1 /*
   2  * Copyright (c) 2003, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "interp_masm_aarch64.hpp"
  28 #include "interpreter/interpreter.hpp"
  29 #include "interpreter/interpreterRuntime.hpp"
  30 #include "logging/log.hpp"
  31 #include "oops/arrayOop.hpp"
  32 #include "oops/markOop.hpp"
  33 #include "oops/methodData.hpp"
  34 #include "oops/method.hpp"
  35 #include "prims/jvmtiExport.hpp"
  36 #include "prims/jvmtiThreadState.hpp"
  37 #include "runtime/basicLock.hpp"
  38 #include "runtime/biasedLocking.hpp"
  39 #include "runtime/sharedRuntime.hpp"
  40 #include "runtime/thread.inline.hpp"
  41 
  42 
  43 void InterpreterMacroAssembler::narrow(Register result) {
  44 
  45   // Get method->_constMethod->_result_type
  46   ldr(rscratch1, Address(rfp, frame::interpreter_frame_method_offset * wordSize));
  47   ldr(rscratch1, Address(rscratch1, Method::const_offset()));
  48   ldrb(rscratch1, Address(rscratch1, ConstMethod::result_type_offset()));
  49 
  50   Label done, notBool, notByte, notChar;
  51 
  52   // common case first
  53   cmpw(rscratch1, T_INT);
  54   br(Assembler::EQ, done);
  55 
  56   // mask integer result to narrower return type.
  57   cmpw(rscratch1, T_BOOLEAN);
  58   br(Assembler::NE, notBool);
  59   andw(result, result, 0x1);
  60   b(done);
  61 
  62   bind(notBool);
  63   cmpw(rscratch1, T_BYTE);
  64   br(Assembler::NE, notByte);
  65   sbfx(result, result, 0, 8);
  66   b(done);
  67 
  68   bind(notByte);
  69   cmpw(rscratch1, T_CHAR);
  70   br(Assembler::NE, notChar);
  71   ubfx(result, result, 0, 16);  // truncate upper 16 bits
  72   b(done);
  73 
  74   bind(notChar);
  75   sbfx(result, result, 0, 16);     // sign-extend short
  76 
  77   // Nothing to do for T_INT
  78   bind(done);
  79 }
  80 
  81 void InterpreterMacroAssembler::jump_to_entry(address entry) {
  82   assert(entry, "Entry must have been generated by now");
  83   b(entry);
  84 }
  85 
  86 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) {
  87   if (JvmtiExport::can_pop_frame()) {
  88     Label L;
  89     // Initiate popframe handling only if it is not already being
  90     // processed.  If the flag has the popframe_processing bit set, it
  91     // means that this code is called *during* popframe handling - we
  92     // don't want to reenter.
  93     // This method is only called just after the call into the vm in
  94     // call_VM_base, so the arg registers are available.
  95     ldrw(rscratch1, Address(rthread, JavaThread::popframe_condition_offset()));
  96     tbz(rscratch1, exact_log2(JavaThread::popframe_pending_bit), L);
  97     tbnz(rscratch1, exact_log2(JavaThread::popframe_processing_bit), L);
  98     // Call Interpreter::remove_activation_preserving_args_entry() to get the
  99     // address of the same-named entrypoint in the generated interpreter code.
 100     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
 101     br(r0);
 102     bind(L);
 103   }
 104 }
 105 
 106 
 107 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
 108   ldr(r2, Address(rthread, JavaThread::jvmti_thread_state_offset()));
 109   const Address tos_addr(r2, JvmtiThreadState::earlyret_tos_offset());
 110   const Address oop_addr(r2, JvmtiThreadState::earlyret_oop_offset());
 111   const Address val_addr(r2, JvmtiThreadState::earlyret_value_offset());
 112   switch (state) {
 113     case atos: ldr(r0, oop_addr);
 114                str(zr, oop_addr);
 115                verify_oop(r0, state);               break;
 116     case ltos: ldr(r0, val_addr);                   break;
 117     case btos:                                   // fall through
 118     case ztos:                                   // fall through
 119     case ctos:                                   // fall through
 120     case stos:                                   // fall through
 121     case itos: ldrw(r0, val_addr);                  break;
 122     case ftos: ldrs(v0, val_addr);                  break;
 123     case dtos: ldrd(v0, val_addr);                  break;
 124     case vtos: /* nothing to do */                  break;
 125     default  : ShouldNotReachHere();
 126   }
 127   // Clean up tos value in the thread object
 128   movw(rscratch1, (int) ilgl);
 129   strw(rscratch1, tos_addr);
 130   strw(zr, val_addr);
 131 }
 132 
 133 
 134 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) {
 135   if (JvmtiExport::can_force_early_return()) {
 136     Label L;
 137     ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset()));
 138     cbz(rscratch1, L); // if (thread->jvmti_thread_state() == NULL) exit;
 139 
 140     // Initiate earlyret handling only if it is not already being processed.
 141     // If the flag has the earlyret_processing bit set, it means that this code
 142     // is called *during* earlyret handling - we don't want to reenter.
 143     ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_state_offset()));
 144     cmpw(rscratch1, JvmtiThreadState::earlyret_pending);
 145     br(Assembler::NE, L);
 146 
 147     // Call Interpreter::remove_activation_early_entry() to get the address of the
 148     // same-named entrypoint in the generated interpreter code.
 149     ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset()));
 150     ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_tos_offset()));
 151     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), rscratch1);
 152     br(r0);
 153     bind(L);
 154   }
 155 }
 156 
 157 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(
 158   Register reg,
 159   int bcp_offset) {
 160   assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
 161   ldrh(reg, Address(rbcp, bcp_offset));
 162   rev16(reg, reg);
 163 }
 164 
 165 void InterpreterMacroAssembler::get_dispatch() {
 166   unsigned long offset;
 167   adrp(rdispatch, ExternalAddress((address)Interpreter::dispatch_table()), offset);
 168   lea(rdispatch, Address(rdispatch, offset));
 169 }
 170 
 171 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index,
 172                                                        int bcp_offset,
 173                                                        size_t index_size) {
 174   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
 175   if (index_size == sizeof(u2)) {
 176     load_unsigned_short(index, Address(rbcp, bcp_offset));
 177   } else if (index_size == sizeof(u4)) {
 178     // assert(EnableInvokeDynamic, "giant index used only for JSR 292");
 179     ldrw(index, Address(rbcp, bcp_offset));
 180     // Check if the secondary index definition is still ~x, otherwise
 181     // we have to change the following assembler code to calculate the
 182     // plain index.
 183     assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line");
 184     eonw(index, index, zr);  // convert to plain index
 185   } else if (index_size == sizeof(u1)) {
 186     load_unsigned_byte(index, Address(rbcp, bcp_offset));
 187   } else {
 188     ShouldNotReachHere();
 189   }
 190 }
 191 
 192 // Return
 193 // Rindex: index into constant pool
 194 // Rcache: address of cache entry - ConstantPoolCache::base_offset()
 195 //
 196 // A caller must add ConstantPoolCache::base_offset() to Rcache to get
 197 // the true address of the cache entry.
 198 //
 199 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache,
 200                                                            Register index,
 201                                                            int bcp_offset,
 202                                                            size_t index_size) {
 203   assert_different_registers(cache, index);
 204   assert_different_registers(cache, rcpool);
 205   get_cache_index_at_bcp(index, bcp_offset, index_size);
 206   assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
 207   // convert from field index to ConstantPoolCacheEntry
 208   // aarch64 already has the cache in rcpool so there is no need to
 209   // install it in cache. instead we pre-add the indexed offset to
 210   // rcpool and return it in cache. All clients of this method need to
 211   // be modified accordingly.
 212   add(cache, rcpool, index, Assembler::LSL, 5);
 213 }
 214 
 215 
 216 void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache,
 217                                                                         Register index,
 218                                                                         Register bytecode,
 219                                                                         int byte_no,
 220                                                                         int bcp_offset,
 221                                                                         size_t index_size) {
 222   get_cache_and_index_at_bcp(cache, index, bcp_offset, index_size);
 223   // We use a 32-bit load here since the layout of 64-bit words on
 224   // little-endian machines allow us that.
 225   // n.b. unlike x86 cache already includes the index offset
 226   lea(bytecode, Address(cache,
 227                          ConstantPoolCache::base_offset()
 228                          + ConstantPoolCacheEntry::indices_offset()));
 229   ldarw(bytecode, bytecode);
 230   const int shift_count = (1 + byte_no) * BitsPerByte;
 231   ubfx(bytecode, bytecode, shift_count, BitsPerByte);
 232 }
 233 
 234 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache,
 235                                                                Register tmp,
 236                                                                int bcp_offset,
 237                                                                size_t index_size) {
 238   assert(cache != tmp, "must use different register");
 239   get_cache_index_at_bcp(tmp, bcp_offset, index_size);
 240   assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
 241   // convert from field index to ConstantPoolCacheEntry index
 242   // and from word offset to byte offset
 243   assert(exact_log2(in_bytes(ConstantPoolCacheEntry::size_in_bytes())) == 2 + LogBytesPerWord, "else change next line");
 244   ldr(cache, Address(rfp, frame::interpreter_frame_cache_offset * wordSize));
 245   // skip past the header
 246   add(cache, cache, in_bytes(ConstantPoolCache::base_offset()));
 247   add(cache, cache, tmp, Assembler::LSL, 2 + LogBytesPerWord);  // construct pointer to cache entry
 248 }
 249 
 250 void InterpreterMacroAssembler::get_method_counters(Register method,
 251                                                     Register mcs, Label& skip) {
 252   Label has_counters;
 253   ldr(mcs, Address(method, Method::method_counters_offset()));
 254   cbnz(mcs, has_counters);
 255   call_VM(noreg, CAST_FROM_FN_PTR(address,
 256           InterpreterRuntime::build_method_counters), method);
 257   ldr(mcs, Address(method, Method::method_counters_offset()));
 258   cbz(mcs, skip); // No MethodCounters allocated, OutOfMemory
 259   bind(has_counters);
 260 }
 261 
 262 // Load object from cpool->resolved_references(index)
 263 void InterpreterMacroAssembler::load_resolved_reference_at_index(
 264                                            Register result, Register index) {
 265   assert_different_registers(result, index);
 266   // convert from field index to resolved_references() index and from
 267   // word index to byte offset. Since this is a java object, it can be compressed
 268   Register tmp = index;  // reuse
 269   lslw(tmp, tmp, LogBytesPerHeapOop);
 270 
 271   get_constant_pool(result);
 272   // load pointer for resolved_references[] objArray
 273   ldr(result, Address(result, ConstantPool::cache_offset_in_bytes()));
 274   ldr(result, Address(result, ConstantPoolCache::resolved_references_offset_in_bytes()));
 275   resolve_oop_handle(result);
 276   // Add in the index
 277   add(result, result, tmp);
 278   load_heap_oop(result, Address(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
 279 }
 280 
 281 void InterpreterMacroAssembler::load_resolved_klass_at_offset(
 282                              Register cpool, Register index, Register klass, Register temp) {
 283   add(temp, cpool, index, LSL, LogBytesPerWord);
 284   ldrh(temp, Address(temp, sizeof(ConstantPool))); // temp = resolved_klass_index
 285   ldr(klass, Address(cpool,  ConstantPool::resolved_klasses_offset_in_bytes())); // klass = cpool->_resolved_klasses
 286   add(klass, klass, temp, LSL, LogBytesPerWord);
 287   ldr(klass, Address(klass, Array<Klass*>::base_offset_in_bytes()));
 288 }
 289 
 290 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a
 291 // subtype of super_klass.
 292 //
 293 // Args:
 294 //      r0: superklass
 295 //      Rsub_klass: subklass
 296 //
 297 // Kills:
 298 //      r2, r5
 299 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
 300                                                   Label& ok_is_subtype) {
 301   assert(Rsub_klass != r0, "r0 holds superklass");
 302   assert(Rsub_klass != r2, "r2 holds 2ndary super array length");
 303   assert(Rsub_klass != r5, "r5 holds 2ndary super array scan ptr");
 304 
 305   // Profile the not-null value's klass.
 306   profile_typecheck(r2, Rsub_klass, r5); // blows r2, reloads r5
 307 
 308   // Do the check.
 309   check_klass_subtype(Rsub_klass, r0, r2, ok_is_subtype); // blows r2
 310 
 311   // Profile the failure of the check.
 312   profile_typecheck_failed(r2); // blows r2
 313 }
 314 
 315 // Java Expression Stack
 316 
 317 void InterpreterMacroAssembler::pop_ptr(Register r) {
 318   ldr(r, post(esp, wordSize));
 319 }
 320 
 321 void InterpreterMacroAssembler::pop_i(Register r) {
 322   ldrw(r, post(esp, wordSize));
 323 }
 324 
 325 void InterpreterMacroAssembler::pop_l(Register r) {
 326   ldr(r, post(esp, 2 * Interpreter::stackElementSize));
 327 }
 328 
 329 void InterpreterMacroAssembler::push_ptr(Register r) {
 330   str(r, pre(esp, -wordSize));
 331  }
 332 
 333 void InterpreterMacroAssembler::push_i(Register r) {
 334   str(r, pre(esp, -wordSize));
 335 }
 336 
 337 void InterpreterMacroAssembler::push_l(Register r) {
 338   str(zr, pre(esp, -wordSize));
 339   str(r, pre(esp, - wordSize));
 340 }
 341 
 342 void InterpreterMacroAssembler::pop_f(FloatRegister r) {
 343   ldrs(r, post(esp, wordSize));
 344 }
 345 
 346 void InterpreterMacroAssembler::pop_d(FloatRegister r) {
 347   ldrd(r, post(esp, 2 * Interpreter::stackElementSize));
 348 }
 349 
 350 void InterpreterMacroAssembler::push_f(FloatRegister r) {
 351   strs(r, pre(esp, -wordSize));
 352 }
 353 
 354 void InterpreterMacroAssembler::push_d(FloatRegister r) {
 355   strd(r, pre(esp, 2* -wordSize));
 356 }
 357 
 358 void InterpreterMacroAssembler::pop(TosState state) {
 359   switch (state) {
 360   case atos: pop_ptr();                 break;
 361   case btos:
 362   case ztos:
 363   case ctos:
 364   case stos:
 365   case itos: pop_i();                   break;
 366   case ltos: pop_l();                   break;
 367   case ftos: pop_f();                   break;
 368   case dtos: pop_d();                   break;
 369   case vtos: /* nothing to do */        break;
 370   default:   ShouldNotReachHere();
 371   }
 372   verify_oop(r0, state);
 373 }
 374 
 375 void InterpreterMacroAssembler::push(TosState state) {
 376   verify_oop(r0, state);
 377   switch (state) {
 378   case atos: push_ptr();                break;
 379   case btos:
 380   case ztos:
 381   case ctos:
 382   case stos:
 383   case itos: push_i();                  break;
 384   case ltos: push_l();                  break;
 385   case ftos: push_f();                  break;
 386   case dtos: push_d();                  break;
 387   case vtos: /* nothing to do */        break;
 388   default  : ShouldNotReachHere();
 389   }
 390 }
 391 
 392 // Helpers for swap and dup
 393 void InterpreterMacroAssembler::load_ptr(int n, Register val) {
 394   ldr(val, Address(esp, Interpreter::expr_offset_in_bytes(n)));
 395 }
 396 
 397 void InterpreterMacroAssembler::store_ptr(int n, Register val) {
 398   str(val, Address(esp, Interpreter::expr_offset_in_bytes(n)));
 399 }
 400 
 401 
 402 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() {
 403   // set sender sp
 404   mov(r13, sp);
 405   // record last_sp
 406   str(esp, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
 407 }
 408 
 409 // Jump to from_interpreted entry of a call unless single stepping is possible
 410 // in this thread in which case we must call the i2i entry
 411 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
 412   prepare_to_jump_from_interpreted();
 413 
 414   if (JvmtiExport::can_post_interpreter_events()) {
 415     Label run_compiled_code;
 416     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
 417     // compiled code in threads for which the event is enabled.  Check here for
 418     // interp_only_mode if these events CAN be enabled.
 419     ldrw(rscratch1, Address(rthread, JavaThread::interp_only_mode_offset()));
 420     cbzw(rscratch1, run_compiled_code);
 421     ldr(rscratch1, Address(method, Method::interpreter_entry_offset()));
 422     br(rscratch1);
 423     bind(run_compiled_code);
 424   }
 425 
 426   ldr(rscratch1, Address(method, Method::from_interpreted_offset()));
 427   br(rscratch1);
 428 }
 429 
 430 // The following two routines provide a hook so that an implementation
 431 // can schedule the dispatch in two parts.  amd64 does not do this.
 432 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
 433 }
 434 
 435 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
 436     dispatch_next(state, step);
 437 }
 438 
 439 void InterpreterMacroAssembler::dispatch_base(TosState state,
 440                                               address* table,
 441                                               bool verifyoop) {
 442   if (VerifyActivationFrameSize) {
 443     Unimplemented();
 444   }
 445   if (verifyoop) {
 446     verify_oop(r0, state);
 447   }
 448   if (table == Interpreter::dispatch_table(state)) {
 449     addw(rscratch2, rscratch1, Interpreter::distance_from_dispatch_table(state));
 450     ldr(rscratch2, Address(rdispatch, rscratch2, Address::uxtw(3)));
 451   } else {
 452     mov(rscratch2, (address)table);
 453     ldr(rscratch2, Address(rscratch2, rscratch1, Address::uxtw(3)));
 454   }
 455   br(rscratch2);
 456 }
 457 
 458 void InterpreterMacroAssembler::dispatch_only(TosState state) {
 459   dispatch_base(state, Interpreter::dispatch_table(state));
 460 }
 461 
 462 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
 463   dispatch_base(state, Interpreter::normal_table(state));
 464 }
 465 
 466 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
 467   dispatch_base(state, Interpreter::normal_table(state), false);
 468 }
 469 
 470 
 471 void InterpreterMacroAssembler::dispatch_next(TosState state, int step) {
 472   // load next bytecode
 473   ldrb(rscratch1, Address(pre(rbcp, step)));
 474   dispatch_base(state, Interpreter::dispatch_table(state));
 475 }
 476 
 477 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
 478   // load current bytecode
 479   ldrb(rscratch1, Address(rbcp, 0));
 480   dispatch_base(state, table);
 481 }
 482 
 483 // remove activation
 484 //
 485 // Unlock the receiver if this is a synchronized method.
 486 // Unlock any Java monitors from syncronized blocks.
 487 // Remove the activation from the stack.
 488 //
 489 // If there are locked Java monitors
 490 //    If throw_monitor_exception
 491 //       throws IllegalMonitorStateException
 492 //    Else if install_monitor_exception
 493 //       installs IllegalMonitorStateException
 494 //    Else
 495 //       no error processing
 496 void InterpreterMacroAssembler::remove_activation(
 497         TosState state,
 498         bool throw_monitor_exception,
 499         bool install_monitor_exception,
 500         bool notify_jvmdi) {
 501   // Note: Registers r3 xmm0 may be in use for the
 502   // result check if synchronized method
 503   Label unlocked, unlock, no_unlock;
 504 
 505   // get the value of _do_not_unlock_if_synchronized into r3
 506   const Address do_not_unlock_if_synchronized(rthread,
 507     in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
 508   ldrb(r3, do_not_unlock_if_synchronized);
 509   strb(zr, do_not_unlock_if_synchronized); // reset the flag
 510 
 511  // get method access flags
 512   ldr(r1, Address(rfp, frame::interpreter_frame_method_offset * wordSize));
 513   ldr(r2, Address(r1, Method::access_flags_offset()));
 514   tbz(r2, exact_log2(JVM_ACC_SYNCHRONIZED), unlocked);
 515 
 516   // Don't unlock anything if the _do_not_unlock_if_synchronized flag
 517   // is set.
 518   cbnz(r3, no_unlock);
 519 
 520   // unlock monitor
 521   push(state); // save result
 522 
 523   // BasicObjectLock will be first in list, since this is a
 524   // synchronized method. However, need to check that the object has
 525   // not been unlocked by an explicit monitorexit bytecode.
 526   const Address monitor(rfp, frame::interpreter_frame_initial_sp_offset *
 527                         wordSize - (int) sizeof(BasicObjectLock));
 528   // We use c_rarg1 so that if we go slow path it will be the correct
 529   // register for unlock_object to pass to VM directly
 530   lea(c_rarg1, monitor); // address of first monitor
 531 
 532   ldr(r0, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
 533   cbnz(r0, unlock);
 534 
 535   pop(state);
 536   if (throw_monitor_exception) {
 537     // Entry already unlocked, need to throw exception
 538     call_VM(noreg, CAST_FROM_FN_PTR(address,
 539                    InterpreterRuntime::throw_illegal_monitor_state_exception));
 540     should_not_reach_here();
 541   } else {
 542     // Monitor already unlocked during a stack unroll. If requested,
 543     // install an illegal_monitor_state_exception.  Continue with
 544     // stack unrolling.
 545     if (install_monitor_exception) {
 546       call_VM(noreg, CAST_FROM_FN_PTR(address,
 547                      InterpreterRuntime::new_illegal_monitor_state_exception));
 548     }
 549     b(unlocked);
 550   }
 551 
 552   bind(unlock);
 553   unlock_object(c_rarg1);
 554   pop(state);
 555 
 556   // Check that for block-structured locking (i.e., that all locked
 557   // objects has been unlocked)
 558   bind(unlocked);
 559 
 560   // r0: Might contain return value
 561 
 562   // Check that all monitors are unlocked
 563   {
 564     Label loop, exception, entry, restart;
 565     const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
 566     const Address monitor_block_top(
 567         rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
 568     const Address monitor_block_bot(
 569         rfp, frame::interpreter_frame_initial_sp_offset * wordSize);
 570 
 571     bind(restart);
 572     // We use c_rarg1 so that if we go slow path it will be the correct
 573     // register for unlock_object to pass to VM directly
 574     ldr(c_rarg1, monitor_block_top); // points to current entry, starting
 575                                      // with top-most entry
 576     lea(r19, monitor_block_bot);  // points to word before bottom of
 577                                   // monitor block
 578     b(entry);
 579 
 580     // Entry already locked, need to throw exception
 581     bind(exception);
 582 
 583     if (throw_monitor_exception) {
 584       // Throw exception
 585       MacroAssembler::call_VM(noreg,
 586                               CAST_FROM_FN_PTR(address, InterpreterRuntime::
 587                                    throw_illegal_monitor_state_exception));
 588       should_not_reach_here();
 589     } else {
 590       // Stack unrolling. Unlock object and install illegal_monitor_exception.
 591       // Unlock does not block, so don't have to worry about the frame.
 592       // We don't have to preserve c_rarg1 since we are going to throw an exception.
 593 
 594       push(state);
 595       unlock_object(c_rarg1);
 596       pop(state);
 597 
 598       if (install_monitor_exception) {
 599         call_VM(noreg, CAST_FROM_FN_PTR(address,
 600                                         InterpreterRuntime::
 601                                         new_illegal_monitor_state_exception));
 602       }
 603 
 604       b(restart);
 605     }
 606 
 607     bind(loop);
 608     // check if current entry is used
 609     ldr(rscratch1, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
 610     cbnz(rscratch1, exception);
 611 
 612     add(c_rarg1, c_rarg1, entry_size); // otherwise advance to next entry
 613     bind(entry);
 614     cmp(c_rarg1, r19); // check if bottom reached
 615     br(Assembler::NE, loop); // if not at bottom then check this entry
 616   }
 617 
 618   bind(no_unlock);
 619 
 620   // jvmti support
 621   if (notify_jvmdi) {
 622     notify_method_exit(state, NotifyJVMTI);    // preserve TOSCA
 623   } else {
 624     notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
 625   }
 626 
 627   // remove activation
 628   // get sender esp
 629   ldr(esp,
 630       Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize));
 631   if (StackReservedPages > 0) {
 632     // testing if reserved zone needs to be re-enabled
 633     Label no_reserved_zone_enabling;
 634 
 635     ldr(rscratch1, Address(rthread, JavaThread::reserved_stack_activation_offset()));
 636     cmp(esp, rscratch1);
 637     br(Assembler::LS, no_reserved_zone_enabling);
 638 
 639     call_VM_leaf(
 640       CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), rthread);
 641     call_VM(noreg, CAST_FROM_FN_PTR(address,
 642                    InterpreterRuntime::throw_delayed_StackOverflowError));
 643     should_not_reach_here();
 644 
 645     bind(no_reserved_zone_enabling);
 646   }
 647   // remove frame anchor
 648   leave();
 649   // If we're returning to interpreted code we will shortly be
 650   // adjusting SP to allow some space for ESP.  If we're returning to
 651   // compiled code the saved sender SP was saved in sender_sp, so this
 652   // restores it.
 653   andr(sp, esp, -16);
 654 }
 655 
 656 // Lock object
 657 //
 658 // Args:
 659 //      c_rarg1: BasicObjectLock to be used for locking
 660 //
 661 // Kills:
 662 //      r0
 663 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, .. (param regs)
 664 //      rscratch1, rscratch2 (scratch regs)
 665 void InterpreterMacroAssembler::lock_object(Register lock_reg)
 666 {
 667   assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1");
 668   if (UseHeavyMonitors) {
 669     call_VM(noreg,
 670             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
 671             lock_reg);
 672   } else {
 673     Label done;
 674 
 675     const Register swap_reg = r0;
 676     const Register tmp = c_rarg2;
 677     const Register obj_reg = c_rarg3; // Will contain the oop
 678 
 679     const int obj_offset = BasicObjectLock::obj_offset_in_bytes();
 680     const int lock_offset = BasicObjectLock::lock_offset_in_bytes ();
 681     const int mark_offset = lock_offset +
 682                             BasicLock::displaced_header_offset_in_bytes();
 683 
 684     Label slow_case;
 685 
 686     // Load object pointer into obj_reg %c_rarg3
 687     ldr(obj_reg, Address(lock_reg, obj_offset));
 688 
 689     if (UseBiasedLocking) {
 690       biased_locking_enter(lock_reg, obj_reg, swap_reg, tmp, false, done, &slow_case);
 691     }
 692 
 693     // Load (object->mark() | 1) into swap_reg
 694     ldr(rscratch1, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
 695     orr(swap_reg, rscratch1, 1);
 696 
 697     // Save (object->mark() | 1) into BasicLock's displaced header
 698     str(swap_reg, Address(lock_reg, mark_offset));
 699 
 700     assert(lock_offset == 0,
 701            "displached header must be first word in BasicObjectLock");
 702 
 703     Label fail;
 704     if (PrintBiasedLockingStatistics) {
 705       Label fast;
 706       cmpxchg_obj_header(swap_reg, lock_reg, obj_reg, rscratch1, fast, &fail);
 707       bind(fast);
 708       atomic_incw(Address((address)BiasedLocking::fast_path_entry_count_addr()),
 709                   rscratch2, rscratch1, tmp);
 710       b(done);
 711       bind(fail);
 712     } else {
 713       cmpxchg_obj_header(swap_reg, lock_reg, obj_reg, rscratch1, done, /*fallthrough*/NULL);
 714     }
 715 
 716     // Test if the oopMark is an obvious stack pointer, i.e.,
 717     //  1) (mark & 7) == 0, and
 718     //  2) rsp <= mark < mark + os::pagesize()
 719     //
 720     // These 3 tests can be done by evaluating the following
 721     // expression: ((mark - rsp) & (7 - os::vm_page_size())),
 722     // assuming both stack pointer and pagesize have their
 723     // least significant 3 bits clear.
 724     // NOTE: the oopMark is in swap_reg %r0 as the result of cmpxchg
 725     // NOTE2: aarch64 does not like to subtract sp from rn so take a
 726     // copy
 727     mov(rscratch1, sp);
 728     sub(swap_reg, swap_reg, rscratch1);
 729     ands(swap_reg, swap_reg, (unsigned long)(7 - os::vm_page_size()));
 730 
 731     // Save the test result, for recursive case, the result is zero
 732     str(swap_reg, Address(lock_reg, mark_offset));
 733 
 734     if (PrintBiasedLockingStatistics) {
 735       br(Assembler::NE, slow_case);
 736       atomic_incw(Address((address)BiasedLocking::fast_path_entry_count_addr()),
 737                   rscratch2, rscratch1, tmp);
 738     }
 739     br(Assembler::EQ, done);
 740 
 741     bind(slow_case);
 742 
 743     // Call the runtime routine for slow case
 744     call_VM(noreg,
 745             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
 746             lock_reg);
 747 
 748     bind(done);
 749   }
 750 }
 751 
 752 
 753 // Unlocks an object. Used in monitorexit bytecode and
 754 // remove_activation.  Throws an IllegalMonitorException if object is
 755 // not locked by current thread.
 756 //
 757 // Args:
 758 //      c_rarg1: BasicObjectLock for lock
 759 //
 760 // Kills:
 761 //      r0
 762 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs)
 763 //      rscratch1, rscratch2 (scratch regs)
 764 void InterpreterMacroAssembler::unlock_object(Register lock_reg)
 765 {
 766   assert(lock_reg == c_rarg1, "The argument is only for looks. It must be rarg1");
 767 
 768   if (UseHeavyMonitors) {
 769     call_VM(noreg,
 770             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
 771             lock_reg);
 772   } else {
 773     Label done;
 774 
 775     const Register swap_reg   = r0;
 776     const Register header_reg = c_rarg2;  // Will contain the old oopMark
 777     const Register obj_reg    = c_rarg3;  // Will contain the oop
 778 
 779     save_bcp(); // Save in case of exception
 780 
 781     // Convert from BasicObjectLock structure to object and BasicLock
 782     // structure Store the BasicLock address into %r0
 783     lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset_in_bytes()));
 784 
 785     // Load oop into obj_reg(%c_rarg3)
 786     ldr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()));
 787 
 788     // Free entry
 789     str(zr, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()));
 790 
 791     if (UseBiasedLocking) {
 792       biased_locking_exit(obj_reg, header_reg, done);
 793     }
 794 
 795     // Load the old header from BasicLock structure
 796     ldr(header_reg, Address(swap_reg,
 797                             BasicLock::displaced_header_offset_in_bytes()));
 798 
 799     // Test for recursion
 800     cbz(header_reg, done);
 801 
 802     // Atomic swap back the old header
 803     cmpxchg_obj_header(swap_reg, header_reg, obj_reg, rscratch1, done, /*fallthrough*/NULL);
 804 
 805     // Call the runtime routine for slow case.
 806     str(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes())); // restore obj
 807     call_VM(noreg,
 808             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
 809             lock_reg);
 810 
 811     bind(done);
 812 
 813     restore_bcp();
 814   }
 815 }
 816 
 817 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp,
 818                                                          Label& zero_continue) {
 819   assert(ProfileInterpreter, "must be profiling interpreter");
 820   ldr(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
 821   cbz(mdp, zero_continue);
 822 }
 823 
 824 // Set the method data pointer for the current bcp.
 825 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
 826   assert(ProfileInterpreter, "must be profiling interpreter");
 827   Label set_mdp;
 828   stp(r0, r1, Address(pre(sp, -2 * wordSize)));
 829 
 830   // Test MDO to avoid the call if it is NULL.
 831   ldr(r0, Address(rmethod, in_bytes(Method::method_data_offset())));
 832   cbz(r0, set_mdp);
 833   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rmethod, rbcp);
 834   // r0: mdi
 835   // mdo is guaranteed to be non-zero here, we checked for it before the call.
 836   ldr(r1, Address(rmethod, in_bytes(Method::method_data_offset())));
 837   lea(r1, Address(r1, in_bytes(MethodData::data_offset())));
 838   add(r0, r1, r0);
 839   str(r0, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
 840   bind(set_mdp);
 841   ldp(r0, r1, Address(post(sp, 2 * wordSize)));
 842 }
 843 
 844 void InterpreterMacroAssembler::verify_method_data_pointer() {
 845   assert(ProfileInterpreter, "must be profiling interpreter");
 846 #ifdef ASSERT
 847   Label verify_continue;
 848   stp(r0, r1, Address(pre(sp, -2 * wordSize)));
 849   stp(r2, r3, Address(pre(sp, -2 * wordSize)));
 850   test_method_data_pointer(r3, verify_continue); // If mdp is zero, continue
 851   get_method(r1);
 852 
 853   // If the mdp is valid, it will point to a DataLayout header which is
 854   // consistent with the bcp.  The converse is highly probable also.
 855   ldrsh(r2, Address(r3, in_bytes(DataLayout::bci_offset())));
 856   ldr(rscratch1, Address(r1, Method::const_offset()));
 857   add(r2, r2, rscratch1, Assembler::LSL);
 858   lea(r2, Address(r2, ConstMethod::codes_offset()));
 859   cmp(r2, rbcp);
 860   br(Assembler::EQ, verify_continue);
 861   // r1: method
 862   // rbcp: bcp // rbcp == 22
 863   // r3: mdp
 864   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp),
 865                r1, rbcp, r3);
 866   bind(verify_continue);
 867   ldp(r2, r3, Address(post(sp, 2 * wordSize)));
 868   ldp(r0, r1, Address(post(sp, 2 * wordSize)));
 869 #endif // ASSERT
 870 }
 871 
 872 
 873 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in,
 874                                                 int constant,
 875                                                 Register value) {
 876   assert(ProfileInterpreter, "must be profiling interpreter");
 877   Address data(mdp_in, constant);
 878   str(value, data);
 879 }
 880 
 881 
 882 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
 883                                                       int constant,
 884                                                       bool decrement) {
 885   increment_mdp_data_at(mdp_in, noreg, constant, decrement);
 886 }
 887 
 888 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
 889                                                       Register reg,
 890                                                       int constant,
 891                                                       bool decrement) {
 892   assert(ProfileInterpreter, "must be profiling interpreter");
 893   // %%% this does 64bit counters at best it is wasting space
 894   // at worst it is a rare bug when counters overflow
 895 
 896   assert_different_registers(rscratch2, rscratch1, mdp_in, reg);
 897 
 898   Address addr1(mdp_in, constant);
 899   Address addr2(rscratch2, reg, Address::lsl(0));
 900   Address &addr = addr1;
 901   if (reg != noreg) {
 902     lea(rscratch2, addr1);
 903     addr = addr2;
 904   }
 905 
 906   if (decrement) {
 907     // Decrement the register.  Set condition codes.
 908     // Intel does this
 909     // addptr(data, (int32_t) -DataLayout::counter_increment);
 910     // If the decrement causes the counter to overflow, stay negative
 911     // Label L;
 912     // jcc(Assembler::negative, L);
 913     // addptr(data, (int32_t) DataLayout::counter_increment);
 914     // so we do this
 915     ldr(rscratch1, addr);
 916     subs(rscratch1, rscratch1, (unsigned)DataLayout::counter_increment);
 917     Label L;
 918     br(Assembler::LO, L);       // skip store if counter underflow
 919     str(rscratch1, addr);
 920     bind(L);
 921   } else {
 922     assert(DataLayout::counter_increment == 1,
 923            "flow-free idiom only works with 1");
 924     // Intel does this
 925     // Increment the register.  Set carry flag.
 926     // addptr(data, DataLayout::counter_increment);
 927     // If the increment causes the counter to overflow, pull back by 1.
 928     // sbbptr(data, (int32_t)0);
 929     // so we do this
 930     ldr(rscratch1, addr);
 931     adds(rscratch1, rscratch1, DataLayout::counter_increment);
 932     Label L;
 933     br(Assembler::CS, L);       // skip store if counter overflow
 934     str(rscratch1, addr);
 935     bind(L);
 936   }
 937 }
 938 
 939 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in,
 940                                                 int flag_byte_constant) {
 941   assert(ProfileInterpreter, "must be profiling interpreter");
 942   int header_offset = in_bytes(DataLayout::header_offset());
 943   int header_bits = DataLayout::flag_mask_to_header_mask(flag_byte_constant);
 944   // Set the flag
 945   ldr(rscratch1, Address(mdp_in, header_offset));
 946   orr(rscratch1, rscratch1, header_bits);
 947   str(rscratch1, Address(mdp_in, header_offset));
 948 }
 949 
 950 
 951 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
 952                                                  int offset,
 953                                                  Register value,
 954                                                  Register test_value_out,
 955                                                  Label& not_equal_continue) {
 956   assert(ProfileInterpreter, "must be profiling interpreter");
 957   if (test_value_out == noreg) {
 958     ldr(rscratch1, Address(mdp_in, offset));
 959     cmp(value, rscratch1);
 960   } else {
 961     // Put the test value into a register, so caller can use it:
 962     ldr(test_value_out, Address(mdp_in, offset));
 963     cmp(value, test_value_out);
 964   }
 965   br(Assembler::NE, not_equal_continue);
 966 }
 967 
 968 
 969 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
 970                                                      int offset_of_disp) {
 971   assert(ProfileInterpreter, "must be profiling interpreter");
 972   ldr(rscratch1, Address(mdp_in, offset_of_disp));
 973   add(mdp_in, mdp_in, rscratch1, LSL);
 974   str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
 975 }
 976 
 977 
 978 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
 979                                                      Register reg,
 980                                                      int offset_of_disp) {
 981   assert(ProfileInterpreter, "must be profiling interpreter");
 982   lea(rscratch1, Address(mdp_in, offset_of_disp));
 983   ldr(rscratch1, Address(rscratch1, reg, Address::lsl(0)));
 984   add(mdp_in, mdp_in, rscratch1, LSL);
 985   str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
 986 }
 987 
 988 
 989 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in,
 990                                                        int constant) {
 991   assert(ProfileInterpreter, "must be profiling interpreter");
 992   add(mdp_in, mdp_in, (unsigned)constant);
 993   str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
 994 }
 995 
 996 
 997 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
 998   assert(ProfileInterpreter, "must be profiling interpreter");
 999   // save/restore across call_VM
1000   stp(zr, return_bci, Address(pre(sp, -2 * wordSize)));
1001   call_VM(noreg,
1002           CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret),
1003           return_bci);
1004   ldp(zr, return_bci, Address(post(sp, 2 * wordSize)));
1005 }
1006 
1007 
1008 void InterpreterMacroAssembler::profile_taken_branch(Register mdp,
1009                                                      Register bumped_count) {
1010   if (ProfileInterpreter) {
1011     Label profile_continue;
1012 
1013     // If no method data exists, go to profile_continue.
1014     // Otherwise, assign to mdp
1015     test_method_data_pointer(mdp, profile_continue);
1016 
1017     // We are taking a branch.  Increment the taken count.
1018     // We inline increment_mdp_data_at to return bumped_count in a register
1019     //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
1020     Address data(mdp, in_bytes(JumpData::taken_offset()));
1021     ldr(bumped_count, data);
1022     assert(DataLayout::counter_increment == 1,
1023             "flow-free idiom only works with 1");
1024     // Intel does this to catch overflow
1025     // addptr(bumped_count, DataLayout::counter_increment);
1026     // sbbptr(bumped_count, 0);
1027     // so we do this
1028     adds(bumped_count, bumped_count, DataLayout::counter_increment);
1029     Label L;
1030     br(Assembler::CS, L);       // skip store if counter overflow
1031     str(bumped_count, data);
1032     bind(L);
1033     // The method data pointer needs to be updated to reflect the new target.
1034     update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
1035     bind(profile_continue);
1036   }
1037 }
1038 
1039 
1040 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
1041   if (ProfileInterpreter) {
1042     Label profile_continue;
1043 
1044     // If no method data exists, go to profile_continue.
1045     test_method_data_pointer(mdp, profile_continue);
1046 
1047     // We are taking a branch.  Increment the not taken count.
1048     increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));
1049 
1050     // The method data pointer needs to be updated to correspond to
1051     // the next bytecode
1052     update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
1053     bind(profile_continue);
1054   }
1055 }
1056 
1057 
1058 void InterpreterMacroAssembler::profile_call(Register mdp) {
1059   if (ProfileInterpreter) {
1060     Label profile_continue;
1061 
1062     // If no method data exists, go to profile_continue.
1063     test_method_data_pointer(mdp, profile_continue);
1064 
1065     // We are making a call.  Increment the count.
1066     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1067 
1068     // The method data pointer needs to be updated to reflect the new target.
1069     update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
1070     bind(profile_continue);
1071   }
1072 }
1073 
1074 void InterpreterMacroAssembler::profile_final_call(Register mdp) {
1075   if (ProfileInterpreter) {
1076     Label profile_continue;
1077 
1078     // If no method data exists, go to profile_continue.
1079     test_method_data_pointer(mdp, profile_continue);
1080 
1081     // We are making a call.  Increment the count.
1082     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1083 
1084     // The method data pointer needs to be updated to reflect the new target.
1085     update_mdp_by_constant(mdp,
1086                            in_bytes(VirtualCallData::
1087                                     virtual_call_data_size()));
1088     bind(profile_continue);
1089   }
1090 }
1091 
1092 
1093 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
1094                                                      Register mdp,
1095                                                      Register reg2,
1096                                                      bool receiver_can_be_null) {
1097   if (ProfileInterpreter) {
1098     Label profile_continue;
1099 
1100     // If no method data exists, go to profile_continue.
1101     test_method_data_pointer(mdp, profile_continue);
1102 
1103     Label skip_receiver_profile;
1104     if (receiver_can_be_null) {
1105       Label not_null;
1106       // We are making a call.  Increment the count for null receiver.
1107       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1108       b(skip_receiver_profile);
1109       bind(not_null);
1110     }
1111 
1112     // Record the receiver type.
1113     record_klass_in_profile(receiver, mdp, reg2, true);
1114     bind(skip_receiver_profile);
1115 
1116     // The method data pointer needs to be updated to reflect the new target.
1117 #if INCLUDE_JVMCI
1118     if (MethodProfileWidth == 0) {
1119       update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
1120     }
1121 #else // INCLUDE_JVMCI
1122     update_mdp_by_constant(mdp,
1123                            in_bytes(VirtualCallData::
1124                                     virtual_call_data_size()));
1125 #endif // INCLUDE_JVMCI
1126     bind(profile_continue);
1127   }
1128 }
1129 
1130 #if INCLUDE_JVMCI
1131 void InterpreterMacroAssembler::profile_called_method(Register method, Register mdp, Register reg2) {
1132   assert_different_registers(method, mdp, reg2);
1133   if (ProfileInterpreter && MethodProfileWidth > 0) {
1134     Label profile_continue;
1135 
1136     // If no method data exists, go to profile_continue.
1137     test_method_data_pointer(mdp, profile_continue);
1138 
1139     Label done;
1140     record_item_in_profile_helper(method, mdp, reg2, 0, done, MethodProfileWidth,
1141       &VirtualCallData::method_offset, &VirtualCallData::method_count_offset, in_bytes(VirtualCallData::nonprofiled_receiver_count_offset()));
1142     bind(done);
1143 
1144     update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
1145     bind(profile_continue);
1146   }
1147 }
1148 #endif // INCLUDE_JVMCI
1149 
1150 // This routine creates a state machine for updating the multi-row
1151 // type profile at a virtual call site (or other type-sensitive bytecode).
1152 // The machine visits each row (of receiver/count) until the receiver type
1153 // is found, or until it runs out of rows.  At the same time, it remembers
1154 // the location of the first empty row.  (An empty row records null for its
1155 // receiver, and can be allocated for a newly-observed receiver type.)
1156 // Because there are two degrees of freedom in the state, a simple linear
1157 // search will not work; it must be a decision tree.  Hence this helper
1158 // function is recursive, to generate the required tree structured code.
1159 // It's the interpreter, so we are trading off code space for speed.
1160 // See below for example code.
1161 void InterpreterMacroAssembler::record_klass_in_profile_helper(
1162                                         Register receiver, Register mdp,
1163                                         Register reg2, int start_row,
1164                                         Label& done, bool is_virtual_call) {
1165   if (TypeProfileWidth == 0) {
1166     if (is_virtual_call) {
1167       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1168     }
1169 #if INCLUDE_JVMCI
1170     else if (EnableJVMCI) {
1171       increment_mdp_data_at(mdp, in_bytes(ReceiverTypeData::nonprofiled_receiver_count_offset()));
1172     }
1173 #endif // INCLUDE_JVMCI
1174   } else {
1175     int non_profiled_offset = -1;
1176     if (is_virtual_call) {
1177       non_profiled_offset = in_bytes(CounterData::count_offset());
1178     }
1179 #if INCLUDE_JVMCI
1180     else if (EnableJVMCI) {
1181       non_profiled_offset = in_bytes(ReceiverTypeData::nonprofiled_receiver_count_offset());
1182     }
1183 #endif // INCLUDE_JVMCI
1184 
1185     record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth,
1186         &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset, non_profiled_offset);
1187   }
1188 }
1189 
1190 void InterpreterMacroAssembler::record_item_in_profile_helper(Register item, Register mdp,
1191                                         Register reg2, int start_row, Label& done, int total_rows,
1192                                         OffsetFunction item_offset_fn, OffsetFunction item_count_offset_fn,
1193                                         int non_profiled_offset) {
1194   int last_row = total_rows - 1;
1195   assert(start_row <= last_row, "must be work left to do");
1196   // Test this row for both the item and for null.
1197   // Take any of three different outcomes:
1198   //   1. found item => increment count and goto done
1199   //   2. found null => keep looking for case 1, maybe allocate this cell
1200   //   3. found something else => keep looking for cases 1 and 2
1201   // Case 3 is handled by a recursive call.
1202   for (int row = start_row; row <= last_row; row++) {
1203     Label next_test;
1204     bool test_for_null_also = (row == start_row);
1205 
1206     // See if the item is item[n].
1207     int item_offset = in_bytes(item_offset_fn(row));
1208     test_mdp_data_at(mdp, item_offset, item,
1209                      (test_for_null_also ? reg2 : noreg),
1210                      next_test);
1211     // (Reg2 now contains the item from the CallData.)
1212 
1213     // The item is item[n].  Increment count[n].
1214     int count_offset = in_bytes(item_count_offset_fn(row));
1215     increment_mdp_data_at(mdp, count_offset);
1216     b(done);
1217     bind(next_test);
1218 
1219     if (test_for_null_also) {
1220       Label found_null;
1221       // Failed the equality check on item[n]...  Test for null.
1222       if (start_row == last_row) {
1223         // The only thing left to do is handle the null case.
1224         if (non_profiled_offset >= 0) {
1225           cbz(reg2, found_null);
1226           // Item did not match any saved item and there is no empty row for it.
1227           // Increment total counter to indicate polymorphic case.
1228           increment_mdp_data_at(mdp, non_profiled_offset);
1229           b(done);
1230           bind(found_null);
1231         } else {
1232           cbnz(reg2, done);
1233         }
1234         break;
1235       }
1236       // Since null is rare, make it be the branch-taken case.
1237       cbz(reg2, found_null);
1238 
1239       // Put all the "Case 3" tests here.
1240       record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows,
1241         item_offset_fn, item_count_offset_fn, non_profiled_offset);
1242 
1243       // Found a null.  Keep searching for a matching item,
1244       // but remember that this is an empty (unused) slot.
1245       bind(found_null);
1246     }
1247   }
1248 
1249   // In the fall-through case, we found no matching item, but we
1250   // observed the item[start_row] is NULL.
1251 
1252   // Fill in the item field and increment the count.
1253   int item_offset = in_bytes(item_offset_fn(start_row));
1254   set_mdp_data_at(mdp, item_offset, item);
1255   int count_offset = in_bytes(item_count_offset_fn(start_row));
1256   mov(reg2, DataLayout::counter_increment);
1257   set_mdp_data_at(mdp, count_offset, reg2);
1258   if (start_row > 0) {
1259     b(done);
1260   }
1261 }
1262 
1263 // Example state machine code for three profile rows:
1264 //   // main copy of decision tree, rooted at row[1]
1265 //   if (row[0].rec == rec) { row[0].incr(); goto done; }
1266 //   if (row[0].rec != NULL) {
1267 //     // inner copy of decision tree, rooted at row[1]
1268 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
1269 //     if (row[1].rec != NULL) {
1270 //       // degenerate decision tree, rooted at row[2]
1271 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
1272 //       if (row[2].rec != NULL) { count.incr(); goto done; } // overflow
1273 //       row[2].init(rec); goto done;
1274 //     } else {
1275 //       // remember row[1] is empty
1276 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
1277 //       row[1].init(rec); goto done;
1278 //     }
1279 //   } else {
1280 //     // remember row[0] is empty
1281 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
1282 //     if (row[2].rec == rec) { row[2].incr(); goto done; }
1283 //     row[0].init(rec); goto done;
1284 //   }
1285 //   done:
1286 
1287 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
1288                                                         Register mdp, Register reg2,
1289                                                         bool is_virtual_call) {
1290   assert(ProfileInterpreter, "must be profiling");
1291   Label done;
1292 
1293   record_klass_in_profile_helper(receiver, mdp, reg2, 0, done, is_virtual_call);
1294 
1295   bind (done);
1296 }
1297 
1298 void InterpreterMacroAssembler::profile_ret(Register return_bci,
1299                                             Register mdp) {
1300   if (ProfileInterpreter) {
1301     Label profile_continue;
1302     uint row;
1303 
1304     // If no method data exists, go to profile_continue.
1305     test_method_data_pointer(mdp, profile_continue);
1306 
1307     // Update the total ret count.
1308     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1309 
1310     for (row = 0; row < RetData::row_limit(); row++) {
1311       Label next_test;
1312 
1313       // See if return_bci is equal to bci[n]:
1314       test_mdp_data_at(mdp,
1315                        in_bytes(RetData::bci_offset(row)),
1316                        return_bci, noreg,
1317                        next_test);
1318 
1319       // return_bci is equal to bci[n].  Increment the count.
1320       increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
1321 
1322       // The method data pointer needs to be updated to reflect the new target.
1323       update_mdp_by_offset(mdp,
1324                            in_bytes(RetData::bci_displacement_offset(row)));
1325       b(profile_continue);
1326       bind(next_test);
1327     }
1328 
1329     update_mdp_for_ret(return_bci);
1330 
1331     bind(profile_continue);
1332   }
1333 }
1334 
1335 void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
1336   if (ProfileInterpreter) {
1337     Label profile_continue;
1338 
1339     // If no method data exists, go to profile_continue.
1340     test_method_data_pointer(mdp, profile_continue);
1341 
1342     set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
1343 
1344     // The method data pointer needs to be updated.
1345     int mdp_delta = in_bytes(BitData::bit_data_size());
1346     if (TypeProfileCasts) {
1347       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1348     }
1349     update_mdp_by_constant(mdp, mdp_delta);
1350 
1351     bind(profile_continue);
1352   }
1353 }
1354 
1355 void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) {
1356   if (ProfileInterpreter && TypeProfileCasts) {
1357     Label profile_continue;
1358 
1359     // If no method data exists, go to profile_continue.
1360     test_method_data_pointer(mdp, profile_continue);
1361 
1362     int count_offset = in_bytes(CounterData::count_offset());
1363     // Back up the address, since we have already bumped the mdp.
1364     count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
1365 
1366     // *Decrement* the counter.  We expect to see zero or small negatives.
1367     increment_mdp_data_at(mdp, count_offset, true);
1368 
1369     bind (profile_continue);
1370   }
1371 }
1372 
1373 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) {
1374   if (ProfileInterpreter) {
1375     Label profile_continue;
1376 
1377     // If no method data exists, go to profile_continue.
1378     test_method_data_pointer(mdp, profile_continue);
1379 
1380     // The method data pointer needs to be updated.
1381     int mdp_delta = in_bytes(BitData::bit_data_size());
1382     if (TypeProfileCasts) {
1383       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1384 
1385       // Record the object type.
1386       record_klass_in_profile(klass, mdp, reg2, false);
1387     }
1388     update_mdp_by_constant(mdp, mdp_delta);
1389 
1390     bind(profile_continue);
1391   }
1392 }
1393 
1394 void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
1395   if (ProfileInterpreter) {
1396     Label profile_continue;
1397 
1398     // If no method data exists, go to profile_continue.
1399     test_method_data_pointer(mdp, profile_continue);
1400 
1401     // Update the default case count
1402     increment_mdp_data_at(mdp,
1403                           in_bytes(MultiBranchData::default_count_offset()));
1404 
1405     // The method data pointer needs to be updated.
1406     update_mdp_by_offset(mdp,
1407                          in_bytes(MultiBranchData::
1408                                   default_displacement_offset()));
1409 
1410     bind(profile_continue);
1411   }
1412 }
1413 
1414 void InterpreterMacroAssembler::profile_switch_case(Register index,
1415                                                     Register mdp,
1416                                                     Register reg2) {
1417   if (ProfileInterpreter) {
1418     Label profile_continue;
1419 
1420     // If no method data exists, go to profile_continue.
1421     test_method_data_pointer(mdp, profile_continue);
1422 
1423     // Build the base (index * per_case_size_in_bytes()) +
1424     // case_array_offset_in_bytes()
1425     movw(reg2, in_bytes(MultiBranchData::per_case_size()));
1426     movw(rscratch1, in_bytes(MultiBranchData::case_array_offset()));
1427     Assembler::maddw(index, index, reg2, rscratch1);
1428 
1429     // Update the case count
1430     increment_mdp_data_at(mdp,
1431                           index,
1432                           in_bytes(MultiBranchData::relative_count_offset()));
1433 
1434     // The method data pointer needs to be updated.
1435     update_mdp_by_offset(mdp,
1436                          index,
1437                          in_bytes(MultiBranchData::
1438                                   relative_displacement_offset()));
1439 
1440     bind(profile_continue);
1441   }
1442 }
1443 
1444 void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) {
1445   if (state == atos) {
1446     MacroAssembler::verify_oop(reg);
1447   }
1448 }
1449 
1450 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) { ; }
1451 
1452 
1453 void InterpreterMacroAssembler::notify_method_entry() {
1454   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1455   // track stack depth.  If it is possible to enter interp_only_mode we add
1456   // the code to check if the event should be sent.
1457   if (JvmtiExport::can_post_interpreter_events()) {
1458     Label L;
1459     ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset()));
1460     cbzw(r3, L);
1461     call_VM(noreg, CAST_FROM_FN_PTR(address,
1462                                     InterpreterRuntime::post_method_entry));
1463     bind(L);
1464   }
1465 
1466   {
1467     SkipIfEqual skip(this, &DTraceMethodProbes, false);
1468     get_method(c_rarg1);
1469     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
1470                  rthread, c_rarg1);
1471   }
1472 
1473   // RedefineClasses() tracing support for obsolete method entry
1474   if (log_is_enabled(Trace, redefine, class, obsolete)) {
1475     get_method(c_rarg1);
1476     call_VM_leaf(
1477       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
1478       rthread, c_rarg1);
1479   }
1480 
1481  }
1482 
1483 
1484 void InterpreterMacroAssembler::notify_method_exit(
1485     TosState state, NotifyMethodExitMode mode) {
1486   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1487   // track stack depth.  If it is possible to enter interp_only_mode we add
1488   // the code to check if the event should be sent.
1489   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
1490     Label L;
1491     // Note: frame::interpreter_frame_result has a dependency on how the
1492     // method result is saved across the call to post_method_exit. If this
1493     // is changed then the interpreter_frame_result implementation will
1494     // need to be updated too.
1495 
1496     // template interpreter will leave the result on the top of the stack.
1497     push(state);
1498     ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset()));
1499     cbz(r3, L);
1500     call_VM(noreg,
1501             CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
1502     bind(L);
1503     pop(state);
1504   }
1505 
1506   {
1507     SkipIfEqual skip(this, &DTraceMethodProbes, false);
1508     push(state);
1509     get_method(c_rarg1);
1510     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
1511                  rthread, c_rarg1);
1512     pop(state);
1513   }
1514 }
1515 
1516 
1517 // Jump if ((*counter_addr += increment) & mask) satisfies the condition.
1518 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
1519                                                         int increment, Address mask,
1520                                                         Register scratch, Register scratch2,
1521                                                         bool preloaded, Condition cond,
1522                                                         Label* where) {
1523   if (!preloaded) {
1524     ldrw(scratch, counter_addr);
1525   }
1526   add(scratch, scratch, increment);
1527   strw(scratch, counter_addr);
1528   ldrw(scratch2, mask);
1529   ands(scratch, scratch, scratch2);
1530   br(cond, *where);
1531 }
1532 
1533 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point,
1534                                                   int number_of_arguments) {
1535   // interpreter specific
1536   //
1537   // Note: No need to save/restore rbcp & rlocals pointer since these
1538   //       are callee saved registers and no blocking/ GC can happen
1539   //       in leaf calls.
1540 #ifdef ASSERT
1541   {
1542     Label L;
1543     ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
1544     cbz(rscratch1, L);
1545     stop("InterpreterMacroAssembler::call_VM_leaf_base:"
1546          " last_sp != NULL");
1547     bind(L);
1548   }
1549 #endif /* ASSERT */
1550   // super call
1551   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
1552 }
1553 
1554 void InterpreterMacroAssembler::call_VM_base(Register oop_result,
1555                                              Register java_thread,
1556                                              Register last_java_sp,
1557                                              address  entry_point,
1558                                              int      number_of_arguments,
1559                                              bool     check_exceptions) {
1560   // interpreter specific
1561   //
1562   // Note: Could avoid restoring locals ptr (callee saved) - however doesn't
1563   //       really make a difference for these runtime calls, since they are
1564   //       slow anyway. Btw., bcp must be saved/restored since it may change
1565   //       due to GC.
1566   // assert(java_thread == noreg , "not expecting a precomputed java thread");
1567   save_bcp();
1568 #ifdef ASSERT
1569   {
1570     Label L;
1571     ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
1572     cbz(rscratch1, L);
1573     stop("InterpreterMacroAssembler::call_VM_leaf_base:"
1574          " last_sp != NULL");
1575     bind(L);
1576   }
1577 #endif /* ASSERT */
1578   // super call
1579   MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp,
1580                                entry_point, number_of_arguments,
1581                      check_exceptions);
1582 // interpreter specific
1583   restore_bcp();
1584   restore_locals();
1585 }
1586 
1587 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr) {
1588   Label update, next, none;
1589 
1590   verify_oop(obj);
1591 
1592   cbnz(obj, update);
1593   orptr(mdo_addr, TypeEntries::null_seen);
1594   b(next);
1595 
1596   bind(update);
1597   load_klass(obj, obj);
1598 
1599   ldr(rscratch1, mdo_addr);
1600   eor(obj, obj, rscratch1);
1601   tst(obj, TypeEntries::type_klass_mask);
1602   br(Assembler::EQ, next); // klass seen before, nothing to
1603                            // do. The unknown bit may have been
1604                            // set already but no need to check.
1605 
1606   tbnz(obj, exact_log2(TypeEntries::type_unknown), next);
1607   // already unknown. Nothing to do anymore.
1608 
1609   ldr(rscratch1, mdo_addr);
1610   cbz(rscratch1, none);
1611   cmp(rscratch1, TypeEntries::null_seen);
1612   br(Assembler::EQ, none);
1613   // There is a chance that the checks above (re-reading profiling
1614   // data from memory) fail if another thread has just set the
1615   // profiling to this obj's klass
1616   ldr(rscratch1, mdo_addr);
1617   eor(obj, obj, rscratch1);
1618   tst(obj, TypeEntries::type_klass_mask);
1619   br(Assembler::EQ, next);
1620 
1621   // different than before. Cannot keep accurate profile.
1622   orptr(mdo_addr, TypeEntries::type_unknown);
1623   b(next);
1624 
1625   bind(none);
1626   // first time here. Set profile type.
1627   str(obj, mdo_addr);
1628 
1629   bind(next);
1630 }
1631 
1632 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) {
1633   if (!ProfileInterpreter) {
1634     return;
1635   }
1636 
1637   if (MethodData::profile_arguments() || MethodData::profile_return()) {
1638     Label profile_continue;
1639 
1640     test_method_data_pointer(mdp, profile_continue);
1641 
1642     int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size());
1643 
1644     ldrb(rscratch1, Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start));
1645     cmp(rscratch1, is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag);
1646     br(Assembler::NE, profile_continue);
1647 
1648     if (MethodData::profile_arguments()) {
1649       Label done;
1650       int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset());
1651 
1652       for (int i = 0; i < TypeProfileArgsLimit; i++) {
1653         if (i > 0 || MethodData::profile_return()) {
1654           // If return value type is profiled we may have no argument to profile
1655           ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())));
1656           sub(tmp, tmp, i*TypeStackSlotEntries::per_arg_count());
1657           cmp(tmp, TypeStackSlotEntries::per_arg_count());
1658           add(rscratch1, mdp, off_to_args);
1659           br(Assembler::LT, done);
1660         }
1661         ldr(tmp, Address(callee, Method::const_offset()));
1662         load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset()));
1663         // stack offset o (zero based) from the start of the argument
1664         // list, for n arguments translates into offset n - o - 1 from
1665         // the end of the argument list
1666         ldr(rscratch1, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))));
1667         sub(tmp, tmp, rscratch1);
1668         sub(tmp, tmp, 1);
1669         Address arg_addr = argument_address(tmp);
1670         ldr(tmp, arg_addr);
1671 
1672         Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i)));
1673         profile_obj_type(tmp, mdo_arg_addr);
1674 
1675         int to_add = in_bytes(TypeStackSlotEntries::per_arg_size());
1676         off_to_args += to_add;
1677       }
1678 
1679       if (MethodData::profile_return()) {
1680         ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())));
1681         sub(tmp, tmp, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count());
1682       }
1683 
1684       add(rscratch1, mdp, off_to_args);
1685       bind(done);
1686       mov(mdp, rscratch1);
1687 
1688       if (MethodData::profile_return()) {
1689         // We're right after the type profile for the last
1690         // argument. tmp is the number of cells left in the
1691         // CallTypeData/VirtualCallTypeData to reach its end. Non null
1692         // if there's a return to profile.
1693         assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type");
1694         add(mdp, mdp, tmp, LSL, exact_log2(DataLayout::cell_size));
1695       }
1696       str(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
1697     } else {
1698       assert(MethodData::profile_return(), "either profile call args or call ret");
1699       update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size()));
1700     }
1701 
1702     // mdp points right after the end of the
1703     // CallTypeData/VirtualCallTypeData, right after the cells for the
1704     // return value type if there's one
1705 
1706     bind(profile_continue);
1707   }
1708 }
1709 
1710 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) {
1711   assert_different_registers(mdp, ret, tmp, rbcp);
1712   if (ProfileInterpreter && MethodData::profile_return()) {
1713     Label profile_continue, done;
1714 
1715     test_method_data_pointer(mdp, profile_continue);
1716 
1717     if (MethodData::profile_return_jsr292_only()) {
1718       assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2");
1719 
1720       // If we don't profile all invoke bytecodes we must make sure
1721       // it's a bytecode we indeed profile. We can't go back to the
1722       // begining of the ProfileData we intend to update to check its
1723       // type because we're right after it and we don't known its
1724       // length
1725       Label do_profile;
1726       ldrb(rscratch1, Address(rbcp, 0));
1727       cmp(rscratch1, Bytecodes::_invokedynamic);
1728       br(Assembler::EQ, do_profile);
1729       cmp(rscratch1, Bytecodes::_invokehandle);
1730       br(Assembler::EQ, do_profile);
1731       get_method(tmp);
1732       ldrh(rscratch1, Address(tmp, Method::intrinsic_id_offset_in_bytes()));
1733       cmp(rscratch1, vmIntrinsics::_compiledLambdaForm);
1734       br(Assembler::NE, profile_continue);
1735 
1736       bind(do_profile);
1737     }
1738 
1739     Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size()));
1740     mov(tmp, ret);
1741     profile_obj_type(tmp, mdo_ret_addr);
1742 
1743     bind(profile_continue);
1744   }
1745 }
1746 
1747 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) {
1748   if (ProfileInterpreter && MethodData::profile_parameters()) {
1749     Label profile_continue, done;
1750 
1751     test_method_data_pointer(mdp, profile_continue);
1752 
1753     // Load the offset of the area within the MDO used for
1754     // parameters. If it's negative we're not profiling any parameters
1755     ldr(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset())));
1756     tbnz(tmp1, 63, profile_continue);  // i.e. sign bit set
1757 
1758     // Compute a pointer to the area for parameters from the offset
1759     // and move the pointer to the slot for the last
1760     // parameters. Collect profiling from last parameter down.
1761     // mdo start + parameters offset + array length - 1
1762     add(mdp, mdp, tmp1);
1763     ldr(tmp1, Address(mdp, ArrayData::array_len_offset()));
1764     sub(tmp1, tmp1, TypeStackSlotEntries::per_arg_count());
1765 
1766     Label loop;
1767     bind(loop);
1768 
1769     int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0));
1770     int type_base = in_bytes(ParametersTypeData::type_offset(0));
1771     int per_arg_scale = exact_log2(DataLayout::cell_size);
1772     add(rscratch1, mdp, off_base);
1773     add(rscratch2, mdp, type_base);
1774 
1775     Address arg_off(rscratch1, tmp1, Address::lsl(per_arg_scale));
1776     Address arg_type(rscratch2, tmp1, Address::lsl(per_arg_scale));
1777 
1778     // load offset on the stack from the slot for this parameter
1779     ldr(tmp2, arg_off);
1780     neg(tmp2, tmp2);
1781     // read the parameter from the local area
1782     ldr(tmp2, Address(rlocals, tmp2, Address::lsl(Interpreter::logStackElementSize)));
1783 
1784     // profile the parameter
1785     profile_obj_type(tmp2, arg_type);
1786 
1787     // go to next parameter
1788     subs(tmp1, tmp1, TypeStackSlotEntries::per_arg_count());
1789     br(Assembler::GE, loop);
1790 
1791     bind(profile_continue);
1792   }
1793 }