1 /*
   2  * Copyright (c) 1998, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "jfr/jfrEvents.hpp"
  28 #include "jfr/support/jfrThreadId.hpp"
  29 #include "memory/allocation.inline.hpp"
  30 #include "memory/resourceArea.hpp"
  31 #include "oops/markOop.hpp"
  32 #include "oops/oop.inline.hpp"
  33 #include "runtime/atomic.hpp"
  34 #include "runtime/handles.inline.hpp"
  35 #include "runtime/interfaceSupport.inline.hpp"
  36 #include "runtime/mutexLocker.hpp"
  37 #include "runtime/objectMonitor.hpp"
  38 #include "runtime/objectMonitor.inline.hpp"
  39 #include "runtime/orderAccess.hpp"
  40 #include "runtime/osThread.hpp"
  41 #include "runtime/safepointMechanism.inline.hpp"
  42 #include "runtime/sharedRuntime.hpp"
  43 #include "runtime/stubRoutines.hpp"
  44 #include "runtime/thread.inline.hpp"
  45 #include "services/threadService.hpp"
  46 #include "utilities/dtrace.hpp"
  47 #include "utilities/macros.hpp"
  48 #include "utilities/preserveException.hpp"
  49 #if INCLUDE_JFR
  50 #include "jfr/support/jfrFlush.hpp"
  51 #endif
  52 
  53 #ifdef DTRACE_ENABLED
  54 
  55 // Only bother with this argument setup if dtrace is available
  56 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
  57 
  58 
  59 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
  60   char* bytes = NULL;                                                      \
  61   int len = 0;                                                             \
  62   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
  63   Symbol* klassname = ((oop)obj)->klass()->name();                         \
  64   if (klassname != NULL) {                                                 \
  65     bytes = (char*)klassname->bytes();                                     \
  66     len = klassname->utf8_length();                                        \
  67   }
  68 
  69 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
  70   {                                                                        \
  71     if (DTraceMonitorProbes) {                                             \
  72       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  73       HOTSPOT_MONITOR_WAIT(jtid,                                           \
  74                            (monitor), bytes, len, (millis));               \
  75     }                                                                      \
  76   }
  77 
  78 #define HOTSPOT_MONITOR_contended__enter HOTSPOT_MONITOR_CONTENDED_ENTER
  79 #define HOTSPOT_MONITOR_contended__entered HOTSPOT_MONITOR_CONTENDED_ENTERED
  80 #define HOTSPOT_MONITOR_contended__exit HOTSPOT_MONITOR_CONTENDED_EXIT
  81 #define HOTSPOT_MONITOR_notify HOTSPOT_MONITOR_NOTIFY
  82 #define HOTSPOT_MONITOR_notifyAll HOTSPOT_MONITOR_NOTIFYALL
  83 
  84 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
  85   {                                                                        \
  86     if (DTraceMonitorProbes) {                                             \
  87       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  88       HOTSPOT_MONITOR_##probe(jtid,                                        \
  89                               (uintptr_t)(monitor), bytes, len);           \
  90     }                                                                      \
  91   }
  92 
  93 #else //  ndef DTRACE_ENABLED
  94 
  95 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
  96 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
  97 
  98 #endif // ndef DTRACE_ENABLED
  99 
 100 // Tunables ...
 101 // The knob* variables are effectively final.  Once set they should
 102 // never be modified hence.  Consider using __read_mostly with GCC.
 103 
 104 int ObjectMonitor::Knob_ExitRelease  = 0;
 105 int ObjectMonitor::Knob_InlineNotify = 1;
 106 int ObjectMonitor::Knob_Verbose      = 0;
 107 int ObjectMonitor::Knob_VerifyInUse  = 0;
 108 int ObjectMonitor::Knob_VerifyMatch  = 0;
 109 int ObjectMonitor::Knob_SpinLimit    = 5000;    // derived by an external tool -
 110 
 111 static int Knob_ReportSettings      = 0;
 112 static int Knob_SpinBase            = 0;       // Floor AKA SpinMin
 113 static int Knob_SpinBackOff         = 0;       // spin-loop backoff
 114 static int Knob_CASPenalty          = -1;      // Penalty for failed CAS
 115 static int Knob_OXPenalty           = -1;      // Penalty for observed _owner change
 116 static int Knob_SpinSetSucc         = 1;       // spinners set the _succ field
 117 static int Knob_SpinEarly           = 1;
 118 static int Knob_SuccEnabled         = 1;       // futile wake throttling
 119 static int Knob_SuccRestrict        = 0;       // Limit successors + spinners to at-most-one
 120 static int Knob_MaxSpinners         = -1;      // Should be a function of # CPUs
 121 static int Knob_Bonus               = 100;     // spin success bonus
 122 static int Knob_BonusB              = 100;     // spin success bonus
 123 static int Knob_Penalty             = 200;     // spin failure penalty
 124 static int Knob_Poverty             = 1000;
 125 static int Knob_SpinAfterFutile     = 1;       // Spin after returning from park()
 126 static int Knob_FixedSpin           = 0;
 127 static int Knob_OState              = 3;       // Spinner checks thread state of _owner
 128 static int Knob_UsePause            = 1;
 129 static int Knob_ExitPolicy          = 0;
 130 static int Knob_PreSpin             = 10;      // 20-100 likely better
 131 static int Knob_ResetEvent          = 0;
 132 static int BackOffMask              = 0;
 133 
 134 static int Knob_FastHSSEC           = 0;
 135 static int Knob_MoveNotifyee        = 2;       // notify() - disposition of notifyee
 136 static int Knob_QMode               = 0;       // EntryList-cxq policy - queue discipline
 137 static volatile int InitDone        = 0;
 138 
 139 // -----------------------------------------------------------------------------
 140 // Theory of operations -- Monitors lists, thread residency, etc:
 141 //
 142 // * A thread acquires ownership of a monitor by successfully
 143 //   CAS()ing the _owner field from null to non-null.
 144 //
 145 // * Invariant: A thread appears on at most one monitor list --
 146 //   cxq, EntryList or WaitSet -- at any one time.
 147 //
 148 // * Contending threads "push" themselves onto the cxq with CAS
 149 //   and then spin/park.
 150 //
 151 // * After a contending thread eventually acquires the lock it must
 152 //   dequeue itself from either the EntryList or the cxq.
 153 //
 154 // * The exiting thread identifies and unparks an "heir presumptive"
 155 //   tentative successor thread on the EntryList.  Critically, the
 156 //   exiting thread doesn't unlink the successor thread from the EntryList.
 157 //   After having been unparked, the wakee will recontend for ownership of
 158 //   the monitor.   The successor (wakee) will either acquire the lock or
 159 //   re-park itself.
 160 //
 161 //   Succession is provided for by a policy of competitive handoff.
 162 //   The exiting thread does _not_ grant or pass ownership to the
 163 //   successor thread.  (This is also referred to as "handoff" succession").
 164 //   Instead the exiting thread releases ownership and possibly wakes
 165 //   a successor, so the successor can (re)compete for ownership of the lock.
 166 //   If the EntryList is empty but the cxq is populated the exiting
 167 //   thread will drain the cxq into the EntryList.  It does so by
 168 //   by detaching the cxq (installing null with CAS) and folding
 169 //   the threads from the cxq into the EntryList.  The EntryList is
 170 //   doubly linked, while the cxq is singly linked because of the
 171 //   CAS-based "push" used to enqueue recently arrived threads (RATs).
 172 //
 173 // * Concurrency invariants:
 174 //
 175 //   -- only the monitor owner may access or mutate the EntryList.
 176 //      The mutex property of the monitor itself protects the EntryList
 177 //      from concurrent interference.
 178 //   -- Only the monitor owner may detach the cxq.
 179 //
 180 // * The monitor entry list operations avoid locks, but strictly speaking
 181 //   they're not lock-free.  Enter is lock-free, exit is not.
 182 //   For a description of 'Methods and apparatus providing non-blocking access
 183 //   to a resource,' see U.S. Pat. No. 7844973.
 184 //
 185 // * The cxq can have multiple concurrent "pushers" but only one concurrent
 186 //   detaching thread.  This mechanism is immune from the ABA corruption.
 187 //   More precisely, the CAS-based "push" onto cxq is ABA-oblivious.
 188 //
 189 // * Taken together, the cxq and the EntryList constitute or form a
 190 //   single logical queue of threads stalled trying to acquire the lock.
 191 //   We use two distinct lists to improve the odds of a constant-time
 192 //   dequeue operation after acquisition (in the ::enter() epilogue) and
 193 //   to reduce heat on the list ends.  (c.f. Michael Scott's "2Q" algorithm).
 194 //   A key desideratum is to minimize queue & monitor metadata manipulation
 195 //   that occurs while holding the monitor lock -- that is, we want to
 196 //   minimize monitor lock holds times.  Note that even a small amount of
 197 //   fixed spinning will greatly reduce the # of enqueue-dequeue operations
 198 //   on EntryList|cxq.  That is, spinning relieves contention on the "inner"
 199 //   locks and monitor metadata.
 200 //
 201 //   Cxq points to the set of Recently Arrived Threads attempting entry.
 202 //   Because we push threads onto _cxq with CAS, the RATs must take the form of
 203 //   a singly-linked LIFO.  We drain _cxq into EntryList  at unlock-time when
 204 //   the unlocking thread notices that EntryList is null but _cxq is != null.
 205 //
 206 //   The EntryList is ordered by the prevailing queue discipline and
 207 //   can be organized in any convenient fashion, such as a doubly-linked list or
 208 //   a circular doubly-linked list.  Critically, we want insert and delete operations
 209 //   to operate in constant-time.  If we need a priority queue then something akin
 210 //   to Solaris' sleepq would work nicely.  Viz.,
 211 //   http://agg.eng/ws/on10_nightly/source/usr/src/uts/common/os/sleepq.c.
 212 //   Queue discipline is enforced at ::exit() time, when the unlocking thread
 213 //   drains the cxq into the EntryList, and orders or reorders the threads on the
 214 //   EntryList accordingly.
 215 //
 216 //   Barring "lock barging", this mechanism provides fair cyclic ordering,
 217 //   somewhat similar to an elevator-scan.
 218 //
 219 // * The monitor synchronization subsystem avoids the use of native
 220 //   synchronization primitives except for the narrow platform-specific
 221 //   park-unpark abstraction.  See the comments in os_solaris.cpp regarding
 222 //   the semantics of park-unpark.  Put another way, this monitor implementation
 223 //   depends only on atomic operations and park-unpark.  The monitor subsystem
 224 //   manages all RUNNING->BLOCKED and BLOCKED->READY transitions while the
 225 //   underlying OS manages the READY<->RUN transitions.
 226 //
 227 // * Waiting threads reside on the WaitSet list -- wait() puts
 228 //   the caller onto the WaitSet.
 229 //
 230 // * notify() or notifyAll() simply transfers threads from the WaitSet to
 231 //   either the EntryList or cxq.  Subsequent exit() operations will
 232 //   unpark the notifyee.  Unparking a notifee in notify() is inefficient -
 233 //   it's likely the notifyee would simply impale itself on the lock held
 234 //   by the notifier.
 235 //
 236 // * An interesting alternative is to encode cxq as (List,LockByte) where
 237 //   the LockByte is 0 iff the monitor is owned.  _owner is simply an auxiliary
 238 //   variable, like _recursions, in the scheme.  The threads or Events that form
 239 //   the list would have to be aligned in 256-byte addresses.  A thread would
 240 //   try to acquire the lock or enqueue itself with CAS, but exiting threads
 241 //   could use a 1-0 protocol and simply STB to set the LockByte to 0.
 242 //   Note that is is *not* word-tearing, but it does presume that full-word
 243 //   CAS operations are coherent with intermix with STB operations.  That's true
 244 //   on most common processors.
 245 //
 246 // * See also http://blogs.sun.com/dave
 247 
 248 
 249 void* ObjectMonitor::operator new (size_t size) throw() {
 250   return AllocateHeap(size, mtInternal);
 251 }
 252 void* ObjectMonitor::operator new[] (size_t size) throw() {
 253   return operator new (size);
 254 }
 255 void ObjectMonitor::operator delete(void* p) {
 256   FreeHeap(p);
 257 }
 258 void ObjectMonitor::operator delete[] (void *p) {
 259   operator delete(p);
 260 }
 261 
 262 // -----------------------------------------------------------------------------
 263 // Enter support
 264 
 265 void ObjectMonitor::enter(TRAPS) {
 266   // The following code is ordered to check the most common cases first
 267   // and to reduce RTS->RTO cache line upgrades on SPARC and IA32 processors.
 268   Thread * const Self = THREAD;
 269 
 270   void * cur = Atomic::cmpxchg(Self, &_owner, (void*)NULL);
 271   if (cur == NULL) {
 272     // Either ASSERT _recursions == 0 or explicitly set _recursions = 0.
 273     assert(_recursions == 0, "invariant");
 274     assert(_owner == Self, "invariant");
 275     return;
 276   }
 277 
 278   if (cur == Self) {
 279     // TODO-FIXME: check for integer overflow!  BUGID 6557169.
 280     _recursions++;
 281     return;
 282   }
 283 
 284   if (Self->is_lock_owned ((address)cur)) {
 285     assert(_recursions == 0, "internal state error");
 286     _recursions = 1;
 287     // Commute owner from a thread-specific on-stack BasicLockObject address to
 288     // a full-fledged "Thread *".
 289     _owner = Self;
 290     return;
 291   }
 292 
 293   // We've encountered genuine contention.
 294   assert(Self->_Stalled == 0, "invariant");
 295   Self->_Stalled = intptr_t(this);
 296 
 297   // Try one round of spinning *before* enqueueing Self
 298   // and before going through the awkward and expensive state
 299   // transitions.  The following spin is strictly optional ...
 300   // Note that if we acquire the monitor from an initial spin
 301   // we forgo posting JVMTI events and firing DTRACE probes.
 302   if (Knob_SpinEarly && TrySpin (Self) > 0) {
 303     assert(_owner == Self, "invariant");
 304     assert(_recursions == 0, "invariant");
 305     assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant");
 306     Self->_Stalled = 0;
 307     return;
 308   }
 309 
 310   assert(_owner != Self, "invariant");
 311   assert(_succ != Self, "invariant");
 312   assert(Self->is_Java_thread(), "invariant");
 313   JavaThread * jt = (JavaThread *) Self;
 314   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 315   assert(jt->thread_state() != _thread_blocked, "invariant");
 316   assert(this->object() != NULL, "invariant");
 317   assert(_count >= 0, "invariant");
 318 
 319   // Prevent deflation at STW-time.  See deflate_idle_monitors() and is_busy().
 320   // Ensure the object-monitor relationship remains stable while there's contention.
 321   Atomic::inc(&_count);
 322 
 323   JFR_ONLY(JfrConditionalFlushWithStacktrace<EventJavaMonitorEnter> flush(jt);)
 324   EventJavaMonitorEnter event;
 325   if (event.should_commit()) {
 326     event.set_monitorClass(((oop)this->object())->klass());
 327     event.set_address((uintptr_t)(this->object_addr()));
 328   }
 329 
 330   { // Change java thread status to indicate blocked on monitor enter.
 331     JavaThreadBlockedOnMonitorEnterState jtbmes(jt, this);
 332 
 333     Self->set_current_pending_monitor(this);
 334 
 335     DTRACE_MONITOR_PROBE(contended__enter, this, object(), jt);
 336     if (JvmtiExport::should_post_monitor_contended_enter()) {
 337       JvmtiExport::post_monitor_contended_enter(jt, this);
 338 
 339       // The current thread does not yet own the monitor and does not
 340       // yet appear on any queues that would get it made the successor.
 341       // This means that the JVMTI_EVENT_MONITOR_CONTENDED_ENTER event
 342       // handler cannot accidentally consume an unpark() meant for the
 343       // ParkEvent associated with this ObjectMonitor.
 344     }
 345 
 346     OSThreadContendState osts(Self->osthread());
 347     ThreadBlockInVM tbivm(jt);
 348 
 349     // TODO-FIXME: change the following for(;;) loop to straight-line code.
 350     for (;;) {
 351       jt->set_suspend_equivalent();
 352       // cleared by handle_special_suspend_equivalent_condition()
 353       // or java_suspend_self()
 354 
 355       EnterI(THREAD);
 356 
 357       if (!ExitSuspendEquivalent(jt)) break;
 358 
 359       // We have acquired the contended monitor, but while we were
 360       // waiting another thread suspended us. We don't want to enter
 361       // the monitor while suspended because that would surprise the
 362       // thread that suspended us.
 363       //
 364       _recursions = 0;
 365       _succ = NULL;
 366       exit(false, Self);
 367 
 368       jt->java_suspend_self();
 369     }
 370     Self->set_current_pending_monitor(NULL);
 371 
 372     // We cleared the pending monitor info since we've just gotten past
 373     // the enter-check-for-suspend dance and we now own the monitor free
 374     // and clear, i.e., it is no longer pending. The ThreadBlockInVM
 375     // destructor can go to a safepoint at the end of this block. If we
 376     // do a thread dump during that safepoint, then this thread will show
 377     // as having "-locked" the monitor, but the OS and java.lang.Thread
 378     // states will still report that the thread is blocked trying to
 379     // acquire it.
 380   }
 381 
 382   Atomic::dec(&_count);
 383   assert(_count >= 0, "invariant");
 384   Self->_Stalled = 0;
 385 
 386   // Must either set _recursions = 0 or ASSERT _recursions == 0.
 387   assert(_recursions == 0, "invariant");
 388   assert(_owner == Self, "invariant");
 389   assert(_succ != Self, "invariant");
 390   assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant");
 391 
 392   // The thread -- now the owner -- is back in vm mode.
 393   // Report the glorious news via TI,DTrace and jvmstat.
 394   // The probe effect is non-trivial.  All the reportage occurs
 395   // while we hold the monitor, increasing the length of the critical
 396   // section.  Amdahl's parallel speedup law comes vividly into play.
 397   //
 398   // Another option might be to aggregate the events (thread local or
 399   // per-monitor aggregation) and defer reporting until a more opportune
 400   // time -- such as next time some thread encounters contention but has
 401   // yet to acquire the lock.  While spinning that thread could
 402   // spinning we could increment JVMStat counters, etc.
 403 
 404   DTRACE_MONITOR_PROBE(contended__entered, this, object(), jt);
 405   if (JvmtiExport::should_post_monitor_contended_entered()) {
 406     JvmtiExport::post_monitor_contended_entered(jt, this);
 407 
 408     // The current thread already owns the monitor and is not going to
 409     // call park() for the remainder of the monitor enter protocol. So
 410     // it doesn't matter if the JVMTI_EVENT_MONITOR_CONTENDED_ENTERED
 411     // event handler consumed an unpark() issued by the thread that
 412     // just exited the monitor.
 413   }
 414   if (event.should_commit()) {
 415     event.set_previousOwner((uintptr_t)_previous_owner_tid);
 416     event.commit();
 417   }
 418   OM_PERFDATA_OP(ContendedLockAttempts, inc());
 419 }
 420 
 421 // Caveat: TryLock() is not necessarily serializing if it returns failure.
 422 // Callers must compensate as needed.
 423 
 424 int ObjectMonitor::TryLock(Thread * Self) {
 425   void * own = _owner;
 426   if (own != NULL) return 0;
 427   if (Atomic::replace_if_null(Self, &_owner)) {
 428     // Either guarantee _recursions == 0 or set _recursions = 0.
 429     assert(_recursions == 0, "invariant");
 430     assert(_owner == Self, "invariant");
 431     return 1;
 432   }
 433   // The lock had been free momentarily, but we lost the race to the lock.
 434   // Interference -- the CAS failed.
 435   // We can either return -1 or retry.
 436   // Retry doesn't make as much sense because the lock was just acquired.
 437   return -1;
 438 }
 439 
 440 #define MAX_RECHECK_INTERVAL 1000
 441 
 442 void ObjectMonitor::EnterI(TRAPS) {
 443   Thread * const Self = THREAD;
 444   assert(Self->is_Java_thread(), "invariant");
 445   assert(((JavaThread *) Self)->thread_state() == _thread_blocked, "invariant");
 446 
 447   // Try the lock - TATAS
 448   if (TryLock (Self) > 0) {
 449     assert(_succ != Self, "invariant");
 450     assert(_owner == Self, "invariant");
 451     assert(_Responsible != Self, "invariant");
 452     return;
 453   }
 454 
 455   DeferredInitialize();
 456 
 457   // We try one round of spinning *before* enqueueing Self.
 458   //
 459   // If the _owner is ready but OFFPROC we could use a YieldTo()
 460   // operation to donate the remainder of this thread's quantum
 461   // to the owner.  This has subtle but beneficial affinity
 462   // effects.
 463 
 464   if (TrySpin (Self) > 0) {
 465     assert(_owner == Self, "invariant");
 466     assert(_succ != Self, "invariant");
 467     assert(_Responsible != Self, "invariant");
 468     return;
 469   }
 470 
 471   // The Spin failed -- Enqueue and park the thread ...
 472   assert(_succ != Self, "invariant");
 473   assert(_owner != Self, "invariant");
 474   assert(_Responsible != Self, "invariant");
 475 
 476   // Enqueue "Self" on ObjectMonitor's _cxq.
 477   //
 478   // Node acts as a proxy for Self.
 479   // As an aside, if were to ever rewrite the synchronization code mostly
 480   // in Java, WaitNodes, ObjectMonitors, and Events would become 1st-class
 481   // Java objects.  This would avoid awkward lifecycle and liveness issues,
 482   // as well as eliminate a subset of ABA issues.
 483   // TODO: eliminate ObjectWaiter and enqueue either Threads or Events.
 484 
 485   ObjectWaiter node(Self);
 486   Self->_ParkEvent->reset();
 487   node._prev   = (ObjectWaiter *) 0xBAD;
 488   node.TState  = ObjectWaiter::TS_CXQ;
 489 
 490   // Push "Self" onto the front of the _cxq.
 491   // Once on cxq/EntryList, Self stays on-queue until it acquires the lock.
 492   // Note that spinning tends to reduce the rate at which threads
 493   // enqueue and dequeue on EntryList|cxq.
 494   ObjectWaiter * nxt;
 495   for (;;) {
 496     node._next = nxt = _cxq;
 497     if (Atomic::cmpxchg(&node, &_cxq, nxt) == nxt) break;
 498 
 499     // Interference - the CAS failed because _cxq changed.  Just retry.
 500     // As an optional optimization we retry the lock.
 501     if (TryLock (Self) > 0) {
 502       assert(_succ != Self, "invariant");
 503       assert(_owner == Self, "invariant");
 504       assert(_Responsible != Self, "invariant");
 505       return;
 506     }
 507   }
 508 
 509   // Check for cxq|EntryList edge transition to non-null.  This indicates
 510   // the onset of contention.  While contention persists exiting threads
 511   // will use a ST:MEMBAR:LD 1-1 exit protocol.  When contention abates exit
 512   // operations revert to the faster 1-0 mode.  This enter operation may interleave
 513   // (race) a concurrent 1-0 exit operation, resulting in stranding, so we
 514   // arrange for one of the contending thread to use a timed park() operations
 515   // to detect and recover from the race.  (Stranding is form of progress failure
 516   // where the monitor is unlocked but all the contending threads remain parked).
 517   // That is, at least one of the contended threads will periodically poll _owner.
 518   // One of the contending threads will become the designated "Responsible" thread.
 519   // The Responsible thread uses a timed park instead of a normal indefinite park
 520   // operation -- it periodically wakes and checks for and recovers from potential
 521   // strandings admitted by 1-0 exit operations.   We need at most one Responsible
 522   // thread per-monitor at any given moment.  Only threads on cxq|EntryList may
 523   // be responsible for a monitor.
 524   //
 525   // Currently, one of the contended threads takes on the added role of "Responsible".
 526   // A viable alternative would be to use a dedicated "stranding checker" thread
 527   // that periodically iterated over all the threads (or active monitors) and unparked
 528   // successors where there was risk of stranding.  This would help eliminate the
 529   // timer scalability issues we see on some platforms as we'd only have one thread
 530   // -- the checker -- parked on a timer.
 531 
 532   if ((SyncFlags & 16) == 0 && nxt == NULL && _EntryList == NULL) {
 533     // Try to assume the role of responsible thread for the monitor.
 534     // CONSIDER:  ST vs CAS vs { if (Responsible==null) Responsible=Self }
 535     Atomic::replace_if_null(Self, &_Responsible);
 536   }
 537 
 538   // The lock might have been released while this thread was occupied queueing
 539   // itself onto _cxq.  To close the race and avoid "stranding" and
 540   // progress-liveness failure we must resample-retry _owner before parking.
 541   // Note the Dekker/Lamport duality: ST cxq; MEMBAR; LD Owner.
 542   // In this case the ST-MEMBAR is accomplished with CAS().
 543   //
 544   // TODO: Defer all thread state transitions until park-time.
 545   // Since state transitions are heavy and inefficient we'd like
 546   // to defer the state transitions until absolutely necessary,
 547   // and in doing so avoid some transitions ...
 548 
 549   TEVENT(Inflated enter - Contention);
 550   int nWakeups = 0;
 551   int recheckInterval = 1;
 552 
 553   for (;;) {
 554 
 555     if (TryLock(Self) > 0) break;
 556     assert(_owner != Self, "invariant");
 557 
 558     if ((SyncFlags & 2) && _Responsible == NULL) {
 559       Atomic::replace_if_null(Self, &_Responsible);
 560     }
 561 
 562     // park self
 563     if (_Responsible == Self || (SyncFlags & 1)) {
 564       TEVENT(Inflated enter - park TIMED);
 565       Self->_ParkEvent->park((jlong) recheckInterval);
 566       // Increase the recheckInterval, but clamp the value.
 567       recheckInterval *= 8;
 568       if (recheckInterval > MAX_RECHECK_INTERVAL) {
 569         recheckInterval = MAX_RECHECK_INTERVAL;
 570       }
 571     } else {
 572       TEVENT(Inflated enter - park UNTIMED);
 573       Self->_ParkEvent->park();
 574     }
 575 
 576     if (TryLock(Self) > 0) break;
 577 
 578     // The lock is still contested.
 579     // Keep a tally of the # of futile wakeups.
 580     // Note that the counter is not protected by a lock or updated by atomics.
 581     // That is by design - we trade "lossy" counters which are exposed to
 582     // races during updates for a lower probe effect.
 583     TEVENT(Inflated enter - Futile wakeup);
 584     // This PerfData object can be used in parallel with a safepoint.
 585     // See the work around in PerfDataManager::destroy().
 586     OM_PERFDATA_OP(FutileWakeups, inc());
 587     ++nWakeups;
 588 
 589     // Assuming this is not a spurious wakeup we'll normally find _succ == Self.
 590     // We can defer clearing _succ until after the spin completes
 591     // TrySpin() must tolerate being called with _succ == Self.
 592     // Try yet another round of adaptive spinning.
 593     if ((Knob_SpinAfterFutile & 1) && TrySpin(Self) > 0) break;
 594 
 595     // We can find that we were unpark()ed and redesignated _succ while
 596     // we were spinning.  That's harmless.  If we iterate and call park(),
 597     // park() will consume the event and return immediately and we'll
 598     // just spin again.  This pattern can repeat, leaving _succ to simply
 599     // spin on a CPU.  Enable Knob_ResetEvent to clear pending unparks().
 600     // Alternately, we can sample fired() here, and if set, forgo spinning
 601     // in the next iteration.
 602 
 603     if ((Knob_ResetEvent & 1) && Self->_ParkEvent->fired()) {
 604       Self->_ParkEvent->reset();
 605       OrderAccess::fence();
 606     }
 607     if (_succ == Self) _succ = NULL;
 608 
 609     // Invariant: after clearing _succ a thread *must* retry _owner before parking.
 610     OrderAccess::fence();
 611   }
 612 
 613   // Egress :
 614   // Self has acquired the lock -- Unlink Self from the cxq or EntryList.
 615   // Normally we'll find Self on the EntryList .
 616   // From the perspective of the lock owner (this thread), the
 617   // EntryList is stable and cxq is prepend-only.
 618   // The head of cxq is volatile but the interior is stable.
 619   // In addition, Self.TState is stable.
 620 
 621   assert(_owner == Self, "invariant");
 622   assert(object() != NULL, "invariant");
 623   // I'd like to write:
 624   //   guarantee (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
 625   // but as we're at a safepoint that's not safe.
 626 
 627   UnlinkAfterAcquire(Self, &node);
 628   if (_succ == Self) _succ = NULL;
 629 
 630   assert(_succ != Self, "invariant");
 631   if (_Responsible == Self) {
 632     _Responsible = NULL;
 633     OrderAccess::fence(); // Dekker pivot-point
 634 
 635     // We may leave threads on cxq|EntryList without a designated
 636     // "Responsible" thread.  This is benign.  When this thread subsequently
 637     // exits the monitor it can "see" such preexisting "old" threads --
 638     // threads that arrived on the cxq|EntryList before the fence, above --
 639     // by LDing cxq|EntryList.  Newly arrived threads -- that is, threads
 640     // that arrive on cxq after the ST:MEMBAR, above -- will set Responsible
 641     // non-null and elect a new "Responsible" timer thread.
 642     //
 643     // This thread executes:
 644     //    ST Responsible=null; MEMBAR    (in enter epilogue - here)
 645     //    LD cxq|EntryList               (in subsequent exit)
 646     //
 647     // Entering threads in the slow/contended path execute:
 648     //    ST cxq=nonnull; MEMBAR; LD Responsible (in enter prolog)
 649     //    The (ST cxq; MEMBAR) is accomplished with CAS().
 650     //
 651     // The MEMBAR, above, prevents the LD of cxq|EntryList in the subsequent
 652     // exit operation from floating above the ST Responsible=null.
 653   }
 654 
 655   // We've acquired ownership with CAS().
 656   // CAS is serializing -- it has MEMBAR/FENCE-equivalent semantics.
 657   // But since the CAS() this thread may have also stored into _succ,
 658   // EntryList, cxq or Responsible.  These meta-data updates must be
 659   // visible __before this thread subsequently drops the lock.
 660   // Consider what could occur if we didn't enforce this constraint --
 661   // STs to monitor meta-data and user-data could reorder with (become
 662   // visible after) the ST in exit that drops ownership of the lock.
 663   // Some other thread could then acquire the lock, but observe inconsistent
 664   // or old monitor meta-data and heap data.  That violates the JMM.
 665   // To that end, the 1-0 exit() operation must have at least STST|LDST
 666   // "release" barrier semantics.  Specifically, there must be at least a
 667   // STST|LDST barrier in exit() before the ST of null into _owner that drops
 668   // the lock.   The barrier ensures that changes to monitor meta-data and data
 669   // protected by the lock will be visible before we release the lock, and
 670   // therefore before some other thread (CPU) has a chance to acquire the lock.
 671   // See also: http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
 672   //
 673   // Critically, any prior STs to _succ or EntryList must be visible before
 674   // the ST of null into _owner in the *subsequent* (following) corresponding
 675   // monitorexit.  Recall too, that in 1-0 mode monitorexit does not necessarily
 676   // execute a serializing instruction.
 677 
 678   if (SyncFlags & 8) {
 679     OrderAccess::fence();
 680   }
 681   return;
 682 }
 683 
 684 // ReenterI() is a specialized inline form of the latter half of the
 685 // contended slow-path from EnterI().  We use ReenterI() only for
 686 // monitor reentry in wait().
 687 //
 688 // In the future we should reconcile EnterI() and ReenterI(), adding
 689 // Knob_Reset and Knob_SpinAfterFutile support and restructuring the
 690 // loop accordingly.
 691 
 692 void ObjectMonitor::ReenterI(Thread * Self, ObjectWaiter * SelfNode) {
 693   assert(Self != NULL, "invariant");
 694   assert(SelfNode != NULL, "invariant");
 695   assert(SelfNode->_thread == Self, "invariant");
 696   assert(_waiters > 0, "invariant");
 697   assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant");
 698   assert(((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant");
 699   JavaThread * jt = (JavaThread *) Self;
 700 
 701   int nWakeups = 0;
 702   for (;;) {
 703     ObjectWaiter::TStates v = SelfNode->TState;
 704     guarantee(v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant");
 705     assert(_owner != Self, "invariant");
 706 
 707     if (TryLock(Self) > 0) break;
 708     if (TrySpin(Self) > 0) break;
 709 
 710     TEVENT(Wait Reentry - parking);
 711 
 712     // State transition wrappers around park() ...
 713     // ReenterI() wisely defers state transitions until
 714     // it's clear we must park the thread.
 715     {
 716       OSThreadContendState osts(Self->osthread());
 717       ThreadBlockInVM tbivm(jt);
 718 
 719       // cleared by handle_special_suspend_equivalent_condition()
 720       // or java_suspend_self()
 721       jt->set_suspend_equivalent();
 722       if (SyncFlags & 1) {
 723         Self->_ParkEvent->park((jlong)MAX_RECHECK_INTERVAL);
 724       } else {
 725         Self->_ParkEvent->park();
 726       }
 727 
 728       // were we externally suspended while we were waiting?
 729       for (;;) {
 730         if (!ExitSuspendEquivalent(jt)) break;
 731         if (_succ == Self) { _succ = NULL; OrderAccess::fence(); }
 732         jt->java_suspend_self();
 733         jt->set_suspend_equivalent();
 734       }
 735     }
 736 
 737     // Try again, but just so we distinguish between futile wakeups and
 738     // successful wakeups.  The following test isn't algorithmically
 739     // necessary, but it helps us maintain sensible statistics.
 740     if (TryLock(Self) > 0) break;
 741 
 742     // The lock is still contested.
 743     // Keep a tally of the # of futile wakeups.
 744     // Note that the counter is not protected by a lock or updated by atomics.
 745     // That is by design - we trade "lossy" counters which are exposed to
 746     // races during updates for a lower probe effect.
 747     TEVENT(Wait Reentry - futile wakeup);
 748     ++nWakeups;
 749 
 750     // Assuming this is not a spurious wakeup we'll normally
 751     // find that _succ == Self.
 752     if (_succ == Self) _succ = NULL;
 753 
 754     // Invariant: after clearing _succ a contending thread
 755     // *must* retry  _owner before parking.
 756     OrderAccess::fence();
 757 
 758     // This PerfData object can be used in parallel with a safepoint.
 759     // See the work around in PerfDataManager::destroy().
 760     OM_PERFDATA_OP(FutileWakeups, inc());
 761   }
 762 
 763   // Self has acquired the lock -- Unlink Self from the cxq or EntryList .
 764   // Normally we'll find Self on the EntryList.
 765   // Unlinking from the EntryList is constant-time and atomic-free.
 766   // From the perspective of the lock owner (this thread), the
 767   // EntryList is stable and cxq is prepend-only.
 768   // The head of cxq is volatile but the interior is stable.
 769   // In addition, Self.TState is stable.
 770 
 771   assert(_owner == Self, "invariant");
 772   assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant");
 773   UnlinkAfterAcquire(Self, SelfNode);
 774   if (_succ == Self) _succ = NULL;
 775   assert(_succ != Self, "invariant");
 776   SelfNode->TState = ObjectWaiter::TS_RUN;
 777   OrderAccess::fence();      // see comments at the end of EnterI()
 778 }
 779 
 780 // By convention we unlink a contending thread from EntryList|cxq immediately
 781 // after the thread acquires the lock in ::enter().  Equally, we could defer
 782 // unlinking the thread until ::exit()-time.
 783 
 784 void ObjectMonitor::UnlinkAfterAcquire(Thread *Self, ObjectWaiter *SelfNode) {
 785   assert(_owner == Self, "invariant");
 786   assert(SelfNode->_thread == Self, "invariant");
 787 
 788   if (SelfNode->TState == ObjectWaiter::TS_ENTER) {
 789     // Normal case: remove Self from the DLL EntryList .
 790     // This is a constant-time operation.
 791     ObjectWaiter * nxt = SelfNode->_next;
 792     ObjectWaiter * prv = SelfNode->_prev;
 793     if (nxt != NULL) nxt->_prev = prv;
 794     if (prv != NULL) prv->_next = nxt;
 795     if (SelfNode == _EntryList) _EntryList = nxt;
 796     assert(nxt == NULL || nxt->TState == ObjectWaiter::TS_ENTER, "invariant");
 797     assert(prv == NULL || prv->TState == ObjectWaiter::TS_ENTER, "invariant");
 798     TEVENT(Unlink from EntryList);
 799   } else {
 800     assert(SelfNode->TState == ObjectWaiter::TS_CXQ, "invariant");
 801     // Inopportune interleaving -- Self is still on the cxq.
 802     // This usually means the enqueue of self raced an exiting thread.
 803     // Normally we'll find Self near the front of the cxq, so
 804     // dequeueing is typically fast.  If needbe we can accelerate
 805     // this with some MCS/CHL-like bidirectional list hints and advisory
 806     // back-links so dequeueing from the interior will normally operate
 807     // in constant-time.
 808     // Dequeue Self from either the head (with CAS) or from the interior
 809     // with a linear-time scan and normal non-atomic memory operations.
 810     // CONSIDER: if Self is on the cxq then simply drain cxq into EntryList
 811     // and then unlink Self from EntryList.  We have to drain eventually,
 812     // so it might as well be now.
 813 
 814     ObjectWaiter * v = _cxq;
 815     assert(v != NULL, "invariant");
 816     if (v != SelfNode || Atomic::cmpxchg(SelfNode->_next, &_cxq, v) != v) {
 817       // The CAS above can fail from interference IFF a "RAT" arrived.
 818       // In that case Self must be in the interior and can no longer be
 819       // at the head of cxq.
 820       if (v == SelfNode) {
 821         assert(_cxq != v, "invariant");
 822         v = _cxq;          // CAS above failed - start scan at head of list
 823       }
 824       ObjectWaiter * p;
 825       ObjectWaiter * q = NULL;
 826       for (p = v; p != NULL && p != SelfNode; p = p->_next) {
 827         q = p;
 828         assert(p->TState == ObjectWaiter::TS_CXQ, "invariant");
 829       }
 830       assert(v != SelfNode, "invariant");
 831       assert(p == SelfNode, "Node not found on cxq");
 832       assert(p != _cxq, "invariant");
 833       assert(q != NULL, "invariant");
 834       assert(q->_next == p, "invariant");
 835       q->_next = p->_next;
 836     }
 837     TEVENT(Unlink from cxq);
 838   }
 839 
 840 #ifdef ASSERT
 841   // Diagnostic hygiene ...
 842   SelfNode->_prev  = (ObjectWaiter *) 0xBAD;
 843   SelfNode->_next  = (ObjectWaiter *) 0xBAD;
 844   SelfNode->TState = ObjectWaiter::TS_RUN;
 845 #endif
 846 }
 847 
 848 // -----------------------------------------------------------------------------
 849 // Exit support
 850 //
 851 // exit()
 852 // ~~~~~~
 853 // Note that the collector can't reclaim the objectMonitor or deflate
 854 // the object out from underneath the thread calling ::exit() as the
 855 // thread calling ::exit() never transitions to a stable state.
 856 // This inhibits GC, which in turn inhibits asynchronous (and
 857 // inopportune) reclamation of "this".
 858 //
 859 // We'd like to assert that: (THREAD->thread_state() != _thread_blocked) ;
 860 // There's one exception to the claim above, however.  EnterI() can call
 861 // exit() to drop a lock if the acquirer has been externally suspended.
 862 // In that case exit() is called with _thread_state as _thread_blocked,
 863 // but the monitor's _count field is > 0, which inhibits reclamation.
 864 //
 865 // 1-0 exit
 866 // ~~~~~~~~
 867 // ::exit() uses a canonical 1-1 idiom with a MEMBAR although some of
 868 // the fast-path operators have been optimized so the common ::exit()
 869 // operation is 1-0, e.g., see macroAssembler_x86.cpp: fast_unlock().
 870 // The code emitted by fast_unlock() elides the usual MEMBAR.  This
 871 // greatly improves latency -- MEMBAR and CAS having considerable local
 872 // latency on modern processors -- but at the cost of "stranding".  Absent the
 873 // MEMBAR, a thread in fast_unlock() can race a thread in the slow
 874 // ::enter() path, resulting in the entering thread being stranding
 875 // and a progress-liveness failure.   Stranding is extremely rare.
 876 // We use timers (timed park operations) & periodic polling to detect
 877 // and recover from stranding.  Potentially stranded threads periodically
 878 // wake up and poll the lock.  See the usage of the _Responsible variable.
 879 //
 880 // The CAS() in enter provides for safety and exclusion, while the CAS or
 881 // MEMBAR in exit provides for progress and avoids stranding.  1-0 locking
 882 // eliminates the CAS/MEMBAR from the exit path, but it admits stranding.
 883 // We detect and recover from stranding with timers.
 884 //
 885 // If a thread transiently strands it'll park until (a) another
 886 // thread acquires the lock and then drops the lock, at which time the
 887 // exiting thread will notice and unpark the stranded thread, or, (b)
 888 // the timer expires.  If the lock is high traffic then the stranding latency
 889 // will be low due to (a).  If the lock is low traffic then the odds of
 890 // stranding are lower, although the worst-case stranding latency
 891 // is longer.  Critically, we don't want to put excessive load in the
 892 // platform's timer subsystem.  We want to minimize both the timer injection
 893 // rate (timers created/sec) as well as the number of timers active at
 894 // any one time.  (more precisely, we want to minimize timer-seconds, which is
 895 // the integral of the # of active timers at any instant over time).
 896 // Both impinge on OS scalability.  Given that, at most one thread parked on
 897 // a monitor will use a timer.
 898 //
 899 // There is also the risk of a futile wake-up. If we drop the lock
 900 // another thread can reacquire the lock immediately, and we can
 901 // then wake a thread unnecessarily. This is benign, and we've
 902 // structured the code so the windows are short and the frequency
 903 // of such futile wakups is low.
 904 
 905 void ObjectMonitor::exit(bool not_suspended, TRAPS) {
 906   Thread * const Self = THREAD;
 907   if (THREAD != _owner) {
 908     if (THREAD->is_lock_owned((address) _owner)) {
 909       // Transmute _owner from a BasicLock pointer to a Thread address.
 910       // We don't need to hold _mutex for this transition.
 911       // Non-null to Non-null is safe as long as all readers can
 912       // tolerate either flavor.
 913       assert(_recursions == 0, "invariant");
 914       _owner = THREAD;
 915       _recursions = 0;
 916     } else {
 917       // Apparent unbalanced locking ...
 918       // Naively we'd like to throw IllegalMonitorStateException.
 919       // As a practical matter we can neither allocate nor throw an
 920       // exception as ::exit() can be called from leaf routines.
 921       // see x86_32.ad Fast_Unlock() and the I1 and I2 properties.
 922       // Upon deeper reflection, however, in a properly run JVM the only
 923       // way we should encounter this situation is in the presence of
 924       // unbalanced JNI locking. TODO: CheckJNICalls.
 925       // See also: CR4414101
 926       TEVENT(Exit - Throw IMSX);
 927       assert(false, "Non-balanced monitor enter/exit! Likely JNI locking");
 928       return;
 929     }
 930   }
 931 
 932   if (_recursions != 0) {
 933     _recursions--;        // this is simple recursive enter
 934     TEVENT(Inflated exit - recursive);
 935     return;
 936   }
 937 
 938   // Invariant: after setting Responsible=null an thread must execute
 939   // a MEMBAR or other serializing instruction before fetching EntryList|cxq.
 940   if ((SyncFlags & 4) == 0) {
 941     _Responsible = NULL;
 942   }
 943 
 944 #if INCLUDE_JFR
 945   // get the owner's thread id for the MonitorEnter event
 946   // if it is enabled and the thread isn't suspended
 947   if (not_suspended && EventJavaMonitorEnter::is_enabled()) {
 948     _previous_owner_tid = JFR_THREAD_ID(Self);
 949   }
 950 #endif
 951 
 952   for (;;) {
 953     assert(THREAD == _owner, "invariant");
 954 
 955     if (Knob_ExitPolicy == 0) {
 956       // release semantics: prior loads and stores from within the critical section
 957       // must not float (reorder) past the following store that drops the lock.
 958       // On SPARC that requires MEMBAR #loadstore|#storestore.
 959       // But of course in TSO #loadstore|#storestore is not required.
 960       // I'd like to write one of the following:
 961       // A.  OrderAccess::release() ; _owner = NULL
 962       // B.  OrderAccess::loadstore(); OrderAccess::storestore(); _owner = NULL;
 963       // Unfortunately OrderAccess::release() and OrderAccess::loadstore() both
 964       // store into a _dummy variable.  That store is not needed, but can result
 965       // in massive wasteful coherency traffic on classic SMP systems.
 966       // Instead, I use release_store(), which is implemented as just a simple
 967       // ST on x64, x86 and SPARC.
 968       OrderAccess::release_store(&_owner, (void*)NULL);   // drop the lock
 969       OrderAccess::storeload();                        // See if we need to wake a successor
 970       if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
 971         TEVENT(Inflated exit - simple egress);
 972         return;
 973       }
 974       TEVENT(Inflated exit - complex egress);
 975       // Other threads are blocked trying to acquire the lock.
 976 
 977       // Normally the exiting thread is responsible for ensuring succession,
 978       // but if other successors are ready or other entering threads are spinning
 979       // then this thread can simply store NULL into _owner and exit without
 980       // waking a successor.  The existence of spinners or ready successors
 981       // guarantees proper succession (liveness).  Responsibility passes to the
 982       // ready or running successors.  The exiting thread delegates the duty.
 983       // More precisely, if a successor already exists this thread is absolved
 984       // of the responsibility of waking (unparking) one.
 985       //
 986       // The _succ variable is critical to reducing futile wakeup frequency.
 987       // _succ identifies the "heir presumptive" thread that has been made
 988       // ready (unparked) but that has not yet run.  We need only one such
 989       // successor thread to guarantee progress.
 990       // See http://www.usenix.org/events/jvm01/full_papers/dice/dice.pdf
 991       // section 3.3 "Futile Wakeup Throttling" for details.
 992       //
 993       // Note that spinners in Enter() also set _succ non-null.
 994       // In the current implementation spinners opportunistically set
 995       // _succ so that exiting threads might avoid waking a successor.
 996       // Another less appealing alternative would be for the exiting thread
 997       // to drop the lock and then spin briefly to see if a spinner managed
 998       // to acquire the lock.  If so, the exiting thread could exit
 999       // immediately without waking a successor, otherwise the exiting
1000       // thread would need to dequeue and wake a successor.
1001       // (Note that we'd need to make the post-drop spin short, but no
1002       // shorter than the worst-case round-trip cache-line migration time.
1003       // The dropped lock needs to become visible to the spinner, and then
1004       // the acquisition of the lock by the spinner must become visible to
1005       // the exiting thread).
1006 
1007       // It appears that an heir-presumptive (successor) must be made ready.
1008       // Only the current lock owner can manipulate the EntryList or
1009       // drain _cxq, so we need to reacquire the lock.  If we fail
1010       // to reacquire the lock the responsibility for ensuring succession
1011       // falls to the new owner.
1012       //
1013       if (!Atomic::replace_if_null(THREAD, &_owner)) {
1014         return;
1015       }
1016       TEVENT(Exit - Reacquired);
1017     } else {
1018       if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
1019         OrderAccess::release_store(&_owner, (void*)NULL);   // drop the lock
1020         OrderAccess::storeload();
1021         // Ratify the previously observed values.
1022         if (_cxq == NULL || _succ != NULL) {
1023           TEVENT(Inflated exit - simple egress);
1024           return;
1025         }
1026 
1027         // inopportune interleaving -- the exiting thread (this thread)
1028         // in the fast-exit path raced an entering thread in the slow-enter
1029         // path.
1030         // We have two choices:
1031         // A.  Try to reacquire the lock.
1032         //     If the CAS() fails return immediately, otherwise
1033         //     we either restart/rerun the exit operation, or simply
1034         //     fall-through into the code below which wakes a successor.
1035         // B.  If the elements forming the EntryList|cxq are TSM
1036         //     we could simply unpark() the lead thread and return
1037         //     without having set _succ.
1038         if (!Atomic::replace_if_null(THREAD, &_owner)) {
1039           TEVENT(Inflated exit - reacquired succeeded);
1040           return;
1041         }
1042         TEVENT(Inflated exit - reacquired failed);
1043       } else {
1044         TEVENT(Inflated exit - complex egress);
1045       }
1046     }
1047 
1048     guarantee(_owner == THREAD, "invariant");
1049 
1050     ObjectWaiter * w = NULL;
1051     int QMode = Knob_QMode;
1052 
1053     if (QMode == 2 && _cxq != NULL) {
1054       // QMode == 2 : cxq has precedence over EntryList.
1055       // Try to directly wake a successor from the cxq.
1056       // If successful, the successor will need to unlink itself from cxq.
1057       w = _cxq;
1058       assert(w != NULL, "invariant");
1059       assert(w->TState == ObjectWaiter::TS_CXQ, "Invariant");
1060       ExitEpilog(Self, w);
1061       return;
1062     }
1063 
1064     if (QMode == 3 && _cxq != NULL) {
1065       // Aggressively drain cxq into EntryList at the first opportunity.
1066       // This policy ensure that recently-run threads live at the head of EntryList.
1067       // Drain _cxq into EntryList - bulk transfer.
1068       // First, detach _cxq.
1069       // The following loop is tantamount to: w = swap(&cxq, NULL)
1070       w = _cxq;
1071       for (;;) {
1072         assert(w != NULL, "Invariant");
1073         ObjectWaiter * u = Atomic::cmpxchg((ObjectWaiter*)NULL, &_cxq, w);
1074         if (u == w) break;
1075         w = u;
1076       }
1077       assert(w != NULL, "invariant");
1078 
1079       ObjectWaiter * q = NULL;
1080       ObjectWaiter * p;
1081       for (p = w; p != NULL; p = p->_next) {
1082         guarantee(p->TState == ObjectWaiter::TS_CXQ, "Invariant");
1083         p->TState = ObjectWaiter::TS_ENTER;
1084         p->_prev = q;
1085         q = p;
1086       }
1087 
1088       // Append the RATs to the EntryList
1089       // TODO: organize EntryList as a CDLL so we can locate the tail in constant-time.
1090       ObjectWaiter * Tail;
1091       for (Tail = _EntryList; Tail != NULL && Tail->_next != NULL;
1092            Tail = Tail->_next)
1093         /* empty */;
1094       if (Tail == NULL) {
1095         _EntryList = w;
1096       } else {
1097         Tail->_next = w;
1098         w->_prev = Tail;
1099       }
1100 
1101       // Fall thru into code that tries to wake a successor from EntryList
1102     }
1103 
1104     if (QMode == 4 && _cxq != NULL) {
1105       // Aggressively drain cxq into EntryList at the first opportunity.
1106       // This policy ensure that recently-run threads live at the head of EntryList.
1107 
1108       // Drain _cxq into EntryList - bulk transfer.
1109       // First, detach _cxq.
1110       // The following loop is tantamount to: w = swap(&cxq, NULL)
1111       w = _cxq;
1112       for (;;) {
1113         assert(w != NULL, "Invariant");
1114         ObjectWaiter * u = Atomic::cmpxchg((ObjectWaiter*)NULL, &_cxq, w);
1115         if (u == w) break;
1116         w = u;
1117       }
1118       assert(w != NULL, "invariant");
1119 
1120       ObjectWaiter * q = NULL;
1121       ObjectWaiter * p;
1122       for (p = w; p != NULL; p = p->_next) {
1123         guarantee(p->TState == ObjectWaiter::TS_CXQ, "Invariant");
1124         p->TState = ObjectWaiter::TS_ENTER;
1125         p->_prev = q;
1126         q = p;
1127       }
1128 
1129       // Prepend the RATs to the EntryList
1130       if (_EntryList != NULL) {
1131         q->_next = _EntryList;
1132         _EntryList->_prev = q;
1133       }
1134       _EntryList = w;
1135 
1136       // Fall thru into code that tries to wake a successor from EntryList
1137     }
1138 
1139     w = _EntryList;
1140     if (w != NULL) {
1141       // I'd like to write: guarantee (w->_thread != Self).
1142       // But in practice an exiting thread may find itself on the EntryList.
1143       // Let's say thread T1 calls O.wait().  Wait() enqueues T1 on O's waitset and
1144       // then calls exit().  Exit release the lock by setting O._owner to NULL.
1145       // Let's say T1 then stalls.  T2 acquires O and calls O.notify().  The
1146       // notify() operation moves T1 from O's waitset to O's EntryList. T2 then
1147       // release the lock "O".  T2 resumes immediately after the ST of null into
1148       // _owner, above.  T2 notices that the EntryList is populated, so it
1149       // reacquires the lock and then finds itself on the EntryList.
1150       // Given all that, we have to tolerate the circumstance where "w" is
1151       // associated with Self.
1152       assert(w->TState == ObjectWaiter::TS_ENTER, "invariant");
1153       ExitEpilog(Self, w);
1154       return;
1155     }
1156 
1157     // If we find that both _cxq and EntryList are null then just
1158     // re-run the exit protocol from the top.
1159     w = _cxq;
1160     if (w == NULL) continue;
1161 
1162     // Drain _cxq into EntryList - bulk transfer.
1163     // First, detach _cxq.
1164     // The following loop is tantamount to: w = swap(&cxq, NULL)
1165     for (;;) {
1166       assert(w != NULL, "Invariant");
1167       ObjectWaiter * u = Atomic::cmpxchg((ObjectWaiter*)NULL, &_cxq, w);
1168       if (u == w) break;
1169       w = u;
1170     }
1171     TEVENT(Inflated exit - drain cxq into EntryList);
1172 
1173     assert(w != NULL, "invariant");
1174     assert(_EntryList == NULL, "invariant");
1175 
1176     // Convert the LIFO SLL anchored by _cxq into a DLL.
1177     // The list reorganization step operates in O(LENGTH(w)) time.
1178     // It's critical that this step operate quickly as
1179     // "Self" still holds the outer-lock, restricting parallelism
1180     // and effectively lengthening the critical section.
1181     // Invariant: s chases t chases u.
1182     // TODO-FIXME: consider changing EntryList from a DLL to a CDLL so
1183     // we have faster access to the tail.
1184 
1185     if (QMode == 1) {
1186       // QMode == 1 : drain cxq to EntryList, reversing order
1187       // We also reverse the order of the list.
1188       ObjectWaiter * s = NULL;
1189       ObjectWaiter * t = w;
1190       ObjectWaiter * u = NULL;
1191       while (t != NULL) {
1192         guarantee(t->TState == ObjectWaiter::TS_CXQ, "invariant");
1193         t->TState = ObjectWaiter::TS_ENTER;
1194         u = t->_next;
1195         t->_prev = u;
1196         t->_next = s;
1197         s = t;
1198         t = u;
1199       }
1200       _EntryList  = s;
1201       assert(s != NULL, "invariant");
1202     } else {
1203       // QMode == 0 or QMode == 2
1204       _EntryList = w;
1205       ObjectWaiter * q = NULL;
1206       ObjectWaiter * p;
1207       for (p = w; p != NULL; p = p->_next) {
1208         guarantee(p->TState == ObjectWaiter::TS_CXQ, "Invariant");
1209         p->TState = ObjectWaiter::TS_ENTER;
1210         p->_prev = q;
1211         q = p;
1212       }
1213     }
1214 
1215     // In 1-0 mode we need: ST EntryList; MEMBAR #storestore; ST _owner = NULL
1216     // The MEMBAR is satisfied by the release_store() operation in ExitEpilog().
1217 
1218     // See if we can abdicate to a spinner instead of waking a thread.
1219     // A primary goal of the implementation is to reduce the
1220     // context-switch rate.
1221     if (_succ != NULL) continue;
1222 
1223     w = _EntryList;
1224     if (w != NULL) {
1225       guarantee(w->TState == ObjectWaiter::TS_ENTER, "invariant");
1226       ExitEpilog(Self, w);
1227       return;
1228     }
1229   }
1230 }
1231 
1232 // ExitSuspendEquivalent:
1233 // A faster alternate to handle_special_suspend_equivalent_condition()
1234 //
1235 // handle_special_suspend_equivalent_condition() unconditionally
1236 // acquires the SR_lock.  On some platforms uncontended MutexLocker()
1237 // operations have high latency.  Note that in ::enter() we call HSSEC
1238 // while holding the monitor, so we effectively lengthen the critical sections.
1239 //
1240 // There are a number of possible solutions:
1241 //
1242 // A.  To ameliorate the problem we might also defer state transitions
1243 //     to as late as possible -- just prior to parking.
1244 //     Given that, we'd call HSSEC after having returned from park(),
1245 //     but before attempting to acquire the monitor.  This is only a
1246 //     partial solution.  It avoids calling HSSEC while holding the
1247 //     monitor (good), but it still increases successor reacquisition latency --
1248 //     the interval between unparking a successor and the time the successor
1249 //     resumes and retries the lock.  See ReenterI(), which defers state transitions.
1250 //     If we use this technique we can also avoid EnterI()-exit() loop
1251 //     in ::enter() where we iteratively drop the lock and then attempt
1252 //     to reacquire it after suspending.
1253 //
1254 // B.  In the future we might fold all the suspend bits into a
1255 //     composite per-thread suspend flag and then update it with CAS().
1256 //     Alternately, a Dekker-like mechanism with multiple variables
1257 //     would suffice:
1258 //       ST Self->_suspend_equivalent = false
1259 //       MEMBAR
1260 //       LD Self_>_suspend_flags
1261 //
1262 // UPDATE 2007-10-6: since I've replaced the native Mutex/Monitor subsystem
1263 // with a more efficient implementation, the need to use "FastHSSEC" has
1264 // decreased. - Dave
1265 
1266 
1267 bool ObjectMonitor::ExitSuspendEquivalent(JavaThread * jSelf) {
1268   const int Mode = Knob_FastHSSEC;
1269   if (Mode && !jSelf->is_external_suspend()) {
1270     assert(jSelf->is_suspend_equivalent(), "invariant");
1271     jSelf->clear_suspend_equivalent();
1272     if (2 == Mode) OrderAccess::storeload();
1273     if (!jSelf->is_external_suspend()) return false;
1274     // We raced a suspension -- fall thru into the slow path
1275     TEVENT(ExitSuspendEquivalent - raced);
1276     jSelf->set_suspend_equivalent();
1277   }
1278   return jSelf->handle_special_suspend_equivalent_condition();
1279 }
1280 
1281 
1282 void ObjectMonitor::ExitEpilog(Thread * Self, ObjectWaiter * Wakee) {
1283   assert(_owner == Self, "invariant");
1284 
1285   // Exit protocol:
1286   // 1. ST _succ = wakee
1287   // 2. membar #loadstore|#storestore;
1288   // 2. ST _owner = NULL
1289   // 3. unpark(wakee)
1290 
1291   _succ = Knob_SuccEnabled ? Wakee->_thread : NULL;
1292   ParkEvent * Trigger = Wakee->_event;
1293 
1294   // Hygiene -- once we've set _owner = NULL we can't safely dereference Wakee again.
1295   // The thread associated with Wakee may have grabbed the lock and "Wakee" may be
1296   // out-of-scope (non-extant).
1297   Wakee  = NULL;
1298 
1299   // Drop the lock
1300   OrderAccess::release_store(&_owner, (void*)NULL);
1301   OrderAccess::fence();                               // ST _owner vs LD in unpark()
1302 
1303   if (SafepointMechanism::poll(Self)) {
1304     TEVENT(unpark before SAFEPOINT);
1305   }
1306 
1307   DTRACE_MONITOR_PROBE(contended__exit, this, object(), Self);
1308   Trigger->unpark();
1309 
1310   // Maintain stats and report events to JVMTI
1311   OM_PERFDATA_OP(Parks, inc());
1312 }
1313 
1314 
1315 // -----------------------------------------------------------------------------
1316 // Class Loader deadlock handling.
1317 //
1318 // complete_exit exits a lock returning recursion count
1319 // complete_exit/reenter operate as a wait without waiting
1320 // complete_exit requires an inflated monitor
1321 // The _owner field is not always the Thread addr even with an
1322 // inflated monitor, e.g. the monitor can be inflated by a non-owning
1323 // thread due to contention.
1324 intptr_t ObjectMonitor::complete_exit(TRAPS) {
1325   Thread * const Self = THREAD;
1326   assert(Self->is_Java_thread(), "Must be Java thread!");
1327   JavaThread *jt = (JavaThread *)THREAD;
1328 
1329   DeferredInitialize();
1330 
1331   if (THREAD != _owner) {
1332     if (THREAD->is_lock_owned ((address)_owner)) {
1333       assert(_recursions == 0, "internal state error");
1334       _owner = THREAD;   // Convert from basiclock addr to Thread addr
1335       _recursions = 0;
1336     }
1337   }
1338 
1339   guarantee(Self == _owner, "complete_exit not owner");
1340   intptr_t save = _recursions; // record the old recursion count
1341   _recursions = 0;        // set the recursion level to be 0
1342   exit(true, Self);           // exit the monitor
1343   guarantee(_owner != Self, "invariant");
1344   return save;
1345 }
1346 
1347 // reenter() enters a lock and sets recursion count
1348 // complete_exit/reenter operate as a wait without waiting
1349 void ObjectMonitor::reenter(intptr_t recursions, TRAPS) {
1350   Thread * const Self = THREAD;
1351   assert(Self->is_Java_thread(), "Must be Java thread!");
1352   JavaThread *jt = (JavaThread *)THREAD;
1353 
1354   guarantee(_owner != Self, "reenter already owner");
1355   enter(THREAD);       // enter the monitor
1356   guarantee(_recursions == 0, "reenter recursion");
1357   _recursions = recursions;
1358   return;
1359 }
1360 
1361 
1362 // -----------------------------------------------------------------------------
1363 // A macro is used below because there may already be a pending
1364 // exception which should not abort the execution of the routines
1365 // which use this (which is why we don't put this into check_slow and
1366 // call it with a CHECK argument).
1367 
1368 #define CHECK_OWNER()                                                       \
1369   do {                                                                      \
1370     if (THREAD != _owner) {                                                 \
1371       if (THREAD->is_lock_owned((address) _owner)) {                        \
1372         _owner = THREAD;  /* Convert from basiclock addr to Thread addr */  \
1373         _recursions = 0;                                                    \
1374       } else {                                                              \
1375         TEVENT(Throw IMSX);                                                 \
1376         THROW(vmSymbols::java_lang_IllegalMonitorStateException());         \
1377       }                                                                     \
1378     }                                                                       \
1379   } while (false)
1380 
1381 // check_slow() is a misnomer.  It's called to simply to throw an IMSX exception.
1382 // TODO-FIXME: remove check_slow() -- it's likely dead.
1383 
1384 void ObjectMonitor::check_slow(TRAPS) {
1385   TEVENT(check_slow - throw IMSX);
1386   assert(THREAD != _owner && !THREAD->is_lock_owned((address) _owner), "must not be owner");
1387   THROW_MSG(vmSymbols::java_lang_IllegalMonitorStateException(), "current thread not owner");
1388 }
1389 
1390 static int Adjust(volatile int * adr, int dx) {
1391   int v;
1392   for (v = *adr; Atomic::cmpxchg(v + dx, adr, v) != v; v = *adr) /* empty */;
1393   return v;
1394 }
1395 
1396 static void post_monitor_wait_event(EventJavaMonitorWait* event,
1397                                     ObjectMonitor* monitor,
1398                                     jlong notifier_tid,
1399                                     jlong timeout,
1400                                     bool timedout) {
1401   assert(event != NULL, "invariant");
1402   assert(monitor != NULL, "invariant");
1403   event->set_monitorClass(((oop)monitor->object())->klass());
1404   event->set_timeout(timeout);
1405   event->set_address((uintptr_t)monitor->object_addr());
1406   event->set_notifier(notifier_tid);
1407   event->set_timedOut(timedout);
1408   event->commit();
1409 }
1410 
1411 // -----------------------------------------------------------------------------
1412 // Wait/Notify/NotifyAll
1413 //
1414 // Note: a subset of changes to ObjectMonitor::wait()
1415 // will need to be replicated in complete_exit
1416 void ObjectMonitor::wait(jlong millis, bool interruptible, TRAPS) {
1417   Thread * const Self = THREAD;
1418   assert(Self->is_Java_thread(), "Must be Java thread!");
1419   JavaThread *jt = (JavaThread *)THREAD;
1420 
1421   DeferredInitialize();
1422 
1423   // Throw IMSX or IEX.
1424   CHECK_OWNER();
1425 
1426   EventJavaMonitorWait event;
1427 
1428   // check for a pending interrupt
1429   if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
1430     // post monitor waited event.  Note that this is past-tense, we are done waiting.
1431     if (JvmtiExport::should_post_monitor_waited()) {
1432       // Note: 'false' parameter is passed here because the
1433       // wait was not timed out due to thread interrupt.
1434       JvmtiExport::post_monitor_waited(jt, this, false);
1435 
1436       // In this short circuit of the monitor wait protocol, the
1437       // current thread never drops ownership of the monitor and
1438       // never gets added to the wait queue so the current thread
1439       // cannot be made the successor. This means that the
1440       // JVMTI_EVENT_MONITOR_WAITED event handler cannot accidentally
1441       // consume an unpark() meant for the ParkEvent associated with
1442       // this ObjectMonitor.
1443     }
1444     if (event.should_commit()) {
1445       post_monitor_wait_event(&event, this, 0, millis, false);
1446     }
1447     TEVENT(Wait - Throw IEX);
1448     THROW(vmSymbols::java_lang_InterruptedException());
1449     return;
1450   }
1451 
1452   TEVENT(Wait);
1453 
1454   assert(Self->_Stalled == 0, "invariant");
1455   Self->_Stalled = intptr_t(this);
1456   jt->set_current_waiting_monitor(this);
1457 
1458   // create a node to be put into the queue
1459   // Critically, after we reset() the event but prior to park(), we must check
1460   // for a pending interrupt.
1461   ObjectWaiter node(Self);
1462   node.TState = ObjectWaiter::TS_WAIT;
1463   Self->_ParkEvent->reset();
1464   OrderAccess::fence();          // ST into Event; membar ; LD interrupted-flag
1465 
1466   // Enter the waiting queue, which is a circular doubly linked list in this case
1467   // but it could be a priority queue or any data structure.
1468   // _WaitSetLock protects the wait queue.  Normally the wait queue is accessed only
1469   // by the the owner of the monitor *except* in the case where park()
1470   // returns because of a timeout of interrupt.  Contention is exceptionally rare
1471   // so we use a simple spin-lock instead of a heavier-weight blocking lock.
1472 
1473   Thread::SpinAcquire(&_WaitSetLock, "WaitSet - add");
1474   AddWaiter(&node);
1475   Thread::SpinRelease(&_WaitSetLock);
1476 
1477   if ((SyncFlags & 4) == 0) {
1478     _Responsible = NULL;
1479   }
1480   intptr_t save = _recursions; // record the old recursion count
1481   _waiters++;                  // increment the number of waiters
1482   _recursions = 0;             // set the recursion level to be 1
1483   exit(true, Self);                    // exit the monitor
1484   guarantee(_owner != Self, "invariant");
1485 
1486   // The thread is on the WaitSet list - now park() it.
1487   // On MP systems it's conceivable that a brief spin before we park
1488   // could be profitable.
1489   //
1490   // TODO-FIXME: change the following logic to a loop of the form
1491   //   while (!timeout && !interrupted && _notified == 0) park()
1492 
1493   int ret = OS_OK;
1494   int WasNotified = 0;
1495   { // State transition wrappers
1496     OSThread* osthread = Self->osthread();
1497     OSThreadWaitState osts(osthread, true);
1498     {
1499       ThreadBlockInVM tbivm(jt);
1500       // Thread is in thread_blocked state and oop access is unsafe.
1501       jt->set_suspend_equivalent();
1502 
1503       if (interruptible && (Thread::is_interrupted(THREAD, false) || HAS_PENDING_EXCEPTION)) {
1504         // Intentionally empty
1505       } else if (node._notified == 0) {
1506         if (millis <= 0) {
1507           Self->_ParkEvent->park();
1508         } else {
1509           ret = Self->_ParkEvent->park(millis);
1510         }
1511       }
1512 
1513       // were we externally suspended while we were waiting?
1514       if (ExitSuspendEquivalent (jt)) {
1515         // TODO-FIXME: add -- if succ == Self then succ = null.
1516         jt->java_suspend_self();
1517       }
1518 
1519     } // Exit thread safepoint: transition _thread_blocked -> _thread_in_vm
1520 
1521     // Node may be on the WaitSet, the EntryList (or cxq), or in transition
1522     // from the WaitSet to the EntryList.
1523     // See if we need to remove Node from the WaitSet.
1524     // We use double-checked locking to avoid grabbing _WaitSetLock
1525     // if the thread is not on the wait queue.
1526     //
1527     // Note that we don't need a fence before the fetch of TState.
1528     // In the worst case we'll fetch a old-stale value of TS_WAIT previously
1529     // written by the is thread. (perhaps the fetch might even be satisfied
1530     // by a look-aside into the processor's own store buffer, although given
1531     // the length of the code path between the prior ST and this load that's
1532     // highly unlikely).  If the following LD fetches a stale TS_WAIT value
1533     // then we'll acquire the lock and then re-fetch a fresh TState value.
1534     // That is, we fail toward safety.
1535 
1536     if (node.TState == ObjectWaiter::TS_WAIT) {
1537       Thread::SpinAcquire(&_WaitSetLock, "WaitSet - unlink");
1538       if (node.TState == ObjectWaiter::TS_WAIT) {
1539         DequeueSpecificWaiter(&node);       // unlink from WaitSet
1540         assert(node._notified == 0, "invariant");
1541         node.TState = ObjectWaiter::TS_RUN;
1542       }
1543       Thread::SpinRelease(&_WaitSetLock);
1544     }
1545 
1546     // The thread is now either on off-list (TS_RUN),
1547     // on the EntryList (TS_ENTER), or on the cxq (TS_CXQ).
1548     // The Node's TState variable is stable from the perspective of this thread.
1549     // No other threads will asynchronously modify TState.
1550     guarantee(node.TState != ObjectWaiter::TS_WAIT, "invariant");
1551     OrderAccess::loadload();
1552     if (_succ == Self) _succ = NULL;
1553     WasNotified = node._notified;
1554 
1555     // Reentry phase -- reacquire the monitor.
1556     // re-enter contended monitor after object.wait().
1557     // retain OBJECT_WAIT state until re-enter successfully completes
1558     // Thread state is thread_in_vm and oop access is again safe,
1559     // although the raw address of the object may have changed.
1560     // (Don't cache naked oops over safepoints, of course).
1561 
1562     // post monitor waited event. Note that this is past-tense, we are done waiting.
1563     if (JvmtiExport::should_post_monitor_waited()) {
1564       JvmtiExport::post_monitor_waited(jt, this, ret == OS_TIMEOUT);
1565 
1566       if (node._notified != 0 && _succ == Self) {
1567         // In this part of the monitor wait-notify-reenter protocol it
1568         // is possible (and normal) for another thread to do a fastpath
1569         // monitor enter-exit while this thread is still trying to get
1570         // to the reenter portion of the protocol.
1571         //
1572         // The ObjectMonitor was notified and the current thread is
1573         // the successor which also means that an unpark() has already
1574         // been done. The JVMTI_EVENT_MONITOR_WAITED event handler can
1575         // consume the unpark() that was done when the successor was
1576         // set because the same ParkEvent is shared between Java
1577         // monitors and JVM/TI RawMonitors (for now).
1578         //
1579         // We redo the unpark() to ensure forward progress, i.e., we
1580         // don't want all pending threads hanging (parked) with none
1581         // entering the unlocked monitor.
1582         node._event->unpark();
1583       }
1584     }
1585 
1586     if (event.should_commit()) {
1587       post_monitor_wait_event(&event, this, node._notifier_tid, millis, ret == OS_TIMEOUT);
1588     }
1589 
1590     OrderAccess::fence();
1591 
1592     assert(Self->_Stalled != 0, "invariant");
1593     Self->_Stalled = 0;
1594 
1595     assert(_owner != Self, "invariant");
1596     ObjectWaiter::TStates v = node.TState;
1597     if (v == ObjectWaiter::TS_RUN) {
1598       enter(Self);
1599     } else {
1600       guarantee(v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant");
1601       ReenterI(Self, &node);
1602       node.wait_reenter_end(this);
1603     }
1604 
1605     // Self has reacquired the lock.
1606     // Lifecycle - the node representing Self must not appear on any queues.
1607     // Node is about to go out-of-scope, but even if it were immortal we wouldn't
1608     // want residual elements associated with this thread left on any lists.
1609     guarantee(node.TState == ObjectWaiter::TS_RUN, "invariant");
1610     assert(_owner == Self, "invariant");
1611     assert(_succ != Self, "invariant");
1612   } // OSThreadWaitState()
1613 
1614   jt->set_current_waiting_monitor(NULL);
1615 
1616   guarantee(_recursions == 0, "invariant");
1617   _recursions = save;     // restore the old recursion count
1618   _waiters--;             // decrement the number of waiters
1619 
1620   // Verify a few postconditions
1621   assert(_owner == Self, "invariant");
1622   assert(_succ != Self, "invariant");
1623   assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant");
1624 
1625   if (SyncFlags & 32) {
1626     OrderAccess::fence();
1627   }
1628 
1629   // check if the notification happened
1630   if (!WasNotified) {
1631     // no, it could be timeout or Thread.interrupt() or both
1632     // check for interrupt event, otherwise it is timeout
1633     if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
1634       TEVENT(Wait - throw IEX from epilog);
1635       THROW(vmSymbols::java_lang_InterruptedException());
1636     }
1637   }
1638 
1639   // NOTE: Spurious wake up will be consider as timeout.
1640   // Monitor notify has precedence over thread interrupt.
1641 }
1642 
1643 
1644 // Consider:
1645 // If the lock is cool (cxq == null && succ == null) and we're on an MP system
1646 // then instead of transferring a thread from the WaitSet to the EntryList
1647 // we might just dequeue a thread from the WaitSet and directly unpark() it.
1648 
1649 void ObjectMonitor::INotify(Thread * Self) {
1650   const int policy = Knob_MoveNotifyee;
1651 
1652   Thread::SpinAcquire(&_WaitSetLock, "WaitSet - notify");
1653   ObjectWaiter * iterator = DequeueWaiter();
1654   if (iterator != NULL) {
1655     TEVENT(Notify1 - Transfer);
1656     guarantee(iterator->TState == ObjectWaiter::TS_WAIT, "invariant");
1657     guarantee(iterator->_notified == 0, "invariant");
1658     // Disposition - what might we do with iterator ?
1659     // a.  add it directly to the EntryList - either tail (policy == 1)
1660     //     or head (policy == 0).
1661     // b.  push it onto the front of the _cxq (policy == 2).
1662     // For now we use (b).
1663     if (policy != 4) {
1664       iterator->TState = ObjectWaiter::TS_ENTER;
1665     }
1666     iterator->_notified = 1;
1667     iterator->_notifier_tid = JFR_THREAD_ID(Self);
1668 
1669     ObjectWaiter * list = _EntryList;
1670     if (list != NULL) {
1671       assert(list->_prev == NULL, "invariant");
1672       assert(list->TState == ObjectWaiter::TS_ENTER, "invariant");
1673       assert(list != iterator, "invariant");
1674     }
1675 
1676     if (policy == 0) {       // prepend to EntryList
1677       if (list == NULL) {
1678         iterator->_next = iterator->_prev = NULL;
1679         _EntryList = iterator;
1680       } else {
1681         list->_prev = iterator;
1682         iterator->_next = list;
1683         iterator->_prev = NULL;
1684         _EntryList = iterator;
1685       }
1686     } else if (policy == 1) {      // append to EntryList
1687       if (list == NULL) {
1688         iterator->_next = iterator->_prev = NULL;
1689         _EntryList = iterator;
1690       } else {
1691         // CONSIDER:  finding the tail currently requires a linear-time walk of
1692         // the EntryList.  We can make tail access constant-time by converting to
1693         // a CDLL instead of using our current DLL.
1694         ObjectWaiter * tail;
1695         for (tail = list; tail->_next != NULL; tail = tail->_next) {}
1696         assert(tail != NULL && tail->_next == NULL, "invariant");
1697         tail->_next = iterator;
1698         iterator->_prev = tail;
1699         iterator->_next = NULL;
1700       }
1701     } else if (policy == 2) {      // prepend to cxq
1702       if (list == NULL) {
1703         iterator->_next = iterator->_prev = NULL;
1704         _EntryList = iterator;
1705       } else {
1706         iterator->TState = ObjectWaiter::TS_CXQ;
1707         for (;;) {
1708           ObjectWaiter * front = _cxq;
1709           iterator->_next = front;
1710           if (Atomic::cmpxchg(iterator, &_cxq, front) == front) {
1711             break;
1712           }
1713         }
1714       }
1715     } else if (policy == 3) {      // append to cxq
1716       iterator->TState = ObjectWaiter::TS_CXQ;
1717       for (;;) {
1718         ObjectWaiter * tail = _cxq;
1719         if (tail == NULL) {
1720           iterator->_next = NULL;
1721           if (Atomic::replace_if_null(iterator, &_cxq)) {
1722             break;
1723           }
1724         } else {
1725           while (tail->_next != NULL) tail = tail->_next;
1726           tail->_next = iterator;
1727           iterator->_prev = tail;
1728           iterator->_next = NULL;
1729           break;
1730         }
1731       }
1732     } else {
1733       ParkEvent * ev = iterator->_event;
1734       iterator->TState = ObjectWaiter::TS_RUN;
1735       OrderAccess::fence();
1736       ev->unpark();
1737     }
1738 
1739     // _WaitSetLock protects the wait queue, not the EntryList.  We could
1740     // move the add-to-EntryList operation, above, outside the critical section
1741     // protected by _WaitSetLock.  In practice that's not useful.  With the
1742     // exception of  wait() timeouts and interrupts the monitor owner
1743     // is the only thread that grabs _WaitSetLock.  There's almost no contention
1744     // on _WaitSetLock so it's not profitable to reduce the length of the
1745     // critical section.
1746 
1747     if (policy < 4) {
1748       iterator->wait_reenter_begin(this);
1749     }
1750   }
1751   Thread::SpinRelease(&_WaitSetLock);
1752 }
1753 
1754 // Consider: a not-uncommon synchronization bug is to use notify() when
1755 // notifyAll() is more appropriate, potentially resulting in stranded
1756 // threads; this is one example of a lost wakeup. A useful diagnostic
1757 // option is to force all notify() operations to behave as notifyAll().
1758 //
1759 // Note: We can also detect many such problems with a "minimum wait".
1760 // When the "minimum wait" is set to a small non-zero timeout value
1761 // and the program does not hang whereas it did absent "minimum wait",
1762 // that suggests a lost wakeup bug. The '-XX:SyncFlags=1' option uses
1763 // a "minimum wait" for all park() operations; see the recheckInterval
1764 // variable and MAX_RECHECK_INTERVAL.
1765 
1766 void ObjectMonitor::notify(TRAPS) {
1767   CHECK_OWNER();
1768   if (_WaitSet == NULL) {
1769     TEVENT(Empty-Notify);
1770     return;
1771   }
1772   DTRACE_MONITOR_PROBE(notify, this, object(), THREAD);
1773   INotify(THREAD);
1774   OM_PERFDATA_OP(Notifications, inc(1));
1775 }
1776 
1777 
1778 // The current implementation of notifyAll() transfers the waiters one-at-a-time
1779 // from the waitset to the EntryList. This could be done more efficiently with a
1780 // single bulk transfer but in practice it's not time-critical. Beware too,
1781 // that in prepend-mode we invert the order of the waiters. Let's say that the
1782 // waitset is "ABCD" and the EntryList is "XYZ". After a notifyAll() in prepend
1783 // mode the waitset will be empty and the EntryList will be "DCBAXYZ".
1784 
1785 void ObjectMonitor::notifyAll(TRAPS) {
1786   CHECK_OWNER();
1787   if (_WaitSet == NULL) {
1788     TEVENT(Empty-NotifyAll);
1789     return;
1790   }
1791 
1792   DTRACE_MONITOR_PROBE(notifyAll, this, object(), THREAD);
1793   int tally = 0;
1794   while (_WaitSet != NULL) {
1795     tally++;
1796     INotify(THREAD);
1797   }
1798 
1799   OM_PERFDATA_OP(Notifications, inc(tally));
1800 }
1801 
1802 // -----------------------------------------------------------------------------
1803 // Adaptive Spinning Support
1804 //
1805 // Adaptive spin-then-block - rational spinning
1806 //
1807 // Note that we spin "globally" on _owner with a classic SMP-polite TATAS
1808 // algorithm.  On high order SMP systems it would be better to start with
1809 // a brief global spin and then revert to spinning locally.  In the spirit of MCS/CLH,
1810 // a contending thread could enqueue itself on the cxq and then spin locally
1811 // on a thread-specific variable such as its ParkEvent._Event flag.
1812 // That's left as an exercise for the reader.  Note that global spinning is
1813 // not problematic on Niagara, as the L2 cache serves the interconnect and
1814 // has both low latency and massive bandwidth.
1815 //
1816 // Broadly, we can fix the spin frequency -- that is, the % of contended lock
1817 // acquisition attempts where we opt to spin --  at 100% and vary the spin count
1818 // (duration) or we can fix the count at approximately the duration of
1819 // a context switch and vary the frequency.   Of course we could also
1820 // vary both satisfying K == Frequency * Duration, where K is adaptive by monitor.
1821 // For a description of 'Adaptive spin-then-block mutual exclusion in
1822 // multi-threaded processing,' see U.S. Pat. No. 8046758.
1823 //
1824 // This implementation varies the duration "D", where D varies with
1825 // the success rate of recent spin attempts. (D is capped at approximately
1826 // length of a round-trip context switch).  The success rate for recent
1827 // spin attempts is a good predictor of the success rate of future spin
1828 // attempts.  The mechanism adapts automatically to varying critical
1829 // section length (lock modality), system load and degree of parallelism.
1830 // D is maintained per-monitor in _SpinDuration and is initialized
1831 // optimistically.  Spin frequency is fixed at 100%.
1832 //
1833 // Note that _SpinDuration is volatile, but we update it without locks
1834 // or atomics.  The code is designed so that _SpinDuration stays within
1835 // a reasonable range even in the presence of races.  The arithmetic
1836 // operations on _SpinDuration are closed over the domain of legal values,
1837 // so at worst a race will install and older but still legal value.
1838 // At the very worst this introduces some apparent non-determinism.
1839 // We might spin when we shouldn't or vice-versa, but since the spin
1840 // count are relatively short, even in the worst case, the effect is harmless.
1841 //
1842 // Care must be taken that a low "D" value does not become an
1843 // an absorbing state.  Transient spinning failures -- when spinning
1844 // is overall profitable -- should not cause the system to converge
1845 // on low "D" values.  We want spinning to be stable and predictable
1846 // and fairly responsive to change and at the same time we don't want
1847 // it to oscillate, become metastable, be "too" non-deterministic,
1848 // or converge on or enter undesirable stable absorbing states.
1849 //
1850 // We implement a feedback-based control system -- using past behavior
1851 // to predict future behavior.  We face two issues: (a) if the
1852 // input signal is random then the spin predictor won't provide optimal
1853 // results, and (b) if the signal frequency is too high then the control
1854 // system, which has some natural response lag, will "chase" the signal.
1855 // (b) can arise from multimodal lock hold times.  Transient preemption
1856 // can also result in apparent bimodal lock hold times.
1857 // Although sub-optimal, neither condition is particularly harmful, as
1858 // in the worst-case we'll spin when we shouldn't or vice-versa.
1859 // The maximum spin duration is rather short so the failure modes aren't bad.
1860 // To be conservative, I've tuned the gain in system to bias toward
1861 // _not spinning.  Relatedly, the system can sometimes enter a mode where it
1862 // "rings" or oscillates between spinning and not spinning.  This happens
1863 // when spinning is just on the cusp of profitability, however, so the
1864 // situation is not dire.  The state is benign -- there's no need to add
1865 // hysteresis control to damp the transition rate between spinning and
1866 // not spinning.
1867 
1868 // Spinning: Fixed frequency (100%), vary duration
1869 int ObjectMonitor::TrySpin(Thread * Self) {
1870   // Dumb, brutal spin.  Good for comparative measurements against adaptive spinning.
1871   int ctr = Knob_FixedSpin;
1872   if (ctr != 0) {
1873     while (--ctr >= 0) {
1874       if (TryLock(Self) > 0) return 1;
1875       SpinPause();
1876     }
1877     return 0;
1878   }
1879 
1880   for (ctr = Knob_PreSpin + 1; --ctr >= 0;) {
1881     if (TryLock(Self) > 0) {
1882       // Increase _SpinDuration ...
1883       // Note that we don't clamp SpinDuration precisely at SpinLimit.
1884       // Raising _SpurDuration to the poverty line is key.
1885       int x = _SpinDuration;
1886       if (x < Knob_SpinLimit) {
1887         if (x < Knob_Poverty) x = Knob_Poverty;
1888         _SpinDuration = x + Knob_BonusB;
1889       }
1890       return 1;
1891     }
1892     SpinPause();
1893   }
1894 
1895   // Admission control - verify preconditions for spinning
1896   //
1897   // We always spin a little bit, just to prevent _SpinDuration == 0 from
1898   // becoming an absorbing state.  Put another way, we spin briefly to
1899   // sample, just in case the system load, parallelism, contention, or lock
1900   // modality changed.
1901   //
1902   // Consider the following alternative:
1903   // Periodically set _SpinDuration = _SpinLimit and try a long/full
1904   // spin attempt.  "Periodically" might mean after a tally of
1905   // the # of failed spin attempts (or iterations) reaches some threshold.
1906   // This takes us into the realm of 1-out-of-N spinning, where we
1907   // hold the duration constant but vary the frequency.
1908 
1909   ctr = _SpinDuration;
1910   if (ctr < Knob_SpinBase) ctr = Knob_SpinBase;
1911   if (ctr <= 0) return 0;
1912 
1913   if (Knob_SuccRestrict && _succ != NULL) return 0;
1914   if (Knob_OState && NotRunnable (Self, (Thread *) _owner)) {
1915     TEVENT(Spin abort - notrunnable [TOP]);
1916     return 0;
1917   }
1918 
1919   int MaxSpin = Knob_MaxSpinners;
1920   if (MaxSpin >= 0) {
1921     if (_Spinner > MaxSpin) {
1922       TEVENT(Spin abort -- too many spinners);
1923       return 0;
1924     }
1925     // Slightly racy, but benign ...
1926     Adjust(&_Spinner, 1);
1927   }
1928 
1929   // We're good to spin ... spin ingress.
1930   // CONSIDER: use Prefetch::write() to avoid RTS->RTO upgrades
1931   // when preparing to LD...CAS _owner, etc and the CAS is likely
1932   // to succeed.
1933   int hits    = 0;
1934   int msk     = 0;
1935   int caspty  = Knob_CASPenalty;
1936   int oxpty   = Knob_OXPenalty;
1937   int sss     = Knob_SpinSetSucc;
1938   if (sss && _succ == NULL) _succ = Self;
1939   Thread * prv = NULL;
1940 
1941   // There are three ways to exit the following loop:
1942   // 1.  A successful spin where this thread has acquired the lock.
1943   // 2.  Spin failure with prejudice
1944   // 3.  Spin failure without prejudice
1945 
1946   while (--ctr >= 0) {
1947 
1948     // Periodic polling -- Check for pending GC
1949     // Threads may spin while they're unsafe.
1950     // We don't want spinning threads to delay the JVM from reaching
1951     // a stop-the-world safepoint or to steal cycles from GC.
1952     // If we detect a pending safepoint we abort in order that
1953     // (a) this thread, if unsafe, doesn't delay the safepoint, and (b)
1954     // this thread, if safe, doesn't steal cycles from GC.
1955     // This is in keeping with the "no loitering in runtime" rule.
1956     // We periodically check to see if there's a safepoint pending.
1957     if ((ctr & 0xFF) == 0) {
1958       if (SafepointMechanism::poll(Self)) {
1959         TEVENT(Spin: safepoint);
1960         goto Abort;           // abrupt spin egress
1961       }
1962       if (Knob_UsePause & 1) SpinPause();
1963     }
1964 
1965     if (Knob_UsePause & 2) SpinPause();
1966 
1967     // Exponential back-off ...  Stay off the bus to reduce coherency traffic.
1968     // This is useful on classic SMP systems, but is of less utility on
1969     // N1-style CMT platforms.
1970     //
1971     // Trade-off: lock acquisition latency vs coherency bandwidth.
1972     // Lock hold times are typically short.  A histogram
1973     // of successful spin attempts shows that we usually acquire
1974     // the lock early in the spin.  That suggests we want to
1975     // sample _owner frequently in the early phase of the spin,
1976     // but then back-off and sample less frequently as the spin
1977     // progresses.  The back-off makes a good citizen on SMP big
1978     // SMP systems.  Oversampling _owner can consume excessive
1979     // coherency bandwidth.  Relatedly, if we _oversample _owner we
1980     // can inadvertently interfere with the the ST m->owner=null.
1981     // executed by the lock owner.
1982     if (ctr & msk) continue;
1983     ++hits;
1984     if ((hits & 0xF) == 0) {
1985       // The 0xF, above, corresponds to the exponent.
1986       // Consider: (msk+1)|msk
1987       msk = ((msk << 2)|3) & BackOffMask;
1988     }
1989 
1990     // Probe _owner with TATAS
1991     // If this thread observes the monitor transition or flicker
1992     // from locked to unlocked to locked, then the odds that this
1993     // thread will acquire the lock in this spin attempt go down
1994     // considerably.  The same argument applies if the CAS fails
1995     // or if we observe _owner change from one non-null value to
1996     // another non-null value.   In such cases we might abort
1997     // the spin without prejudice or apply a "penalty" to the
1998     // spin count-down variable "ctr", reducing it by 100, say.
1999 
2000     Thread * ox = (Thread *) _owner;
2001     if (ox == NULL) {
2002       ox = (Thread*)Atomic::cmpxchg(Self, &_owner, (void*)NULL);
2003       if (ox == NULL) {
2004         // The CAS succeeded -- this thread acquired ownership
2005         // Take care of some bookkeeping to exit spin state.
2006         if (sss && _succ == Self) {
2007           _succ = NULL;
2008         }
2009         if (MaxSpin > 0) Adjust(&_Spinner, -1);
2010 
2011         // Increase _SpinDuration :
2012         // The spin was successful (profitable) so we tend toward
2013         // longer spin attempts in the future.
2014         // CONSIDER: factor "ctr" into the _SpinDuration adjustment.
2015         // If we acquired the lock early in the spin cycle it
2016         // makes sense to increase _SpinDuration proportionally.
2017         // Note that we don't clamp SpinDuration precisely at SpinLimit.
2018         int x = _SpinDuration;
2019         if (x < Knob_SpinLimit) {
2020           if (x < Knob_Poverty) x = Knob_Poverty;
2021           _SpinDuration = x + Knob_Bonus;
2022         }
2023         return 1;
2024       }
2025 
2026       // The CAS failed ... we can take any of the following actions:
2027       // * penalize: ctr -= Knob_CASPenalty
2028       // * exit spin with prejudice -- goto Abort;
2029       // * exit spin without prejudice.
2030       // * Since CAS is high-latency, retry again immediately.
2031       prv = ox;
2032       TEVENT(Spin: cas failed);
2033       if (caspty == -2) break;
2034       if (caspty == -1) goto Abort;
2035       ctr -= caspty;
2036       continue;
2037     }
2038 
2039     // Did lock ownership change hands ?
2040     if (ox != prv && prv != NULL) {
2041       TEVENT(spin: Owner changed)
2042       if (oxpty == -2) break;
2043       if (oxpty == -1) goto Abort;
2044       ctr -= oxpty;
2045     }
2046     prv = ox;
2047 
2048     // Abort the spin if the owner is not executing.
2049     // The owner must be executing in order to drop the lock.
2050     // Spinning while the owner is OFFPROC is idiocy.
2051     // Consider: ctr -= RunnablePenalty ;
2052     if (Knob_OState && NotRunnable (Self, ox)) {
2053       TEVENT(Spin abort - notrunnable);
2054       goto Abort;
2055     }
2056     if (sss && _succ == NULL) _succ = Self;
2057   }
2058 
2059   // Spin failed with prejudice -- reduce _SpinDuration.
2060   // TODO: Use an AIMD-like policy to adjust _SpinDuration.
2061   // AIMD is globally stable.
2062   TEVENT(Spin failure);
2063   {
2064     int x = _SpinDuration;
2065     if (x > 0) {
2066       // Consider an AIMD scheme like: x -= (x >> 3) + 100
2067       // This is globally sample and tends to damp the response.
2068       x -= Knob_Penalty;
2069       if (x < 0) x = 0;
2070       _SpinDuration = x;
2071     }
2072   }
2073 
2074  Abort:
2075   if (MaxSpin >= 0) Adjust(&_Spinner, -1);
2076   if (sss && _succ == Self) {
2077     _succ = NULL;
2078     // Invariant: after setting succ=null a contending thread
2079     // must recheck-retry _owner before parking.  This usually happens
2080     // in the normal usage of TrySpin(), but it's safest
2081     // to make TrySpin() as foolproof as possible.
2082     OrderAccess::fence();
2083     if (TryLock(Self) > 0) return 1;
2084   }
2085   return 0;
2086 }
2087 
2088 // NotRunnable() -- informed spinning
2089 //
2090 // Don't bother spinning if the owner is not eligible to drop the lock.
2091 // Peek at the owner's schedctl.sc_state and Thread._thread_values and
2092 // spin only if the owner thread is _thread_in_Java or _thread_in_vm.
2093 // The thread must be runnable in order to drop the lock in timely fashion.
2094 // If the _owner is not runnable then spinning will not likely be
2095 // successful (profitable).
2096 //
2097 // Beware -- the thread referenced by _owner could have died
2098 // so a simply fetch from _owner->_thread_state might trap.
2099 // Instead, we use SafeFetchXX() to safely LD _owner->_thread_state.
2100 // Because of the lifecycle issues the schedctl and _thread_state values
2101 // observed by NotRunnable() might be garbage.  NotRunnable must
2102 // tolerate this and consider the observed _thread_state value
2103 // as advisory.
2104 //
2105 // Beware too, that _owner is sometimes a BasicLock address and sometimes
2106 // a thread pointer.
2107 // Alternately, we might tag the type (thread pointer vs basiclock pointer)
2108 // with the LSB of _owner.  Another option would be to probablistically probe
2109 // the putative _owner->TypeTag value.
2110 //
2111 // Checking _thread_state isn't perfect.  Even if the thread is
2112 // in_java it might be blocked on a page-fault or have been preempted
2113 // and sitting on a ready/dispatch queue.  _thread state in conjunction
2114 // with schedctl.sc_state gives us a good picture of what the
2115 // thread is doing, however.
2116 //
2117 // TODO: check schedctl.sc_state.
2118 // We'll need to use SafeFetch32() to read from the schedctl block.
2119 // See RFE #5004247 and http://sac.sfbay.sun.com/Archives/CaseLog/arc/PSARC/2005/351/
2120 //
2121 // The return value from NotRunnable() is *advisory* -- the
2122 // result is based on sampling and is not necessarily coherent.
2123 // The caller must tolerate false-negative and false-positive errors.
2124 // Spinning, in general, is probabilistic anyway.
2125 
2126 
2127 int ObjectMonitor::NotRunnable(Thread * Self, Thread * ox) {
2128   // Check ox->TypeTag == 2BAD.
2129   if (ox == NULL) return 0;
2130 
2131   // Avoid transitive spinning ...
2132   // Say T1 spins or blocks trying to acquire L.  T1._Stalled is set to L.
2133   // Immediately after T1 acquires L it's possible that T2, also
2134   // spinning on L, will see L.Owner=T1 and T1._Stalled=L.
2135   // This occurs transiently after T1 acquired L but before
2136   // T1 managed to clear T1.Stalled.  T2 does not need to abort
2137   // its spin in this circumstance.
2138   intptr_t BlockedOn = SafeFetchN((intptr_t *) &ox->_Stalled, intptr_t(1));
2139 
2140   if (BlockedOn == 1) return 1;
2141   if (BlockedOn != 0) {
2142     return BlockedOn != intptr_t(this) && _owner == ox;
2143   }
2144 
2145   assert(sizeof(((JavaThread *)ox)->_thread_state == sizeof(int)), "invariant");
2146   int jst = SafeFetch32((int *) &((JavaThread *) ox)->_thread_state, -1);;
2147   // consider also: jst != _thread_in_Java -- but that's overspecific.
2148   return jst == _thread_blocked || jst == _thread_in_native;
2149 }
2150 
2151 
2152 // -----------------------------------------------------------------------------
2153 // WaitSet management ...
2154 
2155 ObjectWaiter::ObjectWaiter(Thread* thread) {
2156   _next     = NULL;
2157   _prev     = NULL;
2158   _notified = 0;
2159   _notifier_tid = 0;
2160   TState    = TS_RUN;
2161   _thread   = thread;
2162   _event    = thread->_ParkEvent;
2163   _active   = false;
2164   assert(_event != NULL, "invariant");
2165 }
2166 
2167 void ObjectWaiter::wait_reenter_begin(ObjectMonitor * const mon) {
2168   JavaThread *jt = (JavaThread *)this->_thread;
2169   _active = JavaThreadBlockedOnMonitorEnterState::wait_reenter_begin(jt, mon);
2170 }
2171 
2172 void ObjectWaiter::wait_reenter_end(ObjectMonitor * const mon) {
2173   JavaThread *jt = (JavaThread *)this->_thread;
2174   JavaThreadBlockedOnMonitorEnterState::wait_reenter_end(jt, _active);
2175 }
2176 
2177 inline void ObjectMonitor::AddWaiter(ObjectWaiter* node) {
2178   assert(node != NULL, "should not add NULL node");
2179   assert(node->_prev == NULL, "node already in list");
2180   assert(node->_next == NULL, "node already in list");
2181   // put node at end of queue (circular doubly linked list)
2182   if (_WaitSet == NULL) {
2183     _WaitSet = node;
2184     node->_prev = node;
2185     node->_next = node;
2186   } else {
2187     ObjectWaiter* head = _WaitSet;
2188     ObjectWaiter* tail = head->_prev;
2189     assert(tail->_next == head, "invariant check");
2190     tail->_next = node;
2191     head->_prev = node;
2192     node->_next = head;
2193     node->_prev = tail;
2194   }
2195 }
2196 
2197 inline ObjectWaiter* ObjectMonitor::DequeueWaiter() {
2198   // dequeue the very first waiter
2199   ObjectWaiter* waiter = _WaitSet;
2200   if (waiter) {
2201     DequeueSpecificWaiter(waiter);
2202   }
2203   return waiter;
2204 }
2205 
2206 inline void ObjectMonitor::DequeueSpecificWaiter(ObjectWaiter* node) {
2207   assert(node != NULL, "should not dequeue NULL node");
2208   assert(node->_prev != NULL, "node already removed from list");
2209   assert(node->_next != NULL, "node already removed from list");
2210   // when the waiter has woken up because of interrupt,
2211   // timeout or other spurious wake-up, dequeue the
2212   // waiter from waiting list
2213   ObjectWaiter* next = node->_next;
2214   if (next == node) {
2215     assert(node->_prev == node, "invariant check");
2216     _WaitSet = NULL;
2217   } else {
2218     ObjectWaiter* prev = node->_prev;
2219     assert(prev->_next == node, "invariant check");
2220     assert(next->_prev == node, "invariant check");
2221     next->_prev = prev;
2222     prev->_next = next;
2223     if (_WaitSet == node) {
2224       _WaitSet = next;
2225     }
2226   }
2227   node->_next = NULL;
2228   node->_prev = NULL;
2229 }
2230 
2231 // -----------------------------------------------------------------------------
2232 // PerfData support
2233 PerfCounter * ObjectMonitor::_sync_ContendedLockAttempts       = NULL;
2234 PerfCounter * ObjectMonitor::_sync_FutileWakeups               = NULL;
2235 PerfCounter * ObjectMonitor::_sync_Parks                       = NULL;
2236 PerfCounter * ObjectMonitor::_sync_Notifications               = NULL;
2237 PerfCounter * ObjectMonitor::_sync_Inflations                  = NULL;
2238 PerfCounter * ObjectMonitor::_sync_Deflations                  = NULL;
2239 PerfLongVariable * ObjectMonitor::_sync_MonExtant              = NULL;
2240 
2241 // One-shot global initialization for the sync subsystem.
2242 // We could also defer initialization and initialize on-demand
2243 // the first time we call inflate().  Initialization would
2244 // be protected - like so many things - by the MonitorCache_lock.
2245 
2246 void ObjectMonitor::Initialize() {
2247   static int InitializationCompleted = 0;
2248   assert(InitializationCompleted == 0, "invariant");
2249   InitializationCompleted = 1;
2250   if (UsePerfData) {
2251     EXCEPTION_MARK;
2252 #define NEWPERFCOUNTER(n)                                                \
2253   {                                                                      \
2254     n = PerfDataManager::create_counter(SUN_RT, #n, PerfData::U_Events,  \
2255                                         CHECK);                          \
2256   }
2257 #define NEWPERFVARIABLE(n)                                                \
2258   {                                                                       \
2259     n = PerfDataManager::create_variable(SUN_RT, #n, PerfData::U_Events,  \
2260                                          CHECK);                          \
2261   }
2262     NEWPERFCOUNTER(_sync_Inflations);
2263     NEWPERFCOUNTER(_sync_Deflations);
2264     NEWPERFCOUNTER(_sync_ContendedLockAttempts);
2265     NEWPERFCOUNTER(_sync_FutileWakeups);
2266     NEWPERFCOUNTER(_sync_Parks);
2267     NEWPERFCOUNTER(_sync_Notifications);
2268     NEWPERFVARIABLE(_sync_MonExtant);
2269 #undef NEWPERFCOUNTER
2270 #undef NEWPERFVARIABLE
2271   }
2272 }
2273 
2274 static char * kvGet(char * kvList, const char * Key) {
2275   if (kvList == NULL) return NULL;
2276   size_t n = strlen(Key);
2277   char * Search;
2278   for (Search = kvList; *Search; Search += strlen(Search) + 1) {
2279     if (strncmp (Search, Key, n) == 0) {
2280       if (Search[n] == '=') return Search + n + 1;
2281       if (Search[n] == 0)   return(char *) "1";
2282     }
2283   }
2284   return NULL;
2285 }
2286 
2287 static int kvGetInt(char * kvList, const char * Key, int Default) {
2288   char * v = kvGet(kvList, Key);
2289   int rslt = v ? ::strtol(v, NULL, 0) : Default;
2290   if (Knob_ReportSettings && v != NULL) {
2291     tty->print_cr("INFO: SyncKnob: %s %d(%d)", Key, rslt, Default) ;
2292     tty->flush();
2293   }
2294   return rslt;
2295 }
2296 
2297 void ObjectMonitor::DeferredInitialize() {
2298   if (InitDone > 0) return;
2299   if (Atomic::cmpxchg (-1, &InitDone, 0) != 0) {
2300     while (InitDone != 1) /* empty */;
2301     return;
2302   }
2303 
2304   // One-shot global initialization ...
2305   // The initialization is idempotent, so we don't need locks.
2306   // In the future consider doing this via os::init_2().
2307   // SyncKnobs consist of <Key>=<Value> pairs in the style
2308   // of environment variables.  Start by converting ':' to NUL.
2309 
2310   if (SyncKnobs == NULL) SyncKnobs = "";
2311 
2312   size_t sz = strlen(SyncKnobs);
2313   char * knobs = (char *) os::malloc(sz + 2, mtInternal);
2314   if (knobs == NULL) {
2315     vm_exit_out_of_memory(sz + 2, OOM_MALLOC_ERROR, "Parse SyncKnobs");
2316     guarantee(0, "invariant");
2317   }
2318   strcpy(knobs, SyncKnobs);
2319   knobs[sz+1] = 0;
2320   for (char * p = knobs; *p; p++) {
2321     if (*p == ':') *p = 0;
2322   }
2323 
2324   #define SETKNOB(x) { Knob_##x = kvGetInt(knobs, #x, Knob_##x); }
2325   SETKNOB(ReportSettings);
2326   SETKNOB(ExitRelease);
2327   SETKNOB(InlineNotify);
2328   SETKNOB(Verbose);
2329   SETKNOB(VerifyInUse);
2330   SETKNOB(VerifyMatch);
2331   SETKNOB(FixedSpin);
2332   SETKNOB(SpinLimit);
2333   SETKNOB(SpinBase);
2334   SETKNOB(SpinBackOff);
2335   SETKNOB(CASPenalty);
2336   SETKNOB(OXPenalty);
2337   SETKNOB(SpinSetSucc);
2338   SETKNOB(SuccEnabled);
2339   SETKNOB(SuccRestrict);
2340   SETKNOB(Penalty);
2341   SETKNOB(Bonus);
2342   SETKNOB(BonusB);
2343   SETKNOB(Poverty);
2344   SETKNOB(SpinAfterFutile);
2345   SETKNOB(UsePause);
2346   SETKNOB(SpinEarly);
2347   SETKNOB(OState);
2348   SETKNOB(MaxSpinners);
2349   SETKNOB(PreSpin);
2350   SETKNOB(ExitPolicy);
2351   SETKNOB(QMode);
2352   SETKNOB(ResetEvent);
2353   SETKNOB(MoveNotifyee);
2354   SETKNOB(FastHSSEC);
2355   #undef SETKNOB
2356 
2357   if (os::is_MP()) {
2358     BackOffMask = (1 << Knob_SpinBackOff) - 1;
2359     if (Knob_ReportSettings) {
2360       tty->print_cr("INFO: BackOffMask=0x%X", BackOffMask);
2361     }
2362     // CONSIDER: BackOffMask = ROUNDUP_NEXT_POWER2 (ncpus-1)
2363   } else {
2364     Knob_SpinLimit = 0;
2365     Knob_SpinBase  = 0;
2366     Knob_PreSpin   = 0;
2367     Knob_FixedSpin = -1;
2368   }
2369 
2370   os::free(knobs);
2371   OrderAccess::fence();
2372   InitDone = 1;
2373 }
2374