1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "interpreter/interpreter.hpp"
  27 #include "oops/constMethod.hpp"
  28 #include "oops/method.hpp"
  29 #include "runtime/arguments.hpp"
  30 #include "runtime/frame.inline.hpp"
  31 #include "runtime/synchronizer.hpp"
  32 #include "utilities/macros.hpp"
  33 
  34 // Size of interpreter code.  Increase if too small.  Interpreter will
  35 // fail with a guarantee ("not enough space for interpreter generation");
  36 // if too small.
  37 // Run with +PrintInterpreter to get the VM to print out the size.
  38 // Max size with JVMTI
  39 #ifdef _LP64
  40   // The sethi() instruction generates lots more instructions when shell
  41   // stack limit is unlimited, so that's why this is much bigger.
  42 int TemplateInterpreter::InterpreterCodeSize = 260 * K;
  43 #else
  44 int TemplateInterpreter::InterpreterCodeSize = 230 * K;
  45 #endif
  46 
  47 int AbstractInterpreter::BasicType_as_index(BasicType type) {
  48   int i = 0;
  49   switch (type) {
  50     case T_BOOLEAN: i = 0; break;
  51     case T_CHAR   : i = 1; break;
  52     case T_BYTE   : i = 2; break;
  53     case T_SHORT  : i = 3; break;
  54     case T_INT    : i = 4; break;
  55     case T_LONG   : i = 5; break;
  56     case T_VOID   : i = 6; break;
  57     case T_FLOAT  : i = 7; break;
  58     case T_DOUBLE : i = 8; break;
  59     case T_OBJECT : i = 9; break;
  60     case T_ARRAY  : i = 9; break;
  61     default       : ShouldNotReachHere();
  62   }
  63   assert(0 <= i && i < AbstractInterpreter::number_of_result_handlers, "index out of bounds");
  64   return i;
  65 }
  66 
  67 bool AbstractInterpreter::can_be_compiled(methodHandle m) {
  68   // No special entry points that preclude compilation
  69   return true;
  70 }
  71 
  72 static int size_activation_helper(int callee_extra_locals, int max_stack, int monitor_size) {
  73 
  74   // Figure out the size of an interpreter frame (in words) given that we have a fully allocated
  75   // expression stack, the callee will have callee_extra_locals (so we can account for
  76   // frame extension) and monitor_size for monitors. Basically we need to calculate
  77   // this exactly like generate_fixed_frame/generate_compute_interpreter_state.
  78   //
  79   //
  80   // The big complicating thing here is that we must ensure that the stack stays properly
  81   // aligned. This would be even uglier if monitor size wasn't modulo what the stack
  82   // needs to be aligned for). We are given that the sp (fp) is already aligned by
  83   // the caller so we must ensure that it is properly aligned for our callee.
  84   //
  85   const int rounded_vm_local_words =
  86        round_to(frame::interpreter_frame_vm_local_words,WordsPerLong);
  87   // callee_locals and max_stack are counts, not the size in frame.
  88   const int locals_size =
  89        round_to(callee_extra_locals * Interpreter::stackElementWords, WordsPerLong);
  90   const int max_stack_words = max_stack * Interpreter::stackElementWords;
  91   return (round_to((max_stack_words
  92                    + rounded_vm_local_words
  93                    + frame::memory_parameter_word_sp_offset), WordsPerLong)
  94                    // already rounded
  95                    + locals_size + monitor_size);
  96 }
  97 
  98 // How much stack a method top interpreter activation needs in words.
  99 int AbstractInterpreter::size_top_interpreter_activation(Method* method) {
 100 
 101   // See call_stub code
 102   int call_stub_size  = round_to(7 + frame::memory_parameter_word_sp_offset,
 103                                  WordsPerLong);    // 7 + register save area
 104 
 105   // Save space for one monitor to get into the interpreted method in case
 106   // the method is synchronized
 107   int monitor_size    = method->is_synchronized() ?
 108                                 1*frame::interpreter_frame_monitor_size() : 0;
 109   return size_activation_helper(method->max_locals(), method->max_stack(),
 110                                 monitor_size) + call_stub_size;
 111 }
 112 
 113 int AbstractInterpreter::size_activation(int max_stack,
 114                                          int temps,
 115                                          int extra_args,
 116                                          int monitors,
 117                                          int callee_params,
 118                                          int callee_locals,
 119                                          bool is_top_frame) {
 120   // Note: This calculation must exactly parallel the frame setup
 121   // in TemplateInterpreterGenerator::generate_fixed_frame.
 122 
 123   int monitor_size           = monitors * frame::interpreter_frame_monitor_size();
 124 
 125   assert(monitor_size == round_to(monitor_size, WordsPerLong), "must align");
 126 
 127   //
 128   // Note: if you look closely this appears to be doing something much different
 129   // than generate_fixed_frame. What is happening is this. On sparc we have to do
 130   // this dance with interpreter_sp_adjustment because the window save area would
 131   // appear just below the bottom (tos) of the caller's java expression stack. Because
 132   // the interpreter want to have the locals completely contiguous generate_fixed_frame
 133   // will adjust the caller's sp for the "extra locals" (max_locals - parameter_size).
 134   // Now in generate_fixed_frame the extension of the caller's sp happens in the callee.
 135   // In this code the opposite occurs the caller adjusts it's own stack base on the callee.
 136   // This is mostly ok but it does cause a problem when we get to the initial frame (the oldest)
 137   // because the oldest frame would have adjust its callers frame and yet that frame
 138   // already exists and isn't part of this array of frames we are unpacking. So at first
 139   // glance this would seem to mess up that frame. However Deoptimization::fetch_unroll_info_helper()
 140   // will after it calculates all of the frame's on_stack_size()'s will then figure out the
 141   // amount to adjust the caller of the initial (oldest) frame and the calculation will all
 142   // add up. It does seem like it simpler to account for the adjustment here (and remove the
 143   // callee... parameters here). However this would mean that this routine would have to take
 144   // the caller frame as input so we could adjust its sp (and set it's interpreter_sp_adjustment)
 145   // and run the calling loop in the reverse order. This would also would appear to mean making
 146   // this code aware of what the interactions are when that initial caller fram was an osr or
 147   // other adapter frame. deoptimization is complicated enough and  hard enough to debug that
 148   // there is no sense in messing working code.
 149   //
 150 
 151   int rounded_cls = round_to((callee_locals - callee_params), WordsPerLong);
 152   assert(rounded_cls == round_to(rounded_cls, WordsPerLong), "must align");
 153 
 154   int raw_frame_size = size_activation_helper(rounded_cls, max_stack, monitor_size);
 155 
 156   return raw_frame_size;
 157 }
 158 
 159 void AbstractInterpreter::layout_activation(Method* method,
 160                                             int tempcount,
 161                                             int popframe_extra_args,
 162                                             int moncount,
 163                                             int caller_actual_parameters,
 164                                             int callee_param_count,
 165                                             int callee_local_count,
 166                                             frame* caller,
 167                                             frame* interpreter_frame,
 168                                             bool is_top_frame,
 169                                             bool is_bottom_frame) {
 170   // Set up the following variables:
 171   //   - Lmethod
 172   //   - Llocals
 173   //   - Lmonitors (to the indicated number of monitors)
 174   //   - Lesp (to the indicated number of temps)
 175   // The frame caller on entry is a description of the caller of the
 176   // frame we are about to layout. We are guaranteed that we will be
 177   // able to fill in a new interpreter frame as its callee (i.e. the
 178   // stack space is allocated and the amount was determined by an
 179   // earlier call to the size_activation() method).  On return caller
 180   // while describe the interpreter frame we just layed out.
 181 
 182   // The skeleton frame must already look like an interpreter frame
 183   // even if not fully filled out.
 184   assert(interpreter_frame->is_interpreted_frame(), "Must be interpreted frame");
 185 
 186   int rounded_vm_local_words = round_to(frame::interpreter_frame_vm_local_words,WordsPerLong);
 187   int monitor_size           = moncount * frame::interpreter_frame_monitor_size();
 188   assert(monitor_size == round_to(monitor_size, WordsPerLong), "must align");
 189 
 190   intptr_t* fp = interpreter_frame->fp();
 191 
 192   JavaThread* thread = JavaThread::current();
 193   RegisterMap map(thread, false);
 194   // More verification that skeleton frame is properly walkable
 195   assert(fp == caller->sp(), "fp must match");
 196 
 197   intptr_t* montop     = fp - rounded_vm_local_words;
 198 
 199   // preallocate monitors (cf. __ add_monitor_to_stack)
 200   intptr_t* monitors = montop - monitor_size;
 201 
 202   // preallocate stack space
 203   intptr_t*  esp = monitors - 1 -
 204     (tempcount * Interpreter::stackElementWords) -
 205     popframe_extra_args;
 206 
 207   int local_words = method->max_locals() * Interpreter::stackElementWords;
 208   NEEDS_CLEANUP;
 209   intptr_t* locals;
 210   if (caller->is_interpreted_frame()) {
 211     // Can force the locals area to end up properly overlapping the top of the expression stack.
 212     intptr_t* Lesp_ptr = caller->interpreter_frame_tos_address() - 1;
 213     // Note that this computation means we replace size_of_parameters() values from the caller
 214     // interpreter frame's expression stack with our argument locals
 215     int parm_words  = caller_actual_parameters * Interpreter::stackElementWords;
 216     locals = Lesp_ptr + parm_words;
 217     int delta = local_words - parm_words;
 218     int computed_sp_adjustment = (delta > 0) ? round_to(delta, WordsPerLong) : 0;
 219     *interpreter_frame->register_addr(I5_savedSP)    = (intptr_t) (fp + computed_sp_adjustment) - STACK_BIAS;
 220     if (!is_bottom_frame) {
 221       // Llast_SP is set below for the current frame to SP (with the
 222       // extra space for the callee's locals). Here we adjust
 223       // Llast_SP for the caller's frame, removing the extra space
 224       // for the current method's locals.
 225       *caller->register_addr(Llast_SP) = *interpreter_frame->register_addr(I5_savedSP);
 226     } else {
 227       assert(*caller->register_addr(Llast_SP) >= *interpreter_frame->register_addr(I5_savedSP), "strange Llast_SP");
 228     }
 229   } else {
 230     assert(caller->is_compiled_frame() || caller->is_entry_frame(), "only possible cases");
 231     // Don't have Lesp available; lay out locals block in the caller
 232     // adjacent to the register window save area.
 233     //
 234     // Compiled frames do not allocate a varargs area which is why this if
 235     // statement is needed.
 236     //
 237     if (caller->is_compiled_frame()) {
 238       locals = fp + frame::register_save_words + local_words - 1;
 239     } else {
 240       locals = fp + frame::memory_parameter_word_sp_offset + local_words - 1;
 241     }
 242     if (!caller->is_entry_frame()) {
 243       // Caller wants his own SP back
 244       int caller_frame_size = caller->cb()->frame_size();
 245       *interpreter_frame->register_addr(I5_savedSP) = (intptr_t)(caller->fp() - caller_frame_size) - STACK_BIAS;
 246     }
 247   }
 248   if (TraceDeoptimization) {
 249     if (caller->is_entry_frame()) {
 250       // make sure I5_savedSP and the entry frames notion of saved SP
 251       // agree.  This assertion duplicate a check in entry frame code
 252       // but catches the failure earlier.
 253       assert(*caller->register_addr(Lscratch) == *interpreter_frame->register_addr(I5_savedSP),
 254              "would change callers SP");
 255     }
 256     if (caller->is_entry_frame()) {
 257       tty->print("entry ");
 258     }
 259     if (caller->is_compiled_frame()) {
 260       tty->print("compiled ");
 261       if (caller->is_deoptimized_frame()) {
 262         tty->print("(deopt) ");
 263       }
 264     }
 265     if (caller->is_interpreted_frame()) {
 266       tty->print("interpreted ");
 267     }
 268     tty->print_cr("caller fp=" INTPTR_FORMAT " sp=" INTPTR_FORMAT, p2i(caller->fp()), p2i(caller->sp()));
 269     tty->print_cr("save area = " INTPTR_FORMAT ", " INTPTR_FORMAT, p2i(caller->sp()), p2i(caller->sp() + 16));
 270     tty->print_cr("save area = " INTPTR_FORMAT ", " INTPTR_FORMAT, p2i(caller->fp()), p2i(caller->fp() + 16));
 271     tty->print_cr("interpreter fp=" INTPTR_FORMAT ", " INTPTR_FORMAT, p2i(interpreter_frame->fp()), p2i(interpreter_frame->sp()));
 272     tty->print_cr("save area = " INTPTR_FORMAT ", " INTPTR_FORMAT, p2i(interpreter_frame->sp()), p2i(interpreter_frame->sp() + 16));
 273     tty->print_cr("save area = " INTPTR_FORMAT ", " INTPTR_FORMAT, p2i(interpreter_frame->fp()), p2i(interpreter_frame->fp() + 16));
 274     tty->print_cr("Llocals = " INTPTR_FORMAT, p2i(locals));
 275     tty->print_cr("Lesp = " INTPTR_FORMAT, p2i(esp));
 276     tty->print_cr("Lmonitors = " INTPTR_FORMAT, p2i(monitors));
 277   }
 278 
 279   if (method->max_locals() > 0) {
 280     assert(locals < caller->sp() || locals >= (caller->sp() + 16), "locals in save area");
 281     assert(locals < caller->fp() || locals > (caller->fp() + 16), "locals in save area");
 282     assert(locals < interpreter_frame->sp() || locals > (interpreter_frame->sp() + 16), "locals in save area");
 283     assert(locals < interpreter_frame->fp() || locals >= (interpreter_frame->fp() + 16), "locals in save area");
 284   }
 285 #ifdef _LP64
 286   assert(*interpreter_frame->register_addr(I5_savedSP) & 1, "must be odd");
 287 #endif
 288 
 289   *interpreter_frame->register_addr(Lmethod)     = (intptr_t) method;
 290   *interpreter_frame->register_addr(Llocals)     = (intptr_t) locals;
 291   *interpreter_frame->register_addr(Lmonitors)   = (intptr_t) monitors;
 292   *interpreter_frame->register_addr(Lesp)        = (intptr_t) esp;
 293   // Llast_SP will be same as SP as there is no adapter space
 294   *interpreter_frame->register_addr(Llast_SP)    = (intptr_t) interpreter_frame->sp() - STACK_BIAS;
 295   *interpreter_frame->register_addr(LcpoolCache) = (intptr_t) method->constants()->cache();
 296 #ifdef FAST_DISPATCH
 297   *interpreter_frame->register_addr(IdispatchTables) = (intptr_t) Interpreter::dispatch_table();
 298 #endif
 299 
 300 
 301 #ifdef ASSERT
 302   BasicObjectLock* mp = (BasicObjectLock*)monitors;
 303 
 304   assert(interpreter_frame->interpreter_frame_method() == method, "method matches");
 305   assert(interpreter_frame->interpreter_frame_local_at(9) == (intptr_t *)((intptr_t)locals - (9 * Interpreter::stackElementSize)), "locals match");
 306   assert(interpreter_frame->interpreter_frame_monitor_end()   == mp, "monitor_end matches");
 307   assert(((intptr_t *)interpreter_frame->interpreter_frame_monitor_begin()) == ((intptr_t *)mp)+monitor_size, "monitor_begin matches");
 308   assert(interpreter_frame->interpreter_frame_tos_address()-1 == esp, "esp matches");
 309 
 310   // check bounds
 311   intptr_t* lo = interpreter_frame->sp() + (frame::memory_parameter_word_sp_offset - 1);
 312   intptr_t* hi = interpreter_frame->fp() - rounded_vm_local_words;
 313   assert(lo < monitors && montop <= hi, "monitors in bounds");
 314   assert(lo <= esp && esp < monitors, "esp in bounds");
 315 #endif // ASSERT
 316 }