1 /*
   2  * Copyright (c) 2000, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OOPS_METHODDATAOOP_HPP
  26 #define SHARE_VM_OOPS_METHODDATAOOP_HPP
  27 
  28 #include "interpreter/bytecodes.hpp"
  29 #include "memory/universe.hpp"
  30 #include "oops/method.hpp"
  31 #include "oops/oop.hpp"
  32 #include "runtime/orderAccess.hpp"
  33 
  34 class BytecodeStream;
  35 class KlassSizeStats;
  36 
  37 // The MethodData object collects counts and other profile information
  38 // during zeroth-tier (interpretive) and first-tier execution.
  39 // The profile is used later by compilation heuristics.  Some heuristics
  40 // enable use of aggressive (or "heroic") optimizations.  An aggressive
  41 // optimization often has a down-side, a corner case that it handles
  42 // poorly, but which is thought to be rare.  The profile provides
  43 // evidence of this rarity for a given method or even BCI.  It allows
  44 // the compiler to back out of the optimization at places where it
  45 // has historically been a poor choice.  Other heuristics try to use
  46 // specific information gathered about types observed at a given site.
  47 //
  48 // All data in the profile is approximate.  It is expected to be accurate
  49 // on the whole, but the system expects occasional inaccuraces, due to
  50 // counter overflow, multiprocessor races during data collection, space
  51 // limitations, missing MDO blocks, etc.  Bad or missing data will degrade
  52 // optimization quality but will not affect correctness.  Also, each MDO
  53 // is marked with its birth-date ("creation_mileage") which can be used
  54 // to assess the quality ("maturity") of its data.
  55 //
  56 // Short (<32-bit) counters are designed to overflow to a known "saturated"
  57 // state.  Also, certain recorded per-BCI events are given one-bit counters
  58 // which overflow to a saturated state which applied to all counters at
  59 // that BCI.  In other words, there is a small lattice which approximates
  60 // the ideal of an infinite-precision counter for each event at each BCI,
  61 // and the lattice quickly "bottoms out" in a state where all counters
  62 // are taken to be indefinitely large.
  63 //
  64 // The reader will find many data races in profile gathering code, starting
  65 // with invocation counter incrementation.  None of these races harm correct
  66 // execution of the compiled code.
  67 
  68 // forward decl
  69 class ProfileData;
  70 
  71 // DataLayout
  72 //
  73 // Overlay for generic profiling data.
  74 class DataLayout VALUE_OBJ_CLASS_SPEC {
  75   friend class VMStructs;
  76   friend class JVMCIVMStructs;
  77 
  78 private:
  79   // Every data layout begins with a header.  This header
  80   // contains a tag, which is used to indicate the size/layout
  81   // of the data, 4 bits of flags, which can be used in any way,
  82   // 4 bits of trap history (none/one reason/many reasons),
  83   // and a bci, which is used to tie this piece of data to a
  84   // specific bci in the bytecodes.
  85   union {
  86     intptr_t _bits;
  87     struct {
  88       u1 _tag;
  89       u1 _flags;
  90       u2 _bci;
  91     } _struct;
  92   } _header;
  93 
  94   // The data layout has an arbitrary number of cells, each sized
  95   // to accomodate a pointer or an integer.
  96   intptr_t _cells[1];
  97 
  98   // Some types of data layouts need a length field.
  99   static bool needs_array_len(u1 tag);
 100 
 101 public:
 102   enum {
 103     counter_increment = 1
 104   };
 105 
 106   enum {
 107     cell_size = sizeof(intptr_t)
 108   };
 109 
 110   // Tag values
 111   enum {
 112     no_tag,
 113     bit_data_tag,
 114     counter_data_tag,
 115     jump_data_tag,
 116     receiver_type_data_tag,
 117     virtual_call_data_tag,
 118     ret_data_tag,
 119     branch_data_tag,
 120     multi_branch_data_tag,
 121     arg_info_data_tag,
 122     call_type_data_tag,
 123     virtual_call_type_data_tag,
 124     parameters_type_data_tag,
 125     speculative_trap_data_tag
 126   };
 127 
 128   enum {
 129     // The _struct._flags word is formatted as [trap_state:4 | flags:4].
 130     // The trap state breaks down further as [recompile:1 | reason:3].
 131     // This further breakdown is defined in deoptimization.cpp.
 132     // See Deoptimization::trap_state_reason for an assert that
 133     // trap_bits is big enough to hold reasons < Reason_RECORDED_LIMIT.
 134     //
 135     // The trap_state is collected only if ProfileTraps is true.
 136     trap_bits = 1+3,  // 3: enough to distinguish [0..Reason_RECORDED_LIMIT].
 137     trap_shift = BitsPerByte - trap_bits,
 138     trap_mask = right_n_bits(trap_bits),
 139     trap_mask_in_place = (trap_mask << trap_shift),
 140     flag_limit = trap_shift,
 141     flag_mask = right_n_bits(flag_limit),
 142     first_flag = 0
 143   };
 144 
 145   // Size computation
 146   static int header_size_in_bytes() {
 147     return cell_size;
 148   }
 149   static int header_size_in_cells() {
 150     return 1;
 151   }
 152 
 153   static int compute_size_in_bytes(int cell_count) {
 154     return header_size_in_bytes() + cell_count * cell_size;
 155   }
 156 
 157   // Initialization
 158   void initialize(u1 tag, u2 bci, int cell_count);
 159 
 160   // Accessors
 161   u1 tag() {
 162     return _header._struct._tag;
 163   }
 164 
 165   // Return a few bits of trap state.  Range is [0..trap_mask].
 166   // The state tells if traps with zero, one, or many reasons have occurred.
 167   // It also tells whether zero or many recompilations have occurred.
 168   // The associated trap histogram in the MDO itself tells whether
 169   // traps are common or not.  If a BCI shows that a trap X has
 170   // occurred, and the MDO shows N occurrences of X, we make the
 171   // simplifying assumption that all N occurrences can be blamed
 172   // on that BCI.
 173   int trap_state() const {
 174     return ((_header._struct._flags >> trap_shift) & trap_mask);
 175   }
 176 
 177   void set_trap_state(int new_state) {
 178     assert(ProfileTraps, "used only under +ProfileTraps");
 179     uint old_flags = (_header._struct._flags & flag_mask);
 180     _header._struct._flags = (new_state << trap_shift) | old_flags;
 181   }
 182 
 183   u1 flags() const {
 184     return _header._struct._flags;
 185   }
 186 
 187   u2 bci() const {
 188     return _header._struct._bci;
 189   }
 190 
 191   void set_header(intptr_t value) {
 192     _header._bits = value;
 193   }
 194   intptr_t header() {
 195     return _header._bits;
 196   }
 197   void set_cell_at(int index, intptr_t value) {
 198     _cells[index] = value;
 199   }
 200   void release_set_cell_at(int index, intptr_t value) {
 201     OrderAccess::release_store_ptr(&_cells[index], value);
 202   }
 203   intptr_t cell_at(int index) const {
 204     return _cells[index];
 205   }
 206 
 207   void set_flag_at(int flag_number) {
 208     assert(flag_number < flag_limit, "oob");
 209     _header._struct._flags |= (0x1 << flag_number);
 210   }
 211   bool flag_at(int flag_number) const {
 212     assert(flag_number < flag_limit, "oob");
 213     return (_header._struct._flags & (0x1 << flag_number)) != 0;
 214   }
 215 
 216   // Low-level support for code generation.
 217   static ByteSize header_offset() {
 218     return byte_offset_of(DataLayout, _header);
 219   }
 220   static ByteSize tag_offset() {
 221     return byte_offset_of(DataLayout, _header._struct._tag);
 222   }
 223   static ByteSize flags_offset() {
 224     return byte_offset_of(DataLayout, _header._struct._flags);
 225   }
 226   static ByteSize bci_offset() {
 227     return byte_offset_of(DataLayout, _header._struct._bci);
 228   }
 229   static ByteSize cell_offset(int index) {
 230     return byte_offset_of(DataLayout, _cells) + in_ByteSize(index * cell_size);
 231   }
 232 #ifdef CC_INTERP
 233   static int cell_offset_in_bytes(int index) {
 234     return (int)offset_of(DataLayout, _cells[index]);
 235   }
 236 #endif // CC_INTERP
 237   // Return a value which, when or-ed as a byte into _flags, sets the flag.
 238   static int flag_number_to_byte_constant(int flag_number) {
 239     assert(0 <= flag_number && flag_number < flag_limit, "oob");
 240     DataLayout temp; temp.set_header(0);
 241     temp.set_flag_at(flag_number);
 242     return temp._header._struct._flags;
 243   }
 244   // Return a value which, when or-ed as a word into _header, sets the flag.
 245   static intptr_t flag_mask_to_header_mask(int byte_constant) {
 246     DataLayout temp; temp.set_header(0);
 247     temp._header._struct._flags = byte_constant;
 248     return temp._header._bits;
 249   }
 250 
 251   ProfileData* data_in();
 252 
 253   // GC support
 254   void clean_weak_klass_links(BoolObjectClosure* cl);
 255 
 256   // Redefinition support
 257   void clean_weak_method_links();
 258   DEBUG_ONLY(void verify_clean_weak_method_links();)
 259 };
 260 
 261 
 262 // ProfileData class hierarchy
 263 class ProfileData;
 264 class   BitData;
 265 class     CounterData;
 266 class       ReceiverTypeData;
 267 class         VirtualCallData;
 268 class           VirtualCallTypeData;
 269 class       RetData;
 270 class       CallTypeData;
 271 class   JumpData;
 272 class     BranchData;
 273 class   ArrayData;
 274 class     MultiBranchData;
 275 class     ArgInfoData;
 276 class     ParametersTypeData;
 277 class   SpeculativeTrapData;
 278 
 279 // ProfileData
 280 //
 281 // A ProfileData object is created to refer to a section of profiling
 282 // data in a structured way.
 283 class ProfileData : public ResourceObj {
 284   friend class TypeEntries;
 285   friend class ReturnTypeEntry;
 286   friend class TypeStackSlotEntries;
 287 private:
 288   enum {
 289     tab_width_one = 16,
 290     tab_width_two = 36
 291   };
 292 
 293   // This is a pointer to a section of profiling data.
 294   DataLayout* _data;
 295 
 296   char* print_data_on_helper(const MethodData* md) const;
 297 
 298 protected:
 299   DataLayout* data() { return _data; }
 300   const DataLayout* data() const { return _data; }
 301 
 302   enum {
 303     cell_size = DataLayout::cell_size
 304   };
 305 
 306 public:
 307   // How many cells are in this?
 308   virtual int cell_count() const {
 309     ShouldNotReachHere();
 310     return -1;
 311   }
 312 
 313   // Return the size of this data.
 314   int size_in_bytes() {
 315     return DataLayout::compute_size_in_bytes(cell_count());
 316   }
 317 
 318 protected:
 319   // Low-level accessors for underlying data
 320   void set_intptr_at(int index, intptr_t value) {
 321     assert(0 <= index && index < cell_count(), "oob");
 322     data()->set_cell_at(index, value);
 323   }
 324   void release_set_intptr_at(int index, intptr_t value) {
 325     assert(0 <= index && index < cell_count(), "oob");
 326     data()->release_set_cell_at(index, value);
 327   }
 328   intptr_t intptr_at(int index) const {
 329     assert(0 <= index && index < cell_count(), "oob");
 330     return data()->cell_at(index);
 331   }
 332   void set_uint_at(int index, uint value) {
 333     set_intptr_at(index, (intptr_t) value);
 334   }
 335   void release_set_uint_at(int index, uint value) {
 336     release_set_intptr_at(index, (intptr_t) value);
 337   }
 338   uint uint_at(int index) const {
 339     return (uint)intptr_at(index);
 340   }
 341   void set_int_at(int index, int value) {
 342     set_intptr_at(index, (intptr_t) value);
 343   }
 344   void release_set_int_at(int index, int value) {
 345     release_set_intptr_at(index, (intptr_t) value);
 346   }
 347   int int_at(int index) const {
 348     return (int)intptr_at(index);
 349   }
 350   int int_at_unchecked(int index) const {
 351     return (int)data()->cell_at(index);
 352   }
 353   void set_oop_at(int index, oop value) {
 354     set_intptr_at(index, cast_from_oop<intptr_t>(value));
 355   }
 356   oop oop_at(int index) const {
 357     return cast_to_oop(intptr_at(index));
 358   }
 359 
 360   void set_flag_at(int flag_number) {
 361     data()->set_flag_at(flag_number);
 362   }
 363   bool flag_at(int flag_number) const {
 364     return data()->flag_at(flag_number);
 365   }
 366 
 367   // two convenient imports for use by subclasses:
 368   static ByteSize cell_offset(int index) {
 369     return DataLayout::cell_offset(index);
 370   }
 371   static int flag_number_to_byte_constant(int flag_number) {
 372     return DataLayout::flag_number_to_byte_constant(flag_number);
 373   }
 374 
 375   ProfileData(DataLayout* data) {
 376     _data = data;
 377   }
 378 
 379 #ifdef CC_INTERP
 380   // Static low level accessors for DataLayout with ProfileData's semantics.
 381 
 382   static int cell_offset_in_bytes(int index) {
 383     return DataLayout::cell_offset_in_bytes(index);
 384   }
 385 
 386   static void increment_uint_at_no_overflow(DataLayout* layout, int index,
 387                                             int inc = DataLayout::counter_increment) {
 388     uint count = ((uint)layout->cell_at(index)) + inc;
 389     if (count == 0) return;
 390     layout->set_cell_at(index, (intptr_t) count);
 391   }
 392 
 393   static int int_at(DataLayout* layout, int index) {
 394     return (int)layout->cell_at(index);
 395   }
 396 
 397   static int uint_at(DataLayout* layout, int index) {
 398     return (uint)layout->cell_at(index);
 399   }
 400 
 401   static oop oop_at(DataLayout* layout, int index) {
 402     return cast_to_oop(layout->cell_at(index));
 403   }
 404 
 405   static void set_intptr_at(DataLayout* layout, int index, intptr_t value) {
 406     layout->set_cell_at(index, (intptr_t) value);
 407   }
 408 
 409   static void set_flag_at(DataLayout* layout, int flag_number) {
 410     layout->set_flag_at(flag_number);
 411   }
 412 #endif // CC_INTERP
 413 
 414 public:
 415   // Constructor for invalid ProfileData.
 416   ProfileData();
 417 
 418   u2 bci() const {
 419     return data()->bci();
 420   }
 421 
 422   address dp() {
 423     return (address)_data;
 424   }
 425 
 426   int trap_state() const {
 427     return data()->trap_state();
 428   }
 429   void set_trap_state(int new_state) {
 430     data()->set_trap_state(new_state);
 431   }
 432 
 433   // Type checking
 434   virtual bool is_BitData()         const { return false; }
 435   virtual bool is_CounterData()     const { return false; }
 436   virtual bool is_JumpData()        const { return false; }
 437   virtual bool is_ReceiverTypeData()const { return false; }
 438   virtual bool is_VirtualCallData() const { return false; }
 439   virtual bool is_RetData()         const { return false; }
 440   virtual bool is_BranchData()      const { return false; }
 441   virtual bool is_ArrayData()       const { return false; }
 442   virtual bool is_MultiBranchData() const { return false; }
 443   virtual bool is_ArgInfoData()     const { return false; }
 444   virtual bool is_CallTypeData()    const { return false; }
 445   virtual bool is_VirtualCallTypeData()const { return false; }
 446   virtual bool is_ParametersTypeData() const { return false; }
 447   virtual bool is_SpeculativeTrapData()const { return false; }
 448 
 449 
 450   BitData* as_BitData() const {
 451     assert(is_BitData(), "wrong type");
 452     return is_BitData()         ? (BitData*)        this : NULL;
 453   }
 454   CounterData* as_CounterData() const {
 455     assert(is_CounterData(), "wrong type");
 456     return is_CounterData()     ? (CounterData*)    this : NULL;
 457   }
 458   JumpData* as_JumpData() const {
 459     assert(is_JumpData(), "wrong type");
 460     return is_JumpData()        ? (JumpData*)       this : NULL;
 461   }
 462   ReceiverTypeData* as_ReceiverTypeData() const {
 463     assert(is_ReceiverTypeData(), "wrong type");
 464     return is_ReceiverTypeData() ? (ReceiverTypeData*)this : NULL;
 465   }
 466   VirtualCallData* as_VirtualCallData() const {
 467     assert(is_VirtualCallData(), "wrong type");
 468     return is_VirtualCallData() ? (VirtualCallData*)this : NULL;
 469   }
 470   RetData* as_RetData() const {
 471     assert(is_RetData(), "wrong type");
 472     return is_RetData()         ? (RetData*)        this : NULL;
 473   }
 474   BranchData* as_BranchData() const {
 475     assert(is_BranchData(), "wrong type");
 476     return is_BranchData()      ? (BranchData*)     this : NULL;
 477   }
 478   ArrayData* as_ArrayData() const {
 479     assert(is_ArrayData(), "wrong type");
 480     return is_ArrayData()       ? (ArrayData*)      this : NULL;
 481   }
 482   MultiBranchData* as_MultiBranchData() const {
 483     assert(is_MultiBranchData(), "wrong type");
 484     return is_MultiBranchData() ? (MultiBranchData*)this : NULL;
 485   }
 486   ArgInfoData* as_ArgInfoData() const {
 487     assert(is_ArgInfoData(), "wrong type");
 488     return is_ArgInfoData() ? (ArgInfoData*)this : NULL;
 489   }
 490   CallTypeData* as_CallTypeData() const {
 491     assert(is_CallTypeData(), "wrong type");
 492     return is_CallTypeData() ? (CallTypeData*)this : NULL;
 493   }
 494   VirtualCallTypeData* as_VirtualCallTypeData() const {
 495     assert(is_VirtualCallTypeData(), "wrong type");
 496     return is_VirtualCallTypeData() ? (VirtualCallTypeData*)this : NULL;
 497   }
 498   ParametersTypeData* as_ParametersTypeData() const {
 499     assert(is_ParametersTypeData(), "wrong type");
 500     return is_ParametersTypeData() ? (ParametersTypeData*)this : NULL;
 501   }
 502   SpeculativeTrapData* as_SpeculativeTrapData() const {
 503     assert(is_SpeculativeTrapData(), "wrong type");
 504     return is_SpeculativeTrapData() ? (SpeculativeTrapData*)this : NULL;
 505   }
 506 
 507 
 508   // Subclass specific initialization
 509   virtual void post_initialize(BytecodeStream* stream, MethodData* mdo) {}
 510 
 511   // GC support
 512   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {}
 513 
 514   // Redefinition support
 515   virtual void clean_weak_method_links() {}
 516   DEBUG_ONLY(virtual void verify_clean_weak_method_links() {})
 517 
 518   // CI translation: ProfileData can represent both MethodDataOop data
 519   // as well as CIMethodData data. This function is provided for translating
 520   // an oop in a ProfileData to the ci equivalent. Generally speaking,
 521   // most ProfileData don't require any translation, so we provide the null
 522   // translation here, and the required translators are in the ci subclasses.
 523   virtual void translate_from(const ProfileData* data) {}
 524 
 525   virtual void print_data_on(outputStream* st, const char* extra = NULL) const {
 526     ShouldNotReachHere();
 527   }
 528 
 529   void print_data_on(outputStream* st, const MethodData* md) const;
 530 
 531   void print_shared(outputStream* st, const char* name, const char* extra) const;
 532   void tab(outputStream* st, bool first = false) const;
 533 };
 534 
 535 // BitData
 536 //
 537 // A BitData holds a flag or two in its header.
 538 class BitData : public ProfileData {
 539   friend class VMStructs;
 540   friend class JVMCIVMStructs;
 541 protected:
 542   enum {
 543     // null_seen:
 544     //  saw a null operand (cast/aastore/instanceof)
 545       null_seen_flag              = DataLayout::first_flag + 0
 546 #if INCLUDE_JVMCI
 547     // bytecode threw any exception
 548     , exception_seen_flag         = null_seen_flag + 1
 549 #endif
 550   };
 551   enum { bit_cell_count = 0 };  // no additional data fields needed.
 552 public:
 553   BitData(DataLayout* layout) : ProfileData(layout) {
 554   }
 555 
 556   virtual bool is_BitData() const { return true; }
 557 
 558   static int static_cell_count() {
 559     return bit_cell_count;
 560   }
 561 
 562   virtual int cell_count() const {
 563     return static_cell_count();
 564   }
 565 
 566   // Accessor
 567 
 568   // The null_seen flag bit is specially known to the interpreter.
 569   // Consulting it allows the compiler to avoid setting up null_check traps.
 570   bool null_seen()     { return flag_at(null_seen_flag); }
 571   void set_null_seen()    { set_flag_at(null_seen_flag); }
 572 
 573 #if INCLUDE_JVMCI
 574   // true if an exception was thrown at the specific BCI
 575   bool exception_seen() { return flag_at(exception_seen_flag); }
 576   void set_exception_seen() { set_flag_at(exception_seen_flag); }
 577 #endif
 578 
 579   // Code generation support
 580   static int null_seen_byte_constant() {
 581     return flag_number_to_byte_constant(null_seen_flag);
 582   }
 583 
 584   static ByteSize bit_data_size() {
 585     return cell_offset(bit_cell_count);
 586   }
 587 
 588 #ifdef CC_INTERP
 589   static int bit_data_size_in_bytes() {
 590     return cell_offset_in_bytes(bit_cell_count);
 591   }
 592 
 593   static void set_null_seen(DataLayout* layout) {
 594     set_flag_at(layout, null_seen_flag);
 595   }
 596 
 597   static DataLayout* advance(DataLayout* layout) {
 598     return (DataLayout*) (((address)layout) + (ssize_t)BitData::bit_data_size_in_bytes());
 599   }
 600 #endif // CC_INTERP
 601 
 602   void print_data_on(outputStream* st, const char* extra = NULL) const;
 603 };
 604 
 605 // CounterData
 606 //
 607 // A CounterData corresponds to a simple counter.
 608 class CounterData : public BitData {
 609   friend class VMStructs;
 610   friend class JVMCIVMStructs;
 611 protected:
 612   enum {
 613     count_off,
 614     counter_cell_count
 615   };
 616 public:
 617   CounterData(DataLayout* layout) : BitData(layout) {}
 618 
 619   virtual bool is_CounterData() const { return true; }
 620 
 621   static int static_cell_count() {
 622     return counter_cell_count;
 623   }
 624 
 625   virtual int cell_count() const {
 626     return static_cell_count();
 627   }
 628 
 629   // Direct accessor
 630   uint count() const {
 631     return uint_at(count_off);
 632   }
 633 
 634   // Code generation support
 635   static ByteSize count_offset() {
 636     return cell_offset(count_off);
 637   }
 638   static ByteSize counter_data_size() {
 639     return cell_offset(counter_cell_count);
 640   }
 641 
 642   void set_count(uint count) {
 643     set_uint_at(count_off, count);
 644   }
 645 
 646 #ifdef CC_INTERP
 647   static int counter_data_size_in_bytes() {
 648     return cell_offset_in_bytes(counter_cell_count);
 649   }
 650 
 651   static void increment_count_no_overflow(DataLayout* layout) {
 652     increment_uint_at_no_overflow(layout, count_off);
 653   }
 654 
 655   // Support counter decrementation at checkcast / subtype check failed.
 656   static void decrement_count(DataLayout* layout) {
 657     increment_uint_at_no_overflow(layout, count_off, -1);
 658   }
 659 
 660   static DataLayout* advance(DataLayout* layout) {
 661     return (DataLayout*) (((address)layout) + (ssize_t)CounterData::counter_data_size_in_bytes());
 662   }
 663 #endif // CC_INTERP
 664 
 665   void print_data_on(outputStream* st, const char* extra = NULL) const;
 666 };
 667 
 668 // JumpData
 669 //
 670 // A JumpData is used to access profiling information for a direct
 671 // branch.  It is a counter, used for counting the number of branches,
 672 // plus a data displacement, used for realigning the data pointer to
 673 // the corresponding target bci.
 674 class JumpData : public ProfileData {
 675   friend class VMStructs;
 676   friend class JVMCIVMStructs;
 677 protected:
 678   enum {
 679     taken_off_set,
 680     displacement_off_set,
 681     jump_cell_count
 682   };
 683 
 684   void set_displacement(int displacement) {
 685     set_int_at(displacement_off_set, displacement);
 686   }
 687 
 688 public:
 689   JumpData(DataLayout* layout) : ProfileData(layout) {
 690     assert(layout->tag() == DataLayout::jump_data_tag ||
 691       layout->tag() == DataLayout::branch_data_tag, "wrong type");
 692   }
 693 
 694   virtual bool is_JumpData() const { return true; }
 695 
 696   static int static_cell_count() {
 697     return jump_cell_count;
 698   }
 699 
 700   virtual int cell_count() const {
 701     return static_cell_count();
 702   }
 703 
 704   // Direct accessor
 705   uint taken() const {
 706     return uint_at(taken_off_set);
 707   }
 708 
 709   void set_taken(uint cnt) {
 710     set_uint_at(taken_off_set, cnt);
 711   }
 712 
 713   // Saturating counter
 714   uint inc_taken() {
 715     uint cnt = taken() + 1;
 716     // Did we wrap? Will compiler screw us??
 717     if (cnt == 0) cnt--;
 718     set_uint_at(taken_off_set, cnt);
 719     return cnt;
 720   }
 721 
 722   int displacement() const {
 723     return int_at(displacement_off_set);
 724   }
 725 
 726   // Code generation support
 727   static ByteSize taken_offset() {
 728     return cell_offset(taken_off_set);
 729   }
 730 
 731   static ByteSize displacement_offset() {
 732     return cell_offset(displacement_off_set);
 733   }
 734 
 735 #ifdef CC_INTERP
 736   static void increment_taken_count_no_overflow(DataLayout* layout) {
 737     increment_uint_at_no_overflow(layout, taken_off_set);
 738   }
 739 
 740   static DataLayout* advance_taken(DataLayout* layout) {
 741     return (DataLayout*) (((address)layout) + (ssize_t)int_at(layout, displacement_off_set));
 742   }
 743 
 744   static uint taken_count(DataLayout* layout) {
 745     return (uint) uint_at(layout, taken_off_set);
 746   }
 747 #endif // CC_INTERP
 748 
 749   // Specific initialization.
 750   void post_initialize(BytecodeStream* stream, MethodData* mdo);
 751 
 752   void print_data_on(outputStream* st, const char* extra = NULL) const;
 753 };
 754 
 755 // Entries in a ProfileData object to record types: it can either be
 756 // none (no profile), unknown (conflicting profile data) or a klass if
 757 // a single one is seen. Whether a null reference was seen is also
 758 // recorded. No counter is associated with the type and a single type
 759 // is tracked (unlike VirtualCallData).
 760 class TypeEntries {
 761 
 762 public:
 763 
 764   // A single cell is used to record information for a type:
 765   // - the cell is initialized to 0
 766   // - when a type is discovered it is stored in the cell
 767   // - bit zero of the cell is used to record whether a null reference
 768   // was encountered or not
 769   // - bit 1 is set to record a conflict in the type information
 770 
 771   enum {
 772     null_seen = 1,
 773     type_mask = ~null_seen,
 774     type_unknown = 2,
 775     status_bits = null_seen | type_unknown,
 776     type_klass_mask = ~status_bits
 777   };
 778 
 779   // what to initialize a cell to
 780   static intptr_t type_none() {
 781     return 0;
 782   }
 783 
 784   // null seen = bit 0 set?
 785   static bool was_null_seen(intptr_t v) {
 786     return (v & null_seen) != 0;
 787   }
 788 
 789   // conflicting type information = bit 1 set?
 790   static bool is_type_unknown(intptr_t v) {
 791     return (v & type_unknown) != 0;
 792   }
 793 
 794   // not type information yet = all bits cleared, ignoring bit 0?
 795   static bool is_type_none(intptr_t v) {
 796     return (v & type_mask) == 0;
 797   }
 798 
 799   // recorded type: cell without bit 0 and 1
 800   static intptr_t klass_part(intptr_t v) {
 801     intptr_t r = v & type_klass_mask;
 802     return r;
 803   }
 804 
 805   // type recorded
 806   static Klass* valid_klass(intptr_t k) {
 807     if (!is_type_none(k) &&
 808         !is_type_unknown(k)) {
 809       Klass* res = (Klass*)klass_part(k);
 810       assert(res != NULL, "invalid");
 811       return res;
 812     } else {
 813       return NULL;
 814     }
 815   }
 816 
 817   static intptr_t with_status(intptr_t k, intptr_t in) {
 818     return k | (in & status_bits);
 819   }
 820 
 821   static intptr_t with_status(Klass* k, intptr_t in) {
 822     return with_status((intptr_t)k, in);
 823   }
 824 
 825   static void print_klass(outputStream* st, intptr_t k);
 826 
 827   // GC support
 828   static bool is_loader_alive(BoolObjectClosure* is_alive_cl, intptr_t p);
 829 
 830 protected:
 831   // ProfileData object these entries are part of
 832   ProfileData* _pd;
 833   // offset within the ProfileData object where the entries start
 834   const int _base_off;
 835 
 836   TypeEntries(int base_off)
 837     : _base_off(base_off), _pd(NULL) {}
 838 
 839   void set_intptr_at(int index, intptr_t value) {
 840     _pd->set_intptr_at(index, value);
 841   }
 842 
 843   intptr_t intptr_at(int index) const {
 844     return _pd->intptr_at(index);
 845   }
 846 
 847 public:
 848   void set_profile_data(ProfileData* pd) {
 849     _pd = pd;
 850   }
 851 };
 852 
 853 // Type entries used for arguments passed at a call and parameters on
 854 // method entry. 2 cells per entry: one for the type encoded as in
 855 // TypeEntries and one initialized with the stack slot where the
 856 // profiled object is to be found so that the interpreter can locate
 857 // it quickly.
 858 class TypeStackSlotEntries : public TypeEntries {
 859 
 860 private:
 861   enum {
 862     stack_slot_entry,
 863     type_entry,
 864     per_arg_cell_count
 865   };
 866 
 867   // offset of cell for stack slot for entry i within ProfileData object
 868   int stack_slot_offset(int i) const {
 869     return _base_off + stack_slot_local_offset(i);
 870   }
 871 
 872   const int _number_of_entries;
 873 
 874   // offset of cell for type for entry i within ProfileData object
 875   int type_offset_in_cells(int i) const {
 876     return _base_off + type_local_offset(i);
 877   }
 878 
 879 public:
 880 
 881   TypeStackSlotEntries(int base_off, int nb_entries)
 882     : TypeEntries(base_off), _number_of_entries(nb_entries) {}
 883 
 884   static int compute_cell_count(Symbol* signature, bool include_receiver, int max);
 885 
 886   void post_initialize(Symbol* signature, bool has_receiver, bool include_receiver);
 887 
 888   int number_of_entries() const { return _number_of_entries; }
 889 
 890   // offset of cell for stack slot for entry i within this block of cells for a TypeStackSlotEntries
 891   static int stack_slot_local_offset(int i) {
 892     return i * per_arg_cell_count + stack_slot_entry;
 893   }
 894 
 895   // offset of cell for type for entry i within this block of cells for a TypeStackSlotEntries
 896   static int type_local_offset(int i) {
 897     return i * per_arg_cell_count + type_entry;
 898   }
 899 
 900   // stack slot for entry i
 901   uint stack_slot(int i) const {
 902     assert(i >= 0 && i < _number_of_entries, "oob");
 903     return _pd->uint_at(stack_slot_offset(i));
 904   }
 905 
 906   // set stack slot for entry i
 907   void set_stack_slot(int i, uint num) {
 908     assert(i >= 0 && i < _number_of_entries, "oob");
 909     _pd->set_uint_at(stack_slot_offset(i), num);
 910   }
 911 
 912   // type for entry i
 913   intptr_t type(int i) const {
 914     assert(i >= 0 && i < _number_of_entries, "oob");
 915     return _pd->intptr_at(type_offset_in_cells(i));
 916   }
 917 
 918   // set type for entry i
 919   void set_type(int i, intptr_t k) {
 920     assert(i >= 0 && i < _number_of_entries, "oob");
 921     _pd->set_intptr_at(type_offset_in_cells(i), k);
 922   }
 923 
 924   static ByteSize per_arg_size() {
 925     return in_ByteSize(per_arg_cell_count * DataLayout::cell_size);
 926   }
 927 
 928   static int per_arg_count() {
 929     return per_arg_cell_count;
 930   }
 931 
 932   ByteSize type_offset(int i) const {
 933     return DataLayout::cell_offset(type_offset_in_cells(i));
 934   }
 935 
 936   // GC support
 937   void clean_weak_klass_links(BoolObjectClosure* is_alive_closure);
 938 
 939   void print_data_on(outputStream* st) const;
 940 };
 941 
 942 // Type entry used for return from a call. A single cell to record the
 943 // type.
 944 class ReturnTypeEntry : public TypeEntries {
 945 
 946 private:
 947   enum {
 948     cell_count = 1
 949   };
 950 
 951 public:
 952   ReturnTypeEntry(int base_off)
 953     : TypeEntries(base_off) {}
 954 
 955   void post_initialize() {
 956     set_type(type_none());
 957   }
 958 
 959   intptr_t type() const {
 960     return _pd->intptr_at(_base_off);
 961   }
 962 
 963   void set_type(intptr_t k) {
 964     _pd->set_intptr_at(_base_off, k);
 965   }
 966 
 967   static int static_cell_count() {
 968     return cell_count;
 969   }
 970 
 971   static ByteSize size() {
 972     return in_ByteSize(cell_count * DataLayout::cell_size);
 973   }
 974 
 975   ByteSize type_offset() {
 976     return DataLayout::cell_offset(_base_off);
 977   }
 978 
 979   // GC support
 980   void clean_weak_klass_links(BoolObjectClosure* is_alive_closure);
 981 
 982   void print_data_on(outputStream* st) const;
 983 };
 984 
 985 // Entries to collect type information at a call: contains arguments
 986 // (TypeStackSlotEntries), a return type (ReturnTypeEntry) and a
 987 // number of cells. Because the number of cells for the return type is
 988 // smaller than the number of cells for the type of an arguments, the
 989 // number of cells is used to tell how many arguments are profiled and
 990 // whether a return value is profiled. See has_arguments() and
 991 // has_return().
 992 class TypeEntriesAtCall {
 993 private:
 994   static int stack_slot_local_offset(int i) {
 995     return header_cell_count() + TypeStackSlotEntries::stack_slot_local_offset(i);
 996   }
 997 
 998   static int argument_type_local_offset(int i) {
 999     return header_cell_count() + TypeStackSlotEntries::type_local_offset(i);
1000   }
1001 
1002 public:
1003 
1004   static int header_cell_count() {
1005     return 1;
1006   }
1007 
1008   static int cell_count_local_offset() {
1009     return 0;
1010   }
1011 
1012   static int compute_cell_count(BytecodeStream* stream);
1013 
1014   static void initialize(DataLayout* dl, int base, int cell_count) {
1015     int off = base + cell_count_local_offset();
1016     dl->set_cell_at(off, cell_count - base - header_cell_count());
1017   }
1018 
1019   static bool arguments_profiling_enabled();
1020   static bool return_profiling_enabled();
1021 
1022   // Code generation support
1023   static ByteSize cell_count_offset() {
1024     return in_ByteSize(cell_count_local_offset() * DataLayout::cell_size);
1025   }
1026 
1027   static ByteSize args_data_offset() {
1028     return in_ByteSize(header_cell_count() * DataLayout::cell_size);
1029   }
1030 
1031   static ByteSize stack_slot_offset(int i) {
1032     return in_ByteSize(stack_slot_local_offset(i) * DataLayout::cell_size);
1033   }
1034 
1035   static ByteSize argument_type_offset(int i) {
1036     return in_ByteSize(argument_type_local_offset(i) * DataLayout::cell_size);
1037   }
1038 
1039   static ByteSize return_only_size() {
1040     return ReturnTypeEntry::size() + in_ByteSize(header_cell_count() * DataLayout::cell_size);
1041   }
1042 
1043 };
1044 
1045 // CallTypeData
1046 //
1047 // A CallTypeData is used to access profiling information about a non
1048 // virtual call for which we collect type information about arguments
1049 // and return value.
1050 class CallTypeData : public CounterData {
1051 private:
1052   // entries for arguments if any
1053   TypeStackSlotEntries _args;
1054   // entry for return type if any
1055   ReturnTypeEntry _ret;
1056 
1057   int cell_count_global_offset() const {
1058     return CounterData::static_cell_count() + TypeEntriesAtCall::cell_count_local_offset();
1059   }
1060 
1061   // number of cells not counting the header
1062   int cell_count_no_header() const {
1063     return uint_at(cell_count_global_offset());
1064   }
1065 
1066   void check_number_of_arguments(int total) {
1067     assert(number_of_arguments() == total, "should be set in DataLayout::initialize");
1068   }
1069 
1070 public:
1071   CallTypeData(DataLayout* layout) :
1072     CounterData(layout),
1073     _args(CounterData::static_cell_count()+TypeEntriesAtCall::header_cell_count(), number_of_arguments()),
1074     _ret(cell_count() - ReturnTypeEntry::static_cell_count())
1075   {
1076     assert(layout->tag() == DataLayout::call_type_data_tag, "wrong type");
1077     // Some compilers (VC++) don't want this passed in member initialization list
1078     _args.set_profile_data(this);
1079     _ret.set_profile_data(this);
1080   }
1081 
1082   const TypeStackSlotEntries* args() const {
1083     assert(has_arguments(), "no profiling of arguments");
1084     return &_args;
1085   }
1086 
1087   const ReturnTypeEntry* ret() const {
1088     assert(has_return(), "no profiling of return value");
1089     return &_ret;
1090   }
1091 
1092   virtual bool is_CallTypeData() const { return true; }
1093 
1094   static int static_cell_count() {
1095     return -1;
1096   }
1097 
1098   static int compute_cell_count(BytecodeStream* stream) {
1099     return CounterData::static_cell_count() + TypeEntriesAtCall::compute_cell_count(stream);
1100   }
1101 
1102   static void initialize(DataLayout* dl, int cell_count) {
1103     TypeEntriesAtCall::initialize(dl, CounterData::static_cell_count(), cell_count);
1104   }
1105 
1106   virtual void post_initialize(BytecodeStream* stream, MethodData* mdo);
1107 
1108   virtual int cell_count() const {
1109     return CounterData::static_cell_count() +
1110       TypeEntriesAtCall::header_cell_count() +
1111       int_at_unchecked(cell_count_global_offset());
1112   }
1113 
1114   int number_of_arguments() const {
1115     return cell_count_no_header() / TypeStackSlotEntries::per_arg_count();
1116   }
1117 
1118   void set_argument_type(int i, Klass* k) {
1119     assert(has_arguments(), "no arguments!");
1120     intptr_t current = _args.type(i);
1121     _args.set_type(i, TypeEntries::with_status(k, current));
1122   }
1123 
1124   void set_return_type(Klass* k) {
1125     assert(has_return(), "no return!");
1126     intptr_t current = _ret.type();
1127     _ret.set_type(TypeEntries::with_status(k, current));
1128   }
1129 
1130   // An entry for a return value takes less space than an entry for an
1131   // argument so if the number of cells exceeds the number of cells
1132   // needed for an argument, this object contains type information for
1133   // at least one argument.
1134   bool has_arguments() const {
1135     bool res = cell_count_no_header() >= TypeStackSlotEntries::per_arg_count();
1136     assert (!res || TypeEntriesAtCall::arguments_profiling_enabled(), "no profiling of arguments");
1137     return res;
1138   }
1139 
1140   // An entry for a return value takes less space than an entry for an
1141   // argument, so if the remainder of the number of cells divided by
1142   // the number of cells for an argument is not null, a return value
1143   // is profiled in this object.
1144   bool has_return() const {
1145     bool res = (cell_count_no_header() % TypeStackSlotEntries::per_arg_count()) != 0;
1146     assert (!res || TypeEntriesAtCall::return_profiling_enabled(), "no profiling of return values");
1147     return res;
1148   }
1149 
1150   // Code generation support
1151   static ByteSize args_data_offset() {
1152     return cell_offset(CounterData::static_cell_count()) + TypeEntriesAtCall::args_data_offset();
1153   }
1154 
1155   ByteSize argument_type_offset(int i) {
1156     return _args.type_offset(i);
1157   }
1158 
1159   ByteSize return_type_offset() {
1160     return _ret.type_offset();
1161   }
1162 
1163   // GC support
1164   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {
1165     if (has_arguments()) {
1166       _args.clean_weak_klass_links(is_alive_closure);
1167     }
1168     if (has_return()) {
1169       _ret.clean_weak_klass_links(is_alive_closure);
1170     }
1171   }
1172 
1173   virtual void print_data_on(outputStream* st, const char* extra = NULL) const;
1174 };
1175 
1176 // ReceiverTypeData
1177 //
1178 // A ReceiverTypeData is used to access profiling information about a
1179 // dynamic type check.  It consists of a counter which counts the total times
1180 // that the check is reached, and a series of (Klass*, count) pairs
1181 // which are used to store a type profile for the receiver of the check.
1182 class ReceiverTypeData : public CounterData {
1183   friend class VMStructs;
1184   friend class JVMCIVMStructs;
1185 protected:
1186   enum {
1187 #if INCLUDE_JVMCI
1188     // Description of the different counters
1189     // ReceiverTypeData for instanceof/checkcast/aastore:
1190     //   C1/C2: count is incremented on type overflow and decremented for failed type checks
1191     //   JVMCI: count decremented for failed type checks and nonprofiled_count is incremented on type overflow
1192     //          TODO (chaeubl): in fact, JVMCI should also increment the count for failed type checks to mimic the C1/C2 behavior
1193     // VirtualCallData for invokevirtual/invokeinterface:
1194     //   C1/C2: count is incremented on type overflow
1195     //   JVMCI: count is incremented on type overflow, nonprofiled_count is incremented on method overflow
1196 
1197     // JVMCI is interested in knowing the percentage of type checks involving a type not explicitly in the profile
1198     nonprofiled_count_off_set = counter_cell_count,
1199     receiver0_offset,
1200 #else
1201     receiver0_offset = counter_cell_count,
1202 #endif
1203     count0_offset,
1204     receiver_type_row_cell_count = (count0_offset + 1) - receiver0_offset
1205   };
1206 
1207 public:
1208   ReceiverTypeData(DataLayout* layout) : CounterData(layout) {
1209     assert(layout->tag() == DataLayout::receiver_type_data_tag ||
1210            layout->tag() == DataLayout::virtual_call_data_tag ||
1211            layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type");
1212   }
1213 
1214   virtual bool is_ReceiverTypeData() const { return true; }
1215 
1216   static int static_cell_count() {
1217     return counter_cell_count + (uint) TypeProfileWidth * receiver_type_row_cell_count JVMCI_ONLY(+ 1);
1218   }
1219 
1220   virtual int cell_count() const {
1221     return static_cell_count();
1222   }
1223 
1224   // Direct accessors
1225   static uint row_limit() {
1226     return TypeProfileWidth;
1227   }
1228   static int receiver_cell_index(uint row) {
1229     return receiver0_offset + row * receiver_type_row_cell_count;
1230   }
1231   static int receiver_count_cell_index(uint row) {
1232     return count0_offset + row * receiver_type_row_cell_count;
1233   }
1234 
1235   Klass* receiver(uint row) const {
1236     assert(row < row_limit(), "oob");
1237 
1238     Klass* recv = (Klass*)intptr_at(receiver_cell_index(row));
1239     assert(recv == NULL || recv->is_klass(), "wrong type");
1240     return recv;
1241   }
1242 
1243   void set_receiver(uint row, Klass* k) {
1244     assert((uint)row < row_limit(), "oob");
1245     set_intptr_at(receiver_cell_index(row), (uintptr_t)k);
1246   }
1247 
1248   uint receiver_count(uint row) const {
1249     assert(row < row_limit(), "oob");
1250     return uint_at(receiver_count_cell_index(row));
1251   }
1252 
1253   void set_receiver_count(uint row, uint count) {
1254     assert(row < row_limit(), "oob");
1255     set_uint_at(receiver_count_cell_index(row), count);
1256   }
1257 
1258   void clear_row(uint row) {
1259     assert(row < row_limit(), "oob");
1260     // Clear total count - indicator of polymorphic call site.
1261     // The site may look like as monomorphic after that but
1262     // it allow to have more accurate profiling information because
1263     // there was execution phase change since klasses were unloaded.
1264     // If the site is still polymorphic then MDO will be updated
1265     // to reflect it. But it could be the case that the site becomes
1266     // only bimorphic. Then keeping total count not 0 will be wrong.
1267     // Even if we use monomorphic (when it is not) for compilation
1268     // we will only have trap, deoptimization and recompile again
1269     // with updated MDO after executing method in Interpreter.
1270     // An additional receiver will be recorded in the cleaned row
1271     // during next call execution.
1272     //
1273     // Note: our profiling logic works with empty rows in any slot.
1274     // We do sorting a profiling info (ciCallProfile) for compilation.
1275     //
1276     set_count(0);
1277     set_receiver(row, NULL);
1278     set_receiver_count(row, 0);
1279 #if INCLUDE_JVMCI
1280     if (!this->is_VirtualCallData()) {
1281       // if this is a ReceiverTypeData for JVMCI, the nonprofiled_count
1282       // must also be reset (see "Description of the different counters" above)
1283       set_nonprofiled_count(0);
1284     }
1285 #endif
1286   }
1287 
1288   // Code generation support
1289   static ByteSize receiver_offset(uint row) {
1290     return cell_offset(receiver_cell_index(row));
1291   }
1292   static ByteSize receiver_count_offset(uint row) {
1293     return cell_offset(receiver_count_cell_index(row));
1294   }
1295 #if INCLUDE_JVMCI
1296   static ByteSize nonprofiled_receiver_count_offset() {
1297     return cell_offset(nonprofiled_count_off_set);
1298   }
1299   uint nonprofiled_count() const {
1300     return uint_at(nonprofiled_count_off_set);
1301   }
1302   void set_nonprofiled_count(uint count) {
1303     set_uint_at(nonprofiled_count_off_set, count);
1304   }
1305 #endif // INCLUDE_JVMCI
1306   static ByteSize receiver_type_data_size() {
1307     return cell_offset(static_cell_count());
1308   }
1309 
1310   // GC support
1311   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure);
1312 
1313 #ifdef CC_INTERP
1314   static int receiver_type_data_size_in_bytes() {
1315     return cell_offset_in_bytes(static_cell_count());
1316   }
1317 
1318   static Klass *receiver_unchecked(DataLayout* layout, uint row) {
1319     Klass* recv = (Klass*)layout->cell_at(receiver_cell_index(row));
1320     return recv;
1321   }
1322 
1323   static void increment_receiver_count_no_overflow(DataLayout* layout, Klass *rcvr) {
1324     const int num_rows = row_limit();
1325     // Receiver already exists?
1326     for (int row = 0; row < num_rows; row++) {
1327       if (receiver_unchecked(layout, row) == rcvr) {
1328         increment_uint_at_no_overflow(layout, receiver_count_cell_index(row));
1329         return;
1330       }
1331     }
1332     // New receiver, find a free slot.
1333     for (int row = 0; row < num_rows; row++) {
1334       if (receiver_unchecked(layout, row) == NULL) {
1335         set_intptr_at(layout, receiver_cell_index(row), (intptr_t)rcvr);
1336         increment_uint_at_no_overflow(layout, receiver_count_cell_index(row));
1337         return;
1338       }
1339     }
1340     // Receiver did not match any saved receiver and there is no empty row for it.
1341     // Increment total counter to indicate polymorphic case.
1342     increment_count_no_overflow(layout);
1343   }
1344 
1345   static DataLayout* advance(DataLayout* layout) {
1346     return (DataLayout*) (((address)layout) + (ssize_t)ReceiverTypeData::receiver_type_data_size_in_bytes());
1347   }
1348 #endif // CC_INTERP
1349 
1350   void print_receiver_data_on(outputStream* st) const;
1351   void print_data_on(outputStream* st, const char* extra = NULL) const;
1352 };
1353 
1354 // VirtualCallData
1355 //
1356 // A VirtualCallData is used to access profiling information about a
1357 // virtual call.  For now, it has nothing more than a ReceiverTypeData.
1358 class VirtualCallData : public ReceiverTypeData {
1359 public:
1360   VirtualCallData(DataLayout* layout) : ReceiverTypeData(layout) {
1361     assert(layout->tag() == DataLayout::virtual_call_data_tag ||
1362            layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type");
1363   }
1364 
1365   virtual bool is_VirtualCallData() const { return true; }
1366 
1367   static int static_cell_count() {
1368     // At this point we could add more profile state, e.g., for arguments.
1369     // But for now it's the same size as the base record type.
1370     return ReceiverTypeData::static_cell_count() JVMCI_ONLY(+ (uint) MethodProfileWidth * receiver_type_row_cell_count);
1371   }
1372 
1373   virtual int cell_count() const {
1374     return static_cell_count();
1375   }
1376 
1377   // Direct accessors
1378   static ByteSize virtual_call_data_size() {
1379     return cell_offset(static_cell_count());
1380   }
1381 
1382 #ifdef CC_INTERP
1383   static int virtual_call_data_size_in_bytes() {
1384     return cell_offset_in_bytes(static_cell_count());
1385   }
1386 
1387   static DataLayout* advance(DataLayout* layout) {
1388     return (DataLayout*) (((address)layout) + (ssize_t)VirtualCallData::virtual_call_data_size_in_bytes());
1389   }
1390 #endif // CC_INTERP
1391 
1392 #if INCLUDE_JVMCI
1393   static ByteSize method_offset(uint row) {
1394     return cell_offset(method_cell_index(row));
1395   }
1396   static ByteSize method_count_offset(uint row) {
1397     return cell_offset(method_count_cell_index(row));
1398   }
1399   static int method_cell_index(uint row) {
1400     return receiver0_offset + (row + TypeProfileWidth) * receiver_type_row_cell_count;
1401   }
1402   static int method_count_cell_index(uint row) {
1403     return count0_offset + (row + TypeProfileWidth) * receiver_type_row_cell_count;
1404   }
1405   static uint method_row_limit() {
1406     return MethodProfileWidth;
1407   }
1408 
1409   Method* method(uint row) const {
1410     assert(row < method_row_limit(), "oob");
1411 
1412     Method* method = (Method*)intptr_at(method_cell_index(row));
1413     assert(method == NULL || method->is_method(), "must be");
1414     return method;
1415   }
1416 
1417   uint method_count(uint row) const {
1418     assert(row < method_row_limit(), "oob");
1419     return uint_at(method_count_cell_index(row));
1420   }
1421 
1422   void set_method(uint row, Method* m) {
1423     assert((uint)row < method_row_limit(), "oob");
1424     set_intptr_at(method_cell_index(row), (uintptr_t)m);
1425   }
1426 
1427   void set_method_count(uint row, uint count) {
1428     assert(row < method_row_limit(), "oob");
1429     set_uint_at(method_count_cell_index(row), count);
1430   }
1431 
1432   void clear_method_row(uint row) {
1433     assert(row < method_row_limit(), "oob");
1434     // Clear total count - indicator of polymorphic call site (see comment for clear_row() in ReceiverTypeData).
1435     set_nonprofiled_count(0);
1436     set_method(row, NULL);
1437     set_method_count(row, 0);
1438   }
1439 
1440   // GC support
1441   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure);
1442 
1443   // Redefinition support
1444   virtual void clean_weak_method_links();
1445 #endif // INCLUDE_JVMCI
1446 
1447   void print_method_data_on(outputStream* st) const NOT_JVMCI_RETURN;
1448   void print_data_on(outputStream* st, const char* extra = NULL) const;
1449 };
1450 
1451 // VirtualCallTypeData
1452 //
1453 // A VirtualCallTypeData is used to access profiling information about
1454 // a virtual call for which we collect type information about
1455 // arguments and return value.
1456 class VirtualCallTypeData : public VirtualCallData {
1457 private:
1458   // entries for arguments if any
1459   TypeStackSlotEntries _args;
1460   // entry for return type if any
1461   ReturnTypeEntry _ret;
1462 
1463   int cell_count_global_offset() const {
1464     return VirtualCallData::static_cell_count() + TypeEntriesAtCall::cell_count_local_offset();
1465   }
1466 
1467   // number of cells not counting the header
1468   int cell_count_no_header() const {
1469     return uint_at(cell_count_global_offset());
1470   }
1471 
1472   void check_number_of_arguments(int total) {
1473     assert(number_of_arguments() == total, "should be set in DataLayout::initialize");
1474   }
1475 
1476 public:
1477   VirtualCallTypeData(DataLayout* layout) :
1478     VirtualCallData(layout),
1479     _args(VirtualCallData::static_cell_count()+TypeEntriesAtCall::header_cell_count(), number_of_arguments()),
1480     _ret(cell_count() - ReturnTypeEntry::static_cell_count())
1481   {
1482     assert(layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type");
1483     // Some compilers (VC++) don't want this passed in member initialization list
1484     _args.set_profile_data(this);
1485     _ret.set_profile_data(this);
1486   }
1487 
1488   const TypeStackSlotEntries* args() const {
1489     assert(has_arguments(), "no profiling of arguments");
1490     return &_args;
1491   }
1492 
1493   const ReturnTypeEntry* ret() const {
1494     assert(has_return(), "no profiling of return value");
1495     return &_ret;
1496   }
1497 
1498   virtual bool is_VirtualCallTypeData() const { return true; }
1499 
1500   static int static_cell_count() {
1501     return -1;
1502   }
1503 
1504   static int compute_cell_count(BytecodeStream* stream) {
1505     return VirtualCallData::static_cell_count() + TypeEntriesAtCall::compute_cell_count(stream);
1506   }
1507 
1508   static void initialize(DataLayout* dl, int cell_count) {
1509     TypeEntriesAtCall::initialize(dl, VirtualCallData::static_cell_count(), cell_count);
1510   }
1511 
1512   virtual void post_initialize(BytecodeStream* stream, MethodData* mdo);
1513 
1514   virtual int cell_count() const {
1515     return VirtualCallData::static_cell_count() +
1516       TypeEntriesAtCall::header_cell_count() +
1517       int_at_unchecked(cell_count_global_offset());
1518   }
1519 
1520   int number_of_arguments() const {
1521     return cell_count_no_header() / TypeStackSlotEntries::per_arg_count();
1522   }
1523 
1524   void set_argument_type(int i, Klass* k) {
1525     assert(has_arguments(), "no arguments!");
1526     intptr_t current = _args.type(i);
1527     _args.set_type(i, TypeEntries::with_status(k, current));
1528   }
1529 
1530   void set_return_type(Klass* k) {
1531     assert(has_return(), "no return!");
1532     intptr_t current = _ret.type();
1533     _ret.set_type(TypeEntries::with_status(k, current));
1534   }
1535 
1536   // An entry for a return value takes less space than an entry for an
1537   // argument, so if the remainder of the number of cells divided by
1538   // the number of cells for an argument is not null, a return value
1539   // is profiled in this object.
1540   bool has_return() const {
1541     bool res = (cell_count_no_header() % TypeStackSlotEntries::per_arg_count()) != 0;
1542     assert (!res || TypeEntriesAtCall::return_profiling_enabled(), "no profiling of return values");
1543     return res;
1544   }
1545 
1546   // An entry for a return value takes less space than an entry for an
1547   // argument so if the number of cells exceeds the number of cells
1548   // needed for an argument, this object contains type information for
1549   // at least one argument.
1550   bool has_arguments() const {
1551     bool res = cell_count_no_header() >= TypeStackSlotEntries::per_arg_count();
1552     assert (!res || TypeEntriesAtCall::arguments_profiling_enabled(), "no profiling of arguments");
1553     return res;
1554   }
1555 
1556   // Code generation support
1557   static ByteSize args_data_offset() {
1558     return cell_offset(VirtualCallData::static_cell_count()) + TypeEntriesAtCall::args_data_offset();
1559   }
1560 
1561   ByteSize argument_type_offset(int i) {
1562     return _args.type_offset(i);
1563   }
1564 
1565   ByteSize return_type_offset() {
1566     return _ret.type_offset();
1567   }
1568 
1569   // GC support
1570   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {
1571     ReceiverTypeData::clean_weak_klass_links(is_alive_closure);
1572     if (has_arguments()) {
1573       _args.clean_weak_klass_links(is_alive_closure);
1574     }
1575     if (has_return()) {
1576       _ret.clean_weak_klass_links(is_alive_closure);
1577     }
1578   }
1579 
1580   virtual void print_data_on(outputStream* st, const char* extra = NULL) const;
1581 };
1582 
1583 // RetData
1584 //
1585 // A RetData is used to access profiling information for a ret bytecode.
1586 // It is composed of a count of the number of times that the ret has
1587 // been executed, followed by a series of triples of the form
1588 // (bci, count, di) which count the number of times that some bci was the
1589 // target of the ret and cache a corresponding data displacement.
1590 class RetData : public CounterData {
1591 protected:
1592   enum {
1593     bci0_offset = counter_cell_count,
1594     count0_offset,
1595     displacement0_offset,
1596     ret_row_cell_count = (displacement0_offset + 1) - bci0_offset
1597   };
1598 
1599   void set_bci(uint row, int bci) {
1600     assert((uint)row < row_limit(), "oob");
1601     set_int_at(bci0_offset + row * ret_row_cell_count, bci);
1602   }
1603   void release_set_bci(uint row, int bci) {
1604     assert((uint)row < row_limit(), "oob");
1605     // 'release' when setting the bci acts as a valid flag for other
1606     // threads wrt bci_count and bci_displacement.
1607     release_set_int_at(bci0_offset + row * ret_row_cell_count, bci);
1608   }
1609   void set_bci_count(uint row, uint count) {
1610     assert((uint)row < row_limit(), "oob");
1611     set_uint_at(count0_offset + row * ret_row_cell_count, count);
1612   }
1613   void set_bci_displacement(uint row, int disp) {
1614     set_int_at(displacement0_offset + row * ret_row_cell_count, disp);
1615   }
1616 
1617 public:
1618   RetData(DataLayout* layout) : CounterData(layout) {
1619     assert(layout->tag() == DataLayout::ret_data_tag, "wrong type");
1620   }
1621 
1622   virtual bool is_RetData() const { return true; }
1623 
1624   enum {
1625     no_bci = -1 // value of bci when bci1/2 are not in use.
1626   };
1627 
1628   static int static_cell_count() {
1629     return counter_cell_count + (uint) BciProfileWidth * ret_row_cell_count;
1630   }
1631 
1632   virtual int cell_count() const {
1633     return static_cell_count();
1634   }
1635 
1636   static uint row_limit() {
1637     return BciProfileWidth;
1638   }
1639   static int bci_cell_index(uint row) {
1640     return bci0_offset + row * ret_row_cell_count;
1641   }
1642   static int bci_count_cell_index(uint row) {
1643     return count0_offset + row * ret_row_cell_count;
1644   }
1645   static int bci_displacement_cell_index(uint row) {
1646     return displacement0_offset + row * ret_row_cell_count;
1647   }
1648 
1649   // Direct accessors
1650   int bci(uint row) const {
1651     return int_at(bci_cell_index(row));
1652   }
1653   uint bci_count(uint row) const {
1654     return uint_at(bci_count_cell_index(row));
1655   }
1656   int bci_displacement(uint row) const {
1657     return int_at(bci_displacement_cell_index(row));
1658   }
1659 
1660   // Interpreter Runtime support
1661   address fixup_ret(int return_bci, MethodData* mdo);
1662 
1663   // Code generation support
1664   static ByteSize bci_offset(uint row) {
1665     return cell_offset(bci_cell_index(row));
1666   }
1667   static ByteSize bci_count_offset(uint row) {
1668     return cell_offset(bci_count_cell_index(row));
1669   }
1670   static ByteSize bci_displacement_offset(uint row) {
1671     return cell_offset(bci_displacement_cell_index(row));
1672   }
1673 
1674 #ifdef CC_INTERP
1675   static DataLayout* advance(MethodData *md, int bci);
1676 #endif // CC_INTERP
1677 
1678   // Specific initialization.
1679   void post_initialize(BytecodeStream* stream, MethodData* mdo);
1680 
1681   void print_data_on(outputStream* st, const char* extra = NULL) const;
1682 };
1683 
1684 // BranchData
1685 //
1686 // A BranchData is used to access profiling data for a two-way branch.
1687 // It consists of taken and not_taken counts as well as a data displacement
1688 // for the taken case.
1689 class BranchData : public JumpData {
1690   friend class VMStructs;
1691   friend class JVMCIVMStructs;
1692 protected:
1693   enum {
1694     not_taken_off_set = jump_cell_count,
1695     branch_cell_count
1696   };
1697 
1698   void set_displacement(int displacement) {
1699     set_int_at(displacement_off_set, displacement);
1700   }
1701 
1702 public:
1703   BranchData(DataLayout* layout) : JumpData(layout) {
1704     assert(layout->tag() == DataLayout::branch_data_tag, "wrong type");
1705   }
1706 
1707   virtual bool is_BranchData() const { return true; }
1708 
1709   static int static_cell_count() {
1710     return branch_cell_count;
1711   }
1712 
1713   virtual int cell_count() const {
1714     return static_cell_count();
1715   }
1716 
1717   // Direct accessor
1718   uint not_taken() const {
1719     return uint_at(not_taken_off_set);
1720   }
1721 
1722   void set_not_taken(uint cnt) {
1723     set_uint_at(not_taken_off_set, cnt);
1724   }
1725 
1726   uint inc_not_taken() {
1727     uint cnt = not_taken() + 1;
1728     // Did we wrap? Will compiler screw us??
1729     if (cnt == 0) cnt--;
1730     set_uint_at(not_taken_off_set, cnt);
1731     return cnt;
1732   }
1733 
1734   // Code generation support
1735   static ByteSize not_taken_offset() {
1736     return cell_offset(not_taken_off_set);
1737   }
1738   static ByteSize branch_data_size() {
1739     return cell_offset(branch_cell_count);
1740   }
1741 
1742 #ifdef CC_INTERP
1743   static int branch_data_size_in_bytes() {
1744     return cell_offset_in_bytes(branch_cell_count);
1745   }
1746 
1747   static void increment_not_taken_count_no_overflow(DataLayout* layout) {
1748     increment_uint_at_no_overflow(layout, not_taken_off_set);
1749   }
1750 
1751   static DataLayout* advance_not_taken(DataLayout* layout) {
1752     return (DataLayout*) (((address)layout) + (ssize_t)BranchData::branch_data_size_in_bytes());
1753   }
1754 #endif // CC_INTERP
1755 
1756   // Specific initialization.
1757   void post_initialize(BytecodeStream* stream, MethodData* mdo);
1758 
1759   void print_data_on(outputStream* st, const char* extra = NULL) const;
1760 };
1761 
1762 // ArrayData
1763 //
1764 // A ArrayData is a base class for accessing profiling data which does
1765 // not have a statically known size.  It consists of an array length
1766 // and an array start.
1767 class ArrayData : public ProfileData {
1768   friend class VMStructs;
1769   friend class JVMCIVMStructs;
1770 protected:
1771   friend class DataLayout;
1772 
1773   enum {
1774     array_len_off_set,
1775     array_start_off_set
1776   };
1777 
1778   uint array_uint_at(int index) const {
1779     int aindex = index + array_start_off_set;
1780     return uint_at(aindex);
1781   }
1782   int array_int_at(int index) const {
1783     int aindex = index + array_start_off_set;
1784     return int_at(aindex);
1785   }
1786   oop array_oop_at(int index) const {
1787     int aindex = index + array_start_off_set;
1788     return oop_at(aindex);
1789   }
1790   void array_set_int_at(int index, int value) {
1791     int aindex = index + array_start_off_set;
1792     set_int_at(aindex, value);
1793   }
1794 
1795 #ifdef CC_INTERP
1796   // Static low level accessors for DataLayout with ArrayData's semantics.
1797 
1798   static void increment_array_uint_at_no_overflow(DataLayout* layout, int index) {
1799     int aindex = index + array_start_off_set;
1800     increment_uint_at_no_overflow(layout, aindex);
1801   }
1802 
1803   static int array_int_at(DataLayout* layout, int index) {
1804     int aindex = index + array_start_off_set;
1805     return int_at(layout, aindex);
1806   }
1807 #endif // CC_INTERP
1808 
1809   // Code generation support for subclasses.
1810   static ByteSize array_element_offset(int index) {
1811     return cell_offset(array_start_off_set + index);
1812   }
1813 
1814 public:
1815   ArrayData(DataLayout* layout) : ProfileData(layout) {}
1816 
1817   virtual bool is_ArrayData() const { return true; }
1818 
1819   static int static_cell_count() {
1820     return -1;
1821   }
1822 
1823   int array_len() const {
1824     return int_at_unchecked(array_len_off_set);
1825   }
1826 
1827   virtual int cell_count() const {
1828     return array_len() + 1;
1829   }
1830 
1831   // Code generation support
1832   static ByteSize array_len_offset() {
1833     return cell_offset(array_len_off_set);
1834   }
1835   static ByteSize array_start_offset() {
1836     return cell_offset(array_start_off_set);
1837   }
1838 };
1839 
1840 // MultiBranchData
1841 //
1842 // A MultiBranchData is used to access profiling information for
1843 // a multi-way branch (*switch bytecodes).  It consists of a series
1844 // of (count, displacement) pairs, which count the number of times each
1845 // case was taken and specify the data displacment for each branch target.
1846 class MultiBranchData : public ArrayData {
1847   friend class VMStructs;
1848   friend class JVMCIVMStructs;
1849 protected:
1850   enum {
1851     default_count_off_set,
1852     default_disaplacement_off_set,
1853     case_array_start
1854   };
1855   enum {
1856     relative_count_off_set,
1857     relative_displacement_off_set,
1858     per_case_cell_count
1859   };
1860 
1861   void set_default_displacement(int displacement) {
1862     array_set_int_at(default_disaplacement_off_set, displacement);
1863   }
1864   void set_displacement_at(int index, int displacement) {
1865     array_set_int_at(case_array_start +
1866                      index * per_case_cell_count +
1867                      relative_displacement_off_set,
1868                      displacement);
1869   }
1870 
1871 public:
1872   MultiBranchData(DataLayout* layout) : ArrayData(layout) {
1873     assert(layout->tag() == DataLayout::multi_branch_data_tag, "wrong type");
1874   }
1875 
1876   virtual bool is_MultiBranchData() const { return true; }
1877 
1878   static int compute_cell_count(BytecodeStream* stream);
1879 
1880   int number_of_cases() const {
1881     int alen = array_len() - 2; // get rid of default case here.
1882     assert(alen % per_case_cell_count == 0, "must be even");
1883     return (alen / per_case_cell_count);
1884   }
1885 
1886   uint default_count() const {
1887     return array_uint_at(default_count_off_set);
1888   }
1889   int default_displacement() const {
1890     return array_int_at(default_disaplacement_off_set);
1891   }
1892 
1893   uint count_at(int index) const {
1894     return array_uint_at(case_array_start +
1895                          index * per_case_cell_count +
1896                          relative_count_off_set);
1897   }
1898   int displacement_at(int index) const {
1899     return array_int_at(case_array_start +
1900                         index * per_case_cell_count +
1901                         relative_displacement_off_set);
1902   }
1903 
1904   // Code generation support
1905   static ByteSize default_count_offset() {
1906     return array_element_offset(default_count_off_set);
1907   }
1908   static ByteSize default_displacement_offset() {
1909     return array_element_offset(default_disaplacement_off_set);
1910   }
1911   static ByteSize case_count_offset(int index) {
1912     return case_array_offset() +
1913            (per_case_size() * index) +
1914            relative_count_offset();
1915   }
1916   static ByteSize case_array_offset() {
1917     return array_element_offset(case_array_start);
1918   }
1919   static ByteSize per_case_size() {
1920     return in_ByteSize(per_case_cell_count) * cell_size;
1921   }
1922   static ByteSize relative_count_offset() {
1923     return in_ByteSize(relative_count_off_set) * cell_size;
1924   }
1925   static ByteSize relative_displacement_offset() {
1926     return in_ByteSize(relative_displacement_off_set) * cell_size;
1927   }
1928 
1929 #ifdef CC_INTERP
1930   static void increment_count_no_overflow(DataLayout* layout, int index) {
1931     if (index == -1) {
1932       increment_array_uint_at_no_overflow(layout, default_count_off_set);
1933     } else {
1934       increment_array_uint_at_no_overflow(layout, case_array_start +
1935                                                   index * per_case_cell_count +
1936                                                   relative_count_off_set);
1937     }
1938   }
1939 
1940   static DataLayout* advance(DataLayout* layout, int index) {
1941     if (index == -1) {
1942       return (DataLayout*) (((address)layout) + (ssize_t)array_int_at(layout, default_disaplacement_off_set));
1943     } else {
1944       return (DataLayout*) (((address)layout) + (ssize_t)array_int_at(layout, case_array_start +
1945                                                                               index * per_case_cell_count +
1946                                                                               relative_displacement_off_set));
1947     }
1948   }
1949 #endif // CC_INTERP
1950 
1951   // Specific initialization.
1952   void post_initialize(BytecodeStream* stream, MethodData* mdo);
1953 
1954   void print_data_on(outputStream* st, const char* extra = NULL) const;
1955 };
1956 
1957 class ArgInfoData : public ArrayData {
1958 
1959 public:
1960   ArgInfoData(DataLayout* layout) : ArrayData(layout) {
1961     assert(layout->tag() == DataLayout::arg_info_data_tag, "wrong type");
1962   }
1963 
1964   virtual bool is_ArgInfoData() const { return true; }
1965 
1966 
1967   int number_of_args() const {
1968     return array_len();
1969   }
1970 
1971   uint arg_modified(int arg) const {
1972     return array_uint_at(arg);
1973   }
1974 
1975   void set_arg_modified(int arg, uint val) {
1976     array_set_int_at(arg, val);
1977   }
1978 
1979   void print_data_on(outputStream* st, const char* extra = NULL) const;
1980 };
1981 
1982 // ParametersTypeData
1983 //
1984 // A ParametersTypeData is used to access profiling information about
1985 // types of parameters to a method
1986 class ParametersTypeData : public ArrayData {
1987 
1988 private:
1989   TypeStackSlotEntries _parameters;
1990 
1991   static int stack_slot_local_offset(int i) {
1992     assert_profiling_enabled();
1993     return array_start_off_set + TypeStackSlotEntries::stack_slot_local_offset(i);
1994   }
1995 
1996   static int type_local_offset(int i) {
1997     assert_profiling_enabled();
1998     return array_start_off_set + TypeStackSlotEntries::type_local_offset(i);
1999   }
2000 
2001   static bool profiling_enabled();
2002   static void assert_profiling_enabled() {
2003     assert(profiling_enabled(), "method parameters profiling should be on");
2004   }
2005 
2006 public:
2007   ParametersTypeData(DataLayout* layout) : ArrayData(layout), _parameters(1, number_of_parameters()) {
2008     assert(layout->tag() == DataLayout::parameters_type_data_tag, "wrong type");
2009     // Some compilers (VC++) don't want this passed in member initialization list
2010     _parameters.set_profile_data(this);
2011   }
2012 
2013   static int compute_cell_count(Method* m);
2014 
2015   virtual bool is_ParametersTypeData() const { return true; }
2016 
2017   virtual void post_initialize(BytecodeStream* stream, MethodData* mdo);
2018 
2019   int number_of_parameters() const {
2020     return array_len() / TypeStackSlotEntries::per_arg_count();
2021   }
2022 
2023   const TypeStackSlotEntries* parameters() const { return &_parameters; }
2024 
2025   uint stack_slot(int i) const {
2026     return _parameters.stack_slot(i);
2027   }
2028 
2029   void set_type(int i, Klass* k) {
2030     intptr_t current = _parameters.type(i);
2031     _parameters.set_type(i, TypeEntries::with_status((intptr_t)k, current));
2032   }
2033 
2034   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {
2035     _parameters.clean_weak_klass_links(is_alive_closure);
2036   }
2037 
2038   virtual void print_data_on(outputStream* st, const char* extra = NULL) const;
2039 
2040   static ByteSize stack_slot_offset(int i) {
2041     return cell_offset(stack_slot_local_offset(i));
2042   }
2043 
2044   static ByteSize type_offset(int i) {
2045     return cell_offset(type_local_offset(i));
2046   }
2047 };
2048 
2049 // SpeculativeTrapData
2050 //
2051 // A SpeculativeTrapData is used to record traps due to type
2052 // speculation. It records the root of the compilation: that type
2053 // speculation is wrong in the context of one compilation (for
2054 // method1) doesn't mean it's wrong in the context of another one (for
2055 // method2). Type speculation could have more/different data in the
2056 // context of the compilation of method2 and it's worthwhile to try an
2057 // optimization that failed for compilation of method1 in the context
2058 // of compilation of method2.
2059 // Space for SpeculativeTrapData entries is allocated from the extra
2060 // data space in the MDO. If we run out of space, the trap data for
2061 // the ProfileData at that bci is updated.
2062 class SpeculativeTrapData : public ProfileData {
2063 protected:
2064   enum {
2065     speculative_trap_method,
2066     speculative_trap_cell_count
2067   };
2068 public:
2069   SpeculativeTrapData(DataLayout* layout) : ProfileData(layout) {
2070     assert(layout->tag() == DataLayout::speculative_trap_data_tag, "wrong type");
2071   }
2072 
2073   virtual bool is_SpeculativeTrapData() const { return true; }
2074 
2075   static int static_cell_count() {
2076     return speculative_trap_cell_count;
2077   }
2078 
2079   virtual int cell_count() const {
2080     return static_cell_count();
2081   }
2082 
2083   // Direct accessor
2084   Method* method() const {
2085     return (Method*)intptr_at(speculative_trap_method);
2086   }
2087 
2088   void set_method(Method* m) {
2089     assert(!m->is_old(), "cannot add old methods");
2090     set_intptr_at(speculative_trap_method, (intptr_t)m);
2091   }
2092 
2093   static ByteSize method_offset() {
2094     return cell_offset(speculative_trap_method);
2095   }
2096 
2097   virtual void print_data_on(outputStream* st, const char* extra = NULL) const;
2098 };
2099 
2100 // MethodData*
2101 //
2102 // A MethodData* holds information which has been collected about
2103 // a method.  Its layout looks like this:
2104 //
2105 // -----------------------------
2106 // | header                    |
2107 // | klass                     |
2108 // -----------------------------
2109 // | method                    |
2110 // | size of the MethodData* |
2111 // -----------------------------
2112 // | Data entries...           |
2113 // |   (variable size)         |
2114 // |                           |
2115 // .                           .
2116 // .                           .
2117 // .                           .
2118 // |                           |
2119 // -----------------------------
2120 //
2121 // The data entry area is a heterogeneous array of DataLayouts. Each
2122 // DataLayout in the array corresponds to a specific bytecode in the
2123 // method.  The entries in the array are sorted by the corresponding
2124 // bytecode.  Access to the data is via resource-allocated ProfileData,
2125 // which point to the underlying blocks of DataLayout structures.
2126 //
2127 // During interpretation, if profiling in enabled, the interpreter
2128 // maintains a method data pointer (mdp), which points at the entry
2129 // in the array corresponding to the current bci.  In the course of
2130 // intepretation, when a bytecode is encountered that has profile data
2131 // associated with it, the entry pointed to by mdp is updated, then the
2132 // mdp is adjusted to point to the next appropriate DataLayout.  If mdp
2133 // is NULL to begin with, the interpreter assumes that the current method
2134 // is not (yet) being profiled.
2135 //
2136 // In MethodData* parlance, "dp" is a "data pointer", the actual address
2137 // of a DataLayout element.  A "di" is a "data index", the offset in bytes
2138 // from the base of the data entry array.  A "displacement" is the byte offset
2139 // in certain ProfileData objects that indicate the amount the mdp must be
2140 // adjusted in the event of a change in control flow.
2141 //
2142 
2143 CC_INTERP_ONLY(class BytecodeInterpreter;)
2144 class CleanExtraDataClosure;
2145 
2146 class MethodData : public Metadata {
2147   friend class VMStructs;
2148   friend class JVMCIVMStructs;
2149   CC_INTERP_ONLY(friend class BytecodeInterpreter;)
2150 private:
2151   friend class ProfileData;
2152 
2153   // Back pointer to the Method*
2154   Method* _method;
2155 
2156   // Size of this oop in bytes
2157   int _size;
2158 
2159   // Cached hint for bci_to_dp and bci_to_data
2160   int _hint_di;
2161 
2162   Mutex _extra_data_lock;
2163 
2164   MethodData(const methodHandle& method, int size, TRAPS);
2165 public:
2166   static MethodData* allocate(ClassLoaderData* loader_data, const methodHandle& method, TRAPS);
2167   MethodData() : _extra_data_lock(Monitor::leaf, "MDO extra data lock") {}; // For ciMethodData
2168 
2169   bool is_methodData() const volatile { return true; }
2170   void initialize();
2171 
2172   // Whole-method sticky bits and flags
2173   enum {
2174     _trap_hist_limit    = 22 JVMCI_ONLY(+5),   // decoupled from Deoptimization::Reason_LIMIT
2175     _trap_hist_mask     = max_jubyte,
2176     _extra_data_count   = 4     // extra DataLayout headers, for trap history
2177   }; // Public flag values
2178 private:
2179   uint _nof_decompiles;             // count of all nmethod removals
2180   uint _nof_overflow_recompiles;    // recompile count, excluding recomp. bits
2181   uint _nof_overflow_traps;         // trap count, excluding _trap_hist
2182   union {
2183     intptr_t _align;
2184     u1 _array[_trap_hist_limit];
2185   } _trap_hist;
2186 
2187   // Support for interprocedural escape analysis, from Thomas Kotzmann.
2188   intx              _eflags;          // flags on escape information
2189   intx              _arg_local;       // bit set of non-escaping arguments
2190   intx              _arg_stack;       // bit set of stack-allocatable arguments
2191   intx              _arg_returned;    // bit set of returned arguments
2192 
2193   int _creation_mileage;              // method mileage at MDO creation
2194 
2195   // How many invocations has this MDO seen?
2196   // These counters are used to determine the exact age of MDO.
2197   // We need those because in tiered a method can be concurrently
2198   // executed at different levels.
2199   InvocationCounter _invocation_counter;
2200   // Same for backedges.
2201   InvocationCounter _backedge_counter;
2202   // Counter values at the time profiling started.
2203   int               _invocation_counter_start;
2204   int               _backedge_counter_start;
2205   uint              _tenure_traps;
2206   int               _invoke_mask;      // per-method Tier0InvokeNotifyFreqLog
2207   int               _backedge_mask;    // per-method Tier0BackedgeNotifyFreqLog
2208 
2209 #if INCLUDE_RTM_OPT
2210   // State of RTM code generation during compilation of the method
2211   int               _rtm_state;
2212 #endif
2213 
2214   // Number of loops and blocks is computed when compiling the first
2215   // time with C1. It is used to determine if method is trivial.
2216   short             _num_loops;
2217   short             _num_blocks;
2218   // Does this method contain anything worth profiling?
2219   enum WouldProfile {unknown, no_profile, profile};
2220   WouldProfile      _would_profile;
2221 
2222 #if INCLUDE_JVMCI
2223   // Support for HotSpotMethodData.setCompiledIRSize(int)
2224   int               _jvmci_ir_size;
2225 #endif
2226 
2227   // Size of _data array in bytes.  (Excludes header and extra_data fields.)
2228   int _data_size;
2229 
2230   // data index for the area dedicated to parameters. -1 if no
2231   // parameter profiling.
2232   enum { no_parameters = -2, parameters_uninitialized = -1 };
2233   int _parameters_type_data_di;
2234   int parameters_size_in_bytes() const {
2235     ParametersTypeData* param = parameters_type_data();
2236     return param == NULL ? 0 : param->size_in_bytes();
2237   }
2238 
2239   // Beginning of the data entries
2240   intptr_t _data[1];
2241 
2242   // Helper for size computation
2243   static int compute_data_size(BytecodeStream* stream);
2244   static int bytecode_cell_count(Bytecodes::Code code);
2245   static bool is_speculative_trap_bytecode(Bytecodes::Code code);
2246   enum { no_profile_data = -1, variable_cell_count = -2 };
2247 
2248   // Helper for initialization
2249   DataLayout* data_layout_at(int data_index) const {
2250     assert(data_index % sizeof(intptr_t) == 0, "unaligned");
2251     return (DataLayout*) (((address)_data) + data_index);
2252   }
2253 
2254   // Initialize an individual data segment.  Returns the size of
2255   // the segment in bytes.
2256   int initialize_data(BytecodeStream* stream, int data_index);
2257 
2258   // Helper for data_at
2259   DataLayout* limit_data_position() const {
2260     return data_layout_at(_data_size);
2261   }
2262   bool out_of_bounds(int data_index) const {
2263     return data_index >= data_size();
2264   }
2265 
2266   // Give each of the data entries a chance to perform specific
2267   // data initialization.
2268   void post_initialize(BytecodeStream* stream);
2269 
2270   // hint accessors
2271   int      hint_di() const  { return _hint_di; }
2272   void set_hint_di(int di)  {
2273     assert(!out_of_bounds(di), "hint_di out of bounds");
2274     _hint_di = di;
2275   }
2276   ProfileData* data_before(int bci) {
2277     // avoid SEGV on this edge case
2278     if (data_size() == 0)
2279       return NULL;
2280     int hint = hint_di();
2281     if (data_layout_at(hint)->bci() <= bci)
2282       return data_at(hint);
2283     return first_data();
2284   }
2285 
2286   // What is the index of the first data entry?
2287   int first_di() const { return 0; }
2288 
2289   ProfileData* bci_to_extra_data_helper(int bci, Method* m, DataLayout*& dp, bool concurrent);
2290   // Find or create an extra ProfileData:
2291   ProfileData* bci_to_extra_data(int bci, Method* m, bool create_if_missing);
2292 
2293   // return the argument info cell
2294   ArgInfoData *arg_info();
2295 
2296   enum {
2297     no_type_profile = 0,
2298     type_profile_jsr292 = 1,
2299     type_profile_all = 2
2300   };
2301 
2302   static bool profile_jsr292(const methodHandle& m, int bci);
2303   static int profile_arguments_flag();
2304   static bool profile_all_arguments();
2305   static bool profile_arguments_for_invoke(const methodHandle& m, int bci);
2306   static int profile_return_flag();
2307   static bool profile_all_return();
2308   static bool profile_return_for_invoke(const methodHandle& m, int bci);
2309   static int profile_parameters_flag();
2310   static bool profile_parameters_jsr292_only();
2311   static bool profile_all_parameters();
2312 
2313   void clean_extra_data(CleanExtraDataClosure* cl);
2314   void clean_extra_data_helper(DataLayout* dp, int shift, bool reset = false);
2315   void verify_extra_data_clean(CleanExtraDataClosure* cl);
2316 
2317 public:
2318   static int header_size() {
2319     return sizeof(MethodData)/wordSize;
2320   }
2321 
2322   // Compute the size of a MethodData* before it is created.
2323   static int compute_allocation_size_in_bytes(const methodHandle& method);
2324   static int compute_allocation_size_in_words(const methodHandle& method);
2325   static int compute_extra_data_count(int data_size, int empty_bc_count, bool needs_speculative_traps);
2326 
2327   // Determine if a given bytecode can have profile information.
2328   static bool bytecode_has_profile(Bytecodes::Code code) {
2329     return bytecode_cell_count(code) != no_profile_data;
2330   }
2331 
2332   // reset into original state
2333   void init();
2334 
2335   // My size
2336   int size_in_bytes() const { return _size; }
2337   int size() const    { return align_object_size(align_size_up(_size, BytesPerWord)/BytesPerWord); }
2338 #if INCLUDE_SERVICES
2339   void collect_statistics(KlassSizeStats *sz) const;
2340 #endif
2341 
2342   int      creation_mileage() const  { return _creation_mileage; }
2343   void set_creation_mileage(int x)   { _creation_mileage = x; }
2344 
2345   int invocation_count() {
2346     if (invocation_counter()->carry()) {
2347       return InvocationCounter::count_limit;
2348     }
2349     return invocation_counter()->count();
2350   }
2351   int backedge_count() {
2352     if (backedge_counter()->carry()) {
2353       return InvocationCounter::count_limit;
2354     }
2355     return backedge_counter()->count();
2356   }
2357 
2358   int invocation_count_start() {
2359     if (invocation_counter()->carry()) {
2360       return 0;
2361     }
2362     return _invocation_counter_start;
2363   }
2364 
2365   int backedge_count_start() {
2366     if (backedge_counter()->carry()) {
2367       return 0;
2368     }
2369     return _backedge_counter_start;
2370   }
2371 
2372   int invocation_count_delta() { return invocation_count() - invocation_count_start(); }
2373   int backedge_count_delta()   { return backedge_count()   - backedge_count_start();   }
2374 
2375   void reset_start_counters() {
2376     _invocation_counter_start = invocation_count();
2377     _backedge_counter_start = backedge_count();
2378   }
2379 
2380   InvocationCounter* invocation_counter()     { return &_invocation_counter; }
2381   InvocationCounter* backedge_counter()       { return &_backedge_counter;   }
2382 
2383 #if INCLUDE_RTM_OPT
2384   int rtm_state() const {
2385     return _rtm_state;
2386   }
2387   void set_rtm_state(RTMState rstate) {
2388     _rtm_state = (int)rstate;
2389   }
2390   void atomic_set_rtm_state(RTMState rstate) {
2391     Atomic::store((int)rstate, &_rtm_state);
2392   }
2393 
2394   static int rtm_state_offset_in_bytes() {
2395     return offset_of(MethodData, _rtm_state);
2396   }
2397 #endif
2398 
2399   void set_would_profile(bool p)              { _would_profile = p ? profile : no_profile; }
2400   bool would_profile() const                  { return _would_profile != no_profile; }
2401 
2402   int num_loops() const                       { return _num_loops;  }
2403   void set_num_loops(int n)                   { _num_loops = n;     }
2404   int num_blocks() const                      { return _num_blocks; }
2405   void set_num_blocks(int n)                  { _num_blocks = n;    }
2406 
2407   bool is_mature() const;  // consult mileage and ProfileMaturityPercentage
2408   static int mileage_of(Method* m);
2409 
2410   // Support for interprocedural escape analysis, from Thomas Kotzmann.
2411   enum EscapeFlag {
2412     estimated    = 1 << 0,
2413     return_local = 1 << 1,
2414     return_allocated = 1 << 2,
2415     allocated_escapes = 1 << 3,
2416     unknown_modified = 1 << 4
2417   };
2418 
2419   intx eflags()                                  { return _eflags; }
2420   intx arg_local()                               { return _arg_local; }
2421   intx arg_stack()                               { return _arg_stack; }
2422   intx arg_returned()                            { return _arg_returned; }
2423   uint arg_modified(int a)                       { ArgInfoData *aid = arg_info();
2424                                                    assert(aid != NULL, "arg_info must be not null");
2425                                                    assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
2426                                                    return aid->arg_modified(a); }
2427 
2428   void set_eflags(intx v)                        { _eflags = v; }
2429   void set_arg_local(intx v)                     { _arg_local = v; }
2430   void set_arg_stack(intx v)                     { _arg_stack = v; }
2431   void set_arg_returned(intx v)                  { _arg_returned = v; }
2432   void set_arg_modified(int a, uint v)           { ArgInfoData *aid = arg_info();
2433                                                    assert(aid != NULL, "arg_info must be not null");
2434                                                    assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
2435                                                    aid->set_arg_modified(a, v); }
2436 
2437   void clear_escape_info()                       { _eflags = _arg_local = _arg_stack = _arg_returned = 0; }
2438 
2439   // Location and size of data area
2440   address data_base() const {
2441     return (address) _data;
2442   }
2443   int data_size() const {
2444     return _data_size;
2445   }
2446 
2447   // Accessors
2448   Method* method() const { return _method; }
2449 
2450   // Get the data at an arbitrary (sort of) data index.
2451   ProfileData* data_at(int data_index) const;
2452 
2453   // Walk through the data in order.
2454   ProfileData* first_data() const { return data_at(first_di()); }
2455   ProfileData* next_data(ProfileData* current) const;
2456   bool is_valid(ProfileData* current) const { return current != NULL; }
2457 
2458   // Convert a dp (data pointer) to a di (data index).
2459   int dp_to_di(address dp) const {
2460     return dp - ((address)_data);
2461   }
2462 
2463   // bci to di/dp conversion.
2464   address bci_to_dp(int bci);
2465   int bci_to_di(int bci) {
2466     return dp_to_di(bci_to_dp(bci));
2467   }
2468 
2469   // Get the data at an arbitrary bci, or NULL if there is none.
2470   ProfileData* bci_to_data(int bci);
2471 
2472   // Same, but try to create an extra_data record if one is needed:
2473   ProfileData* allocate_bci_to_data(int bci, Method* m) {
2474     ProfileData* data = NULL;
2475     // If m not NULL, try to allocate a SpeculativeTrapData entry
2476     if (m == NULL) {
2477       data = bci_to_data(bci);
2478     }
2479     if (data != NULL) {
2480       return data;
2481     }
2482     data = bci_to_extra_data(bci, m, true);
2483     if (data != NULL) {
2484       return data;
2485     }
2486     // If SpeculativeTrapData allocation fails try to allocate a
2487     // regular entry
2488     data = bci_to_data(bci);
2489     if (data != NULL) {
2490       return data;
2491     }
2492     return bci_to_extra_data(bci, NULL, true);
2493   }
2494 
2495   // Add a handful of extra data records, for trap tracking.
2496   DataLayout* extra_data_base() const  { return limit_data_position(); }
2497   DataLayout* extra_data_limit() const { return (DataLayout*)((address)this + size_in_bytes()); }
2498   DataLayout* args_data_limit() const  { return (DataLayout*)((address)this + size_in_bytes() -
2499                                                               parameters_size_in_bytes()); }
2500   int extra_data_size() const          { return (address)extra_data_limit() - (address)extra_data_base(); }
2501   static DataLayout* next_extra(DataLayout* dp);
2502 
2503   // Return (uint)-1 for overflow.
2504   uint trap_count(int reason) const {
2505     assert((uint)reason < JVMCI_ONLY(2*) _trap_hist_limit, "oob");
2506     return (int)((_trap_hist._array[reason]+1) & _trap_hist_mask) - 1;
2507   }
2508   // For loops:
2509   static uint trap_reason_limit() { return _trap_hist_limit; }
2510   static uint trap_count_limit()  { return _trap_hist_mask; }
2511   uint inc_trap_count(int reason) {
2512     // Count another trap, anywhere in this method.
2513     assert(reason >= 0, "must be single trap");
2514     assert((uint)reason < JVMCI_ONLY(2*) _trap_hist_limit, "oob");
2515     uint cnt1 = 1 + _trap_hist._array[reason];
2516     if ((cnt1 & _trap_hist_mask) != 0) {  // if no counter overflow...
2517       _trap_hist._array[reason] = cnt1;
2518       return cnt1;
2519     } else {
2520       return _trap_hist_mask + (++_nof_overflow_traps);
2521     }
2522   }
2523 
2524   uint overflow_trap_count() const {
2525     return _nof_overflow_traps;
2526   }
2527   uint overflow_recompile_count() const {
2528     return _nof_overflow_recompiles;
2529   }
2530   void inc_overflow_recompile_count() {
2531     _nof_overflow_recompiles += 1;
2532   }
2533   uint decompile_count() const {
2534     return _nof_decompiles;
2535   }
2536   void inc_decompile_count() {
2537     _nof_decompiles += 1;
2538     if (decompile_count() > (uint)PerMethodRecompilationCutoff) {
2539       method()->set_not_compilable(CompLevel_full_optimization, true, "decompile_count > PerMethodRecompilationCutoff");
2540     }
2541   }
2542   uint tenure_traps() const {
2543     return _tenure_traps;
2544   }
2545   void inc_tenure_traps() {
2546     _tenure_traps += 1;
2547   }
2548 
2549   // Return pointer to area dedicated to parameters in MDO
2550   ParametersTypeData* parameters_type_data() const {
2551     assert(_parameters_type_data_di != parameters_uninitialized, "called too early");
2552     return _parameters_type_data_di != no_parameters ? data_layout_at(_parameters_type_data_di)->data_in()->as_ParametersTypeData() : NULL;
2553   }
2554 
2555   int parameters_type_data_di() const {
2556     assert(_parameters_type_data_di != parameters_uninitialized && _parameters_type_data_di != no_parameters, "no args type data");
2557     return _parameters_type_data_di;
2558   }
2559 
2560   // Support for code generation
2561   static ByteSize data_offset() {
2562     return byte_offset_of(MethodData, _data[0]);
2563   }
2564 
2565   static ByteSize trap_history_offset() {
2566     return byte_offset_of(MethodData, _trap_hist._array);
2567   }
2568 
2569   static ByteSize invocation_counter_offset() {
2570     return byte_offset_of(MethodData, _invocation_counter);
2571   }
2572 
2573   static ByteSize backedge_counter_offset() {
2574     return byte_offset_of(MethodData, _backedge_counter);
2575   }
2576 
2577   static ByteSize invoke_mask_offset() {
2578     return byte_offset_of(MethodData, _invoke_mask);
2579   }
2580 
2581   static ByteSize backedge_mask_offset() {
2582     return byte_offset_of(MethodData, _backedge_mask);
2583   }
2584 
2585   static ByteSize parameters_type_data_di_offset() {
2586     return byte_offset_of(MethodData, _parameters_type_data_di);
2587   }
2588 
2589   // Deallocation support - no pointer fields to deallocate
2590   void deallocate_contents(ClassLoaderData* loader_data) {}
2591 
2592   // GC support
2593   void set_size(int object_size_in_bytes) { _size = object_size_in_bytes; }
2594 
2595   // Printing
2596   void print_on      (outputStream* st) const;
2597   void print_value_on(outputStream* st) const;
2598 
2599   // printing support for method data
2600   void print_data_on(outputStream* st) const;
2601 
2602   const char* internal_name() const { return "{method data}"; }
2603 
2604   // verification
2605   void verify_on(outputStream* st);
2606   void verify_data_on(outputStream* st);
2607 
2608   static bool profile_parameters_for_method(const methodHandle& m);
2609   static bool profile_arguments();
2610   static bool profile_arguments_jsr292_only();
2611   static bool profile_return();
2612   static bool profile_parameters();
2613   static bool profile_return_jsr292_only();
2614 
2615   void clean_method_data(BoolObjectClosure* is_alive);
2616   void clean_weak_method_links();
2617   DEBUG_ONLY(void verify_clean_weak_method_links();)
2618   Mutex* extra_data_lock() { return &_extra_data_lock; }
2619 };
2620 
2621 #endif // SHARE_VM_OOPS_METHODDATAOOP_HPP