1 /*
   2  * Copyright (c) 2014, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2015 SAP AG. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "interpreter/bytecodeHistogram.hpp"
  29 #include "interpreter/interpreter.hpp"
  30 #include "interpreter/interpreterRuntime.hpp"
  31 #include "interpreter/interp_masm.hpp"
  32 #include "interpreter/templateInterpreterGenerator.hpp"
  33 #include "interpreter/templateTable.hpp"
  34 #include "oops/arrayOop.hpp"
  35 #include "oops/methodData.hpp"
  36 #include "oops/method.hpp"
  37 #include "oops/oop.inline.hpp"
  38 #include "prims/jvmtiExport.hpp"
  39 #include "prims/jvmtiThreadState.hpp"
  40 #include "runtime/arguments.hpp"
  41 #include "runtime/deoptimization.hpp"
  42 #include "runtime/frame.inline.hpp"
  43 #include "runtime/sharedRuntime.hpp"
  44 #include "runtime/stubRoutines.hpp"
  45 #include "runtime/synchronizer.hpp"
  46 #include "runtime/timer.hpp"
  47 #include "runtime/vframeArray.hpp"
  48 #include "utilities/debug.hpp"
  49 #include "utilities/macros.hpp"
  50 
  51 #undef __
  52 #define __ _masm->
  53 
  54 // Size of interpreter code.  Increase if too small.  Interpreter will
  55 // fail with a guarantee ("not enough space for interpreter generation");
  56 // if too small.
  57 // Run with +PrintInterpreter to get the VM to print out the size.
  58 // Max size with JVMTI
  59 int TemplateInterpreter::InterpreterCodeSize = 230*K;
  60 
  61 #ifdef PRODUCT
  62 #define BLOCK_COMMENT(str) /* nothing */
  63 #else
  64 #define BLOCK_COMMENT(str) __ block_comment(str)
  65 #endif
  66 
  67 #define BIND(label)        __ bind(label); BLOCK_COMMENT(#label ":")
  68 
  69 //-----------------------------------------------------------------------------
  70 
  71 address TemplateInterpreterGenerator::generate_slow_signature_handler() {
  72   // Slow_signature handler that respects the PPC C calling conventions.
  73   //
  74   // We get called by the native entry code with our output register
  75   // area == 8. First we call InterpreterRuntime::get_result_handler
  76   // to copy the pointer to the signature string temporarily to the
  77   // first C-argument and to return the result_handler in
  78   // R3_RET. Since native_entry will copy the jni-pointer to the
  79   // first C-argument slot later on, it is OK to occupy this slot
  80   // temporarilly. Then we copy the argument list on the java
  81   // expression stack into native varargs format on the native stack
  82   // and load arguments into argument registers. Integer arguments in
  83   // the varargs vector will be sign-extended to 8 bytes.
  84   //
  85   // On entry:
  86   //   R3_ARG1        - intptr_t*     Address of java argument list in memory.
  87   //   R15_prev_state - BytecodeInterpreter* Address of interpreter state for
  88   //     this method
  89   //   R19_method
  90   //
  91   // On exit (just before return instruction):
  92   //   R3_RET            - contains the address of the result_handler.
  93   //   R4_ARG2           - is not updated for static methods and contains "this" otherwise.
  94   //   R5_ARG3-R10_ARG8: - When the (i-2)th Java argument is not of type float or double,
  95   //                       ARGi contains this argument. Otherwise, ARGi is not updated.
  96   //   F1_ARG1-F13_ARG13 - contain the first 13 arguments of type float or double.
  97 
  98   const int LogSizeOfTwoInstructions = 3;
  99 
 100   // FIXME: use Argument:: GL: Argument names different numbers!
 101   const int max_fp_register_arguments  = 13;
 102   const int max_int_register_arguments = 6;  // first 2 are reserved
 103 
 104   const Register arg_java       = R21_tmp1;
 105   const Register arg_c          = R22_tmp2;
 106   const Register signature      = R23_tmp3;  // is string
 107   const Register sig_byte       = R24_tmp4;
 108   const Register fpcnt          = R25_tmp5;
 109   const Register argcnt         = R26_tmp6;
 110   const Register intSlot        = R27_tmp7;
 111   const Register target_sp      = R28_tmp8;
 112   const FloatRegister floatSlot = F0;
 113 
 114   address entry = __ function_entry();
 115 
 116   __ save_LR_CR(R0);
 117   __ save_nonvolatile_gprs(R1_SP, _spill_nonvolatiles_neg(r14));
 118   // We use target_sp for storing arguments in the C frame.
 119   __ mr(target_sp, R1_SP);
 120   __ push_frame_reg_args_nonvolatiles(0, R11_scratch1);
 121 
 122   __ mr(arg_java, R3_ARG1);
 123 
 124   __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::get_signature), R16_thread, R19_method);
 125 
 126   // Signature is in R3_RET. Signature is callee saved.
 127   __ mr(signature, R3_RET);
 128 
 129   // Get the result handler.
 130   __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::get_result_handler), R16_thread, R19_method);
 131 
 132   {
 133     Label L;
 134     // test if static
 135     // _access_flags._flags must be at offset 0.
 136     // TODO PPC port: requires change in shared code.
 137     //assert(in_bytes(AccessFlags::flags_offset()) == 0,
 138     //       "MethodDesc._access_flags == MethodDesc._access_flags._flags");
 139     // _access_flags must be a 32 bit value.
 140     assert(sizeof(AccessFlags) == 4, "wrong size");
 141     __ lwa(R11_scratch1/*access_flags*/, method_(access_flags));
 142     // testbit with condition register.
 143     __ testbitdi(CCR0, R0, R11_scratch1/*access_flags*/, JVM_ACC_STATIC_BIT);
 144     __ btrue(CCR0, L);
 145     // For non-static functions, pass "this" in R4_ARG2 and copy it
 146     // to 2nd C-arg slot.
 147     // We need to box the Java object here, so we use arg_java
 148     // (address of current Java stack slot) as argument and don't
 149     // dereference it as in case of ints, floats, etc.
 150     __ mr(R4_ARG2, arg_java);
 151     __ addi(arg_java, arg_java, -BytesPerWord);
 152     __ std(R4_ARG2, _abi(carg_2), target_sp);
 153     __ bind(L);
 154   }
 155 
 156   // Will be incremented directly after loop_start. argcnt=0
 157   // corresponds to 3rd C argument.
 158   __ li(argcnt, -1);
 159   // arg_c points to 3rd C argument
 160   __ addi(arg_c, target_sp, _abi(carg_3));
 161   // no floating-point args parsed so far
 162   __ li(fpcnt, 0);
 163 
 164   Label move_intSlot_to_ARG, move_floatSlot_to_FARG;
 165   Label loop_start, loop_end;
 166   Label do_int, do_long, do_float, do_double, do_dontreachhere, do_object, do_array, do_boxed;
 167 
 168   // signature points to '(' at entry
 169 #ifdef ASSERT
 170   __ lbz(sig_byte, 0, signature);
 171   __ cmplwi(CCR0, sig_byte, '(');
 172   __ bne(CCR0, do_dontreachhere);
 173 #endif
 174 
 175   __ bind(loop_start);
 176 
 177   __ addi(argcnt, argcnt, 1);
 178   __ lbzu(sig_byte, 1, signature);
 179 
 180   __ cmplwi(CCR0, sig_byte, ')'); // end of signature
 181   __ beq(CCR0, loop_end);
 182 
 183   __ cmplwi(CCR0, sig_byte, 'B'); // byte
 184   __ beq(CCR0, do_int);
 185 
 186   __ cmplwi(CCR0, sig_byte, 'C'); // char
 187   __ beq(CCR0, do_int);
 188 
 189   __ cmplwi(CCR0, sig_byte, 'D'); // double
 190   __ beq(CCR0, do_double);
 191 
 192   __ cmplwi(CCR0, sig_byte, 'F'); // float
 193   __ beq(CCR0, do_float);
 194 
 195   __ cmplwi(CCR0, sig_byte, 'I'); // int
 196   __ beq(CCR0, do_int);
 197 
 198   __ cmplwi(CCR0, sig_byte, 'J'); // long
 199   __ beq(CCR0, do_long);
 200 
 201   __ cmplwi(CCR0, sig_byte, 'S'); // short
 202   __ beq(CCR0, do_int);
 203 
 204   __ cmplwi(CCR0, sig_byte, 'Z'); // boolean
 205   __ beq(CCR0, do_int);
 206 
 207   __ cmplwi(CCR0, sig_byte, 'L'); // object
 208   __ beq(CCR0, do_object);
 209 
 210   __ cmplwi(CCR0, sig_byte, '['); // array
 211   __ beq(CCR0, do_array);
 212 
 213   //  __ cmplwi(CCR0, sig_byte, 'V'); // void cannot appear since we do not parse the return type
 214   //  __ beq(CCR0, do_void);
 215 
 216   __ bind(do_dontreachhere);
 217 
 218   __ unimplemented("ShouldNotReachHere in slow_signature_handler", 120);
 219 
 220   __ bind(do_array);
 221 
 222   {
 223     Label start_skip, end_skip;
 224 
 225     __ bind(start_skip);
 226     __ lbzu(sig_byte, 1, signature);
 227     __ cmplwi(CCR0, sig_byte, '[');
 228     __ beq(CCR0, start_skip); // skip further brackets
 229     __ cmplwi(CCR0, sig_byte, '9');
 230     __ bgt(CCR0, end_skip);   // no optional size
 231     __ cmplwi(CCR0, sig_byte, '0');
 232     __ bge(CCR0, start_skip); // skip optional size
 233     __ bind(end_skip);
 234 
 235     __ cmplwi(CCR0, sig_byte, 'L');
 236     __ beq(CCR0, do_object);  // for arrays of objects, the name of the object must be skipped
 237     __ b(do_boxed);          // otherwise, go directly to do_boxed
 238   }
 239 
 240   __ bind(do_object);
 241   {
 242     Label L;
 243     __ bind(L);
 244     __ lbzu(sig_byte, 1, signature);
 245     __ cmplwi(CCR0, sig_byte, ';');
 246     __ bne(CCR0, L);
 247    }
 248   // Need to box the Java object here, so we use arg_java (address of
 249   // current Java stack slot) as argument and don't dereference it as
 250   // in case of ints, floats, etc.
 251   Label do_null;
 252   __ bind(do_boxed);
 253   __ ld(R0,0, arg_java);
 254   __ cmpdi(CCR0, R0, 0);
 255   __ li(intSlot,0);
 256   __ beq(CCR0, do_null);
 257   __ mr(intSlot, arg_java);
 258   __ bind(do_null);
 259   __ std(intSlot, 0, arg_c);
 260   __ addi(arg_java, arg_java, -BytesPerWord);
 261   __ addi(arg_c, arg_c, BytesPerWord);
 262   __ cmplwi(CCR0, argcnt, max_int_register_arguments);
 263   __ blt(CCR0, move_intSlot_to_ARG);
 264   __ b(loop_start);
 265 
 266   __ bind(do_int);
 267   __ lwa(intSlot, 0, arg_java);
 268   __ std(intSlot, 0, arg_c);
 269   __ addi(arg_java, arg_java, -BytesPerWord);
 270   __ addi(arg_c, arg_c, BytesPerWord);
 271   __ cmplwi(CCR0, argcnt, max_int_register_arguments);
 272   __ blt(CCR0, move_intSlot_to_ARG);
 273   __ b(loop_start);
 274 
 275   __ bind(do_long);
 276   __ ld(intSlot, -BytesPerWord, arg_java);
 277   __ std(intSlot, 0, arg_c);
 278   __ addi(arg_java, arg_java, - 2 * BytesPerWord);
 279   __ addi(arg_c, arg_c, BytesPerWord);
 280   __ cmplwi(CCR0, argcnt, max_int_register_arguments);
 281   __ blt(CCR0, move_intSlot_to_ARG);
 282   __ b(loop_start);
 283 
 284   __ bind(do_float);
 285   __ lfs(floatSlot, 0, arg_java);
 286 #if defined(LINUX)
 287   // Linux uses ELF ABI. Both original ELF and ELFv2 ABIs have float
 288   // in the least significant word of an argument slot.
 289 #if defined(VM_LITTLE_ENDIAN)
 290   __ stfs(floatSlot, 0, arg_c);
 291 #else
 292   __ stfs(floatSlot, 4, arg_c);
 293 #endif
 294 #elif defined(AIX)
 295   // Although AIX runs on big endian CPU, float is in most significant
 296   // word of an argument slot.
 297   __ stfs(floatSlot, 0, arg_c);
 298 #else
 299 #error "unknown OS"
 300 #endif
 301   __ addi(arg_java, arg_java, -BytesPerWord);
 302   __ addi(arg_c, arg_c, BytesPerWord);
 303   __ cmplwi(CCR0, fpcnt, max_fp_register_arguments);
 304   __ blt(CCR0, move_floatSlot_to_FARG);
 305   __ b(loop_start);
 306 
 307   __ bind(do_double);
 308   __ lfd(floatSlot, - BytesPerWord, arg_java);
 309   __ stfd(floatSlot, 0, arg_c);
 310   __ addi(arg_java, arg_java, - 2 * BytesPerWord);
 311   __ addi(arg_c, arg_c, BytesPerWord);
 312   __ cmplwi(CCR0, fpcnt, max_fp_register_arguments);
 313   __ blt(CCR0, move_floatSlot_to_FARG);
 314   __ b(loop_start);
 315 
 316   __ bind(loop_end);
 317 
 318   __ pop_frame();
 319   __ restore_nonvolatile_gprs(R1_SP, _spill_nonvolatiles_neg(r14));
 320   __ restore_LR_CR(R0);
 321 
 322   __ blr();
 323 
 324   Label move_int_arg, move_float_arg;
 325   __ bind(move_int_arg); // each case must consist of 2 instructions (otherwise adapt LogSizeOfTwoInstructions)
 326   __ mr(R5_ARG3, intSlot);  __ b(loop_start);
 327   __ mr(R6_ARG4, intSlot);  __ b(loop_start);
 328   __ mr(R7_ARG5, intSlot);  __ b(loop_start);
 329   __ mr(R8_ARG6, intSlot);  __ b(loop_start);
 330   __ mr(R9_ARG7, intSlot);  __ b(loop_start);
 331   __ mr(R10_ARG8, intSlot); __ b(loop_start);
 332 
 333   __ bind(move_float_arg); // each case must consist of 2 instructions (otherwise adapt LogSizeOfTwoInstructions)
 334   __ fmr(F1_ARG1, floatSlot);   __ b(loop_start);
 335   __ fmr(F2_ARG2, floatSlot);   __ b(loop_start);
 336   __ fmr(F3_ARG3, floatSlot);   __ b(loop_start);
 337   __ fmr(F4_ARG4, floatSlot);   __ b(loop_start);
 338   __ fmr(F5_ARG5, floatSlot);   __ b(loop_start);
 339   __ fmr(F6_ARG6, floatSlot);   __ b(loop_start);
 340   __ fmr(F7_ARG7, floatSlot);   __ b(loop_start);
 341   __ fmr(F8_ARG8, floatSlot);   __ b(loop_start);
 342   __ fmr(F9_ARG9, floatSlot);   __ b(loop_start);
 343   __ fmr(F10_ARG10, floatSlot); __ b(loop_start);
 344   __ fmr(F11_ARG11, floatSlot); __ b(loop_start);
 345   __ fmr(F12_ARG12, floatSlot); __ b(loop_start);
 346   __ fmr(F13_ARG13, floatSlot); __ b(loop_start);
 347 
 348   __ bind(move_intSlot_to_ARG);
 349   __ sldi(R0, argcnt, LogSizeOfTwoInstructions);
 350   __ load_const(R11_scratch1, move_int_arg); // Label must be bound here.
 351   __ add(R11_scratch1, R0, R11_scratch1);
 352   __ mtctr(R11_scratch1/*branch_target*/);
 353   __ bctr();
 354   __ bind(move_floatSlot_to_FARG);
 355   __ sldi(R0, fpcnt, LogSizeOfTwoInstructions);
 356   __ addi(fpcnt, fpcnt, 1);
 357   __ load_const(R11_scratch1, move_float_arg); // Label must be bound here.
 358   __ add(R11_scratch1, R0, R11_scratch1);
 359   __ mtctr(R11_scratch1/*branch_target*/);
 360   __ bctr();
 361 
 362   return entry;
 363 }
 364 
 365 address TemplateInterpreterGenerator::generate_result_handler_for(BasicType type) {
 366   //
 367   // Registers alive
 368   //   R3_RET
 369   //   LR
 370   //
 371   // Registers updated
 372   //   R3_RET
 373   //
 374 
 375   Label done;
 376   address entry = __ pc();
 377 
 378   switch (type) {
 379   case T_BOOLEAN:
 380     // convert !=0 to 1
 381     __ neg(R0, R3_RET);
 382     __ orr(R0, R3_RET, R0);
 383     __ srwi(R3_RET, R0, 31);
 384     break;
 385   case T_BYTE:
 386      // sign extend 8 bits
 387      __ extsb(R3_RET, R3_RET);
 388      break;
 389   case T_CHAR:
 390      // zero extend 16 bits
 391      __ clrldi(R3_RET, R3_RET, 48);
 392      break;
 393   case T_SHORT:
 394      // sign extend 16 bits
 395      __ extsh(R3_RET, R3_RET);
 396      break;
 397   case T_INT:
 398      // sign extend 32 bits
 399      __ extsw(R3_RET, R3_RET);
 400      break;
 401   case T_LONG:
 402      break;
 403   case T_OBJECT:
 404     // unbox result if not null
 405     __ cmpdi(CCR0, R3_RET, 0);
 406     __ beq(CCR0, done);
 407     __ ld(R3_RET, 0, R3_RET);
 408     __ verify_oop(R3_RET);
 409     break;
 410   case T_FLOAT:
 411      break;
 412   case T_DOUBLE:
 413      break;
 414   case T_VOID:
 415      break;
 416   default: ShouldNotReachHere();
 417   }
 418 
 419   __ BIND(done);
 420   __ blr();
 421 
 422   return entry;
 423 }
 424 
 425 // Abstract method entry.
 426 //
 427 address TemplateInterpreterGenerator::generate_abstract_entry(void) {
 428   address entry = __ pc();
 429 
 430   //
 431   // Registers alive
 432   //   R16_thread     - JavaThread*
 433   //   R19_method     - callee's method (method to be invoked)
 434   //   R1_SP          - SP prepared such that caller's outgoing args are near top
 435   //   LR             - return address to caller
 436   //
 437   // Stack layout at this point:
 438   //
 439   //   0       [TOP_IJAVA_FRAME_ABI]         <-- R1_SP
 440   //           alignment (optional)
 441   //           [outgoing Java arguments]
 442   //           ...
 443   //   PARENT  [PARENT_IJAVA_FRAME_ABI]
 444   //            ...
 445   //
 446 
 447   // Can't use call_VM here because we have not set up a new
 448   // interpreter state. Make the call to the vm and make it look like
 449   // our caller set up the JavaFrameAnchor.
 450   __ set_top_ijava_frame_at_SP_as_last_Java_frame(R1_SP, R12_scratch2/*tmp*/);
 451 
 452   // Push a new C frame and save LR.
 453   __ save_LR_CR(R0);
 454   __ push_frame_reg_args(0, R11_scratch1);
 455 
 456   // This is not a leaf but we have a JavaFrameAnchor now and we will
 457   // check (create) exceptions afterward so this is ok.
 458   __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError),
 459                   R16_thread);
 460 
 461   // Pop the C frame and restore LR.
 462   __ pop_frame();
 463   __ restore_LR_CR(R0);
 464 
 465   // Reset JavaFrameAnchor from call_VM_leaf above.
 466   __ reset_last_Java_frame();
 467 
 468   // We don't know our caller, so jump to the general forward exception stub,
 469   // which will also pop our full frame off. Satisfy the interface of
 470   // SharedRuntime::generate_forward_exception()
 471   __ load_const_optimized(R11_scratch1, StubRoutines::forward_exception_entry(), R0);
 472   __ mtctr(R11_scratch1);
 473   __ bctr();
 474 
 475   return entry;
 476 }
 477 
 478 // Interpreter intrinsic for WeakReference.get().
 479 // 1. Don't push a full blown frame and go on dispatching, but fetch the value
 480 //    into R8 and return quickly
 481 // 2. If G1 is active we *must* execute this intrinsic for corrrectness:
 482 //    It contains a GC barrier which puts the reference into the satb buffer
 483 //    to indicate that someone holds a strong reference to the object the
 484 //    weak ref points to!
 485 address TemplateInterpreterGenerator::generate_Reference_get_entry(void) {
 486   // Code: _aload_0, _getfield, _areturn
 487   // parameter size = 1
 488   //
 489   // The code that gets generated by this routine is split into 2 parts:
 490   //    1. the "intrinsified" code for G1 (or any SATB based GC),
 491   //    2. the slow path - which is an expansion of the regular method entry.
 492   //
 493   // Notes:
 494   // * In the G1 code we do not check whether we need to block for
 495   //   a safepoint. If G1 is enabled then we must execute the specialized
 496   //   code for Reference.get (except when the Reference object is null)
 497   //   so that we can log the value in the referent field with an SATB
 498   //   update buffer.
 499   //   If the code for the getfield template is modified so that the
 500   //   G1 pre-barrier code is executed when the current method is
 501   //   Reference.get() then going through the normal method entry
 502   //   will be fine.
 503   // * The G1 code can, however, check the receiver object (the instance
 504   //   of java.lang.Reference) and jump to the slow path if null. If the
 505   //   Reference object is null then we obviously cannot fetch the referent
 506   //   and so we don't need to call the G1 pre-barrier. Thus we can use the
 507   //   regular method entry code to generate the NPE.
 508   //
 509 
 510   if (UseG1GC) {
 511     address entry = __ pc();
 512 
 513     const int referent_offset = java_lang_ref_Reference::referent_offset;
 514     guarantee(referent_offset > 0, "referent offset not initialized");
 515 
 516     Label slow_path;
 517 
 518     // Debugging not possible, so can't use __ skip_if_jvmti_mode(slow_path, GR31_SCRATCH);
 519 
 520     // In the G1 code we don't check if we need to reach a safepoint. We
 521     // continue and the thread will safepoint at the next bytecode dispatch.
 522 
 523     // If the receiver is null then it is OK to jump to the slow path.
 524     __ ld(R3_RET, Interpreter::stackElementSize, R15_esp); // get receiver
 525 
 526     // Check if receiver == NULL and go the slow path.
 527     __ cmpdi(CCR0, R3_RET, 0);
 528     __ beq(CCR0, slow_path);
 529 
 530     // Load the value of the referent field.
 531     __ load_heap_oop(R3_RET, referent_offset, R3_RET);
 532 
 533     // Generate the G1 pre-barrier code to log the value of
 534     // the referent field in an SATB buffer. Note with
 535     // these parameters the pre-barrier does not generate
 536     // the load of the previous value.
 537 
 538     // Restore caller sp for c2i case.
 539 #ifdef ASSERT
 540       __ ld(R9_ARG7, 0, R1_SP);
 541       __ ld(R10_ARG8, 0, R21_sender_SP);
 542       __ cmpd(CCR0, R9_ARG7, R10_ARG8);
 543       __ asm_assert_eq("backlink", 0x544);
 544 #endif // ASSERT
 545     __ mr(R1_SP, R21_sender_SP); // Cut the stack back to where the caller started.
 546 
 547     __ g1_write_barrier_pre(noreg,         // obj
 548                             noreg,         // offset
 549                             R3_RET,        // pre_val
 550                             R11_scratch1,  // tmp
 551                             R12_scratch2,  // tmp
 552                             true);         // needs_frame
 553 
 554     __ blr();
 555 
 556     // Generate regular method entry.
 557     __ bind(slow_path);
 558     __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::zerolocals), R11_scratch1);
 559     return entry;
 560   }
 561 
 562   return NULL;
 563 }
 564 
 565 // Actually we should never reach here since we do stack overflow checks before pushing any frame.
 566 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
 567   address entry = __ pc();
 568   __ unimplemented("generate_StackOverflowError_handler");
 569   return entry;
 570 }
 571 
 572 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(const char* name) {
 573   address entry = __ pc();
 574   __ empty_expression_stack();
 575   __ load_const_optimized(R4_ARG2, (address) name);
 576   // Index is in R17_tos.
 577   __ mr(R5_ARG3, R17_tos);
 578   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException));
 579   return entry;
 580 }
 581 
 582 #if 0
 583 // Call special ClassCastException constructor taking object to cast
 584 // and target class as arguments.
 585 address TemplateInterpreterGenerator::generate_ClassCastException_verbose_handler() {
 586   address entry = __ pc();
 587 
 588   // Expression stack must be empty before entering the VM if an
 589   // exception happened.
 590   __ empty_expression_stack();
 591 
 592   // Thread will be loaded to R3_ARG1.
 593   // Target class oop is in register R5_ARG3 by convention!
 594   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ClassCastException_verbose), R17_tos, R5_ARG3);
 595   // Above call must not return here since exception pending.
 596   DEBUG_ONLY(__ should_not_reach_here();)
 597   return entry;
 598 }
 599 #endif
 600 
 601 address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
 602   address entry = __ pc();
 603   // Expression stack must be empty before entering the VM if an
 604   // exception happened.
 605   __ empty_expression_stack();
 606 
 607   // Load exception object.
 608   // Thread will be loaded to R3_ARG1.
 609   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ClassCastException), R17_tos);
 610 #ifdef ASSERT
 611   // Above call must not return here since exception pending.
 612   __ should_not_reach_here();
 613 #endif
 614   return entry;
 615 }
 616 
 617 address TemplateInterpreterGenerator::generate_exception_handler_common(const char* name, const char* message, bool pass_oop) {
 618   address entry = __ pc();
 619   //__ untested("generate_exception_handler_common");
 620   Register Rexception = R17_tos;
 621 
 622   // Expression stack must be empty before entering the VM if an exception happened.
 623   __ empty_expression_stack();
 624 
 625   __ load_const_optimized(R4_ARG2, (address) name, R11_scratch1);
 626   if (pass_oop) {
 627     __ mr(R5_ARG3, Rexception);
 628     __ call_VM(Rexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception), false);
 629   } else {
 630     __ load_const_optimized(R5_ARG3, (address) message, R11_scratch1);
 631     __ call_VM(Rexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), false);
 632   }
 633 
 634   // Throw exception.
 635   __ mr(R3_ARG1, Rexception);
 636   __ load_const_optimized(R11_scratch1, Interpreter::throw_exception_entry(), R12_scratch2);
 637   __ mtctr(R11_scratch1);
 638   __ bctr();
 639 
 640   return entry;
 641 }
 642 
 643 address TemplateInterpreterGenerator::generate_continuation_for(TosState state) {
 644   address entry = __ pc();
 645   __ unimplemented("generate_continuation_for");
 646   return entry;
 647 }
 648 
 649 // This entry is returned to when a call returns to the interpreter.
 650 // When we arrive here, we expect that the callee stack frame is already popped.
 651 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step, size_t index_size) {
 652   address entry = __ pc();
 653 
 654   // Move the value out of the return register back to the TOS cache of current frame.
 655   switch (state) {
 656     case ltos:
 657     case btos:
 658     case ctos:
 659     case stos:
 660     case atos:
 661     case itos: __ mr(R17_tos, R3_RET); break;   // RET -> TOS cache
 662     case ftos:
 663     case dtos: __ fmr(F15_ftos, F1_RET); break; // TOS cache -> GR_FRET
 664     case vtos: break;                           // Nothing to do, this was a void return.
 665     default  : ShouldNotReachHere();
 666   }
 667 
 668   __ restore_interpreter_state(R11_scratch1); // Sets R11_scratch1 = fp.
 669   __ ld(R12_scratch2, _ijava_state_neg(top_frame_sp), R11_scratch1);
 670   __ resize_frame_absolute(R12_scratch2, R11_scratch1, R0);
 671 
 672   // Compiled code destroys templateTableBase, reload.
 673   __ load_const_optimized(R25_templateTableBase, (address)Interpreter::dispatch_table((TosState)0), R12_scratch2);
 674 
 675   if (state == atos) {
 676     __ profile_return_type(R3_RET, R11_scratch1, R12_scratch2);
 677   }
 678 
 679   const Register cache = R11_scratch1;
 680   const Register size  = R12_scratch2;
 681   __ get_cache_and_index_at_bcp(cache, 1, index_size);
 682 
 683   // Get least significant byte of 64 bit value:
 684 #if defined(VM_LITTLE_ENDIAN)
 685   __ lbz(size, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset()), cache);
 686 #else
 687   __ lbz(size, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset()) + 7, cache);
 688 #endif
 689   __ sldi(size, size, Interpreter::logStackElementSize);
 690   __ add(R15_esp, R15_esp, size);
 691   __ dispatch_next(state, step);
 692   return entry;
 693 }
 694 
 695 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, int step) {
 696   address entry = __ pc();
 697   // If state != vtos, we're returning from a native method, which put it's result
 698   // into the result register. So move the value out of the return register back
 699   // to the TOS cache of current frame.
 700 
 701   switch (state) {
 702     case ltos:
 703     case btos:
 704     case ctos:
 705     case stos:
 706     case atos:
 707     case itos: __ mr(R17_tos, R3_RET); break;   // GR_RET -> TOS cache
 708     case ftos:
 709     case dtos: __ fmr(F15_ftos, F1_RET); break; // TOS cache -> GR_FRET
 710     case vtos: break;                           // Nothing to do, this was a void return.
 711     default  : ShouldNotReachHere();
 712   }
 713 
 714   // Load LcpoolCache @@@ should be already set!
 715   __ get_constant_pool_cache(R27_constPoolCache);
 716 
 717   // Handle a pending exception, fall through if none.
 718   __ check_and_forward_exception(R11_scratch1, R12_scratch2);
 719 
 720   // Start executing bytecodes.
 721   __ dispatch_next(state, step);
 722 
 723   return entry;
 724 }
 725 
 726 address TemplateInterpreterGenerator::generate_safept_entry_for(TosState state, address runtime_entry) {
 727   address entry = __ pc();
 728 
 729   __ push(state);
 730   __ call_VM(noreg, runtime_entry);
 731   __ dispatch_via(vtos, Interpreter::_normal_table.table_for(vtos));
 732 
 733   return entry;
 734 }
 735 
 736 // Helpers for commoning out cases in the various type of method entries.
 737 
 738 // Increment invocation count & check for overflow.
 739 //
 740 // Note: checking for negative value instead of overflow
 741 //       so we have a 'sticky' overflow test.
 742 //
 743 void TemplateInterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
 744   // Note: In tiered we increment either counters in method or in MDO depending if we're profiling or not.
 745   Register Rscratch1   = R11_scratch1;
 746   Register Rscratch2   = R12_scratch2;
 747   Register R3_counters = R3_ARG1;
 748   Label done;
 749 
 750   if (TieredCompilation) {
 751     const int increment = InvocationCounter::count_increment;
 752     const int mask = ((1 << Tier0InvokeNotifyFreqLog) - 1) << InvocationCounter::count_shift;
 753     Label no_mdo;
 754     if (ProfileInterpreter) {
 755       const Register Rmdo = Rscratch1;
 756       // If no method data exists, go to profile_continue.
 757       __ ld(Rmdo, in_bytes(Method::method_data_offset()), R19_method);
 758       __ cmpdi(CCR0, Rmdo, 0);
 759       __ beq(CCR0, no_mdo);
 760 
 761       // Increment backedge counter in the MDO.
 762       const int mdo_bc_offs = in_bytes(MethodData::backedge_counter_offset()) + in_bytes(InvocationCounter::counter_offset());
 763       __ lwz(Rscratch2, mdo_bc_offs, Rmdo);
 764       __ addi(Rscratch2, Rscratch2, increment);
 765       __ stw(Rscratch2, mdo_bc_offs, Rmdo);
 766       __ load_const_optimized(Rscratch1, mask, R0);
 767       __ and_(Rscratch1, Rscratch2, Rscratch1);
 768       __ bne(CCR0, done);
 769       __ b(*overflow);
 770     }
 771 
 772     // Increment counter in MethodCounters*.
 773     const int mo_bc_offs = in_bytes(MethodCounters::backedge_counter_offset()) + in_bytes(InvocationCounter::counter_offset());
 774     __ bind(no_mdo);
 775     __ get_method_counters(R19_method, R3_counters, done);
 776     __ lwz(Rscratch2, mo_bc_offs, R3_counters);
 777     __ addi(Rscratch2, Rscratch2, increment);
 778     __ stw(Rscratch2, mo_bc_offs, R3_counters);
 779     __ load_const_optimized(Rscratch1, mask, R0);
 780     __ and_(Rscratch1, Rscratch2, Rscratch1);
 781     __ beq(CCR0, *overflow);
 782 
 783     __ bind(done);
 784 
 785   } else {
 786 
 787     // Update standard invocation counters.
 788     Register Rsum_ivc_bec = R4_ARG2;
 789     __ get_method_counters(R19_method, R3_counters, done);
 790     __ increment_invocation_counter(R3_counters, Rsum_ivc_bec, R12_scratch2);
 791     // Increment interpreter invocation counter.
 792     if (ProfileInterpreter) {  // %%% Merge this into methodDataOop.
 793       __ lwz(R12_scratch2, in_bytes(MethodCounters::interpreter_invocation_counter_offset()), R3_counters);
 794       __ addi(R12_scratch2, R12_scratch2, 1);
 795       __ stw(R12_scratch2, in_bytes(MethodCounters::interpreter_invocation_counter_offset()), R3_counters);
 796     }
 797     // Check if we must create a method data obj.
 798     if (ProfileInterpreter && profile_method != NULL) {
 799       const Register profile_limit = Rscratch1;
 800       int pl_offs = __ load_const_optimized(profile_limit, &InvocationCounter::InterpreterProfileLimit, R0, true);
 801       __ lwz(profile_limit, pl_offs, profile_limit);
 802       // Test to see if we should create a method data oop.
 803       __ cmpw(CCR0, Rsum_ivc_bec, profile_limit);
 804       __ blt(CCR0, *profile_method_continue);
 805       // If no method data exists, go to profile_method.
 806       __ test_method_data_pointer(*profile_method);
 807     }
 808     // Finally check for counter overflow.
 809     if (overflow) {
 810       const Register invocation_limit = Rscratch1;
 811       int il_offs = __ load_const_optimized(invocation_limit, &InvocationCounter::InterpreterInvocationLimit, R0, true);
 812       __ lwz(invocation_limit, il_offs, invocation_limit);
 813       assert(4 == sizeof(InvocationCounter::InterpreterInvocationLimit), "unexpected field size");
 814       __ cmpw(CCR0, Rsum_ivc_bec, invocation_limit);
 815       __ bge(CCR0, *overflow);
 816     }
 817 
 818     __ bind(done);
 819   }
 820 }
 821 
 822 // Generate code to initiate compilation on invocation counter overflow.
 823 void TemplateInterpreterGenerator::generate_counter_overflow(Label& continue_entry) {
 824   // Generate code to initiate compilation on the counter overflow.
 825 
 826   // InterpreterRuntime::frequency_counter_overflow takes one arguments,
 827   // which indicates if the counter overflow occurs at a backwards branch (NULL bcp)
 828   // We pass zero in.
 829   // The call returns the address of the verified entry point for the method or NULL
 830   // if the compilation did not complete (either went background or bailed out).
 831   //
 832   // Unlike the C++ interpreter above: Check exceptions!
 833   // Assumption: Caller must set the flag "do_not_unlock_if_sychronized" if the monitor of a sync'ed
 834   // method has not yet been created. Thus, no unlocking of a non-existing monitor can occur.
 835 
 836   __ li(R4_ARG2, 0);
 837   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), R4_ARG2, true);
 838 
 839   // Returns verified_entry_point or NULL.
 840   // We ignore it in any case.
 841   __ b(continue_entry);
 842 }
 843 
 844 void TemplateInterpreterGenerator::generate_stack_overflow_check(Register Rmem_frame_size, Register Rscratch1) {
 845   assert_different_registers(Rmem_frame_size, Rscratch1);
 846   __ generate_stack_overflow_check_with_compare_and_throw(Rmem_frame_size, Rscratch1);
 847 }
 848 
 849 void TemplateInterpreterGenerator::unlock_method(bool check_exceptions) {
 850   __ unlock_object(R26_monitor, check_exceptions);
 851 }
 852 
 853 // Lock the current method, interpreter register window must be set up!
 854 void TemplateInterpreterGenerator::lock_method(Register Rflags, Register Rscratch1, Register Rscratch2, bool flags_preloaded) {
 855   const Register Robj_to_lock = Rscratch2;
 856 
 857   {
 858     if (!flags_preloaded) {
 859       __ lwz(Rflags, method_(access_flags));
 860     }
 861 
 862 #ifdef ASSERT
 863     // Check if methods needs synchronization.
 864     {
 865       Label Lok;
 866       __ testbitdi(CCR0, R0, Rflags, JVM_ACC_SYNCHRONIZED_BIT);
 867       __ btrue(CCR0,Lok);
 868       __ stop("method doesn't need synchronization");
 869       __ bind(Lok);
 870     }
 871 #endif // ASSERT
 872   }
 873 
 874   // Get synchronization object to Rscratch2.
 875   {
 876     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
 877     Label Lstatic;
 878     Label Ldone;
 879 
 880     __ testbitdi(CCR0, R0, Rflags, JVM_ACC_STATIC_BIT);
 881     __ btrue(CCR0, Lstatic);
 882 
 883     // Non-static case: load receiver obj from stack and we're done.
 884     __ ld(Robj_to_lock, R18_locals);
 885     __ b(Ldone);
 886 
 887     __ bind(Lstatic); // Static case: Lock the java mirror
 888     __ ld(Robj_to_lock, in_bytes(Method::const_offset()), R19_method);
 889     __ ld(Robj_to_lock, in_bytes(ConstMethod::constants_offset()), Robj_to_lock);
 890     __ ld(Robj_to_lock, ConstantPool::pool_holder_offset_in_bytes(), Robj_to_lock);
 891     __ ld(Robj_to_lock, mirror_offset, Robj_to_lock);
 892 
 893     __ bind(Ldone);
 894     __ verify_oop(Robj_to_lock);
 895   }
 896 
 897   // Got the oop to lock => execute!
 898   __ add_monitor_to_stack(true, Rscratch1, R0);
 899 
 900   __ std(Robj_to_lock, BasicObjectLock::obj_offset_in_bytes(), R26_monitor);
 901   __ lock_object(R26_monitor, Robj_to_lock);
 902 }
 903 
 904 // Generate a fixed interpreter frame for pure interpreter
 905 // and I2N native transition frames.
 906 //
 907 // Before (stack grows downwards):
 908 //
 909 //         |  ...         |
 910 //         |------------- |
 911 //         |  java arg0   |
 912 //         |  ...         |
 913 //         |  java argn   |
 914 //         |              |   <-   R15_esp
 915 //         |              |
 916 //         |--------------|
 917 //         | abi_112      |
 918 //         |              |   <-   R1_SP
 919 //         |==============|
 920 //
 921 //
 922 // After:
 923 //
 924 //         |  ...         |
 925 //         |  java arg0   |<-   R18_locals
 926 //         |  ...         |
 927 //         |  java argn   |
 928 //         |--------------|
 929 //         |              |
 930 //         |  java locals |
 931 //         |              |
 932 //         |--------------|
 933 //         |  abi_48      |
 934 //         |==============|
 935 //         |              |
 936 //         |   istate     |
 937 //         |              |
 938 //         |--------------|
 939 //         |   monitor    |<-   R26_monitor
 940 //         |--------------|
 941 //         |              |<-   R15_esp
 942 //         | expression   |
 943 //         | stack        |
 944 //         |              |
 945 //         |--------------|
 946 //         |              |
 947 //         | abi_112      |<-   R1_SP
 948 //         |==============|
 949 //
 950 // The top most frame needs an abi space of 112 bytes. This space is needed,
 951 // since we call to c. The c function may spill their arguments to the caller
 952 // frame. When we call to java, we don't need these spill slots. In order to save
 953 // space on the stack, we resize the caller. However, java local reside in
 954 // the caller frame and the frame has to be increased. The frame_size for the
 955 // current frame was calculated based on max_stack as size for the expression
 956 // stack. At the call, just a part of the expression stack might be used.
 957 // We don't want to waste this space and cut the frame back accordingly.
 958 // The resulting amount for resizing is calculated as follows:
 959 // resize =   (number_of_locals - number_of_arguments) * slot_size
 960 //          + (R1_SP - R15_esp) + 48
 961 //
 962 // The size for the callee frame is calculated:
 963 // framesize = 112 + max_stack + monitor + state_size
 964 //
 965 // maxstack:   Max number of slots on the expression stack, loaded from the method.
 966 // monitor:    We statically reserve room for one monitor object.
 967 // state_size: We save the current state of the interpreter to this area.
 968 //
 969 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call, Register Rsize_of_parameters, Register Rsize_of_locals) {
 970   Register parent_frame_resize = R6_ARG4, // Frame will grow by this number of bytes.
 971            top_frame_size      = R7_ARG5,
 972            Rconst_method       = R8_ARG6;
 973 
 974   assert_different_registers(Rsize_of_parameters, Rsize_of_locals, parent_frame_resize, top_frame_size);
 975 
 976   __ ld(Rconst_method, method_(const));
 977   __ lhz(Rsize_of_parameters /* number of params */,
 978          in_bytes(ConstMethod::size_of_parameters_offset()), Rconst_method);
 979   if (native_call) {
 980     // If we're calling a native method, we reserve space for the worst-case signature
 981     // handler varargs vector, which is max(Argument::n_register_parameters, parameter_count+2).
 982     // We add two slots to the parameter_count, one for the jni
 983     // environment and one for a possible native mirror.
 984     Label skip_native_calculate_max_stack;
 985     __ addi(top_frame_size, Rsize_of_parameters, 2);
 986     __ cmpwi(CCR0, top_frame_size, Argument::n_register_parameters);
 987     __ bge(CCR0, skip_native_calculate_max_stack);
 988     __ li(top_frame_size, Argument::n_register_parameters);
 989     __ bind(skip_native_calculate_max_stack);
 990     __ sldi(Rsize_of_parameters, Rsize_of_parameters, Interpreter::logStackElementSize);
 991     __ sldi(top_frame_size, top_frame_size, Interpreter::logStackElementSize);
 992     __ sub(parent_frame_resize, R1_SP, R15_esp); // <0, off by Interpreter::stackElementSize!
 993     assert(Rsize_of_locals == noreg, "Rsize_of_locals not initialized"); // Only relevant value is Rsize_of_parameters.
 994   } else {
 995     __ lhz(Rsize_of_locals /* number of params */, in_bytes(ConstMethod::size_of_locals_offset()), Rconst_method);
 996     __ sldi(Rsize_of_parameters, Rsize_of_parameters, Interpreter::logStackElementSize);
 997     __ sldi(Rsize_of_locals, Rsize_of_locals, Interpreter::logStackElementSize);
 998     __ lhz(top_frame_size, in_bytes(ConstMethod::max_stack_offset()), Rconst_method);
 999     __ sub(R11_scratch1, Rsize_of_locals, Rsize_of_parameters); // >=0
1000     __ sub(parent_frame_resize, R1_SP, R15_esp); // <0, off by Interpreter::stackElementSize!
1001     __ sldi(top_frame_size, top_frame_size, Interpreter::logStackElementSize);
1002     __ add(parent_frame_resize, parent_frame_resize, R11_scratch1);
1003   }
1004 
1005   // Compute top frame size.
1006   __ addi(top_frame_size, top_frame_size, frame::abi_reg_args_size + frame::ijava_state_size);
1007 
1008   // Cut back area between esp and max_stack.
1009   __ addi(parent_frame_resize, parent_frame_resize, frame::abi_minframe_size - Interpreter::stackElementSize);
1010 
1011   __ round_to(top_frame_size, frame::alignment_in_bytes);
1012   __ round_to(parent_frame_resize, frame::alignment_in_bytes);
1013   // parent_frame_resize = (locals-parameters) - (ESP-SP-ABI48) Rounded to frame alignment size.
1014   // Enlarge by locals-parameters (not in case of native_call), shrink by ESP-SP-ABI48.
1015 
1016   {
1017     // --------------------------------------------------------------------------
1018     // Stack overflow check
1019 
1020     Label cont;
1021     __ add(R11_scratch1, parent_frame_resize, top_frame_size);
1022     generate_stack_overflow_check(R11_scratch1, R12_scratch2);
1023   }
1024 
1025   // Set up interpreter state registers.
1026 
1027   __ add(R18_locals, R15_esp, Rsize_of_parameters);
1028   __ ld(R27_constPoolCache, in_bytes(ConstMethod::constants_offset()), Rconst_method);
1029   __ ld(R27_constPoolCache, ConstantPool::cache_offset_in_bytes(), R27_constPoolCache);
1030 
1031   // Set method data pointer.
1032   if (ProfileInterpreter) {
1033     Label zero_continue;
1034     __ ld(R28_mdx, method_(method_data));
1035     __ cmpdi(CCR0, R28_mdx, 0);
1036     __ beq(CCR0, zero_continue);
1037     __ addi(R28_mdx, R28_mdx, in_bytes(MethodData::data_offset()));
1038     __ bind(zero_continue);
1039   }
1040 
1041   if (native_call) {
1042     __ li(R14_bcp, 0); // Must initialize.
1043   } else {
1044     __ add(R14_bcp, in_bytes(ConstMethod::codes_offset()), Rconst_method);
1045   }
1046 
1047   // Resize parent frame.
1048   __ mflr(R12_scratch2);
1049   __ neg(parent_frame_resize, parent_frame_resize);
1050   __ resize_frame(parent_frame_resize, R11_scratch1);
1051   __ std(R12_scratch2, _abi(lr), R1_SP);
1052 
1053   __ addi(R26_monitor, R1_SP, - frame::ijava_state_size);
1054   __ addi(R15_esp, R26_monitor, - Interpreter::stackElementSize);
1055 
1056   // Store values.
1057   // R15_esp, R14_bcp, R26_monitor, R28_mdx are saved at java calls
1058   // in InterpreterMacroAssembler::call_from_interpreter.
1059   __ std(R19_method, _ijava_state_neg(method), R1_SP);
1060   __ std(R21_sender_SP, _ijava_state_neg(sender_sp), R1_SP);
1061   __ std(R27_constPoolCache, _ijava_state_neg(cpoolCache), R1_SP);
1062   __ std(R18_locals, _ijava_state_neg(locals), R1_SP);
1063 
1064   // Note: esp, bcp, monitor, mdx live in registers. Hence, the correct version can only
1065   // be found in the frame after save_interpreter_state is done. This is always true
1066   // for non-top frames. But when a signal occurs, dumping the top frame can go wrong,
1067   // because e.g. frame::interpreter_frame_bcp() will not access the correct value
1068   // (Enhanced Stack Trace).
1069   // The signal handler does not save the interpreter state into the frame.
1070   __ li(R0, 0);
1071 #ifdef ASSERT
1072   // Fill remaining slots with constants.
1073   __ load_const_optimized(R11_scratch1, 0x5afe);
1074   __ load_const_optimized(R12_scratch2, 0xdead);
1075 #endif
1076   // We have to initialize some frame slots for native calls (accessed by GC).
1077   if (native_call) {
1078     __ std(R26_monitor, _ijava_state_neg(monitors), R1_SP);
1079     __ std(R14_bcp, _ijava_state_neg(bcp), R1_SP);
1080     if (ProfileInterpreter) { __ std(R28_mdx, _ijava_state_neg(mdx), R1_SP); }
1081   }
1082 #ifdef ASSERT
1083   else {
1084     __ std(R12_scratch2, _ijava_state_neg(monitors), R1_SP);
1085     __ std(R12_scratch2, _ijava_state_neg(bcp), R1_SP);
1086     __ std(R12_scratch2, _ijava_state_neg(mdx), R1_SP);
1087   }
1088   __ std(R11_scratch1, _ijava_state_neg(ijava_reserved), R1_SP);
1089   __ std(R12_scratch2, _ijava_state_neg(esp), R1_SP);
1090   __ std(R12_scratch2, _ijava_state_neg(lresult), R1_SP);
1091   __ std(R12_scratch2, _ijava_state_neg(fresult), R1_SP);
1092 #endif
1093   __ subf(R12_scratch2, top_frame_size, R1_SP);
1094   __ std(R0, _ijava_state_neg(oop_tmp), R1_SP);
1095   __ std(R12_scratch2, _ijava_state_neg(top_frame_sp), R1_SP);
1096 
1097   // Push top frame.
1098   __ push_frame(top_frame_size, R11_scratch1);
1099 }
1100 
1101 // End of helpers
1102 
1103 address TemplateInterpreterGenerator::generate_math_entry(AbstractInterpreter::MethodKind kind) {
1104   if (!TemplateInterpreter::math_entry_available(kind)) {
1105     NOT_PRODUCT(__ should_not_reach_here();)
1106     return NULL;
1107   }
1108 
1109   address entry = __ pc();
1110 
1111   __ lfd(F1_RET, Interpreter::stackElementSize, R15_esp);
1112 
1113   // Pop c2i arguments (if any) off when we return.
1114 #ifdef ASSERT
1115   __ ld(R9_ARG7, 0, R1_SP);
1116   __ ld(R10_ARG8, 0, R21_sender_SP);
1117   __ cmpd(CCR0, R9_ARG7, R10_ARG8);
1118   __ asm_assert_eq("backlink", 0x545);
1119 #endif // ASSERT
1120   __ mr(R1_SP, R21_sender_SP); // Cut the stack back to where the caller started.
1121 
1122   if (kind == Interpreter::java_lang_math_sqrt) {
1123     __ fsqrt(F1_RET, F1_RET);
1124   } else if (kind == Interpreter::java_lang_math_abs) {
1125     __ fabs(F1_RET, F1_RET);
1126   } else {
1127     ShouldNotReachHere();
1128   }
1129 
1130   // And we're done.
1131   __ blr();
1132 
1133   __ flush();
1134 
1135   return entry;
1136 }
1137 
1138 // Interpreter stub for calling a native method. (asm interpreter)
1139 // This sets up a somewhat different looking stack for calling the
1140 // native method than the typical interpreter frame setup.
1141 //
1142 // On entry:
1143 //   R19_method    - method
1144 //   R16_thread    - JavaThread*
1145 //   R15_esp       - intptr_t* sender tos
1146 //
1147 //   abstract stack (grows up)
1148 //     [  IJava (caller of JNI callee)  ]  <-- ASP
1149 //        ...
1150 address TemplateInterpreterGenerator::generate_native_entry(bool synchronized) {
1151 
1152   address entry = __ pc();
1153 
1154   const bool inc_counter = UseCompiler || CountCompiledCalls || LogTouchedMethods;
1155 
1156   // -----------------------------------------------------------------------------
1157   // Allocate a new frame that represents the native callee (i2n frame).
1158   // This is not a full-blown interpreter frame, but in particular, the
1159   // following registers are valid after this:
1160   // - R19_method
1161   // - R18_local (points to start of argumuments to native function)
1162   //
1163   //   abstract stack (grows up)
1164   //     [  IJava (caller of JNI callee)  ]  <-- ASP
1165   //        ...
1166 
1167   const Register signature_handler_fd = R11_scratch1;
1168   const Register pending_exception    = R0;
1169   const Register result_handler_addr  = R31;
1170   const Register native_method_fd     = R11_scratch1;
1171   const Register access_flags         = R22_tmp2;
1172   const Register active_handles       = R11_scratch1; // R26_monitor saved to state.
1173   const Register sync_state           = R12_scratch2;
1174   const Register sync_state_addr      = sync_state;   // Address is dead after use.
1175   const Register suspend_flags        = R11_scratch1;
1176 
1177   //=============================================================================
1178   // Allocate new frame and initialize interpreter state.
1179 
1180   Label exception_return;
1181   Label exception_return_sync_check;
1182   Label stack_overflow_return;
1183 
1184   // Generate new interpreter state and jump to stack_overflow_return in case of
1185   // a stack overflow.
1186   //generate_compute_interpreter_state(stack_overflow_return);
1187 
1188   Register size_of_parameters = R22_tmp2;
1189 
1190   generate_fixed_frame(true, size_of_parameters, noreg /* unused */);
1191 
1192   //=============================================================================
1193   // Increment invocation counter. On overflow, entry to JNI method
1194   // will be compiled.
1195   Label invocation_counter_overflow, continue_after_compile;
1196   if (inc_counter) {
1197     if (synchronized) {
1198       // Since at this point in the method invocation the exception handler
1199       // would try to exit the monitor of synchronized methods which hasn't
1200       // been entered yet, we set the thread local variable
1201       // _do_not_unlock_if_synchronized to true. If any exception was thrown by
1202       // runtime, exception handling i.e. unlock_if_synchronized_method will
1203       // check this thread local flag.
1204       // This flag has two effects, one is to force an unwind in the topmost
1205       // interpreter frame and not perform an unlock while doing so.
1206       __ li(R0, 1);
1207       __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
1208     }
1209     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
1210 
1211     BIND(continue_after_compile);
1212     // Reset the _do_not_unlock_if_synchronized flag.
1213     if (synchronized) {
1214       __ li(R0, 0);
1215       __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
1216     }
1217   }
1218 
1219   // access_flags = method->access_flags();
1220   // Load access flags.
1221   assert(access_flags->is_nonvolatile(),
1222          "access_flags must be in a non-volatile register");
1223   // Type check.
1224   assert(4 == sizeof(AccessFlags), "unexpected field size");
1225   __ lwz(access_flags, method_(access_flags));
1226 
1227   // We don't want to reload R19_method and access_flags after calls
1228   // to some helper functions.
1229   assert(R19_method->is_nonvolatile(),
1230          "R19_method must be a non-volatile register");
1231 
1232   // Check for synchronized methods. Must happen AFTER invocation counter
1233   // check, so method is not locked if counter overflows.
1234 
1235   if (synchronized) {
1236     lock_method(access_flags, R11_scratch1, R12_scratch2, true);
1237 
1238     // Update monitor in state.
1239     __ ld(R11_scratch1, 0, R1_SP);
1240     __ std(R26_monitor, _ijava_state_neg(monitors), R11_scratch1);
1241   }
1242 
1243   // jvmti/jvmpi support
1244   __ notify_method_entry();
1245 
1246   //=============================================================================
1247   // Get and call the signature handler.
1248 
1249   __ ld(signature_handler_fd, method_(signature_handler));
1250   Label call_signature_handler;
1251 
1252   __ cmpdi(CCR0, signature_handler_fd, 0);
1253   __ bne(CCR0, call_signature_handler);
1254 
1255   // Method has never been called. Either generate a specialized
1256   // handler or point to the slow one.
1257   //
1258   // Pass parameter 'false' to avoid exception check in call_VM.
1259   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), R19_method, false);
1260 
1261   // Check for an exception while looking up the target method. If we
1262   // incurred one, bail.
1263   __ ld(pending_exception, thread_(pending_exception));
1264   __ cmpdi(CCR0, pending_exception, 0);
1265   __ bne(CCR0, exception_return_sync_check); // Has pending exception.
1266 
1267   // Reload signature handler, it may have been created/assigned in the meanwhile.
1268   __ ld(signature_handler_fd, method_(signature_handler));
1269   __ twi_0(signature_handler_fd); // Order wrt. load of klass mirror and entry point (isync is below).
1270 
1271   BIND(call_signature_handler);
1272 
1273   // Before we call the signature handler we push a new frame to
1274   // protect the interpreter frame volatile registers when we return
1275   // from jni but before we can get back to Java.
1276 
1277   // First set the frame anchor while the SP/FP registers are
1278   // convenient and the slow signature handler can use this same frame
1279   // anchor.
1280 
1281   // We have a TOP_IJAVA_FRAME here, which belongs to us.
1282   __ set_top_ijava_frame_at_SP_as_last_Java_frame(R1_SP, R12_scratch2/*tmp*/);
1283 
1284   // Now the interpreter frame (and its call chain) have been
1285   // invalidated and flushed. We are now protected against eager
1286   // being enabled in native code. Even if it goes eager the
1287   // registers will be reloaded as clean and we will invalidate after
1288   // the call so no spurious flush should be possible.
1289 
1290   // Call signature handler and pass locals address.
1291   //
1292   // Our signature handlers copy required arguments to the C stack
1293   // (outgoing C args), R3_ARG1 to R10_ARG8, and FARG1 to FARG13.
1294   __ mr(R3_ARG1, R18_locals);
1295 #if !defined(ABI_ELFv2)
1296   __ ld(signature_handler_fd, 0, signature_handler_fd);
1297 #endif
1298 
1299   __ call_stub(signature_handler_fd);
1300 
1301   // Remove the register parameter varargs slots we allocated in
1302   // compute_interpreter_state. SP+16 ends up pointing to the ABI
1303   // outgoing argument area.
1304   //
1305   // Not needed on PPC64.
1306   //__ add(SP, SP, Argument::n_register_parameters*BytesPerWord);
1307 
1308   assert(result_handler_addr->is_nonvolatile(), "result_handler_addr must be in a non-volatile register");
1309   // Save across call to native method.
1310   __ mr(result_handler_addr, R3_RET);
1311 
1312   __ isync(); // Acquire signature handler before trying to fetch the native entry point and klass mirror.
1313 
1314   // Set up fixed parameters and call the native method.
1315   // If the method is static, get mirror into R4_ARG2.
1316   {
1317     Label method_is_not_static;
1318     // Access_flags is non-volatile and still, no need to restore it.
1319 
1320     // Restore access flags.
1321     __ testbitdi(CCR0, R0, access_flags, JVM_ACC_STATIC_BIT);
1322     __ bfalse(CCR0, method_is_not_static);
1323 
1324     // constants = method->constants();
1325     __ ld(R11_scratch1, in_bytes(Method::const_offset()), R19_method);
1326     __ ld(R11_scratch1, in_bytes(ConstMethod::constants_offset()), R11_scratch1);
1327     // pool_holder = method->constants()->pool_holder();
1328     __ ld(R11_scratch1/*pool_holder*/, ConstantPool::pool_holder_offset_in_bytes(),
1329           R11_scratch1/*constants*/);
1330 
1331     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
1332 
1333     // mirror = pool_holder->klass_part()->java_mirror();
1334     __ ld(R0/*mirror*/, mirror_offset, R11_scratch1/*pool_holder*/);
1335     // state->_native_mirror = mirror;
1336 
1337     __ ld(R11_scratch1, 0, R1_SP);
1338     __ std(R0/*mirror*/, _ijava_state_neg(oop_tmp), R11_scratch1);
1339     // R4_ARG2 = &state->_oop_temp;
1340     __ addi(R4_ARG2, R11_scratch1, _ijava_state_neg(oop_tmp));
1341     BIND(method_is_not_static);
1342   }
1343 
1344   // At this point, arguments have been copied off the stack into
1345   // their JNI positions. Oops are boxed in-place on the stack, with
1346   // handles copied to arguments. The result handler address is in a
1347   // register.
1348 
1349   // Pass JNIEnv address as first parameter.
1350   __ addir(R3_ARG1, thread_(jni_environment));
1351 
1352   // Load the native_method entry before we change the thread state.
1353   __ ld(native_method_fd, method_(native_function));
1354 
1355   //=============================================================================
1356   // Transition from _thread_in_Java to _thread_in_native. As soon as
1357   // we make this change the safepoint code needs to be certain that
1358   // the last Java frame we established is good. The pc in that frame
1359   // just needs to be near here not an actual return address.
1360 
1361   // We use release_store_fence to update values like the thread state, where
1362   // we don't want the current thread to continue until all our prior memory
1363   // accesses (including the new thread state) are visible to other threads.
1364   __ li(R0, _thread_in_native);
1365   __ release();
1366 
1367   // TODO PPC port assert(4 == JavaThread::sz_thread_state(), "unexpected field size");
1368   __ stw(R0, thread_(thread_state));
1369 
1370   if (UseMembar) {
1371     __ fence();
1372   }
1373 
1374   //=============================================================================
1375   // Call the native method. Argument registers must not have been
1376   // overwritten since "__ call_stub(signature_handler);" (except for
1377   // ARG1 and ARG2 for static methods).
1378   __ call_c(native_method_fd);
1379 
1380   __ li(R0, 0);
1381   __ ld(R11_scratch1, 0, R1_SP);
1382   __ std(R3_RET, _ijava_state_neg(lresult), R11_scratch1);
1383   __ stfd(F1_RET, _ijava_state_neg(fresult), R11_scratch1);
1384   __ std(R0/*mirror*/, _ijava_state_neg(oop_tmp), R11_scratch1); // reset
1385 
1386   // Note: C++ interpreter needs the following here:
1387   // The frame_manager_lr field, which we use for setting the last
1388   // java frame, gets overwritten by the signature handler. Restore
1389   // it now.
1390   //__ get_PC_trash_LR(R11_scratch1);
1391   //__ std(R11_scratch1, _top_ijava_frame_abi(frame_manager_lr), R1_SP);
1392 
1393   // Because of GC R19_method may no longer be valid.
1394 
1395   // Block, if necessary, before resuming in _thread_in_Java state.
1396   // In order for GC to work, don't clear the last_Java_sp until after
1397   // blocking.
1398 
1399   //=============================================================================
1400   // Switch thread to "native transition" state before reading the
1401   // synchronization state. This additional state is necessary
1402   // because reading and testing the synchronization state is not
1403   // atomic w.r.t. GC, as this scenario demonstrates: Java thread A,
1404   // in _thread_in_native state, loads _not_synchronized and is
1405   // preempted. VM thread changes sync state to synchronizing and
1406   // suspends threads for GC. Thread A is resumed to finish this
1407   // native method, but doesn't block here since it didn't see any
1408   // synchronization in progress, and escapes.
1409 
1410   // We use release_store_fence to update values like the thread state, where
1411   // we don't want the current thread to continue until all our prior memory
1412   // accesses (including the new thread state) are visible to other threads.
1413   __ li(R0/*thread_state*/, _thread_in_native_trans);
1414   __ release();
1415   __ stw(R0/*thread_state*/, thread_(thread_state));
1416   if (UseMembar) {
1417     __ fence();
1418   }
1419   // Write serialization page so that the VM thread can do a pseudo remote
1420   // membar. We use the current thread pointer to calculate a thread
1421   // specific offset to write to within the page. This minimizes bus
1422   // traffic due to cache line collision.
1423   else {
1424     __ serialize_memory(R16_thread, R11_scratch1, R12_scratch2);
1425   }
1426 
1427   // Now before we return to java we must look for a current safepoint
1428   // (a new safepoint can not start since we entered native_trans).
1429   // We must check here because a current safepoint could be modifying
1430   // the callers registers right this moment.
1431 
1432   // Acquire isn't strictly necessary here because of the fence, but
1433   // sync_state is declared to be volatile, so we do it anyway
1434   // (cmp-br-isync on one path, release (same as acquire on PPC64) on the other path).
1435   int sync_state_offs = __ load_const_optimized(sync_state_addr, SafepointSynchronize::address_of_state(), /*temp*/R0, true);
1436 
1437   // TODO PPC port assert(4 == SafepointSynchronize::sz_state(), "unexpected field size");
1438   __ lwz(sync_state, sync_state_offs, sync_state_addr);
1439 
1440   // TODO PPC port assert(4 == Thread::sz_suspend_flags(), "unexpected field size");
1441   __ lwz(suspend_flags, thread_(suspend_flags));
1442 
1443   Label sync_check_done;
1444   Label do_safepoint;
1445   // No synchronization in progress nor yet synchronized.
1446   __ cmpwi(CCR0, sync_state, SafepointSynchronize::_not_synchronized);
1447   // Not suspended.
1448   __ cmpwi(CCR1, suspend_flags, 0);
1449 
1450   __ bne(CCR0, do_safepoint);
1451   __ beq(CCR1, sync_check_done);
1452   __ bind(do_safepoint);
1453   __ isync();
1454   // Block. We do the call directly and leave the current
1455   // last_Java_frame setup undisturbed. We must save any possible
1456   // native result across the call. No oop is present.
1457 
1458   __ mr(R3_ARG1, R16_thread);
1459 #if defined(ABI_ELFv2)
1460   __ call_c(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans),
1461             relocInfo::none);
1462 #else
1463   __ call_c(CAST_FROM_FN_PTR(FunctionDescriptor*, JavaThread::check_special_condition_for_native_trans),
1464             relocInfo::none);
1465 #endif
1466 
1467   __ bind(sync_check_done);
1468 
1469   //=============================================================================
1470   // <<<<<< Back in Interpreter Frame >>>>>
1471 
1472   // We are in thread_in_native_trans here and back in the normal
1473   // interpreter frame. We don't have to do anything special about
1474   // safepoints and we can switch to Java mode anytime we are ready.
1475 
1476   // Note: frame::interpreter_frame_result has a dependency on how the
1477   // method result is saved across the call to post_method_exit. For
1478   // native methods it assumes that the non-FPU/non-void result is
1479   // saved in _native_lresult and a FPU result in _native_fresult. If
1480   // this changes then the interpreter_frame_result implementation
1481   // will need to be updated too.
1482 
1483   // On PPC64, we have stored the result directly after the native call.
1484 
1485   //=============================================================================
1486   // Back in Java
1487 
1488   // We use release_store_fence to update values like the thread state, where
1489   // we don't want the current thread to continue until all our prior memory
1490   // accesses (including the new thread state) are visible to other threads.
1491   __ li(R0/*thread_state*/, _thread_in_Java);
1492   __ release();
1493   __ stw(R0/*thread_state*/, thread_(thread_state));
1494   if (UseMembar) {
1495     __ fence();
1496   }
1497 
1498   __ reset_last_Java_frame();
1499 
1500   // Jvmdi/jvmpi support. Whether we've got an exception pending or
1501   // not, and whether unlocking throws an exception or not, we notify
1502   // on native method exit. If we do have an exception, we'll end up
1503   // in the caller's context to handle it, so if we don't do the
1504   // notify here, we'll drop it on the floor.
1505   __ notify_method_exit(true/*native method*/,
1506                         ilgl /*illegal state (not used for native methods)*/,
1507                         InterpreterMacroAssembler::NotifyJVMTI,
1508                         false /*check_exceptions*/);
1509 
1510   //=============================================================================
1511   // Handle exceptions
1512 
1513   if (synchronized) {
1514     // Don't check for exceptions since we're still in the i2n frame. Do that
1515     // manually afterwards.
1516     unlock_method(false);
1517   }
1518 
1519   // Reset active handles after returning from native.
1520   // thread->active_handles()->clear();
1521   __ ld(active_handles, thread_(active_handles));
1522   // TODO PPC port assert(4 == JNIHandleBlock::top_size_in_bytes(), "unexpected field size");
1523   __ li(R0, 0);
1524   __ stw(R0, JNIHandleBlock::top_offset_in_bytes(), active_handles);
1525 
1526   Label exception_return_sync_check_already_unlocked;
1527   __ ld(R0/*pending_exception*/, thread_(pending_exception));
1528   __ cmpdi(CCR0, R0/*pending_exception*/, 0);
1529   __ bne(CCR0, exception_return_sync_check_already_unlocked);
1530 
1531   //-----------------------------------------------------------------------------
1532   // No exception pending.
1533 
1534   // Move native method result back into proper registers and return.
1535   // Invoke result handler (may unbox/promote).
1536   __ ld(R11_scratch1, 0, R1_SP);
1537   __ ld(R3_RET, _ijava_state_neg(lresult), R11_scratch1);
1538   __ lfd(F1_RET, _ijava_state_neg(fresult), R11_scratch1);
1539   __ call_stub(result_handler_addr);
1540 
1541   __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ R0, R11_scratch1, R12_scratch2);
1542 
1543   // Must use the return pc which was loaded from the caller's frame
1544   // as the VM uses return-pc-patching for deoptimization.
1545   __ mtlr(R0);
1546   __ blr();
1547 
1548   //-----------------------------------------------------------------------------
1549   // An exception is pending. We call into the runtime only if the
1550   // caller was not interpreted. If it was interpreted the
1551   // interpreter will do the correct thing. If it isn't interpreted
1552   // (call stub/compiled code) we will change our return and continue.
1553 
1554   BIND(exception_return_sync_check);
1555 
1556   if (synchronized) {
1557     // Don't check for exceptions since we're still in the i2n frame. Do that
1558     // manually afterwards.
1559     unlock_method(false);
1560   }
1561   BIND(exception_return_sync_check_already_unlocked);
1562 
1563   const Register return_pc = R31;
1564 
1565   __ ld(return_pc, 0, R1_SP);
1566   __ ld(return_pc, _abi(lr), return_pc);
1567 
1568   // Get the address of the exception handler.
1569   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address),
1570                   R16_thread,
1571                   return_pc /* return pc */);
1572   __ merge_frames(/*top_frame_sp*/ R21_sender_SP, noreg, R11_scratch1, R12_scratch2);
1573 
1574   // Load the PC of the the exception handler into LR.
1575   __ mtlr(R3_RET);
1576 
1577   // Load exception into R3_ARG1 and clear pending exception in thread.
1578   __ ld(R3_ARG1/*exception*/, thread_(pending_exception));
1579   __ li(R4_ARG2, 0);
1580   __ std(R4_ARG2, thread_(pending_exception));
1581 
1582   // Load the original return pc into R4_ARG2.
1583   __ mr(R4_ARG2/*issuing_pc*/, return_pc);
1584 
1585   // Return to exception handler.
1586   __ blr();
1587 
1588   //=============================================================================
1589   // Counter overflow.
1590 
1591   if (inc_counter) {
1592     // Handle invocation counter overflow.
1593     __ bind(invocation_counter_overflow);
1594 
1595     generate_counter_overflow(continue_after_compile);
1596   }
1597 
1598   return entry;
1599 }
1600 
1601 // Generic interpreted method entry to (asm) interpreter.
1602 //
1603 address TemplateInterpreterGenerator::generate_normal_entry(bool synchronized) {
1604   bool inc_counter = UseCompiler || CountCompiledCalls || LogTouchedMethods;
1605   address entry = __ pc();
1606   // Generate the code to allocate the interpreter stack frame.
1607   Register Rsize_of_parameters = R4_ARG2, // Written by generate_fixed_frame.
1608            Rsize_of_locals     = R5_ARG3; // Written by generate_fixed_frame.
1609 
1610   generate_fixed_frame(false, Rsize_of_parameters, Rsize_of_locals);
1611 
1612   // --------------------------------------------------------------------------
1613   // Zero out non-parameter locals.
1614   // Note: *Always* zero out non-parameter locals as Sparc does. It's not
1615   // worth to ask the flag, just do it.
1616   Register Rslot_addr = R6_ARG4,
1617            Rnum       = R7_ARG5;
1618   Label Lno_locals, Lzero_loop;
1619 
1620   // Set up the zeroing loop.
1621   __ subf(Rnum, Rsize_of_parameters, Rsize_of_locals);
1622   __ subf(Rslot_addr, Rsize_of_parameters, R18_locals);
1623   __ srdi_(Rnum, Rnum, Interpreter::logStackElementSize);
1624   __ beq(CCR0, Lno_locals);
1625   __ li(R0, 0);
1626   __ mtctr(Rnum);
1627 
1628   // The zero locals loop.
1629   __ bind(Lzero_loop);
1630   __ std(R0, 0, Rslot_addr);
1631   __ addi(Rslot_addr, Rslot_addr, -Interpreter::stackElementSize);
1632   __ bdnz(Lzero_loop);
1633 
1634   __ bind(Lno_locals);
1635 
1636   // --------------------------------------------------------------------------
1637   // Counter increment and overflow check.
1638   Label invocation_counter_overflow,
1639         profile_method,
1640         profile_method_continue;
1641   if (inc_counter || ProfileInterpreter) {
1642 
1643     Register Rdo_not_unlock_if_synchronized_addr = R11_scratch1;
1644     if (synchronized) {
1645       // Since at this point in the method invocation the exception handler
1646       // would try to exit the monitor of synchronized methods which hasn't
1647       // been entered yet, we set the thread local variable
1648       // _do_not_unlock_if_synchronized to true. If any exception was thrown by
1649       // runtime, exception handling i.e. unlock_if_synchronized_method will
1650       // check this thread local flag.
1651       // This flag has two effects, one is to force an unwind in the topmost
1652       // interpreter frame and not perform an unlock while doing so.
1653       __ li(R0, 1);
1654       __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
1655     }
1656 
1657     // Argument and return type profiling.
1658     __ profile_parameters_type(R3_ARG1, R4_ARG2, R5_ARG3, R6_ARG4);
1659 
1660     // Increment invocation counter and check for overflow.
1661     if (inc_counter) {
1662       generate_counter_incr(&invocation_counter_overflow, &profile_method, &profile_method_continue);
1663     }
1664 
1665     __ bind(profile_method_continue);
1666 
1667     // Reset the _do_not_unlock_if_synchronized flag.
1668     if (synchronized) {
1669       __ li(R0, 0);
1670       __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
1671     }
1672   }
1673 
1674   // --------------------------------------------------------------------------
1675   // Locking of synchronized methods. Must happen AFTER invocation_counter
1676   // check and stack overflow check, so method is not locked if overflows.
1677   if (synchronized) {
1678     lock_method(R3_ARG1, R4_ARG2, R5_ARG3);
1679   }
1680 #ifdef ASSERT
1681   else {
1682     Label Lok;
1683     __ lwz(R0, in_bytes(Method::access_flags_offset()), R19_method);
1684     __ andi_(R0, R0, JVM_ACC_SYNCHRONIZED);
1685     __ asm_assert_eq("method needs synchronization", 0x8521);
1686     __ bind(Lok);
1687   }
1688 #endif // ASSERT
1689 
1690   __ verify_thread();
1691 
1692   // --------------------------------------------------------------------------
1693   // JVMTI support
1694   __ notify_method_entry();
1695 
1696   // --------------------------------------------------------------------------
1697   // Start executing instructions.
1698   __ dispatch_next(vtos);
1699 
1700   // --------------------------------------------------------------------------
1701   // Out of line counter overflow and MDO creation code.
1702   if (ProfileInterpreter) {
1703     // We have decided to profile this method in the interpreter.
1704     __ bind(profile_method);
1705     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
1706     __ set_method_data_pointer_for_bcp();
1707     __ b(profile_method_continue);
1708   }
1709 
1710   if (inc_counter) {
1711     // Handle invocation counter overflow.
1712     __ bind(invocation_counter_overflow);
1713     generate_counter_overflow(profile_method_continue);
1714   }
1715   return entry;
1716 }
1717 
1718 // CRC32 Intrinsics.
1719 //
1720 // Contract on scratch and work registers.
1721 // =======================================
1722 //
1723 // On ppc, the register set {R2..R12} is available in the interpreter as scratch/work registers.
1724 // You should, however, keep in mind that {R3_ARG1..R10_ARG8} is the C-ABI argument register set.
1725 // You can't rely on these registers across calls.
1726 //
1727 // The generators for CRC32_update and for CRC32_updateBytes use the
1728 // scratch/work register set internally, passing the work registers
1729 // as arguments to the MacroAssembler emitters as required.
1730 //
1731 // R3_ARG1..R6_ARG4 are preset to hold the incoming java arguments.
1732 // Their contents is not constant but may change according to the requirements
1733 // of the emitted code.
1734 //
1735 // All other registers from the scratch/work register set are used "internally"
1736 // and contain garbage (i.e. unpredictable values) once blr() is reached.
1737 // Basically, only R3_RET contains a defined value which is the function result.
1738 //
1739 /**
1740  * Method entry for static native methods:
1741  *   int java.util.zip.CRC32.update(int crc, int b)
1742  */
1743 address TemplateInterpreterGenerator::generate_CRC32_update_entry() {
1744   if (UseCRC32Intrinsics) {
1745     address start = __ pc();  // Remember stub start address (is rtn value).
1746     Label slow_path;
1747 
1748     // Safepoint check
1749     const Register sync_state = R11_scratch1;
1750     int sync_state_offs = __ load_const_optimized(sync_state, SafepointSynchronize::address_of_state(), /*temp*/R0, true);
1751     __ lwz(sync_state, sync_state_offs, sync_state);
1752     __ cmpwi(CCR0, sync_state, SafepointSynchronize::_not_synchronized);
1753     __ bne(CCR0, slow_path);
1754 
1755     // We don't generate local frame and don't align stack because
1756     // we not even call stub code (we generate the code inline)
1757     // and there is no safepoint on this path.
1758 
1759     // Load java parameters.
1760     // R15_esp is callers operand stack pointer, i.e. it points to the parameters.
1761     const Register argP    = R15_esp;
1762     const Register crc     = R3_ARG1;  // crc value
1763     const Register data    = R4_ARG2;  // address of java byte value (kernel_crc32 needs address)
1764     const Register dataLen = R5_ARG3;  // source data len (1 byte). Not used because calling the single-byte emitter.
1765     const Register table   = R6_ARG4;  // address of crc32 table
1766     const Register tmp     = dataLen;  // Reuse unused len register to show we don't actually need a separate tmp here.
1767 
1768     BLOCK_COMMENT("CRC32_update {");
1769 
1770     // Arguments are reversed on java expression stack
1771 #ifdef VM_LITTLE_ENDIAN
1772     __ addi(data, argP, 0+1*wordSize); // (stack) address of byte value. Emitter expects address, not value.
1773                                        // Being passed as an int, the single byte is at offset +0.
1774 #else
1775     __ addi(data, argP, 3+1*wordSize); // (stack) address of byte value. Emitter expects address, not value.
1776                                        // Being passed from java as an int, the single byte is at offset +3.
1777 #endif
1778     __ lwz(crc,  2*wordSize, argP);    // Current crc state, zero extend to 64 bit to have a clean register.
1779 
1780     StubRoutines::ppc64::generate_load_crc_table_addr(_masm, table);
1781     __ kernel_crc32_singleByte(crc, data, dataLen, table, tmp);
1782 
1783     // Restore caller sp for c2i case and return.
1784     __ mr(R1_SP, R21_sender_SP); // Cut the stack back to where the caller started.
1785     __ blr();
1786 
1787     // Generate a vanilla native entry as the slow path.
1788     BLOCK_COMMENT("} CRC32_update");
1789     BIND(slow_path);
1790     __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native), R11_scratch1);
1791     return start;
1792   }
1793 
1794   return NULL;
1795 }
1796 
1797 // CRC32 Intrinsics.
1798 /**
1799  * Method entry for static native methods:
1800  *   int java.util.zip.CRC32.updateBytes(     int crc, byte[] b,  int off, int len)
1801  *   int java.util.zip.CRC32.updateByteBuffer(int crc, long* buf, int off, int len)
1802  */
1803 address TemplateInterpreterGenerator::generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
1804   if (UseCRC32Intrinsics) {
1805     address start = __ pc();  // Remember stub start address (is rtn value).
1806     Label slow_path;
1807 
1808     // Safepoint check
1809     const Register sync_state = R11_scratch1;
1810     int sync_state_offs = __ load_const_optimized(sync_state, SafepointSynchronize::address_of_state(), /*temp*/R0, true);
1811     __ lwz(sync_state, sync_state_offs, sync_state);
1812     __ cmpwi(CCR0, sync_state, SafepointSynchronize::_not_synchronized);
1813     __ bne(CCR0, slow_path);
1814 
1815     // We don't generate local frame and don't align stack because
1816     // we not even call stub code (we generate the code inline)
1817     // and there is no safepoint on this path.
1818 
1819     // Load parameters.
1820     // Z_esp is callers operand stack pointer, i.e. it points to the parameters.
1821     const Register argP    = R15_esp;
1822     const Register crc     = R3_ARG1;  // crc value
1823     const Register data    = R4_ARG2;  // address of java byte array
1824     const Register dataLen = R5_ARG3;  // source data len
1825     const Register table   = R6_ARG4;  // address of crc32 table
1826 
1827     const Register t0      = R9;       // scratch registers for crc calculation
1828     const Register t1      = R10;
1829     const Register t2      = R11;
1830     const Register t3      = R12;
1831 
1832     const Register tc0     = R2;       // registers to hold pre-calculated column addresses
1833     const Register tc1     = R7;
1834     const Register tc2     = R8;
1835     const Register tc3     = table;    // table address is reconstructed at the end of kernel_crc32_* emitters
1836 
1837     const Register tmp     = t0;       // Only used very locally to calculate byte buffer address.
1838 
1839     // Arguments are reversed on java expression stack.
1840     // Calculate address of start element.
1841     if (kind == Interpreter::java_util_zip_CRC32_updateByteBuffer) { // Used for "updateByteBuffer direct".
1842       BLOCK_COMMENT("CRC32_updateByteBuffer {");
1843       // crc     @ (SP + 5W) (32bit)
1844       // buf     @ (SP + 3W) (64bit ptr to long array)
1845       // off     @ (SP + 2W) (32bit)
1846       // dataLen @ (SP + 1W) (32bit)
1847       // data = buf + off
1848       __ ld(  data,    3*wordSize, argP);  // start of byte buffer
1849       __ lwa( tmp,     2*wordSize, argP);  // byte buffer offset
1850       __ lwa( dataLen, 1*wordSize, argP);  // #bytes to process
1851       __ lwz( crc,     5*wordSize, argP);  // current crc state
1852       __ add( data, data, tmp);            // Add byte buffer offset.
1853     } else {                                                         // Used for "updateBytes update".
1854       BLOCK_COMMENT("CRC32_updateBytes {");
1855       // crc     @ (SP + 4W) (32bit)
1856       // buf     @ (SP + 3W) (64bit ptr to byte array)
1857       // off     @ (SP + 2W) (32bit)
1858       // dataLen @ (SP + 1W) (32bit)
1859       // data = buf + off + base_offset
1860       __ ld(  data,    3*wordSize, argP);  // start of byte buffer
1861       __ lwa( tmp,     2*wordSize, argP);  // byte buffer offset
1862       __ lwa( dataLen, 1*wordSize, argP);  // #bytes to process
1863       __ add( data, data, tmp);            // add byte buffer offset
1864       __ lwz( crc,     4*wordSize, argP);  // current crc state
1865       __ addi(data, data, arrayOopDesc::base_offset_in_bytes(T_BYTE));
1866     }
1867 
1868     StubRoutines::ppc64::generate_load_crc_table_addr(_masm, table);
1869 
1870     // Performance measurements show the 1word and 2word variants to be almost equivalent,
1871     // with very light advantages for the 1word variant. We chose the 1word variant for
1872     // code compactness.
1873     __ kernel_crc32_1word(crc, data, dataLen, table, t0, t1, t2, t3, tc0, tc1, tc2, tc3);
1874 
1875     // Restore caller sp for c2i case and return.
1876     __ mr(R1_SP, R21_sender_SP); // Cut the stack back to where the caller started.
1877     __ blr();
1878 
1879     // Generate a vanilla native entry as the slow path.
1880     BLOCK_COMMENT("} CRC32_updateBytes(Buffer)");
1881     BIND(slow_path);
1882     __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native), R11_scratch1);
1883     return start;
1884   }
1885 
1886   return NULL;
1887 }
1888 
1889 // Not supported
1890 address TemplateInterpreterGenerator::generate_CRC32C_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
1891   return NULL;
1892 }
1893 
1894 // =============================================================================
1895 // Exceptions
1896 
1897 void TemplateInterpreterGenerator::generate_throw_exception() {
1898   Register Rexception    = R17_tos,
1899            Rcontinuation = R3_RET;
1900 
1901   // --------------------------------------------------------------------------
1902   // Entry point if an method returns with a pending exception (rethrow).
1903   Interpreter::_rethrow_exception_entry = __ pc();
1904   {
1905     __ restore_interpreter_state(R11_scratch1); // Sets R11_scratch1 = fp.
1906     __ ld(R12_scratch2, _ijava_state_neg(top_frame_sp), R11_scratch1);
1907     __ resize_frame_absolute(R12_scratch2, R11_scratch1, R0);
1908 
1909     // Compiled code destroys templateTableBase, reload.
1910     __ load_const_optimized(R25_templateTableBase, (address)Interpreter::dispatch_table((TosState)0), R11_scratch1);
1911   }
1912 
1913   // Entry point if a interpreted method throws an exception (throw).
1914   Interpreter::_throw_exception_entry = __ pc();
1915   {
1916     __ mr(Rexception, R3_RET);
1917 
1918     __ verify_thread();
1919     __ verify_oop(Rexception);
1920 
1921     // Expression stack must be empty before entering the VM in case of an exception.
1922     __ empty_expression_stack();
1923     // Find exception handler address and preserve exception oop.
1924     // Call C routine to find handler and jump to it.
1925     __ call_VM(Rexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception), Rexception);
1926     __ mtctr(Rcontinuation);
1927     // Push exception for exception handler bytecodes.
1928     __ push_ptr(Rexception);
1929 
1930     // Jump to exception handler (may be remove activation entry!).
1931     __ bctr();
1932   }
1933 
1934   // If the exception is not handled in the current frame the frame is
1935   // removed and the exception is rethrown (i.e. exception
1936   // continuation is _rethrow_exception).
1937   //
1938   // Note: At this point the bci is still the bxi for the instruction
1939   // which caused the exception and the expression stack is
1940   // empty. Thus, for any VM calls at this point, GC will find a legal
1941   // oop map (with empty expression stack).
1942 
1943   // In current activation
1944   // tos: exception
1945   // bcp: exception bcp
1946 
1947   // --------------------------------------------------------------------------
1948   // JVMTI PopFrame support
1949 
1950   Interpreter::_remove_activation_preserving_args_entry = __ pc();
1951   {
1952     // Set the popframe_processing bit in popframe_condition indicating that we are
1953     // currently handling popframe, so that call_VMs that may happen later do not
1954     // trigger new popframe handling cycles.
1955     __ lwz(R11_scratch1, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
1956     __ ori(R11_scratch1, R11_scratch1, JavaThread::popframe_processing_bit);
1957     __ stw(R11_scratch1, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
1958 
1959     // Empty the expression stack, as in normal exception handling.
1960     __ empty_expression_stack();
1961     __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false, /* install_monitor_exception */ false);
1962 
1963     // Check to see whether we are returning to a deoptimized frame.
1964     // (The PopFrame call ensures that the caller of the popped frame is
1965     // either interpreted or compiled and deoptimizes it if compiled.)
1966     // Note that we don't compare the return PC against the
1967     // deoptimization blob's unpack entry because of the presence of
1968     // adapter frames in C2.
1969     Label Lcaller_not_deoptimized;
1970     Register return_pc = R3_ARG1;
1971     __ ld(return_pc, 0, R1_SP);
1972     __ ld(return_pc, _abi(lr), return_pc);
1973     __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), return_pc);
1974     __ cmpdi(CCR0, R3_RET, 0);
1975     __ bne(CCR0, Lcaller_not_deoptimized);
1976 
1977     // The deoptimized case.
1978     // In this case, we can't call dispatch_next() after the frame is
1979     // popped, but instead must save the incoming arguments and restore
1980     // them after deoptimization has occurred.
1981     __ ld(R4_ARG2, in_bytes(Method::const_offset()), R19_method);
1982     __ lhz(R4_ARG2 /* number of params */, in_bytes(ConstMethod::size_of_parameters_offset()), R4_ARG2);
1983     __ slwi(R4_ARG2, R4_ARG2, Interpreter::logStackElementSize);
1984     __ addi(R5_ARG3, R18_locals, Interpreter::stackElementSize);
1985     __ subf(R5_ARG3, R4_ARG2, R5_ARG3);
1986     // Save these arguments.
1987     __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args), R16_thread, R4_ARG2, R5_ARG3);
1988 
1989     // Inform deoptimization that it is responsible for restoring these arguments.
1990     __ load_const_optimized(R11_scratch1, JavaThread::popframe_force_deopt_reexecution_bit);
1991     __ stw(R11_scratch1, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
1992 
1993     // Return from the current method into the deoptimization blob. Will eventually
1994     // end up in the deopt interpeter entry, deoptimization prepared everything that
1995     // we will reexecute the call that called us.
1996     __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*reload return_pc*/ return_pc, R11_scratch1, R12_scratch2);
1997     __ mtlr(return_pc);
1998     __ blr();
1999 
2000     // The non-deoptimized case.
2001     __ bind(Lcaller_not_deoptimized);
2002 
2003     // Clear the popframe condition flag.
2004     __ li(R0, 0);
2005     __ stw(R0, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
2006 
2007     // Get out of the current method and re-execute the call that called us.
2008     __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ noreg, R11_scratch1, R12_scratch2);
2009     __ restore_interpreter_state(R11_scratch1);
2010     __ ld(R12_scratch2, _ijava_state_neg(top_frame_sp), R11_scratch1);
2011     __ resize_frame_absolute(R12_scratch2, R11_scratch1, R0);
2012     if (ProfileInterpreter) {
2013       __ set_method_data_pointer_for_bcp();
2014       __ ld(R11_scratch1, 0, R1_SP);
2015       __ std(R28_mdx, _ijava_state_neg(mdx), R11_scratch1);
2016     }
2017 #if INCLUDE_JVMTI
2018     Label L_done;
2019 
2020     __ lbz(R11_scratch1, 0, R14_bcp);
2021     __ cmpwi(CCR0, R11_scratch1, Bytecodes::_invokestatic);
2022     __ bne(CCR0, L_done);
2023 
2024     // The member name argument must be restored if _invokestatic is re-executed after a PopFrame call.
2025     // Detect such a case in the InterpreterRuntime function and return the member name argument, or NULL.
2026     __ ld(R4_ARG2, 0, R18_locals);
2027     __ MacroAssembler::call_VM(R4_ARG2, CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null), R4_ARG2, R19_method, R14_bcp, false);
2028     __ restore_interpreter_state(R11_scratch1, /*bcp_and_mdx_only*/ true);
2029     __ cmpdi(CCR0, R4_ARG2, 0);
2030     __ beq(CCR0, L_done);
2031     __ std(R4_ARG2, wordSize, R15_esp);
2032     __ bind(L_done);
2033 #endif // INCLUDE_JVMTI
2034     __ dispatch_next(vtos);
2035   }
2036   // end of JVMTI PopFrame support
2037 
2038   // --------------------------------------------------------------------------
2039   // Remove activation exception entry.
2040   // This is jumped to if an interpreted method can't handle an exception itself
2041   // (we come from the throw/rethrow exception entry above). We're going to call
2042   // into the VM to find the exception handler in the caller, pop the current
2043   // frame and return the handler we calculated.
2044   Interpreter::_remove_activation_entry = __ pc();
2045   {
2046     __ pop_ptr(Rexception);
2047     __ verify_thread();
2048     __ verify_oop(Rexception);
2049     __ std(Rexception, in_bytes(JavaThread::vm_result_offset()), R16_thread);
2050 
2051     __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false, true);
2052     __ notify_method_exit(false, vtos, InterpreterMacroAssembler::SkipNotifyJVMTI, false);
2053 
2054     __ get_vm_result(Rexception);
2055 
2056     // We are done with this activation frame; find out where to go next.
2057     // The continuation point will be an exception handler, which expects
2058     // the following registers set up:
2059     //
2060     // RET:  exception oop
2061     // ARG2: Issuing PC (see generate_exception_blob()), only used if the caller is compiled.
2062 
2063     Register return_pc = R31; // Needs to survive the runtime call.
2064     __ ld(return_pc, 0, R1_SP);
2065     __ ld(return_pc, _abi(lr), return_pc);
2066     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), R16_thread, return_pc);
2067 
2068     // Remove the current activation.
2069     __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ noreg, R11_scratch1, R12_scratch2);
2070 
2071     __ mr(R4_ARG2, return_pc);
2072     __ mtlr(R3_RET);
2073     __ mr(R3_RET, Rexception);
2074     __ blr();
2075   }
2076 }
2077 
2078 // JVMTI ForceEarlyReturn support.
2079 // Returns "in the middle" of a method with a "fake" return value.
2080 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
2081 
2082   Register Rscratch1 = R11_scratch1,
2083            Rscratch2 = R12_scratch2;
2084 
2085   address entry = __ pc();
2086   __ empty_expression_stack();
2087 
2088   __ load_earlyret_value(state, Rscratch1);
2089 
2090   __ ld(Rscratch1, in_bytes(JavaThread::jvmti_thread_state_offset()), R16_thread);
2091   // Clear the earlyret state.
2092   __ li(R0, 0);
2093   __ stw(R0, in_bytes(JvmtiThreadState::earlyret_state_offset()), Rscratch1);
2094 
2095   __ remove_activation(state, false, false);
2096   // Copied from TemplateTable::_return.
2097   // Restoration of lr done by remove_activation.
2098   switch (state) {
2099     case ltos:
2100     case btos:
2101     case ctos:
2102     case stos:
2103     case atos:
2104     case itos: __ mr(R3_RET, R17_tos); break;
2105     case ftos:
2106     case dtos: __ fmr(F1_RET, F15_ftos); break;
2107     case vtos: // This might be a constructor. Final fields (and volatile fields on PPC64) need
2108                // to get visible before the reference to the object gets stored anywhere.
2109                __ membar(Assembler::StoreStore); break;
2110     default  : ShouldNotReachHere();
2111   }
2112   __ blr();
2113 
2114   return entry;
2115 } // end of ForceEarlyReturn support
2116 
2117 //-----------------------------------------------------------------------------
2118 // Helper for vtos entry point generation
2119 
2120 void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t,
2121                                                          address& bep,
2122                                                          address& cep,
2123                                                          address& sep,
2124                                                          address& aep,
2125                                                          address& iep,
2126                                                          address& lep,
2127                                                          address& fep,
2128                                                          address& dep,
2129                                                          address& vep) {
2130   assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
2131   Label L;
2132 
2133   aep = __ pc();  __ push_ptr();  __ b(L);
2134   fep = __ pc();  __ push_f();    __ b(L);
2135   dep = __ pc();  __ push_d();    __ b(L);
2136   lep = __ pc();  __ push_l();    __ b(L);
2137   __ align(32, 12, 24); // align L
2138   bep = cep = sep =
2139   iep = __ pc();  __ push_i();
2140   vep = __ pc();
2141   __ bind(L);
2142   generate_and_dispatch(t);
2143 }
2144 
2145 //-----------------------------------------------------------------------------
2146 
2147 // Non-product code
2148 #ifndef PRODUCT
2149 address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
2150   //__ flush_bundle();
2151   address entry = __ pc();
2152 
2153   const char *bname = NULL;
2154   uint tsize = 0;
2155   switch(state) {
2156   case ftos:
2157     bname = "trace_code_ftos {";
2158     tsize = 2;
2159     break;
2160   case btos:
2161     bname = "trace_code_btos {";
2162     tsize = 2;
2163     break;
2164   case ctos:
2165     bname = "trace_code_ctos {";
2166     tsize = 2;
2167     break;
2168   case stos:
2169     bname = "trace_code_stos {";
2170     tsize = 2;
2171     break;
2172   case itos:
2173     bname = "trace_code_itos {";
2174     tsize = 2;
2175     break;
2176   case ltos:
2177     bname = "trace_code_ltos {";
2178     tsize = 3;
2179     break;
2180   case atos:
2181     bname = "trace_code_atos {";
2182     tsize = 2;
2183     break;
2184   case vtos:
2185     // Note: In case of vtos, the topmost of stack value could be a int or doubl
2186     // In case of a double (2 slots) we won't see the 2nd stack value.
2187     // Maybe we simply should print the topmost 3 stack slots to cope with the problem.
2188     bname = "trace_code_vtos {";
2189     tsize = 2;
2190 
2191     break;
2192   case dtos:
2193     bname = "trace_code_dtos {";
2194     tsize = 3;
2195     break;
2196   default:
2197     ShouldNotReachHere();
2198   }
2199   BLOCK_COMMENT(bname);
2200 
2201   // Support short-cut for TraceBytecodesAt.
2202   // Don't call into the VM if we don't want to trace to speed up things.
2203   Label Lskip_vm_call;
2204   if (TraceBytecodesAt > 0 && TraceBytecodesAt < max_intx) {
2205     int offs1 = __ load_const_optimized(R11_scratch1, (address) &TraceBytecodesAt, R0, true);
2206     int offs2 = __ load_const_optimized(R12_scratch2, (address) &BytecodeCounter::_counter_value, R0, true);
2207     __ ld(R11_scratch1, offs1, R11_scratch1);
2208     __ lwa(R12_scratch2, offs2, R12_scratch2);
2209     __ cmpd(CCR0, R12_scratch2, R11_scratch1);
2210     __ blt(CCR0, Lskip_vm_call);
2211   }
2212 
2213   __ push(state);
2214   // Load 2 topmost expression stack values.
2215   __ ld(R6_ARG4, tsize*Interpreter::stackElementSize, R15_esp);
2216   __ ld(R5_ARG3, Interpreter::stackElementSize, R15_esp);
2217   __ mflr(R31);
2218   __ call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::trace_bytecode), /* unused */ R4_ARG2, R5_ARG3, R6_ARG4, false);
2219   __ mtlr(R31);
2220   __ pop(state);
2221 
2222   if (TraceBytecodesAt > 0 && TraceBytecodesAt < max_intx) {
2223     __ bind(Lskip_vm_call);
2224   }
2225   __ blr();
2226   BLOCK_COMMENT("} trace_code");
2227   return entry;
2228 }
2229 
2230 void TemplateInterpreterGenerator::count_bytecode() {
2231   int offs = __ load_const_optimized(R11_scratch1, (address) &BytecodeCounter::_counter_value, R12_scratch2, true);
2232   __ lwz(R12_scratch2, offs, R11_scratch1);
2233   __ addi(R12_scratch2, R12_scratch2, 1);
2234   __ stw(R12_scratch2, offs, R11_scratch1);
2235 }
2236 
2237 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) {
2238   int offs = __ load_const_optimized(R11_scratch1, (address) &BytecodeHistogram::_counters[t->bytecode()], R12_scratch2, true);
2239   __ lwz(R12_scratch2, offs, R11_scratch1);
2240   __ addi(R12_scratch2, R12_scratch2, 1);
2241   __ stw(R12_scratch2, offs, R11_scratch1);
2242 }
2243 
2244 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) {
2245   const Register addr = R11_scratch1,
2246                  tmp  = R12_scratch2;
2247   // Get index, shift out old bytecode, bring in new bytecode, and store it.
2248   // _index = (_index >> log2_number_of_codes) |
2249   //          (bytecode << log2_number_of_codes);
2250   int offs1 = __ load_const_optimized(addr, (address)&BytecodePairHistogram::_index, tmp, true);
2251   __ lwz(tmp, offs1, addr);
2252   __ srwi(tmp, tmp, BytecodePairHistogram::log2_number_of_codes);
2253   __ ori(tmp, tmp, ((int) t->bytecode()) << BytecodePairHistogram::log2_number_of_codes);
2254   __ stw(tmp, offs1, addr);
2255 
2256   // Bump bucket contents.
2257   // _counters[_index] ++;
2258   int offs2 = __ load_const_optimized(addr, (address)&BytecodePairHistogram::_counters, R0, true);
2259   __ sldi(tmp, tmp, LogBytesPerInt);
2260   __ add(addr, tmp, addr);
2261   __ lwz(tmp, offs2, addr);
2262   __ addi(tmp, tmp, 1);
2263   __ stw(tmp, offs2, addr);
2264 }
2265 
2266 void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
2267   // Call a little run-time stub to avoid blow-up for each bytecode.
2268   // The run-time runtime saves the right registers, depending on
2269   // the tosca in-state for the given template.
2270 
2271   assert(Interpreter::trace_code(t->tos_in()) != NULL,
2272          "entry must have been generated");
2273 
2274   // Note: we destroy LR here.
2275   __ bl(Interpreter::trace_code(t->tos_in()));
2276 }
2277 
2278 void TemplateInterpreterGenerator::stop_interpreter_at() {
2279   Label L;
2280   int offs1 = __ load_const_optimized(R11_scratch1, (address) &StopInterpreterAt, R0, true);
2281   int offs2 = __ load_const_optimized(R12_scratch2, (address) &BytecodeCounter::_counter_value, R0, true);
2282   __ ld(R11_scratch1, offs1, R11_scratch1);
2283   __ lwa(R12_scratch2, offs2, R12_scratch2);
2284   __ cmpd(CCR0, R12_scratch2, R11_scratch1);
2285   __ bne(CCR0, L);
2286   __ illtrap();
2287   __ bind(L);
2288 }
2289 
2290 #endif // !PRODUCT