1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef CPU_X86_VM_MACROASSEMBLER_X86_HPP
  26 #define CPU_X86_VM_MACROASSEMBLER_X86_HPP
  27 
  28 #include "asm/assembler.hpp"
  29 #include "utilities/macros.hpp"
  30 #include "runtime/rtmLocking.hpp"
  31 
  32 // MacroAssembler extends Assembler by frequently used macros.
  33 //
  34 // Instructions for which a 'better' code sequence exists depending
  35 // on arguments should also go in here.
  36 
  37 class MacroAssembler: public Assembler {
  38   friend class LIR_Assembler;
  39   friend class Runtime1;      // as_Address()
  40 
  41  protected:
  42 
  43   Address as_Address(AddressLiteral adr);
  44   Address as_Address(ArrayAddress adr);
  45 
  46   // Support for VM calls
  47   //
  48   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  49   // may customize this version by overriding it for its purposes (e.g., to save/restore
  50   // additional registers when doing a VM call).
  51 
  52   virtual void call_VM_leaf_base(
  53     address entry_point,               // the entry point
  54     int     number_of_arguments        // the number of arguments to pop after the call
  55   );
  56 
  57   // This is the base routine called by the different versions of call_VM. The interpreter
  58   // may customize this version by overriding it for its purposes (e.g., to save/restore
  59   // additional registers when doing a VM call).
  60   //
  61   // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
  62   // returns the register which contains the thread upon return. If a thread register has been
  63   // specified, the return value will correspond to that register. If no last_java_sp is specified
  64   // (noreg) than rsp will be used instead.
  65   virtual void call_VM_base(           // returns the register containing the thread upon return
  66     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  67     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  68     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  69     address  entry_point,              // the entry point
  70     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  71     bool     check_exceptions          // whether to check for pending exceptions after return
  72   );
  73 
  74   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  75 
  76   // helpers for FPU flag access
  77   // tmp is a temporary register, if none is available use noreg
  78   void save_rax   (Register tmp);
  79   void restore_rax(Register tmp);
  80 
  81  public:
  82   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
  83 
  84  // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
  85  // The implementation is only non-empty for the InterpreterMacroAssembler,
  86  // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
  87  virtual void check_and_handle_popframe(Register java_thread);
  88  virtual void check_and_handle_earlyret(Register java_thread);
  89 
  90   // Support for NULL-checks
  91   //
  92   // Generates code that causes a NULL OS exception if the content of reg is NULL.
  93   // If the accessed location is M[reg + offset] and the offset is known, provide the
  94   // offset. No explicit code generation is needed if the offset is within a certain
  95   // range (0 <= offset <= page_size).
  96 
  97   void null_check(Register reg, int offset = -1);
  98   static bool needs_explicit_null_check(intptr_t offset);
  99 
 100   // Required platform-specific helpers for Label::patch_instructions.
 101   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
 102   void pd_patch_instruction(address branch, address target) {
 103     unsigned char op = branch[0];
 104     assert(op == 0xE8 /* call */ ||
 105         op == 0xE9 /* jmp */ ||
 106         op == 0xEB /* short jmp */ ||
 107         (op & 0xF0) == 0x70 /* short jcc */ ||
 108         op == 0x0F && (branch[1] & 0xF0) == 0x80 /* jcc */ ||
 109         op == 0xC7 && branch[1] == 0xF8 /* xbegin */,
 110         "Invalid opcode at patch point");
 111 
 112     if (op == 0xEB || (op & 0xF0) == 0x70) {
 113       // short offset operators (jmp and jcc)
 114       char* disp = (char*) &branch[1];
 115       int imm8 = target - (address) &disp[1];
 116       guarantee(this->is8bit(imm8), "Short forward jump exceeds 8-bit offset");
 117       *disp = imm8;
 118     } else {
 119       int* disp = (int*) &branch[(op == 0x0F || op == 0xC7)? 2: 1];
 120       int imm32 = target - (address) &disp[1];
 121       *disp = imm32;
 122     }
 123   }
 124 
 125   // The following 4 methods return the offset of the appropriate move instruction
 126 
 127   // Support for fast byte/short loading with zero extension (depending on particular CPU)
 128   int load_unsigned_byte(Register dst, Address src);
 129   int load_unsigned_short(Register dst, Address src);
 130 
 131   // Support for fast byte/short loading with sign extension (depending on particular CPU)
 132   int load_signed_byte(Register dst, Address src);
 133   int load_signed_short(Register dst, Address src);
 134 
 135   // Support for sign-extension (hi:lo = extend_sign(lo))
 136   void extend_sign(Register hi, Register lo);
 137 
 138   // Load and store values by size and signed-ness
 139   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
 140   void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
 141 
 142   // Support for inc/dec with optimal instruction selection depending on value
 143 
 144   void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
 145   void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
 146 
 147   void decrementl(Address dst, int value = 1);
 148   void decrementl(Register reg, int value = 1);
 149 
 150   void decrementq(Register reg, int value = 1);
 151   void decrementq(Address dst, int value = 1);
 152 
 153   void incrementl(Address dst, int value = 1);
 154   void incrementl(Register reg, int value = 1);
 155 
 156   void incrementq(Register reg, int value = 1);
 157   void incrementq(Address dst, int value = 1);
 158 
 159   // special instructions for EVEX
 160   void setvectmask(Register dst, Register src);
 161   void restorevectmask();
 162 
 163   // Support optimal SSE move instructions.
 164   void movflt(XMMRegister dst, XMMRegister src) {
 165     if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
 166     else                       { movss (dst, src); return; }
 167   }
 168   void movflt(XMMRegister dst, Address src) { movss(dst, src); }
 169   void movflt(XMMRegister dst, AddressLiteral src);
 170   void movflt(Address dst, XMMRegister src) { movss(dst, src); }
 171 
 172   void movdbl(XMMRegister dst, XMMRegister src) {
 173     if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
 174     else                       { movsd (dst, src); return; }
 175   }
 176 
 177   void movdbl(XMMRegister dst, AddressLiteral src);
 178 
 179   void movdbl(XMMRegister dst, Address src) {
 180     if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
 181     else                         { movlpd(dst, src); return; }
 182   }
 183   void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
 184 
 185   void incrementl(AddressLiteral dst);
 186   void incrementl(ArrayAddress dst);
 187 
 188   void incrementq(AddressLiteral dst);
 189 
 190   // Alignment
 191   void align(int modulus);
 192   void align(int modulus, int target);
 193 
 194   // A 5 byte nop that is safe for patching (see patch_verified_entry)
 195   void fat_nop();
 196 
 197   // Stack frame creation/removal
 198   void enter();
 199   void leave();
 200 
 201   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
 202   // The pointer will be loaded into the thread register.
 203   void get_thread(Register thread);
 204 
 205 
 206   // Support for VM calls
 207   //
 208   // It is imperative that all calls into the VM are handled via the call_VM macros.
 209   // They make sure that the stack linkage is setup correctly. call_VM's correspond
 210   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
 211 
 212 
 213   void call_VM(Register oop_result,
 214                address entry_point,
 215                bool check_exceptions = true);
 216   void call_VM(Register oop_result,
 217                address entry_point,
 218                Register arg_1,
 219                bool check_exceptions = true);
 220   void call_VM(Register oop_result,
 221                address entry_point,
 222                Register arg_1, Register arg_2,
 223                bool check_exceptions = true);
 224   void call_VM(Register oop_result,
 225                address entry_point,
 226                Register arg_1, Register arg_2, Register arg_3,
 227                bool check_exceptions = true);
 228 
 229   // Overloadings with last_Java_sp
 230   void call_VM(Register oop_result,
 231                Register last_java_sp,
 232                address entry_point,
 233                int number_of_arguments = 0,
 234                bool check_exceptions = true);
 235   void call_VM(Register oop_result,
 236                Register last_java_sp,
 237                address entry_point,
 238                Register arg_1, bool
 239                check_exceptions = true);
 240   void call_VM(Register oop_result,
 241                Register last_java_sp,
 242                address entry_point,
 243                Register arg_1, Register arg_2,
 244                bool check_exceptions = true);
 245   void call_VM(Register oop_result,
 246                Register last_java_sp,
 247                address entry_point,
 248                Register arg_1, Register arg_2, Register arg_3,
 249                bool check_exceptions = true);
 250 
 251   void get_vm_result  (Register oop_result, Register thread);
 252   void get_vm_result_2(Register metadata_result, Register thread);
 253 
 254   // These always tightly bind to MacroAssembler::call_VM_base
 255   // bypassing the virtual implementation
 256   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
 257   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
 258   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 259   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
 260   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
 261 
 262   void call_VM_leaf0(address entry_point);
 263   void call_VM_leaf(address entry_point,
 264                     int number_of_arguments = 0);
 265   void call_VM_leaf(address entry_point,
 266                     Register arg_1);
 267   void call_VM_leaf(address entry_point,
 268                     Register arg_1, Register arg_2);
 269   void call_VM_leaf(address entry_point,
 270                     Register arg_1, Register arg_2, Register arg_3);
 271 
 272   // These always tightly bind to MacroAssembler::call_VM_leaf_base
 273   // bypassing the virtual implementation
 274   void super_call_VM_leaf(address entry_point);
 275   void super_call_VM_leaf(address entry_point, Register arg_1);
 276   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
 277   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
 278   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 279 
 280   // last Java Frame (fills frame anchor)
 281   void set_last_Java_frame(Register thread,
 282                            Register last_java_sp,
 283                            Register last_java_fp,
 284                            address last_java_pc);
 285 
 286   // thread in the default location (r15_thread on 64bit)
 287   void set_last_Java_frame(Register last_java_sp,
 288                            Register last_java_fp,
 289                            address last_java_pc);
 290 
 291   void reset_last_Java_frame(Register thread, bool clear_fp);
 292 
 293   // thread in the default location (r15_thread on 64bit)
 294   void reset_last_Java_frame(bool clear_fp);
 295 
 296   // Stores
 297   void store_check(Register obj);                // store check for obj - register is destroyed afterwards
 298   void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)
 299 
 300   void resolve_jobject(Register value, Register thread, Register tmp);
 301   void clear_jweak_tag(Register possibly_jweak);
 302 
 303 #if INCLUDE_ALL_GCS
 304 
 305   void g1_write_barrier_pre(Register obj,
 306                             Register pre_val,
 307                             Register thread,
 308                             Register tmp,
 309                             bool tosca_live,
 310                             bool expand_call);
 311 
 312   void g1_write_barrier_post(Register store_addr,
 313                              Register new_val,
 314                              Register thread,
 315                              Register tmp,
 316                              Register tmp2);
 317 
 318 #endif // INCLUDE_ALL_GCS
 319 
 320   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
 321   void c2bool(Register x);
 322 
 323   // C++ bool manipulation
 324 
 325   void movbool(Register dst, Address src);
 326   void movbool(Address dst, bool boolconst);
 327   void movbool(Address dst, Register src);
 328   void testbool(Register dst);
 329 
 330   void load_mirror(Register mirror, Register method);
 331 
 332   // oop manipulations
 333   void load_klass(Register dst, Register src);
 334   void store_klass(Register dst, Register src);
 335 
 336   void load_heap_oop(Register dst, Address src);
 337   void load_heap_oop_not_null(Register dst, Address src);
 338   void store_heap_oop(Address dst, Register src);
 339   void cmp_heap_oop(Register src1, Address src2, Register tmp = noreg);
 340 
 341   // Used for storing NULL. All other oop constants should be
 342   // stored using routines that take a jobject.
 343   void store_heap_oop_null(Address dst);
 344 
 345   void load_prototype_header(Register dst, Register src);
 346 
 347 #ifdef _LP64
 348   void store_klass_gap(Register dst, Register src);
 349 
 350   // This dummy is to prevent a call to store_heap_oop from
 351   // converting a zero (like NULL) into a Register by giving
 352   // the compiler two choices it can't resolve
 353 
 354   void store_heap_oop(Address dst, void* dummy);
 355 
 356   void encode_heap_oop(Register r);
 357   void decode_heap_oop(Register r);
 358   void encode_heap_oop_not_null(Register r);
 359   void decode_heap_oop_not_null(Register r);
 360   void encode_heap_oop_not_null(Register dst, Register src);
 361   void decode_heap_oop_not_null(Register dst, Register src);
 362 
 363   void set_narrow_oop(Register dst, jobject obj);
 364   void set_narrow_oop(Address dst, jobject obj);
 365   void cmp_narrow_oop(Register dst, jobject obj);
 366   void cmp_narrow_oop(Address dst, jobject obj);
 367 
 368   void encode_klass_not_null(Register r);
 369   void decode_klass_not_null(Register r);
 370   void encode_klass_not_null(Register dst, Register src);
 371   void decode_klass_not_null(Register dst, Register src);
 372   void set_narrow_klass(Register dst, Klass* k);
 373   void set_narrow_klass(Address dst, Klass* k);
 374   void cmp_narrow_klass(Register dst, Klass* k);
 375   void cmp_narrow_klass(Address dst, Klass* k);
 376 
 377   // Returns the byte size of the instructions generated by decode_klass_not_null()
 378   // when compressed klass pointers are being used.
 379   static int instr_size_for_decode_klass_not_null();
 380 
 381   // if heap base register is used - reinit it with the correct value
 382   void reinit_heapbase();
 383 
 384   DEBUG_ONLY(void verify_heapbase(const char* msg);)
 385 
 386 #endif // _LP64
 387 
 388   // Int division/remainder for Java
 389   // (as idivl, but checks for special case as described in JVM spec.)
 390   // returns idivl instruction offset for implicit exception handling
 391   int corrected_idivl(Register reg);
 392 
 393   // Long division/remainder for Java
 394   // (as idivq, but checks for special case as described in JVM spec.)
 395   // returns idivq instruction offset for implicit exception handling
 396   int corrected_idivq(Register reg);
 397 
 398   void int3();
 399 
 400   // Long operation macros for a 32bit cpu
 401   // Long negation for Java
 402   void lneg(Register hi, Register lo);
 403 
 404   // Long multiplication for Java
 405   // (destroys contents of eax, ebx, ecx and edx)
 406   void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
 407 
 408   // Long shifts for Java
 409   // (semantics as described in JVM spec.)
 410   void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
 411   void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)
 412 
 413   // Long compare for Java
 414   // (semantics as described in JVM spec.)
 415   void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
 416 
 417 
 418   // misc
 419 
 420   // Sign extension
 421   void sign_extend_short(Register reg);
 422   void sign_extend_byte(Register reg);
 423 
 424   // Division by power of 2, rounding towards 0
 425   void division_with_shift(Register reg, int shift_value);
 426 
 427   // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
 428   //
 429   // CF (corresponds to C0) if x < y
 430   // PF (corresponds to C2) if unordered
 431   // ZF (corresponds to C3) if x = y
 432   //
 433   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 434   // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
 435   void fcmp(Register tmp);
 436   // Variant of the above which allows y to be further down the stack
 437   // and which only pops x and y if specified. If pop_right is
 438   // specified then pop_left must also be specified.
 439   void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
 440 
 441   // Floating-point comparison for Java
 442   // Compares the top-most stack entries on the FPU stack and stores the result in dst.
 443   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 444   // (semantics as described in JVM spec.)
 445   void fcmp2int(Register dst, bool unordered_is_less);
 446   // Variant of the above which allows y to be further down the stack
 447   // and which only pops x and y if specified. If pop_right is
 448   // specified then pop_left must also be specified.
 449   void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
 450 
 451   // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
 452   // tmp is a temporary register, if none is available use noreg
 453   void fremr(Register tmp);
 454 
 455   // dst = c = a * b + c
 456   void fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
 457   void fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
 458 
 459   void vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
 460   void vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
 461   void vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);
 462   void vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);
 463 
 464 
 465   // same as fcmp2int, but using SSE2
 466   void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 467   void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 468 
 469   // branch to L if FPU flag C2 is set/not set
 470   // tmp is a temporary register, if none is available use noreg
 471   void jC2 (Register tmp, Label& L);
 472   void jnC2(Register tmp, Label& L);
 473 
 474   // Pop ST (ffree & fincstp combined)
 475   void fpop();
 476 
 477   // Load float value from 'address'. If UseSSE >= 1, the value is loaded into
 478   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 479   void load_float(Address src);
 480 
 481   // Store float value to 'address'. If UseSSE >= 1, the value is stored
 482   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 483   void store_float(Address dst);
 484 
 485   // Load double value from 'address'. If UseSSE >= 2, the value is loaded into
 486   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 487   void load_double(Address src);
 488 
 489   // Store double value to 'address'. If UseSSE >= 2, the value is stored
 490   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 491   void store_double(Address dst);
 492 
 493   // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
 494   void push_fTOS();
 495 
 496   // pops double TOS element from CPU stack and pushes on FPU stack
 497   void pop_fTOS();
 498 
 499   void empty_FPU_stack();
 500 
 501   void push_IU_state();
 502   void pop_IU_state();
 503 
 504   void push_FPU_state();
 505   void pop_FPU_state();
 506 
 507   void push_CPU_state();
 508   void pop_CPU_state();
 509 
 510   // Round up to a power of two
 511   void round_to(Register reg, int modulus);
 512 
 513   // Callee saved registers handling
 514   void push_callee_saved_registers();
 515   void pop_callee_saved_registers();
 516 
 517   // allocation
 518   void eden_allocate(
 519     Register obj,                      // result: pointer to object after successful allocation
 520     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 521     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 522     Register t1,                       // temp register
 523     Label&   slow_case                 // continuation point if fast allocation fails
 524   );
 525   void tlab_allocate(
 526     Register obj,                      // result: pointer to object after successful allocation
 527     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 528     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 529     Register t1,                       // temp register
 530     Register t2,                       // temp register
 531     Label&   slow_case                 // continuation point if fast allocation fails
 532   );
 533   Register tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case); // returns TLS address
 534   void zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp);
 535 
 536   void incr_allocated_bytes(Register thread,
 537                             Register var_size_in_bytes, int con_size_in_bytes,
 538                             Register t1 = noreg);
 539 
 540   // interface method calling
 541   void lookup_interface_method(Register recv_klass,
 542                                Register intf_klass,
 543                                RegisterOrConstant itable_index,
 544                                Register method_result,
 545                                Register scan_temp,
 546                                Label& no_such_interface);
 547 
 548   // virtual method calling
 549   void lookup_virtual_method(Register recv_klass,
 550                              RegisterOrConstant vtable_index,
 551                              Register method_result);
 552 
 553   // Test sub_klass against super_klass, with fast and slow paths.
 554 
 555   // The fast path produces a tri-state answer: yes / no / maybe-slow.
 556   // One of the three labels can be NULL, meaning take the fall-through.
 557   // If super_check_offset is -1, the value is loaded up from super_klass.
 558   // No registers are killed, except temp_reg.
 559   void check_klass_subtype_fast_path(Register sub_klass,
 560                                      Register super_klass,
 561                                      Register temp_reg,
 562                                      Label* L_success,
 563                                      Label* L_failure,
 564                                      Label* L_slow_path,
 565                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
 566 
 567   // The rest of the type check; must be wired to a corresponding fast path.
 568   // It does not repeat the fast path logic, so don't use it standalone.
 569   // The temp_reg and temp2_reg can be noreg, if no temps are available.
 570   // Updates the sub's secondary super cache as necessary.
 571   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
 572   void check_klass_subtype_slow_path(Register sub_klass,
 573                                      Register super_klass,
 574                                      Register temp_reg,
 575                                      Register temp2_reg,
 576                                      Label* L_success,
 577                                      Label* L_failure,
 578                                      bool set_cond_codes = false);
 579 
 580   // Simplified, combined version, good for typical uses.
 581   // Falls through on failure.
 582   void check_klass_subtype(Register sub_klass,
 583                            Register super_klass,
 584                            Register temp_reg,
 585                            Label& L_success);
 586 
 587   // method handles (JSR 292)
 588   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
 589 
 590   //----
 591   void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
 592 
 593   // Debugging
 594 
 595   // only if +VerifyOops
 596   // TODO: Make these macros with file and line like sparc version!
 597   void verify_oop(Register reg, const char* s = "broken oop");
 598   void verify_oop_addr(Address addr, const char * s = "broken oop addr");
 599 
 600   // TODO: verify method and klass metadata (compare against vptr?)
 601   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
 602   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
 603 
 604 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
 605 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
 606 
 607   // only if +VerifyFPU
 608   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
 609 
 610   // Verify or restore cpu control state after JNI call
 611   void restore_cpu_control_state_after_jni();
 612 
 613   // prints msg, dumps registers and stops execution
 614   void stop(const char* msg);
 615 
 616   // prints msg and continues
 617   void warn(const char* msg);
 618 
 619   // dumps registers and other state
 620   void print_state();
 621 
 622   static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
 623   static void debug64(char* msg, int64_t pc, int64_t regs[]);
 624   static void print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip);
 625   static void print_state64(int64_t pc, int64_t regs[]);
 626 
 627   void os_breakpoint();
 628 
 629   void untested()                                { stop("untested"); }
 630 
 631   void unimplemented(const char* what = "");
 632 
 633   void should_not_reach_here()                   { stop("should not reach here"); }
 634 
 635   void print_CPU_state();
 636 
 637   // Stack overflow checking
 638   void bang_stack_with_offset(int offset) {
 639     // stack grows down, caller passes positive offset
 640     assert(offset > 0, "must bang with negative offset");
 641     movl(Address(rsp, (-offset)), rax);
 642   }
 643 
 644   // Writes to stack successive pages until offset reached to check for
 645   // stack overflow + shadow pages.  Also, clobbers tmp
 646   void bang_stack_size(Register size, Register tmp);
 647 
 648   // Check for reserved stack access in method being exited (for JIT)
 649   void reserved_stack_check();
 650 
 651   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
 652                                                 Register tmp,
 653                                                 int offset);
 654 
 655   // Support for serializing memory accesses between threads
 656   void serialize_memory(Register thread, Register tmp);
 657 
 658   void verify_tlab();
 659 
 660   // Biased locking support
 661   // lock_reg and obj_reg must be loaded up with the appropriate values.
 662   // swap_reg must be rax, and is killed.
 663   // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
 664   // be killed; if not supplied, push/pop will be used internally to
 665   // allocate a temporary (inefficient, avoid if possible).
 666   // Optional slow case is for implementations (interpreter and C1) which branch to
 667   // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
 668   // Returns offset of first potentially-faulting instruction for null
 669   // check info (currently consumed only by C1). If
 670   // swap_reg_contains_mark is true then returns -1 as it is assumed
 671   // the calling code has already passed any potential faults.
 672   int biased_locking_enter(Register lock_reg, Register obj_reg,
 673                            Register swap_reg, Register tmp_reg,
 674                            bool swap_reg_contains_mark,
 675                            Label& done, Label* slow_case = NULL,
 676                            BiasedLockingCounters* counters = NULL);
 677   void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
 678 #ifdef COMPILER2
 679   // Code used by cmpFastLock and cmpFastUnlock mach instructions in .ad file.
 680   // See full desription in macroAssembler_x86.cpp.
 681   void fast_lock(Register obj, Register box, Register tmp,
 682                  Register scr, Register cx1, Register cx2,
 683                  BiasedLockingCounters* counters,
 684                  RTMLockingCounters* rtm_counters,
 685                  RTMLockingCounters* stack_rtm_counters,
 686                  Metadata* method_data,
 687                  bool use_rtm, bool profile_rtm);
 688   void fast_unlock(Register obj, Register box, Register tmp, bool use_rtm);
 689 #if INCLUDE_RTM_OPT
 690   void rtm_counters_update(Register abort_status, Register rtm_counters);
 691   void branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel);
 692   void rtm_abort_ratio_calculation(Register tmp, Register rtm_counters_reg,
 693                                    RTMLockingCounters* rtm_counters,
 694                                    Metadata* method_data);
 695   void rtm_profiling(Register abort_status_Reg, Register rtm_counters_Reg,
 696                      RTMLockingCounters* rtm_counters, Metadata* method_data, bool profile_rtm);
 697   void rtm_retry_lock_on_abort(Register retry_count, Register abort_status, Label& retryLabel);
 698   void rtm_retry_lock_on_busy(Register retry_count, Register box, Register tmp, Register scr, Label& retryLabel);
 699   void rtm_stack_locking(Register obj, Register tmp, Register scr,
 700                          Register retry_on_abort_count,
 701                          RTMLockingCounters* stack_rtm_counters,
 702                          Metadata* method_data, bool profile_rtm,
 703                          Label& DONE_LABEL, Label& IsInflated);
 704   void rtm_inflated_locking(Register obj, Register box, Register tmp,
 705                             Register scr, Register retry_on_busy_count,
 706                             Register retry_on_abort_count,
 707                             RTMLockingCounters* rtm_counters,
 708                             Metadata* method_data, bool profile_rtm,
 709                             Label& DONE_LABEL);
 710 #endif
 711 #endif
 712 
 713   Condition negate_condition(Condition cond);
 714 
 715   // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
 716   // operands. In general the names are modified to avoid hiding the instruction in Assembler
 717   // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
 718   // here in MacroAssembler. The major exception to this rule is call
 719 
 720   // Arithmetics
 721 
 722 
 723   void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
 724   void addptr(Address dst, Register src);
 725 
 726   void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
 727   void addptr(Register dst, int32_t src);
 728   void addptr(Register dst, Register src);
 729   void addptr(Register dst, RegisterOrConstant src) {
 730     if (src.is_constant()) addptr(dst, (int) src.as_constant());
 731     else                   addptr(dst,       src.as_register());
 732   }
 733 
 734   void andptr(Register dst, int32_t src);
 735   void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
 736 
 737   void cmp8(AddressLiteral src1, int imm);
 738 
 739   // renamed to drag out the casting of address to int32_t/intptr_t
 740   void cmp32(Register src1, int32_t imm);
 741 
 742   void cmp32(AddressLiteral src1, int32_t imm);
 743   // compare reg - mem, or reg - &mem
 744   void cmp32(Register src1, AddressLiteral src2);
 745 
 746   void cmp32(Register src1, Address src2);
 747 
 748 #ifndef _LP64
 749   void cmpklass(Address dst, Metadata* obj);
 750   void cmpklass(Register dst, Metadata* obj);
 751   void cmpoop(Address dst, jobject obj);
 752   void cmpoop(Register dst, jobject obj);
 753 #endif // _LP64
 754 
 755   // NOTE src2 must be the lval. This is NOT an mem-mem compare
 756   void cmpptr(Address src1, AddressLiteral src2);
 757 
 758   void cmpptr(Register src1, AddressLiteral src2);
 759 
 760   void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 761   void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 762   // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 763 
 764   void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 765   void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 766 
 767   // cmp64 to avoild hiding cmpq
 768   void cmp64(Register src1, AddressLiteral src);
 769 
 770   void cmpxchgptr(Register reg, Address adr);
 771 
 772   void locked_cmpxchgptr(Register reg, AddressLiteral adr);
 773 
 774 
 775   void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
 776   void imulptr(Register dst, Register src, int imm32) { LP64_ONLY(imulq(dst, src, imm32)) NOT_LP64(imull(dst, src, imm32)); }
 777 
 778 
 779   void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
 780 
 781   void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
 782 
 783   void shlptr(Register dst, int32_t shift);
 784   void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
 785 
 786   void shrptr(Register dst, int32_t shift);
 787   void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
 788 
 789   void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
 790   void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
 791 
 792   void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 793 
 794   void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 795   void subptr(Register dst, int32_t src);
 796   // Force generation of a 4 byte immediate value even if it fits into 8bit
 797   void subptr_imm32(Register dst, int32_t src);
 798   void subptr(Register dst, Register src);
 799   void subptr(Register dst, RegisterOrConstant src) {
 800     if (src.is_constant()) subptr(dst, (int) src.as_constant());
 801     else                   subptr(dst,       src.as_register());
 802   }
 803 
 804   void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 805   void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 806 
 807   void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 808   void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 809 
 810   void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
 811 
 812 
 813 
 814   // Helper functions for statistics gathering.
 815   // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
 816   void cond_inc32(Condition cond, AddressLiteral counter_addr);
 817   // Unconditional atomic increment.
 818   void atomic_incl(Address counter_addr);
 819   void atomic_incl(AddressLiteral counter_addr, Register scr = rscratch1);
 820 #ifdef _LP64
 821   void atomic_incq(Address counter_addr);
 822   void atomic_incq(AddressLiteral counter_addr, Register scr = rscratch1);
 823 #endif
 824   void atomic_incptr(AddressLiteral counter_addr, Register scr = rscratch1) { LP64_ONLY(atomic_incq(counter_addr, scr)) NOT_LP64(atomic_incl(counter_addr, scr)) ; }
 825   void atomic_incptr(Address counter_addr) { LP64_ONLY(atomic_incq(counter_addr)) NOT_LP64(atomic_incl(counter_addr)) ; }
 826 
 827   void lea(Register dst, AddressLiteral adr);
 828   void lea(Address dst, AddressLiteral adr);
 829   void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
 830 
 831   void leal32(Register dst, Address src) { leal(dst, src); }
 832 
 833   // Import other testl() methods from the parent class or else
 834   // they will be hidden by the following overriding declaration.
 835   using Assembler::testl;
 836   void testl(Register dst, AddressLiteral src);
 837 
 838   void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 839   void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 840   void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 841   void orptr(Address dst, int32_t imm32) { LP64_ONLY(orq(dst, imm32)) NOT_LP64(orl(dst, imm32)); }
 842 
 843   void testptr(Register src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
 844   void testptr(Register src1, Register src2);
 845 
 846   void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 847   void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 848 
 849   // Calls
 850 
 851   void call(Label& L, relocInfo::relocType rtype);
 852   void call(Register entry);
 853 
 854   // NOTE: this call transfers to the effective address of entry NOT
 855   // the address contained by entry. This is because this is more natural
 856   // for jumps/calls.
 857   void call(AddressLiteral entry);
 858 
 859   // Emit the CompiledIC call idiom
 860   void ic_call(address entry, jint method_index = 0);
 861 
 862   // Jumps
 863 
 864   // NOTE: these jumps tranfer to the effective address of dst NOT
 865   // the address contained by dst. This is because this is more natural
 866   // for jumps/calls.
 867   void jump(AddressLiteral dst);
 868   void jump_cc(Condition cc, AddressLiteral dst);
 869 
 870   // 32bit can do a case table jump in one instruction but we no longer allow the base
 871   // to be installed in the Address class. This jump will tranfers to the address
 872   // contained in the location described by entry (not the address of entry)
 873   void jump(ArrayAddress entry);
 874 
 875   // Floating
 876 
 877   void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
 878   void andpd(XMMRegister dst, AddressLiteral src);
 879   void andpd(XMMRegister dst, XMMRegister src) { Assembler::andpd(dst, src); }
 880 
 881   void andps(XMMRegister dst, XMMRegister src) { Assembler::andps(dst, src); }
 882   void andps(XMMRegister dst, Address src) { Assembler::andps(dst, src); }
 883   void andps(XMMRegister dst, AddressLiteral src);
 884 
 885   void comiss(XMMRegister dst, XMMRegister src) { Assembler::comiss(dst, src); }
 886   void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
 887   void comiss(XMMRegister dst, AddressLiteral src);
 888 
 889   void comisd(XMMRegister dst, XMMRegister src) { Assembler::comisd(dst, src); }
 890   void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
 891   void comisd(XMMRegister dst, AddressLiteral src);
 892 
 893   void fadd_s(Address src)        { Assembler::fadd_s(src); }
 894   void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); }
 895 
 896   void fldcw(Address src) { Assembler::fldcw(src); }
 897   void fldcw(AddressLiteral src);
 898 
 899   void fld_s(int index)   { Assembler::fld_s(index); }
 900   void fld_s(Address src) { Assembler::fld_s(src); }
 901   void fld_s(AddressLiteral src);
 902 
 903   void fld_d(Address src) { Assembler::fld_d(src); }
 904   void fld_d(AddressLiteral src);
 905 
 906   void fld_x(Address src) { Assembler::fld_x(src); }
 907   void fld_x(AddressLiteral src);
 908 
 909   void fmul_s(Address src)        { Assembler::fmul_s(src); }
 910   void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); }
 911 
 912   void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
 913   void ldmxcsr(AddressLiteral src);
 914 
 915 #ifdef _LP64
 916  private:
 917   void sha256_AVX2_one_round_compute(
 918     Register  reg_old_h,
 919     Register  reg_a,
 920     Register  reg_b,
 921     Register  reg_c,
 922     Register  reg_d,
 923     Register  reg_e,
 924     Register  reg_f,
 925     Register  reg_g,
 926     Register  reg_h,
 927     int iter);
 928   void sha256_AVX2_four_rounds_compute_first(int start);
 929   void sha256_AVX2_four_rounds_compute_last(int start);
 930   void sha256_AVX2_one_round_and_sched(
 931         XMMRegister xmm_0,     /* == ymm4 on 0, 1, 2, 3 iterations, then rotate 4 registers left on 4, 8, 12 iterations */
 932         XMMRegister xmm_1,     /* ymm5 */  /* full cycle is 16 iterations */
 933         XMMRegister xmm_2,     /* ymm6 */
 934         XMMRegister xmm_3,     /* ymm7 */
 935         Register    reg_a,      /* == eax on 0 iteration, then rotate 8 register right on each next iteration */
 936         Register    reg_b,      /* ebx */    /* full cycle is 8 iterations */
 937         Register    reg_c,      /* edi */
 938         Register    reg_d,      /* esi */
 939         Register    reg_e,      /* r8d */
 940         Register    reg_f,      /* r9d */
 941         Register    reg_g,      /* r10d */
 942         Register    reg_h,      /* r11d */
 943         int iter);
 944 
 945   void addm(int disp, Register r1, Register r2);
 946 
 947  public:
 948   void sha256_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 949                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 950                    Register buf, Register state, Register ofs, Register limit, Register rsp,
 951                    bool multi_block, XMMRegister shuf_mask);
 952 #endif
 953 
 954 #ifdef _LP64
 955  private:
 956   void sha512_AVX2_one_round_compute(Register old_h, Register a, Register b, Register c, Register d,
 957                                      Register e, Register f, Register g, Register h, int iteration);
 958 
 959   void sha512_AVX2_one_round_and_schedule(XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 960                                           Register a, Register b, Register c, Register d, Register e, Register f,
 961                                           Register g, Register h, int iteration);
 962 
 963   void addmq(int disp, Register r1, Register r2);
 964  public:
 965   void sha512_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 966                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 967                    Register buf, Register state, Register ofs, Register limit, Register rsp, bool multi_block,
 968                    XMMRegister shuf_mask);
 969 #endif
 970 
 971   void fast_sha1(XMMRegister abcd, XMMRegister e0, XMMRegister e1, XMMRegister msg0,
 972                  XMMRegister msg1, XMMRegister msg2, XMMRegister msg3, XMMRegister shuf_mask,
 973                  Register buf, Register state, Register ofs, Register limit, Register rsp,
 974                  bool multi_block);
 975 
 976 #ifdef _LP64
 977   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 978                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 979                    Register buf, Register state, Register ofs, Register limit, Register rsp,
 980                    bool multi_block, XMMRegister shuf_mask);
 981 #else
 982   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 983                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 984                    Register buf, Register state, Register ofs, Register limit, Register rsp,
 985                    bool multi_block);
 986 #endif
 987 
 988   void fast_exp(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 989                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 990                 Register rax, Register rcx, Register rdx, Register tmp);
 991 
 992 #ifdef _LP64
 993   void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 994                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 995                 Register rax, Register rcx, Register rdx, Register tmp1, Register tmp2);
 996 
 997   void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 998                   XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 999                   Register rax, Register rcx, Register rdx, Register r11);
1000 
1001   void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
1002                 XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
1003                 Register rdx, Register tmp1, Register tmp2, Register tmp3, Register tmp4);
1004 
1005   void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1006                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1007                 Register rax, Register rbx, Register rcx, Register rdx, Register tmp1, Register tmp2,
1008                 Register tmp3, Register tmp4);
1009 
1010   void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1011                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1012                 Register rax, Register rcx, Register rdx, Register tmp1,
1013                 Register tmp2, Register tmp3, Register tmp4);
1014   void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1015                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1016                 Register rax, Register rcx, Register rdx, Register tmp1,
1017                 Register tmp2, Register tmp3, Register tmp4);
1018 #else
1019   void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1020                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1021                 Register rax, Register rcx, Register rdx, Register tmp1);
1022 
1023   void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1024                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1025                 Register rax, Register rcx, Register rdx, Register tmp);
1026 
1027   void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
1028                 XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
1029                 Register rdx, Register tmp);
1030 
1031   void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1032                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1033                 Register rax, Register rbx, Register rdx);
1034 
1035   void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1036                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1037                 Register rax, Register rcx, Register rdx, Register tmp);
1038 
1039   void libm_sincos_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1040                         Register edx, Register ebx, Register esi, Register edi,
1041                         Register ebp, Register esp);
1042 
1043   void libm_reduce_pi04l(Register eax, Register ecx, Register edx, Register ebx,
1044                          Register esi, Register edi, Register ebp, Register esp);
1045 
1046   void libm_tancot_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1047                         Register edx, Register ebx, Register esi, Register edi,
1048                         Register ebp, Register esp);
1049 
1050   void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1051                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1052                 Register rax, Register rcx, Register rdx, Register tmp);
1053 #endif
1054 
1055   void increase_precision();
1056   void restore_precision();
1057 
1058 private:
1059 
1060   // these are private because users should be doing movflt/movdbl
1061 
1062   void movss(Address dst, XMMRegister src)     { Assembler::movss(dst, src); }
1063   void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
1064   void movss(XMMRegister dst, Address src)     { Assembler::movss(dst, src); }
1065   void movss(XMMRegister dst, AddressLiteral src);
1066 
1067   void movlpd(XMMRegister dst, Address src)    {Assembler::movlpd(dst, src); }
1068   void movlpd(XMMRegister dst, AddressLiteral src);
1069 
1070 public:
1071 
1072   void addsd(XMMRegister dst, XMMRegister src)    { Assembler::addsd(dst, src); }
1073   void addsd(XMMRegister dst, Address src)        { Assembler::addsd(dst, src); }
1074   void addsd(XMMRegister dst, AddressLiteral src);
1075 
1076   void addss(XMMRegister dst, XMMRegister src)    { Assembler::addss(dst, src); }
1077   void addss(XMMRegister dst, Address src)        { Assembler::addss(dst, src); }
1078   void addss(XMMRegister dst, AddressLiteral src);
1079 
1080   void addpd(XMMRegister dst, XMMRegister src)    { Assembler::addpd(dst, src); }
1081   void addpd(XMMRegister dst, Address src)        { Assembler::addpd(dst, src); }
1082   void addpd(XMMRegister dst, AddressLiteral src);
1083 
1084   void divsd(XMMRegister dst, XMMRegister src)    { Assembler::divsd(dst, src); }
1085   void divsd(XMMRegister dst, Address src)        { Assembler::divsd(dst, src); }
1086   void divsd(XMMRegister dst, AddressLiteral src);
1087 
1088   void divss(XMMRegister dst, XMMRegister src)    { Assembler::divss(dst, src); }
1089   void divss(XMMRegister dst, Address src)        { Assembler::divss(dst, src); }
1090   void divss(XMMRegister dst, AddressLiteral src);
1091 
1092   // Move Unaligned Double Quadword
1093   void movdqu(Address     dst, XMMRegister src);
1094   void movdqu(XMMRegister dst, Address src);
1095   void movdqu(XMMRegister dst, XMMRegister src);
1096   void movdqu(XMMRegister dst, AddressLiteral src, Register scratchReg = rscratch1);
1097   // AVX Unaligned forms
1098   void vmovdqu(Address     dst, XMMRegister src);
1099   void vmovdqu(XMMRegister dst, Address src);
1100   void vmovdqu(XMMRegister dst, XMMRegister src);
1101   void vmovdqu(XMMRegister dst, AddressLiteral src);
1102 
1103   // Move Aligned Double Quadword
1104   void movdqa(XMMRegister dst, Address src)       { Assembler::movdqa(dst, src); }
1105   void movdqa(XMMRegister dst, XMMRegister src)   { Assembler::movdqa(dst, src); }
1106   void movdqa(XMMRegister dst, AddressLiteral src);
1107 
1108   void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
1109   void movsd(Address dst, XMMRegister src)     { Assembler::movsd(dst, src); }
1110   void movsd(XMMRegister dst, Address src)     { Assembler::movsd(dst, src); }
1111   void movsd(XMMRegister dst, AddressLiteral src);
1112 
1113   void mulpd(XMMRegister dst, XMMRegister src)    { Assembler::mulpd(dst, src); }
1114   void mulpd(XMMRegister dst, Address src)        { Assembler::mulpd(dst, src); }
1115   void mulpd(XMMRegister dst, AddressLiteral src);
1116 
1117   void mulsd(XMMRegister dst, XMMRegister src)    { Assembler::mulsd(dst, src); }
1118   void mulsd(XMMRegister dst, Address src)        { Assembler::mulsd(dst, src); }
1119   void mulsd(XMMRegister dst, AddressLiteral src);
1120 
1121   void mulss(XMMRegister dst, XMMRegister src)    { Assembler::mulss(dst, src); }
1122   void mulss(XMMRegister dst, Address src)        { Assembler::mulss(dst, src); }
1123   void mulss(XMMRegister dst, AddressLiteral src);
1124 
1125   // Carry-Less Multiplication Quadword
1126   void pclmulldq(XMMRegister dst, XMMRegister src) {
1127     // 0x00 - multiply lower 64 bits [0:63]
1128     Assembler::pclmulqdq(dst, src, 0x00);
1129   }
1130   void pclmulhdq(XMMRegister dst, XMMRegister src) {
1131     // 0x11 - multiply upper 64 bits [64:127]
1132     Assembler::pclmulqdq(dst, src, 0x11);
1133   }
1134 
1135   void pcmpeqb(XMMRegister dst, XMMRegister src);
1136   void pcmpeqw(XMMRegister dst, XMMRegister src);
1137 
1138   void pcmpestri(XMMRegister dst, Address src, int imm8);
1139   void pcmpestri(XMMRegister dst, XMMRegister src, int imm8);
1140 
1141   void pmovzxbw(XMMRegister dst, XMMRegister src);
1142   void pmovzxbw(XMMRegister dst, Address src);
1143 
1144   void pmovmskb(Register dst, XMMRegister src);
1145 
1146   void ptest(XMMRegister dst, XMMRegister src);
1147 
1148   void sqrtsd(XMMRegister dst, XMMRegister src)    { Assembler::sqrtsd(dst, src); }
1149   void sqrtsd(XMMRegister dst, Address src)        { Assembler::sqrtsd(dst, src); }
1150   void sqrtsd(XMMRegister dst, AddressLiteral src);
1151 
1152   void sqrtss(XMMRegister dst, XMMRegister src)    { Assembler::sqrtss(dst, src); }
1153   void sqrtss(XMMRegister dst, Address src)        { Assembler::sqrtss(dst, src); }
1154   void sqrtss(XMMRegister dst, AddressLiteral src);
1155 
1156   void subsd(XMMRegister dst, XMMRegister src)    { Assembler::subsd(dst, src); }
1157   void subsd(XMMRegister dst, Address src)        { Assembler::subsd(dst, src); }
1158   void subsd(XMMRegister dst, AddressLiteral src);
1159 
1160   void subss(XMMRegister dst, XMMRegister src)    { Assembler::subss(dst, src); }
1161   void subss(XMMRegister dst, Address src)        { Assembler::subss(dst, src); }
1162   void subss(XMMRegister dst, AddressLiteral src);
1163 
1164   void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
1165   void ucomiss(XMMRegister dst, Address src)     { Assembler::ucomiss(dst, src); }
1166   void ucomiss(XMMRegister dst, AddressLiteral src);
1167 
1168   void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
1169   void ucomisd(XMMRegister dst, Address src)     { Assembler::ucomisd(dst, src); }
1170   void ucomisd(XMMRegister dst, AddressLiteral src);
1171 
1172   // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
1173   void xorpd(XMMRegister dst, XMMRegister src);
1174   void xorpd(XMMRegister dst, Address src)     { Assembler::xorpd(dst, src); }
1175   void xorpd(XMMRegister dst, AddressLiteral src);
1176 
1177   // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
1178   void xorps(XMMRegister dst, XMMRegister src);
1179   void xorps(XMMRegister dst, Address src)     { Assembler::xorps(dst, src); }
1180   void xorps(XMMRegister dst, AddressLiteral src);
1181 
1182   // Shuffle Bytes
1183   void pshufb(XMMRegister dst, XMMRegister src) { Assembler::pshufb(dst, src); }
1184   void pshufb(XMMRegister dst, Address src)     { Assembler::pshufb(dst, src); }
1185   void pshufb(XMMRegister dst, AddressLiteral src);
1186   // AVX 3-operands instructions
1187 
1188   void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddsd(dst, nds, src); }
1189   void vaddsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddsd(dst, nds, src); }
1190   void vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1191 
1192   void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddss(dst, nds, src); }
1193   void vaddss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddss(dst, nds, src); }
1194   void vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1195 
1196   void vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
1197   void vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
1198 
1199   void vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1200   void vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1201 
1202   void vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1203   void vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1204 
1205   void vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1206   void vpand(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1207   void vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1208 
1209   void vpbroadcastw(XMMRegister dst, XMMRegister src);
1210 
1211   void vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1212   void vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1213 
1214   void vpmovzxbw(XMMRegister dst, Address src, int vector_len);
1215   void vpmovmskb(Register dst, XMMRegister src);
1216 
1217   void vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1218   void vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1219 
1220   void vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1221   void vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1222 
1223   void vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1224   void vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1225 
1226   void vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1227   void vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1228 
1229   void vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1230   void vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1231 
1232   void vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1233   void vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1234 
1235   void vptest(XMMRegister dst, XMMRegister src);
1236 
1237   void punpcklbw(XMMRegister dst, XMMRegister src);
1238   void punpcklbw(XMMRegister dst, Address src) { Assembler::punpcklbw(dst, src); }
1239 
1240   void pshufd(XMMRegister dst, Address src, int mode);
1241   void pshufd(XMMRegister dst, XMMRegister src, int mode) { Assembler::pshufd(dst, src, mode); }
1242 
1243   void pshuflw(XMMRegister dst, XMMRegister src, int mode);
1244   void pshuflw(XMMRegister dst, Address src, int mode) { Assembler::pshuflw(dst, src, mode); }
1245 
1246   void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandpd(dst, nds, src, vector_len); }
1247   void vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandpd(dst, nds, src, vector_len); }
1248   void vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1249 
1250   void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandps(dst, nds, src, vector_len); }
1251   void vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandps(dst, nds, src, vector_len); }
1252   void vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1253 
1254   void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivsd(dst, nds, src); }
1255   void vdivsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivsd(dst, nds, src); }
1256   void vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1257 
1258   void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivss(dst, nds, src); }
1259   void vdivss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivss(dst, nds, src); }
1260   void vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1261 
1262   void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulsd(dst, nds, src); }
1263   void vmulsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulsd(dst, nds, src); }
1264   void vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1265 
1266   void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulss(dst, nds, src); }
1267   void vmulss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulss(dst, nds, src); }
1268   void vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1269 
1270   void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubsd(dst, nds, src); }
1271   void vsubsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubsd(dst, nds, src); }
1272   void vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1273 
1274   void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubss(dst, nds, src); }
1275   void vsubss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubss(dst, nds, src); }
1276   void vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1277 
1278   void vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1279   void vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1280 
1281   // AVX Vector instructions
1282 
1283   void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1284   void vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1285   void vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1286 
1287   void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1288   void vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1289   void vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1290 
1291   void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1292     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1293       Assembler::vpxor(dst, nds, src, vector_len);
1294     else
1295       Assembler::vxorpd(dst, nds, src, vector_len);
1296   }
1297   void vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
1298     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1299       Assembler::vpxor(dst, nds, src, vector_len);
1300     else
1301       Assembler::vxorpd(dst, nds, src, vector_len);
1302   }
1303 
1304   // Simple version for AVX2 256bit vectors
1305   void vpxor(XMMRegister dst, XMMRegister src) { Assembler::vpxor(dst, dst, src, true); }
1306   void vpxor(XMMRegister dst, Address src) { Assembler::vpxor(dst, dst, src, true); }
1307 
1308   void vinserti128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
1309     if (UseAVX > 2) {
1310       Assembler::vinserti32x4(dst, dst, src, imm8);
1311     } else if (UseAVX > 1) {
1312       // vinserti128 is available only in AVX2
1313       Assembler::vinserti128(dst, nds, src, imm8);
1314     } else {
1315       Assembler::vinsertf128(dst, nds, src, imm8);
1316     }
1317   }
1318 
1319   void vinserti128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
1320     if (UseAVX > 2) {
1321       Assembler::vinserti32x4(dst, dst, src, imm8);
1322     } else if (UseAVX > 1) {
1323       // vinserti128 is available only in AVX2
1324       Assembler::vinserti128(dst, nds, src, imm8);
1325     } else {
1326       Assembler::vinsertf128(dst, nds, src, imm8);
1327     }
1328   }
1329 
1330   void vextracti128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
1331     if (UseAVX > 2) {
1332       Assembler::vextracti32x4(dst, src, imm8);
1333     } else if (UseAVX > 1) {
1334       // vextracti128 is available only in AVX2
1335       Assembler::vextracti128(dst, src, imm8);
1336     } else {
1337       Assembler::vextractf128(dst, src, imm8);
1338     }
1339   }
1340 
1341   void vextracti128(Address dst, XMMRegister src, uint8_t imm8) {
1342     if (UseAVX > 2) {
1343       Assembler::vextracti32x4(dst, src, imm8);
1344     } else if (UseAVX > 1) {
1345       // vextracti128 is available only in AVX2
1346       Assembler::vextracti128(dst, src, imm8);
1347     } else {
1348       Assembler::vextractf128(dst, src, imm8);
1349     }
1350   }
1351 
1352   // 128bit copy to/from high 128 bits of 256bit (YMM) vector registers
1353   void vinserti128_high(XMMRegister dst, XMMRegister src) {
1354     vinserti128(dst, dst, src, 1);
1355   }
1356   void vinserti128_high(XMMRegister dst, Address src) {
1357     vinserti128(dst, dst, src, 1);
1358   }
1359   void vextracti128_high(XMMRegister dst, XMMRegister src) {
1360     vextracti128(dst, src, 1);
1361   }
1362   void vextracti128_high(Address dst, XMMRegister src) {
1363     vextracti128(dst, src, 1);
1364   }
1365 
1366   void vinsertf128_high(XMMRegister dst, XMMRegister src) {
1367     if (UseAVX > 2) {
1368       Assembler::vinsertf32x4(dst, dst, src, 1);
1369     } else {
1370       Assembler::vinsertf128(dst, dst, src, 1);
1371     }
1372   }
1373 
1374   void vinsertf128_high(XMMRegister dst, Address src) {
1375     if (UseAVX > 2) {
1376       Assembler::vinsertf32x4(dst, dst, src, 1);
1377     } else {
1378       Assembler::vinsertf128(dst, dst, src, 1);
1379     }
1380   }
1381 
1382   void vextractf128_high(XMMRegister dst, XMMRegister src) {
1383     if (UseAVX > 2) {
1384       Assembler::vextractf32x4(dst, src, 1);
1385     } else {
1386       Assembler::vextractf128(dst, src, 1);
1387     }
1388   }
1389 
1390   void vextractf128_high(Address dst, XMMRegister src) {
1391     if (UseAVX > 2) {
1392       Assembler::vextractf32x4(dst, src, 1);
1393     } else {
1394       Assembler::vextractf128(dst, src, 1);
1395     }
1396   }
1397 
1398   // 256bit copy to/from high 256 bits of 512bit (ZMM) vector registers
1399   void vinserti64x4_high(XMMRegister dst, XMMRegister src) {
1400     Assembler::vinserti64x4(dst, dst, src, 1);
1401   }
1402   void vinsertf64x4_high(XMMRegister dst, XMMRegister src) {
1403     Assembler::vinsertf64x4(dst, dst, src, 1);
1404   }
1405   void vextracti64x4_high(XMMRegister dst, XMMRegister src) {
1406     Assembler::vextracti64x4(dst, src, 1);
1407   }
1408   void vextractf64x4_high(XMMRegister dst, XMMRegister src) {
1409     Assembler::vextractf64x4(dst, src, 1);
1410   }
1411   void vextractf64x4_high(Address dst, XMMRegister src) {
1412     Assembler::vextractf64x4(dst, src, 1);
1413   }
1414   void vinsertf64x4_high(XMMRegister dst, Address src) {
1415     Assembler::vinsertf64x4(dst, dst, src, 1);
1416   }
1417 
1418   // 128bit copy to/from low 128 bits of 256bit (YMM) vector registers
1419   void vinserti128_low(XMMRegister dst, XMMRegister src) {
1420     vinserti128(dst, dst, src, 0);
1421   }
1422   void vinserti128_low(XMMRegister dst, Address src) {
1423     vinserti128(dst, dst, src, 0);
1424   }
1425   void vextracti128_low(XMMRegister dst, XMMRegister src) {
1426     vextracti128(dst, src, 0);
1427   }
1428   void vextracti128_low(Address dst, XMMRegister src) {
1429     vextracti128(dst, src, 0);
1430   }
1431 
1432   void vinsertf128_low(XMMRegister dst, XMMRegister src) {
1433     if (UseAVX > 2) {
1434       Assembler::vinsertf32x4(dst, dst, src, 0);
1435     } else {
1436       Assembler::vinsertf128(dst, dst, src, 0);
1437     }
1438   }
1439 
1440   void vinsertf128_low(XMMRegister dst, Address src) {
1441     if (UseAVX > 2) {
1442       Assembler::vinsertf32x4(dst, dst, src, 0);
1443     } else {
1444       Assembler::vinsertf128(dst, dst, src, 0);
1445     }
1446   }
1447 
1448   void vextractf128_low(XMMRegister dst, XMMRegister src) {
1449     if (UseAVX > 2) {
1450       Assembler::vextractf32x4(dst, src, 0);
1451     } else {
1452       Assembler::vextractf128(dst, src, 0);
1453     }
1454   }
1455 
1456   void vextractf128_low(Address dst, XMMRegister src) {
1457     if (UseAVX > 2) {
1458       Assembler::vextractf32x4(dst, src, 0);
1459     } else {
1460       Assembler::vextractf128(dst, src, 0);
1461     }
1462   }
1463 
1464   // 256bit copy to/from low 256 bits of 512bit (ZMM) vector registers
1465   void vinserti64x4_low(XMMRegister dst, XMMRegister src) {
1466     Assembler::vinserti64x4(dst, dst, src, 0);
1467   }
1468   void vinsertf64x4_low(XMMRegister dst, XMMRegister src) {
1469     Assembler::vinsertf64x4(dst, dst, src, 0);
1470   }
1471   void vextracti64x4_low(XMMRegister dst, XMMRegister src) {
1472     Assembler::vextracti64x4(dst, src, 0);
1473   }
1474   void vextractf64x4_low(XMMRegister dst, XMMRegister src) {
1475     Assembler::vextractf64x4(dst, src, 0);
1476   }
1477   void vextractf64x4_low(Address dst, XMMRegister src) {
1478     Assembler::vextractf64x4(dst, src, 0);
1479   }
1480   void vinsertf64x4_low(XMMRegister dst, Address src) {
1481     Assembler::vinsertf64x4(dst, dst, src, 0);
1482   }
1483 
1484   // Carry-Less Multiplication Quadword
1485   void vpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1486     // 0x00 - multiply lower 64 bits [0:63]
1487     Assembler::vpclmulqdq(dst, nds, src, 0x00);
1488   }
1489   void vpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1490     // 0x11 - multiply upper 64 bits [64:127]
1491     Assembler::vpclmulqdq(dst, nds, src, 0x11);
1492   }
1493 
1494   // Data
1495 
1496   void cmov32( Condition cc, Register dst, Address  src);
1497   void cmov32( Condition cc, Register dst, Register src);
1498 
1499   void cmov(   Condition cc, Register dst, Register src) { cmovptr(cc, dst, src); }
1500 
1501   void cmovptr(Condition cc, Register dst, Address  src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1502   void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1503 
1504   void movoop(Register dst, jobject obj);
1505   void movoop(Address dst, jobject obj);
1506 
1507   void mov_metadata(Register dst, Metadata* obj);
1508   void mov_metadata(Address dst, Metadata* obj);
1509 
1510   void movptr(ArrayAddress dst, Register src);
1511   // can this do an lea?
1512   void movptr(Register dst, ArrayAddress src);
1513 
1514   void movptr(Register dst, Address src);
1515 
1516 #ifdef _LP64
1517   void movptr(Register dst, AddressLiteral src, Register scratch=rscratch1);
1518 #else
1519   void movptr(Register dst, AddressLiteral src, Register scratch=noreg); // Scratch reg is ignored in 32-bit
1520 #endif
1521 
1522   void movptr(Register dst, intptr_t src);
1523   void movptr(Register dst, Register src);
1524   void movptr(Address dst, intptr_t src);
1525 
1526   void movptr(Address dst, Register src);
1527 
1528   void movptr(Register dst, RegisterOrConstant src) {
1529     if (src.is_constant()) movptr(dst, src.as_constant());
1530     else                   movptr(dst, src.as_register());
1531   }
1532 
1533 #ifdef _LP64
1534   // Generally the next two are only used for moving NULL
1535   // Although there are situations in initializing the mark word where
1536   // they could be used. They are dangerous.
1537 
1538   // They only exist on LP64 so that int32_t and intptr_t are not the same
1539   // and we have ambiguous declarations.
1540 
1541   void movptr(Address dst, int32_t imm32);
1542   void movptr(Register dst, int32_t imm32);
1543 #endif // _LP64
1544 
1545   // to avoid hiding movl
1546   void mov32(AddressLiteral dst, Register src);
1547   void mov32(Register dst, AddressLiteral src);
1548 
1549   // to avoid hiding movb
1550   void movbyte(ArrayAddress dst, int src);
1551 
1552   // Import other mov() methods from the parent class or else
1553   // they will be hidden by the following overriding declaration.
1554   using Assembler::movdl;
1555   using Assembler::movq;
1556   void movdl(XMMRegister dst, AddressLiteral src);
1557   void movq(XMMRegister dst, AddressLiteral src);
1558 
1559   // Can push value or effective address
1560   void pushptr(AddressLiteral src);
1561 
1562   void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
1563   void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
1564 
1565   void pushoop(jobject obj);
1566   void pushklass(Metadata* obj);
1567 
1568   // sign extend as need a l to ptr sized element
1569   void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
1570   void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
1571 
1572   // C2 compiled method's prolog code.
1573   void verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b);
1574 
1575   // clear memory of size 'cnt' qwords, starting at 'base';
1576   // if 'is_large' is set, do not try to produce short loop
1577   void clear_mem(Register base, Register cnt, Register rtmp, bool is_large);
1578 
1579 #ifdef COMPILER2
1580   void string_indexof_char(Register str1, Register cnt1, Register ch, Register result,
1581                            XMMRegister vec1, XMMRegister vec2, XMMRegister vec3, Register tmp);
1582 
1583   // IndexOf strings.
1584   // Small strings are loaded through stack if they cross page boundary.
1585   void string_indexof(Register str1, Register str2,
1586                       Register cnt1, Register cnt2,
1587                       int int_cnt2,  Register result,
1588                       XMMRegister vec, Register tmp,
1589                       int ae);
1590 
1591   // IndexOf for constant substrings with size >= 8 elements
1592   // which don't need to be loaded through stack.
1593   void string_indexofC8(Register str1, Register str2,
1594                       Register cnt1, Register cnt2,
1595                       int int_cnt2,  Register result,
1596                       XMMRegister vec, Register tmp,
1597                       int ae);
1598 
1599     // Smallest code: we don't need to load through stack,
1600     // check string tail.
1601 
1602   // helper function for string_compare
1603   void load_next_elements(Register elem1, Register elem2, Register str1, Register str2,
1604                           Address::ScaleFactor scale, Address::ScaleFactor scale1,
1605                           Address::ScaleFactor scale2, Register index, int ae);
1606   // Compare strings.
1607   void string_compare(Register str1, Register str2,
1608                       Register cnt1, Register cnt2, Register result,
1609                       XMMRegister vec1, int ae);
1610 
1611   // Search for Non-ASCII character (Negative byte value) in a byte array,
1612   // return true if it has any and false otherwise.
1613   void has_negatives(Register ary1, Register len,
1614                      Register result, Register tmp1,
1615                      XMMRegister vec1, XMMRegister vec2);
1616 
1617   // Compare char[] or byte[] arrays.
1618   void arrays_equals(bool is_array_equ, Register ary1, Register ary2,
1619                      Register limit, Register result, Register chr,
1620                      XMMRegister vec1, XMMRegister vec2, bool is_char);
1621 
1622 #endif
1623 
1624   // Fill primitive arrays
1625   void generate_fill(BasicType t, bool aligned,
1626                      Register to, Register value, Register count,
1627                      Register rtmp, XMMRegister xtmp);
1628 
1629   void encode_iso_array(Register src, Register dst, Register len,
1630                         XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1631                         XMMRegister tmp4, Register tmp5, Register result);
1632 
1633 #ifdef _LP64
1634   void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2);
1635   void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
1636                              Register y, Register y_idx, Register z,
1637                              Register carry, Register product,
1638                              Register idx, Register kdx);
1639   void multiply_add_128_x_128(Register x_xstart, Register y, Register z,
1640                               Register yz_idx, Register idx,
1641                               Register carry, Register product, int offset);
1642   void multiply_128_x_128_bmi2_loop(Register y, Register z,
1643                                     Register carry, Register carry2,
1644                                     Register idx, Register jdx,
1645                                     Register yz_idx1, Register yz_idx2,
1646                                     Register tmp, Register tmp3, Register tmp4);
1647   void multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
1648                                Register yz_idx, Register idx, Register jdx,
1649                                Register carry, Register product,
1650                                Register carry2);
1651   void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
1652                        Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5);
1653   void square_rshift(Register x, Register len, Register z, Register tmp1, Register tmp3,
1654                      Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1655   void multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry,
1656                             Register tmp2);
1657   void multiply_add_64(Register sum, Register op1, Register op2, Register carry,
1658                        Register rdxReg, Register raxReg);
1659   void add_one_64(Register z, Register zlen, Register carry, Register tmp1);
1660   void lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1661                        Register tmp3, Register tmp4);
1662   void square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1663                      Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1664 
1665   void mul_add_128_x_32_loop(Register out, Register in, Register offset, Register len, Register tmp1,
1666                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1667                Register raxReg);
1668   void mul_add(Register out, Register in, Register offset, Register len, Register k, Register tmp1,
1669                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1670                Register raxReg);
1671   void vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
1672                            Register result, Register tmp1, Register tmp2,
1673                            XMMRegister vec1, XMMRegister vec2, XMMRegister vec3);
1674 #endif
1675 
1676   // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic.
1677   void update_byte_crc32(Register crc, Register val, Register table);
1678   void kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp);
1679   // CRC32C code for java.util.zip.CRC32C::updateBytes() intrinsic
1680   // Note on a naming convention:
1681   // Prefix w = register only used on a Westmere+ architecture
1682   // Prefix n = register only used on a Nehalem architecture
1683 #ifdef _LP64
1684   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1685                        Register tmp1, Register tmp2, Register tmp3);
1686 #else
1687   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1688                        Register tmp1, Register tmp2, Register tmp3,
1689                        XMMRegister xtmp1, XMMRegister xtmp2);
1690 #endif
1691   void crc32c_pclmulqdq(XMMRegister w_xtmp1,
1692                         Register in_out,
1693                         uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
1694                         XMMRegister w_xtmp2,
1695                         Register tmp1,
1696                         Register n_tmp2, Register n_tmp3);
1697   void crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
1698                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1699                        Register tmp1, Register tmp2,
1700                        Register n_tmp3);
1701   void crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
1702                          Register in_out1, Register in_out2, Register in_out3,
1703                          Register tmp1, Register tmp2, Register tmp3,
1704                          XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1705                          Register tmp4, Register tmp5,
1706                          Register n_tmp6);
1707   void crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
1708                             Register tmp1, Register tmp2, Register tmp3,
1709                             Register tmp4, Register tmp5, Register tmp6,
1710                             XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1711                             bool is_pclmulqdq_supported);
1712   // Fold 128-bit data chunk
1713   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset);
1714   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf);
1715   // Fold 8-bit data
1716   void fold_8bit_crc32(Register crc, Register table, Register tmp);
1717   void fold_8bit_crc32(XMMRegister crc, Register table, XMMRegister xtmp, Register tmp);
1718 
1719   // Compress char[] array to byte[].
1720   void char_array_compress(Register src, Register dst, Register len,
1721                            XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1722                            XMMRegister tmp4, Register tmp5, Register result);
1723 
1724   // Inflate byte[] array to char[].
1725   void byte_array_inflate(Register src, Register dst, Register len,
1726                           XMMRegister tmp1, Register tmp2);
1727 
1728 };
1729 
1730 /**
1731  * class SkipIfEqual:
1732  *
1733  * Instantiating this class will result in assembly code being output that will
1734  * jump around any code emitted between the creation of the instance and it's
1735  * automatic destruction at the end of a scope block, depending on the value of
1736  * the flag passed to the constructor, which will be checked at run-time.
1737  */
1738 class SkipIfEqual {
1739  private:
1740   MacroAssembler* _masm;
1741   Label _label;
1742 
1743  public:
1744    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
1745    ~SkipIfEqual();
1746 };
1747 
1748 #endif // CPU_X86_VM_MACROASSEMBLER_X86_HPP