1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_MEMORY_ALLOCATION_HPP
  26 #define SHARE_VM_MEMORY_ALLOCATION_HPP
  27 
  28 #include "runtime/globals.hpp"
  29 #include "utilities/globalDefinitions.hpp"
  30 #include "utilities/macros.hpp"
  31 
  32 #include <new>
  33 
  34 class AllocFailStrategy {
  35 public:
  36   enum AllocFailEnum { EXIT_OOM, RETURN_NULL };
  37 };
  38 typedef AllocFailStrategy::AllocFailEnum AllocFailType;
  39 
  40 // All classes in the virtual machine must be subclassed
  41 // by one of the following allocation classes:
  42 //
  43 // For objects allocated in the resource area (see resourceArea.hpp).
  44 // - ResourceObj
  45 //
  46 // For objects allocated in the C-heap (managed by: free & malloc).
  47 // - CHeapObj
  48 //
  49 // For objects allocated on the stack.
  50 // - StackObj
  51 //
  52 // For embedded objects.
  53 // - ValueObj
  54 //
  55 // For classes used as name spaces.
  56 // - AllStatic
  57 //
  58 // For classes in Metaspace (class data)
  59 // - MetaspaceObj
  60 //
  61 // The printable subclasses are used for debugging and define virtual
  62 // member functions for printing. Classes that avoid allocating the
  63 // vtbl entries in the objects should therefore not be the printable
  64 // subclasses.
  65 //
  66 // The following macros and function should be used to allocate memory
  67 // directly in the resource area or in the C-heap, The _OBJ variants
  68 // of the NEW/FREE_C_HEAP macros are used for alloc/dealloc simple
  69 // objects which are not inherited from CHeapObj, note constructor and
  70 // destructor are not called. The preferable way to allocate objects
  71 // is using the new operator.
  72 //
  73 // WARNING: The array variant must only be used for a homogenous array
  74 // where all objects are of the exact type specified. If subtypes are
  75 // stored in the array then must pay attention to calling destructors
  76 // at needed.
  77 //
  78 //   NEW_RESOURCE_ARRAY(type, size)
  79 //   NEW_RESOURCE_OBJ(type)
  80 //   NEW_C_HEAP_ARRAY(type, size)
  81 //   NEW_C_HEAP_OBJ(type, memflags)
  82 //   FREE_C_HEAP_ARRAY(type, old)
  83 //   FREE_C_HEAP_OBJ(objname, type, memflags)
  84 //   char* AllocateHeap(size_t size, const char* name);
  85 //   void  FreeHeap(void* p);
  86 //
  87 // C-heap allocation can be traced using +PrintHeapAllocation.
  88 // malloc and free should therefore never called directly.
  89 
  90 // Base class for objects allocated in the C-heap.
  91 
  92 // In non product mode we introduce a super class for all allocation classes
  93 // that supports printing.
  94 // We avoid the superclass in product mode since some C++ compilers add
  95 // a word overhead for empty super classes.
  96 
  97 #ifdef PRODUCT
  98 #define ALLOCATION_SUPER_CLASS_SPEC
  99 #else
 100 #define ALLOCATION_SUPER_CLASS_SPEC : public AllocatedObj
 101 class AllocatedObj {
 102  public:
 103   // Printing support
 104   void print() const;
 105   void print_value() const;
 106 
 107   virtual void print_on(outputStream* st) const;
 108   virtual void print_value_on(outputStream* st) const;
 109 };
 110 #endif
 111 
 112 
 113 /*
 114  * Memory types
 115  */
 116 enum MemoryType {
 117   // Memory type by sub systems. It occupies lower byte.
 118   mtJavaHeap          = 0x00,  // Java heap
 119   mtClass             = 0x01,  // memory class for Java classes
 120   mtThread            = 0x02,  // memory for thread objects
 121   mtThreadStack       = 0x03,
 122   mtCode              = 0x04,  // memory for generated code
 123   mtGC                = 0x05,  // memory for GC
 124   mtCompiler          = 0x06,  // memory for compiler
 125   mtInternal          = 0x07,  // memory used by VM, but does not belong to
 126                                  // any of above categories, and not used for
 127                                  // native memory tracking
 128   mtOther             = 0x08,  // memory not used by VM
 129   mtSymbol            = 0x09,  // symbol
 130   mtNMT               = 0x0A,  // memory used by native memory tracking
 131   mtClassShared       = 0x0B,  // class data sharing
 132   mtChunk             = 0x0C,  // chunk that holds content of arenas
 133   mtTest              = 0x0D,  // Test type for verifying NMT
 134   mtTracing           = 0x0E,  // memory used for Tracing
 135   mtLogging           = 0x0F,  // memory for logging
 136   mtArguments         = 0x10,  // memory for argument processing
 137   mtModule            = 0x11,  // memory for module processing
 138   mtNone              = 0x12,  // undefined
 139   mt_number_of_types  = 0x13   // number of memory types (mtDontTrack
 140                                  // is not included as validate type)
 141 };
 142 
 143 typedef MemoryType MEMFLAGS;
 144 
 145 
 146 #if INCLUDE_NMT
 147 
 148 extern bool NMT_track_callsite;
 149 
 150 #else
 151 
 152 const bool NMT_track_callsite = false;
 153 
 154 #endif // INCLUDE_NMT
 155 
 156 class NativeCallStack;
 157 
 158 
 159 template <MEMFLAGS F> class CHeapObj ALLOCATION_SUPER_CLASS_SPEC {
 160  public:
 161   NOINLINE void* operator new(size_t size, const NativeCallStack& stack) throw();
 162   NOINLINE void* operator new(size_t size) throw();
 163   NOINLINE void* operator new (size_t size, const std::nothrow_t&  nothrow_constant,
 164                                const NativeCallStack& stack) throw();
 165   NOINLINE void* operator new (size_t size, const std::nothrow_t&  nothrow_constant)
 166                                throw();
 167   NOINLINE void* operator new [](size_t size, const NativeCallStack& stack) throw();
 168   NOINLINE void* operator new [](size_t size) throw();
 169   NOINLINE void* operator new [](size_t size, const std::nothrow_t&  nothrow_constant,
 170                                const NativeCallStack& stack) throw();
 171   NOINLINE void* operator new [](size_t size, const std::nothrow_t&  nothrow_constant)
 172                                throw();
 173   void  operator delete(void* p);
 174   void  operator delete [] (void* p);
 175 };
 176 
 177 // Base class for objects allocated on the stack only.
 178 // Calling new or delete will result in fatal error.
 179 
 180 class StackObj ALLOCATION_SUPER_CLASS_SPEC {
 181  private:
 182   void* operator new(size_t size) throw();
 183   void* operator new [](size_t size) throw();
 184 #ifdef __IBMCPP__
 185  public:
 186 #endif
 187   void  operator delete(void* p);
 188   void  operator delete [](void* p);
 189 };
 190 
 191 // Base class for objects used as value objects.
 192 // Calling new or delete will result in fatal error.
 193 //
 194 // Portability note: Certain compilers (e.g. gcc) will
 195 // always make classes bigger if it has a superclass, even
 196 // if the superclass does not have any virtual methods or
 197 // instance fields. The HotSpot implementation relies on this
 198 // not to happen. So never make a ValueObj class a direct subclass
 199 // of this object, but use the VALUE_OBJ_CLASS_SPEC class instead, e.g.,
 200 // like this:
 201 //
 202 //   class A VALUE_OBJ_CLASS_SPEC {
 203 //     ...
 204 //   }
 205 //
 206 // With gcc and possible other compilers the VALUE_OBJ_CLASS_SPEC can
 207 // be defined as a an empty string "".
 208 //
 209 class _ValueObj {
 210  private:
 211   void* operator new(size_t size) throw();
 212   void  operator delete(void* p);
 213   void* operator new [](size_t size) throw();
 214   void  operator delete [](void* p);
 215 };
 216 
 217 
 218 // Base class for objects stored in Metaspace.
 219 // Calling delete will result in fatal error.
 220 //
 221 // Do not inherit from something with a vptr because this class does
 222 // not introduce one.  This class is used to allocate both shared read-only
 223 // and shared read-write classes.
 224 //
 225 
 226 class ClassLoaderData;
 227 class MetaspaceClosure;
 228 
 229 class MetaspaceObj {
 230   friend class MetaspaceShared;
 231   // When CDS is enabled, all shared metaspace objects are mapped
 232   // into a single contiguous memory block, so we can use these
 233   // two pointers to quickly determine if something is in the
 234   // shared metaspace.
 235   //
 236   // When CDS is not enabled, both pointers are set to NULL.
 237   static void* _shared_metaspace_base; // (inclusive) low address
 238   static void* _shared_metaspace_top;  // (exclusive) high address
 239 
 240  public:
 241   bool is_metaspace_object() const;
 242   bool is_shared() const {
 243     // If no shared metaspace regions are mapped, _shared_metaspace_{base,top} will
 244     // both be NULL and all values of p will be rejected quickly.
 245     return (((void*)this) < _shared_metaspace_top && ((void*)this) >= _shared_metaspace_base);
 246   }
 247   void print_address_on(outputStream* st) const;  // nonvirtual address printing
 248 
 249 #define METASPACE_OBJ_TYPES_DO(f) \
 250   f(Class) \
 251   f(Symbol) \
 252   f(TypeArrayU1) \
 253   f(TypeArrayU2) \
 254   f(TypeArrayU4) \
 255   f(TypeArrayU8) \
 256   f(TypeArrayOther) \
 257   f(Method) \
 258   f(ConstMethod) \
 259   f(MethodData) \
 260   f(ConstantPool) \
 261   f(ConstantPoolCache) \
 262   f(Annotations) \
 263   f(MethodCounters)
 264 
 265 #define METASPACE_OBJ_TYPE_DECLARE(name) name ## Type,
 266 #define METASPACE_OBJ_TYPE_NAME_CASE(name) case name ## Type: return #name;
 267 
 268   enum Type {
 269     // Types are MetaspaceObj::ClassType, MetaspaceObj::SymbolType, etc
 270     METASPACE_OBJ_TYPES_DO(METASPACE_OBJ_TYPE_DECLARE)
 271     _number_of_types
 272   };
 273 
 274   static const char * type_name(Type type) {
 275     switch(type) {
 276     METASPACE_OBJ_TYPES_DO(METASPACE_OBJ_TYPE_NAME_CASE)
 277     default:
 278       ShouldNotReachHere();
 279       return NULL;
 280     }
 281   }
 282 
 283   static MetaspaceObj::Type array_type(size_t elem_size) {
 284     switch (elem_size) {
 285     case 1: return TypeArrayU1Type;
 286     case 2: return TypeArrayU2Type;
 287     case 4: return TypeArrayU4Type;
 288     case 8: return TypeArrayU8Type;
 289     default:
 290       return TypeArrayOtherType;
 291     }
 292   }
 293 
 294   void* operator new(size_t size, ClassLoaderData* loader_data,
 295                      size_t word_size,
 296                      Type type, Thread* thread) throw();
 297                      // can't use TRAPS from this header file.
 298   void operator delete(void* p) { ShouldNotCallThis(); }
 299 
 300   // Declare a *static* method with the same signature in any subclass of MetaspaceObj
 301   // that should be read-only by default. See symbol.hpp for an example. This function
 302   // is used by the templates in metaspaceClosure.hpp
 303   static bool is_read_only_by_default() { return false; }
 304 };
 305 
 306 // Base class for classes that constitute name spaces.
 307 
 308 class Arena;
 309 
 310 class AllStatic {
 311  public:
 312   AllStatic()  { ShouldNotCallThis(); }
 313   ~AllStatic() { ShouldNotCallThis(); }
 314 };
 315 
 316 
 317 extern char* resource_allocate_bytes(size_t size,
 318     AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
 319 extern char* resource_allocate_bytes(Thread* thread, size_t size,
 320     AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
 321 extern char* resource_reallocate_bytes( char *old, size_t old_size, size_t new_size,
 322     AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
 323 extern void resource_free_bytes( char *old, size_t size );
 324 
 325 //----------------------------------------------------------------------
 326 // Base class for objects allocated in the resource area per default.
 327 // Optionally, objects may be allocated on the C heap with
 328 // new(ResourceObj::C_HEAP) Foo(...) or in an Arena with new (&arena)
 329 // ResourceObj's can be allocated within other objects, but don't use
 330 // new or delete (allocation_type is unknown).  If new is used to allocate,
 331 // use delete to deallocate.
 332 class ResourceObj ALLOCATION_SUPER_CLASS_SPEC {
 333  public:
 334   enum allocation_type { STACK_OR_EMBEDDED = 0, RESOURCE_AREA, C_HEAP, ARENA, allocation_mask = 0x3 };
 335   static void set_allocation_type(address res, allocation_type type) NOT_DEBUG_RETURN;
 336 #ifdef ASSERT
 337  private:
 338   // When this object is allocated on stack the new() operator is not
 339   // called but garbage on stack may look like a valid allocation_type.
 340   // Store negated 'this' pointer when new() is called to distinguish cases.
 341   // Use second array's element for verification value to distinguish garbage.
 342   uintptr_t _allocation_t[2];
 343   bool is_type_set() const;
 344  public:
 345   allocation_type get_allocation_type() const;
 346   bool allocated_on_stack()    const { return get_allocation_type() == STACK_OR_EMBEDDED; }
 347   bool allocated_on_res_area() const { return get_allocation_type() == RESOURCE_AREA; }
 348   bool allocated_on_C_heap()   const { return get_allocation_type() == C_HEAP; }
 349   bool allocated_on_arena()    const { return get_allocation_type() == ARENA; }
 350   ResourceObj(); // default constructor
 351   ResourceObj(const ResourceObj& r); // default copy constructor
 352   ResourceObj& operator=(const ResourceObj& r); // default copy assignment
 353   ~ResourceObj();
 354 #endif // ASSERT
 355 
 356  public:
 357   void* operator new(size_t size, allocation_type type, MEMFLAGS flags) throw();
 358   void* operator new [](size_t size, allocation_type type, MEMFLAGS flags) throw();
 359   void* operator new(size_t size, const std::nothrow_t&  nothrow_constant,
 360       allocation_type type, MEMFLAGS flags) throw();
 361   void* operator new [](size_t size, const std::nothrow_t&  nothrow_constant,
 362       allocation_type type, MEMFLAGS flags) throw();
 363 
 364   void* operator new(size_t size, Arena *arena) throw();
 365 
 366   void* operator new [](size_t size, Arena *arena) throw();
 367 
 368   void* operator new(size_t size) throw() {
 369       address res = (address)resource_allocate_bytes(size);
 370       DEBUG_ONLY(set_allocation_type(res, RESOURCE_AREA);)
 371       return res;
 372   }
 373 
 374   void* operator new(size_t size, const std::nothrow_t& nothrow_constant) throw() {
 375       address res = (address)resource_allocate_bytes(size, AllocFailStrategy::RETURN_NULL);
 376       DEBUG_ONLY(if (res != NULL) set_allocation_type(res, RESOURCE_AREA);)
 377       return res;
 378   }
 379 
 380   void* operator new [](size_t size) throw() {
 381       address res = (address)resource_allocate_bytes(size);
 382       DEBUG_ONLY(set_allocation_type(res, RESOURCE_AREA);)
 383       return res;
 384   }
 385 
 386   void* operator new [](size_t size, const std::nothrow_t& nothrow_constant) throw() {
 387       address res = (address)resource_allocate_bytes(size, AllocFailStrategy::RETURN_NULL);
 388       DEBUG_ONLY(if (res != NULL) set_allocation_type(res, RESOURCE_AREA);)
 389       return res;
 390   }
 391 
 392   void  operator delete(void* p);
 393   void  operator delete [](void* p);
 394 };
 395 
 396 // One of the following macros must be used when allocating an array
 397 // or object to determine whether it should reside in the C heap on in
 398 // the resource area.
 399 
 400 #define NEW_RESOURCE_ARRAY(type, size)\
 401   (type*) resource_allocate_bytes((size) * sizeof(type))
 402 
 403 #define NEW_RESOURCE_ARRAY_RETURN_NULL(type, size)\
 404   (type*) resource_allocate_bytes((size) * sizeof(type), AllocFailStrategy::RETURN_NULL)
 405 
 406 #define NEW_RESOURCE_ARRAY_IN_THREAD(thread, type, size)\
 407   (type*) resource_allocate_bytes(thread, (size) * sizeof(type))
 408 
 409 #define NEW_RESOURCE_ARRAY_IN_THREAD_RETURN_NULL(thread, type, size)\
 410   (type*) resource_allocate_bytes(thread, (size) * sizeof(type), AllocFailStrategy::RETURN_NULL)
 411 
 412 #define REALLOC_RESOURCE_ARRAY(type, old, old_size, new_size)\
 413   (type*) resource_reallocate_bytes((char*)(old), (old_size) * sizeof(type), (new_size) * sizeof(type))
 414 
 415 #define REALLOC_RESOURCE_ARRAY_RETURN_NULL(type, old, old_size, new_size)\
 416   (type*) resource_reallocate_bytes((char*)(old), (old_size) * sizeof(type),\
 417                                     (new_size) * sizeof(type), AllocFailStrategy::RETURN_NULL)
 418 
 419 #define FREE_RESOURCE_ARRAY(type, old, size)\
 420   resource_free_bytes((char*)(old), (size) * sizeof(type))
 421 
 422 #define FREE_FAST(old)\
 423     /* nop */
 424 
 425 #define NEW_RESOURCE_OBJ(type)\
 426   NEW_RESOURCE_ARRAY(type, 1)
 427 
 428 #define NEW_RESOURCE_OBJ_RETURN_NULL(type)\
 429   NEW_RESOURCE_ARRAY_RETURN_NULL(type, 1)
 430 
 431 #define NEW_C_HEAP_ARRAY3(type, size, memflags, pc, allocfail)\
 432   (type*) AllocateHeap((size) * sizeof(type), memflags, pc, allocfail)
 433 
 434 #define NEW_C_HEAP_ARRAY2(type, size, memflags, pc)\
 435   (type*) (AllocateHeap((size) * sizeof(type), memflags, pc))
 436 
 437 #define NEW_C_HEAP_ARRAY(type, size, memflags)\
 438   (type*) (AllocateHeap((size) * sizeof(type), memflags))
 439 
 440 #define NEW_C_HEAP_ARRAY2_RETURN_NULL(type, size, memflags, pc)\
 441   NEW_C_HEAP_ARRAY3(type, (size), memflags, pc, AllocFailStrategy::RETURN_NULL)
 442 
 443 #define NEW_C_HEAP_ARRAY_RETURN_NULL(type, size, memflags)\
 444   NEW_C_HEAP_ARRAY3(type, (size), memflags, CURRENT_PC, AllocFailStrategy::RETURN_NULL)
 445 
 446 #define REALLOC_C_HEAP_ARRAY(type, old, size, memflags)\
 447   (type*) (ReallocateHeap((char*)(old), (size) * sizeof(type), memflags))
 448 
 449 #define REALLOC_C_HEAP_ARRAY_RETURN_NULL(type, old, size, memflags)\
 450   (type*) (ReallocateHeap((char*)(old), (size) * sizeof(type), memflags, AllocFailStrategy::RETURN_NULL))
 451 
 452 #define FREE_C_HEAP_ARRAY(type, old) \
 453   FreeHeap((char*)(old))
 454 
 455 // allocate type in heap without calling ctor
 456 #define NEW_C_HEAP_OBJ(type, memflags)\
 457   NEW_C_HEAP_ARRAY(type, 1, memflags)
 458 
 459 #define NEW_C_HEAP_OBJ_RETURN_NULL(type, memflags)\
 460   NEW_C_HEAP_ARRAY_RETURN_NULL(type, 1, memflags)
 461 
 462 // deallocate obj of type in heap without calling dtor
 463 #define FREE_C_HEAP_OBJ(objname)\
 464   FreeHeap((char*)objname);
 465 
 466 // for statistics
 467 #ifndef PRODUCT
 468 class AllocStats : StackObj {
 469   julong start_mallocs, start_frees;
 470   julong start_malloc_bytes, start_mfree_bytes, start_res_bytes;
 471  public:
 472   AllocStats();
 473 
 474   julong num_mallocs();    // since creation of receiver
 475   julong alloc_bytes();
 476   julong num_frees();
 477   julong free_bytes();
 478   julong resource_bytes();
 479   void   print();
 480 };
 481 #endif
 482 
 483 
 484 //------------------------------ReallocMark---------------------------------
 485 // Code which uses REALLOC_RESOURCE_ARRAY should check an associated
 486 // ReallocMark, which is declared in the same scope as the reallocated
 487 // pointer.  Any operation that could __potentially__ cause a reallocation
 488 // should check the ReallocMark.
 489 class ReallocMark: public StackObj {
 490 protected:
 491   NOT_PRODUCT(int _nesting;)
 492 
 493 public:
 494   ReallocMark()   PRODUCT_RETURN;
 495   void check()    PRODUCT_RETURN;
 496 };
 497 
 498 // Helper class to allocate arrays that may become large.
 499 // Uses the OS malloc for allocations smaller than ArrayAllocatorMallocLimit
 500 // and uses mapped memory for larger allocations.
 501 // Most OS mallocs do something similar but Solaris malloc does not revert
 502 // to mapped memory for large allocations. By default ArrayAllocatorMallocLimit
 503 // is set so that we always use malloc except for Solaris where we set the
 504 // limit to get mapped memory.
 505 template <class E>
 506 class ArrayAllocator : public AllStatic {
 507  private:
 508   static bool should_use_malloc(size_t length);
 509 
 510   static E* allocate_malloc(size_t length, MEMFLAGS flags);
 511   static E* allocate_mmap(size_t length, MEMFLAGS flags);
 512 
 513   static void free_malloc(E* addr, size_t length);
 514   static void free_mmap(E* addr, size_t length);
 515 
 516  public:
 517   static E* allocate(size_t length, MEMFLAGS flags);
 518   static E* reallocate(E* old_addr, size_t old_length, size_t new_length, MEMFLAGS flags);
 519   static void free(E* addr, size_t length);
 520 };
 521 
 522 // Uses mmaped memory for all allocations. All allocations are initially
 523 // zero-filled. No pre-touching.
 524 template <class E>
 525 class MmapArrayAllocator : public AllStatic {
 526  private:
 527   static size_t size_for(size_t length);
 528 
 529  public:
 530   static E* allocate_or_null(size_t length, MEMFLAGS flags);
 531   static E* allocate(size_t length, MEMFLAGS flags);
 532   static void free(E* addr, size_t length);
 533 };
 534 
 535 // Uses malloc:ed memory for all allocations.
 536 template <class E>
 537 class MallocArrayAllocator : public AllStatic {
 538  public:
 539   static size_t size_for(size_t length);
 540 
 541   static E* allocate(size_t length, MEMFLAGS flags);
 542   static void free(E* addr, size_t length);
 543 };
 544 
 545 #endif // SHARE_VM_MEMORY_ALLOCATION_HPP