1 /*
2 * Copyright (c) 2000, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #ifndef SHARE_VM_OOPS_METHODDATAOOP_HPP
26 #define SHARE_VM_OOPS_METHODDATAOOP_HPP
27
28 #include "interpreter/bytecodes.hpp"
29 #include "memory/universe.hpp"
30 #include "oops/method.hpp"
31 #include "oops/oop.hpp"
32 #include "runtime/orderAccess.hpp"
33
34 class BytecodeStream;
35 class KlassSizeStats;
36
37 // The MethodData object collects counts and other profile information
38 // during zeroth-tier (interpretive) and first-tier execution.
39 // The profile is used later by compilation heuristics. Some heuristics
40 // enable use of aggressive (or "heroic") optimizations. An aggressive
41 // optimization often has a down-side, a corner case that it handles
42 // poorly, but which is thought to be rare. The profile provides
43 // evidence of this rarity for a given method or even BCI. It allows
44 // the compiler to back out of the optimization at places where it
45 // has historically been a poor choice. Other heuristics try to use
46 // specific information gathered about types observed at a given site.
47 //
48 // All data in the profile is approximate. It is expected to be accurate
49 // on the whole, but the system expects occasional inaccuraces, due to
50 // counter overflow, multiprocessor races during data collection, space
51 // limitations, missing MDO blocks, etc. Bad or missing data will degrade
52 // optimization quality but will not affect correctness. Also, each MDO
53 // is marked with its birth-date ("creation_mileage") which can be used
54 // to assess the quality ("maturity") of its data.
55 //
56 // Short (<32-bit) counters are designed to overflow to a known "saturated"
57 // state. Also, certain recorded per-BCI events are given one-bit counters
58 // which overflow to a saturated state which applied to all counters at
59 // that BCI. In other words, there is a small lattice which approximates
60 // the ideal of an infinite-precision counter for each event at each BCI,
61 // and the lattice quickly "bottoms out" in a state where all counters
62 // are taken to be indefinitely large.
63 //
64 // The reader will find many data races in profile gathering code, starting
65 // with invocation counter incrementation. None of these races harm correct
66 // execution of the compiled code.
67
68 // forward decl
69 class ProfileData;
70
71 // DataLayout
72 //
73 // Overlay for generic profiling data.
74 class DataLayout VALUE_OBJ_CLASS_SPEC {
75 friend class VMStructs;
76 friend class JVMCIVMStructs;
77
78 private:
79 // Every data layout begins with a header. This header
80 // contains a tag, which is used to indicate the size/layout
81 // of the data, 4 bits of flags, which can be used in any way,
82 // 4 bits of trap history (none/one reason/many reasons),
83 // and a bci, which is used to tie this piece of data to a
84 // specific bci in the bytecodes.
85 union {
86 intptr_t _bits;
87 struct {
88 u1 _tag;
89 u1 _flags;
90 u2 _bci;
91 } _struct;
92 } _header;
93
94 // The data layout has an arbitrary number of cells, each sized
95 // to accomodate a pointer or an integer.
96 intptr_t _cells[1];
97
98 // Some types of data layouts need a length field.
99 static bool needs_array_len(u1 tag);
100
101 public:
102 enum {
103 counter_increment = 1
104 };
105
106 enum {
107 cell_size = sizeof(intptr_t)
108 };
109
110 // Tag values
111 enum {
112 no_tag,
113 bit_data_tag,
114 counter_data_tag,
115 jump_data_tag,
116 receiver_type_data_tag,
117 virtual_call_data_tag,
118 ret_data_tag,
119 branch_data_tag,
120 multi_branch_data_tag,
121 arg_info_data_tag,
122 call_type_data_tag,
123 virtual_call_type_data_tag,
124 parameters_type_data_tag,
125 speculative_trap_data_tag
126 };
127
128 enum {
129 // The _struct._flags word is formatted as [trap_state:4 | flags:4].
130 // The trap state breaks down further as [recompile:1 | reason:3].
131 // This further breakdown is defined in deoptimization.cpp.
132 // See Deoptimization::trap_state_reason for an assert that
133 // trap_bits is big enough to hold reasons < Reason_RECORDED_LIMIT.
134 //
135 // The trap_state is collected only if ProfileTraps is true.
136 trap_bits = 1+3, // 3: enough to distinguish [0..Reason_RECORDED_LIMIT].
137 trap_shift = BitsPerByte - trap_bits,
138 trap_mask = right_n_bits(trap_bits),
139 trap_mask_in_place = (trap_mask << trap_shift),
140 flag_limit = trap_shift,
141 flag_mask = right_n_bits(flag_limit),
142 first_flag = 0
143 };
144
145 // Size computation
146 static int header_size_in_bytes() {
147 return cell_size;
148 }
149 static int header_size_in_cells() {
150 return 1;
151 }
152
153 static int compute_size_in_bytes(int cell_count) {
154 return header_size_in_bytes() + cell_count * cell_size;
155 }
156
157 // Initialization
158 void initialize(u1 tag, u2 bci, int cell_count);
159
160 // Accessors
161 u1 tag() {
162 return _header._struct._tag;
163 }
164
165 // Return a few bits of trap state. Range is [0..trap_mask].
166 // The state tells if traps with zero, one, or many reasons have occurred.
167 // It also tells whether zero or many recompilations have occurred.
168 // The associated trap histogram in the MDO itself tells whether
169 // traps are common or not. If a BCI shows that a trap X has
170 // occurred, and the MDO shows N occurrences of X, we make the
171 // simplifying assumption that all N occurrences can be blamed
172 // on that BCI.
173 int trap_state() const {
174 return ((_header._struct._flags >> trap_shift) & trap_mask);
175 }
176
177 void set_trap_state(int new_state) {
178 assert(ProfileTraps, "used only under +ProfileTraps");
179 uint old_flags = (_header._struct._flags & flag_mask);
180 _header._struct._flags = (new_state << trap_shift) | old_flags;
181 }
182
183 u1 flags() const {
184 return _header._struct._flags;
185 }
186
187 u2 bci() const {
188 return _header._struct._bci;
189 }
190
191 void set_header(intptr_t value) {
192 _header._bits = value;
193 }
194 intptr_t header() {
195 return _header._bits;
196 }
197 void set_cell_at(int index, intptr_t value) {
198 _cells[index] = value;
199 }
200 void release_set_cell_at(int index, intptr_t value) {
201 OrderAccess::release_store_ptr(&_cells[index], value);
202 }
203 intptr_t cell_at(int index) const {
204 return _cells[index];
205 }
206
207 void set_flag_at(int flag_number) {
208 assert(flag_number < flag_limit, "oob");
209 _header._struct._flags |= (0x1 << flag_number);
210 }
211 bool flag_at(int flag_number) const {
212 assert(flag_number < flag_limit, "oob");
213 return (_header._struct._flags & (0x1 << flag_number)) != 0;
214 }
215
216 // Low-level support for code generation.
217 static ByteSize header_offset() {
218 return byte_offset_of(DataLayout, _header);
219 }
220 static ByteSize tag_offset() {
221 return byte_offset_of(DataLayout, _header._struct._tag);
222 }
223 static ByteSize flags_offset() {
224 return byte_offset_of(DataLayout, _header._struct._flags);
225 }
226 static ByteSize bci_offset() {
227 return byte_offset_of(DataLayout, _header._struct._bci);
228 }
229 static ByteSize cell_offset(int index) {
230 return byte_offset_of(DataLayout, _cells) + in_ByteSize(index * cell_size);
231 }
232 #ifdef CC_INTERP
233 static int cell_offset_in_bytes(int index) {
234 return (int)offset_of(DataLayout, _cells[index]);
235 }
236 #endif // CC_INTERP
237 // Return a value which, when or-ed as a byte into _flags, sets the flag.
238 static int flag_number_to_byte_constant(int flag_number) {
239 assert(0 <= flag_number && flag_number < flag_limit, "oob");
240 DataLayout temp; temp.set_header(0);
241 temp.set_flag_at(flag_number);
242 return temp._header._struct._flags;
243 }
244 // Return a value which, when or-ed as a word into _header, sets the flag.
245 static intptr_t flag_mask_to_header_mask(int byte_constant) {
246 DataLayout temp; temp.set_header(0);
247 temp._header._struct._flags = byte_constant;
248 return temp._header._bits;
249 }
250
251 ProfileData* data_in();
252
253 // GC support
254 void clean_weak_klass_links(BoolObjectClosure* cl);
255
256 // Redefinition support
257 void clean_weak_method_links();
258 DEBUG_ONLY(void verify_clean_weak_method_links();)
259 };
260
261
262 // ProfileData class hierarchy
263 class ProfileData;
264 class BitData;
265 class CounterData;
266 class ReceiverTypeData;
267 class VirtualCallData;
268 class VirtualCallTypeData;
269 class RetData;
270 class CallTypeData;
271 class JumpData;
272 class BranchData;
273 class ArrayData;
274 class MultiBranchData;
275 class ArgInfoData;
276 class ParametersTypeData;
277 class SpeculativeTrapData;
278
279 // ProfileData
280 //
281 // A ProfileData object is created to refer to a section of profiling
282 // data in a structured way.
283 class ProfileData : public ResourceObj {
284 friend class TypeEntries;
285 friend class ReturnTypeEntry;
286 friend class TypeStackSlotEntries;
287 private:
288 enum {
289 tab_width_one = 16,
290 tab_width_two = 36
291 };
292
293 // This is a pointer to a section of profiling data.
294 DataLayout* _data;
295
296 char* print_data_on_helper(const MethodData* md) const;
297
298 protected:
299 DataLayout* data() { return _data; }
300 const DataLayout* data() const { return _data; }
301
302 enum {
303 cell_size = DataLayout::cell_size
304 };
305
306 public:
307 // How many cells are in this?
308 virtual int cell_count() const {
309 ShouldNotReachHere();
310 return -1;
311 }
312
313 // Return the size of this data.
314 int size_in_bytes() {
315 return DataLayout::compute_size_in_bytes(cell_count());
316 }
317
318 protected:
319 // Low-level accessors for underlying data
320 void set_intptr_at(int index, intptr_t value) {
321 assert(0 <= index && index < cell_count(), "oob");
322 data()->set_cell_at(index, value);
323 }
324 void release_set_intptr_at(int index, intptr_t value) {
325 assert(0 <= index && index < cell_count(), "oob");
326 data()->release_set_cell_at(index, value);
327 }
328 intptr_t intptr_at(int index) const {
329 assert(0 <= index && index < cell_count(), "oob");
330 return data()->cell_at(index);
331 }
332 void set_uint_at(int index, uint value) {
333 set_intptr_at(index, (intptr_t) value);
334 }
335 void release_set_uint_at(int index, uint value) {
336 release_set_intptr_at(index, (intptr_t) value);
337 }
338 uint uint_at(int index) const {
339 return (uint)intptr_at(index);
340 }
341 void set_int_at(int index, int value) {
342 set_intptr_at(index, (intptr_t) value);
343 }
344 void release_set_int_at(int index, int value) {
345 release_set_intptr_at(index, (intptr_t) value);
346 }
347 int int_at(int index) const {
348 return (int)intptr_at(index);
349 }
350 int int_at_unchecked(int index) const {
351 return (int)data()->cell_at(index);
352 }
353 void set_oop_at(int index, oop value) {
354 set_intptr_at(index, cast_from_oop<intptr_t>(value));
355 }
356 oop oop_at(int index) const {
357 return cast_to_oop(intptr_at(index));
358 }
359
360 void set_flag_at(int flag_number) {
361 data()->set_flag_at(flag_number);
362 }
363 bool flag_at(int flag_number) const {
364 return data()->flag_at(flag_number);
365 }
366
367 // two convenient imports for use by subclasses:
368 static ByteSize cell_offset(int index) {
369 return DataLayout::cell_offset(index);
370 }
371 static int flag_number_to_byte_constant(int flag_number) {
372 return DataLayout::flag_number_to_byte_constant(flag_number);
373 }
374
375 ProfileData(DataLayout* data) {
376 _data = data;
377 }
378
379 #ifdef CC_INTERP
380 // Static low level accessors for DataLayout with ProfileData's semantics.
381
382 static int cell_offset_in_bytes(int index) {
383 return DataLayout::cell_offset_in_bytes(index);
384 }
385
386 static void increment_uint_at_no_overflow(DataLayout* layout, int index,
387 int inc = DataLayout::counter_increment) {
388 uint count = ((uint)layout->cell_at(index)) + inc;
389 if (count == 0) return;
390 layout->set_cell_at(index, (intptr_t) count);
391 }
392
393 static int int_at(DataLayout* layout, int index) {
394 return (int)layout->cell_at(index);
395 }
396
397 static int uint_at(DataLayout* layout, int index) {
398 return (uint)layout->cell_at(index);
399 }
400
401 static oop oop_at(DataLayout* layout, int index) {
402 return cast_to_oop(layout->cell_at(index));
403 }
404
405 static void set_intptr_at(DataLayout* layout, int index, intptr_t value) {
406 layout->set_cell_at(index, (intptr_t) value);
407 }
408
409 static void set_flag_at(DataLayout* layout, int flag_number) {
410 layout->set_flag_at(flag_number);
411 }
412 #endif // CC_INTERP
413
414 public:
415 // Constructor for invalid ProfileData.
416 ProfileData();
417
418 u2 bci() const {
419 return data()->bci();
420 }
421
422 address dp() {
423 return (address)_data;
424 }
425
426 int trap_state() const {
427 return data()->trap_state();
428 }
429 void set_trap_state(int new_state) {
430 data()->set_trap_state(new_state);
431 }
432
433 // Type checking
434 virtual bool is_BitData() const { return false; }
435 virtual bool is_CounterData() const { return false; }
436 virtual bool is_JumpData() const { return false; }
437 virtual bool is_ReceiverTypeData()const { return false; }
438 virtual bool is_VirtualCallData() const { return false; }
439 virtual bool is_RetData() const { return false; }
440 virtual bool is_BranchData() const { return false; }
441 virtual bool is_ArrayData() const { return false; }
442 virtual bool is_MultiBranchData() const { return false; }
443 virtual bool is_ArgInfoData() const { return false; }
444 virtual bool is_CallTypeData() const { return false; }
445 virtual bool is_VirtualCallTypeData()const { return false; }
446 virtual bool is_ParametersTypeData() const { return false; }
447 virtual bool is_SpeculativeTrapData()const { return false; }
448
449
450 BitData* as_BitData() const {
451 assert(is_BitData(), "wrong type");
452 return is_BitData() ? (BitData*) this : NULL;
453 }
454 CounterData* as_CounterData() const {
455 assert(is_CounterData(), "wrong type");
456 return is_CounterData() ? (CounterData*) this : NULL;
457 }
458 JumpData* as_JumpData() const {
459 assert(is_JumpData(), "wrong type");
460 return is_JumpData() ? (JumpData*) this : NULL;
461 }
462 ReceiverTypeData* as_ReceiverTypeData() const {
463 assert(is_ReceiverTypeData(), "wrong type");
464 return is_ReceiverTypeData() ? (ReceiverTypeData*)this : NULL;
465 }
466 VirtualCallData* as_VirtualCallData() const {
467 assert(is_VirtualCallData(), "wrong type");
468 return is_VirtualCallData() ? (VirtualCallData*)this : NULL;
469 }
470 RetData* as_RetData() const {
471 assert(is_RetData(), "wrong type");
472 return is_RetData() ? (RetData*) this : NULL;
473 }
474 BranchData* as_BranchData() const {
475 assert(is_BranchData(), "wrong type");
476 return is_BranchData() ? (BranchData*) this : NULL;
477 }
478 ArrayData* as_ArrayData() const {
479 assert(is_ArrayData(), "wrong type");
480 return is_ArrayData() ? (ArrayData*) this : NULL;
481 }
482 MultiBranchData* as_MultiBranchData() const {
483 assert(is_MultiBranchData(), "wrong type");
484 return is_MultiBranchData() ? (MultiBranchData*)this : NULL;
485 }
486 ArgInfoData* as_ArgInfoData() const {
487 assert(is_ArgInfoData(), "wrong type");
488 return is_ArgInfoData() ? (ArgInfoData*)this : NULL;
489 }
490 CallTypeData* as_CallTypeData() const {
491 assert(is_CallTypeData(), "wrong type");
492 return is_CallTypeData() ? (CallTypeData*)this : NULL;
493 }
494 VirtualCallTypeData* as_VirtualCallTypeData() const {
495 assert(is_VirtualCallTypeData(), "wrong type");
496 return is_VirtualCallTypeData() ? (VirtualCallTypeData*)this : NULL;
497 }
498 ParametersTypeData* as_ParametersTypeData() const {
499 assert(is_ParametersTypeData(), "wrong type");
500 return is_ParametersTypeData() ? (ParametersTypeData*)this : NULL;
501 }
502 SpeculativeTrapData* as_SpeculativeTrapData() const {
503 assert(is_SpeculativeTrapData(), "wrong type");
504 return is_SpeculativeTrapData() ? (SpeculativeTrapData*)this : NULL;
505 }
506
507
508 // Subclass specific initialization
509 virtual void post_initialize(BytecodeStream* stream, MethodData* mdo) {}
510
511 // GC support
512 virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {}
513
514 // Redefinition support
515 virtual void clean_weak_method_links() {}
516 DEBUG_ONLY(virtual void verify_clean_weak_method_links() {})
517
518 // CI translation: ProfileData can represent both MethodDataOop data
519 // as well as CIMethodData data. This function is provided for translating
520 // an oop in a ProfileData to the ci equivalent. Generally speaking,
521 // most ProfileData don't require any translation, so we provide the null
522 // translation here, and the required translators are in the ci subclasses.
523 virtual void translate_from(const ProfileData* data) {}
524
525 virtual void print_data_on(outputStream* st, const char* extra = NULL) const {
526 ShouldNotReachHere();
527 }
528
529 void print_data_on(outputStream* st, const MethodData* md) const;
530
531 void print_shared(outputStream* st, const char* name, const char* extra) const;
532 void tab(outputStream* st, bool first = false) const;
533 };
534
535 // BitData
536 //
537 // A BitData holds a flag or two in its header.
538 class BitData : public ProfileData {
539 friend class VMStructs;
540 friend class JVMCIVMStructs;
541 protected:
542 enum {
543 // null_seen:
544 // saw a null operand (cast/aastore/instanceof)
545 null_seen_flag = DataLayout::first_flag + 0
546 #if INCLUDE_JVMCI
547 // bytecode threw any exception
548 , exception_seen_flag = null_seen_flag + 1
549 #endif
550 };
551 enum { bit_cell_count = 0 }; // no additional data fields needed.
552 public:
553 BitData(DataLayout* layout) : ProfileData(layout) {
554 }
555
556 virtual bool is_BitData() const { return true; }
557
558 static int static_cell_count() {
559 return bit_cell_count;
560 }
561
562 virtual int cell_count() const {
563 return static_cell_count();
564 }
565
566 // Accessor
567
568 // The null_seen flag bit is specially known to the interpreter.
569 // Consulting it allows the compiler to avoid setting up null_check traps.
570 bool null_seen() { return flag_at(null_seen_flag); }
571 void set_null_seen() { set_flag_at(null_seen_flag); }
572
573 #if INCLUDE_JVMCI
574 // true if an exception was thrown at the specific BCI
575 bool exception_seen() { return flag_at(exception_seen_flag); }
576 void set_exception_seen() { set_flag_at(exception_seen_flag); }
577 #endif
578
579 // Code generation support
580 static int null_seen_byte_constant() {
581 return flag_number_to_byte_constant(null_seen_flag);
582 }
583
584 static ByteSize bit_data_size() {
585 return cell_offset(bit_cell_count);
586 }
587
588 #ifdef CC_INTERP
589 static int bit_data_size_in_bytes() {
590 return cell_offset_in_bytes(bit_cell_count);
591 }
592
593 static void set_null_seen(DataLayout* layout) {
594 set_flag_at(layout, null_seen_flag);
595 }
596
597 static DataLayout* advance(DataLayout* layout) {
598 return (DataLayout*) (((address)layout) + (ssize_t)BitData::bit_data_size_in_bytes());
599 }
600 #endif // CC_INTERP
601
602 void print_data_on(outputStream* st, const char* extra = NULL) const;
603 };
604
605 // CounterData
606 //
607 // A CounterData corresponds to a simple counter.
608 class CounterData : public BitData {
609 friend class VMStructs;
610 friend class JVMCIVMStructs;
611 protected:
612 enum {
613 count_off,
614 counter_cell_count
615 };
616 public:
617 CounterData(DataLayout* layout) : BitData(layout) {}
618
619 virtual bool is_CounterData() const { return true; }
620
621 static int static_cell_count() {
622 return counter_cell_count;
623 }
624
625 virtual int cell_count() const {
626 return static_cell_count();
627 }
628
629 // Direct accessor
630 uint count() const {
631 return uint_at(count_off);
632 }
633
634 // Code generation support
635 static ByteSize count_offset() {
636 return cell_offset(count_off);
637 }
638 static ByteSize counter_data_size() {
639 return cell_offset(counter_cell_count);
640 }
641
642 void set_count(uint count) {
643 set_uint_at(count_off, count);
644 }
645
646 #ifdef CC_INTERP
647 static int counter_data_size_in_bytes() {
648 return cell_offset_in_bytes(counter_cell_count);
649 }
650
651 static void increment_count_no_overflow(DataLayout* layout) {
652 increment_uint_at_no_overflow(layout, count_off);
653 }
654
655 // Support counter decrementation at checkcast / subtype check failed.
656 static void decrement_count(DataLayout* layout) {
657 increment_uint_at_no_overflow(layout, count_off, -1);
658 }
659
660 static DataLayout* advance(DataLayout* layout) {
661 return (DataLayout*) (((address)layout) + (ssize_t)CounterData::counter_data_size_in_bytes());
662 }
663 #endif // CC_INTERP
664
665 void print_data_on(outputStream* st, const char* extra = NULL) const;
666 };
667
668 // JumpData
669 //
670 // A JumpData is used to access profiling information for a direct
671 // branch. It is a counter, used for counting the number of branches,
672 // plus a data displacement, used for realigning the data pointer to
673 // the corresponding target bci.
674 class JumpData : public ProfileData {
675 friend class VMStructs;
676 friend class JVMCIVMStructs;
677 protected:
678 enum {
679 taken_off_set,
680 displacement_off_set,
681 jump_cell_count
682 };
683
684 void set_displacement(int displacement) {
685 set_int_at(displacement_off_set, displacement);
686 }
687
688 public:
689 JumpData(DataLayout* layout) : ProfileData(layout) {
690 assert(layout->tag() == DataLayout::jump_data_tag ||
691 layout->tag() == DataLayout::branch_data_tag, "wrong type");
692 }
693
694 virtual bool is_JumpData() const { return true; }
695
696 static int static_cell_count() {
697 return jump_cell_count;
698 }
699
700 virtual int cell_count() const {
701 return static_cell_count();
702 }
703
704 // Direct accessor
705 uint taken() const {
706 return uint_at(taken_off_set);
707 }
708
709 void set_taken(uint cnt) {
710 set_uint_at(taken_off_set, cnt);
711 }
712
713 // Saturating counter
714 uint inc_taken() {
715 uint cnt = taken() + 1;
716 // Did we wrap? Will compiler screw us??
717 if (cnt == 0) cnt--;
718 set_uint_at(taken_off_set, cnt);
719 return cnt;
720 }
721
722 int displacement() const {
723 return int_at(displacement_off_set);
724 }
725
726 // Code generation support
727 static ByteSize taken_offset() {
728 return cell_offset(taken_off_set);
729 }
730
731 static ByteSize displacement_offset() {
732 return cell_offset(displacement_off_set);
733 }
734
735 #ifdef CC_INTERP
736 static void increment_taken_count_no_overflow(DataLayout* layout) {
737 increment_uint_at_no_overflow(layout, taken_off_set);
738 }
739
740 static DataLayout* advance_taken(DataLayout* layout) {
741 return (DataLayout*) (((address)layout) + (ssize_t)int_at(layout, displacement_off_set));
742 }
743
744 static uint taken_count(DataLayout* layout) {
745 return (uint) uint_at(layout, taken_off_set);
746 }
747 #endif // CC_INTERP
748
749 // Specific initialization.
750 void post_initialize(BytecodeStream* stream, MethodData* mdo);
751
752 void print_data_on(outputStream* st, const char* extra = NULL) const;
753 };
754
755 // Entries in a ProfileData object to record types: it can either be
756 // none (no profile), unknown (conflicting profile data) or a klass if
757 // a single one is seen. Whether a null reference was seen is also
758 // recorded. No counter is associated with the type and a single type
759 // is tracked (unlike VirtualCallData).
760 class TypeEntries {
761
762 public:
763
764 // A single cell is used to record information for a type:
765 // - the cell is initialized to 0
766 // - when a type is discovered it is stored in the cell
767 // - bit zero of the cell is used to record whether a null reference
768 // was encountered or not
769 // - bit 1 is set to record a conflict in the type information
770
771 enum {
772 null_seen = 1,
773 type_mask = ~null_seen,
774 type_unknown = 2,
775 status_bits = null_seen | type_unknown,
776 type_klass_mask = ~status_bits
777 };
778
779 // what to initialize a cell to
780 static intptr_t type_none() {
781 return 0;
782 }
783
784 // null seen = bit 0 set?
785 static bool was_null_seen(intptr_t v) {
786 return (v & null_seen) != 0;
787 }
788
789 // conflicting type information = bit 1 set?
790 static bool is_type_unknown(intptr_t v) {
791 return (v & type_unknown) != 0;
792 }
793
794 // not type information yet = all bits cleared, ignoring bit 0?
795 static bool is_type_none(intptr_t v) {
796 return (v & type_mask) == 0;
797 }
798
799 // recorded type: cell without bit 0 and 1
800 static intptr_t klass_part(intptr_t v) {
801 intptr_t r = v & type_klass_mask;
802 return r;
803 }
804
805 // type recorded
806 static Klass* valid_klass(intptr_t k) {
807 if (!is_type_none(k) &&
808 !is_type_unknown(k)) {
809 Klass* res = (Klass*)klass_part(k);
810 assert(res != NULL, "invalid");
811 return res;
812 } else {
813 return NULL;
814 }
815 }
816
817 static intptr_t with_status(intptr_t k, intptr_t in) {
818 return k | (in & status_bits);
819 }
820
821 static intptr_t with_status(Klass* k, intptr_t in) {
822 return with_status((intptr_t)k, in);
823 }
824
825 static void print_klass(outputStream* st, intptr_t k);
826
827 // GC support
828 static bool is_loader_alive(BoolObjectClosure* is_alive_cl, intptr_t p);
829
830 protected:
831 // ProfileData object these entries are part of
832 ProfileData* _pd;
833 // offset within the ProfileData object where the entries start
834 const int _base_off;
835
836 TypeEntries(int base_off)
837 : _base_off(base_off), _pd(NULL) {}
838
839 void set_intptr_at(int index, intptr_t value) {
840 _pd->set_intptr_at(index, value);
841 }
842
843 intptr_t intptr_at(int index) const {
844 return _pd->intptr_at(index);
845 }
846
847 public:
848 void set_profile_data(ProfileData* pd) {
849 _pd = pd;
850 }
851 };
852
853 // Type entries used for arguments passed at a call and parameters on
854 // method entry. 2 cells per entry: one for the type encoded as in
855 // TypeEntries and one initialized with the stack slot where the
856 // profiled object is to be found so that the interpreter can locate
857 // it quickly.
858 class TypeStackSlotEntries : public TypeEntries {
859
860 private:
861 enum {
862 stack_slot_entry,
863 type_entry,
864 per_arg_cell_count
865 };
866
867 // offset of cell for stack slot for entry i within ProfileData object
868 int stack_slot_offset(int i) const {
869 return _base_off + stack_slot_local_offset(i);
870 }
871
872 const int _number_of_entries;
873
874 // offset of cell for type for entry i within ProfileData object
875 int type_offset_in_cells(int i) const {
876 return _base_off + type_local_offset(i);
877 }
878
879 public:
880
881 TypeStackSlotEntries(int base_off, int nb_entries)
882 : TypeEntries(base_off), _number_of_entries(nb_entries) {}
883
884 static int compute_cell_count(Symbol* signature, bool include_receiver, int max);
885
886 void post_initialize(Symbol* signature, bool has_receiver, bool include_receiver);
887
888 int number_of_entries() const { return _number_of_entries; }
889
890 // offset of cell for stack slot for entry i within this block of cells for a TypeStackSlotEntries
891 static int stack_slot_local_offset(int i) {
892 return i * per_arg_cell_count + stack_slot_entry;
893 }
894
895 // offset of cell for type for entry i within this block of cells for a TypeStackSlotEntries
896 static int type_local_offset(int i) {
897 return i * per_arg_cell_count + type_entry;
898 }
899
900 // stack slot for entry i
901 uint stack_slot(int i) const {
902 assert(i >= 0 && i < _number_of_entries, "oob");
903 return _pd->uint_at(stack_slot_offset(i));
904 }
905
906 // set stack slot for entry i
907 void set_stack_slot(int i, uint num) {
908 assert(i >= 0 && i < _number_of_entries, "oob");
909 _pd->set_uint_at(stack_slot_offset(i), num);
910 }
911
912 // type for entry i
913 intptr_t type(int i) const {
914 assert(i >= 0 && i < _number_of_entries, "oob");
915 return _pd->intptr_at(type_offset_in_cells(i));
916 }
917
918 // set type for entry i
919 void set_type(int i, intptr_t k) {
920 assert(i >= 0 && i < _number_of_entries, "oob");
921 _pd->set_intptr_at(type_offset_in_cells(i), k);
922 }
923
924 static ByteSize per_arg_size() {
925 return in_ByteSize(per_arg_cell_count * DataLayout::cell_size);
926 }
927
928 static int per_arg_count() {
929 return per_arg_cell_count;
930 }
931
932 ByteSize type_offset(int i) const {
933 return DataLayout::cell_offset(type_offset_in_cells(i));
934 }
935
936 // GC support
937 void clean_weak_klass_links(BoolObjectClosure* is_alive_closure);
938
939 void print_data_on(outputStream* st) const;
940 };
941
942 // Type entry used for return from a call. A single cell to record the
943 // type.
944 class ReturnTypeEntry : public TypeEntries {
945
946 private:
947 enum {
948 cell_count = 1
949 };
950
951 public:
952 ReturnTypeEntry(int base_off)
953 : TypeEntries(base_off) {}
954
955 void post_initialize() {
956 set_type(type_none());
957 }
958
959 intptr_t type() const {
960 return _pd->intptr_at(_base_off);
961 }
962
963 void set_type(intptr_t k) {
964 _pd->set_intptr_at(_base_off, k);
965 }
966
967 static int static_cell_count() {
968 return cell_count;
969 }
970
971 static ByteSize size() {
972 return in_ByteSize(cell_count * DataLayout::cell_size);
973 }
974
975 ByteSize type_offset() {
976 return DataLayout::cell_offset(_base_off);
977 }
978
979 // GC support
980 void clean_weak_klass_links(BoolObjectClosure* is_alive_closure);
981
982 void print_data_on(outputStream* st) const;
983 };
984
985 // Entries to collect type information at a call: contains arguments
986 // (TypeStackSlotEntries), a return type (ReturnTypeEntry) and a
987 // number of cells. Because the number of cells for the return type is
988 // smaller than the number of cells for the type of an arguments, the
989 // number of cells is used to tell how many arguments are profiled and
990 // whether a return value is profiled. See has_arguments() and
991 // has_return().
992 class TypeEntriesAtCall {
993 private:
994 static int stack_slot_local_offset(int i) {
995 return header_cell_count() + TypeStackSlotEntries::stack_slot_local_offset(i);
996 }
997
998 static int argument_type_local_offset(int i) {
999 return header_cell_count() + TypeStackSlotEntries::type_local_offset(i);
1000 }
1001
1002 public:
1003
1004 static int header_cell_count() {
1005 return 1;
1006 }
1007
1008 static int cell_count_local_offset() {
1009 return 0;
1010 }
1011
1012 static int compute_cell_count(BytecodeStream* stream);
1013
1014 static void initialize(DataLayout* dl, int base, int cell_count) {
1015 int off = base + cell_count_local_offset();
1016 dl->set_cell_at(off, cell_count - base - header_cell_count());
1017 }
1018
1019 static bool arguments_profiling_enabled();
1020 static bool return_profiling_enabled();
1021
1022 // Code generation support
1023 static ByteSize cell_count_offset() {
1024 return in_ByteSize(cell_count_local_offset() * DataLayout::cell_size);
1025 }
1026
1027 static ByteSize args_data_offset() {
1028 return in_ByteSize(header_cell_count() * DataLayout::cell_size);
1029 }
1030
1031 static ByteSize stack_slot_offset(int i) {
1032 return in_ByteSize(stack_slot_local_offset(i) * DataLayout::cell_size);
1033 }
1034
1035 static ByteSize argument_type_offset(int i) {
1036 return in_ByteSize(argument_type_local_offset(i) * DataLayout::cell_size);
1037 }
1038
1039 static ByteSize return_only_size() {
1040 return ReturnTypeEntry::size() + in_ByteSize(header_cell_count() * DataLayout::cell_size);
1041 }
1042
1043 };
1044
1045 // CallTypeData
1046 //
1047 // A CallTypeData is used to access profiling information about a non
1048 // virtual call for which we collect type information about arguments
1049 // and return value.
1050 class CallTypeData : public CounterData {
1051 private:
1052 // entries for arguments if any
1053 TypeStackSlotEntries _args;
1054 // entry for return type if any
1055 ReturnTypeEntry _ret;
1056
1057 int cell_count_global_offset() const {
1058 return CounterData::static_cell_count() + TypeEntriesAtCall::cell_count_local_offset();
1059 }
1060
1061 // number of cells not counting the header
1062 int cell_count_no_header() const {
1063 return uint_at(cell_count_global_offset());
1064 }
1065
1066 void check_number_of_arguments(int total) {
1067 assert(number_of_arguments() == total, "should be set in DataLayout::initialize");
1068 }
1069
1070 public:
1071 CallTypeData(DataLayout* layout) :
1072 CounterData(layout),
1073 _args(CounterData::static_cell_count()+TypeEntriesAtCall::header_cell_count(), number_of_arguments()),
1074 _ret(cell_count() - ReturnTypeEntry::static_cell_count())
1075 {
1076 assert(layout->tag() == DataLayout::call_type_data_tag, "wrong type");
1077 // Some compilers (VC++) don't want this passed in member initialization list
1078 _args.set_profile_data(this);
1079 _ret.set_profile_data(this);
1080 }
1081
1082 const TypeStackSlotEntries* args() const {
1083 assert(has_arguments(), "no profiling of arguments");
1084 return &_args;
1085 }
1086
1087 const ReturnTypeEntry* ret() const {
1088 assert(has_return(), "no profiling of return value");
1089 return &_ret;
1090 }
1091
1092 virtual bool is_CallTypeData() const { return true; }
1093
1094 static int static_cell_count() {
1095 return -1;
1096 }
1097
1098 static int compute_cell_count(BytecodeStream* stream) {
1099 return CounterData::static_cell_count() + TypeEntriesAtCall::compute_cell_count(stream);
1100 }
1101
1102 static void initialize(DataLayout* dl, int cell_count) {
1103 TypeEntriesAtCall::initialize(dl, CounterData::static_cell_count(), cell_count);
1104 }
1105
1106 virtual void post_initialize(BytecodeStream* stream, MethodData* mdo);
1107
1108 virtual int cell_count() const {
1109 return CounterData::static_cell_count() +
1110 TypeEntriesAtCall::header_cell_count() +
1111 int_at_unchecked(cell_count_global_offset());
1112 }
1113
1114 int number_of_arguments() const {
1115 return cell_count_no_header() / TypeStackSlotEntries::per_arg_count();
1116 }
1117
1118 void set_argument_type(int i, Klass* k) {
1119 assert(has_arguments(), "no arguments!");
1120 intptr_t current = _args.type(i);
1121 _args.set_type(i, TypeEntries::with_status(k, current));
1122 }
1123
1124 void set_return_type(Klass* k) {
1125 assert(has_return(), "no return!");
1126 intptr_t current = _ret.type();
1127 _ret.set_type(TypeEntries::with_status(k, current));
1128 }
1129
1130 // An entry for a return value takes less space than an entry for an
1131 // argument so if the number of cells exceeds the number of cells
1132 // needed for an argument, this object contains type information for
1133 // at least one argument.
1134 bool has_arguments() const {
1135 bool res = cell_count_no_header() >= TypeStackSlotEntries::per_arg_count();
1136 assert (!res || TypeEntriesAtCall::arguments_profiling_enabled(), "no profiling of arguments");
1137 return res;
1138 }
1139
1140 // An entry for a return value takes less space than an entry for an
1141 // argument, so if the remainder of the number of cells divided by
1142 // the number of cells for an argument is not null, a return value
1143 // is profiled in this object.
1144 bool has_return() const {
1145 bool res = (cell_count_no_header() % TypeStackSlotEntries::per_arg_count()) != 0;
1146 assert (!res || TypeEntriesAtCall::return_profiling_enabled(), "no profiling of return values");
1147 return res;
1148 }
1149
1150 // Code generation support
1151 static ByteSize args_data_offset() {
1152 return cell_offset(CounterData::static_cell_count()) + TypeEntriesAtCall::args_data_offset();
1153 }
1154
1155 ByteSize argument_type_offset(int i) {
1156 return _args.type_offset(i);
1157 }
1158
1159 ByteSize return_type_offset() {
1160 return _ret.type_offset();
1161 }
1162
1163 // GC support
1164 virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {
1165 if (has_arguments()) {
1166 _args.clean_weak_klass_links(is_alive_closure);
1167 }
1168 if (has_return()) {
1169 _ret.clean_weak_klass_links(is_alive_closure);
1170 }
1171 }
1172
1173 virtual void print_data_on(outputStream* st, const char* extra = NULL) const;
1174 };
1175
1176 // ReceiverTypeData
1177 //
1178 // A ReceiverTypeData is used to access profiling information about a
1179 // dynamic type check. It consists of a counter which counts the total times
1180 // that the check is reached, and a series of (Klass*, count) pairs
1181 // which are used to store a type profile for the receiver of the check.
1182 class ReceiverTypeData : public CounterData {
1183 friend class VMStructs;
1184 friend class JVMCIVMStructs;
1185 protected:
1186 enum {
1187 #if INCLUDE_JVMCI
1188 // Description of the different counters
1189 // ReceiverTypeData for instanceof/checkcast/aastore:
1190 // C1/C2: count is incremented on type overflow and decremented for failed type checks
1191 // JVMCI: count decremented for failed type checks and nonprofiled_count is incremented on type overflow
1192 // TODO (chaeubl): in fact, JVMCI should also increment the count for failed type checks to mimic the C1/C2 behavior
1193 // VirtualCallData for invokevirtual/invokeinterface:
1194 // C1/C2: count is incremented on type overflow
1195 // JVMCI: count is incremented on type overflow, nonprofiled_count is incremented on method overflow
1196
1197 // JVMCI is interested in knowing the percentage of type checks involving a type not explicitly in the profile
1198 nonprofiled_count_off_set = counter_cell_count,
1199 receiver0_offset,
1200 #else
1201 receiver0_offset = counter_cell_count,
1202 #endif
1203 count0_offset,
1204 receiver_type_row_cell_count = (count0_offset + 1) - receiver0_offset
1205 };
1206
1207 public:
1208 ReceiverTypeData(DataLayout* layout) : CounterData(layout) {
1209 assert(layout->tag() == DataLayout::receiver_type_data_tag ||
1210 layout->tag() == DataLayout::virtual_call_data_tag ||
1211 layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type");
1212 }
1213
1214 virtual bool is_ReceiverTypeData() const { return true; }
1215
1216 static int static_cell_count() {
1217 return counter_cell_count + (uint) TypeProfileWidth * receiver_type_row_cell_count JVMCI_ONLY(+ 1);
1218 }
1219
1220 virtual int cell_count() const {
1221 return static_cell_count();
1222 }
1223
1224 // Direct accessors
1225 static uint row_limit() {
1226 return TypeProfileWidth;
1227 }
1228 static int receiver_cell_index(uint row) {
1229 return receiver0_offset + row * receiver_type_row_cell_count;
1230 }
1231 static int receiver_count_cell_index(uint row) {
1232 return count0_offset + row * receiver_type_row_cell_count;
1233 }
1234
1235 Klass* receiver(uint row) const {
1236 assert(row < row_limit(), "oob");
1237
1238 Klass* recv = (Klass*)intptr_at(receiver_cell_index(row));
1239 assert(recv == NULL || recv->is_klass(), "wrong type");
1240 return recv;
1241 }
1242
1243 void set_receiver(uint row, Klass* k) {
1244 assert((uint)row < row_limit(), "oob");
1245 set_intptr_at(receiver_cell_index(row), (uintptr_t)k);
1246 }
1247
1248 uint receiver_count(uint row) const {
1249 assert(row < row_limit(), "oob");
1250 return uint_at(receiver_count_cell_index(row));
1251 }
1252
1253 void set_receiver_count(uint row, uint count) {
1254 assert(row < row_limit(), "oob");
1255 set_uint_at(receiver_count_cell_index(row), count);
1256 }
1257
1258 void clear_row(uint row) {
1259 assert(row < row_limit(), "oob");
1260 // Clear total count - indicator of polymorphic call site.
1261 // The site may look like as monomorphic after that but
1262 // it allow to have more accurate profiling information because
1263 // there was execution phase change since klasses were unloaded.
1264 // If the site is still polymorphic then MDO will be updated
1265 // to reflect it. But it could be the case that the site becomes
1266 // only bimorphic. Then keeping total count not 0 will be wrong.
1267 // Even if we use monomorphic (when it is not) for compilation
1268 // we will only have trap, deoptimization and recompile again
1269 // with updated MDO after executing method in Interpreter.
1270 // An additional receiver will be recorded in the cleaned row
1271 // during next call execution.
1272 //
1273 // Note: our profiling logic works with empty rows in any slot.
1274 // We do sorting a profiling info (ciCallProfile) for compilation.
1275 //
1276 set_count(0);
1277 set_receiver(row, NULL);
1278 set_receiver_count(row, 0);
1279 #if INCLUDE_JVMCI
1280 if (!this->is_VirtualCallData()) {
1281 // if this is a ReceiverTypeData for JVMCI, the nonprofiled_count
1282 // must also be reset (see "Description of the different counters" above)
1283 set_nonprofiled_count(0);
1284 }
1285 #endif
1286 }
1287
1288 // Code generation support
1289 static ByteSize receiver_offset(uint row) {
1290 return cell_offset(receiver_cell_index(row));
1291 }
1292 static ByteSize receiver_count_offset(uint row) {
1293 return cell_offset(receiver_count_cell_index(row));
1294 }
1295 #if INCLUDE_JVMCI
1296 static ByteSize nonprofiled_receiver_count_offset() {
1297 return cell_offset(nonprofiled_count_off_set);
1298 }
1299 uint nonprofiled_count() const {
1300 return uint_at(nonprofiled_count_off_set);
1301 }
1302 void set_nonprofiled_count(uint count) {
1303 set_uint_at(nonprofiled_count_off_set, count);
1304 }
1305 #endif // INCLUDE_JVMCI
1306 static ByteSize receiver_type_data_size() {
1307 return cell_offset(static_cell_count());
1308 }
1309
1310 // GC support
1311 virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure);
1312
1313 #ifdef CC_INTERP
1314 static int receiver_type_data_size_in_bytes() {
1315 return cell_offset_in_bytes(static_cell_count());
1316 }
1317
1318 static Klass *receiver_unchecked(DataLayout* layout, uint row) {
1319 Klass* recv = (Klass*)layout->cell_at(receiver_cell_index(row));
1320 return recv;
1321 }
1322
1323 static void increment_receiver_count_no_overflow(DataLayout* layout, Klass *rcvr) {
1324 const int num_rows = row_limit();
1325 // Receiver already exists?
1326 for (int row = 0; row < num_rows; row++) {
1327 if (receiver_unchecked(layout, row) == rcvr) {
1328 increment_uint_at_no_overflow(layout, receiver_count_cell_index(row));
1329 return;
1330 }
1331 }
1332 // New receiver, find a free slot.
1333 for (int row = 0; row < num_rows; row++) {
1334 if (receiver_unchecked(layout, row) == NULL) {
1335 set_intptr_at(layout, receiver_cell_index(row), (intptr_t)rcvr);
1336 increment_uint_at_no_overflow(layout, receiver_count_cell_index(row));
1337 return;
1338 }
1339 }
1340 // Receiver did not match any saved receiver and there is no empty row for it.
1341 // Increment total counter to indicate polymorphic case.
1342 increment_count_no_overflow(layout);
1343 }
1344
1345 static DataLayout* advance(DataLayout* layout) {
1346 return (DataLayout*) (((address)layout) + (ssize_t)ReceiverTypeData::receiver_type_data_size_in_bytes());
1347 }
1348 #endif // CC_INTERP
1349
1350 void print_receiver_data_on(outputStream* st) const;
1351 void print_data_on(outputStream* st, const char* extra = NULL) const;
1352 };
1353
1354 // VirtualCallData
1355 //
1356 // A VirtualCallData is used to access profiling information about a
1357 // virtual call. For now, it has nothing more than a ReceiverTypeData.
1358 class VirtualCallData : public ReceiverTypeData {
1359 public:
1360 VirtualCallData(DataLayout* layout) : ReceiverTypeData(layout) {
1361 assert(layout->tag() == DataLayout::virtual_call_data_tag ||
1362 layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type");
1363 }
1364
1365 virtual bool is_VirtualCallData() const { return true; }
1366
1367 static int static_cell_count() {
1368 // At this point we could add more profile state, e.g., for arguments.
1369 // But for now it's the same size as the base record type.
1370 return ReceiverTypeData::static_cell_count() JVMCI_ONLY(+ (uint) MethodProfileWidth * receiver_type_row_cell_count);
1371 }
1372
1373 virtual int cell_count() const {
1374 return static_cell_count();
1375 }
1376
1377 // Direct accessors
1378 static ByteSize virtual_call_data_size() {
1379 return cell_offset(static_cell_count());
1380 }
1381
1382 #ifdef CC_INTERP
1383 static int virtual_call_data_size_in_bytes() {
1384 return cell_offset_in_bytes(static_cell_count());
1385 }
1386
1387 static DataLayout* advance(DataLayout* layout) {
1388 return (DataLayout*) (((address)layout) + (ssize_t)VirtualCallData::virtual_call_data_size_in_bytes());
1389 }
1390 #endif // CC_INTERP
1391
1392 #if INCLUDE_JVMCI
1393 static ByteSize method_offset(uint row) {
1394 return cell_offset(method_cell_index(row));
1395 }
1396 static ByteSize method_count_offset(uint row) {
1397 return cell_offset(method_count_cell_index(row));
1398 }
1399 static int method_cell_index(uint row) {
1400 return receiver0_offset + (row + TypeProfileWidth) * receiver_type_row_cell_count;
1401 }
1402 static int method_count_cell_index(uint row) {
1403 return count0_offset + (row + TypeProfileWidth) * receiver_type_row_cell_count;
1404 }
1405 static uint method_row_limit() {
1406 return MethodProfileWidth;
1407 }
1408
1409 Method* method(uint row) const {
1410 assert(row < method_row_limit(), "oob");
1411
1412 Method* method = (Method*)intptr_at(method_cell_index(row));
1413 assert(method == NULL || method->is_method(), "must be");
1414 return method;
1415 }
1416
1417 uint method_count(uint row) const {
1418 assert(row < method_row_limit(), "oob");
1419 return uint_at(method_count_cell_index(row));
1420 }
1421
1422 void set_method(uint row, Method* m) {
1423 assert((uint)row < method_row_limit(), "oob");
1424 set_intptr_at(method_cell_index(row), (uintptr_t)m);
1425 }
1426
1427 void set_method_count(uint row, uint count) {
1428 assert(row < method_row_limit(), "oob");
1429 set_uint_at(method_count_cell_index(row), count);
1430 }
1431
1432 void clear_method_row(uint row) {
1433 assert(row < method_row_limit(), "oob");
1434 // Clear total count - indicator of polymorphic call site (see comment for clear_row() in ReceiverTypeData).
1435 set_nonprofiled_count(0);
1436 set_method(row, NULL);
1437 set_method_count(row, 0);
1438 }
1439
1440 // GC support
1441 virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure);
1442
1443 // Redefinition support
1444 virtual void clean_weak_method_links();
1445 #endif // INCLUDE_JVMCI
1446
1447 void print_method_data_on(outputStream* st) const NOT_JVMCI_RETURN;
1448 void print_data_on(outputStream* st, const char* extra = NULL) const;
1449 };
1450
1451 // VirtualCallTypeData
1452 //
1453 // A VirtualCallTypeData is used to access profiling information about
1454 // a virtual call for which we collect type information about
1455 // arguments and return value.
1456 class VirtualCallTypeData : public VirtualCallData {
1457 private:
1458 // entries for arguments if any
1459 TypeStackSlotEntries _args;
1460 // entry for return type if any
1461 ReturnTypeEntry _ret;
1462
1463 int cell_count_global_offset() const {
1464 return VirtualCallData::static_cell_count() + TypeEntriesAtCall::cell_count_local_offset();
1465 }
1466
1467 // number of cells not counting the header
1468 int cell_count_no_header() const {
1469 return uint_at(cell_count_global_offset());
1470 }
1471
1472 void check_number_of_arguments(int total) {
1473 assert(number_of_arguments() == total, "should be set in DataLayout::initialize");
1474 }
1475
1476 public:
1477 VirtualCallTypeData(DataLayout* layout) :
1478 VirtualCallData(layout),
1479 _args(VirtualCallData::static_cell_count()+TypeEntriesAtCall::header_cell_count(), number_of_arguments()),
1480 _ret(cell_count() - ReturnTypeEntry::static_cell_count())
1481 {
1482 assert(layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type");
1483 // Some compilers (VC++) don't want this passed in member initialization list
1484 _args.set_profile_data(this);
1485 _ret.set_profile_data(this);
1486 }
1487
1488 const TypeStackSlotEntries* args() const {
1489 assert(has_arguments(), "no profiling of arguments");
1490 return &_args;
1491 }
1492
1493 const ReturnTypeEntry* ret() const {
1494 assert(has_return(), "no profiling of return value");
1495 return &_ret;
1496 }
1497
1498 virtual bool is_VirtualCallTypeData() const { return true; }
1499
1500 static int static_cell_count() {
1501 return -1;
1502 }
1503
1504 static int compute_cell_count(BytecodeStream* stream) {
1505 return VirtualCallData::static_cell_count() + TypeEntriesAtCall::compute_cell_count(stream);
1506 }
1507
1508 static void initialize(DataLayout* dl, int cell_count) {
1509 TypeEntriesAtCall::initialize(dl, VirtualCallData::static_cell_count(), cell_count);
1510 }
1511
1512 virtual void post_initialize(BytecodeStream* stream, MethodData* mdo);
1513
1514 virtual int cell_count() const {
1515 return VirtualCallData::static_cell_count() +
1516 TypeEntriesAtCall::header_cell_count() +
1517 int_at_unchecked(cell_count_global_offset());
1518 }
1519
1520 int number_of_arguments() const {
1521 return cell_count_no_header() / TypeStackSlotEntries::per_arg_count();
1522 }
1523
1524 void set_argument_type(int i, Klass* k) {
1525 assert(has_arguments(), "no arguments!");
1526 intptr_t current = _args.type(i);
1527 _args.set_type(i, TypeEntries::with_status(k, current));
1528 }
1529
1530 void set_return_type(Klass* k) {
1531 assert(has_return(), "no return!");
1532 intptr_t current = _ret.type();
1533 _ret.set_type(TypeEntries::with_status(k, current));
1534 }
1535
1536 // An entry for a return value takes less space than an entry for an
1537 // argument, so if the remainder of the number of cells divided by
1538 // the number of cells for an argument is not null, a return value
1539 // is profiled in this object.
1540 bool has_return() const {
1541 bool res = (cell_count_no_header() % TypeStackSlotEntries::per_arg_count()) != 0;
1542 assert (!res || TypeEntriesAtCall::return_profiling_enabled(), "no profiling of return values");
1543 return res;
1544 }
1545
1546 // An entry for a return value takes less space than an entry for an
1547 // argument so if the number of cells exceeds the number of cells
1548 // needed for an argument, this object contains type information for
1549 // at least one argument.
1550 bool has_arguments() const {
1551 bool res = cell_count_no_header() >= TypeStackSlotEntries::per_arg_count();
1552 assert (!res || TypeEntriesAtCall::arguments_profiling_enabled(), "no profiling of arguments");
1553 return res;
1554 }
1555
1556 // Code generation support
1557 static ByteSize args_data_offset() {
1558 return cell_offset(VirtualCallData::static_cell_count()) + TypeEntriesAtCall::args_data_offset();
1559 }
1560
1561 ByteSize argument_type_offset(int i) {
1562 return _args.type_offset(i);
1563 }
1564
1565 ByteSize return_type_offset() {
1566 return _ret.type_offset();
1567 }
1568
1569 // GC support
1570 virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {
1571 ReceiverTypeData::clean_weak_klass_links(is_alive_closure);
1572 if (has_arguments()) {
1573 _args.clean_weak_klass_links(is_alive_closure);
1574 }
1575 if (has_return()) {
1576 _ret.clean_weak_klass_links(is_alive_closure);
1577 }
1578 }
1579
1580 virtual void print_data_on(outputStream* st, const char* extra = NULL) const;
1581 };
1582
1583 // RetData
1584 //
1585 // A RetData is used to access profiling information for a ret bytecode.
1586 // It is composed of a count of the number of times that the ret has
1587 // been executed, followed by a series of triples of the form
1588 // (bci, count, di) which count the number of times that some bci was the
1589 // target of the ret and cache a corresponding data displacement.
1590 class RetData : public CounterData {
1591 protected:
1592 enum {
1593 bci0_offset = counter_cell_count,
1594 count0_offset,
1595 displacement0_offset,
1596 ret_row_cell_count = (displacement0_offset + 1) - bci0_offset
1597 };
1598
1599 void set_bci(uint row, int bci) {
1600 assert((uint)row < row_limit(), "oob");
1601 set_int_at(bci0_offset + row * ret_row_cell_count, bci);
1602 }
1603 void release_set_bci(uint row, int bci) {
1604 assert((uint)row < row_limit(), "oob");
1605 // 'release' when setting the bci acts as a valid flag for other
1606 // threads wrt bci_count and bci_displacement.
1607 release_set_int_at(bci0_offset + row * ret_row_cell_count, bci);
1608 }
1609 void set_bci_count(uint row, uint count) {
1610 assert((uint)row < row_limit(), "oob");
1611 set_uint_at(count0_offset + row * ret_row_cell_count, count);
1612 }
1613 void set_bci_displacement(uint row, int disp) {
1614 set_int_at(displacement0_offset + row * ret_row_cell_count, disp);
1615 }
1616
1617 public:
1618 RetData(DataLayout* layout) : CounterData(layout) {
1619 assert(layout->tag() == DataLayout::ret_data_tag, "wrong type");
1620 }
1621
1622 virtual bool is_RetData() const { return true; }
1623
1624 enum {
1625 no_bci = -1 // value of bci when bci1/2 are not in use.
1626 };
1627
1628 static int static_cell_count() {
1629 return counter_cell_count + (uint) BciProfileWidth * ret_row_cell_count;
1630 }
1631
1632 virtual int cell_count() const {
1633 return static_cell_count();
1634 }
1635
1636 static uint row_limit() {
1637 return BciProfileWidth;
1638 }
1639 static int bci_cell_index(uint row) {
1640 return bci0_offset + row * ret_row_cell_count;
1641 }
1642 static int bci_count_cell_index(uint row) {
1643 return count0_offset + row * ret_row_cell_count;
1644 }
1645 static int bci_displacement_cell_index(uint row) {
1646 return displacement0_offset + row * ret_row_cell_count;
1647 }
1648
1649 // Direct accessors
1650 int bci(uint row) const {
1651 return int_at(bci_cell_index(row));
1652 }
1653 uint bci_count(uint row) const {
1654 return uint_at(bci_count_cell_index(row));
1655 }
1656 int bci_displacement(uint row) const {
1657 return int_at(bci_displacement_cell_index(row));
1658 }
1659
1660 // Interpreter Runtime support
1661 address fixup_ret(int return_bci, MethodData* mdo);
1662
1663 // Code generation support
1664 static ByteSize bci_offset(uint row) {
1665 return cell_offset(bci_cell_index(row));
1666 }
1667 static ByteSize bci_count_offset(uint row) {
1668 return cell_offset(bci_count_cell_index(row));
1669 }
1670 static ByteSize bci_displacement_offset(uint row) {
1671 return cell_offset(bci_displacement_cell_index(row));
1672 }
1673
1674 #ifdef CC_INTERP
1675 static DataLayout* advance(MethodData *md, int bci);
1676 #endif // CC_INTERP
1677
1678 // Specific initialization.
1679 void post_initialize(BytecodeStream* stream, MethodData* mdo);
1680
1681 void print_data_on(outputStream* st, const char* extra = NULL) const;
1682 };
1683
1684 // BranchData
1685 //
1686 // A BranchData is used to access profiling data for a two-way branch.
1687 // It consists of taken and not_taken counts as well as a data displacement
1688 // for the taken case.
1689 class BranchData : public JumpData {
1690 friend class VMStructs;
1691 friend class JVMCIVMStructs;
1692 protected:
1693 enum {
1694 not_taken_off_set = jump_cell_count,
1695 branch_cell_count
1696 };
1697
1698 void set_displacement(int displacement) {
1699 set_int_at(displacement_off_set, displacement);
1700 }
1701
1702 public:
1703 BranchData(DataLayout* layout) : JumpData(layout) {
1704 assert(layout->tag() == DataLayout::branch_data_tag, "wrong type");
1705 }
1706
1707 virtual bool is_BranchData() const { return true; }
1708
1709 static int static_cell_count() {
1710 return branch_cell_count;
1711 }
1712
1713 virtual int cell_count() const {
1714 return static_cell_count();
1715 }
1716
1717 // Direct accessor
1718 uint not_taken() const {
1719 return uint_at(not_taken_off_set);
1720 }
1721
1722 void set_not_taken(uint cnt) {
1723 set_uint_at(not_taken_off_set, cnt);
1724 }
1725
1726 uint inc_not_taken() {
1727 uint cnt = not_taken() + 1;
1728 // Did we wrap? Will compiler screw us??
1729 if (cnt == 0) cnt--;
1730 set_uint_at(not_taken_off_set, cnt);
1731 return cnt;
1732 }
1733
1734 // Code generation support
1735 static ByteSize not_taken_offset() {
1736 return cell_offset(not_taken_off_set);
1737 }
1738 static ByteSize branch_data_size() {
1739 return cell_offset(branch_cell_count);
1740 }
1741
1742 #ifdef CC_INTERP
1743 static int branch_data_size_in_bytes() {
1744 return cell_offset_in_bytes(branch_cell_count);
1745 }
1746
1747 static void increment_not_taken_count_no_overflow(DataLayout* layout) {
1748 increment_uint_at_no_overflow(layout, not_taken_off_set);
1749 }
1750
1751 static DataLayout* advance_not_taken(DataLayout* layout) {
1752 return (DataLayout*) (((address)layout) + (ssize_t)BranchData::branch_data_size_in_bytes());
1753 }
1754 #endif // CC_INTERP
1755
1756 // Specific initialization.
1757 void post_initialize(BytecodeStream* stream, MethodData* mdo);
1758
1759 void print_data_on(outputStream* st, const char* extra = NULL) const;
1760 };
1761
1762 // ArrayData
1763 //
1764 // A ArrayData is a base class for accessing profiling data which does
1765 // not have a statically known size. It consists of an array length
1766 // and an array start.
1767 class ArrayData : public ProfileData {
1768 friend class VMStructs;
1769 friend class JVMCIVMStructs;
1770 protected:
1771 friend class DataLayout;
1772
1773 enum {
1774 array_len_off_set,
1775 array_start_off_set
1776 };
1777
1778 uint array_uint_at(int index) const {
1779 int aindex = index + array_start_off_set;
1780 return uint_at(aindex);
1781 }
1782 int array_int_at(int index) const {
1783 int aindex = index + array_start_off_set;
1784 return int_at(aindex);
1785 }
1786 oop array_oop_at(int index) const {
1787 int aindex = index + array_start_off_set;
1788 return oop_at(aindex);
1789 }
1790 void array_set_int_at(int index, int value) {
1791 int aindex = index + array_start_off_set;
1792 set_int_at(aindex, value);
1793 }
1794
1795 #ifdef CC_INTERP
1796 // Static low level accessors for DataLayout with ArrayData's semantics.
1797
1798 static void increment_array_uint_at_no_overflow(DataLayout* layout, int index) {
1799 int aindex = index + array_start_off_set;
1800 increment_uint_at_no_overflow(layout, aindex);
1801 }
1802
1803 static int array_int_at(DataLayout* layout, int index) {
1804 int aindex = index + array_start_off_set;
1805 return int_at(layout, aindex);
1806 }
1807 #endif // CC_INTERP
1808
1809 // Code generation support for subclasses.
1810 static ByteSize array_element_offset(int index) {
1811 return cell_offset(array_start_off_set + index);
1812 }
1813
1814 public:
1815 ArrayData(DataLayout* layout) : ProfileData(layout) {}
1816
1817 virtual bool is_ArrayData() const { return true; }
1818
1819 static int static_cell_count() {
1820 return -1;
1821 }
1822
1823 int array_len() const {
1824 return int_at_unchecked(array_len_off_set);
1825 }
1826
1827 virtual int cell_count() const {
1828 return array_len() + 1;
1829 }
1830
1831 // Code generation support
1832 static ByteSize array_len_offset() {
1833 return cell_offset(array_len_off_set);
1834 }
1835 static ByteSize array_start_offset() {
1836 return cell_offset(array_start_off_set);
1837 }
1838 };
1839
1840 // MultiBranchData
1841 //
1842 // A MultiBranchData is used to access profiling information for
1843 // a multi-way branch (*switch bytecodes). It consists of a series
1844 // of (count, displacement) pairs, which count the number of times each
1845 // case was taken and specify the data displacment for each branch target.
1846 class MultiBranchData : public ArrayData {
1847 friend class VMStructs;
1848 friend class JVMCIVMStructs;
1849 protected:
1850 enum {
1851 default_count_off_set,
1852 default_disaplacement_off_set,
1853 case_array_start
1854 };
1855 enum {
1856 relative_count_off_set,
1857 relative_displacement_off_set,
1858 per_case_cell_count
1859 };
1860
1861 void set_default_displacement(int displacement) {
1862 array_set_int_at(default_disaplacement_off_set, displacement);
1863 }
1864 void set_displacement_at(int index, int displacement) {
1865 array_set_int_at(case_array_start +
1866 index * per_case_cell_count +
1867 relative_displacement_off_set,
1868 displacement);
1869 }
1870
1871 public:
1872 MultiBranchData(DataLayout* layout) : ArrayData(layout) {
1873 assert(layout->tag() == DataLayout::multi_branch_data_tag, "wrong type");
1874 }
1875
1876 virtual bool is_MultiBranchData() const { return true; }
1877
1878 static int compute_cell_count(BytecodeStream* stream);
1879
1880 int number_of_cases() const {
1881 int alen = array_len() - 2; // get rid of default case here.
1882 assert(alen % per_case_cell_count == 0, "must be even");
1883 return (alen / per_case_cell_count);
1884 }
1885
1886 uint default_count() const {
1887 return array_uint_at(default_count_off_set);
1888 }
1889 int default_displacement() const {
1890 return array_int_at(default_disaplacement_off_set);
1891 }
1892
1893 uint count_at(int index) const {
1894 return array_uint_at(case_array_start +
1895 index * per_case_cell_count +
1896 relative_count_off_set);
1897 }
1898 int displacement_at(int index) const {
1899 return array_int_at(case_array_start +
1900 index * per_case_cell_count +
1901 relative_displacement_off_set);
1902 }
1903
1904 // Code generation support
1905 static ByteSize default_count_offset() {
1906 return array_element_offset(default_count_off_set);
1907 }
1908 static ByteSize default_displacement_offset() {
1909 return array_element_offset(default_disaplacement_off_set);
1910 }
1911 static ByteSize case_count_offset(int index) {
1912 return case_array_offset() +
1913 (per_case_size() * index) +
1914 relative_count_offset();
1915 }
1916 static ByteSize case_array_offset() {
1917 return array_element_offset(case_array_start);
1918 }
1919 static ByteSize per_case_size() {
1920 return in_ByteSize(per_case_cell_count) * cell_size;
1921 }
1922 static ByteSize relative_count_offset() {
1923 return in_ByteSize(relative_count_off_set) * cell_size;
1924 }
1925 static ByteSize relative_displacement_offset() {
1926 return in_ByteSize(relative_displacement_off_set) * cell_size;
1927 }
1928
1929 #ifdef CC_INTERP
1930 static void increment_count_no_overflow(DataLayout* layout, int index) {
1931 if (index == -1) {
1932 increment_array_uint_at_no_overflow(layout, default_count_off_set);
1933 } else {
1934 increment_array_uint_at_no_overflow(layout, case_array_start +
1935 index * per_case_cell_count +
1936 relative_count_off_set);
1937 }
1938 }
1939
1940 static DataLayout* advance(DataLayout* layout, int index) {
1941 if (index == -1) {
1942 return (DataLayout*) (((address)layout) + (ssize_t)array_int_at(layout, default_disaplacement_off_set));
1943 } else {
1944 return (DataLayout*) (((address)layout) + (ssize_t)array_int_at(layout, case_array_start +
1945 index * per_case_cell_count +
1946 relative_displacement_off_set));
1947 }
1948 }
1949 #endif // CC_INTERP
1950
1951 // Specific initialization.
1952 void post_initialize(BytecodeStream* stream, MethodData* mdo);
1953
1954 void print_data_on(outputStream* st, const char* extra = NULL) const;
1955 };
1956
1957 class ArgInfoData : public ArrayData {
1958
1959 public:
1960 ArgInfoData(DataLayout* layout) : ArrayData(layout) {
1961 assert(layout->tag() == DataLayout::arg_info_data_tag, "wrong type");
1962 }
1963
1964 virtual bool is_ArgInfoData() const { return true; }
1965
1966
1967 int number_of_args() const {
1968 return array_len();
1969 }
1970
1971 uint arg_modified(int arg) const {
1972 return array_uint_at(arg);
1973 }
1974
1975 void set_arg_modified(int arg, uint val) {
1976 array_set_int_at(arg, val);
1977 }
1978
1979 void print_data_on(outputStream* st, const char* extra = NULL) const;
1980 };
1981
1982 // ParametersTypeData
1983 //
1984 // A ParametersTypeData is used to access profiling information about
1985 // types of parameters to a method
1986 class ParametersTypeData : public ArrayData {
1987
1988 private:
1989 TypeStackSlotEntries _parameters;
1990
1991 static int stack_slot_local_offset(int i) {
1992 assert_profiling_enabled();
1993 return array_start_off_set + TypeStackSlotEntries::stack_slot_local_offset(i);
1994 }
1995
1996 static int type_local_offset(int i) {
1997 assert_profiling_enabled();
1998 return array_start_off_set + TypeStackSlotEntries::type_local_offset(i);
1999 }
2000
2001 static bool profiling_enabled();
2002 static void assert_profiling_enabled() {
2003 assert(profiling_enabled(), "method parameters profiling should be on");
2004 }
2005
2006 public:
2007 ParametersTypeData(DataLayout* layout) : ArrayData(layout), _parameters(1, number_of_parameters()) {
2008 assert(layout->tag() == DataLayout::parameters_type_data_tag, "wrong type");
2009 // Some compilers (VC++) don't want this passed in member initialization list
2010 _parameters.set_profile_data(this);
2011 }
2012
2013 static int compute_cell_count(Method* m);
2014
2015 virtual bool is_ParametersTypeData() const { return true; }
2016
2017 virtual void post_initialize(BytecodeStream* stream, MethodData* mdo);
2018
2019 int number_of_parameters() const {
2020 return array_len() / TypeStackSlotEntries::per_arg_count();
2021 }
2022
2023 const TypeStackSlotEntries* parameters() const { return &_parameters; }
2024
2025 uint stack_slot(int i) const {
2026 return _parameters.stack_slot(i);
2027 }
2028
2029 void set_type(int i, Klass* k) {
2030 intptr_t current = _parameters.type(i);
2031 _parameters.set_type(i, TypeEntries::with_status((intptr_t)k, current));
2032 }
2033
2034 virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {
2035 _parameters.clean_weak_klass_links(is_alive_closure);
2036 }
2037
2038 virtual void print_data_on(outputStream* st, const char* extra = NULL) const;
2039
2040 static ByteSize stack_slot_offset(int i) {
2041 return cell_offset(stack_slot_local_offset(i));
2042 }
2043
2044 static ByteSize type_offset(int i) {
2045 return cell_offset(type_local_offset(i));
2046 }
2047 };
2048
2049 // SpeculativeTrapData
2050 //
2051 // A SpeculativeTrapData is used to record traps due to type
2052 // speculation. It records the root of the compilation: that type
2053 // speculation is wrong in the context of one compilation (for
2054 // method1) doesn't mean it's wrong in the context of another one (for
2055 // method2). Type speculation could have more/different data in the
2056 // context of the compilation of method2 and it's worthwhile to try an
2057 // optimization that failed for compilation of method1 in the context
2058 // of compilation of method2.
2059 // Space for SpeculativeTrapData entries is allocated from the extra
2060 // data space in the MDO. If we run out of space, the trap data for
2061 // the ProfileData at that bci is updated.
2062 class SpeculativeTrapData : public ProfileData {
2063 protected:
2064 enum {
2065 speculative_trap_method,
2066 speculative_trap_cell_count
2067 };
2068 public:
2069 SpeculativeTrapData(DataLayout* layout) : ProfileData(layout) {
2070 assert(layout->tag() == DataLayout::speculative_trap_data_tag, "wrong type");
2071 }
2072
2073 virtual bool is_SpeculativeTrapData() const { return true; }
2074
2075 static int static_cell_count() {
2076 return speculative_trap_cell_count;
2077 }
2078
2079 virtual int cell_count() const {
2080 return static_cell_count();
2081 }
2082
2083 // Direct accessor
2084 Method* method() const {
2085 return (Method*)intptr_at(speculative_trap_method);
2086 }
2087
2088 void set_method(Method* m) {
2089 assert(!m->is_old(), "cannot add old methods");
2090 set_intptr_at(speculative_trap_method, (intptr_t)m);
2091 }
2092
2093 static ByteSize method_offset() {
2094 return cell_offset(speculative_trap_method);
2095 }
2096
2097 virtual void print_data_on(outputStream* st, const char* extra = NULL) const;
2098 };
2099
2100 // MethodData*
2101 //
2102 // A MethodData* holds information which has been collected about
2103 // a method. Its layout looks like this:
2104 //
2105 // -----------------------------
2106 // | header |
2107 // | klass |
2108 // -----------------------------
2109 // | method |
2110 // | size of the MethodData* |
2111 // -----------------------------
2112 // | Data entries... |
2113 // | (variable size) |
2114 // | |
2115 // . .
2116 // . .
2117 // . .
2118 // | |
2119 // -----------------------------
2120 //
2121 // The data entry area is a heterogeneous array of DataLayouts. Each
2122 // DataLayout in the array corresponds to a specific bytecode in the
2123 // method. The entries in the array are sorted by the corresponding
2124 // bytecode. Access to the data is via resource-allocated ProfileData,
2125 // which point to the underlying blocks of DataLayout structures.
2126 //
2127 // During interpretation, if profiling in enabled, the interpreter
2128 // maintains a method data pointer (mdp), which points at the entry
2129 // in the array corresponding to the current bci. In the course of
2130 // intepretation, when a bytecode is encountered that has profile data
2131 // associated with it, the entry pointed to by mdp is updated, then the
2132 // mdp is adjusted to point to the next appropriate DataLayout. If mdp
2133 // is NULL to begin with, the interpreter assumes that the current method
2134 // is not (yet) being profiled.
2135 //
2136 // In MethodData* parlance, "dp" is a "data pointer", the actual address
2137 // of a DataLayout element. A "di" is a "data index", the offset in bytes
2138 // from the base of the data entry array. A "displacement" is the byte offset
2139 // in certain ProfileData objects that indicate the amount the mdp must be
2140 // adjusted in the event of a change in control flow.
2141 //
2142
2143 CC_INTERP_ONLY(class BytecodeInterpreter;)
2144 class CleanExtraDataClosure;
2145
2146 class MethodData : public Metadata {
2147 friend class VMStructs;
2148 friend class JVMCIVMStructs;
2149 CC_INTERP_ONLY(friend class BytecodeInterpreter;)
2150 private:
2151 friend class ProfileData;
2152
2153 // Back pointer to the Method*
2154 Method* _method;
2155
2156 // Size of this oop in bytes
2157 int _size;
2158
2159 // Cached hint for bci_to_dp and bci_to_data
2160 int _hint_di;
2161
2162 Mutex _extra_data_lock;
2163
2164 MethodData(const methodHandle& method, int size, TRAPS);
2165 public:
2166 static MethodData* allocate(ClassLoaderData* loader_data, const methodHandle& method, TRAPS);
2167 MethodData() : _extra_data_lock(Monitor::leaf, "MDO extra data lock") {}; // For ciMethodData
2168
2169 bool is_methodData() const volatile { return true; }
2170 void initialize();
2171
2172 // Whole-method sticky bits and flags
2173 enum {
2174 _trap_hist_limit = 22 JVMCI_ONLY(+5), // decoupled from Deoptimization::Reason_LIMIT
2175 _trap_hist_mask = max_jubyte,
2176 _extra_data_count = 4 // extra DataLayout headers, for trap history
2177 }; // Public flag values
2178 private:
2179 uint _nof_decompiles; // count of all nmethod removals
2180 uint _nof_overflow_recompiles; // recompile count, excluding recomp. bits
2181 uint _nof_overflow_traps; // trap count, excluding _trap_hist
2182 union {
2183 intptr_t _align;
2184 u1 _array[_trap_hist_limit];
2185 } _trap_hist;
2186
2187 // Support for interprocedural escape analysis, from Thomas Kotzmann.
2188 intx _eflags; // flags on escape information
2189 intx _arg_local; // bit set of non-escaping arguments
2190 intx _arg_stack; // bit set of stack-allocatable arguments
2191 intx _arg_returned; // bit set of returned arguments
2192
2193 int _creation_mileage; // method mileage at MDO creation
2194
2195 // How many invocations has this MDO seen?
2196 // These counters are used to determine the exact age of MDO.
2197 // We need those because in tiered a method can be concurrently
2198 // executed at different levels.
2199 InvocationCounter _invocation_counter;
2200 // Same for backedges.
2201 InvocationCounter _backedge_counter;
2202 // Counter values at the time profiling started.
2203 int _invocation_counter_start;
2204 int _backedge_counter_start;
2205 uint _tenure_traps;
2206 int _invoke_mask; // per-method Tier0InvokeNotifyFreqLog
2207 int _backedge_mask; // per-method Tier0BackedgeNotifyFreqLog
2208
2209 #if INCLUDE_RTM_OPT
2210 // State of RTM code generation during compilation of the method
2211 int _rtm_state;
2212 #endif
2213
2214 // Number of loops and blocks is computed when compiling the first
2215 // time with C1. It is used to determine if method is trivial.
2216 short _num_loops;
2217 short _num_blocks;
2218 // Does this method contain anything worth profiling?
2219 enum WouldProfile {unknown, no_profile, profile};
2220 WouldProfile _would_profile;
2221
2222 #if INCLUDE_JVMCI
2223 // Support for HotSpotMethodData.setCompiledIRSize(int)
2224 int _jvmci_ir_size;
2225 #endif
2226
2227 // Size of _data array in bytes. (Excludes header and extra_data fields.)
2228 int _data_size;
2229
2230 // data index for the area dedicated to parameters. -1 if no
2231 // parameter profiling.
2232 enum { no_parameters = -2, parameters_uninitialized = -1 };
2233 int _parameters_type_data_di;
2234 int parameters_size_in_bytes() const {
2235 ParametersTypeData* param = parameters_type_data();
2236 return param == NULL ? 0 : param->size_in_bytes();
2237 }
2238
2239 // Beginning of the data entries
2240 intptr_t _data[1];
2241
2242 // Helper for size computation
2243 static int compute_data_size(BytecodeStream* stream);
2244 static int bytecode_cell_count(Bytecodes::Code code);
2245 static bool is_speculative_trap_bytecode(Bytecodes::Code code);
2246 enum { no_profile_data = -1, variable_cell_count = -2 };
2247
2248 // Helper for initialization
2249 DataLayout* data_layout_at(int data_index) const {
2250 assert(data_index % sizeof(intptr_t) == 0, "unaligned");
2251 return (DataLayout*) (((address)_data) + data_index);
2252 }
2253
2254 // Initialize an individual data segment. Returns the size of
2255 // the segment in bytes.
2256 int initialize_data(BytecodeStream* stream, int data_index);
2257
2258 // Helper for data_at
2259 DataLayout* limit_data_position() const {
2260 return data_layout_at(_data_size);
2261 }
2262 bool out_of_bounds(int data_index) const {
2263 return data_index >= data_size();
2264 }
2265
2266 // Give each of the data entries a chance to perform specific
2267 // data initialization.
2268 void post_initialize(BytecodeStream* stream);
2269
2270 // hint accessors
2271 int hint_di() const { return _hint_di; }
2272 void set_hint_di(int di) {
2273 assert(!out_of_bounds(di), "hint_di out of bounds");
2274 _hint_di = di;
2275 }
2276 ProfileData* data_before(int bci) {
2277 // avoid SEGV on this edge case
2278 if (data_size() == 0)
2279 return NULL;
2280 int hint = hint_di();
2281 if (data_layout_at(hint)->bci() <= bci)
2282 return data_at(hint);
2283 return first_data();
2284 }
2285
2286 // What is the index of the first data entry?
2287 int first_di() const { return 0; }
2288
2289 ProfileData* bci_to_extra_data_helper(int bci, Method* m, DataLayout*& dp, bool concurrent);
2290 // Find or create an extra ProfileData:
2291 ProfileData* bci_to_extra_data(int bci, Method* m, bool create_if_missing);
2292
2293 // return the argument info cell
2294 ArgInfoData *arg_info();
2295
2296 enum {
2297 no_type_profile = 0,
2298 type_profile_jsr292 = 1,
2299 type_profile_all = 2
2300 };
2301
2302 static bool profile_jsr292(const methodHandle& m, int bci);
2303 static int profile_arguments_flag();
2304 static bool profile_all_arguments();
2305 static bool profile_arguments_for_invoke(const methodHandle& m, int bci);
2306 static int profile_return_flag();
2307 static bool profile_all_return();
2308 static bool profile_return_for_invoke(const methodHandle& m, int bci);
2309 static int profile_parameters_flag();
2310 static bool profile_parameters_jsr292_only();
2311 static bool profile_all_parameters();
2312
2313 void clean_extra_data(CleanExtraDataClosure* cl);
2314 void clean_extra_data_helper(DataLayout* dp, int shift, bool reset = false);
2315 void verify_extra_data_clean(CleanExtraDataClosure* cl);
2316
2317 public:
2318 static int header_size() {
2319 return sizeof(MethodData)/wordSize;
2320 }
2321
2322 // Compute the size of a MethodData* before it is created.
2323 static int compute_allocation_size_in_bytes(const methodHandle& method);
2324 static int compute_allocation_size_in_words(const methodHandle& method);
2325 static int compute_extra_data_count(int data_size, int empty_bc_count, bool needs_speculative_traps);
2326
2327 // Determine if a given bytecode can have profile information.
2328 static bool bytecode_has_profile(Bytecodes::Code code) {
2329 return bytecode_cell_count(code) != no_profile_data;
2330 }
2331
2332 // reset into original state
2333 void init();
2334
2335 // My size
2336 int size_in_bytes() const { return _size; }
2337 int size() const { return align_object_size(align_size_up(_size, BytesPerWord)/BytesPerWord); }
2338 #if INCLUDE_SERVICES
2339 void collect_statistics(KlassSizeStats *sz) const;
2340 #endif
2341
2342 int creation_mileage() const { return _creation_mileage; }
2343 void set_creation_mileage(int x) { _creation_mileage = x; }
2344
2345 int invocation_count() {
2346 if (invocation_counter()->carry()) {
2347 return InvocationCounter::count_limit;
2348 }
2349 return invocation_counter()->count();
2350 }
2351 int backedge_count() {
2352 if (backedge_counter()->carry()) {
2353 return InvocationCounter::count_limit;
2354 }
2355 return backedge_counter()->count();
2356 }
2357
2358 int invocation_count_start() {
2359 if (invocation_counter()->carry()) {
2360 return 0;
2361 }
2362 return _invocation_counter_start;
2363 }
2364
2365 int backedge_count_start() {
2366 if (backedge_counter()->carry()) {
2367 return 0;
2368 }
2369 return _backedge_counter_start;
2370 }
2371
2372 int invocation_count_delta() { return invocation_count() - invocation_count_start(); }
2373 int backedge_count_delta() { return backedge_count() - backedge_count_start(); }
2374
2375 void reset_start_counters() {
2376 _invocation_counter_start = invocation_count();
2377 _backedge_counter_start = backedge_count();
2378 }
2379
2380 InvocationCounter* invocation_counter() { return &_invocation_counter; }
2381 InvocationCounter* backedge_counter() { return &_backedge_counter; }
2382
2383 #if INCLUDE_RTM_OPT
2384 int rtm_state() const {
2385 return _rtm_state;
2386 }
2387 void set_rtm_state(RTMState rstate) {
2388 _rtm_state = (int)rstate;
2389 }
2390 void atomic_set_rtm_state(RTMState rstate) {
2391 Atomic::store((int)rstate, &_rtm_state);
2392 }
2393
2394 static int rtm_state_offset_in_bytes() {
2395 return offset_of(MethodData, _rtm_state);
2396 }
2397 #endif
2398
2399 void set_would_profile(bool p) { _would_profile = p ? profile : no_profile; }
2400 bool would_profile() const { return _would_profile != no_profile; }
2401
2402 int num_loops() const { return _num_loops; }
2403 void set_num_loops(int n) { _num_loops = n; }
2404 int num_blocks() const { return _num_blocks; }
2405 void set_num_blocks(int n) { _num_blocks = n; }
2406
2407 bool is_mature() const; // consult mileage and ProfileMaturityPercentage
2408 static int mileage_of(Method* m);
2409
2410 // Support for interprocedural escape analysis, from Thomas Kotzmann.
2411 enum EscapeFlag {
2412 estimated = 1 << 0,
2413 return_local = 1 << 1,
2414 return_allocated = 1 << 2,
2415 allocated_escapes = 1 << 3,
2416 unknown_modified = 1 << 4
2417 };
2418
2419 intx eflags() { return _eflags; }
2420 intx arg_local() { return _arg_local; }
2421 intx arg_stack() { return _arg_stack; }
2422 intx arg_returned() { return _arg_returned; }
2423 uint arg_modified(int a) { ArgInfoData *aid = arg_info();
2424 assert(aid != NULL, "arg_info must be not null");
2425 assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
2426 return aid->arg_modified(a); }
2427
2428 void set_eflags(intx v) { _eflags = v; }
2429 void set_arg_local(intx v) { _arg_local = v; }
2430 void set_arg_stack(intx v) { _arg_stack = v; }
2431 void set_arg_returned(intx v) { _arg_returned = v; }
2432 void set_arg_modified(int a, uint v) { ArgInfoData *aid = arg_info();
2433 assert(aid != NULL, "arg_info must be not null");
2434 assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
2435 aid->set_arg_modified(a, v); }
2436
2437 void clear_escape_info() { _eflags = _arg_local = _arg_stack = _arg_returned = 0; }
2438
2439 // Location and size of data area
2440 address data_base() const {
2441 return (address) _data;
2442 }
2443 int data_size() const {
2444 return _data_size;
2445 }
2446
2447 // Accessors
2448 Method* method() const { return _method; }
2449
2450 // Get the data at an arbitrary (sort of) data index.
2451 ProfileData* data_at(int data_index) const;
2452
2453 // Walk through the data in order.
2454 ProfileData* first_data() const { return data_at(first_di()); }
2455 ProfileData* next_data(ProfileData* current) const;
2456 bool is_valid(ProfileData* current) const { return current != NULL; }
2457
2458 // Convert a dp (data pointer) to a di (data index).
2459 int dp_to_di(address dp) const {
2460 return dp - ((address)_data);
2461 }
2462
2463 // bci to di/dp conversion.
2464 address bci_to_dp(int bci);
2465 int bci_to_di(int bci) {
2466 return dp_to_di(bci_to_dp(bci));
2467 }
2468
2469 // Get the data at an arbitrary bci, or NULL if there is none.
2470 ProfileData* bci_to_data(int bci);
2471
2472 // Same, but try to create an extra_data record if one is needed:
2473 ProfileData* allocate_bci_to_data(int bci, Method* m) {
2474 ProfileData* data = NULL;
2475 // If m not NULL, try to allocate a SpeculativeTrapData entry
2476 if (m == NULL) {
2477 data = bci_to_data(bci);
2478 }
2479 if (data != NULL) {
2480 return data;
2481 }
2482 data = bci_to_extra_data(bci, m, true);
2483 if (data != NULL) {
2484 return data;
2485 }
2486 // If SpeculativeTrapData allocation fails try to allocate a
2487 // regular entry
2488 data = bci_to_data(bci);
2489 if (data != NULL) {
2490 return data;
2491 }
2492 return bci_to_extra_data(bci, NULL, true);
2493 }
2494
2495 // Add a handful of extra data records, for trap tracking.
2496 DataLayout* extra_data_base() const { return limit_data_position(); }
2497 DataLayout* extra_data_limit() const { return (DataLayout*)((address)this + size_in_bytes()); }
2498 DataLayout* args_data_limit() const { return (DataLayout*)((address)this + size_in_bytes() -
2499 parameters_size_in_bytes()); }
2500 int extra_data_size() const { return (address)extra_data_limit() - (address)extra_data_base(); }
2501 static DataLayout* next_extra(DataLayout* dp);
2502
2503 // Return (uint)-1 for overflow.
2504 uint trap_count(int reason) const {
2505 assert((uint)reason < JVMCI_ONLY(2*) _trap_hist_limit, "oob");
2506 return (int)((_trap_hist._array[reason]+1) & _trap_hist_mask) - 1;
2507 }
2508 // For loops:
2509 static uint trap_reason_limit() { return _trap_hist_limit; }
2510 static uint trap_count_limit() { return _trap_hist_mask; }
2511 uint inc_trap_count(int reason) {
2512 // Count another trap, anywhere in this method.
2513 assert(reason >= 0, "must be single trap");
2514 assert((uint)reason < JVMCI_ONLY(2*) _trap_hist_limit, "oob");
2515 uint cnt1 = 1 + _trap_hist._array[reason];
2516 if ((cnt1 & _trap_hist_mask) != 0) { // if no counter overflow...
2517 _trap_hist._array[reason] = cnt1;
2518 return cnt1;
2519 } else {
2520 return _trap_hist_mask + (++_nof_overflow_traps);
2521 }
2522 }
2523
2524 uint overflow_trap_count() const {
2525 return _nof_overflow_traps;
2526 }
2527 uint overflow_recompile_count() const {
2528 return _nof_overflow_recompiles;
2529 }
2530 void inc_overflow_recompile_count() {
2531 _nof_overflow_recompiles += 1;
2532 }
2533 uint decompile_count() const {
2534 return _nof_decompiles;
2535 }
2536 void inc_decompile_count() {
2537 _nof_decompiles += 1;
2538 if (decompile_count() > (uint)PerMethodRecompilationCutoff) {
2539 method()->set_not_compilable(CompLevel_full_optimization, true, "decompile_count > PerMethodRecompilationCutoff");
2540 }
2541 }
2542 uint tenure_traps() const {
2543 return _tenure_traps;
2544 }
2545 void inc_tenure_traps() {
2546 _tenure_traps += 1;
2547 }
2548
2549 // Return pointer to area dedicated to parameters in MDO
2550 ParametersTypeData* parameters_type_data() const {
2551 assert(_parameters_type_data_di != parameters_uninitialized, "called too early");
2552 return _parameters_type_data_di != no_parameters ? data_layout_at(_parameters_type_data_di)->data_in()->as_ParametersTypeData() : NULL;
2553 }
2554
2555 int parameters_type_data_di() const {
2556 assert(_parameters_type_data_di != parameters_uninitialized && _parameters_type_data_di != no_parameters, "no args type data");
2557 return _parameters_type_data_di;
2558 }
2559
2560 // Support for code generation
2561 static ByteSize data_offset() {
2562 return byte_offset_of(MethodData, _data[0]);
2563 }
2564
2565 static ByteSize trap_history_offset() {
2566 return byte_offset_of(MethodData, _trap_hist._array);
2567 }
2568
2569 static ByteSize invocation_counter_offset() {
2570 return byte_offset_of(MethodData, _invocation_counter);
2571 }
2572
2573 static ByteSize backedge_counter_offset() {
2574 return byte_offset_of(MethodData, _backedge_counter);
2575 }
2576
2577 static ByteSize invoke_mask_offset() {
2578 return byte_offset_of(MethodData, _invoke_mask);
2579 }
2580
2581 static ByteSize backedge_mask_offset() {
2582 return byte_offset_of(MethodData, _backedge_mask);
2583 }
2584
2585 static ByteSize parameters_type_data_di_offset() {
2586 return byte_offset_of(MethodData, _parameters_type_data_di);
2587 }
2588
2589 // Deallocation support - no pointer fields to deallocate
2590 void deallocate_contents(ClassLoaderData* loader_data) {}
2591
2592 // GC support
2593 void set_size(int object_size_in_bytes) { _size = object_size_in_bytes; }
2594
2595 // Printing
2596 void print_on (outputStream* st) const;
2597 void print_value_on(outputStream* st) const;
2598
2599 // printing support for method data
2600 void print_data_on(outputStream* st) const;
2601
2602 const char* internal_name() const { return "{method data}"; }
2603
2604 // verification
2605 void verify_on(outputStream* st);
2606 void verify_data_on(outputStream* st);
2607
2608 static bool profile_parameters_for_method(const methodHandle& m);
2609 static bool profile_arguments();
2610 static bool profile_arguments_jsr292_only();
2611 static bool profile_return();
2612 static bool profile_parameters();
2613 static bool profile_return_jsr292_only();
2614
2615 void clean_method_data(BoolObjectClosure* is_alive);
2616 void clean_weak_method_links();
2617 DEBUG_ONLY(void verify_clean_weak_method_links();)
2618 Mutex* extra_data_lock() { return &_extra_data_lock; }
2619 };
2620
2621 #endif // SHARE_VM_OOPS_METHODDATAOOP_HPP
--- EOF ---