_to_revoke);
1229   } else {
1230     BiasedLocking::revoke(objects_to_revoke);
1231   }
1232 }
1233 
1234 
1235 void Deoptimization::revoke_biases_of_monitors(CodeBlob* cb) {
1236   if (!UseBiasedLocking) {
1237     return;
1238   }
1239 
1240   assert(SafepointSynchronize::is_at_safepoint(), "must only be called from safepoint");
1241   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
1242   for (JavaThread* jt = Threads::first(); jt != NULL ; jt = jt->next()) {
1243     if (jt->has_last_Java_frame()) {
1244       StackFrameStream sfs(jt, true);
1245       while (!sfs.is_done()) {
1246         frame* cur = sfs.current();
1247         if (cb->contains(cur->pc())) {
1248           vframe* vf = vframe::new_vframe(cur, sfs.register_map(), jt);
1249           compiledVFrame* cvf = compiledVFrame::cast(vf);
1250           // Revoke monitors' biases in all scopes
1251           while (!cvf->is_top()) {
1252             collect_monitors(cvf, objects_to_revoke);
1253             cvf = compiledVFrame::cast(cvf->sender());
1254           }
1255           collect_monitors(cvf, objects_to_revoke);
1256         }
1257         sfs.next();
1258       }
1259     }
1260   }
1261   BiasedLocking::revoke_at_safepoint(objects_to_revoke);
1262 }
1263 
1264 
1265 void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr, Deoptimization::DeoptReason reason) {
1266   assert(fr.can_be_deoptimized(), "checking frame type");
1267 
1268   gather_statistics(reason, Action_none, Bytecodes::_illegal);
1269 
1270   if (LogCompilation && xtty != NULL) {
1271     nmethod* nm = fr.cb()->as_nmethod_or_null();
1272     assert(nm != NULL, "only compiled methods can deopt");
1273 
1274     ttyLocker ttyl;
1275     xtty->begin_head("deoptimized thread='" UINTX_FORMAT "'", (uintx)thread->osthread()->thread_id());
1276     nm->log_identity(xtty);
1277     xtty->end_head();
1278     for (ScopeDesc* sd = nm->scope_desc_at(fr.pc()); ; sd = sd->sender()) {
1279       xtty->begin_elem("jvms bci='%d'", sd->bci());
1280       xtty->method(sd->method());
1281       xtty->end_elem();
1282       if (sd->is_top())  break;
1283     }
1284     xtty->tail("deoptimized");
1285   }
1286 
1287   // Patch the compiled method so that when execution returns to it we will
1288   // deopt the execution state and return to the interpreter.
1289   fr.deoptimize(thread);
1290 }
1291 
1292 void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map) {
1293   deoptimize(thread, fr, map, Reason_constraint);
1294 }
1295 
1296 void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map, DeoptReason reason) {
1297   // Deoptimize only if the frame comes from compile code.
1298   // Do not deoptimize the frame which is already patched
1299   // during the execution of the loops below.
1300   if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) {
1301     return;
1302   }
1303   ResourceMark rm;
1304   DeoptimizationMarker dm;
1305   if (UseBiasedLocking) {
1306     revoke_biases_of_monitors(thread, fr, map);
1307   }
1308   deoptimize_single_frame(thread, fr, reason);
1309 
1310 }
1311 
1312 
1313 void Deoptimization::deoptimize_frame_internal(JavaThread* thread, intptr_t* id, DeoptReason reason) {
1314   assert(thread == Thread::current() || SafepointSynchronize::is_at_safepoint(),
1315          "can only deoptimize other thread at a safepoint");
1316   // Compute frame and register map based on thread and sp.
1317   RegisterMap reg_map(thread, UseBiasedLocking);
1318   frame fr = thread->last_frame();
1319   while (fr.id() != id) {
1320     fr = fr.sender(&reg_map);
1321   }
1322   deoptimize(thread, fr, &reg_map, reason);
1323 }
1324 
1325 
1326 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id, DeoptReason reason) {
1327   if (thread == Thread::current()) {
1328     Deoptimization::deoptimize_frame_internal(thread, id, reason);
1329   } else {
1330     VM_DeoptimizeFrame deopt(thread, id, reason);
1331     VMThread::execute(&deopt);
1332   }
1333 }
1334 
1335 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) {
1336   deoptimize_frame(thread, id, Reason_constraint);
1337 }
1338 
1339 // JVMTI PopFrame support
1340 JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address))
1341 {
1342   thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address);
1343 }
1344 JRT_END
1345 
1346 MethodData*
1347 Deoptimization::get_method_data(JavaThread* thread, methodHandle m,
1348                                 bool create_if_missing) {
1349   Thread* THREAD = thread;
1350   MethodData* mdo = m()->method_data();
1351   if (mdo == NULL && create_if_missing && !HAS_PENDING_EXCEPTION) {
1352     // Build an MDO.  Ignore errors like OutOfMemory;
1353     // that simply means we won't have an MDO to update.
1354     Method::build_interpreter_method_data(m, THREAD);
1355     if (HAS_PENDING_EXCEPTION) {
1356       assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
1357       CLEAR_PENDING_EXCEPTION;
1358     }
1359     mdo = m()->method_data();
1360   }
1361   return mdo;
1362 }
1363 
1364 #if defined(COMPILER2) || defined(SHARK) || INCLUDE_JVMCI
1365 void Deoptimization::load_class_by_index(const constantPoolHandle& constant_pool, int index, TRAPS) {
1366   // in case of an unresolved klass entry, load the class.
1367   if (constant_pool->tag_at(index).is_unresolved_klass()) {
1368     Klass* tk = constant_pool->klass_at_ignore_error(index, CHECK);
1369     return;
1370   }
1371 
1372   if (!constant_pool->tag_at(index).is_symbol()) return;
1373 
1374   Handle class_loader (THREAD, constant_pool->pool_holder()->class_loader());
1375   Symbol*  symbol  = constant_pool->symbol_at(index);
1376 
1377   // class name?
1378   if (symbol->byte_at(0) != '(') {
1379     Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain());
1380     SystemDictionary::resolve_or_null(symbol, class_loader, protection_domain, CHECK);
1381     return;
1382   }
1383 
1384   // then it must be a signature!
1385   ResourceMark rm(THREAD);
1386   for (SignatureStream ss(symbol); !ss.is_done(); ss.next()) {
1387     if (ss.is_object()) {
1388       Symbol* class_name = ss.as_symbol(CHECK);
1389       Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain());
1390       SystemDictionary::resolve_or_null(class_name, class_loader, protection_domain, CHECK);
1391     }
1392   }
1393 }
1394 
1395 
1396 void Deoptimization::load_class_by_index(const constantPoolHandle& constant_pool, int index) {
1397   EXCEPTION_MARK;
1398   load_class_by_index(constant_pool, index, THREAD);
1399   if (HAS_PENDING_EXCEPTION) {
1400     // Exception happened during classloading. We ignore the exception here, since it
1401     // is going to be rethrown since the current activation is going to be deoptimized and
1402     // the interpreter will re-execute the bytecode.
1403     CLEAR_PENDING_EXCEPTION;
1404     // Class loading called java code which may have caused a stack
1405     // overflow. If the exception was thrown right before the return
1406     // to the runtime the stack is no longer guarded. Reguard the
1407     // stack otherwise if we return to the uncommon trap blob and the
1408     // stack bang causes a stack overflow we crash.
1409     assert(THREAD->is_Java_thread(), "only a java thread can be here");
1410     JavaThread* thread = (JavaThread*)THREAD;
1411     bool guard_pages_enabled = thread->stack_yellow_zone_enabled();
1412     if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
1413     assert(guard_pages_enabled, "stack banging in uncommon trap blob may cause crash");
1414   }
1415 }
1416 
1417 JRT_ENTRY(void, Deoptimization::uncommon_trap_inner(JavaThread* thread, jint trap_request)) {
1418   HandleMark hm;
1419 
1420   // uncommon_trap() is called at the beginning of the uncommon trap
1421   // handler. Note this fact before we start generating temporary frames
1422   // that can confuse an asynchronous stack walker. This counter is
1423   // decremented at the end of unpack_frames().
1424   thread->inc_in_deopt_handler();
1425 
1426   // We need to update the map if we have biased locking.
1427 #if INCLUDE_JVMCI
1428   // JVMCI might need to get an exception from the stack, which in turn requires the register map to be valid
1429   RegisterMap reg_map(thread, true);
1430 #else
1431   RegisterMap reg_map(thread, UseBiasedLocking);
1432 #endif
1433   frame stub_frame = thread->last_frame();
1434   frame fr = stub_frame.sender(&reg_map);
1435   // Make sure the calling nmethod is not getting deoptimized and removed
1436   // before we are done with it.
1437   nmethodLocker nl(fr.pc());
1438 
1439   // Log a message
1440   Events::log(thread, "Uncommon trap: trap_request=" PTR32_FORMAT " fr.pc=" INTPTR_FORMAT " relative=" INTPTR_FORMAT,
1441               trap_request, p2i(fr.pc()), fr.pc() - fr.cb()->code_begin());
1442 
1443   {
1444     ResourceMark rm;
1445 
1446     // Revoke biases of any monitors in the frame to ensure we can migrate them
1447     revoke_biases_of_monitors(thread, fr, &reg_map);
1448 
1449     DeoptReason reason = trap_request_reason(trap_request);
1450     DeoptAction action = trap_request_action(trap_request);
1451 #if INCLUDE_JVMCI
1452     int debug_id = trap_request_debug_id(trap_request);
1453 #endif
1454     jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1
1455 
1456     vframe*  vf  = vframe::new_vframe(&fr, &reg_map, thread);
1457     compiledVFrame* cvf = compiledVFrame::cast(vf);
1458 
1459     nmethod* nm = cvf->code();
1460 
1461     ScopeDesc*      trap_scope  = cvf->scope();
1462 
1463     if (TraceDeoptimization) {
1464       ttyLocker ttyl;
1465       tty->print_cr("  bci=%d pc=" INTPTR_FORMAT ", relative_pc=" INTPTR_FORMAT ", method=%s" JVMCI_ONLY(", debug_id=%d"), trap_scope->bci(), p2i(fr.pc()), fr.pc() - nm->code_begin(), trap_scope->method()->name_and_sig_as_C_string()
1466 #if INCLUDE_JVMCI
1467           , debug_id
1468 #endif
1469           );
1470     }
1471 
1472     methodHandle    trap_method = trap_scope->method();
1473     int             trap_bci    = trap_scope->bci();
1474 #if INCLUDE_JVMCI
1475     oop speculation = thread->pending_failed_speculation();
1476     if (nm->is_compiled_by_jvmci()) {
1477       if (speculation != NULL) {
1478         oop speculation_log = nm->speculation_log();
1479         if (speculation_log != NULL) {
1480           if (TraceDeoptimization || TraceUncollectedSpeculations) {
1481             if (HotSpotSpeculationLog::lastFailed(speculation_log) != NULL) {
1482               tty->print_cr("A speculation that was not collected by the compiler is being overwritten");
1483             }
1484           }
1485           if (TraceDeoptimization) {
1486             tty->print_cr("Saving speculation to speculation log");
1487           }
1488           HotSpotSpeculationLog::set_lastFailed(speculation_log, speculation);
1489         } else {
1490           if (TraceDeoptimization) {
1491             tty->print_cr("Speculation present but no speculation log");
1492           }
1493         }
1494         thread->set_pending_failed_speculation(NULL);
1495       } else {
1496         if (TraceDeoptimization) {
1497           tty->print_cr("No speculation");
1498         }
1499       }
1500     } else {
1501       assert(speculation == NULL, "There should not be a speculation for method compiled by non-JVMCI compilers");
1502     }
1503 
1504     if (trap_bci == SynchronizationEntryBCI) {
1505       trap_bci = 0;
1506       thread->set_pending_monitorenter(true);
1507     }
1508 
1509     if (reason == Deoptimization::Reason_transfer_to_interpreter) {
1510       thread->set_pending_transfer_to_interpreter(true);
1511     }
1512 #endif
1513 
1514     Bytecodes::Code trap_bc     = trap_method->java_code_at(trap_bci);
1515 
1516     if (trap_scope->rethrow_exception()) {
1517       if (PrintDeoptimizationDetails) {
1518         tty->print_cr("Exception to be rethrown in the interpreter for method %s::%s at bci %d", trap_method->method_holder()->name()->as_C_string(), trap_method->name()->as_C_string(), trap_bci);
1519       }
1520       GrowableArray<ScopeValue*>* expressions = trap_scope->expressions();
1521       guarantee(expressions != NULL, "must have exception to throw");
1522       ScopeValue* topOfStack = expressions->top();
1523       Handle topOfStackObj = StackValue::create_stack_value(&fr, &reg_map, topOfStack)->get_obj();
1524       THREAD->set_pending_exception(topOfStackObj(), NULL, 0);
1525     }
1526 
1527     // Record this event in the histogram.
1528     gather_statistics(reason, action, trap_bc);
1529 
1530     // Ensure that we can record deopt. history:
1531     // Need MDO to record RTM code generation state.
1532     bool create_if_missing = ProfileTraps || UseCodeAging RTM_OPT_ONLY( || UseRTMLocking );
1533 
1534     methodHandle profiled_method;
1535 #if INCLUDE_JVMCI
1536     if (nm->is_compiled_by_jvmci()) {
1537       profiled_method = nm->method();
1538     } else {
1539       profiled_method = trap_method;
1540     }
1541 #else
1542     profiled_method = trap_method;
1543 #endif
1544 
1545     MethodData* trap_mdo =
1546       get_method_data(thread, profiled_method, create_if_missing);
1547 
1548     // Log a message
1549     Events::log_deopt_message(thread, "Uncommon trap: reason=%s action=%s pc=" INTPTR_FORMAT " method=%s @ %d",
1550                               trap_reason_name(reason), trap_action_name(action), p2i(fr.pc()),
1551                               trap_method->name_and_sig_as_C_string(), trap_bci);
1552 
1553     // Print a bunch of diagnostics, if requested.
1554     if (TraceDeoptimization || LogCompilation) {
1555       ResourceMark rm;
1556       ttyLocker ttyl;
1557       char buf[100];
1558       if (xtty != NULL) {
1559         xtty->begin_head("uncommon_trap thread='" UINTX_FORMAT "' %s",
1560                          os::current_thread_id(),
1561                          format_trap_request(buf, sizeof(buf), trap_request));
1562         nm->log_identity(xtty);
1563       }
1564       Symbol* class_name = NULL;
1565       bool unresolved = false;
1566       if (unloaded_class_index >= 0) {
1567         constantPoolHandle constants (THREAD, trap_method->constants());
1568         if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) {
1569           class_name = constants->klass_name_at(unloaded_class_index);
1570           unresolved = true;
1571           if (xtty != NULL)
1572             xtty->print(" unresolved='1'");
1573         } else if (constants->tag_at(unloaded_class_index).is_symbol()) {
1574           class_name = constants->symbol_at(unloaded_class_index);
1575         }
1576         if (xtty != NULL)
1577           xtty->name(class_name);
1578       }
1579       if (xtty != NULL && trap_mdo != NULL && (int)reason < (int)MethodData::_trap_hist_limit) {
1580         // Dump the relevant MDO state.
1581         // This is the deopt count for the current reason, any previous
1582         // reasons or recompiles seen at this point.
1583         int dcnt = trap_mdo->trap_count(reason);
1584         if (dcnt != 0)
1585           xtty->print(" count='%d'", dcnt);
1586         ProfileData* pdata = trap_mdo->bci_to_data(trap_bci);
1587         int dos = (pdata == NULL)? 0: pdata->trap_state();
1588         if (dos != 0) {
1589           xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos));
1590           if (trap_state_is_recompiled(dos)) {
1591             int recnt2 = trap_mdo->overflow_recompile_count();
1592             if (recnt2 != 0)
1593               xtty->print(" recompiles2='%d'", recnt2);
1594           }
1595         }
1596       }
1597       if (xtty != NULL) {
1598         xtty->stamp();
1599         xtty->end_head();
1600       }
1601       if (TraceDeoptimization) {  // make noise on the tty
1602         tty->print("Uncommon trap occurred in");
1603         nm->method()->print_short_name(tty);
1604         tty->print(" compiler=%s compile_id=%d", nm->compiler() == NULL ? "" : nm->compiler()->name(), nm->compile_id());
1605 #if INCLUDE_JVMCI
1606         oop installedCode = nm->jvmci_installed_code();
1607         if (installedCode != NULL) {
1608           oop installedCodeName = NULL;
1609           if (installedCode->is_a(InstalledCode::klass())) {
1610             installedCodeName = InstalledCode::name(installedCode);
1611           }
1612           if (installedCodeName != NULL) {
1613             tty->print(" (JVMCI: installedCodeName=%s) ", java_lang_String::as_utf8_string(installedCodeName));
1614           } else {
1615             tty->print(" (JVMCI: installed code has no name) ");
1616           }
1617         } else if (nm->is_compiled_by_jvmci()) {
1618           tty->print(" (JVMCI: no installed code) ");
1619         }
1620 #endif
1621         tty->print(" (@" INTPTR_FORMAT ") thread=" UINTX_FORMAT " reason=%s action=%s unloaded_class_index=%d" JVMCI_ONLY(" debug_id=%d"),
1622                    p2i(fr.pc()),
1623                    os::current_thread_id(),
1624                    trap_reason_name(reason),
1625                    trap_action_name(action),
1626                    unloaded_class_index
1627 #if INCLUDE_JVMCI
1628                    , debug_id
1629 #endif
1630                    );
1631         if (class_name != NULL) {
1632           tty->print(unresolved ? " unresolved class: " : " symbol: ");
1633           class_name->print_symbol_on(tty);
1634         }
1635         tty->cr();
1636       }
1637       if (xtty != NULL) {
1638         // Log the precise location of the trap.
1639         for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) {
1640           xtty->begin_elem("jvms bci='%d'", sd->bci());
1641           xtty->method(sd->method());
1642           xtty->end_elem();
1643           if (sd->is_top())  break;
1644         }
1645         xtty->tail("uncommon_trap");
1646       }
1647     }
1648     // (End diagnostic printout.)
1649 
1650     // Load class if necessary
1651     if (unloaded_class_index >= 0) {
1652       constantPoolHandle constants(THREAD, trap_method->constants());
1653       load_class_by_index(constants, unloaded_class_index);
1654     }
1655 
1656     // Flush the nmethod if necessary and desirable.
1657     //
1658     // We need to avoid situations where we are re-flushing the nmethod
1659     // because of a hot deoptimization site.  Repeated flushes at the same
1660     // point need to be detected by the compiler and avoided.  If the compiler
1661     // cannot avoid them (or has a bug and "refuses" to avoid them), this
1662     // module must take measures to avoid an infinite cycle of recompilation
1663     // and deoptimization.  There are several such measures:
1664     //
1665     //   1. If a recompilation is ordered a second time at some site X
1666     //   and for the same reason R, the action is adjusted to 'reinterpret',
1667     //   to give the interpreter time to exercise the method more thoroughly.
1668     //   If this happens, the method's overflow_recompile_count is incremented.
1669     //
1670     //   2. If the compiler fails to reduce the deoptimization rate, then
1671     //   the method's overflow_recompile_count will begin to exceed the set
1672     //   limit PerBytecodeRecompilationCutoff.  If this happens, the action
1673     //   is adjusted to 'make_not_compilable', and the method is abandoned
1674     //   to the interpreter.  This is a performance hit for hot methods,
1675     //   but is better than a disastrous infinite cycle of recompilations.
1676     //   (Actually, only the method containing the site X is abandoned.)
1677     //
1678     //   3. In parallel with the previous measures, if the total number of
1679     //   recompilations of a method exceeds the much larger set limit
1680     //   PerMethodRecompilationCutoff, the method is abandoned.
1681     //   This should only happen if the method is very large and has
1682     //   many "lukewarm" deoptimizations.  The code which enforces this
1683     //   limit is elsewhere (class nmethod, class Method).
1684     //
1685     // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance
1686     // to recompile at each bytecode independently of the per-BCI cutoff.
1687     //
1688     // The decision to update code is up to the compiler, and is encoded
1689     // in the Action_xxx code.  If the compiler requests Action_none
1690     // no trap state is changed, no compiled code is changed, and the
1691     // computation suffers along in the interpreter.
1692     //
1693     // The other action codes specify various tactics for decompilation
1694     // and recompilation.  Action_maybe_recompile is the loosest, and
1695     // allows the compiled code to stay around until enough traps are seen,
1696     // and until the compiler gets around to recompiling the trapping method.
1697     //
1698     // The other actions cause immediate removal of the present code.
1699 
1700     // Traps caused by injected profile shouldn't pollute trap counts.
1701     bool injected_profile_trap = trap_method->has_injected_profile() &&
1702                                  (reason == Reason_intrinsic || reason == Reason_unreached);
1703 
1704     bool update_trap_state = (reason != Reason_tenured) && !injected_profile_trap;
1705     bool make_not_entrant = false;
1706     bool make_not_compilable = false;
1707     bool reprofile = false;
1708     switch (action) {
1709     case Action_none:
1710       // Keep the old code.
1711       update_trap_state = false;
1712       break;
1713     case Action_maybe_recompile:
1714       // Do not need to invalidate the present code, but we can
1715       // initiate another
1716       // Start compiler without (necessarily) invalidating the nmethod.
1717       // The system will tolerate the old code, but new code should be
1718       // generated when possible.
1719       break;
1720     case Action_reinterpret:
1721       // Go back into the interpreter for a while, and then consider
1722       // recompiling form scratch.
1723       make_not_entrant = true;
1724       // Reset invocation counter for outer most method.
1725       // This will allow the interpreter to exercise the bytecodes
1726       // for a while before recompiling.
1727       // By contrast, Action_make_not_entrant is immediate.
1728       //
1729       // Note that the compiler will track null_check, null_assert,
1730       // range_check, and class_check events and log them as if they
1731       // had been traps taken from compiled code.  This will update
1732       // the MDO trap history so that the next compilation will
1733       // properly detect hot trap sites.
1734       reprofile = true;
1735       break;
1736     case Action_make_not_entrant:
1737       // Request immediate recompilation, and get rid of the old code.
1738       // Make them not entrant, so next time they are called they get
1739       // recompiled.  Unloaded classes are loaded now so recompile before next
1740       // time they are called.  Same for uninitialized.  The interpreter will
1741       // link the missing class, if any.
1742       make_not_entrant = true;
1743       break;
1744     case Action_make_not_compilable:
1745       // Give up on compiling this method at all.
1746       make_not_entrant = true;
1747       make_not_compilable = true;
1748       break;
1749     default:
1750       ShouldNotReachHere();
1751     }
1752 
1753     // Setting +ProfileTraps fixes the following, on all platforms:
1754     // 4852688: ProfileInterpreter is off by default for ia64.  The result is
1755     // infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the
1756     // recompile relies on a MethodData* to record heroic opt failures.
1757 
1758     // Whether the interpreter is producing MDO data or not, we also need
1759     // to use the MDO to detect hot deoptimization points and control
1760     // aggressive optimization.
1761     bool inc_recompile_count = false;
1762     ProfileData* pdata = NULL;
1763     if (ProfileTraps && update_trap_state && trap_mdo != NULL) {
1764       assert(trap_mdo == get_method_data(thread, profiled_method, false), "sanity");
1765       uint this_trap_count = 0;
1766       bool maybe_prior_trap = false;
1767       bool maybe_prior_recompile = false;
1768       pdata = query_update_method_data(trap_mdo, trap_bci, reason, true,
1769 #if INCLUDE_JVMCI
1770                                    nm->is_compiled_by_jvmci() && nm->is_osr_method(),
1771 #endif
1772                                    nm->method(),
1773                                    //outputs:
1774                                    this_trap_count,
1775                                    maybe_prior_trap,
1776                                    maybe_prior_recompile);
1777       // Because the interpreter also counts null, div0, range, and class
1778       // checks, these traps from compiled code are double-counted.
1779       // This is harmless; it just means that the PerXTrapLimit values
1780       // are in effect a little smaller than they look.
1781 
1782       DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
1783       if (per_bc_reason != Reason_none) {
1784         // Now take action based on the partially known per-BCI history.
1785         if (maybe_prior_trap
1786             && this_trap_count >= (uint)PerBytecodeTrapLimit) {
1787           // If there are too many traps at this BCI, force a recompile.
1788           // This will allow the compiler to see the limit overflow, and
1789           // take corrective action, if possible.  The compiler generally
1790           // does not use the exact PerBytecodeTrapLimit value, but instead
1791           // changes its tactics if it sees any traps at all.  This provides
1792           // a little hysteresis, delaying a recompile until a trap happens
1793           // several times.
1794           //
1795           // Actually, since there is only one bit of counter per BCI,
1796           // the possible per-BCI counts are {0,1,(per-method count)}.
1797           // This produces accurate results if in fact there is only
1798           // one hot trap site, but begins to get fuzzy if there are
1799           // many sites.  For example, if there are ten sites each
1800           // trapping two or more times, they each get the blame for
1801           // all of their traps.
1802           make_not_entrant = true;
1803         }
1804 
1805         // Detect repeated recompilation at the same BCI, and enforce a limit.
1806         if (make_not_entrant && maybe_prior_recompile) {
1807           // More than one recompile at this point.
1808           inc_recompile_count = maybe_prior_trap;
1809         }
1810       } else {
1811         // For reasons which are not recorded per-bytecode, we simply
1812         // force recompiles unconditionally.
1813         // (Note that PerMethodRecompilationCutoff is enforced elsewhere.)
1814         make_not_entrant = true;
1815       }
1816 
1817       // Go back to the compiler if there are too many traps in this method.
1818       if (this_trap_count >= per_method_trap_limit(reason)) {
1819         // If there are too many traps in this method, force a recompile.
1820         // This will allow the compiler to see the limit overflow, and
1821         // take corrective action, if possible.
1822         // (This condition is an unlikely backstop only, because the
1823         // PerBytecodeTrapLimit is more likely to take effect first,
1824         // if it is applicable.)
1825         make_not_entrant = true;
1826       }
1827 
1828       // Here's more hysteresis:  If there has been a recompile at
1829       // this trap point already, run the method in the interpreter
1830       // for a while to exercise it more thoroughly.
1831       if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) {
1832         reprofile = true;
1833       }
1834     }
1835 
1836     // Take requested actions on the method:
1837 
1838     // Recompile
1839     if (make_not_entrant) {
1840       if (!nm->make_not_entrant()) {
1841         return; // the call did not change nmethod's state
1842       }
1843 
1844       if (pdata != NULL) {
1845         // Record the recompilation event, if any.
1846         int tstate0 = pdata->trap_state();
1847         int tstate1 = trap_state_set_recompiled(tstate0, true);
1848         if (tstate1 != tstate0)
1849           pdata->set_trap_state(tstate1);
1850       }
1851 
1852 #if INCLUDE_RTM_OPT
1853       // Restart collecting RTM locking abort statistic if the method
1854       // is recompiled for a reason other than RTM state change.
1855       // Assume that in new recompiled code the statistic could be different,
1856       // for example, due to different inlining.
1857       if ((reason != Reason_rtm_state_change) && (trap_mdo != NULL) &&
1858           UseRTMDeopt && (nm->rtm_state() != ProfileRTM)) {
1859         trap_mdo->atomic_set_rtm_state(ProfileRTM);
1860       }
1861 #endif
1862       // For code aging we count traps separately here, using make_not_entrant()
1863       // as a guard against simultaneous deopts in multiple threads.
1864       if (reason == Reason_tenured && trap_mdo != NULL) {
1865         trap_mdo->inc_tenure_traps();
1866       }
1867     }
1868 
1869     if (inc_recompile_count) {
1870       trap_mdo->inc_overflow_recompile_count();
1871       if ((uint)trap_mdo->overflow_recompile_count() >
1872           (uint)PerBytecodeRecompilationCutoff) {
1873         // Give up on the method containing the bad BCI.
1874         if (trap_method() == nm->method()) {
1875           make_not_compilable = true;
1876         } else {
1877           trap_method->set_not_compilable(CompLevel_full_optimization, true, "overflow_recompile_count > PerBytecodeRecompilationCutoff");
1878           // But give grace to the enclosing nm->method().
1879         }
1880       }
1881     }
1882 
1883     // Reprofile
1884     if (reprofile) {
1885       CompilationPolicy::policy()->reprofile(trap_scope, nm->is_osr_method());
1886     }
1887 
1888     // Give up compiling
1889     if (make_not_compilable && !nm->method()->is_not_compilable(CompLevel_full_optimization)) {
1890       assert(make_not_entrant, "consistent");
1891       nm->method()->set_not_compilable(CompLevel_full_optimization);
1892     }
1893 
1894   } // Free marked resources
1895 
1896 }
1897 JRT_END
1898 
1899 ProfileData*
1900 Deoptimization::query_update_method_data(MethodData* trap_mdo,
1901                                          int trap_bci,
1902                                          Deoptimization::DeoptReason reason,
1903                                          bool update_total_trap_count,
1904 #if INCLUDE_JVMCI
1905                                          bool is_osr,
1906 #endif
1907                                          Method* compiled_method,
1908                                          //outputs:
1909                                          uint& ret_this_trap_count,
1910                                          bool& ret_maybe_prior_trap,
1911                                          bool& ret_maybe_prior_recompile) {
1912   bool maybe_prior_trap = false;
1913   bool maybe_prior_recompile = false;
1914   uint this_trap_count = 0;
1915   if (update_total_trap_count) {
1916     uint idx = reason;
1917 #if INCLUDE_JVMCI
1918     if (is_osr) {
1919       idx += Reason_LIMIT;
1920     }
1921 #endif
1922     uint prior_trap_count = trap_mdo->trap_count(idx);
1923     this_trap_count  = trap_mdo->inc_trap_count(idx);
1924 
1925     // If the runtime cannot find a place to store trap history,
1926     // it is estimated based on the general condition of the method.
1927     // If the method has ever been recompiled, or has ever incurred
1928     // a trap with the present reason , then this BCI is assumed
1929     // (pessimistically) to be the culprit.
1930     maybe_prior_trap      = (prior_trap_count != 0);
1931     maybe_prior_recompile = (trap_mdo->decompile_count() != 0);
1932   }
1933   ProfileData* pdata = NULL;
1934 
1935 
1936   // For reasons which are recorded per bytecode, we check per-BCI data.
1937   DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
1938   assert(per_bc_reason != Reason_none || update_total_trap_count, "must be");
1939   if (per_bc_reason != Reason_none) {
1940     // Find the profile data for this BCI.  If there isn't one,
1941     // try to allocate one from the MDO's set of spares.
1942     // This will let us detect a repeated trap at this point.
1943     pdata = trap_mdo->allocate_bci_to_data(trap_bci, reason_is_speculate(reason) ? compiled_method : NULL);
1944 
1945     if (pdata != NULL) {
1946       if (reason_is_speculate(reason) && !pdata->is_SpeculativeTrapData()) {
1947         if (LogCompilation && xtty != NULL) {
1948           ttyLocker ttyl;
1949           // no more room for speculative traps in this MDO
1950           xtty->elem("speculative_traps_oom");
1951         }
1952       }
1953       // Query the trap state of this profile datum.
1954       int tstate0 = pdata->trap_state();
1955       if (!trap_state_has_reason(tstate0, per_bc_reason))
1956         maybe_prior_trap = false;
1957       if (!trap_state_is_recompiled(tstate0))
1958         maybe_prior_recompile = false;
1959 
1960       // Update the trap state of this profile datum.
1961       int tstate1 = tstate0;
1962       // Record the reason.
1963       tstate1 = trap_state_add_reason(tstate1, per_bc_reason);
1964       // Store the updated state on the MDO, for next time.
1965       if (tstate1 != tstate0)
1966         pdata->set_trap_state(tstate1);
1967     } else {
1968       if (LogCompilation && xtty != NULL) {
1969         ttyLocker ttyl;
1970         // Missing MDP?  Leave a small complaint in the log.
1971         xtty->elem("missing_mdp bci='%d'", trap_bci);
1972       }
1973     }
1974   }
1975 
1976   // Return results:
1977   ret_this_trap_count = this_trap_count;
1978   ret_maybe_prior_trap = maybe_prior_trap;
1979   ret_maybe_prior_recompile = maybe_prior_recompile;
1980   return pdata;
1981 }
1982 
1983 void
1984 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
1985   ResourceMark rm;
1986   // Ignored outputs:
1987   uint ignore_this_trap_count;
1988   bool ignore_maybe_prior_trap;
1989   bool ignore_maybe_prior_recompile;
1990   assert(!reason_is_speculate(reason), "reason speculate only used by compiler");
1991   // JVMCI uses the total counts to determine if deoptimizations are happening too frequently -> do not adjust total counts
1992   bool update_total_counts = JVMCI_ONLY(false) NOT_JVMCI(true);
1993   query_update_method_data(trap_mdo, trap_bci,
1994                            (DeoptReason)reason,
1995                            update_total_counts,
1996 #if INCLUDE_JVMCI
1997                            false,
1998 #endif
1999                            NULL,
2000                            ignore_this_trap_count,
2001                            ignore_maybe_prior_trap,
2002                            ignore_maybe_prior_recompile);
2003 }
2004 
2005 Deoptimization::UnrollBlock* Deoptimization::uncommon_trap(JavaThread* thread, jint trap_request) {
2006   if (TraceDeoptimization) {
2007     tty->print("Uncommon trap ");
2008   }
2009   // Still in Java no safepoints
2010   {
2011     // This enters VM and may safepoint
2012     uncommon_trap_inner(thread, trap_request);
2013   }
2014   return fetch_unroll_info_helper(thread);
2015 }
2016 
2017 // Local derived constants.
2018 // Further breakdown of DataLayout::trap_state, as promised by DataLayout.
2019 const int DS_REASON_MASK   = DataLayout::trap_mask >> 1;
2020 const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK;
2021 
2022 //---------------------------trap_state_reason---------------------------------
2023 Deoptimization::DeoptReason
2024 Deoptimization::trap_state_reason(int trap_state) {
2025   // This assert provides the link between the width of DataLayout::trap_bits
2026   // and the encoding of "recorded" reasons.  It ensures there are enough
2027   // bits to store all needed reasons in the per-BCI MDO profile.
2028   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
2029   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2030   trap_state -= recompile_bit;
2031   if (trap_state == DS_REASON_MASK) {
2032     return Reason_many;
2033   } else {
2034     assert((int)Reason_none == 0, "state=0 => Reason_none");
2035     return (DeoptReason)trap_state;
2036   }
2037 }
2038 //-------------------------trap_state_has_reason-------------------------------
2039 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
2040   assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason");
2041   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
2042   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2043   trap_state -= recompile_bit;
2044   if (trap_state == DS_REASON_MASK) {
2045     return -1;  // true, unspecifically (bottom of state lattice)
2046   } else if (trap_state == reason) {
2047     return 1;   // true, definitely
2048   } else if (trap_state == 0) {
2049     return 0;   // false, definitely (top of state lattice)
2050   } else {
2051     return 0;   // false, definitely
2052   }
2053 }
2054 //-------------------------trap_state_add_reason-------------------------------
2055 int Deoptimization::trap_state_add_reason(int trap_state, int reason) {
2056   assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason");
2057   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2058   trap_state -= recompile_bit;
2059   if (trap_state == DS_REASON_MASK) {
2060     return trap_state + recompile_bit;     // already at state lattice bottom
2061   } else if (trap_state == reason) {
2062     return trap_state + recompile_bit;     // the condition is already true
2063   } else if (trap_state == 0) {
2064     return reason + recompile_bit;          // no condition has yet been true
2065   } else {
2066     return DS_REASON_MASK + recompile_bit;  // fall to state lattice bottom
2067   }
2068 }
2069 //-----------------------trap_state_is_recompiled------------------------------
2070 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
2071   return (trap_state & DS_RECOMPILE_BIT) != 0;
2072 }
2073 //-----------------------trap_state_set_recompiled-----------------------------
2074 int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) {
2075   if (z)  return trap_state |  DS_RECOMPILE_BIT;
2076   else    return trap_state & ~DS_RECOMPILE_BIT;
2077 }
2078 //---------------------------format_trap_state---------------------------------
2079 // This is used for debugging and diagnostics, including LogFile output.
2080 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
2081                                               int trap_state) {
2082   assert(buflen > 0, "sanity");
2083   DeoptReason reason      = trap_state_reason(trap_state);
2084   bool        recomp_flag = trap_state_is_recompiled(trap_state);
2085   // Re-encode the state from its decoded components.
2086   int decoded_state = 0;
2087   if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many)
2088     decoded_state = trap_state_add_reason(decoded_state, reason);
2089   if (recomp_flag)
2090     decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag);
2091   // If the state re-encodes properly, format it symbolically.
2092   // Because this routine is used for debugging and diagnostics,
2093   // be robust even if the state is a strange value.
2094   size_t len;
2095   if (decoded_state != trap_state) {
2096     // Random buggy state that doesn't decode??
2097     len = jio_snprintf(buf, buflen, "#%d", trap_state);
2098   } else {
2099     len = jio_snprintf(buf, buflen, "%s%s",
2100                        trap_reason_name(reason),
2101                        recomp_flag ? " recompiled" : "");
2102   }
2103   return buf;
2104 }
2105 
2106 
2107 //--------------------------------statics--------------------------------------
2108 const char* Deoptimization::_trap_reason_name[] = {
2109   // Note:  Keep this in sync. with enum DeoptReason.
2110   "none",
2111   "null_check",
2112   "null_assert" JVMCI_ONLY("_or_unreached0"),
2113   "range_check",
2114   "class_check",
2115   "array_check",
2116   "intrinsic" JVMCI_ONLY("_or_type_checked_inlining"),
2117   "bimorphic" JVMCI_ONLY("_or_optimized_type_check"),
2118   "unloaded",
2119   "uninitialized",
2120   "unreached",
2121   "unhandled",
2122   "constraint",
2123   "div0_check",
2124   "age",
2125   "predicate",
2126   "loop_limit_check",
2127   "speculate_class_check",
2128   "speculate_null_check",
2129   "rtm_state_change",
2130   "unstable_if",
2131   "unstable_fused_if",
2132 #if INCLUDE_JVMCI
2133   "aliasing",
2134   "transfer_to_interpreter",
2135   "not_compiled_exception_handler",
2136   "unresolved",
2137   "jsr_mismatch",
2138 #endif
2139   "tenured"
2140 };
2141 const char* Deoptimization::_trap_action_name[] = {
2142   // Note:  Keep this in sync. with enum DeoptAction.
2143   "none",
2144   "maybe_recompile",
2145   "reinterpret",
2146   "make_not_entrant",
2147   "make_not_compilable"
2148 };
2149 
2150 const char* Deoptimization::trap_reason_name(int reason) {
2151   // Check that every reason has a name
2152   STATIC_ASSERT(sizeof(_trap_reason_name)/sizeof(const char*) == Reason_LIMIT);
2153 
2154   if (reason == Reason_many)  return "many";
2155   if ((uint)reason < Reason_LIMIT)
2156     return _trap_reason_name[reason];
2157   static char buf[20];
2158   sprintf(buf, "reason%d", reason);
2159   return buf;
2160 }
2161 const char* Deoptimization::trap_action_name(int action) {
2162   // Check that every action has a name
2163   STATIC_ASSERT(sizeof(_trap_action_name)/sizeof(const char*) == Action_LIMIT);
2164 
2165   if ((uint)action < Action_LIMIT)
2166     return _trap_action_name[action];
2167   static char buf[20];
2168   sprintf(buf, "action%d", action);
2169   return buf;
2170 }
2171 
2172 // This is used for debugging and diagnostics, including LogFile output.
2173 const char* Deoptimization::format_trap_request(char* buf, size_t buflen,
2174                                                 int trap_request) {
2175   jint unloaded_class_index = trap_request_index(trap_request);
2176   const char* reason = trap_reason_name(trap_request_reason(trap_request));
2177   const char* action = trap_action_name(trap_request_action(trap_request));
2178 #if INCLUDE_JVMCI
2179   int debug_id = trap_request_debug_id(trap_request);
2180 #endif
2181   size_t len;
2182   if (unloaded_class_index < 0) {
2183     len = jio_snprintf(buf, buflen, "reason='%s' action='%s'" JVMCI_ONLY(" debug_id='%d'"),
2184                        reason, action
2185 #if INCLUDE_JVMCI
2186                        ,debug_id
2187 #endif
2188                        );
2189   } else {
2190     len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'" JVMCI_ONLY(" debug_id='%d'"),
2191                        reason, action, unloaded_class_index
2192 #if INCLUDE_JVMCI
2193                        ,debug_id
2194 #endif
2195                        );
2196   }
2197   return buf;
2198 }
2199 
2200 juint Deoptimization::_deoptimization_hist
2201         [Deoptimization::Reason_LIMIT]
2202     [1 + Deoptimization::Action_LIMIT]
2203         [Deoptimization::BC_CASE_LIMIT]
2204   = {0};
2205 
2206 enum {
2207   LSB_BITS = 8,
2208   LSB_MASK = right_n_bits(LSB_BITS)
2209 };
2210 
2211 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
2212                                        Bytecodes::Code bc) {
2213   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
2214   assert(action >= 0 && action < Action_LIMIT, "oob");
2215   _deoptimization_hist[Reason_none][0][0] += 1;  // total
2216   _deoptimization_hist[reason][0][0]      += 1;  // per-reason total
2217   juint* cases = _deoptimization_hist[reason][1+action];
2218   juint* bc_counter_addr = NULL;
2219   juint  bc_counter      = 0;
2220   // Look for an unused counter, or an exact match to this BC.
2221   if (bc != Bytecodes::_illegal) {
2222     for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
2223       juint* counter_addr = &cases[bc_case];
2224       juint  counter = *counter_addr;
2225       if ((counter == 0 && bc_counter_addr == NULL)
2226           || (Bytecodes::Code)(counter & LSB_MASK) == bc) {
2227         // this counter is either free or is already devoted to this BC
2228         bc_counter_addr = counter_addr;
2229         bc_counter = counter | bc;
2230       }
2231     }
2232   }
2233   if (bc_counter_addr == NULL) {
2234     // Overflow, or no given bytecode.
2235     bc_counter_addr = &cases[BC_CASE_LIMIT-1];
2236     bc_counter = (*bc_counter_addr & ~LSB_MASK);  // clear LSB
2237   }
2238   *bc_counter_addr = bc_counter + (1 << LSB_BITS);
2239 }
2240 
2241 jint Deoptimization::total_deoptimization_count() {
2242   return _deoptimization_hist[Reason_none][0][0];
2243 }
2244 
2245 jint Deoptimization::deoptimization_count(DeoptReason reason) {
2246   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
2247   return _deoptimization_hist[reason][0][0];
2248 }
2249 
2250 void Deoptimization::print_statistics() {
2251   juint total = total_deoptimization_count();
2252   juint account = total;
2253   if (total != 0) {
2254     ttyLocker ttyl;
2255     if (xtty != NULL)  xtty->head("statistics type='deoptimization'");
2256     tty->print_cr("Deoptimization traps recorded:");
2257     #define PRINT_STAT_LINE(name, r) \
2258       tty->print_cr("  %4d (%4.1f%%) %s", (int)(r), ((r) * 100.0) / total, name);
2259     PRINT_STAT_LINE("total", total);
2260     // For each non-zero entry in the histogram, print the reason,
2261     // the action, and (if specifically known) the type of bytecode.
2262     for (int reason = 0; reason < Reason_LIMIT; reason++) {
2263       for (int action = 0; action < Action_LIMIT; action++) {
2264         juint* cases = _deoptimization_hist[reason][1+action];
2265         for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
2266           juint counter = cases[bc_case];
2267           if (counter != 0) {
2268             char name[1*K];
2269             Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK);
2270             if (bc_case == BC_CASE_LIMIT && (int)bc == 0)
2271               bc = Bytecodes::_illegal;
2272             sprintf(name, "%s/%s/%s",
2273                     trap_reason_name(reason),
2274                     trap_action_name(action),
2275                     Bytecodes::is_defined(bc)? Bytecodes::name(bc): "other");
2276             juint r = counter >> LSB_BITS;
2277             tty->print_cr("  %40s: " UINT32_FORMAT " (%.1f%%)", name, r, (r * 100.0) / total);
2278             account -= r;
2279           }
2280         }
2281       }
2282     }
2283     if (account != 0) {
2284       PRINT_STAT_LINE("unaccounted", account);
2285     }
2286     #undef PRINT_STAT_LINE
2287     if (xtty != NULL)  xtty->tail("statistics");
2288   }
2289 }
2290 #else // COMPILER2 || SHARK || INCLUDE_JVMCI
2291 
2292 
2293 // Stubs for C1 only system.
2294 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
2295   return false;
2296 }
2297 
2298 const char* Deoptimization::trap_reason_name(int reason) {
2299   return "unknown";
2300 }
2301 
2302 void Deoptimization::print_statistics() {
2303   // no output
2304 }
2305 
2306 void
2307 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
2308   // no udpate
2309 }
2310 
2311 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
2312   return 0;
2313 }
2314 
2315 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
2316                                        Bytecodes::Code bc) {
2317   // no update
2318 }
2319 
2320 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
2321                                               int trap_state) {
2322   jio_snprintf(buf, buflen, "#%d", trap_state);
2323   return buf;
2324 }
2325 
2326 #endif // COMPILER2 || SHARK || INCLUDE_JVMCI