1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "code/codeCache.hpp"
  27 #include "code/vmreg.inline.hpp"
  28 #include "compiler/abstractCompiler.hpp"
  29 #include "compiler/disassembler.hpp"
  30 #include "gc/shared/collectedHeap.inline.hpp"
  31 #include "interpreter/interpreter.hpp"
  32 #include "interpreter/oopMapCache.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "memory/universe.inline.hpp"
  35 #include "oops/markOop.hpp"
  36 #include "oops/method.hpp"
  37 #include "oops/methodData.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "oops/verifyOopClosure.hpp"
  40 #include "prims/methodHandles.hpp"
  41 #include "runtime/frame.inline.hpp"
  42 #include "runtime/handles.inline.hpp"
  43 #include "runtime/javaCalls.hpp"
  44 #include "runtime/monitorChunk.hpp"
  45 #include "runtime/os.hpp"
  46 #include "runtime/sharedRuntime.hpp"
  47 #include "runtime/signature.hpp"
  48 #include "runtime/stubCodeGenerator.hpp"
  49 #include "runtime/stubRoutines.hpp"
  50 #include "runtime/thread.inline.hpp"
  51 #include "utilities/decoder.hpp"
  52 
  53 RegisterMap::RegisterMap(JavaThread *thread, bool update_map) {
  54   _thread         = thread;
  55   _update_map     = update_map;
  56   clear();
  57   debug_only(_update_for_id = NULL;)
  58 #ifndef PRODUCT
  59   for (int i = 0; i < reg_count ; i++ ) _location[i] = NULL;
  60 #endif /* PRODUCT */
  61 }
  62 
  63 RegisterMap::RegisterMap(const RegisterMap* map) {
  64   assert(map != this, "bad initialization parameter");
  65   assert(map != NULL, "RegisterMap must be present");
  66   _thread                = map->thread();
  67   _update_map            = map->update_map();
  68   _include_argument_oops = map->include_argument_oops();
  69   debug_only(_update_for_id = map->_update_for_id;)
  70   pd_initialize_from(map);
  71   if (update_map()) {
  72     for(int i = 0; i < location_valid_size; i++) {
  73       LocationValidType bits = !update_map() ? 0 : map->_location_valid[i];
  74       _location_valid[i] = bits;
  75       // for whichever bits are set, pull in the corresponding map->_location
  76       int j = i*location_valid_type_size;
  77       while (bits != 0) {
  78         if ((bits & 1) != 0) {
  79           assert(0 <= j && j < reg_count, "range check");
  80           _location[j] = map->_location[j];
  81         }
  82         bits >>= 1;
  83         j += 1;
  84       }
  85     }
  86   }
  87 }
  88 
  89 void RegisterMap::clear() {
  90   set_include_argument_oops(true);
  91   if (_update_map) {
  92     for(int i = 0; i < location_valid_size; i++) {
  93       _location_valid[i] = 0;
  94     }
  95     pd_clear();
  96   } else {
  97     pd_initialize();
  98   }
  99 }
 100 
 101 #ifndef PRODUCT
 102 
 103 void RegisterMap::print_on(outputStream* st) const {
 104   st->print_cr("Register map");
 105   for(int i = 0; i < reg_count; i++) {
 106 
 107     VMReg r = VMRegImpl::as_VMReg(i);
 108     intptr_t* src = (intptr_t*) location(r);
 109     if (src != NULL) {
 110 
 111       r->print_on(st);
 112       st->print(" [" INTPTR_FORMAT "] = ", p2i(src));
 113       if (((uintptr_t)src & (sizeof(*src)-1)) != 0) {
 114         st->print_cr("<misaligned>");
 115       } else {
 116         st->print_cr(INTPTR_FORMAT, *src);
 117       }
 118     }
 119   }
 120 }
 121 
 122 void RegisterMap::print() const {
 123   print_on(tty);
 124 }
 125 
 126 #endif
 127 // This returns the pc that if you were in the debugger you'd see. Not
 128 // the idealized value in the frame object. This undoes the magic conversion
 129 // that happens for deoptimized frames. In addition it makes the value the
 130 // hardware would want to see in the native frame. The only user (at this point)
 131 // is deoptimization. It likely no one else should ever use it.
 132 
 133 address frame::raw_pc() const {
 134   if (is_deoptimized_frame()) {
 135     CompiledMethod* cm = cb()->as_compiled_method_or_null();
 136     if (cm->is_method_handle_return(pc()))
 137       return cm->deopt_mh_handler_begin() - pc_return_offset;
 138     else
 139       return cm->deopt_handler_begin() - pc_return_offset;
 140   } else {
 141     return (pc() - pc_return_offset);
 142   }
 143 }
 144 
 145 // Change the pc in a frame object. This does not change the actual pc in
 146 // actual frame. To do that use patch_pc.
 147 //
 148 void frame::set_pc(address   newpc ) {
 149 #ifdef ASSERT
 150   if (_cb != NULL && _cb->is_nmethod()) {
 151     assert(!((nmethod*)_cb)->is_deopt_pc(_pc), "invariant violation");
 152   }
 153 #endif // ASSERT
 154 
 155   // Unsafe to use the is_deoptimzed tester after changing pc
 156   _deopt_state = unknown;
 157   _pc = newpc;
 158   _cb = CodeCache::find_blob_unsafe(_pc);
 159 
 160 }
 161 
 162 // type testers
 163 bool frame::is_ignored_frame() const {
 164   return false;  // FIXME: some LambdaForm frames should be ignored
 165 }
 166 bool frame::is_deoptimized_frame() const {
 167   assert(_deopt_state != unknown, "not answerable");
 168   return _deopt_state == is_deoptimized;
 169 }
 170 
 171 bool frame::is_native_frame() const {
 172   return (_cb != NULL &&
 173           _cb->is_nmethod() &&
 174           ((nmethod*)_cb)->is_native_method());
 175 }
 176 
 177 bool frame::is_java_frame() const {
 178   if (is_interpreted_frame()) return true;
 179   if (is_compiled_frame())    return true;
 180   return false;
 181 }
 182 
 183 
 184 bool frame::is_compiled_frame() const {
 185   if (_cb != NULL &&
 186       _cb->is_compiled() &&
 187       ((CompiledMethod*)_cb)->is_java_method()) {
 188     return true;
 189   }
 190   return false;
 191 }
 192 
 193 
 194 bool frame::is_runtime_frame() const {
 195   return (_cb != NULL && _cb->is_runtime_stub());
 196 }
 197 
 198 bool frame::is_safepoint_blob_frame() const {
 199   return (_cb != NULL && _cb->is_safepoint_stub());
 200 }
 201 
 202 // testers
 203 
 204 bool frame::is_first_java_frame() const {
 205   RegisterMap map(JavaThread::current(), false); // No update
 206   frame s;
 207   for (s = sender(&map); !(s.is_java_frame() || s.is_first_frame()); s = s.sender(&map));
 208   return s.is_first_frame();
 209 }
 210 
 211 
 212 bool frame::entry_frame_is_first() const {
 213   return entry_frame_call_wrapper()->is_first_frame();
 214 }
 215 
 216 JavaCallWrapper* frame::entry_frame_call_wrapper_if_safe(JavaThread* thread) const {
 217   JavaCallWrapper** jcw = entry_frame_call_wrapper_addr();
 218   address addr = (address) jcw;
 219 
 220   // addr must be within the usable part of the stack
 221   if (thread->is_in_usable_stack(addr)) {
 222     return *jcw;
 223   }
 224 
 225   return NULL;
 226 }
 227 













 228 bool frame::should_be_deoptimized() const {
 229   if (_deopt_state == is_deoptimized ||
 230       !is_compiled_frame() ) return false;
 231   assert(_cb != NULL && _cb->is_compiled(), "must be an nmethod");
 232   CompiledMethod* nm = (CompiledMethod *)_cb;
 233   if (TraceDependencies) {
 234     tty->print("checking (%s) ", nm->is_marked_for_deoptimization() ? "true" : "false");
 235     nm->print_value_on(tty);
 236     tty->cr();
 237   }
 238 
 239   if( !nm->is_marked_for_deoptimization() )
 240     return false;
 241 
 242   // If at the return point, then the frame has already been popped, and
 243   // only the return needs to be executed. Don't deoptimize here.
 244   return !nm->is_at_poll_return(pc());
 245 }
 246 
 247 bool frame::can_be_deoptimized() const {
 248   if (!is_compiled_frame()) return false;
 249   CompiledMethod* nm = (CompiledMethod*)_cb;
 250 
 251   if( !nm->can_be_deoptimized() )
 252     return false;
 253 
 254   return !nm->is_at_poll_return(pc());
 255 }
 256 
 257 void frame::deoptimize(JavaThread* thread) {
 258   // Schedule deoptimization of an nmethod activation with this frame.
 259   assert(_cb != NULL && _cb->is_compiled(), "must be");
 260 
 261   // This is a fix for register window patching race
 262   if (NeedsDeoptSuspend && Thread::current() != thread) {
 263     assert(SafepointSynchronize::is_at_safepoint(),
 264            "patching other threads for deopt may only occur at a safepoint");
 265 
 266     // It is possible especially with DeoptimizeALot/DeoptimizeRandom that
 267     // we could see the frame again and ask for it to be deoptimized since
 268     // it might move for a long time. That is harmless and we just ignore it.
 269     if (id() == thread->must_deopt_id()) {
 270       assert(thread->is_deopt_suspend(), "lost suspension");
 271       return;
 272     }
 273 
 274     // We are at a safepoint so the target thread can only be
 275     // in 4 states:
 276     //     blocked - no problem
 277     //     blocked_trans - no problem (i.e. could have woken up from blocked
 278     //                                 during a safepoint).
 279     //     native - register window pc patching race
 280     //     native_trans - momentary state
 281     //
 282     // We could just wait out a thread in native_trans to block.
 283     // Then we'd have all the issues that the safepoint code has as to
 284     // whether to spin or block. It isn't worth it. Just treat it like
 285     // native and be done with it.
 286     //
 287     // Examine the state of the thread at the start of safepoint since
 288     // threads that were in native at the start of the safepoint could
 289     // come to a halt during the safepoint, changing the current value
 290     // of the safepoint_state.
 291     JavaThreadState state = thread->safepoint_state()->orig_thread_state();
 292     if (state == _thread_in_native || state == _thread_in_native_trans) {
 293       // Since we are at a safepoint the target thread will stop itself
 294       // before it can return to java as long as we remain at the safepoint.
 295       // Therefore we can put an additional request for the thread to stop
 296       // no matter what no (like a suspend). This will cause the thread
 297       // to notice it needs to do the deopt on its own once it leaves native.
 298       //
 299       // The only reason we must do this is because on machine with register
 300       // windows we have a race with patching the return address and the
 301       // window coming live as the thread returns to the Java code (but still
 302       // in native mode) and then blocks. It is only this top most frame
 303       // that is at risk. So in truth we could add an additional check to
 304       // see if this frame is one that is at risk.
 305       RegisterMap map(thread, false);
 306       frame at_risk =  thread->last_frame().sender(&map);
 307       if (id() == at_risk.id()) {
 308         thread->set_must_deopt_id(id());
 309         thread->set_deopt_suspend();
 310         return;
 311       }
 312     }
 313   } // NeedsDeoptSuspend
 314 
 315 
 316   // If the call site is a MethodHandle call site use the MH deopt
 317   // handler.
 318   CompiledMethod* cm = (CompiledMethod*) _cb;
 319   address deopt = cm->is_method_handle_return(pc()) ?
 320                         cm->deopt_mh_handler_begin() :
 321                         cm->deopt_handler_begin();
 322 
 323   // Save the original pc before we patch in the new one
 324   cm->set_original_pc(this, pc());
 325   patch_pc(thread, deopt);
 326 
 327 #ifdef ASSERT
 328   {
 329     RegisterMap map(thread, false);
 330     frame check = thread->last_frame();
 331     while (id() != check.id()) {
 332       check = check.sender(&map);
 333     }
 334     assert(check.is_deoptimized_frame(), "missed deopt");
 335   }
 336 #endif // ASSERT
 337 }
 338 
 339 frame frame::java_sender() const {
 340   RegisterMap map(JavaThread::current(), false);
 341   frame s;
 342   for (s = sender(&map); !(s.is_java_frame() || s.is_first_frame()); s = s.sender(&map)) ;
 343   guarantee(s.is_java_frame(), "tried to get caller of first java frame");
 344   return s;
 345 }
 346 
 347 frame frame::real_sender(RegisterMap* map) const {
 348   frame result = sender(map);
 349   while (result.is_runtime_frame() ||
 350          result.is_ignored_frame()) {
 351     result = result.sender(map);
 352   }
 353   return result;
 354 }
 355 
 356 // Note: called by profiler - NOT for current thread
 357 frame frame::profile_find_Java_sender_frame(JavaThread *thread) {
 358 // If we don't recognize this frame, walk back up the stack until we do
 359   RegisterMap map(thread, false);
 360   frame first_java_frame = frame();
 361 
 362   // Find the first Java frame on the stack starting with input frame
 363   if (is_java_frame()) {
 364     // top frame is compiled frame or deoptimized frame
 365     first_java_frame = *this;
 366   } else if (safe_for_sender(thread)) {
 367     for (frame sender_frame = sender(&map);
 368       sender_frame.safe_for_sender(thread) && !sender_frame.is_first_frame();
 369       sender_frame = sender_frame.sender(&map)) {
 370       if (sender_frame.is_java_frame()) {
 371         first_java_frame = sender_frame;
 372         break;
 373       }
 374     }
 375   }
 376   return first_java_frame;
 377 }
 378 
 379 // Interpreter frames
 380 
 381 
 382 void frame::interpreter_frame_set_locals(intptr_t* locs)  {
 383   assert(is_interpreted_frame(), "Not an interpreted frame");
 384   *interpreter_frame_locals_addr() = locs;
 385 }
 386 
 387 Method* frame::interpreter_frame_method() const {
 388   assert(is_interpreted_frame(), "interpreted frame expected");
 389   Method* m = *interpreter_frame_method_addr();
 390   assert(m->is_method(), "not a Method*");
 391   return m;
 392 }
 393 
 394 void frame::interpreter_frame_set_method(Method* method) {
 395   assert(is_interpreted_frame(), "interpreted frame expected");
 396   *interpreter_frame_method_addr() = method;
 397 }
 398 
 399 void frame::interpreter_frame_set_mirror(oop mirror) {
 400   assert(is_interpreted_frame(), "interpreted frame expected");
 401   *interpreter_frame_mirror_addr() = mirror;
 402 }
 403 
 404 jint frame::interpreter_frame_bci() const {
 405   assert(is_interpreted_frame(), "interpreted frame expected");
 406   address bcp = interpreter_frame_bcp();
 407   return interpreter_frame_method()->bci_from(bcp);
 408 }
 409 
 410 address frame::interpreter_frame_bcp() const {
 411   assert(is_interpreted_frame(), "interpreted frame expected");
 412   address bcp = (address)*interpreter_frame_bcp_addr();
 413   return interpreter_frame_method()->bcp_from(bcp);
 414 }
 415 
 416 void frame::interpreter_frame_set_bcp(address bcp) {
 417   assert(is_interpreted_frame(), "interpreted frame expected");
 418   *interpreter_frame_bcp_addr() = (intptr_t)bcp;
 419 }
 420 
 421 address frame::interpreter_frame_mdp() const {
 422   assert(ProfileInterpreter, "must be profiling interpreter");
 423   assert(is_interpreted_frame(), "interpreted frame expected");
 424   return (address)*interpreter_frame_mdp_addr();
 425 }
 426 
 427 void frame::interpreter_frame_set_mdp(address mdp) {
 428   assert(is_interpreted_frame(), "interpreted frame expected");
 429   assert(ProfileInterpreter, "must be profiling interpreter");
 430   *interpreter_frame_mdp_addr() = (intptr_t)mdp;
 431 }
 432 
 433 BasicObjectLock* frame::next_monitor_in_interpreter_frame(BasicObjectLock* current) const {
 434   assert(is_interpreted_frame(), "Not an interpreted frame");
 435 #ifdef ASSERT
 436   interpreter_frame_verify_monitor(current);
 437 #endif
 438   BasicObjectLock* next = (BasicObjectLock*) (((intptr_t*) current) + interpreter_frame_monitor_size());
 439   return next;
 440 }
 441 
 442 BasicObjectLock* frame::previous_monitor_in_interpreter_frame(BasicObjectLock* current) const {
 443   assert(is_interpreted_frame(), "Not an interpreted frame");
 444 #ifdef ASSERT
 445 //   // This verification needs to be checked before being enabled
 446 //   interpreter_frame_verify_monitor(current);
 447 #endif
 448   BasicObjectLock* previous = (BasicObjectLock*) (((intptr_t*) current) - interpreter_frame_monitor_size());
 449   return previous;
 450 }
 451 
 452 // Interpreter locals and expression stack locations.
 453 
 454 intptr_t* frame::interpreter_frame_local_at(int index) const {
 455   const int n = Interpreter::local_offset_in_bytes(index)/wordSize;
 456   return &((*interpreter_frame_locals_addr())[n]);
 457 }
 458 
 459 intptr_t* frame::interpreter_frame_expression_stack_at(jint offset) const {
 460   const int i = offset * interpreter_frame_expression_stack_direction();
 461   const int n = i * Interpreter::stackElementWords;
 462   return &(interpreter_frame_expression_stack()[n]);
 463 }
 464 
 465 jint frame::interpreter_frame_expression_stack_size() const {
 466   // Number of elements on the interpreter expression stack
 467   // Callers should span by stackElementWords
 468   int element_size = Interpreter::stackElementWords;
 469   size_t stack_size = 0;
 470   if (frame::interpreter_frame_expression_stack_direction() < 0) {
 471     stack_size = (interpreter_frame_expression_stack() -
 472                   interpreter_frame_tos_address() + 1)/element_size;
 473   } else {
 474     stack_size = (interpreter_frame_tos_address() -
 475                   interpreter_frame_expression_stack() + 1)/element_size;
 476   }
 477   assert( stack_size <= (size_t)max_jint, "stack size too big");
 478   return ((jint)stack_size);
 479 }
 480 
 481 
 482 // (frame::interpreter_frame_sender_sp accessor is in frame_<arch>.cpp)
 483 
 484 const char* frame::print_name() const {
 485   if (is_native_frame())      return "Native";
 486   if (is_interpreted_frame()) return "Interpreted";
 487   if (is_compiled_frame()) {
 488     if (is_deoptimized_frame()) return "Deoptimized";
 489     return "Compiled";
 490   }
 491   if (sp() == NULL)            return "Empty";
 492   return "C";
 493 }
 494 
 495 void frame::print_value_on(outputStream* st, JavaThread *thread) const {
 496   NOT_PRODUCT(address begin = pc()-40;)
 497   NOT_PRODUCT(address end   = NULL;)
 498 
 499   st->print("%s frame (sp=" INTPTR_FORMAT " unextended sp=" INTPTR_FORMAT, print_name(), p2i(sp()), p2i(unextended_sp()));
 500   if (sp() != NULL)
 501     st->print(", fp=" INTPTR_FORMAT ", real_fp=" INTPTR_FORMAT ", pc=" INTPTR_FORMAT,
 502               p2i(fp()), p2i(real_fp()), p2i(pc()));
 503 
 504   if (StubRoutines::contains(pc())) {
 505     st->print_cr(")");
 506     st->print("(");
 507     StubCodeDesc* desc = StubCodeDesc::desc_for(pc());
 508     st->print("~Stub::%s", desc->name());
 509     NOT_PRODUCT(begin = desc->begin(); end = desc->end();)
 510   } else if (Interpreter::contains(pc())) {
 511     st->print_cr(")");
 512     st->print("(");
 513     InterpreterCodelet* desc = Interpreter::codelet_containing(pc());
 514     if (desc != NULL) {
 515       st->print("~");
 516       desc->print_on(st);
 517       NOT_PRODUCT(begin = desc->code_begin(); end = desc->code_end();)
 518     } else {
 519       st->print("~interpreter");
 520     }
 521   }
 522   st->print_cr(")");
 523 
 524   if (_cb != NULL) {
 525     st->print("     ");
 526     _cb->print_value_on(st);
 527     st->cr();
 528 #ifndef PRODUCT
 529     if (end == NULL) {
 530       begin = _cb->code_begin();
 531       end   = _cb->code_end();
 532     }
 533 #endif
 534   }
 535   NOT_PRODUCT(if (WizardMode && Verbose) Disassembler::decode(begin, end);)
 536 }
 537 
 538 
 539 void frame::print_on(outputStream* st) const {
 540   print_value_on(st,NULL);
 541   if (is_interpreted_frame()) {
 542     interpreter_frame_print_on(st);
 543   }
 544 }
 545 
 546 
 547 void frame::interpreter_frame_print_on(outputStream* st) const {
 548 #ifndef PRODUCT
 549   assert(is_interpreted_frame(), "Not an interpreted frame");
 550   jint i;
 551   for (i = 0; i < interpreter_frame_method()->max_locals(); i++ ) {
 552     intptr_t x = *interpreter_frame_local_at(i);
 553     st->print(" - local  [" INTPTR_FORMAT "]", x);
 554     st->fill_to(23);
 555     st->print_cr("; #%d", i);
 556   }
 557   for (i = interpreter_frame_expression_stack_size() - 1; i >= 0; --i ) {
 558     intptr_t x = *interpreter_frame_expression_stack_at(i);
 559     st->print(" - stack  [" INTPTR_FORMAT "]", x);
 560     st->fill_to(23);
 561     st->print_cr("; #%d", i);
 562   }
 563   // locks for synchronization
 564   for (BasicObjectLock* current = interpreter_frame_monitor_end();
 565        current < interpreter_frame_monitor_begin();
 566        current = next_monitor_in_interpreter_frame(current)) {
 567     st->print(" - obj    [");
 568     current->obj()->print_value_on(st);
 569     st->print_cr("]");
 570     st->print(" - lock   [");
 571     current->lock()->print_on(st);
 572     st->print_cr("]");
 573   }
 574   // monitor
 575   st->print_cr(" - monitor[" INTPTR_FORMAT "]", p2i(interpreter_frame_monitor_begin()));
 576   // bcp
 577   st->print(" - bcp    [" INTPTR_FORMAT "]", p2i(interpreter_frame_bcp()));
 578   st->fill_to(23);
 579   st->print_cr("; @%d", interpreter_frame_bci());
 580   // locals
 581   st->print_cr(" - locals [" INTPTR_FORMAT "]", p2i(interpreter_frame_local_at(0)));
 582   // method
 583   st->print(" - method [" INTPTR_FORMAT "]", p2i(interpreter_frame_method()));
 584   st->fill_to(23);
 585   st->print("; ");
 586   interpreter_frame_method()->print_name(st);
 587   st->cr();
 588 #endif
 589 }
 590 
 591 // Print whether the frame is in the VM or OS indicating a HotSpot problem.
 592 // Otherwise, it's likely a bug in the native library that the Java code calls,
 593 // hopefully indicating where to submit bugs.
 594 void frame::print_C_frame(outputStream* st, char* buf, int buflen, address pc) {
 595   // C/C++ frame
 596   bool in_vm = os::address_is_in_vm(pc);
 597   st->print(in_vm ? "V" : "C");
 598 
 599   int offset;
 600   bool found;
 601 
 602   // libname
 603   found = os::dll_address_to_library_name(pc, buf, buflen, &offset);
 604   if (found) {
 605     // skip directory names
 606     const char *p1, *p2;
 607     p1 = buf;
 608     int len = (int)strlen(os::file_separator());
 609     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
 610     st->print("  [%s+0x%x]", p1, offset);
 611   } else {
 612     st->print("  " PTR_FORMAT, p2i(pc));
 613   }
 614 
 615   // function name - os::dll_address_to_function_name() may return confusing
 616   // names if pc is within jvm.dll or libjvm.so, because JVM only has
 617   // JVM_xxxx and a few other symbols in the dynamic symbol table. Do this
 618   // only for native libraries.
 619   if (!in_vm || Decoder::can_decode_C_frame_in_vm()) {
 620     found = os::dll_address_to_function_name(pc, buf, buflen, &offset);
 621 
 622     if (found) {
 623       st->print("  %s+0x%x", buf, offset);
 624     }
 625   }
 626 }
 627 
 628 // frame::print_on_error() is called by fatal error handler. Notice that we may
 629 // crash inside this function if stack frame is corrupted. The fatal error
 630 // handler can catch and handle the crash. Here we assume the frame is valid.
 631 //
 632 // First letter indicates type of the frame:
 633 //    J: Java frame (compiled)
 634 //    j: Java frame (interpreted)
 635 //    V: VM frame (C/C++)
 636 //    v: Other frames running VM generated code (e.g. stubs, adapters, etc.)
 637 //    C: C/C++ frame
 638 //
 639 // We don't need detailed frame type as that in frame::print_name(). "C"
 640 // suggests the problem is in user lib; everything else is likely a VM bug.
 641 
 642 void frame::print_on_error(outputStream* st, char* buf, int buflen, bool verbose) const {
 643   if (_cb != NULL) {
 644     if (Interpreter::contains(pc())) {
 645       Method* m = this->interpreter_frame_method();
 646       if (m != NULL) {
 647         m->name_and_sig_as_C_string(buf, buflen);
 648         st->print("j  %s", buf);
 649         st->print("+%d", this->interpreter_frame_bci());
 650         ModuleEntry* module = m->method_holder()->module();
 651         if (module->is_named()) {
 652           module->name()->as_C_string(buf, buflen);
 653           st->print(" %s", buf);
 654           module->version()->as_C_string(buf, buflen);
 655           st->print("@%s", buf);
 656         }
 657       } else {
 658         st->print("j  " PTR_FORMAT, p2i(pc()));
 659       }
 660     } else if (StubRoutines::contains(pc())) {
 661       StubCodeDesc* desc = StubCodeDesc::desc_for(pc());
 662       if (desc != NULL) {
 663         st->print("v  ~StubRoutines::%s", desc->name());
 664       } else {
 665         st->print("v  ~StubRoutines::" PTR_FORMAT, p2i(pc()));
 666       }
 667     } else if (_cb->is_buffer_blob()) {
 668       st->print("v  ~BufferBlob::%s", ((BufferBlob *)_cb)->name());
 669     } else if (_cb->is_compiled()) {
 670       CompiledMethod* cm = (CompiledMethod*)_cb;
 671       Method* m = cm->method();
 672       if (m != NULL) {
 673         if (cm->is_nmethod()) {
 674           nmethod* nm = cm->as_nmethod();
 675           st->print("J %d%s", nm->compile_id(), (nm->is_osr_method() ? "%" : ""));
 676           if (nm->compiler() != NULL) {
 677             st->print(" %s", nm->compiler()->name());
 678           }
 679         }
 680         m->name_and_sig_as_C_string(buf, buflen);
 681         st->print(" %s", buf);
 682         ModuleEntry* module = m->method_holder()->module();
 683         if (module->is_named()) {
 684           module->name()->as_C_string(buf, buflen);
 685           st->print(" %s", buf);
 686           module->version()->as_C_string(buf, buflen);
 687           st->print("@%s", buf);
 688         }
 689         st->print(" (%d bytes) @ " PTR_FORMAT " [" PTR_FORMAT "+" INTPTR_FORMAT "]",
 690                   m->code_size(), p2i(_pc), p2i(_cb->code_begin()), _pc - _cb->code_begin());
 691 #if INCLUDE_JVMCI
 692         if (cm->is_nmethod()) {
 693           nmethod* nm = cm->as_nmethod();
 694           char* jvmciName = nm->jvmci_installed_code_name(buf, buflen);
 695           if (jvmciName != NULL) {
 696             st->print(" (%s)", jvmciName);
 697           }
 698         }
 699 #endif
 700       } else {
 701         st->print("J  " PTR_FORMAT, p2i(pc()));
 702       }
 703     } else if (_cb->is_runtime_stub()) {
 704       st->print("v  ~RuntimeStub::%s", ((RuntimeStub *)_cb)->name());
 705     } else if (_cb->is_deoptimization_stub()) {
 706       st->print("v  ~DeoptimizationBlob");
 707     } else if (_cb->is_exception_stub()) {
 708       st->print("v  ~ExceptionBlob");
 709     } else if (_cb->is_safepoint_stub()) {
 710       st->print("v  ~SafepointBlob");
 711     } else {
 712       st->print("v  blob " PTR_FORMAT, p2i(pc()));
 713     }
 714   } else {
 715     print_C_frame(st, buf, buflen, pc());
 716   }
 717 }
 718 
 719 
 720 /*
 721   The interpreter_frame_expression_stack_at method in the case of SPARC needs the
 722   max_stack value of the method in order to compute the expression stack address.
 723   It uses the Method* in order to get the max_stack value but during GC this
 724   Method* value saved on the frame is changed by reverse_and_push and hence cannot
 725   be used. So we save the max_stack value in the FrameClosure object and pass it
 726   down to the interpreter_frame_expression_stack_at method
 727 */
 728 class InterpreterFrameClosure : public OffsetClosure {
 729  private:
 730   frame* _fr;
 731   OopClosure* _f;
 732   int    _max_locals;
 733   int    _max_stack;
 734 
 735  public:
 736   InterpreterFrameClosure(frame* fr, int max_locals, int max_stack,
 737                           OopClosure* f) {
 738     _fr         = fr;
 739     _max_locals = max_locals;
 740     _max_stack  = max_stack;
 741     _f          = f;
 742   }
 743 
 744   void offset_do(int offset) {
 745     oop* addr;
 746     if (offset < _max_locals) {
 747       addr = (oop*) _fr->interpreter_frame_local_at(offset);
 748       assert((intptr_t*)addr >= _fr->sp(), "must be inside the frame");
 749       _f->do_oop(addr);
 750     } else {
 751       addr = (oop*) _fr->interpreter_frame_expression_stack_at((offset - _max_locals));
 752       // In case of exceptions, the expression stack is invalid and the esp will be reset to express
 753       // this condition. Therefore, we call f only if addr is 'inside' the stack (i.e., addr >= esp for Intel).
 754       bool in_stack;
 755       if (frame::interpreter_frame_expression_stack_direction() > 0) {
 756         in_stack = (intptr_t*)addr <= _fr->interpreter_frame_tos_address();
 757       } else {
 758         in_stack = (intptr_t*)addr >= _fr->interpreter_frame_tos_address();
 759       }
 760       if (in_stack) {
 761         _f->do_oop(addr);
 762       }
 763     }
 764   }
 765 
 766   int max_locals()  { return _max_locals; }
 767   frame* fr()       { return _fr; }
 768 };
 769 
 770 
 771 class InterpretedArgumentOopFinder: public SignatureInfo {
 772  private:
 773   OopClosure* _f;        // Closure to invoke
 774   int    _offset;        // TOS-relative offset, decremented with each argument
 775   bool   _has_receiver;  // true if the callee has a receiver
 776   frame* _fr;
 777 
 778   void set(int size, BasicType type) {
 779     _offset -= size;
 780     if (type == T_OBJECT || type == T_ARRAY) oop_offset_do();
 781   }
 782 
 783   void oop_offset_do() {
 784     oop* addr;
 785     addr = (oop*)_fr->interpreter_frame_tos_at(_offset);
 786     _f->do_oop(addr);
 787   }
 788 
 789  public:
 790   InterpretedArgumentOopFinder(Symbol* signature, bool has_receiver, frame* fr, OopClosure* f) : SignatureInfo(signature), _has_receiver(has_receiver) {
 791     // compute size of arguments
 792     int args_size = ArgumentSizeComputer(signature).size() + (has_receiver ? 1 : 0);
 793     assert(!fr->is_interpreted_frame() ||
 794            args_size <= fr->interpreter_frame_expression_stack_size(),
 795             "args cannot be on stack anymore");
 796     // initialize InterpretedArgumentOopFinder
 797     _f         = f;
 798     _fr        = fr;
 799     _offset    = args_size;
 800   }
 801 
 802   void oops_do() {
 803     if (_has_receiver) {
 804       --_offset;
 805       oop_offset_do();
 806     }
 807     iterate_parameters();
 808   }
 809 };
 810 
 811 
 812 // Entry frame has following form (n arguments)
 813 //         +-----------+
 814 //   sp -> |  last arg |
 815 //         +-----------+
 816 //         :    :::    :
 817 //         +-----------+
 818 // (sp+n)->|  first arg|
 819 //         +-----------+
 820 
 821 
 822 
 823 // visits and GC's all the arguments in entry frame
 824 class EntryFrameOopFinder: public SignatureInfo {
 825  private:
 826   bool   _is_static;
 827   int    _offset;
 828   frame* _fr;
 829   OopClosure* _f;
 830 
 831   void set(int size, BasicType type) {
 832     assert (_offset >= 0, "illegal offset");
 833     if (type == T_OBJECT || type == T_ARRAY) oop_at_offset_do(_offset);
 834     _offset -= size;
 835   }
 836 
 837   void oop_at_offset_do(int offset) {
 838     assert (offset >= 0, "illegal offset");
 839     oop* addr = (oop*) _fr->entry_frame_argument_at(offset);
 840     _f->do_oop(addr);
 841   }
 842 
 843  public:
 844    EntryFrameOopFinder(frame* frame, Symbol* signature, bool is_static) : SignatureInfo(signature) {
 845      _f = NULL; // will be set later
 846      _fr = frame;
 847      _is_static = is_static;
 848      _offset = ArgumentSizeComputer(signature).size() - 1; // last parameter is at index 0
 849    }
 850 
 851   void arguments_do(OopClosure* f) {
 852     _f = f;
 853     if (!_is_static) oop_at_offset_do(_offset+1); // do the receiver
 854     iterate_parameters();
 855   }
 856 
 857 };
 858 
 859 oop* frame::interpreter_callee_receiver_addr(Symbol* signature) {
 860   ArgumentSizeComputer asc(signature);
 861   int size = asc.size();
 862   return (oop *)interpreter_frame_tos_at(size);
 863 }
 864 
 865 
 866 void frame::oops_interpreted_do(OopClosure* f, const RegisterMap* map, bool query_oop_map_cache) {
 867   assert(is_interpreted_frame(), "Not an interpreted frame");
 868   assert(map != NULL, "map must be set");
 869   Thread *thread = Thread::current();
 870   methodHandle m (thread, interpreter_frame_method());
 871   jint      bci = interpreter_frame_bci();
 872 
 873   assert(!Universe::heap()->is_in(m()),
 874           "must be valid oop");
 875   assert(m->is_method(), "checking frame value");
 876   assert((m->is_native() && bci == 0)  ||
 877          (!m->is_native() && bci >= 0 && bci < m->code_size()),
 878          "invalid bci value");
 879 
 880   // Handle the monitor elements in the activation
 881   for (
 882     BasicObjectLock* current = interpreter_frame_monitor_end();
 883     current < interpreter_frame_monitor_begin();
 884     current = next_monitor_in_interpreter_frame(current)
 885   ) {
 886 #ifdef ASSERT
 887     interpreter_frame_verify_monitor(current);
 888 #endif
 889     current->oops_do(f);
 890   }
 891 
 892   if (m->is_native()) {
 893     f->do_oop(interpreter_frame_temp_oop_addr());
 894   }
 895 
 896   // The method pointer in the frame might be the only path to the method's
 897   // klass, and the klass needs to be kept alive while executing. The GCs
 898   // don't trace through method pointers, so the mirror of the method's klass
 899   // is installed as a GC root.
 900   f->do_oop(interpreter_frame_mirror_addr());
 901 
 902   int max_locals = m->is_native() ? m->size_of_parameters() : m->max_locals();
 903 
 904   Symbol* signature = NULL;
 905   bool has_receiver = false;
 906 
 907   // Process a callee's arguments if we are at a call site
 908   // (i.e., if we are at an invoke bytecode)
 909   // This is used sometimes for calling into the VM, not for another
 910   // interpreted or compiled frame.
 911   if (!m->is_native()) {
 912     Bytecode_invoke call = Bytecode_invoke_check(m, bci);
 913     if (call.is_valid()) {
 914       signature = call.signature();
 915       has_receiver = call.has_receiver();
 916       if (map->include_argument_oops() &&
 917           interpreter_frame_expression_stack_size() > 0) {
 918         ResourceMark rm(thread);  // is this right ???
 919         // we are at a call site & the expression stack is not empty
 920         // => process callee's arguments
 921         //
 922         // Note: The expression stack can be empty if an exception
 923         //       occurred during method resolution/execution. In all
 924         //       cases we empty the expression stack completely be-
 925         //       fore handling the exception (the exception handling
 926         //       code in the interpreter calls a blocking runtime
 927         //       routine which can cause this code to be executed).
 928         //       (was bug gri 7/27/98)
 929         oops_interpreted_arguments_do(signature, has_receiver, f);
 930       }
 931     }
 932   }
 933 
 934   InterpreterFrameClosure blk(this, max_locals, m->max_stack(), f);
 935 
 936   // process locals & expression stack
 937   InterpreterOopMap mask;
 938   if (query_oop_map_cache) {
 939     m->mask_for(bci, &mask);
 940   } else {
 941     OopMapCache::compute_one_oop_map(m, bci, &mask);
 942   }
 943   mask.iterate_oop(&blk);
 944 }
 945 
 946 
 947 void frame::oops_interpreted_arguments_do(Symbol* signature, bool has_receiver, OopClosure* f) {
 948   InterpretedArgumentOopFinder finder(signature, has_receiver, this, f);
 949   finder.oops_do();
 950 }
 951 
 952 void frame::oops_code_blob_do(OopClosure* f, CodeBlobClosure* cf, const RegisterMap* reg_map) {
 953   assert(_cb != NULL, "sanity check");
 954   if (_cb->oop_maps() != NULL) {
 955     OopMapSet::oops_do(this, reg_map, f);
 956 
 957     // Preserve potential arguments for a callee. We handle this by dispatching
 958     // on the codeblob. For c2i, we do
 959     if (reg_map->include_argument_oops()) {
 960       _cb->preserve_callee_argument_oops(*this, reg_map, f);
 961     }
 962   }
 963   // In cases where perm gen is collected, GC will want to mark
 964   // oops referenced from nmethods active on thread stacks so as to
 965   // prevent them from being collected. However, this visit should be
 966   // restricted to certain phases of the collection only. The
 967   // closure decides how it wants nmethods to be traced.
 968   if (cf != NULL)
 969     cf->do_code_blob(_cb);
 970 }
 971 
 972 class CompiledArgumentOopFinder: public SignatureInfo {
 973  protected:
 974   OopClosure*     _f;
 975   int             _offset;        // the current offset, incremented with each argument
 976   bool            _has_receiver;  // true if the callee has a receiver
 977   bool            _has_appendix;  // true if the call has an appendix
 978   frame           _fr;
 979   RegisterMap*    _reg_map;
 980   int             _arg_size;
 981   VMRegPair*      _regs;        // VMReg list of arguments
 982 
 983   void set(int size, BasicType type) {
 984     if (type == T_OBJECT || type == T_ARRAY) handle_oop_offset();
 985     _offset += size;
 986   }
 987 
 988   virtual void handle_oop_offset() {
 989     // Extract low order register number from register array.
 990     // In LP64-land, the high-order bits are valid but unhelpful.
 991     VMReg reg = _regs[_offset].first();
 992     oop *loc = _fr.oopmapreg_to_location(reg, _reg_map);
 993     _f->do_oop(loc);
 994   }
 995 
 996  public:
 997   CompiledArgumentOopFinder(Symbol* signature, bool has_receiver, bool has_appendix, OopClosure* f, frame fr,  const RegisterMap* reg_map)
 998     : SignatureInfo(signature) {
 999 
1000     // initialize CompiledArgumentOopFinder
1001     _f         = f;
1002     _offset    = 0;
1003     _has_receiver = has_receiver;
1004     _has_appendix = has_appendix;
1005     _fr        = fr;
1006     _reg_map   = (RegisterMap*)reg_map;
1007     _arg_size  = ArgumentSizeComputer(signature).size() + (has_receiver ? 1 : 0) + (has_appendix ? 1 : 0);
1008 
1009     int arg_size;
1010     _regs = SharedRuntime::find_callee_arguments(signature, has_receiver, has_appendix, &arg_size);
1011     assert(arg_size == _arg_size, "wrong arg size");
1012   }
1013 
1014   void oops_do() {
1015     if (_has_receiver) {
1016       handle_oop_offset();
1017       _offset++;
1018     }
1019     iterate_parameters();
1020     if (_has_appendix) {
1021       handle_oop_offset();
1022       _offset++;
1023     }
1024   }
1025 };
1026 
1027 void frame::oops_compiled_arguments_do(Symbol* signature, bool has_receiver, bool has_appendix,
1028                                        const RegisterMap* reg_map, OopClosure* f) {
1029   ResourceMark rm;
1030   CompiledArgumentOopFinder finder(signature, has_receiver, has_appendix, f, *this, reg_map);
1031   finder.oops_do();
1032 }
1033 
1034 
1035 // Get receiver out of callers frame, i.e. find parameter 0 in callers
1036 // frame.  Consult ADLC for where parameter 0 is to be found.  Then
1037 // check local reg_map for it being a callee-save register or argument
1038 // register, both of which are saved in the local frame.  If not found
1039 // there, it must be an in-stack argument of the caller.
1040 // Note: caller.sp() points to callee-arguments
1041 oop frame::retrieve_receiver(RegisterMap* reg_map) {
1042   frame caller = *this;
1043 
1044   // First consult the ADLC on where it puts parameter 0 for this signature.
1045   VMReg reg = SharedRuntime::name_for_receiver();
1046   oop* oop_adr = caller.oopmapreg_to_location(reg, reg_map);
1047   if (oop_adr == NULL) {
1048     guarantee(oop_adr != NULL, "bad register save location");
1049     return NULL;
1050   }
1051   oop r = *oop_adr;
1052   assert(Universe::heap()->is_in_or_null(r), "bad receiver: " INTPTR_FORMAT " (" INTX_FORMAT ")", p2i(r), p2i(r));
1053   return r;
1054 }
1055 
1056 
1057 oop* frame::oopmapreg_to_location(VMReg reg, const RegisterMap* reg_map) const {
1058   if(reg->is_reg()) {
1059     // If it is passed in a register, it got spilled in the stub frame.
1060     return (oop *)reg_map->location(reg);
1061   } else {
1062     int sp_offset_in_bytes = reg->reg2stack() * VMRegImpl::stack_slot_size;
1063     return (oop*)(((address)unextended_sp()) + sp_offset_in_bytes);
1064   }
1065 }
1066 
1067 BasicLock* frame::get_native_monitor() {
1068   nmethod* nm = (nmethod*)_cb;
1069   assert(_cb != NULL && _cb->is_nmethod() && nm->method()->is_native(),
1070          "Should not call this unless it's a native nmethod");
1071   int byte_offset = in_bytes(nm->native_basic_lock_sp_offset());
1072   assert(byte_offset >= 0, "should not see invalid offset");
1073   return (BasicLock*) &sp()[byte_offset / wordSize];
1074 }
1075 
1076 oop frame::get_native_receiver() {
1077   nmethod* nm = (nmethod*)_cb;
1078   assert(_cb != NULL && _cb->is_nmethod() && nm->method()->is_native(),
1079          "Should not call this unless it's a native nmethod");
1080   int byte_offset = in_bytes(nm->native_receiver_sp_offset());
1081   assert(byte_offset >= 0, "should not see invalid offset");
1082   oop owner = ((oop*) sp())[byte_offset / wordSize];
1083   assert( Universe::heap()->is_in(owner), "bad receiver" );
1084   return owner;
1085 }
1086 
1087 void frame::oops_entry_do(OopClosure* f, const RegisterMap* map) {
1088   assert(map != NULL, "map must be set");
1089   if (map->include_argument_oops()) {
1090     // must collect argument oops, as nobody else is doing it
1091     Thread *thread = Thread::current();
1092     methodHandle m (thread, entry_frame_call_wrapper()->callee_method());
1093     EntryFrameOopFinder finder(this, m->signature(), m->is_static());
1094     finder.arguments_do(f);
1095   }
1096   // Traverse the Handle Block saved in the entry frame
1097   entry_frame_call_wrapper()->oops_do(f);
1098 }
1099 
1100 
1101 void frame::oops_do_internal(OopClosure* f, CodeBlobClosure* cf, RegisterMap* map, bool use_interpreter_oop_map_cache) {
1102 #ifndef PRODUCT
1103   // simulate GC crash here to dump java thread in error report
1104   if (CrashGCForDumpingJavaThread) {
1105     char *t = NULL;
1106     *t = 'c';
1107   }
1108 #endif
1109   if (is_interpreted_frame()) {
1110     oops_interpreted_do(f, map, use_interpreter_oop_map_cache);
1111   } else if (is_entry_frame()) {
1112     oops_entry_do(f, map);
1113   } else if (CodeCache::contains(pc())) {
1114     oops_code_blob_do(f, cf, map);
1115 #ifdef SHARK
1116   } else if (is_fake_stub_frame()) {
1117     // nothing to do
1118 #endif // SHARK
1119   } else {
1120     ShouldNotReachHere();
1121   }
1122 }
1123 
1124 void frame::nmethods_do(CodeBlobClosure* cf) {
1125   if (_cb != NULL && _cb->is_nmethod()) {
1126     cf->do_code_blob(_cb);
1127   }
1128 }
1129 
1130 
1131 // call f() on the interpreted Method*s in the stack.
1132 // Have to walk the entire code cache for the compiled frames Yuck.
1133 void frame::metadata_do(void f(Metadata*)) {
1134   if (is_interpreted_frame()) {
1135     Method* m = this->interpreter_frame_method();
1136     assert(m != NULL, "expecting a method in this frame");
1137     f(m);
1138   }
1139 }
1140 
1141 void frame::verify(const RegisterMap* map) {
1142   // for now make sure receiver type is correct
1143   if (is_interpreted_frame()) {
1144     Method* method = interpreter_frame_method();
1145     guarantee(method->is_method(), "method is wrong in frame::verify");
1146     if (!method->is_static()) {
1147       // fetch the receiver
1148       oop* p = (oop*) interpreter_frame_local_at(0);
1149       // make sure we have the right receiver type
1150     }
1151   }
1152 #if defined(COMPILER2) || INCLUDE_JVMCI
1153   assert(DerivedPointerTable::is_empty(), "must be empty before verify");
1154 #endif
1155   oops_do_internal(&VerifyOopClosure::verify_oop, NULL, (RegisterMap*)map, false);
1156 }
1157 
1158 
1159 #ifdef ASSERT
1160 bool frame::verify_return_pc(address x) {
1161   if (StubRoutines::returns_to_call_stub(x)) {
1162     return true;
1163   }
1164   if (CodeCache::contains(x)) {
1165     return true;
1166   }
1167   if (Interpreter::contains(x)) {
1168     return true;
1169   }
1170   return false;
1171 }
1172 #endif
1173 
1174 #ifdef ASSERT
1175 void frame::interpreter_frame_verify_monitor(BasicObjectLock* value) const {
1176   assert(is_interpreted_frame(), "Not an interpreted frame");
1177   // verify that the value is in the right part of the frame
1178   address low_mark  = (address) interpreter_frame_monitor_end();
1179   address high_mark = (address) interpreter_frame_monitor_begin();
1180   address current   = (address) value;
1181 
1182   const int monitor_size = frame::interpreter_frame_monitor_size();
1183   guarantee((high_mark - current) % monitor_size  ==  0         , "Misaligned top of BasicObjectLock*");
1184   guarantee( high_mark > current                                , "Current BasicObjectLock* higher than high_mark");
1185 
1186   guarantee((current - low_mark) % monitor_size  ==  0         , "Misaligned bottom of BasicObjectLock*");
1187   guarantee( current >= low_mark                               , "Current BasicObjectLock* below than low_mark");
1188 }
1189 #endif
1190 
1191 #ifndef PRODUCT
1192 void frame::describe(FrameValues& values, int frame_no) {
1193   // boundaries: sp and the 'real' frame pointer
1194   values.describe(-1, sp(), err_msg("sp for #%d", frame_no), 1);
1195   intptr_t* frame_pointer = real_fp(); // Note: may differ from fp()
1196 
1197   // print frame info at the highest boundary
1198   intptr_t* info_address = MAX2(sp(), frame_pointer);
1199 
1200   if (info_address != frame_pointer) {
1201     // print frame_pointer explicitly if not marked by the frame info
1202     values.describe(-1, frame_pointer, err_msg("frame pointer for #%d", frame_no), 1);
1203   }
1204 
1205   if (is_entry_frame() || is_compiled_frame() || is_interpreted_frame() || is_native_frame()) {
1206     // Label values common to most frames
1207     values.describe(-1, unextended_sp(), err_msg("unextended_sp for #%d", frame_no));
1208   }
1209 
1210   if (is_interpreted_frame()) {
1211     Method* m = interpreter_frame_method();
1212     int bci = interpreter_frame_bci();
1213 
1214     // Label the method and current bci
1215     values.describe(-1, info_address,
1216                     FormatBuffer<1024>("#%d method %s @ %d", frame_no, m->name_and_sig_as_C_string(), bci), 2);
1217     values.describe(-1, info_address,
1218                     err_msg("- %d locals %d max stack", m->max_locals(), m->max_stack()), 1);
1219     if (m->max_locals() > 0) {
1220       intptr_t* l0 = interpreter_frame_local_at(0);
1221       intptr_t* ln = interpreter_frame_local_at(m->max_locals() - 1);
1222       values.describe(-1, MAX2(l0, ln), err_msg("locals for #%d", frame_no), 1);
1223       // Report each local and mark as owned by this frame
1224       for (int l = 0; l < m->max_locals(); l++) {
1225         intptr_t* l0 = interpreter_frame_local_at(l);
1226         values.describe(frame_no, l0, err_msg("local %d", l));
1227       }
1228     }
1229 
1230     // Compute the actual expression stack size
1231     InterpreterOopMap mask;
1232     OopMapCache::compute_one_oop_map(m, bci, &mask);
1233     intptr_t* tos = NULL;
1234     // Report each stack element and mark as owned by this frame
1235     for (int e = 0; e < mask.expression_stack_size(); e++) {
1236       tos = MAX2(tos, interpreter_frame_expression_stack_at(e));
1237       values.describe(frame_no, interpreter_frame_expression_stack_at(e),
1238                       err_msg("stack %d", e));
1239     }
1240     if (tos != NULL) {
1241       values.describe(-1, tos, err_msg("expression stack for #%d", frame_no), 1);
1242     }
1243     if (interpreter_frame_monitor_begin() != interpreter_frame_monitor_end()) {
1244       values.describe(frame_no, (intptr_t*)interpreter_frame_monitor_begin(), "monitors begin");
1245       values.describe(frame_no, (intptr_t*)interpreter_frame_monitor_end(), "monitors end");
1246     }
1247   } else if (is_entry_frame()) {
1248     // For now just label the frame
1249     values.describe(-1, info_address, err_msg("#%d entry frame", frame_no), 2);
1250   } else if (is_compiled_frame()) {
1251     // For now just label the frame
1252     CompiledMethod* cm = (CompiledMethod*)cb();
1253     values.describe(-1, info_address,
1254                     FormatBuffer<1024>("#%d nmethod " INTPTR_FORMAT " for method %s%s", frame_no,
1255                                        p2i(cm), cm->method()->name_and_sig_as_C_string(),
1256                                        (_deopt_state == is_deoptimized) ?
1257                                        " (deoptimized)" :
1258                                        ((_deopt_state == unknown) ? " (state unknown)" : "")),
1259                     2);
1260   } else if (is_native_frame()) {
1261     // For now just label the frame
1262     nmethod* nm = cb()->as_nmethod_or_null();
1263     values.describe(-1, info_address,
1264                     FormatBuffer<1024>("#%d nmethod " INTPTR_FORMAT " for native method %s", frame_no,
1265                                        p2i(nm), nm->method()->name_and_sig_as_C_string()), 2);
1266   } else {
1267     // provide default info if not handled before
1268     char *info = (char *) "special frame";
1269     if ((_cb != NULL) &&
1270         (_cb->name() != NULL)) {
1271       info = (char *)_cb->name();
1272     }
1273     values.describe(-1, info_address, err_msg("#%d <%s>", frame_no, info), 2);
1274   }
1275 
1276   // platform dependent additional data
1277   describe_pd(values, frame_no);
1278 }
1279 
1280 #endif
1281 
1282 
1283 //-----------------------------------------------------------------------------------
1284 // StackFrameStream implementation
1285 
1286 StackFrameStream::StackFrameStream(JavaThread *thread, bool update) : _reg_map(thread, update) {
1287   assert(thread->has_last_Java_frame(), "sanity check");
1288   _fr = thread->last_frame();
1289   _is_done = false;
1290 }
1291 
1292 
1293 #ifndef PRODUCT
1294 
1295 void FrameValues::describe(int owner, intptr_t* location, const char* description, int priority) {
1296   FrameValue fv;
1297   fv.location = location;
1298   fv.owner = owner;
1299   fv.priority = priority;
1300   fv.description = NEW_RESOURCE_ARRAY(char, strlen(description) + 1);
1301   strcpy(fv.description, description);
1302   _values.append(fv);
1303 }
1304 
1305 
1306 #ifdef ASSERT
1307 void FrameValues::validate() {
1308   _values.sort(compare);
1309   bool error = false;
1310   FrameValue prev;
1311   prev.owner = -1;
1312   for (int i = _values.length() - 1; i >= 0; i--) {
1313     FrameValue fv = _values.at(i);
1314     if (fv.owner == -1) continue;
1315     if (prev.owner == -1) {
1316       prev = fv;
1317       continue;
1318     }
1319     if (prev.location == fv.location) {
1320       if (fv.owner != prev.owner) {
1321         tty->print_cr("overlapping storage");
1322         tty->print_cr(" " INTPTR_FORMAT ": " INTPTR_FORMAT " %s", p2i(prev.location), *prev.location, prev.description);
1323         tty->print_cr(" " INTPTR_FORMAT ": " INTPTR_FORMAT " %s", p2i(fv.location), *fv.location, fv.description);
1324         error = true;
1325       }
1326     } else {
1327       prev = fv;
1328     }
1329   }
1330   assert(!error, "invalid layout");
1331 }
1332 #endif // ASSERT
1333 
1334 void FrameValues::print(JavaThread* thread) {
1335   _values.sort(compare);
1336 
1337   // Sometimes values like the fp can be invalid values if the
1338   // register map wasn't updated during the walk.  Trim out values
1339   // that aren't actually in the stack of the thread.
1340   int min_index = 0;
1341   int max_index = _values.length() - 1;
1342   intptr_t* v0 = _values.at(min_index).location;
1343   intptr_t* v1 = _values.at(max_index).location;
1344 
1345   if (thread == Thread::current()) {
1346     while (!thread->is_in_stack((address)v0)) {
1347       v0 = _values.at(++min_index).location;
1348     }
1349     while (!thread->is_in_stack((address)v1)) {
1350       v1 = _values.at(--max_index).location;
1351     }
1352   } else {
1353     while (!thread->on_local_stack((address)v0)) {
1354       v0 = _values.at(++min_index).location;
1355     }
1356     while (!thread->on_local_stack((address)v1)) {
1357       v1 = _values.at(--max_index).location;
1358     }
1359   }
1360   intptr_t* min = MIN2(v0, v1);
1361   intptr_t* max = MAX2(v0, v1);
1362   intptr_t* cur = max;
1363   intptr_t* last = NULL;
1364   for (int i = max_index; i >= min_index; i--) {
1365     FrameValue fv = _values.at(i);
1366     while (cur > fv.location) {
1367       tty->print_cr(" " INTPTR_FORMAT ": " INTPTR_FORMAT, p2i(cur), *cur);
1368       cur--;
1369     }
1370     if (last == fv.location) {
1371       const char* spacer = "          " LP64_ONLY("        ");
1372       tty->print_cr(" %s  %s %s", spacer, spacer, fv.description);
1373     } else {
1374       tty->print_cr(" " INTPTR_FORMAT ": " INTPTR_FORMAT " %s", p2i(fv.location), *fv.location, fv.description);
1375       last = fv.location;
1376       cur--;
1377     }
1378   }
1379 }
1380 
1381 #endif // ndef PRODUCT
--- EOF ---