1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/javaClasses.inline.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "compiler/compileBroker.hpp"
  31 #include "compiler/disassembler.hpp"
  32 #include "gc/shared/collectedHeap.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "interpreter/interpreterRuntime.hpp"
  35 #include "interpreter/linkResolver.hpp"
  36 #include "interpreter/templateTable.hpp"
  37 #include "logging/log.hpp"
  38 #include "memory/oopFactory.hpp"
  39 #include "memory/resourceArea.hpp"
  40 #include "memory/universe.inline.hpp"
  41 #include "oops/constantPool.hpp"
  42 #include "oops/instanceKlass.hpp"
  43 #include "oops/methodData.hpp"
  44 #include "oops/objArrayKlass.hpp"
  45 #include "oops/objArrayOop.inline.hpp"
  46 #include "oops/oop.inline.hpp"
  47 #include "oops/symbol.hpp"
  48 #include "prims/jvmtiExport.hpp"
  49 #include "prims/nativeLookup.hpp"
  50 #include "runtime/atomic.hpp"
  51 #include "runtime/biasedLocking.hpp"
  52 #include "runtime/compilationPolicy.hpp"
  53 #include "runtime/deoptimization.hpp"
  54 #include "runtime/fieldDescriptor.hpp"
  55 #include "runtime/handles.inline.hpp"
  56 #include "runtime/icache.hpp"
  57 #include "runtime/interfaceSupport.hpp"
  58 #include "runtime/java.hpp"
  59 #include "runtime/jfieldIDWorkaround.hpp"
  60 #include "runtime/osThread.hpp"
  61 #include "runtime/sharedRuntime.hpp"
  62 #include "runtime/stubRoutines.hpp"
  63 #include "runtime/synchronizer.hpp"
  64 #include "runtime/threadCritical.hpp"
  65 #include "utilities/align.hpp"
  66 #include "utilities/events.hpp"
  67 #ifdef COMPILER2
  68 #include "opto/runtime.hpp"
  69 #endif
  70 
  71 class UnlockFlagSaver {
  72   private:
  73     JavaThread* _thread;
  74     bool _do_not_unlock;
  75   public:
  76     UnlockFlagSaver(JavaThread* t) {
  77       _thread = t;
  78       _do_not_unlock = t->do_not_unlock_if_synchronized();
  79       t->set_do_not_unlock_if_synchronized(false);
  80     }
  81     ~UnlockFlagSaver() {
  82       _thread->set_do_not_unlock_if_synchronized(_do_not_unlock);
  83     }
  84 };
  85 
  86 //------------------------------------------------------------------------------------------------------------------------
  87 // State accessors
  88 
  89 void InterpreterRuntime::set_bcp_and_mdp(address bcp, JavaThread *thread) {
  90   last_frame(thread).interpreter_frame_set_bcp(bcp);
  91   if (ProfileInterpreter) {
  92     // ProfileTraps uses MDOs independently of ProfileInterpreter.
  93     // That is why we must check both ProfileInterpreter and mdo != NULL.
  94     MethodData* mdo = last_frame(thread).interpreter_frame_method()->method_data();
  95     if (mdo != NULL) {
  96       NEEDS_CLEANUP;
  97       last_frame(thread).interpreter_frame_set_mdp(mdo->bci_to_dp(last_frame(thread).interpreter_frame_bci()));
  98     }
  99   }
 100 }
 101 
 102 //------------------------------------------------------------------------------------------------------------------------
 103 // Constants
 104 
 105 
 106 IRT_ENTRY(void, InterpreterRuntime::ldc(JavaThread* thread, bool wide))
 107   // access constant pool
 108   ConstantPool* pool = method(thread)->constants();
 109   int index = wide ? get_index_u2(thread, Bytecodes::_ldc_w) : get_index_u1(thread, Bytecodes::_ldc);
 110   constantTag tag = pool->tag_at(index);
 111 
 112   assert (tag.is_unresolved_klass() || tag.is_klass(), "wrong ldc call");
 113   Klass* klass = pool->klass_at(index, CHECK);
 114     oop java_class = klass->java_mirror();
 115     thread->set_vm_result(java_class);
 116 IRT_END
 117 
 118 IRT_ENTRY(void, InterpreterRuntime::resolve_ldc(JavaThread* thread, Bytecodes::Code bytecode)) {
 119   assert(bytecode == Bytecodes::_fast_aldc ||
 120          bytecode == Bytecodes::_fast_aldc_w, "wrong bc");
 121   ResourceMark rm(thread);
 122   methodHandle m (thread, method(thread));
 123   Bytecode_loadconstant ldc(m, bci(thread));
 124   oop result = ldc.resolve_constant(CHECK);
 125 #ifdef ASSERT
 126   {
 127     // The bytecode wrappers aren't GC-safe so construct a new one
 128     Bytecode_loadconstant ldc2(m, bci(thread));
 129     oop coop = m->constants()->resolved_references()->obj_at(ldc2.cache_index());
 130     assert(result == coop, "expected result for assembly code");
 131   }
 132 #endif
 133   thread->set_vm_result(result);
 134 }
 135 IRT_END
 136 
 137 
 138 //------------------------------------------------------------------------------------------------------------------------
 139 // Allocation
 140 
 141 IRT_ENTRY(void, InterpreterRuntime::_new(JavaThread* thread, ConstantPool* pool, int index))
 142   Klass* k = pool->klass_at(index, CHECK);
 143   InstanceKlass* klass = InstanceKlass::cast(k);
 144 
 145   // Make sure we are not instantiating an abstract klass
 146   klass->check_valid_for_instantiation(true, CHECK);
 147 
 148   // Make sure klass is initialized
 149   klass->initialize(CHECK);
 150 
 151   // At this point the class may not be fully initialized
 152   // because of recursive initialization. If it is fully
 153   // initialized & has_finalized is not set, we rewrite
 154   // it into its fast version (Note: no locking is needed
 155   // here since this is an atomic byte write and can be
 156   // done more than once).
 157   //
 158   // Note: In case of classes with has_finalized we don't
 159   //       rewrite since that saves us an extra check in
 160   //       the fast version which then would call the
 161   //       slow version anyway (and do a call back into
 162   //       Java).
 163   //       If we have a breakpoint, then we don't rewrite
 164   //       because the _breakpoint bytecode would be lost.
 165   oop obj = klass->allocate_instance(CHECK);
 166   thread->set_vm_result(obj);
 167 IRT_END
 168 
 169 
 170 IRT_ENTRY(void, InterpreterRuntime::newarray(JavaThread* thread, BasicType type, jint size))
 171   oop obj = oopFactory::new_typeArray(type, size, CHECK);
 172   thread->set_vm_result(obj);
 173 IRT_END
 174 
 175 
 176 IRT_ENTRY(void, InterpreterRuntime::anewarray(JavaThread* thread, ConstantPool* pool, int index, jint size))
 177   Klass*    klass = pool->klass_at(index, CHECK);
 178   objArrayOop obj = oopFactory::new_objArray(klass, size, CHECK);
 179   thread->set_vm_result(obj);
 180 IRT_END
 181 
 182 
 183 IRT_ENTRY(void, InterpreterRuntime::multianewarray(JavaThread* thread, jint* first_size_address))
 184   // We may want to pass in more arguments - could make this slightly faster
 185   ConstantPool* constants = method(thread)->constants();
 186   int          i = get_index_u2(thread, Bytecodes::_multianewarray);
 187   Klass* klass = constants->klass_at(i, CHECK);
 188   int   nof_dims = number_of_dimensions(thread);
 189   assert(klass->is_klass(), "not a class");
 190   assert(nof_dims >= 1, "multianewarray rank must be nonzero");
 191 
 192   // We must create an array of jints to pass to multi_allocate.
 193   ResourceMark rm(thread);
 194   const int small_dims = 10;
 195   jint dim_array[small_dims];
 196   jint *dims = &dim_array[0];
 197   if (nof_dims > small_dims) {
 198     dims = (jint*) NEW_RESOURCE_ARRAY(jint, nof_dims);
 199   }
 200   for (int index = 0; index < nof_dims; index++) {
 201     // offset from first_size_address is addressed as local[index]
 202     int n = Interpreter::local_offset_in_bytes(index)/jintSize;
 203     dims[index] = first_size_address[n];
 204   }
 205   oop obj = ArrayKlass::cast(klass)->multi_allocate(nof_dims, dims, CHECK);
 206   thread->set_vm_result(obj);
 207 IRT_END
 208 
 209 
 210 IRT_ENTRY(void, InterpreterRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 211   assert(obj->is_oop(), "must be a valid oop");
 212   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
 213   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
 214 IRT_END
 215 
 216 
 217 // Quicken instance-of and check-cast bytecodes
 218 IRT_ENTRY(void, InterpreterRuntime::quicken_io_cc(JavaThread* thread))
 219   // Force resolving; quicken the bytecode
 220   int which = get_index_u2(thread, Bytecodes::_checkcast);
 221   ConstantPool* cpool = method(thread)->constants();
 222   // We'd expect to assert that we're only here to quicken bytecodes, but in a multithreaded
 223   // program we might have seen an unquick'd bytecode in the interpreter but have another
 224   // thread quicken the bytecode before we get here.
 225   // assert( cpool->tag_at(which).is_unresolved_klass(), "should only come here to quicken bytecodes" );
 226   Klass* klass = cpool->klass_at(which, CHECK);
 227   thread->set_vm_result_2(klass);
 228 IRT_END
 229 
 230 
 231 //------------------------------------------------------------------------------------------------------------------------
 232 // Exceptions
 233 
 234 void InterpreterRuntime::note_trap_inner(JavaThread* thread, int reason,
 235                                          methodHandle trap_method, int trap_bci, TRAPS) {
 236   if (trap_method.not_null()) {
 237     MethodData* trap_mdo = trap_method->method_data();
 238     if (trap_mdo == NULL) {
 239       Method::build_interpreter_method_data(trap_method, THREAD);
 240       if (HAS_PENDING_EXCEPTION) {
 241         assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())),
 242                "we expect only an OOM error here");
 243         CLEAR_PENDING_EXCEPTION;
 244       }
 245       trap_mdo = trap_method->method_data();
 246       // and fall through...
 247     }
 248     if (trap_mdo != NULL) {
 249       // Update per-method count of trap events.  The interpreter
 250       // is updating the MDO to simulate the effect of compiler traps.
 251       Deoptimization::update_method_data_from_interpreter(trap_mdo, trap_bci, reason);
 252     }
 253   }
 254 }
 255 
 256 // Assume the compiler is (or will be) interested in this event.
 257 // If necessary, create an MDO to hold the information, and record it.
 258 void InterpreterRuntime::note_trap(JavaThread* thread, int reason, TRAPS) {
 259   assert(ProfileTraps, "call me only if profiling");
 260   methodHandle trap_method(thread, method(thread));
 261   int trap_bci = trap_method->bci_from(bcp(thread));
 262   note_trap_inner(thread, reason, trap_method, trap_bci, THREAD);
 263 }
 264 
 265 #ifdef CC_INTERP
 266 // As legacy note_trap, but we have more arguments.
 267 IRT_ENTRY(void, InterpreterRuntime::note_trap(JavaThread* thread, int reason, Method *method, int trap_bci))
 268   methodHandle trap_method(method);
 269   note_trap_inner(thread, reason, trap_method, trap_bci, THREAD);
 270 IRT_END
 271 
 272 // Class Deoptimization is not visible in BytecodeInterpreter, so we need a wrapper
 273 // for each exception.
 274 void InterpreterRuntime::note_nullCheck_trap(JavaThread* thread, Method *method, int trap_bci)
 275   { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_null_check, method, trap_bci); }
 276 void InterpreterRuntime::note_div0Check_trap(JavaThread* thread, Method *method, int trap_bci)
 277   { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_div0_check, method, trap_bci); }
 278 void InterpreterRuntime::note_rangeCheck_trap(JavaThread* thread, Method *method, int trap_bci)
 279   { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_range_check, method, trap_bci); }
 280 void InterpreterRuntime::note_classCheck_trap(JavaThread* thread, Method *method, int trap_bci)
 281   { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_class_check, method, trap_bci); }
 282 void InterpreterRuntime::note_arrayCheck_trap(JavaThread* thread, Method *method, int trap_bci)
 283   { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_array_check, method, trap_bci); }
 284 #endif // CC_INTERP
 285 
 286 
 287 static Handle get_preinitialized_exception(Klass* k, TRAPS) {
 288   // get klass
 289   InstanceKlass* klass = InstanceKlass::cast(k);
 290   assert(klass->is_initialized(),
 291          "this klass should have been initialized during VM initialization");
 292   // create instance - do not call constructor since we may have no
 293   // (java) stack space left (should assert constructor is empty)
 294   Handle exception;
 295   oop exception_oop = klass->allocate_instance(CHECK_(exception));
 296   exception = Handle(THREAD, exception_oop);
 297   if (StackTraceInThrowable) {
 298     java_lang_Throwable::fill_in_stack_trace(exception);
 299   }
 300   return exception;
 301 }
 302 
 303 // Special handling for stack overflow: since we don't have any (java) stack
 304 // space left we use the pre-allocated & pre-initialized StackOverflowError
 305 // klass to create an stack overflow error instance.  We do not call its
 306 // constructor for the same reason (it is empty, anyway).
 307 IRT_ENTRY(void, InterpreterRuntime::throw_StackOverflowError(JavaThread* thread))
 308   Handle exception = get_preinitialized_exception(
 309                                  SystemDictionary::StackOverflowError_klass(),
 310                                  CHECK);
 311   // Increment counter for hs_err file reporting
 312   Atomic::inc(&Exceptions::_stack_overflow_errors);
 313   THROW_HANDLE(exception);
 314 IRT_END
 315 
 316 IRT_ENTRY(void, InterpreterRuntime::throw_delayed_StackOverflowError(JavaThread* thread))
 317   Handle exception = get_preinitialized_exception(
 318                                  SystemDictionary::StackOverflowError_klass(),
 319                                  CHECK);
 320   java_lang_Throwable::set_message(exception(),
 321           Universe::delayed_stack_overflow_error_message());
 322   // Increment counter for hs_err file reporting
 323   Atomic::inc(&Exceptions::_stack_overflow_errors);
 324   THROW_HANDLE(exception);
 325 IRT_END
 326 
 327 IRT_ENTRY(void, InterpreterRuntime::create_exception(JavaThread* thread, char* name, char* message))
 328   // lookup exception klass
 329   TempNewSymbol s = SymbolTable::new_symbol(name, CHECK);
 330   if (ProfileTraps) {
 331     if (s == vmSymbols::java_lang_ArithmeticException()) {
 332       note_trap(thread, Deoptimization::Reason_div0_check, CHECK);
 333     } else if (s == vmSymbols::java_lang_NullPointerException()) {
 334       note_trap(thread, Deoptimization::Reason_null_check, CHECK);
 335     }
 336   }
 337   // create exception
 338   Handle exception = Exceptions::new_exception(thread, s, message);
 339   thread->set_vm_result(exception());
 340 IRT_END
 341 
 342 
 343 IRT_ENTRY(void, InterpreterRuntime::create_klass_exception(JavaThread* thread, char* name, oopDesc* obj))
 344   ResourceMark rm(thread);
 345   const char* klass_name = obj->klass()->external_name();
 346   // lookup exception klass
 347   TempNewSymbol s = SymbolTable::new_symbol(name, CHECK);
 348   if (ProfileTraps) {
 349     note_trap(thread, Deoptimization::Reason_class_check, CHECK);
 350   }
 351   // create exception, with klass name as detail message
 352   Handle exception = Exceptions::new_exception(thread, s, klass_name);
 353   thread->set_vm_result(exception());
 354 IRT_END
 355 
 356 
 357 IRT_ENTRY(void, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException(JavaThread* thread, char* name, jint index))
 358   char message[jintAsStringSize];
 359   // lookup exception klass
 360   TempNewSymbol s = SymbolTable::new_symbol(name, CHECK);
 361   if (ProfileTraps) {
 362     note_trap(thread, Deoptimization::Reason_range_check, CHECK);
 363   }
 364   // create exception
 365   sprintf(message, "%d", index);
 366   THROW_MSG(s, message);
 367 IRT_END
 368 
 369 IRT_ENTRY(void, InterpreterRuntime::throw_ClassCastException(
 370   JavaThread* thread, oopDesc* obj))
 371 
 372   ResourceMark rm(thread);
 373   char* message = SharedRuntime::generate_class_cast_message(
 374     thread, obj->klass());
 375 
 376   if (ProfileTraps) {
 377     note_trap(thread, Deoptimization::Reason_class_check, CHECK);
 378   }
 379 
 380   // create exception
 381   THROW_MSG(vmSymbols::java_lang_ClassCastException(), message);
 382 IRT_END
 383 
 384 // exception_handler_for_exception(...) returns the continuation address,
 385 // the exception oop (via TLS) and sets the bci/bcp for the continuation.
 386 // The exception oop is returned to make sure it is preserved over GC (it
 387 // is only on the stack if the exception was thrown explicitly via athrow).
 388 // During this operation, the expression stack contains the values for the
 389 // bci where the exception happened. If the exception was propagated back
 390 // from a call, the expression stack contains the values for the bci at the
 391 // invoke w/o arguments (i.e., as if one were inside the call).
 392 IRT_ENTRY(address, InterpreterRuntime::exception_handler_for_exception(JavaThread* thread, oopDesc* exception))
 393 
 394   Handle             h_exception(thread, exception);
 395   methodHandle       h_method   (thread, method(thread));
 396   constantPoolHandle h_constants(thread, h_method->constants());
 397   bool               should_repeat;
 398   int                handler_bci;
 399   int                current_bci = bci(thread);
 400 
 401   if (thread->frames_to_pop_failed_realloc() > 0) {
 402     // Allocation of scalar replaced object used in this frame
 403     // failed. Unconditionally pop the frame.
 404     thread->dec_frames_to_pop_failed_realloc();
 405     thread->set_vm_result(h_exception());
 406     // If the method is synchronized we already unlocked the monitor
 407     // during deoptimization so the interpreter needs to skip it when
 408     // the frame is popped.
 409     thread->set_do_not_unlock_if_synchronized(true);
 410 #ifdef CC_INTERP
 411     return (address) -1;
 412 #else
 413     return Interpreter::remove_activation_entry();
 414 #endif
 415   }
 416 
 417   // Need to do this check first since when _do_not_unlock_if_synchronized
 418   // is set, we don't want to trigger any classloading which may make calls
 419   // into java, or surprisingly find a matching exception handler for bci 0
 420   // since at this moment the method hasn't been "officially" entered yet.
 421   if (thread->do_not_unlock_if_synchronized()) {
 422     ResourceMark rm;
 423     assert(current_bci == 0,  "bci isn't zero for do_not_unlock_if_synchronized");
 424     thread->set_vm_result(exception);
 425 #ifdef CC_INTERP
 426     return (address) -1;
 427 #else
 428     return Interpreter::remove_activation_entry();
 429 #endif
 430   }
 431 
 432   do {
 433     should_repeat = false;
 434 
 435     // assertions
 436 #ifdef ASSERT
 437     assert(h_exception.not_null(), "NULL exceptions should be handled by athrow");
 438     assert(h_exception->is_oop(), "just checking");
 439     // Check that exception is a subclass of Throwable, otherwise we have a VerifyError
 440     if (!(h_exception->is_a(SystemDictionary::Throwable_klass()))) {
 441       if (ExitVMOnVerifyError) vm_exit(-1);
 442       ShouldNotReachHere();
 443     }
 444 #endif
 445 
 446     // tracing
 447     if (log_is_enabled(Info, exceptions)) {
 448       ResourceMark rm(thread);
 449       stringStream tempst;
 450       tempst.print("interpreter method <%s>\n"
 451                    " at bci %d for thread " INTPTR_FORMAT,
 452                    h_method->print_value_string(), current_bci, p2i(thread));
 453       Exceptions::log_exception(h_exception, tempst);
 454     }
 455 // Don't go paging in something which won't be used.
 456 //     else if (extable->length() == 0) {
 457 //       // disabled for now - interpreter is not using shortcut yet
 458 //       // (shortcut is not to call runtime if we have no exception handlers)
 459 //       // warning("performance bug: should not call runtime if method has no exception handlers");
 460 //     }
 461     // for AbortVMOnException flag
 462     Exceptions::debug_check_abort(h_exception);
 463 
 464     // exception handler lookup
 465     Klass* klass = h_exception->klass();
 466     handler_bci = Method::fast_exception_handler_bci_for(h_method, klass, current_bci, THREAD);
 467     if (HAS_PENDING_EXCEPTION) {
 468       // We threw an exception while trying to find the exception handler.
 469       // Transfer the new exception to the exception handle which will
 470       // be set into thread local storage, and do another lookup for an
 471       // exception handler for this exception, this time starting at the
 472       // BCI of the exception handler which caused the exception to be
 473       // thrown (bug 4307310).
 474       h_exception = Handle(THREAD, PENDING_EXCEPTION);
 475       CLEAR_PENDING_EXCEPTION;
 476       if (handler_bci >= 0) {
 477         current_bci = handler_bci;
 478         should_repeat = true;
 479       }
 480     }
 481   } while (should_repeat == true);
 482 
 483 #if INCLUDE_JVMCI
 484   if (EnableJVMCI && h_method->method_data() != NULL) {
 485     ResourceMark rm(thread);
 486     ProfileData* pdata = h_method->method_data()->allocate_bci_to_data(current_bci, NULL);
 487     if (pdata != NULL && pdata->is_BitData()) {
 488       BitData* bit_data = (BitData*) pdata;
 489       bit_data->set_exception_seen();
 490     }
 491   }
 492 #endif
 493 
 494   // notify JVMTI of an exception throw; JVMTI will detect if this is a first
 495   // time throw or a stack unwinding throw and accordingly notify the debugger
 496   if (JvmtiExport::can_post_on_exceptions()) {
 497     JvmtiExport::post_exception_throw(thread, h_method(), bcp(thread), h_exception());
 498   }
 499 
 500 #ifdef CC_INTERP
 501   address continuation = (address)(intptr_t) handler_bci;
 502 #else
 503   address continuation = NULL;
 504 #endif
 505   address handler_pc = NULL;
 506   if (handler_bci < 0 || !thread->reguard_stack((address) &continuation)) {
 507     // Forward exception to callee (leaving bci/bcp untouched) because (a) no
 508     // handler in this method, or (b) after a stack overflow there is not yet
 509     // enough stack space available to reprotect the stack.
 510 #ifndef CC_INTERP
 511     continuation = Interpreter::remove_activation_entry();
 512 #endif
 513 #if COMPILER2_OR_JVMCI
 514     // Count this for compilation purposes
 515     h_method->interpreter_throwout_increment(THREAD);
 516 #endif
 517   } else {
 518     // handler in this method => change bci/bcp to handler bci/bcp and continue there
 519     handler_pc = h_method->code_base() + handler_bci;
 520 #ifndef CC_INTERP
 521     set_bcp_and_mdp(handler_pc, thread);
 522     continuation = Interpreter::dispatch_table(vtos)[*handler_pc];
 523 #endif
 524   }
 525   // notify debugger of an exception catch
 526   // (this is good for exceptions caught in native methods as well)
 527   if (JvmtiExport::can_post_on_exceptions()) {
 528     JvmtiExport::notice_unwind_due_to_exception(thread, h_method(), handler_pc, h_exception(), (handler_pc != NULL));
 529   }
 530 
 531   thread->set_vm_result(h_exception());
 532   return continuation;
 533 IRT_END
 534 
 535 
 536 IRT_ENTRY(void, InterpreterRuntime::throw_pending_exception(JavaThread* thread))
 537   assert(thread->has_pending_exception(), "must only ne called if there's an exception pending");
 538   // nothing to do - eventually we should remove this code entirely (see comments @ call sites)
 539 IRT_END
 540 
 541 
 542 IRT_ENTRY(void, InterpreterRuntime::throw_AbstractMethodError(JavaThread* thread))
 543   THROW(vmSymbols::java_lang_AbstractMethodError());
 544 IRT_END
 545 
 546 
 547 IRT_ENTRY(void, InterpreterRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 548   THROW(vmSymbols::java_lang_IncompatibleClassChangeError());
 549 IRT_END
 550 
 551 
 552 //------------------------------------------------------------------------------------------------------------------------
 553 // Fields
 554 //
 555 
 556 void InterpreterRuntime::resolve_get_put(JavaThread* thread, Bytecodes::Code bytecode) {
 557   Thread* THREAD = thread;
 558   // resolve field
 559   fieldDescriptor info;
 560   constantPoolHandle pool(thread, method(thread)->constants());
 561   methodHandle m(thread, method(thread));
 562   bool is_put    = (bytecode == Bytecodes::_putfield  || bytecode == Bytecodes::_nofast_putfield ||
 563                     bytecode == Bytecodes::_putstatic);
 564   bool is_static = (bytecode == Bytecodes::_getstatic || bytecode == Bytecodes::_putstatic);
 565 
 566   {
 567     JvmtiHideSingleStepping jhss(thread);
 568     LinkResolver::resolve_field_access(info, pool, get_index_u2_cpcache(thread, bytecode),
 569                                        m, bytecode, CHECK);
 570   } // end JvmtiHideSingleStepping
 571 
 572   // check if link resolution caused cpCache to be updated
 573   ConstantPoolCacheEntry* cp_cache_entry = cache_entry(thread);
 574   if (cp_cache_entry->is_resolved(bytecode)) return;
 575 
 576   // compute auxiliary field attributes
 577   TosState state  = as_TosState(info.field_type());
 578 
 579   // Resolution of put instructions on final fields is delayed. That is required so that
 580   // exceptions are thrown at the correct place (when the instruction is actually invoked).
 581   // If we do not resolve an instruction in the current pass, leaving the put_code
 582   // set to zero will cause the next put instruction to the same field to reresolve.
 583 
 584   // Resolution of put instructions to final instance fields with invalid updates (i.e.,
 585   // to final instance fields with updates originating from a method different than <init>)
 586   // is inhibited. A putfield instruction targeting an instance final field must throw
 587   // an IllegalAccessError if the instruction is not in an instance
 588   // initializer method <init>. If resolution were not inhibited, a putfield
 589   // in an initializer method could be resolved in the initializer. Subsequent
 590   // putfield instructions to the same field would then use cached information.
 591   // As a result, those instructions would not pass through the VM. That is,
 592   // checks in resolve_field_access() would not be executed for those instructions
 593   // and the required IllegalAccessError would not be thrown.
 594   //
 595   // Also, we need to delay resolving getstatic and putstatic instructions until the
 596   // class is initialized.  This is required so that access to the static
 597   // field will call the initialization function every time until the class
 598   // is completely initialized ala. in 2.17.5 in JVM Specification.
 599   InstanceKlass* klass = InstanceKlass::cast(info.field_holder());
 600   bool uninitialized_static = is_static && !klass->is_initialized();
 601   bool has_initialized_final_update = info.field_holder()->major_version() >= 53 &&
 602                                       info.has_initialized_final_update();
 603   assert(!(has_initialized_final_update && !info.access_flags().is_final()), "Fields with initialized final updates must be final");
 604 
 605   Bytecodes::Code get_code = (Bytecodes::Code)0;
 606   Bytecodes::Code put_code = (Bytecodes::Code)0;
 607   if (!uninitialized_static) {
 608     get_code = ((is_static) ? Bytecodes::_getstatic : Bytecodes::_getfield);
 609     if ((is_put && !has_initialized_final_update) || !info.access_flags().is_final()) {
 610       put_code = ((is_static) ? Bytecodes::_putstatic : Bytecodes::_putfield);
 611     }
 612   }
 613 
 614   cp_cache_entry->set_field(
 615     get_code,
 616     put_code,
 617     info.field_holder(),
 618     info.index(),
 619     info.offset(),
 620     state,
 621     info.access_flags().is_final(),
 622     info.access_flags().is_volatile(),
 623     pool->pool_holder()
 624   );
 625 }
 626 
 627 
 628 //------------------------------------------------------------------------------------------------------------------------
 629 // Synchronization
 630 //
 631 // The interpreter's synchronization code is factored out so that it can
 632 // be shared by method invocation and synchronized blocks.
 633 //%note synchronization_3
 634 
 635 //%note monitor_1
 636 IRT_ENTRY_NO_ASYNC(void, InterpreterRuntime::monitorenter(JavaThread* thread, BasicObjectLock* elem))
 637 #ifdef ASSERT
 638   thread->last_frame().interpreter_frame_verify_monitor(elem);
 639 #endif
 640   if (PrintBiasedLockingStatistics) {
 641     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
 642   }
 643   Handle h_obj(thread, elem->obj());
 644   assert(Universe::heap()->is_in_reserved_or_null(h_obj()),
 645          "must be NULL or an object");
 646   if (UseBiasedLocking) {
 647     // Retry fast entry if bias is revoked to avoid unnecessary inflation
 648     ObjectSynchronizer::fast_enter(h_obj, elem->lock(), true, CHECK);
 649   } else {
 650     ObjectSynchronizer::slow_enter(h_obj, elem->lock(), CHECK);
 651   }
 652   assert(Universe::heap()->is_in_reserved_or_null(elem->obj()),
 653          "must be NULL or an object");
 654 #ifdef ASSERT
 655   thread->last_frame().interpreter_frame_verify_monitor(elem);
 656 #endif
 657 IRT_END
 658 
 659 
 660 //%note monitor_1
 661 IRT_ENTRY_NO_ASYNC(void, InterpreterRuntime::monitorexit(JavaThread* thread, BasicObjectLock* elem))
 662 #ifdef ASSERT
 663   thread->last_frame().interpreter_frame_verify_monitor(elem);
 664 #endif
 665   Handle h_obj(thread, elem->obj());
 666   assert(Universe::heap()->is_in_reserved_or_null(h_obj()),
 667          "must be NULL or an object");
 668   if (elem == NULL || h_obj()->is_unlocked()) {
 669     THROW(vmSymbols::java_lang_IllegalMonitorStateException());
 670   }
 671   ObjectSynchronizer::slow_exit(h_obj(), elem->lock(), thread);
 672   // Free entry. This must be done here, since a pending exception might be installed on
 673   // exit. If it is not cleared, the exception handling code will try to unlock the monitor again.
 674   elem->set_obj(NULL);
 675 #ifdef ASSERT
 676   thread->last_frame().interpreter_frame_verify_monitor(elem);
 677 #endif
 678 IRT_END
 679 
 680 
 681 IRT_ENTRY(void, InterpreterRuntime::throw_illegal_monitor_state_exception(JavaThread* thread))
 682   THROW(vmSymbols::java_lang_IllegalMonitorStateException());
 683 IRT_END
 684 
 685 
 686 IRT_ENTRY(void, InterpreterRuntime::new_illegal_monitor_state_exception(JavaThread* thread))
 687   // Returns an illegal exception to install into the current thread. The
 688   // pending_exception flag is cleared so normal exception handling does not
 689   // trigger. Any current installed exception will be overwritten. This
 690   // method will be called during an exception unwind.
 691 
 692   assert(!HAS_PENDING_EXCEPTION, "no pending exception");
 693   Handle exception(thread, thread->vm_result());
 694   assert(exception() != NULL, "vm result should be set");
 695   thread->set_vm_result(NULL); // clear vm result before continuing (may cause memory leaks and assert failures)
 696   if (!exception->is_a(SystemDictionary::ThreadDeath_klass())) {
 697     exception = get_preinitialized_exception(
 698                        SystemDictionary::IllegalMonitorStateException_klass(),
 699                        CATCH);
 700   }
 701   thread->set_vm_result(exception());
 702 IRT_END
 703 
 704 
 705 //------------------------------------------------------------------------------------------------------------------------
 706 // Invokes
 707 
 708 IRT_ENTRY(Bytecodes::Code, InterpreterRuntime::get_original_bytecode_at(JavaThread* thread, Method* method, address bcp))
 709   return method->orig_bytecode_at(method->bci_from(bcp));
 710 IRT_END
 711 
 712 IRT_ENTRY(void, InterpreterRuntime::set_original_bytecode_at(JavaThread* thread, Method* method, address bcp, Bytecodes::Code new_code))
 713   method->set_orig_bytecode_at(method->bci_from(bcp), new_code);
 714 IRT_END
 715 
 716 IRT_ENTRY(void, InterpreterRuntime::_breakpoint(JavaThread* thread, Method* method, address bcp))
 717   JvmtiExport::post_raw_breakpoint(thread, method, bcp);
 718 IRT_END
 719 
 720 void InterpreterRuntime::resolve_invoke(JavaThread* thread, Bytecodes::Code bytecode) {
 721   Thread* THREAD = thread;
 722   // extract receiver from the outgoing argument list if necessary
 723   Handle receiver(thread, NULL);
 724   if (bytecode == Bytecodes::_invokevirtual || bytecode == Bytecodes::_invokeinterface ||
 725       bytecode == Bytecodes::_invokespecial) {
 726     ResourceMark rm(thread);
 727     methodHandle m (thread, method(thread));
 728     Bytecode_invoke call(m, bci(thread));
 729     Symbol* signature = call.signature();
 730     receiver = Handle(thread,
 731                   thread->last_frame().interpreter_callee_receiver(signature));
 732     assert(Universe::heap()->is_in_reserved_or_null(receiver()),
 733            "sanity check");
 734     assert(receiver.is_null() ||
 735            !Universe::heap()->is_in_reserved(receiver->klass()),
 736            "sanity check");
 737   }
 738 
 739   // resolve method
 740   CallInfo info;
 741   constantPoolHandle pool(thread, method(thread)->constants());
 742 
 743   {
 744     JvmtiHideSingleStepping jhss(thread);
 745     LinkResolver::resolve_invoke(info, receiver, pool,
 746                                  get_index_u2_cpcache(thread, bytecode), bytecode,
 747                                  CHECK);
 748     if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
 749       int retry_count = 0;
 750       while (info.resolved_method()->is_old()) {
 751         // It is very unlikely that method is redefined more than 100 times
 752         // in the middle of resolve. If it is looping here more than 100 times
 753         // means then there could be a bug here.
 754         guarantee((retry_count++ < 100),
 755                   "Could not resolve to latest version of redefined method");
 756         // method is redefined in the middle of resolve so re-try.
 757         LinkResolver::resolve_invoke(info, receiver, pool,
 758                                      get_index_u2_cpcache(thread, bytecode), bytecode,
 759                                      CHECK);
 760       }
 761     }
 762   } // end JvmtiHideSingleStepping
 763 
 764   // check if link resolution caused cpCache to be updated
 765   ConstantPoolCacheEntry* cp_cache_entry = cache_entry(thread);
 766   if (cp_cache_entry->is_resolved(bytecode)) return;
 767 
 768 #ifdef ASSERT
 769   if (bytecode == Bytecodes::_invokeinterface) {
 770     if (info.resolved_method()->method_holder() ==
 771                                             SystemDictionary::Object_klass()) {
 772       // NOTE: THIS IS A FIX FOR A CORNER CASE in the JVM spec
 773       // (see also CallInfo::set_interface for details)
 774       assert(info.call_kind() == CallInfo::vtable_call ||
 775              info.call_kind() == CallInfo::direct_call, "");
 776       methodHandle rm = info.resolved_method();
 777       assert(rm->is_final() || info.has_vtable_index(),
 778              "should have been set already");
 779     } else if (!info.resolved_method()->has_itable_index()) {
 780       // Resolved something like CharSequence.toString.  Use vtable not itable.
 781       assert(info.call_kind() != CallInfo::itable_call, "");
 782     } else {
 783       // Setup itable entry
 784       assert(info.call_kind() == CallInfo::itable_call, "");
 785       int index = info.resolved_method()->itable_index();
 786       assert(info.itable_index() == index, "");
 787     }
 788   } else if (bytecode == Bytecodes::_invokespecial) {
 789     assert(info.call_kind() == CallInfo::direct_call, "must be direct call");
 790   } else {
 791     assert(info.call_kind() == CallInfo::direct_call ||
 792            info.call_kind() == CallInfo::vtable_call, "");
 793   }
 794 #endif
 795   // Get sender or sender's host_klass, and only set cpCache entry to resolved if
 796   // it is not an interface.  The receiver for invokespecial calls within interface
 797   // methods must be checked for every call.
 798   InstanceKlass* sender = pool->pool_holder();
 799   sender = sender->is_anonymous() ? sender->host_klass() : sender;
 800 
 801   switch (info.call_kind()) {
 802   case CallInfo::direct_call:
 803     cp_cache_entry->set_direct_call(
 804       bytecode,
 805       info.resolved_method(),
 806       sender->is_interface());
 807     break;
 808   case CallInfo::vtable_call:
 809     cp_cache_entry->set_vtable_call(
 810       bytecode,
 811       info.resolved_method(),
 812       info.vtable_index());
 813     break;
 814   case CallInfo::itable_call:
 815     cp_cache_entry->set_itable_call(
 816       bytecode,
 817       info.resolved_method(),
 818       info.itable_index());
 819     break;
 820   default:  ShouldNotReachHere();
 821   }
 822 }
 823 
 824 
 825 // First time execution:  Resolve symbols, create a permanent MethodType object.
 826 void InterpreterRuntime::resolve_invokehandle(JavaThread* thread) {
 827   Thread* THREAD = thread;
 828   const Bytecodes::Code bytecode = Bytecodes::_invokehandle;
 829 
 830   // resolve method
 831   CallInfo info;
 832   constantPoolHandle pool(thread, method(thread)->constants());
 833   {
 834     JvmtiHideSingleStepping jhss(thread);
 835     LinkResolver::resolve_invoke(info, Handle(), pool,
 836                                  get_index_u2_cpcache(thread, bytecode), bytecode,
 837                                  CHECK);
 838   } // end JvmtiHideSingleStepping
 839 
 840   ConstantPoolCacheEntry* cp_cache_entry = cache_entry(thread);
 841   cp_cache_entry->set_method_handle(pool, info);
 842 }
 843 
 844 // First time execution:  Resolve symbols, create a permanent CallSite object.
 845 void InterpreterRuntime::resolve_invokedynamic(JavaThread* thread) {
 846   Thread* THREAD = thread;
 847   const Bytecodes::Code bytecode = Bytecodes::_invokedynamic;
 848 
 849   //TO DO: consider passing BCI to Java.
 850   //  int caller_bci = method(thread)->bci_from(bcp(thread));
 851 
 852   // resolve method
 853   CallInfo info;
 854   constantPoolHandle pool(thread, method(thread)->constants());
 855   int index = get_index_u4(thread, bytecode);
 856   {
 857     JvmtiHideSingleStepping jhss(thread);
 858     LinkResolver::resolve_invoke(info, Handle(), pool,
 859                                  index, bytecode, CHECK);
 860   } // end JvmtiHideSingleStepping
 861 
 862   ConstantPoolCacheEntry* cp_cache_entry = pool->invokedynamic_cp_cache_entry_at(index);
 863   cp_cache_entry->set_dynamic_call(pool, info);
 864 }
 865 
 866 // This function is the interface to the assembly code. It returns the resolved
 867 // cpCache entry.  This doesn't safepoint, but the helper routines safepoint.
 868 // This function will check for redefinition!
 869 IRT_ENTRY(void, InterpreterRuntime::resolve_from_cache(JavaThread* thread, Bytecodes::Code bytecode)) {
 870   switch (bytecode) {
 871   case Bytecodes::_getstatic:
 872   case Bytecodes::_putstatic:
 873   case Bytecodes::_getfield:
 874   case Bytecodes::_putfield:
 875     resolve_get_put(thread, bytecode);
 876     break;
 877   case Bytecodes::_invokevirtual:
 878   case Bytecodes::_invokespecial:
 879   case Bytecodes::_invokestatic:
 880   case Bytecodes::_invokeinterface:
 881     resolve_invoke(thread, bytecode);
 882     break;
 883   case Bytecodes::_invokehandle:
 884     resolve_invokehandle(thread);
 885     break;
 886   case Bytecodes::_invokedynamic:
 887     resolve_invokedynamic(thread);
 888     break;
 889   default:
 890     fatal("unexpected bytecode: %s", Bytecodes::name(bytecode));
 891     break;
 892   }
 893 }
 894 IRT_END
 895 
 896 //------------------------------------------------------------------------------------------------------------------------
 897 // Miscellaneous
 898 
 899 
 900 nmethod* InterpreterRuntime::frequency_counter_overflow(JavaThread* thread, address branch_bcp) {
 901   nmethod* nm = frequency_counter_overflow_inner(thread, branch_bcp);
 902   assert(branch_bcp != NULL || nm == NULL, "always returns null for non OSR requests");
 903   if (branch_bcp != NULL && nm != NULL) {
 904     // This was a successful request for an OSR nmethod.  Because
 905     // frequency_counter_overflow_inner ends with a safepoint check,
 906     // nm could have been unloaded so look it up again.  It's unsafe
 907     // to examine nm directly since it might have been freed and used
 908     // for something else.
 909     frame fr = thread->last_frame();
 910     Method* method =  fr.interpreter_frame_method();
 911     int bci = method->bci_from(fr.interpreter_frame_bcp());
 912     nm = method->lookup_osr_nmethod_for(bci, CompLevel_none, false);
 913   }
 914 #ifndef PRODUCT
 915   if (TraceOnStackReplacement) {
 916     if (nm != NULL) {
 917       tty->print("OSR entry @ pc: " INTPTR_FORMAT ": ", p2i(nm->osr_entry()));
 918       nm->print();
 919     }
 920   }
 921 #endif
 922   return nm;
 923 }
 924 
 925 IRT_ENTRY(nmethod*,
 926           InterpreterRuntime::frequency_counter_overflow_inner(JavaThread* thread, address branch_bcp))
 927   // use UnlockFlagSaver to clear and restore the _do_not_unlock_if_synchronized
 928   // flag, in case this method triggers classloading which will call into Java.
 929   UnlockFlagSaver fs(thread);
 930 
 931   frame fr = thread->last_frame();
 932   assert(fr.is_interpreted_frame(), "must come from interpreter");
 933   methodHandle method(thread, fr.interpreter_frame_method());
 934   const int branch_bci = branch_bcp != NULL ? method->bci_from(branch_bcp) : InvocationEntryBci;
 935   const int bci = branch_bcp != NULL ? method->bci_from(fr.interpreter_frame_bcp()) : InvocationEntryBci;
 936 
 937   assert(!HAS_PENDING_EXCEPTION, "Should not have any exceptions pending");
 938   nmethod* osr_nm = CompilationPolicy::policy()->event(method, method, branch_bci, bci, CompLevel_none, NULL, thread);
 939   assert(!HAS_PENDING_EXCEPTION, "Event handler should not throw any exceptions");
 940 
 941   if (osr_nm != NULL) {
 942     // We may need to do on-stack replacement which requires that no
 943     // monitors in the activation are biased because their
 944     // BasicObjectLocks will need to migrate during OSR. Force
 945     // unbiasing of all monitors in the activation now (even though
 946     // the OSR nmethod might be invalidated) because we don't have a
 947     // safepoint opportunity later once the migration begins.
 948     if (UseBiasedLocking) {
 949       ResourceMark rm;
 950       GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
 951       for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
 952            kptr < fr.interpreter_frame_monitor_begin();
 953            kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
 954         if( kptr->obj() != NULL ) {
 955           objects_to_revoke->append(Handle(THREAD, kptr->obj()));
 956         }
 957       }
 958       BiasedLocking::revoke(objects_to_revoke);
 959     }
 960   }
 961   return osr_nm;
 962 IRT_END
 963 
 964 IRT_LEAF(jint, InterpreterRuntime::bcp_to_di(Method* method, address cur_bcp))
 965   assert(ProfileInterpreter, "must be profiling interpreter");
 966   int bci = method->bci_from(cur_bcp);
 967   MethodData* mdo = method->method_data();
 968   if (mdo == NULL)  return 0;
 969   return mdo->bci_to_di(bci);
 970 IRT_END
 971 
 972 IRT_ENTRY(void, InterpreterRuntime::profile_method(JavaThread* thread))
 973   // use UnlockFlagSaver to clear and restore the _do_not_unlock_if_synchronized
 974   // flag, in case this method triggers classloading which will call into Java.
 975   UnlockFlagSaver fs(thread);
 976 
 977   assert(ProfileInterpreter, "must be profiling interpreter");
 978   frame fr = thread->last_frame();
 979   assert(fr.is_interpreted_frame(), "must come from interpreter");
 980   methodHandle method(thread, fr.interpreter_frame_method());
 981   Method::build_interpreter_method_data(method, THREAD);
 982   if (HAS_PENDING_EXCEPTION) {
 983     assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
 984     CLEAR_PENDING_EXCEPTION;
 985     // and fall through...
 986   }
 987 IRT_END
 988 
 989 
 990 #ifdef ASSERT
 991 IRT_LEAF(void, InterpreterRuntime::verify_mdp(Method* method, address bcp, address mdp))
 992   assert(ProfileInterpreter, "must be profiling interpreter");
 993 
 994   MethodData* mdo = method->method_data();
 995   assert(mdo != NULL, "must not be null");
 996 
 997   int bci = method->bci_from(bcp);
 998 
 999   address mdp2 = mdo->bci_to_dp(bci);
1000   if (mdp != mdp2) {
1001     ResourceMark rm;
1002     ResetNoHandleMark rnm; // In a LEAF entry.
1003     HandleMark hm;
1004     tty->print_cr("FAILED verify : actual mdp %p   expected mdp %p @ bci %d", mdp, mdp2, bci);
1005     int current_di = mdo->dp_to_di(mdp);
1006     int expected_di  = mdo->dp_to_di(mdp2);
1007     tty->print_cr("  actual di %d   expected di %d", current_di, expected_di);
1008     int expected_approx_bci = mdo->data_at(expected_di)->bci();
1009     int approx_bci = -1;
1010     if (current_di >= 0) {
1011       approx_bci = mdo->data_at(current_di)->bci();
1012     }
1013     tty->print_cr("  actual bci is %d  expected bci %d", approx_bci, expected_approx_bci);
1014     mdo->print_on(tty);
1015     method->print_codes();
1016   }
1017   assert(mdp == mdp2, "wrong mdp");
1018 IRT_END
1019 #endif // ASSERT
1020 
1021 IRT_ENTRY(void, InterpreterRuntime::update_mdp_for_ret(JavaThread* thread, int return_bci))
1022   assert(ProfileInterpreter, "must be profiling interpreter");
1023   ResourceMark rm(thread);
1024   HandleMark hm(thread);
1025   frame fr = thread->last_frame();
1026   assert(fr.is_interpreted_frame(), "must come from interpreter");
1027   MethodData* h_mdo = fr.interpreter_frame_method()->method_data();
1028 
1029   // Grab a lock to ensure atomic access to setting the return bci and
1030   // the displacement.  This can block and GC, invalidating all naked oops.
1031   MutexLocker ml(RetData_lock);
1032 
1033   // ProfileData is essentially a wrapper around a derived oop, so we
1034   // need to take the lock before making any ProfileData structures.
1035   ProfileData* data = h_mdo->data_at(h_mdo->dp_to_di(fr.interpreter_frame_mdp()));
1036   guarantee(data != NULL, "profile data must be valid");
1037   RetData* rdata = data->as_RetData();
1038   address new_mdp = rdata->fixup_ret(return_bci, h_mdo);
1039   fr.interpreter_frame_set_mdp(new_mdp);
1040 IRT_END
1041 
1042 IRT_ENTRY(MethodCounters*, InterpreterRuntime::build_method_counters(JavaThread* thread, Method* m))
1043   MethodCounters* mcs = Method::build_method_counters(m, thread);
1044   if (HAS_PENDING_EXCEPTION) {
1045     assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
1046     CLEAR_PENDING_EXCEPTION;
1047   }
1048   return mcs;
1049 IRT_END
1050 
1051 
1052 IRT_ENTRY(void, InterpreterRuntime::at_safepoint(JavaThread* thread))
1053   // We used to need an explict preserve_arguments here for invoke bytecodes. However,
1054   // stack traversal automatically takes care of preserving arguments for invoke, so
1055   // this is no longer needed.
1056 
1057   // IRT_END does an implicit safepoint check, hence we are guaranteed to block
1058   // if this is called during a safepoint
1059 
1060   if (JvmtiExport::should_post_single_step()) {
1061     // We are called during regular safepoints and when the VM is
1062     // single stepping. If any thread is marked for single stepping,
1063     // then we may have JVMTI work to do.
1064     JvmtiExport::at_single_stepping_point(thread, method(thread), bcp(thread));
1065   }
1066 IRT_END
1067 
1068 IRT_ENTRY(void, InterpreterRuntime::post_field_access(JavaThread *thread, oopDesc* obj,
1069 ConstantPoolCacheEntry *cp_entry))
1070 
1071   // check the access_flags for the field in the klass
1072 
1073   InstanceKlass* ik = InstanceKlass::cast(cp_entry->f1_as_klass());
1074   int index = cp_entry->field_index();
1075   if ((ik->field_access_flags(index) & JVM_ACC_FIELD_ACCESS_WATCHED) == 0) return;
1076 
1077   bool is_static = (obj == NULL);
1078   HandleMark hm(thread);
1079 
1080   Handle h_obj;
1081   if (!is_static) {
1082     // non-static field accessors have an object, but we need a handle
1083     h_obj = Handle(thread, obj);
1084   }
1085   InstanceKlass* cp_entry_f1 = InstanceKlass::cast(cp_entry->f1_as_klass());
1086   jfieldID fid = jfieldIDWorkaround::to_jfieldID(cp_entry_f1, cp_entry->f2_as_index(), is_static);
1087   JvmtiExport::post_field_access(thread, method(thread), bcp(thread), cp_entry_f1, h_obj, fid);
1088 IRT_END
1089 
1090 IRT_ENTRY(void, InterpreterRuntime::post_field_modification(JavaThread *thread,
1091   oopDesc* obj, ConstantPoolCacheEntry *cp_entry, jvalue *value))
1092 
1093   Klass* k = cp_entry->f1_as_klass();
1094 
1095   // check the access_flags for the field in the klass
1096   InstanceKlass* ik = InstanceKlass::cast(k);
1097   int index = cp_entry->field_index();
1098   // bail out if field modifications are not watched
1099   if ((ik->field_access_flags(index) & JVM_ACC_FIELD_MODIFICATION_WATCHED) == 0) return;
1100 
1101   char sig_type = '\0';
1102 
1103   switch(cp_entry->flag_state()) {
1104     case btos: sig_type = 'B'; break;
1105     case ztos: sig_type = 'Z'; break;
1106     case ctos: sig_type = 'C'; break;
1107     case stos: sig_type = 'S'; break;
1108     case itos: sig_type = 'I'; break;
1109     case ftos: sig_type = 'F'; break;
1110     case atos: sig_type = 'L'; break;
1111     case ltos: sig_type = 'J'; break;
1112     case dtos: sig_type = 'D'; break;
1113     default:  ShouldNotReachHere(); return;
1114   }
1115   bool is_static = (obj == NULL);
1116 
1117   HandleMark hm(thread);
1118   jfieldID fid = jfieldIDWorkaround::to_jfieldID(ik, cp_entry->f2_as_index(), is_static);
1119   jvalue fvalue;
1120 #ifdef _LP64
1121   fvalue = *value;
1122 #else
1123   // Long/double values are stored unaligned and also noncontiguously with
1124   // tagged stacks.  We can't just do a simple assignment even in the non-
1125   // J/D cases because a C++ compiler is allowed to assume that a jvalue is
1126   // 8-byte aligned, and interpreter stack slots are only 4-byte aligned.
1127   // We assume that the two halves of longs/doubles are stored in interpreter
1128   // stack slots in platform-endian order.
1129   jlong_accessor u;
1130   jint* newval = (jint*)value;
1131   u.words[0] = newval[0];
1132   u.words[1] = newval[Interpreter::stackElementWords]; // skip if tag
1133   fvalue.j = u.long_value;
1134 #endif // _LP64
1135 
1136   Handle h_obj;
1137   if (!is_static) {
1138     // non-static field accessors have an object, but we need a handle
1139     h_obj = Handle(thread, obj);
1140   }
1141 
1142   JvmtiExport::post_raw_field_modification(thread, method(thread), bcp(thread), ik, h_obj,
1143                                            fid, sig_type, &fvalue);
1144 IRT_END
1145 
1146 IRT_ENTRY(void, InterpreterRuntime::post_method_entry(JavaThread *thread))
1147   JvmtiExport::post_method_entry(thread, InterpreterRuntime::method(thread), InterpreterRuntime::last_frame(thread));
1148 IRT_END
1149 
1150 
1151 IRT_ENTRY(void, InterpreterRuntime::post_method_exit(JavaThread *thread))
1152   JvmtiExport::post_method_exit(thread, InterpreterRuntime::method(thread), InterpreterRuntime::last_frame(thread));
1153 IRT_END
1154 
1155 IRT_LEAF(int, InterpreterRuntime::interpreter_contains(address pc))
1156 {
1157   return (Interpreter::contains(pc) ? 1 : 0);
1158 }
1159 IRT_END
1160 
1161 
1162 // Implementation of SignatureHandlerLibrary
1163 
1164 #ifndef SHARING_FAST_NATIVE_FINGERPRINTS
1165 // Dummy definition (else normalization method is defined in CPU
1166 // dependant code)
1167 uint64_t InterpreterRuntime::normalize_fast_native_fingerprint(uint64_t fingerprint) {
1168   return fingerprint;
1169 }
1170 #endif
1171 
1172 address SignatureHandlerLibrary::set_handler_blob() {
1173   BufferBlob* handler_blob = BufferBlob::create("native signature handlers", blob_size);
1174   if (handler_blob == NULL) {
1175     return NULL;
1176   }
1177   address handler = handler_blob->code_begin();
1178   _handler_blob = handler_blob;
1179   _handler = handler;
1180   return handler;
1181 }
1182 
1183 void SignatureHandlerLibrary::initialize() {
1184   if (_fingerprints != NULL) {
1185     return;
1186   }
1187   if (set_handler_blob() == NULL) {
1188     vm_exit_out_of_memory(blob_size, OOM_MALLOC_ERROR, "native signature handlers");
1189   }
1190 
1191   BufferBlob* bb = BufferBlob::create("Signature Handler Temp Buffer",
1192                                       SignatureHandlerLibrary::buffer_size);
1193   _buffer = bb->code_begin();
1194 
1195   _fingerprints = new(ResourceObj::C_HEAP, mtCode)GrowableArray<uint64_t>(32, true);
1196   _handlers     = new(ResourceObj::C_HEAP, mtCode)GrowableArray<address>(32, true);
1197 }
1198 
1199 address SignatureHandlerLibrary::set_handler(CodeBuffer* buffer) {
1200   address handler   = _handler;
1201   int     insts_size = buffer->pure_insts_size();
1202   if (handler + insts_size > _handler_blob->code_end()) {
1203     // get a new handler blob
1204     handler = set_handler_blob();
1205   }
1206   if (handler != NULL) {
1207     memcpy(handler, buffer->insts_begin(), insts_size);
1208     pd_set_handler(handler);
1209     ICache::invalidate_range(handler, insts_size);
1210     _handler = handler + insts_size;
1211   }
1212   return handler;
1213 }
1214 
1215 void SignatureHandlerLibrary::add(const methodHandle& method) {
1216   if (method->signature_handler() == NULL) {
1217     // use slow signature handler if we can't do better
1218     int handler_index = -1;
1219     // check if we can use customized (fast) signature handler
1220     if (UseFastSignatureHandlers && method->size_of_parameters() <= Fingerprinter::max_size_of_parameters) {
1221       // use customized signature handler
1222       MutexLocker mu(SignatureHandlerLibrary_lock);
1223       // make sure data structure is initialized
1224       initialize();
1225       // lookup method signature's fingerprint
1226       uint64_t fingerprint = Fingerprinter(method).fingerprint();
1227       // allow CPU dependant code to optimize the fingerprints for the fast handler
1228       fingerprint = InterpreterRuntime::normalize_fast_native_fingerprint(fingerprint);
1229       handler_index = _fingerprints->find(fingerprint);
1230       // create handler if necessary
1231       if (handler_index < 0) {
1232         ResourceMark rm;
1233         ptrdiff_t align_offset = align_up(_buffer, CodeEntryAlignment) - (address)_buffer;
1234         CodeBuffer buffer((address)(_buffer + align_offset),
1235                           SignatureHandlerLibrary::buffer_size - align_offset);
1236         InterpreterRuntime::SignatureHandlerGenerator(method, &buffer).generate(fingerprint);
1237         // copy into code heap
1238         address handler = set_handler(&buffer);
1239         if (handler == NULL) {
1240           // use slow signature handler (without memorizing it in the fingerprints)
1241         } else {
1242           // debugging suppport
1243           if (PrintSignatureHandlers && (handler != Interpreter::slow_signature_handler())) {
1244             ttyLocker ttyl;
1245             tty->cr();
1246             tty->print_cr("argument handler #%d for: %s %s (fingerprint = " UINT64_FORMAT ", %d bytes generated)",
1247                           _handlers->length(),
1248                           (method->is_static() ? "static" : "receiver"),
1249                           method->name_and_sig_as_C_string(),
1250                           fingerprint,
1251                           buffer.insts_size());
1252             if (buffer.insts_size() > 0) {
1253               Disassembler::decode(handler, handler + buffer.insts_size());
1254             }
1255 #ifndef PRODUCT
1256             address rh_begin = Interpreter::result_handler(method()->result_type());
1257             if (CodeCache::contains(rh_begin)) {
1258               // else it might be special platform dependent values
1259               tty->print_cr(" --- associated result handler ---");
1260               address rh_end = rh_begin;
1261               while (*(int*)rh_end != 0) {
1262                 rh_end += sizeof(int);
1263               }
1264               Disassembler::decode(rh_begin, rh_end);
1265             } else {
1266               tty->print_cr(" associated result handler: " PTR_FORMAT, p2i(rh_begin));
1267             }
1268 #endif
1269           }
1270           // add handler to library
1271           _fingerprints->append(fingerprint);
1272           _handlers->append(handler);
1273           // set handler index
1274           assert(_fingerprints->length() == _handlers->length(), "sanity check");
1275           handler_index = _fingerprints->length() - 1;
1276         }
1277       }
1278       // Set handler under SignatureHandlerLibrary_lock
1279       if (handler_index < 0) {
1280         // use generic signature handler
1281         method->set_signature_handler(Interpreter::slow_signature_handler());
1282       } else {
1283         // set handler
1284         method->set_signature_handler(_handlers->at(handler_index));
1285       }
1286     } else {
1287       CHECK_UNHANDLED_OOPS_ONLY(Thread::current()->clear_unhandled_oops());
1288       // use generic signature handler
1289       method->set_signature_handler(Interpreter::slow_signature_handler());
1290     }
1291   }
1292 #ifdef ASSERT
1293   int handler_index = -1;
1294   int fingerprint_index = -2;
1295   {
1296     // '_handlers' and '_fingerprints' are 'GrowableArray's and are NOT synchronized
1297     // in any way if accessed from multiple threads. To avoid races with another
1298     // thread which may change the arrays in the above, mutex protected block, we
1299     // have to protect this read access here with the same mutex as well!
1300     MutexLocker mu(SignatureHandlerLibrary_lock);
1301     if (_handlers != NULL) {
1302       handler_index = _handlers->find(method->signature_handler());
1303       uint64_t fingerprint = Fingerprinter(method).fingerprint();
1304       fingerprint = InterpreterRuntime::normalize_fast_native_fingerprint(fingerprint);
1305       fingerprint_index = _fingerprints->find(fingerprint);
1306     }
1307   }
1308   assert(method->signature_handler() == Interpreter::slow_signature_handler() ||
1309          handler_index == fingerprint_index, "sanity check");
1310 #endif // ASSERT
1311 }
1312 
1313 void SignatureHandlerLibrary::add(uint64_t fingerprint, address handler) {
1314   int handler_index = -1;
1315   // use customized signature handler
1316   MutexLocker mu(SignatureHandlerLibrary_lock);
1317   // make sure data structure is initialized
1318   initialize();
1319   fingerprint = InterpreterRuntime::normalize_fast_native_fingerprint(fingerprint);
1320   handler_index = _fingerprints->find(fingerprint);
1321   // create handler if necessary
1322   if (handler_index < 0) {
1323     if (PrintSignatureHandlers && (handler != Interpreter::slow_signature_handler())) {
1324       tty->cr();
1325       tty->print_cr("argument handler #%d at " PTR_FORMAT " for fingerprint " UINT64_FORMAT,
1326                     _handlers->length(),
1327                     p2i(handler),
1328                     fingerprint);
1329     }
1330     _fingerprints->append(fingerprint);
1331     _handlers->append(handler);
1332   } else {
1333     if (PrintSignatureHandlers) {
1334       tty->cr();
1335       tty->print_cr("duplicate argument handler #%d for fingerprint " UINT64_FORMAT "(old: " PTR_FORMAT ", new : " PTR_FORMAT ")",
1336                     _handlers->length(),
1337                     fingerprint,
1338                     p2i(_handlers->at(handler_index)),
1339                     p2i(handler));
1340     }
1341   }
1342 }
1343 
1344 
1345 BufferBlob*              SignatureHandlerLibrary::_handler_blob = NULL;
1346 address                  SignatureHandlerLibrary::_handler      = NULL;
1347 GrowableArray<uint64_t>* SignatureHandlerLibrary::_fingerprints = NULL;
1348 GrowableArray<address>*  SignatureHandlerLibrary::_handlers     = NULL;
1349 address                  SignatureHandlerLibrary::_buffer       = NULL;
1350 
1351 
1352 IRT_ENTRY(void, InterpreterRuntime::prepare_native_call(JavaThread* thread, Method* method))
1353   methodHandle m(thread, method);
1354   assert(m->is_native(), "sanity check");
1355   // lookup native function entry point if it doesn't exist
1356   bool in_base_library;
1357   if (!m->has_native_function()) {
1358     NativeLookup::lookup(m, in_base_library, CHECK);
1359   }
1360   // make sure signature handler is installed
1361   SignatureHandlerLibrary::add(m);
1362   // The interpreter entry point checks the signature handler first,
1363   // before trying to fetch the native entry point and klass mirror.
1364   // We must set the signature handler last, so that multiple processors
1365   // preparing the same method will be sure to see non-null entry & mirror.
1366 IRT_END
1367 
1368 #if defined(IA32) || defined(AMD64) || defined(ARM)
1369 IRT_LEAF(void, InterpreterRuntime::popframe_move_outgoing_args(JavaThread* thread, void* src_address, void* dest_address))
1370   if (src_address == dest_address) {
1371     return;
1372   }
1373   ResetNoHandleMark rnm; // In a LEAF entry.
1374   HandleMark hm;
1375   ResourceMark rm;
1376   frame fr = thread->last_frame();
1377   assert(fr.is_interpreted_frame(), "");
1378   jint bci = fr.interpreter_frame_bci();
1379   methodHandle mh(thread, fr.interpreter_frame_method());
1380   Bytecode_invoke invoke(mh, bci);
1381   ArgumentSizeComputer asc(invoke.signature());
1382   int size_of_arguments = (asc.size() + (invoke.has_receiver() ? 1 : 0)); // receiver
1383   Copy::conjoint_jbytes(src_address, dest_address,
1384                        size_of_arguments * Interpreter::stackElementSize);
1385 IRT_END
1386 #endif
1387 
1388 #if INCLUDE_JVMTI
1389 // This is a support of the JVMTI PopFrame interface.
1390 // Make sure it is an invokestatic of a polymorphic intrinsic that has a member_name argument
1391 // and return it as a vm_result so that it can be reloaded in the list of invokestatic parameters.
1392 // The member_name argument is a saved reference (in local#0) to the member_name.
1393 // For backward compatibility with some JDK versions (7, 8) it can also be a direct method handle.
1394 // FIXME: remove DMH case after j.l.i.InvokerBytecodeGenerator code shape is updated.
1395 IRT_ENTRY(void, InterpreterRuntime::member_name_arg_or_null(JavaThread* thread, address member_name,
1396                                                             Method* method, address bcp))
1397   Bytecodes::Code code = Bytecodes::code_at(method, bcp);
1398   if (code != Bytecodes::_invokestatic) {
1399     return;
1400   }
1401   ConstantPool* cpool = method->constants();
1402   int cp_index = Bytes::get_native_u2(bcp + 1) + ConstantPool::CPCACHE_INDEX_TAG;
1403   Symbol* cname = cpool->klass_name_at(cpool->klass_ref_index_at(cp_index));
1404   Symbol* mname = cpool->name_ref_at(cp_index);
1405 
1406   if (MethodHandles::has_member_arg(cname, mname)) {
1407     oop member_name_oop = (oop) member_name;
1408     if (java_lang_invoke_DirectMethodHandle::is_instance(member_name_oop)) {
1409       // FIXME: remove after j.l.i.InvokerBytecodeGenerator code shape is updated.
1410       member_name_oop = java_lang_invoke_DirectMethodHandle::member(member_name_oop);
1411     }
1412     thread->set_vm_result(member_name_oop);
1413   } else {
1414     thread->set_vm_result(NULL);
1415   }
1416 IRT_END
1417 #endif // INCLUDE_JVMTI
1418 
1419 #ifndef PRODUCT
1420 // This must be a IRT_LEAF function because the interpreter must save registers on x86 to
1421 // call this, which changes rsp and makes the interpreter's expression stack not walkable.
1422 // The generated code still uses call_VM because that will set up the frame pointer for
1423 // bcp and method.
1424 IRT_LEAF(intptr_t, InterpreterRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
1425   const frame f = thread->last_frame();
1426   assert(f.is_interpreted_frame(), "must be an interpreted frame");
1427   methodHandle mh(thread, f.interpreter_frame_method());
1428   BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
1429   return preserve_this_value;
1430 IRT_END
1431 #endif // !PRODUCT