1 /*
   2  * Copyright (c) 1999, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/codeBuffer.hpp"
  27 #include "c1/c1_CodeStubs.hpp"
  28 #include "c1/c1_Defs.hpp"
  29 #include "c1/c1_FrameMap.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_MacroAssembler.hpp"
  32 #include "c1/c1_Runtime1.hpp"
  33 #include "classfile/systemDictionary.hpp"
  34 #include "classfile/vmSymbols.hpp"
  35 #include "code/codeBlob.hpp"
  36 #include "code/compiledIC.hpp"
  37 #include "code/pcDesc.hpp"
  38 #include "code/scopeDesc.hpp"
  39 #include "code/vtableStubs.hpp"
  40 #include "compiler/disassembler.hpp"
  41 #include "gc/shared/barrierSet.hpp"
  42 #include "gc/shared/collectedHeap.hpp"
  43 #include "interpreter/bytecode.hpp"
  44 #include "interpreter/interpreter.hpp"
  45 #include "logging/log.hpp"
  46 #include "memory/allocation.inline.hpp"
  47 #include "memory/oopFactory.hpp"
  48 #include "memory/resourceArea.hpp"
  49 #include "oops/objArrayKlass.hpp"
  50 #include "oops/oop.inline.hpp"
  51 #include "runtime/atomic.hpp"
  52 #include "runtime/biasedLocking.hpp"
  53 #include "runtime/compilationPolicy.hpp"
  54 #include "runtime/interfaceSupport.hpp"
  55 #include "runtime/javaCalls.hpp"
  56 #include "runtime/sharedRuntime.hpp"
  57 #include "runtime/threadCritical.hpp"
  58 #include "runtime/vframe.hpp"
  59 #include "runtime/vframeArray.hpp"
  60 #include "runtime/vm_version.hpp"
  61 #include "utilities/copy.hpp"
  62 #include "utilities/events.hpp"
  63 
  64 
  65 // Implementation of StubAssembler
  66 
  67 StubAssembler::StubAssembler(CodeBuffer* code, const char * name, int stub_id) : C1_MacroAssembler(code) {
  68   _name = name;
  69   _must_gc_arguments = false;
  70   _frame_size = no_frame_size;
  71   _num_rt_args = 0;
  72   _stub_id = stub_id;
  73 }
  74 
  75 
  76 void StubAssembler::set_info(const char* name, bool must_gc_arguments) {
  77   _name = name;
  78   _must_gc_arguments = must_gc_arguments;
  79 }
  80 
  81 
  82 void StubAssembler::set_frame_size(int size) {
  83   if (_frame_size == no_frame_size) {
  84     _frame_size = size;
  85   }
  86   assert(_frame_size == size, "can't change the frame size");
  87 }
  88 
  89 
  90 void StubAssembler::set_num_rt_args(int args) {
  91   if (_num_rt_args == 0) {
  92     _num_rt_args = args;
  93   }
  94   assert(_num_rt_args == args, "can't change the number of args");
  95 }
  96 
  97 // Implementation of Runtime1
  98 
  99 CodeBlob* Runtime1::_blobs[Runtime1::number_of_ids];
 100 const char *Runtime1::_blob_names[] = {
 101   RUNTIME1_STUBS(STUB_NAME, LAST_STUB_NAME)
 102 };
 103 
 104 #ifndef PRODUCT
 105 // statistics
 106 int Runtime1::_generic_arraycopy_cnt = 0;
 107 int Runtime1::_generic_arraycopystub_cnt = 0;
 108 int Runtime1::_arraycopy_slowcase_cnt = 0;
 109 int Runtime1::_arraycopy_checkcast_cnt = 0;
 110 int Runtime1::_arraycopy_checkcast_attempt_cnt = 0;
 111 int Runtime1::_new_type_array_slowcase_cnt = 0;
 112 int Runtime1::_new_object_array_slowcase_cnt = 0;
 113 int Runtime1::_new_instance_slowcase_cnt = 0;
 114 int Runtime1::_new_multi_array_slowcase_cnt = 0;
 115 int Runtime1::_monitorenter_slowcase_cnt = 0;
 116 int Runtime1::_monitorexit_slowcase_cnt = 0;
 117 int Runtime1::_patch_code_slowcase_cnt = 0;
 118 int Runtime1::_throw_range_check_exception_count = 0;
 119 int Runtime1::_throw_index_exception_count = 0;
 120 int Runtime1::_throw_div0_exception_count = 0;
 121 int Runtime1::_throw_null_pointer_exception_count = 0;
 122 int Runtime1::_throw_class_cast_exception_count = 0;
 123 int Runtime1::_throw_incompatible_class_change_error_count = 0;
 124 int Runtime1::_throw_array_store_exception_count = 0;
 125 int Runtime1::_throw_count = 0;
 126 
 127 static int _byte_arraycopy_stub_cnt = 0;
 128 static int _short_arraycopy_stub_cnt = 0;
 129 static int _int_arraycopy_stub_cnt = 0;
 130 static int _long_arraycopy_stub_cnt = 0;
 131 static int _oop_arraycopy_stub_cnt = 0;
 132 
 133 address Runtime1::arraycopy_count_address(BasicType type) {
 134   switch (type) {
 135   case T_BOOLEAN:
 136   case T_BYTE:   return (address)&_byte_arraycopy_stub_cnt;
 137   case T_CHAR:
 138   case T_SHORT:  return (address)&_short_arraycopy_stub_cnt;
 139   case T_FLOAT:
 140   case T_INT:    return (address)&_int_arraycopy_stub_cnt;
 141   case T_DOUBLE:
 142   case T_LONG:   return (address)&_long_arraycopy_stub_cnt;
 143   case T_ARRAY:
 144   case T_OBJECT: return (address)&_oop_arraycopy_stub_cnt;
 145   default:
 146     ShouldNotReachHere();
 147     return NULL;
 148   }
 149 }
 150 
 151 
 152 #endif
 153 
 154 // Simple helper to see if the caller of a runtime stub which
 155 // entered the VM has been deoptimized
 156 
 157 static bool caller_is_deopted() {
 158   JavaThread* thread = JavaThread::current();
 159   RegisterMap reg_map(thread, false);
 160   frame runtime_frame = thread->last_frame();
 161   frame caller_frame = runtime_frame.sender(&reg_map);
 162   assert(caller_frame.is_compiled_frame(), "must be compiled");
 163   return caller_frame.is_deoptimized_frame();
 164 }
 165 
 166 // Stress deoptimization
 167 static void deopt_caller() {
 168   if ( !caller_is_deopted()) {
 169     JavaThread* thread = JavaThread::current();
 170     RegisterMap reg_map(thread, false);
 171     frame runtime_frame = thread->last_frame();
 172     frame caller_frame = runtime_frame.sender(&reg_map);
 173     Deoptimization::deoptimize_frame(thread, caller_frame.id());
 174     assert(caller_is_deopted(), "Must be deoptimized");
 175   }
 176 }
 177 
 178 
 179 void Runtime1::generate_blob_for(BufferBlob* buffer_blob, StubID id) {
 180   assert(0 <= id && id < number_of_ids, "illegal stub id");
 181   ResourceMark rm;
 182   // create code buffer for code storage
 183   CodeBuffer code(buffer_blob);
 184 
 185   OopMapSet* oop_maps;
 186   int frame_size;
 187   bool must_gc_arguments;
 188 
 189   Compilation::setup_code_buffer(&code, 0);
 190 
 191   // create assembler for code generation
 192   StubAssembler* sasm = new StubAssembler(&code, name_for(id), id);
 193   // generate code for runtime stub
 194   oop_maps = generate_code_for(id, sasm);
 195   assert(oop_maps == NULL || sasm->frame_size() != no_frame_size,
 196          "if stub has an oop map it must have a valid frame size");
 197 
 198 #ifdef ASSERT
 199   // Make sure that stubs that need oopmaps have them
 200   switch (id) {
 201     // These stubs don't need to have an oopmap
 202   case dtrace_object_alloc_id:
 203   case g1_pre_barrier_slow_id:
 204   case g1_post_barrier_slow_id:
 205   case slow_subtype_check_id:
 206   case fpu2long_stub_id:
 207   case unwind_exception_id:
 208   case counter_overflow_id:
 209 #if defined(SPARC) || defined(PPC32)
 210   case handle_exception_nofpu_id:  // Unused on sparc
 211 #endif
 212     break;
 213 
 214     // All other stubs should have oopmaps
 215   default:
 216     assert(oop_maps != NULL, "must have an oopmap");
 217   }
 218 #endif
 219 
 220   // align so printing shows nop's instead of random code at the end (SimpleStubs are aligned)
 221   sasm->align(BytesPerWord);
 222   // make sure all code is in code buffer
 223   sasm->flush();
 224 
 225   frame_size = sasm->frame_size();
 226   must_gc_arguments = sasm->must_gc_arguments();
 227   // create blob - distinguish a few special cases
 228   CodeBlob* blob = RuntimeStub::new_runtime_stub(name_for(id),
 229                                                  &code,
 230                                                  CodeOffsets::frame_never_safe,
 231                                                  frame_size,
 232                                                  oop_maps,
 233                                                  must_gc_arguments);
 234   // install blob
 235   assert(blob != NULL, "blob must exist");
 236   _blobs[id] = blob;
 237 }
 238 
 239 
 240 void Runtime1::initialize(BufferBlob* blob) {
 241   // platform-dependent initialization
 242   initialize_pd();
 243   // generate stubs
 244   for (int id = 0; id < number_of_ids; id++) generate_blob_for(blob, (StubID)id);
 245   // printing
 246 #ifndef PRODUCT
 247   if (PrintSimpleStubs) {
 248     ResourceMark rm;
 249     for (int id = 0; id < number_of_ids; id++) {
 250       _blobs[id]->print();
 251       if (_blobs[id]->oop_maps() != NULL) {
 252         _blobs[id]->oop_maps()->print();
 253       }
 254     }
 255   }
 256 #endif
 257 }
 258 
 259 
 260 CodeBlob* Runtime1::blob_for(StubID id) {
 261   assert(0 <= id && id < number_of_ids, "illegal stub id");
 262   return _blobs[id];
 263 }
 264 
 265 
 266 const char* Runtime1::name_for(StubID id) {
 267   assert(0 <= id && id < number_of_ids, "illegal stub id");
 268   return _blob_names[id];
 269 }
 270 
 271 const char* Runtime1::name_for_address(address entry) {
 272   for (int id = 0; id < number_of_ids; id++) {
 273     if (entry == entry_for((StubID)id)) return name_for((StubID)id);
 274   }
 275 
 276 #define FUNCTION_CASE(a, f) \
 277   if ((intptr_t)a == CAST_FROM_FN_PTR(intptr_t, f))  return #f
 278 
 279   FUNCTION_CASE(entry, os::javaTimeMillis);
 280   FUNCTION_CASE(entry, os::javaTimeNanos);
 281   FUNCTION_CASE(entry, SharedRuntime::OSR_migration_end);
 282   FUNCTION_CASE(entry, SharedRuntime::d2f);
 283   FUNCTION_CASE(entry, SharedRuntime::d2i);
 284   FUNCTION_CASE(entry, SharedRuntime::d2l);
 285   FUNCTION_CASE(entry, SharedRuntime::dcos);
 286   FUNCTION_CASE(entry, SharedRuntime::dexp);
 287   FUNCTION_CASE(entry, SharedRuntime::dlog);
 288   FUNCTION_CASE(entry, SharedRuntime::dlog10);
 289   FUNCTION_CASE(entry, SharedRuntime::dpow);
 290   FUNCTION_CASE(entry, SharedRuntime::drem);
 291   FUNCTION_CASE(entry, SharedRuntime::dsin);
 292   FUNCTION_CASE(entry, SharedRuntime::dtan);
 293   FUNCTION_CASE(entry, SharedRuntime::f2i);
 294   FUNCTION_CASE(entry, SharedRuntime::f2l);
 295   FUNCTION_CASE(entry, SharedRuntime::frem);
 296   FUNCTION_CASE(entry, SharedRuntime::l2d);
 297   FUNCTION_CASE(entry, SharedRuntime::l2f);
 298   FUNCTION_CASE(entry, SharedRuntime::ldiv);
 299   FUNCTION_CASE(entry, SharedRuntime::lmul);
 300   FUNCTION_CASE(entry, SharedRuntime::lrem);
 301   FUNCTION_CASE(entry, SharedRuntime::lrem);
 302   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_entry);
 303   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_exit);
 304   FUNCTION_CASE(entry, is_instance_of);
 305   FUNCTION_CASE(entry, trace_block_entry);
 306 #ifdef TRACE_HAVE_INTRINSICS
 307   FUNCTION_CASE(entry, TRACE_TIME_METHOD);
 308 #endif
 309   FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32());
 310   FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32C());
 311   FUNCTION_CASE(entry, StubRoutines::vectorizedMismatch());
 312   FUNCTION_CASE(entry, StubRoutines::dexp());
 313   FUNCTION_CASE(entry, StubRoutines::dlog());
 314   FUNCTION_CASE(entry, StubRoutines::dlog10());
 315   FUNCTION_CASE(entry, StubRoutines::dpow());
 316   FUNCTION_CASE(entry, StubRoutines::dsin());
 317   FUNCTION_CASE(entry, StubRoutines::dcos());
 318   FUNCTION_CASE(entry, StubRoutines::dtan());
 319 
 320 #undef FUNCTION_CASE
 321 
 322   // Soft float adds more runtime names.
 323   return pd_name_for_address(entry);
 324 }
 325 
 326 
 327 JRT_ENTRY(void, Runtime1::new_instance(JavaThread* thread, Klass* klass))
 328   NOT_PRODUCT(_new_instance_slowcase_cnt++;)
 329 
 330   assert(klass->is_klass(), "not a class");
 331   Handle holder(THREAD, klass->klass_holder()); // keep the klass alive
 332   InstanceKlass* h = InstanceKlass::cast(klass);
 333   h->check_valid_for_instantiation(true, CHECK);
 334   // make sure klass is initialized
 335   h->initialize(CHECK);
 336   // allocate instance and return via TLS
 337   oop obj = h->allocate_instance(CHECK);
 338   thread->set_vm_result(obj);
 339 JRT_END
 340 
 341 
 342 JRT_ENTRY(void, Runtime1::new_type_array(JavaThread* thread, Klass* klass, jint length))
 343   NOT_PRODUCT(_new_type_array_slowcase_cnt++;)
 344   // Note: no handle for klass needed since they are not used
 345   //       anymore after new_typeArray() and no GC can happen before.
 346   //       (This may have to change if this code changes!)
 347   assert(klass->is_klass(), "not a class");
 348   BasicType elt_type = TypeArrayKlass::cast(klass)->element_type();
 349   oop obj = oopFactory::new_typeArray(elt_type, length, CHECK);
 350   thread->set_vm_result(obj);
 351   // This is pretty rare but this runtime patch is stressful to deoptimization
 352   // if we deoptimize here so force a deopt to stress the path.
 353   if (DeoptimizeALot) {
 354     deopt_caller();
 355   }
 356 
 357 JRT_END
 358 
 359 
 360 JRT_ENTRY(void, Runtime1::new_object_array(JavaThread* thread, Klass* array_klass, jint length))
 361   NOT_PRODUCT(_new_object_array_slowcase_cnt++;)
 362 
 363   // Note: no handle for klass needed since they are not used
 364   //       anymore after new_objArray() and no GC can happen before.
 365   //       (This may have to change if this code changes!)
 366   assert(array_klass->is_klass(), "not a class");
 367   Handle holder(THREAD, array_klass->klass_holder()); // keep the klass alive
 368   Klass* elem_klass = ObjArrayKlass::cast(array_klass)->element_klass();
 369   objArrayOop obj = oopFactory::new_objArray(elem_klass, length, CHECK);
 370   thread->set_vm_result(obj);
 371   // This is pretty rare but this runtime patch is stressful to deoptimization
 372   // if we deoptimize here so force a deopt to stress the path.
 373   if (DeoptimizeALot) {
 374     deopt_caller();
 375   }
 376 JRT_END
 377 
 378 
 379 JRT_ENTRY(void, Runtime1::new_multi_array(JavaThread* thread, Klass* klass, int rank, jint* dims))
 380   NOT_PRODUCT(_new_multi_array_slowcase_cnt++;)
 381 
 382   assert(klass->is_klass(), "not a class");
 383   assert(rank >= 1, "rank must be nonzero");
 384   Handle holder(THREAD, klass->klass_holder()); // keep the klass alive
 385   oop obj = ArrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK);
 386   thread->set_vm_result(obj);
 387 JRT_END
 388 
 389 
 390 JRT_ENTRY(void, Runtime1::unimplemented_entry(JavaThread* thread, StubID id))
 391   tty->print_cr("Runtime1::entry_for(%d) returned unimplemented entry point", id);
 392 JRT_END
 393 
 394 
 395 JRT_ENTRY(void, Runtime1::throw_array_store_exception(JavaThread* thread, oopDesc* obj))
 396   ResourceMark rm(thread);
 397   const char* klass_name = obj->klass()->external_name();
 398   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayStoreException(), klass_name);
 399 JRT_END
 400 
 401 
 402 // counter_overflow() is called from within C1-compiled methods. The enclosing method is the method
 403 // associated with the top activation record. The inlinee (that is possibly included in the enclosing
 404 // method) method oop is passed as an argument. In order to do that it is embedded in the code as
 405 // a constant.
 406 static nmethod* counter_overflow_helper(JavaThread* THREAD, int branch_bci, Method* m) {
 407   nmethod* osr_nm = NULL;
 408   methodHandle method(THREAD, m);
 409 
 410   RegisterMap map(THREAD, false);
 411   frame fr =  THREAD->last_frame().sender(&map);
 412   nmethod* nm = (nmethod*) fr.cb();
 413   assert(nm!= NULL && nm->is_nmethod(), "Sanity check");
 414   methodHandle enclosing_method(THREAD, nm->method());
 415 
 416   CompLevel level = (CompLevel)nm->comp_level();
 417   int bci = InvocationEntryBci;
 418   if (branch_bci != InvocationEntryBci) {
 419     // Compute destination bci
 420     address pc = method()->code_base() + branch_bci;
 421     Bytecodes::Code branch = Bytecodes::code_at(method(), pc);
 422     int offset = 0;
 423     switch (branch) {
 424       case Bytecodes::_if_icmplt: case Bytecodes::_iflt:
 425       case Bytecodes::_if_icmpgt: case Bytecodes::_ifgt:
 426       case Bytecodes::_if_icmple: case Bytecodes::_ifle:
 427       case Bytecodes::_if_icmpge: case Bytecodes::_ifge:
 428       case Bytecodes::_if_icmpeq: case Bytecodes::_if_acmpeq: case Bytecodes::_ifeq:
 429       case Bytecodes::_if_icmpne: case Bytecodes::_if_acmpne: case Bytecodes::_ifne:
 430       case Bytecodes::_ifnull: case Bytecodes::_ifnonnull: case Bytecodes::_goto:
 431         offset = (int16_t)Bytes::get_Java_u2(pc + 1);
 432         break;
 433       case Bytecodes::_goto_w:
 434         offset = Bytes::get_Java_u4(pc + 1);
 435         break;
 436       default: ;
 437     }
 438     bci = branch_bci + offset;
 439   }
 440   assert(!HAS_PENDING_EXCEPTION, "Should not have any exceptions pending");
 441   osr_nm = CompilationPolicy::policy()->event(enclosing_method, method, branch_bci, bci, level, nm, THREAD);
 442   assert(!HAS_PENDING_EXCEPTION, "Event handler should not throw any exceptions");
 443   return osr_nm;
 444 }
 445 
 446 JRT_BLOCK_ENTRY(address, Runtime1::counter_overflow(JavaThread* thread, int bci, Method* method))
 447   nmethod* osr_nm;
 448   JRT_BLOCK
 449     osr_nm = counter_overflow_helper(thread, bci, method);
 450     if (osr_nm != NULL) {
 451       RegisterMap map(thread, false);
 452       frame fr =  thread->last_frame().sender(&map);
 453       Deoptimization::deoptimize_frame(thread, fr.id());
 454     }
 455   JRT_BLOCK_END
 456   return NULL;
 457 JRT_END
 458 
 459 extern void vm_exit(int code);
 460 
 461 // Enter this method from compiled code handler below. This is where we transition
 462 // to VM mode. This is done as a helper routine so that the method called directly
 463 // from compiled code does not have to transition to VM. This allows the entry
 464 // method to see if the nmethod that we have just looked up a handler for has
 465 // been deoptimized while we were in the vm. This simplifies the assembly code
 466 // cpu directories.
 467 //
 468 // We are entering here from exception stub (via the entry method below)
 469 // If there is a compiled exception handler in this method, we will continue there;
 470 // otherwise we will unwind the stack and continue at the caller of top frame method
 471 // Note: we enter in Java using a special JRT wrapper. This wrapper allows us to
 472 // control the area where we can allow a safepoint. After we exit the safepoint area we can
 473 // check to see if the handler we are going to return is now in a nmethod that has
 474 // been deoptimized. If that is the case we return the deopt blob
 475 // unpack_with_exception entry instead. This makes life for the exception blob easier
 476 // because making that same check and diverting is painful from assembly language.
 477 JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* thread, oopDesc* ex, address pc, nmethod*& nm))
 478   // Reset method handle flag.
 479   thread->set_is_method_handle_return(false);
 480 
 481   Handle exception(thread, ex);
 482   nm = CodeCache::find_nmethod(pc);
 483   assert(nm != NULL, "this is not an nmethod");
 484   // Adjust the pc as needed/
 485   if (nm->is_deopt_pc(pc)) {
 486     RegisterMap map(thread, false);
 487     frame exception_frame = thread->last_frame().sender(&map);
 488     // if the frame isn't deopted then pc must not correspond to the caller of last_frame
 489     assert(exception_frame.is_deoptimized_frame(), "must be deopted");
 490     pc = exception_frame.pc();
 491   }
 492 #ifdef ASSERT
 493   assert(exception.not_null(), "NULL exceptions should be handled by throw_exception");
 494   assert(exception->is_oop(), "just checking");
 495   // Check that exception is a subclass of Throwable, otherwise we have a VerifyError
 496   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
 497     if (ExitVMOnVerifyError) vm_exit(-1);
 498     ShouldNotReachHere();
 499   }
 500 #endif
 501 
 502   // Check the stack guard pages and reenable them if necessary and there is
 503   // enough space on the stack to do so.  Use fast exceptions only if the guard
 504   // pages are enabled.
 505   bool guard_pages_enabled = thread->stack_guards_enabled();
 506   if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 507 
 508   if (JvmtiExport::can_post_on_exceptions()) {
 509     // To ensure correct notification of exception catches and throws
 510     // we have to deoptimize here.  If we attempted to notify the
 511     // catches and throws during this exception lookup it's possible
 512     // we could deoptimize on the way out of the VM and end back in
 513     // the interpreter at the throw site.  This would result in double
 514     // notifications since the interpreter would also notify about
 515     // these same catches and throws as it unwound the frame.
 516 
 517     RegisterMap reg_map(thread);
 518     frame stub_frame = thread->last_frame();
 519     frame caller_frame = stub_frame.sender(&reg_map);
 520 
 521     // We don't really want to deoptimize the nmethod itself since we
 522     // can actually continue in the exception handler ourselves but I
 523     // don't see an easy way to have the desired effect.
 524     Deoptimization::deoptimize_frame(thread, caller_frame.id());
 525     assert(caller_is_deopted(), "Must be deoptimized");
 526 
 527     return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 528   }
 529 
 530   // ExceptionCache is used only for exceptions at call sites and not for implicit exceptions
 531   if (guard_pages_enabled) {
 532     address fast_continuation = nm->handler_for_exception_and_pc(exception, pc);
 533     if (fast_continuation != NULL) {
 534       // Set flag if return address is a method handle call site.
 535       thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
 536       return fast_continuation;
 537     }
 538   }
 539 
 540   // If the stack guard pages are enabled, check whether there is a handler in
 541   // the current method.  Otherwise (guard pages disabled), force an unwind and
 542   // skip the exception cache update (i.e., just leave continuation==NULL).
 543   address continuation = NULL;
 544   if (guard_pages_enabled) {
 545 
 546     // New exception handling mechanism can support inlined methods
 547     // with exception handlers since the mappings are from PC to PC
 548 
 549     // debugging support
 550     // tracing
 551     if (log_is_enabled(Info, exceptions)) {
 552       ResourceMark rm;
 553       stringStream tempst;
 554       tempst.print("compiled method <%s>\n"
 555                    " at PC" INTPTR_FORMAT " for thread " INTPTR_FORMAT,
 556                    nm->method()->print_value_string(), p2i(pc), p2i(thread));
 557       Exceptions::log_exception(exception, tempst);
 558     }
 559     // for AbortVMOnException flag
 560     Exceptions::debug_check_abort(exception);
 561 
 562     // Clear out the exception oop and pc since looking up an
 563     // exception handler can cause class loading, which might throw an
 564     // exception and those fields are expected to be clear during
 565     // normal bytecode execution.
 566     thread->clear_exception_oop_and_pc();
 567 
 568     bool recursive_exception = false;
 569     continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false, recursive_exception);
 570     // If an exception was thrown during exception dispatch, the exception oop may have changed
 571     thread->set_exception_oop(exception());
 572     thread->set_exception_pc(pc);
 573 
 574     // the exception cache is used only by non-implicit exceptions
 575     // Update the exception cache only when there didn't happen
 576     // another exception during the computation of the compiled
 577     // exception handler. Checking for exception oop equality is not
 578     // sufficient because some exceptions are pre-allocated and reused.
 579     if (continuation != NULL && !recursive_exception) {
 580       nm->add_handler_for_exception_and_pc(exception, pc, continuation);
 581     }
 582   }
 583 
 584   thread->set_vm_result(exception());
 585   // Set flag if return address is a method handle call site.
 586   thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
 587 
 588   if (log_is_enabled(Info, exceptions)) {
 589     ResourceMark rm;
 590     log_info(exceptions)("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT
 591                          " for exception thrown at PC " PTR_FORMAT,
 592                          p2i(thread), p2i(continuation), p2i(pc));
 593   }
 594 
 595   return continuation;
 596 JRT_END
 597 
 598 // Enter this method from compiled code only if there is a Java exception handler
 599 // in the method handling the exception.
 600 // We are entering here from exception stub. We don't do a normal VM transition here.
 601 // We do it in a helper. This is so we can check to see if the nmethod we have just
 602 // searched for an exception handler has been deoptimized in the meantime.
 603 address Runtime1::exception_handler_for_pc(JavaThread* thread) {
 604   oop exception = thread->exception_oop();
 605   address pc = thread->exception_pc();
 606   // Still in Java mode
 607   DEBUG_ONLY(ResetNoHandleMark rnhm);
 608   nmethod* nm = NULL;
 609   address continuation = NULL;
 610   {
 611     // Enter VM mode by calling the helper
 612     ResetNoHandleMark rnhm;
 613     continuation = exception_handler_for_pc_helper(thread, exception, pc, nm);
 614   }
 615   // Back in JAVA, use no oops DON'T safepoint
 616 
 617   // Now check to see if the nmethod we were called from is now deoptimized.
 618   // If so we must return to the deopt blob and deoptimize the nmethod
 619   if (nm != NULL && caller_is_deopted()) {
 620     continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 621   }
 622 
 623   assert(continuation != NULL, "no handler found");
 624   return continuation;
 625 }
 626 
 627 
 628 JRT_ENTRY(void, Runtime1::throw_range_check_exception(JavaThread* thread, int index))
 629   NOT_PRODUCT(_throw_range_check_exception_count++;)
 630   char message[jintAsStringSize];
 631   sprintf(message, "%d", index);
 632   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), message);
 633 JRT_END
 634 
 635 
 636 JRT_ENTRY(void, Runtime1::throw_index_exception(JavaThread* thread, int index))
 637   NOT_PRODUCT(_throw_index_exception_count++;)
 638   char message[16];
 639   sprintf(message, "%d", index);
 640   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IndexOutOfBoundsException(), message);
 641 JRT_END
 642 
 643 
 644 JRT_ENTRY(void, Runtime1::throw_div0_exception(JavaThread* thread))
 645   NOT_PRODUCT(_throw_div0_exception_count++;)
 646   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 647 JRT_END
 648 
 649 
 650 JRT_ENTRY(void, Runtime1::throw_null_pointer_exception(JavaThread* thread))
 651   NOT_PRODUCT(_throw_null_pointer_exception_count++;)
 652   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 653 JRT_END
 654 
 655 
 656 JRT_ENTRY(void, Runtime1::throw_class_cast_exception(JavaThread* thread, oopDesc* object))
 657   NOT_PRODUCT(_throw_class_cast_exception_count++;)
 658   ResourceMark rm(thread);
 659   char* message = SharedRuntime::generate_class_cast_message(
 660     thread, object->klass());
 661   SharedRuntime::throw_and_post_jvmti_exception(
 662     thread, vmSymbols::java_lang_ClassCastException(), message);
 663 JRT_END
 664 
 665 
 666 JRT_ENTRY(void, Runtime1::throw_incompatible_class_change_error(JavaThread* thread))
 667   NOT_PRODUCT(_throw_incompatible_class_change_error_count++;)
 668   ResourceMark rm(thread);
 669   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError());
 670 JRT_END
 671 
 672 
 673 JRT_ENTRY_NO_ASYNC(void, Runtime1::monitorenter(JavaThread* thread, oopDesc* obj, BasicObjectLock* lock))
 674   NOT_PRODUCT(_monitorenter_slowcase_cnt++;)
 675   if (PrintBiasedLockingStatistics) {
 676     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
 677   }
 678   Handle h_obj(thread, obj);
 679   assert(h_obj()->is_oop(), "must be NULL or an object");
 680   if (UseBiasedLocking) {
 681     // Retry fast entry if bias is revoked to avoid unnecessary inflation
 682     ObjectSynchronizer::fast_enter(h_obj, lock->lock(), true, CHECK);
 683   } else {
 684     if (UseFastLocking) {
 685       // When using fast locking, the compiled code has already tried the fast case
 686       assert(obj == lock->obj(), "must match");
 687       ObjectSynchronizer::slow_enter(h_obj, lock->lock(), THREAD);
 688     } else {
 689       lock->set_obj(obj);
 690       ObjectSynchronizer::fast_enter(h_obj, lock->lock(), false, THREAD);
 691     }
 692   }
 693 JRT_END
 694 
 695 
 696 JRT_LEAF(void, Runtime1::monitorexit(JavaThread* thread, BasicObjectLock* lock))
 697   NOT_PRODUCT(_monitorexit_slowcase_cnt++;)
 698   assert(thread == JavaThread::current(), "threads must correspond");
 699   assert(thread->last_Java_sp(), "last_Java_sp must be set");
 700   // monitorexit is non-blocking (leaf routine) => no exceptions can be thrown
 701   EXCEPTION_MARK;
 702 
 703   oop obj = lock->obj();
 704   assert(obj->is_oop(), "must be NULL or an object");
 705   if (UseFastLocking) {
 706     // When using fast locking, the compiled code has already tried the fast case
 707     ObjectSynchronizer::slow_exit(obj, lock->lock(), THREAD);
 708   } else {
 709     ObjectSynchronizer::fast_exit(obj, lock->lock(), THREAD);
 710   }
 711 JRT_END
 712 
 713 // Cf. OptoRuntime::deoptimize_caller_frame
 714 JRT_ENTRY(void, Runtime1::deoptimize(JavaThread* thread, jint trap_request))
 715   // Called from within the owner thread, so no need for safepoint
 716   RegisterMap reg_map(thread, false);
 717   frame stub_frame = thread->last_frame();
 718   assert(stub_frame.is_runtime_frame(), "Sanity check");
 719   frame caller_frame = stub_frame.sender(&reg_map);
 720   nmethod* nm = caller_frame.cb()->as_nmethod_or_null();
 721   assert(nm != NULL, "Sanity check");
 722   methodHandle method(thread, nm->method());
 723   assert(nm == CodeCache::find_nmethod(caller_frame.pc()), "Should be the same");
 724   Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request);
 725   Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request);
 726 
 727   if (action == Deoptimization::Action_make_not_entrant) {
 728     if (nm->make_not_entrant()) {
 729       if (reason == Deoptimization::Reason_tenured) {
 730         MethodData* trap_mdo = Deoptimization::get_method_data(thread, method, true /*create_if_missing*/);
 731         if (trap_mdo != NULL) {
 732           trap_mdo->inc_tenure_traps();
 733         }
 734       }
 735     }
 736   }
 737 
 738   // Deoptimize the caller frame.
 739   Deoptimization::deoptimize_frame(thread, caller_frame.id());
 740   // Return to the now deoptimized frame.
 741 JRT_END
 742 
 743 
 744 #ifndef DEOPTIMIZE_WHEN_PATCHING
 745 
 746 static Klass* resolve_field_return_klass(const methodHandle& caller, int bci, TRAPS) {
 747   Bytecode_field field_access(caller, bci);
 748   // This can be static or non-static field access
 749   Bytecodes::Code code       = field_access.code();
 750 
 751   // We must load class, initialize class and resolve the field
 752   fieldDescriptor result; // initialize class if needed
 753   constantPoolHandle constants(THREAD, caller->constants());
 754   LinkResolver::resolve_field_access(result, constants, field_access.index(), caller, Bytecodes::java_code(code), CHECK_NULL);
 755   return result.field_holder();
 756 }
 757 
 758 
 759 //
 760 // This routine patches sites where a class wasn't loaded or
 761 // initialized at the time the code was generated.  It handles
 762 // references to classes, fields and forcing of initialization.  Most
 763 // of the cases are straightforward and involving simply forcing
 764 // resolution of a class, rewriting the instruction stream with the
 765 // needed constant and replacing the call in this function with the
 766 // patched code.  The case for static field is more complicated since
 767 // the thread which is in the process of initializing a class can
 768 // access it's static fields but other threads can't so the code
 769 // either has to deoptimize when this case is detected or execute a
 770 // check that the current thread is the initializing thread.  The
 771 // current
 772 //
 773 // Patches basically look like this:
 774 //
 775 //
 776 // patch_site: jmp patch stub     ;; will be patched
 777 // continue:   ...
 778 //             ...
 779 //             ...
 780 //             ...
 781 //
 782 // They have a stub which looks like this:
 783 //
 784 //             ;; patch body
 785 //             movl <const>, reg           (for class constants)
 786 //        <or> movl [reg1 + <const>], reg  (for field offsets)
 787 //        <or> movl reg, [reg1 + <const>]  (for field offsets)
 788 //             <being_init offset> <bytes to copy> <bytes to skip>
 789 // patch_stub: call Runtime1::patch_code (through a runtime stub)
 790 //             jmp patch_site
 791 //
 792 //
 793 // A normal patch is done by rewriting the patch body, usually a move,
 794 // and then copying it into place over top of the jmp instruction
 795 // being careful to flush caches and doing it in an MP-safe way.  The
 796 // constants following the patch body are used to find various pieces
 797 // of the patch relative to the call site for Runtime1::patch_code.
 798 // The case for getstatic and putstatic is more complicated because
 799 // getstatic and putstatic have special semantics when executing while
 800 // the class is being initialized.  getstatic/putstatic on a class
 801 // which is being_initialized may be executed by the initializing
 802 // thread but other threads have to block when they execute it.  This
 803 // is accomplished in compiled code by executing a test of the current
 804 // thread against the initializing thread of the class.  It's emitted
 805 // as boilerplate in their stub which allows the patched code to be
 806 // executed before it's copied back into the main body of the nmethod.
 807 //
 808 // being_init: get_thread(<tmp reg>
 809 //             cmpl [reg1 + <init_thread_offset>], <tmp reg>
 810 //             jne patch_stub
 811 //             movl [reg1 + <const>], reg  (for field offsets)  <or>
 812 //             movl reg, [reg1 + <const>]  (for field offsets)
 813 //             jmp continue
 814 //             <being_init offset> <bytes to copy> <bytes to skip>
 815 // patch_stub: jmp Runtim1::patch_code (through a runtime stub)
 816 //             jmp patch_site
 817 //
 818 // If the class is being initialized the patch body is rewritten and
 819 // the patch site is rewritten to jump to being_init, instead of
 820 // patch_stub.  Whenever this code is executed it checks the current
 821 // thread against the intializing thread so other threads will enter
 822 // the runtime and end up blocked waiting the class to finish
 823 // initializing inside the calls to resolve_field below.  The
 824 // initializing class will continue on it's way.  Once the class is
 825 // fully_initialized, the intializing_thread of the class becomes
 826 // NULL, so the next thread to execute this code will fail the test,
 827 // call into patch_code and complete the patching process by copying
 828 // the patch body back into the main part of the nmethod and resume
 829 // executing.
 830 //
 831 //
 832 
 833 JRT_ENTRY(void, Runtime1::patch_code(JavaThread* thread, Runtime1::StubID stub_id ))
 834   NOT_PRODUCT(_patch_code_slowcase_cnt++;)
 835 
 836   ResourceMark rm(thread);
 837   RegisterMap reg_map(thread, false);
 838   frame runtime_frame = thread->last_frame();
 839   frame caller_frame = runtime_frame.sender(&reg_map);
 840 
 841   // last java frame on stack
 842   vframeStream vfst(thread, true);
 843   assert(!vfst.at_end(), "Java frame must exist");
 844 
 845   methodHandle caller_method(THREAD, vfst.method());
 846   // Note that caller_method->code() may not be same as caller_code because of OSR's
 847   // Note also that in the presence of inlining it is not guaranteed
 848   // that caller_method() == caller_code->method()
 849 
 850   int bci = vfst.bci();
 851   Bytecodes::Code code = caller_method()->java_code_at(bci);
 852 
 853   // this is used by assertions in the access_field_patching_id
 854   BasicType patch_field_type = T_ILLEGAL;
 855   bool deoptimize_for_volatile = false;
 856   bool deoptimize_for_atomic = false;
 857   int patch_field_offset = -1;
 858   Klass* init_klass = NULL; // klass needed by load_klass_patching code
 859   Klass* load_klass = NULL; // klass needed by load_klass_patching code
 860   Handle mirror(THREAD, NULL);                    // oop needed by load_mirror_patching code
 861   Handle appendix(THREAD, NULL);                  // oop needed by appendix_patching code
 862   bool load_klass_or_mirror_patch_id =
 863     (stub_id == Runtime1::load_klass_patching_id || stub_id == Runtime1::load_mirror_patching_id);
 864 
 865   if (stub_id == Runtime1::access_field_patching_id) {
 866 
 867     Bytecode_field field_access(caller_method, bci);
 868     fieldDescriptor result; // initialize class if needed
 869     Bytecodes::Code code = field_access.code();
 870     constantPoolHandle constants(THREAD, caller_method->constants());
 871     LinkResolver::resolve_field_access(result, constants, field_access.index(), caller_method, Bytecodes::java_code(code), CHECK);
 872     patch_field_offset = result.offset();
 873 
 874     // If we're patching a field which is volatile then at compile it
 875     // must not have been know to be volatile, so the generated code
 876     // isn't correct for a volatile reference.  The nmethod has to be
 877     // deoptimized so that the code can be regenerated correctly.
 878     // This check is only needed for access_field_patching since this
 879     // is the path for patching field offsets.  load_klass is only
 880     // used for patching references to oops which don't need special
 881     // handling in the volatile case.
 882 
 883     deoptimize_for_volatile = result.access_flags().is_volatile();
 884 
 885     // If we are patching a field which should be atomic, then
 886     // the generated code is not correct either, force deoptimizing.
 887     // We need to only cover T_LONG and T_DOUBLE fields, as we can
 888     // break access atomicity only for them.
 889 
 890     // Strictly speaking, the deoptimizaation on 64-bit platforms
 891     // is unnecessary, and T_LONG stores on 32-bit platforms need
 892     // to be handled by special patching code when AlwaysAtomicAccesses
 893     // becomes product feature. At this point, we are still going
 894     // for the deoptimization for consistency against volatile
 895     // accesses.
 896 
 897     patch_field_type = result.field_type();
 898     deoptimize_for_atomic = (AlwaysAtomicAccesses && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG));
 899 
 900   } else if (load_klass_or_mirror_patch_id) {
 901     Klass* k = NULL;
 902     switch (code) {
 903       case Bytecodes::_putstatic:
 904       case Bytecodes::_getstatic:
 905         { Klass* klass = resolve_field_return_klass(caller_method, bci, CHECK);
 906           init_klass = klass;
 907           mirror = Handle(THREAD, klass->java_mirror());
 908         }
 909         break;
 910       case Bytecodes::_new:
 911         { Bytecode_new bnew(caller_method(), caller_method->bcp_from(bci));
 912           k = caller_method->constants()->klass_at(bnew.index(), CHECK);
 913         }
 914         break;
 915       case Bytecodes::_multianewarray:
 916         { Bytecode_multianewarray mna(caller_method(), caller_method->bcp_from(bci));
 917           k = caller_method->constants()->klass_at(mna.index(), CHECK);
 918         }
 919         break;
 920       case Bytecodes::_instanceof:
 921         { Bytecode_instanceof io(caller_method(), caller_method->bcp_from(bci));
 922           k = caller_method->constants()->klass_at(io.index(), CHECK);
 923         }
 924         break;
 925       case Bytecodes::_checkcast:
 926         { Bytecode_checkcast cc(caller_method(), caller_method->bcp_from(bci));
 927           k = caller_method->constants()->klass_at(cc.index(), CHECK);
 928         }
 929         break;
 930       case Bytecodes::_anewarray:
 931         { Bytecode_anewarray anew(caller_method(), caller_method->bcp_from(bci));
 932           Klass* ek = caller_method->constants()->klass_at(anew.index(), CHECK);
 933           k = ek->array_klass(CHECK);
 934         }
 935         break;
 936       case Bytecodes::_ldc:
 937       case Bytecodes::_ldc_w:
 938         {
 939           Bytecode_loadconstant cc(caller_method, bci);
 940           oop m = cc.resolve_constant(CHECK);
 941           mirror = Handle(THREAD, m);
 942         }
 943         break;
 944       default: fatal("unexpected bytecode for load_klass_or_mirror_patch_id");
 945     }
 946     load_klass = k;
 947   } else if (stub_id == load_appendix_patching_id) {
 948     Bytecode_invoke bytecode(caller_method, bci);
 949     Bytecodes::Code bc = bytecode.invoke_code();
 950 
 951     CallInfo info;
 952     constantPoolHandle pool(thread, caller_method->constants());
 953     int index = bytecode.index();
 954     LinkResolver::resolve_invoke(info, Handle(), pool, index, bc, CHECK);
 955     switch (bc) {
 956       case Bytecodes::_invokehandle: {
 957         int cache_index = ConstantPool::decode_cpcache_index(index, true);
 958         assert(cache_index >= 0 && cache_index < pool->cache()->length(), "unexpected cache index");
 959         ConstantPoolCacheEntry* cpce = pool->cache()->entry_at(cache_index);
 960         cpce->set_method_handle(pool, info);
 961         appendix = Handle(THREAD, cpce->appendix_if_resolved(pool)); // just in case somebody already resolved the entry
 962         break;
 963       }
 964       case Bytecodes::_invokedynamic: {
 965         ConstantPoolCacheEntry* cpce = pool->invokedynamic_cp_cache_entry_at(index);
 966         cpce->set_dynamic_call(pool, info);
 967         appendix = Handle(THREAD, cpce->appendix_if_resolved(pool)); // just in case somebody already resolved the entry
 968         break;
 969       }
 970       default: fatal("unexpected bytecode for load_appendix_patching_id");
 971     }
 972   } else {
 973     ShouldNotReachHere();
 974   }
 975 
 976   if (deoptimize_for_volatile || deoptimize_for_atomic) {
 977     // At compile time we assumed the field wasn't volatile/atomic but after
 978     // loading it turns out it was volatile/atomic so we have to throw the
 979     // compiled code out and let it be regenerated.
 980     if (TracePatching) {
 981       if (deoptimize_for_volatile) {
 982         tty->print_cr("Deoptimizing for patching volatile field reference");
 983       }
 984       if (deoptimize_for_atomic) {
 985         tty->print_cr("Deoptimizing for patching atomic field reference");
 986       }
 987     }
 988 
 989     // It's possible the nmethod was invalidated in the last
 990     // safepoint, but if it's still alive then make it not_entrant.
 991     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
 992     if (nm != NULL) {
 993       nm->make_not_entrant();
 994     }
 995 
 996     Deoptimization::deoptimize_frame(thread, caller_frame.id());
 997 
 998     // Return to the now deoptimized frame.
 999   }
1000 
1001   // Now copy code back
1002 
1003   {
1004     MutexLockerEx ml_patch (Patching_lock, Mutex::_no_safepoint_check_flag);
1005     //
1006     // Deoptimization may have happened while we waited for the lock.
1007     // In that case we don't bother to do any patching we just return
1008     // and let the deopt happen
1009     if (!caller_is_deopted()) {
1010       NativeGeneralJump* jump = nativeGeneralJump_at(caller_frame.pc());
1011       address instr_pc = jump->jump_destination();
1012       NativeInstruction* ni = nativeInstruction_at(instr_pc);
1013       if (ni->is_jump() ) {
1014         // the jump has not been patched yet
1015         // The jump destination is slow case and therefore not part of the stubs
1016         // (stubs are only for StaticCalls)
1017 
1018         // format of buffer
1019         //    ....
1020         //    instr byte 0     <-- copy_buff
1021         //    instr byte 1
1022         //    ..
1023         //    instr byte n-1
1024         //      n
1025         //    ....             <-- call destination
1026 
1027         address stub_location = caller_frame.pc() + PatchingStub::patch_info_offset();
1028         unsigned char* byte_count = (unsigned char*) (stub_location - 1);
1029         unsigned char* byte_skip = (unsigned char*) (stub_location - 2);
1030         unsigned char* being_initialized_entry_offset = (unsigned char*) (stub_location - 3);
1031         address copy_buff = stub_location - *byte_skip - *byte_count;
1032         address being_initialized_entry = stub_location - *being_initialized_entry_offset;
1033         if (TracePatching) {
1034           ttyLocker ttyl;
1035           tty->print_cr(" Patching %s at bci %d at address " INTPTR_FORMAT "  (%s)", Bytecodes::name(code), bci,
1036                         p2i(instr_pc), (stub_id == Runtime1::access_field_patching_id) ? "field" : "klass");
1037           nmethod* caller_code = CodeCache::find_nmethod(caller_frame.pc());
1038           assert(caller_code != NULL, "nmethod not found");
1039 
1040           // NOTE we use pc() not original_pc() because we already know they are
1041           // identical otherwise we'd have never entered this block of code
1042 
1043           const ImmutableOopMap* map = caller_code->oop_map_for_return_address(caller_frame.pc());
1044           assert(map != NULL, "null check");
1045           map->print();
1046           tty->cr();
1047 
1048           Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1049         }
1050         // depending on the code below, do_patch says whether to copy the patch body back into the nmethod
1051         bool do_patch = true;
1052         if (stub_id == Runtime1::access_field_patching_id) {
1053           // The offset may not be correct if the class was not loaded at code generation time.
1054           // Set it now.
1055           NativeMovRegMem* n_move = nativeMovRegMem_at(copy_buff);
1056           assert(n_move->offset() == 0 || (n_move->offset() == 4 && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)), "illegal offset for type");
1057           assert(patch_field_offset >= 0, "illegal offset");
1058           n_move->add_offset_in_bytes(patch_field_offset);
1059         } else if (load_klass_or_mirror_patch_id) {
1060           // If a getstatic or putstatic is referencing a klass which
1061           // isn't fully initialized, the patch body isn't copied into
1062           // place until initialization is complete.  In this case the
1063           // patch site is setup so that any threads besides the
1064           // initializing thread are forced to come into the VM and
1065           // block.
1066           do_patch = (code != Bytecodes::_getstatic && code != Bytecodes::_putstatic) ||
1067                      InstanceKlass::cast(init_klass)->is_initialized();
1068           NativeGeneralJump* jump = nativeGeneralJump_at(instr_pc);
1069           if (jump->jump_destination() == being_initialized_entry) {
1070             assert(do_patch == true, "initialization must be complete at this point");
1071           } else {
1072             // patch the instruction <move reg, klass>
1073             NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
1074 
1075             assert(n_copy->data() == 0 ||
1076                    n_copy->data() == (intptr_t)Universe::non_oop_word(),
1077                    "illegal init value");
1078             if (stub_id == Runtime1::load_klass_patching_id) {
1079               assert(load_klass != NULL, "klass not set");
1080               n_copy->set_data((intx) (load_klass));
1081             } else {
1082               assert(mirror() != NULL, "klass not set");
1083               // Don't need a G1 pre-barrier here since we assert above that data isn't an oop.
1084               n_copy->set_data(cast_from_oop<intx>(mirror()));
1085             }
1086 
1087             if (TracePatching) {
1088               Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1089             }
1090           }
1091         } else if (stub_id == Runtime1::load_appendix_patching_id) {
1092           NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
1093           assert(n_copy->data() == 0 ||
1094                  n_copy->data() == (intptr_t)Universe::non_oop_word(),
1095                  "illegal init value");
1096           n_copy->set_data(cast_from_oop<intx>(appendix()));
1097 
1098           if (TracePatching) {
1099             Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1100           }
1101         } else {
1102           ShouldNotReachHere();
1103         }
1104 
1105 #if defined(SPARC) || defined(PPC32)
1106         if (load_klass_or_mirror_patch_id ||
1107             stub_id == Runtime1::load_appendix_patching_id) {
1108           // Update the location in the nmethod with the proper
1109           // metadata.  When the code was generated, a NULL was stuffed
1110           // in the metadata table and that table needs to be update to
1111           // have the right value.  On intel the value is kept
1112           // directly in the instruction instead of in the metadata
1113           // table, so set_data above effectively updated the value.
1114           nmethod* nm = CodeCache::find_nmethod(instr_pc);
1115           assert(nm != NULL, "invalid nmethod_pc");
1116           RelocIterator mds(nm, copy_buff, copy_buff + 1);
1117           bool found = false;
1118           while (mds.next() && !found) {
1119             if (mds.type() == relocInfo::oop_type) {
1120               assert(stub_id == Runtime1::load_mirror_patching_id ||
1121                      stub_id == Runtime1::load_appendix_patching_id, "wrong stub id");
1122               oop_Relocation* r = mds.oop_reloc();
1123               oop* oop_adr = r->oop_addr();
1124               *oop_adr = stub_id == Runtime1::load_mirror_patching_id ? mirror() : appendix();
1125               r->fix_oop_relocation();
1126               found = true;
1127             } else if (mds.type() == relocInfo::metadata_type) {
1128               assert(stub_id == Runtime1::load_klass_patching_id, "wrong stub id");
1129               metadata_Relocation* r = mds.metadata_reloc();
1130               Metadata** metadata_adr = r->metadata_addr();
1131               *metadata_adr = load_klass;
1132               r->fix_metadata_relocation();
1133               found = true;
1134             }
1135           }
1136           assert(found, "the metadata must exist!");
1137         }
1138 #endif
1139         if (do_patch) {
1140           // replace instructions
1141           // first replace the tail, then the call
1142 #ifdef ARM
1143           if((load_klass_or_mirror_patch_id ||
1144               stub_id == Runtime1::load_appendix_patching_id) &&
1145               nativeMovConstReg_at(copy_buff)->is_pc_relative()) {
1146             nmethod* nm = CodeCache::find_nmethod(instr_pc);
1147             address addr = NULL;
1148             assert(nm != NULL, "invalid nmethod_pc");
1149             RelocIterator mds(nm, copy_buff, copy_buff + 1);
1150             while (mds.next()) {
1151               if (mds.type() == relocInfo::oop_type) {
1152                 assert(stub_id == Runtime1::load_mirror_patching_id ||
1153                        stub_id == Runtime1::load_appendix_patching_id, "wrong stub id");
1154                 oop_Relocation* r = mds.oop_reloc();
1155                 addr = (address)r->oop_addr();
1156                 break;
1157               } else if (mds.type() == relocInfo::metadata_type) {
1158                 assert(stub_id == Runtime1::load_klass_patching_id, "wrong stub id");
1159                 metadata_Relocation* r = mds.metadata_reloc();
1160                 addr = (address)r->metadata_addr();
1161                 break;
1162               }
1163             }
1164             assert(addr != NULL, "metadata relocation must exist");
1165             copy_buff -= *byte_count;
1166             NativeMovConstReg* n_copy2 = nativeMovConstReg_at(copy_buff);
1167             n_copy2->set_pc_relative_offset(addr, instr_pc);
1168           }
1169 #endif
1170 
1171           for (int i = NativeGeneralJump::instruction_size; i < *byte_count; i++) {
1172             address ptr = copy_buff + i;
1173             int a_byte = (*ptr) & 0xFF;
1174             address dst = instr_pc + i;
1175             *(unsigned char*)dst = (unsigned char) a_byte;
1176           }
1177           ICache::invalidate_range(instr_pc, *byte_count);
1178           NativeGeneralJump::replace_mt_safe(instr_pc, copy_buff);
1179 
1180           if (load_klass_or_mirror_patch_id ||
1181               stub_id == Runtime1::load_appendix_patching_id) {
1182             relocInfo::relocType rtype =
1183               (stub_id == Runtime1::load_klass_patching_id) ?
1184                                    relocInfo::metadata_type :
1185                                    relocInfo::oop_type;
1186             // update relocInfo to metadata
1187             nmethod* nm = CodeCache::find_nmethod(instr_pc);
1188             assert(nm != NULL, "invalid nmethod_pc");
1189 
1190             // The old patch site is now a move instruction so update
1191             // the reloc info so that it will get updated during
1192             // future GCs.
1193             RelocIterator iter(nm, (address)instr_pc, (address)(instr_pc + 1));
1194             relocInfo::change_reloc_info_for_address(&iter, (address) instr_pc,
1195                                                      relocInfo::none, rtype);
1196 #ifdef SPARC
1197             // Sparc takes two relocations for an metadata so update the second one.
1198             address instr_pc2 = instr_pc + NativeMovConstReg::add_offset;
1199             RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
1200             relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2,
1201                                                      relocInfo::none, rtype);
1202 #endif
1203 #ifdef PPC32
1204           { address instr_pc2 = instr_pc + NativeMovConstReg::lo_offset;
1205             RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
1206             relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2,
1207                                                      relocInfo::none, rtype);
1208           }
1209 #endif
1210           }
1211 
1212         } else {
1213           ICache::invalidate_range(copy_buff, *byte_count);
1214           NativeGeneralJump::insert_unconditional(instr_pc, being_initialized_entry);
1215         }
1216       }
1217     }
1218   }
1219 
1220   // If we are patching in a non-perm oop, make sure the nmethod
1221   // is on the right list.
1222   if (ScavengeRootsInCode) {
1223     MutexLockerEx ml_code (CodeCache_lock, Mutex::_no_safepoint_check_flag);
1224     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1225     guarantee(nm != NULL, "only nmethods can contain non-perm oops");
1226     if (!nm->on_scavenge_root_list() &&
1227         ((mirror.not_null() && mirror()->is_scavengable()) ||
1228          (appendix.not_null() && appendix->is_scavengable()))) {
1229       CodeCache::add_scavenge_root_nmethod(nm);
1230     }
1231 
1232     // Since we've patched some oops in the nmethod,
1233     // (re)register it with the heap.
1234     Universe::heap()->register_nmethod(nm);
1235   }
1236 JRT_END
1237 
1238 #else // DEOPTIMIZE_WHEN_PATCHING
1239 
1240 JRT_ENTRY(void, Runtime1::patch_code(JavaThread* thread, Runtime1::StubID stub_id ))
1241   RegisterMap reg_map(thread, false);
1242 
1243   NOT_PRODUCT(_patch_code_slowcase_cnt++;)
1244   if (TracePatching) {
1245     tty->print_cr("Deoptimizing because patch is needed");
1246   }
1247 
1248   frame runtime_frame = thread->last_frame();
1249   frame caller_frame = runtime_frame.sender(&reg_map);
1250 
1251   // It's possible the nmethod was invalidated in the last
1252   // safepoint, but if it's still alive then make it not_entrant.
1253   nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1254   if (nm != NULL) {
1255     nm->make_not_entrant();
1256   }
1257 
1258   Deoptimization::deoptimize_frame(thread, caller_frame.id());
1259 
1260   // Return to the now deoptimized frame.
1261 JRT_END
1262 
1263 #endif // DEOPTIMIZE_WHEN_PATCHING
1264 
1265 //
1266 // Entry point for compiled code. We want to patch a nmethod.
1267 // We don't do a normal VM transition here because we want to
1268 // know after the patching is complete and any safepoint(s) are taken
1269 // if the calling nmethod was deoptimized. We do this by calling a
1270 // helper method which does the normal VM transition and when it
1271 // completes we can check for deoptimization. This simplifies the
1272 // assembly code in the cpu directories.
1273 //
1274 int Runtime1::move_klass_patching(JavaThread* thread) {
1275 //
1276 // NOTE: we are still in Java
1277 //
1278   Thread* THREAD = thread;
1279   debug_only(NoHandleMark nhm;)
1280   {
1281     // Enter VM mode
1282 
1283     ResetNoHandleMark rnhm;
1284     patch_code(thread, load_klass_patching_id);
1285   }
1286   // Back in JAVA, use no oops DON'T safepoint
1287 
1288   // Return true if calling code is deoptimized
1289 
1290   return caller_is_deopted();
1291 }
1292 
1293 int Runtime1::move_mirror_patching(JavaThread* thread) {
1294 //
1295 // NOTE: we are still in Java
1296 //
1297   Thread* THREAD = thread;
1298   debug_only(NoHandleMark nhm;)
1299   {
1300     // Enter VM mode
1301 
1302     ResetNoHandleMark rnhm;
1303     patch_code(thread, load_mirror_patching_id);
1304   }
1305   // Back in JAVA, use no oops DON'T safepoint
1306 
1307   // Return true if calling code is deoptimized
1308 
1309   return caller_is_deopted();
1310 }
1311 
1312 int Runtime1::move_appendix_patching(JavaThread* thread) {
1313 //
1314 // NOTE: we are still in Java
1315 //
1316   Thread* THREAD = thread;
1317   debug_only(NoHandleMark nhm;)
1318   {
1319     // Enter VM mode
1320 
1321     ResetNoHandleMark rnhm;
1322     patch_code(thread, load_appendix_patching_id);
1323   }
1324   // Back in JAVA, use no oops DON'T safepoint
1325 
1326   // Return true if calling code is deoptimized
1327 
1328   return caller_is_deopted();
1329 }
1330 //
1331 // Entry point for compiled code. We want to patch a nmethod.
1332 // We don't do a normal VM transition here because we want to
1333 // know after the patching is complete and any safepoint(s) are taken
1334 // if the calling nmethod was deoptimized. We do this by calling a
1335 // helper method which does the normal VM transition and when it
1336 // completes we can check for deoptimization. This simplifies the
1337 // assembly code in the cpu directories.
1338 //
1339 
1340 int Runtime1::access_field_patching(JavaThread* thread) {
1341 //
1342 // NOTE: we are still in Java
1343 //
1344   Thread* THREAD = thread;
1345   debug_only(NoHandleMark nhm;)
1346   {
1347     // Enter VM mode
1348 
1349     ResetNoHandleMark rnhm;
1350     patch_code(thread, access_field_patching_id);
1351   }
1352   // Back in JAVA, use no oops DON'T safepoint
1353 
1354   // Return true if calling code is deoptimized
1355 
1356   return caller_is_deopted();
1357 JRT_END
1358 
1359 
1360 JRT_LEAF(void, Runtime1::trace_block_entry(jint block_id))
1361   // for now we just print out the block id
1362   tty->print("%d ", block_id);
1363 JRT_END
1364 
1365 
1366 // Array copy return codes.
1367 enum {
1368   ac_failed = -1, // arraycopy failed
1369   ac_ok = 0       // arraycopy succeeded
1370 };
1371 
1372 
1373 // Below length is the # elements copied.
1374 template <class T> int obj_arraycopy_work(oopDesc* src, T* src_addr,
1375                                           oopDesc* dst, T* dst_addr,
1376                                           int length) {
1377 
1378   // For performance reasons, we assume we are using a card marking write
1379   // barrier. The assert will fail if this is not the case.
1380   // Note that we use the non-virtual inlineable variant of write_ref_array.
1381   BarrierSet* bs = Universe::heap()->barrier_set();
1382   assert(bs->has_write_ref_array_opt(), "Barrier set must have ref array opt");
1383   assert(bs->has_write_ref_array_pre_opt(), "For pre-barrier as well.");
1384   if (src == dst) {
1385     // same object, no check
1386     bs->write_ref_array_pre(dst_addr, length);
1387     Copy::conjoint_oops_atomic(src_addr, dst_addr, length);
1388     bs->write_ref_array((HeapWord*)dst_addr, length);
1389     return ac_ok;
1390   } else {
1391     Klass* bound = ObjArrayKlass::cast(dst->klass())->element_klass();
1392     Klass* stype = ObjArrayKlass::cast(src->klass())->element_klass();
1393     if (stype == bound || stype->is_subtype_of(bound)) {
1394       // Elements are guaranteed to be subtypes, so no check necessary
1395       bs->write_ref_array_pre(dst_addr, length);
1396       Copy::conjoint_oops_atomic(src_addr, dst_addr, length);
1397       bs->write_ref_array((HeapWord*)dst_addr, length);
1398       return ac_ok;
1399     }
1400   }
1401   return ac_failed;
1402 }
1403 
1404 // fast and direct copy of arrays; returning -1, means that an exception may be thrown
1405 // and we did not copy anything
1406 JRT_LEAF(int, Runtime1::arraycopy(oopDesc* src, int src_pos, oopDesc* dst, int dst_pos, int length))
1407 #ifndef PRODUCT
1408   _generic_arraycopy_cnt++;        // Slow-path oop array copy
1409 #endif
1410 
1411   if (src == NULL || dst == NULL || src_pos < 0 || dst_pos < 0 || length < 0) return ac_failed;
1412   if (!dst->is_array() || !src->is_array()) return ac_failed;
1413   if ((unsigned int) arrayOop(src)->length() < (unsigned int)src_pos + (unsigned int)length) return ac_failed;
1414   if ((unsigned int) arrayOop(dst)->length() < (unsigned int)dst_pos + (unsigned int)length) return ac_failed;
1415 
1416   if (length == 0) return ac_ok;
1417   if (src->is_typeArray()) {
1418     Klass* klass_oop = src->klass();
1419     if (klass_oop != dst->klass()) return ac_failed;
1420     TypeArrayKlass* klass = TypeArrayKlass::cast(klass_oop);
1421     const int l2es = klass->log2_element_size();
1422     const int ihs = klass->array_header_in_bytes() / wordSize;
1423     char* src_addr = (char*) ((oopDesc**)src + ihs) + (src_pos << l2es);
1424     char* dst_addr = (char*) ((oopDesc**)dst + ihs) + (dst_pos << l2es);
1425     // Potential problem: memmove is not guaranteed to be word atomic
1426     // Revisit in Merlin
1427     memmove(dst_addr, src_addr, length << l2es);
1428     return ac_ok;
1429   } else if (src->is_objArray() && dst->is_objArray()) {
1430     if (UseCompressedOops) {
1431       narrowOop *src_addr  = objArrayOop(src)->obj_at_addr<narrowOop>(src_pos);
1432       narrowOop *dst_addr  = objArrayOop(dst)->obj_at_addr<narrowOop>(dst_pos);
1433       return obj_arraycopy_work(src, src_addr, dst, dst_addr, length);
1434     } else {
1435       oop *src_addr  = objArrayOop(src)->obj_at_addr<oop>(src_pos);
1436       oop *dst_addr  = objArrayOop(dst)->obj_at_addr<oop>(dst_pos);
1437       return obj_arraycopy_work(src, src_addr, dst, dst_addr, length);
1438     }
1439   }
1440   return ac_failed;
1441 JRT_END
1442 
1443 
1444 JRT_LEAF(int, Runtime1::is_instance_of(oopDesc* mirror, oopDesc* obj))
1445   // had to return int instead of bool, otherwise there may be a mismatch
1446   // between the C calling convention and the Java one.
1447   // e.g., on x86, GCC may clear only %al when returning a bool false, but
1448   // JVM takes the whole %eax as the return value, which may misinterpret
1449   // the return value as a boolean true.
1450 
1451   assert(mirror != NULL, "should null-check on mirror before calling");
1452   Klass* k = java_lang_Class::as_Klass(mirror);
1453   return (k != NULL && obj != NULL && obj->is_a(k)) ? 1 : 0;
1454 JRT_END
1455 
1456 JRT_ENTRY(void, Runtime1::predicate_failed_trap(JavaThread* thread))
1457   ResourceMark rm;
1458 
1459   assert(!TieredCompilation, "incompatible with tiered compilation");
1460 
1461   RegisterMap reg_map(thread, false);
1462   frame runtime_frame = thread->last_frame();
1463   frame caller_frame = runtime_frame.sender(&reg_map);
1464 
1465   nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1466   assert (nm != NULL, "no more nmethod?");
1467   nm->make_not_entrant();
1468 
1469   methodHandle m(nm->method());
1470   MethodData* mdo = m->method_data();
1471 
1472   if (mdo == NULL && !HAS_PENDING_EXCEPTION) {
1473     // Build an MDO.  Ignore errors like OutOfMemory;
1474     // that simply means we won't have an MDO to update.
1475     Method::build_interpreter_method_data(m, THREAD);
1476     if (HAS_PENDING_EXCEPTION) {
1477       assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
1478       CLEAR_PENDING_EXCEPTION;
1479     }
1480     mdo = m->method_data();
1481   }
1482 
1483   if (mdo != NULL) {
1484     mdo->inc_trap_count(Deoptimization::Reason_none);
1485   }
1486 
1487   if (TracePredicateFailedTraps) {
1488     stringStream ss1, ss2;
1489     vframeStream vfst(thread);
1490     methodHandle inlinee = methodHandle(vfst.method());
1491     inlinee->print_short_name(&ss1);
1492     m->print_short_name(&ss2);
1493     tty->print_cr("Predicate failed trap in method %s at bci %d inlined in %s at pc " INTPTR_FORMAT, ss1.as_string(), vfst.bci(), ss2.as_string(), p2i(caller_frame.pc()));
1494   }
1495 
1496 
1497   Deoptimization::deoptimize_frame(thread, caller_frame.id());
1498 
1499 JRT_END
1500 
1501 #ifndef PRODUCT
1502 void Runtime1::print_statistics() {
1503   tty->print_cr("C1 Runtime statistics:");
1504   tty->print_cr(" _resolve_invoke_virtual_cnt:     %d", SharedRuntime::_resolve_virtual_ctr);
1505   tty->print_cr(" _resolve_invoke_opt_virtual_cnt: %d", SharedRuntime::_resolve_opt_virtual_ctr);
1506   tty->print_cr(" _resolve_invoke_static_cnt:      %d", SharedRuntime::_resolve_static_ctr);
1507   tty->print_cr(" _handle_wrong_method_cnt:        %d", SharedRuntime::_wrong_method_ctr);
1508   tty->print_cr(" _ic_miss_cnt:                    %d", SharedRuntime::_ic_miss_ctr);
1509   tty->print_cr(" _generic_arraycopy_cnt:          %d", _generic_arraycopy_cnt);
1510   tty->print_cr(" _generic_arraycopystub_cnt:      %d", _generic_arraycopystub_cnt);
1511   tty->print_cr(" _byte_arraycopy_cnt:             %d", _byte_arraycopy_stub_cnt);
1512   tty->print_cr(" _short_arraycopy_cnt:            %d", _short_arraycopy_stub_cnt);
1513   tty->print_cr(" _int_arraycopy_cnt:              %d", _int_arraycopy_stub_cnt);
1514   tty->print_cr(" _long_arraycopy_cnt:             %d", _long_arraycopy_stub_cnt);
1515   tty->print_cr(" _oop_arraycopy_cnt:              %d", _oop_arraycopy_stub_cnt);
1516   tty->print_cr(" _arraycopy_slowcase_cnt:         %d", _arraycopy_slowcase_cnt);
1517   tty->print_cr(" _arraycopy_checkcast_cnt:        %d", _arraycopy_checkcast_cnt);
1518   tty->print_cr(" _arraycopy_checkcast_attempt_cnt:%d", _arraycopy_checkcast_attempt_cnt);
1519 
1520   tty->print_cr(" _new_type_array_slowcase_cnt:    %d", _new_type_array_slowcase_cnt);
1521   tty->print_cr(" _new_object_array_slowcase_cnt:  %d", _new_object_array_slowcase_cnt);
1522   tty->print_cr(" _new_instance_slowcase_cnt:      %d", _new_instance_slowcase_cnt);
1523   tty->print_cr(" _new_multi_array_slowcase_cnt:   %d", _new_multi_array_slowcase_cnt);
1524   tty->print_cr(" _monitorenter_slowcase_cnt:      %d", _monitorenter_slowcase_cnt);
1525   tty->print_cr(" _monitorexit_slowcase_cnt:       %d", _monitorexit_slowcase_cnt);
1526   tty->print_cr(" _patch_code_slowcase_cnt:        %d", _patch_code_slowcase_cnt);
1527 
1528   tty->print_cr(" _throw_range_check_exception_count:            %d:", _throw_range_check_exception_count);
1529   tty->print_cr(" _throw_index_exception_count:                  %d:", _throw_index_exception_count);
1530   tty->print_cr(" _throw_div0_exception_count:                   %d:", _throw_div0_exception_count);
1531   tty->print_cr(" _throw_null_pointer_exception_count:           %d:", _throw_null_pointer_exception_count);
1532   tty->print_cr(" _throw_class_cast_exception_count:             %d:", _throw_class_cast_exception_count);
1533   tty->print_cr(" _throw_incompatible_class_change_error_count:  %d:", _throw_incompatible_class_change_error_count);
1534   tty->print_cr(" _throw_array_store_exception_count:            %d:", _throw_array_store_exception_count);
1535   tty->print_cr(" _throw_count:                                  %d:", _throw_count);
1536 
1537   SharedRuntime::print_ic_miss_histogram();
1538   tty->cr();
1539 }
1540 #endif // PRODUCT