1 /*
   2  * Copyright (c) 2008, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef CPU_ARM_VM_MACROASSEMBLER_ARM_HPP
  26 #define CPU_ARM_VM_MACROASSEMBLER_ARM_HPP
  27 
  28 #include "code/relocInfo.hpp"
  29 #include "code/relocInfo_ext.hpp"
  30 
  31 class BiasedLockingCounters;
  32 
  33 // Introduced AddressLiteral and its subclasses to ease portability from
  34 // x86 and avoid relocation issues
  35 class AddressLiteral VALUE_OBJ_CLASS_SPEC {
  36   RelocationHolder _rspec;
  37   // Typically we use AddressLiterals we want to use their rval
  38   // However in some situations we want the lval (effect address) of the item.
  39   // We provide a special factory for making those lvals.
  40   bool _is_lval;
  41 
  42   address          _target;
  43 
  44  private:
  45   static relocInfo::relocType reloc_for_target(address target) {
  46     // Used for ExternalAddress or when the type is not specified
  47     // Sometimes ExternalAddress is used for values which aren't
  48     // exactly addresses, like the card table base.
  49     // external_word_type can't be used for values in the first page
  50     // so just skip the reloc in that case.
  51     return external_word_Relocation::can_be_relocated(target) ? relocInfo::external_word_type : relocInfo::none;
  52   }
  53 
  54   void set_rspec(relocInfo::relocType rtype);
  55 
  56  protected:
  57   // creation
  58   AddressLiteral()
  59     : _is_lval(false),
  60       _target(NULL)
  61   {}
  62 
  63   public:
  64 
  65   AddressLiteral(address target, relocInfo::relocType rtype) {
  66     _is_lval = false;
  67     _target = target;
  68     set_rspec(rtype);
  69   }
  70 
  71   AddressLiteral(address target, RelocationHolder const& rspec)
  72     : _rspec(rspec),
  73       _is_lval(false),
  74       _target(target)
  75   {}
  76 
  77   AddressLiteral(address target) {
  78     _is_lval = false;
  79     _target = target;
  80     set_rspec(reloc_for_target(target));
  81   }
  82 
  83   AddressLiteral addr() {
  84     AddressLiteral ret = *this;
  85     ret._is_lval = true;
  86     return ret;
  87   }
  88 
  89  private:
  90 
  91   address target() { return _target; }
  92   bool is_lval() { return _is_lval; }
  93 
  94   relocInfo::relocType reloc() const { return _rspec.type(); }
  95   const RelocationHolder& rspec() const { return _rspec; }
  96 
  97   friend class Assembler;
  98   friend class MacroAssembler;
  99   friend class Address;
 100   friend class LIR_Assembler;
 101   friend class InlinedAddress;
 102 };
 103 
 104 class ExternalAddress: public AddressLiteral {
 105 
 106   public:
 107 
 108   ExternalAddress(address target) : AddressLiteral(target) {}
 109 
 110 };
 111 
 112 class InternalAddress: public AddressLiteral {
 113 
 114   public:
 115 
 116   InternalAddress(address target) : AddressLiteral(target, relocInfo::internal_word_type) {}
 117 
 118 };
 119 
 120 // Inlined constants, for use with ldr_literal / bind_literal
 121 // Note: InlinedInteger not supported (use move_slow(Register,int[,cond]))
 122 class InlinedLiteral: StackObj {
 123  public:
 124   Label label; // need to be public for direct access with &
 125   InlinedLiteral() {
 126   }
 127 };
 128 
 129 class InlinedMetadata: public InlinedLiteral {
 130  private:
 131   Metadata *_data;
 132 
 133  public:
 134   InlinedMetadata(Metadata *data): InlinedLiteral() {
 135     _data = data;
 136   }
 137   Metadata *data() { return _data; }
 138 };
 139 
 140 // Currently unused
 141 // class InlinedOop: public InlinedLiteral {
 142 //  private:
 143 //   jobject _jobject;
 144 //
 145 //  public:
 146 //   InlinedOop(jobject target): InlinedLiteral() {
 147 //     _jobject = target;
 148 //   }
 149 //   jobject jobject() { return _jobject; }
 150 // };
 151 
 152 class InlinedAddress: public InlinedLiteral {
 153  private:
 154   AddressLiteral _literal;
 155 
 156  public:
 157 
 158   InlinedAddress(jobject object): InlinedLiteral(), _literal((address)object, relocInfo::oop_type) {
 159     ShouldNotReachHere(); // use mov_oop (or implement InlinedOop)
 160   }
 161 
 162   InlinedAddress(Metadata *data): InlinedLiteral(), _literal((address)data, relocInfo::metadata_type) {
 163     ShouldNotReachHere(); // use InlinedMetadata or mov_metadata
 164   }
 165 
 166   InlinedAddress(address target, const RelocationHolder &rspec): InlinedLiteral(), _literal(target, rspec) {
 167     assert(rspec.type() != relocInfo::oop_type, "Do not use InlinedAddress for oops");
 168     assert(rspec.type() != relocInfo::metadata_type, "Do not use InlinedAddress for metadatas");
 169   }
 170 
 171   InlinedAddress(address target, relocInfo::relocType rtype): InlinedLiteral(), _literal(target, rtype) {
 172     assert(rtype != relocInfo::oop_type, "Do not use InlinedAddress for oops");
 173     assert(rtype != relocInfo::metadata_type, "Do not use InlinedAddress for metadatas");
 174   }
 175 
 176   // Note: default is relocInfo::none for InlinedAddress
 177   InlinedAddress(address target): InlinedLiteral(), _literal(target, relocInfo::none) {
 178   }
 179 
 180   address target() { return _literal.target(); }
 181 
 182   const RelocationHolder& rspec() const { return _literal.rspec(); }
 183 };
 184 
 185 class InlinedString: public InlinedLiteral {
 186  private:
 187   const char* _msg;
 188 
 189  public:
 190   InlinedString(const char* msg): InlinedLiteral() {
 191     _msg = msg;
 192   }
 193   const char* msg() { return _msg; }
 194 };
 195 
 196 class MacroAssembler: public Assembler {
 197 protected:
 198 
 199   // Support for VM calls
 200   //
 201 
 202   // This is the base routine called by the different versions of call_VM_leaf.
 203   void call_VM_leaf_helper(address entry_point, int number_of_arguments);
 204 
 205   // This is the base routine called by the different versions of call_VM. The interpreter
 206   // may customize this version by overriding it for its purposes (e.g., to save/restore
 207   // additional registers when doing a VM call).
 208   virtual void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions);
 209 public:
 210 
 211   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
 212 
 213   // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
 214   // The implementation is only non-empty for the InterpreterMacroAssembler,
 215   // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
 216   virtual void check_and_handle_popframe() {}
 217   virtual void check_and_handle_earlyret() {}
 218 
 219   // By default, we do not need relocation information for non
 220   // patchable absolute addresses. However, when needed by some
 221   // extensions, ignore_non_patchable_relocations can be modified,
 222   // returning false to preserve all relocation information.
 223   inline bool ignore_non_patchable_relocations() { return true; }
 224 
 225   // Initially added to the Assembler interface as a pure virtual:
 226   //   RegisterConstant delayed_value(..)
 227   // for:
 228   //   6812678 macro assembler needs delayed binding of a few constants (for 6655638)
 229   // this was subsequently modified to its present name and return type
 230   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr, Register tmp, int offset);
 231 
 232 #ifdef AARCH64
 233 # define NOT_IMPLEMENTED() unimplemented("NYI at " __FILE__ ":" XSTR(__LINE__))
 234 # define NOT_TESTED()      warn("Not tested at " __FILE__ ":" XSTR(__LINE__))
 235 #endif
 236 
 237   void align(int modulus);
 238 
 239   // Support for VM calls
 240   //
 241   // It is imperative that all calls into the VM are handled via the call_VM methods.
 242   // They make sure that the stack linkage is setup correctly. call_VM's correspond
 243   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
 244 
 245   void call_VM(Register oop_result, address entry_point, bool check_exceptions = true);
 246   void call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions = true);
 247   void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 248   void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
 249 
 250   // The following methods are required by templateTable.cpp,
 251   // but not used on ARM.
 252   void call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
 253   void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
 254   void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 255   void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
 256 
 257   // Note: The super_call_VM calls are not used on ARM
 258 
 259   // Raw call, without saving/restoring registers, exception handling, etc.
 260   // Mainly used from various stubs.
 261   // Note: if 'save_R9_if_scratched' is true, call_VM may on some
 262   // platforms save values on the stack. Set it to false (and handle
 263   // R9 in the callers) if the top of the stack must not be modified
 264   // by call_VM.
 265   void call_VM(address entry_point, bool save_R9_if_scratched);
 266 
 267   void call_VM_leaf(address entry_point);
 268   void call_VM_leaf(address entry_point, Register arg_1);
 269   void call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
 270   void call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
 271   void call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 272 
 273   void get_vm_result(Register oop_result, Register tmp);
 274   void get_vm_result_2(Register metadata_result, Register tmp);
 275 
 276   // Always sets/resets sp, which default to SP if (last_sp == noreg)
 277   // Optionally sets/resets fp (use noreg to avoid setting it)
 278   // Always sets/resets pc on AArch64; optionally sets/resets pc on 32-bit ARM depending on save_last_java_pc flag
 279   // Note: when saving PC, set_last_Java_frame returns PC's offset in the code section
 280   //       (for oop_maps offset computation)
 281   int set_last_Java_frame(Register last_sp, Register last_fp, bool save_last_java_pc, Register tmp);
 282   void reset_last_Java_frame(Register tmp);
 283   // status set in set_last_Java_frame for reset_last_Java_frame
 284   bool _fp_saved;
 285   bool _pc_saved;
 286 
 287 #ifdef PRODUCT
 288 #define BLOCK_COMMENT(str) /* nothing */
 289 #define STOP(error) __ stop(error)
 290 #else
 291 #define BLOCK_COMMENT(str) __ block_comment(str)
 292 #define STOP(error) __ block_comment(error); __ stop(error)
 293 #endif
 294 
 295   void lookup_virtual_method(Register recv_klass,
 296                              Register vtable_index,
 297                              Register method_result);
 298 
 299   // Test sub_klass against super_klass, with fast and slow paths.
 300 
 301   // The fast path produces a tri-state answer: yes / no / maybe-slow.
 302   // One of the three labels can be NULL, meaning take the fall-through.
 303   // No registers are killed, except temp_regs.
 304   void check_klass_subtype_fast_path(Register sub_klass,
 305                                      Register super_klass,
 306                                      Register temp_reg,
 307                                      Register temp_reg2,
 308                                      Label* L_success,
 309                                      Label* L_failure,
 310                                      Label* L_slow_path);
 311 
 312   // The rest of the type check; must be wired to a corresponding fast path.
 313   // It does not repeat the fast path logic, so don't use it standalone.
 314   // temp_reg3 can be noreg, if no temps are available.
 315   // Updates the sub's secondary super cache as necessary.
 316   // If set_cond_codes:
 317   // - condition codes will be Z on success, NZ on failure.
 318   // - temp_reg will be 0 on success, non-0 on failure
 319   void check_klass_subtype_slow_path(Register sub_klass,
 320                                      Register super_klass,
 321                                      Register temp_reg,
 322                                      Register temp_reg2,
 323                                      Register temp_reg3, // auto assigned if noreg
 324                                      Label* L_success,
 325                                      Label* L_failure,
 326                                      bool set_cond_codes = false);
 327 
 328   // Simplified, combined version, good for typical uses.
 329   // temp_reg3 can be noreg, if no temps are available. It is used only on slow path.
 330   // Falls through on failure.
 331   void check_klass_subtype(Register sub_klass,
 332                            Register super_klass,
 333                            Register temp_reg,
 334                            Register temp_reg2,
 335                            Register temp_reg3, // auto assigned on slow path if noreg
 336                            Label& L_success);
 337 
 338   // Returns address of receiver parameter, using tmp as base register. tmp and params_count can be the same.
 339   Address receiver_argument_address(Register params_base, Register params_count, Register tmp);
 340 
 341   void _verify_oop(Register reg, const char* s, const char* file, int line);
 342   void _verify_oop_addr(Address addr, const char * s, const char* file, int line);
 343 
 344   // TODO: verify method and klass metadata (compare against vptr?)
 345   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
 346   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line) {}
 347 
 348 #define verify_oop(reg) _verify_oop(reg, "broken oop " #reg, __FILE__, __LINE__)
 349 #define verify_oop_addr(addr) _verify_oop_addr(addr, "broken oop ", __FILE__, __LINE__)
 350 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
 351 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
 352 
 353   void null_check(Register reg, Register tmp, int offset = -1);
 354   inline void null_check(Register reg) { null_check(reg, noreg, -1); } // for C1 lir_null_check
 355 
 356   // Puts address of allocated object into register `obj` and end of allocated object into register `obj_end`.
 357   void eden_allocate(Register obj, Register obj_end, Register tmp1, Register tmp2,
 358                      RegisterOrConstant size_expression, Label& slow_case);
 359   void tlab_allocate(Register obj, Register obj_end, Register tmp1,
 360                      RegisterOrConstant size_expression, Label& slow_case);
 361 
 362   void tlab_refill(Register top, Register tmp1, Register tmp2, Register tmp3, Register tmp4,
 363                    Label& try_eden, Label& slow_case);
 364   void zero_memory(Register start, Register end, Register tmp);
 365 
 366   void incr_allocated_bytes(RegisterOrConstant size_in_bytes, Register tmp);
 367 
 368   static bool needs_explicit_null_check(intptr_t offset);
 369 
 370   void arm_stack_overflow_check(int frame_size_in_bytes, Register tmp);
 371   void arm_stack_overflow_check(Register Rsize, Register tmp);
 372 
 373   void bang_stack_with_offset(int offset) {
 374     ShouldNotReachHere();
 375   }
 376 
 377   // Biased locking support
 378   // lock_reg and obj_reg must be loaded up with the appropriate values.
 379   // swap_reg must be supplied.
 380   // tmp_reg must be supplied.
 381   // Optional slow case is for implementations (interpreter and C1) which branch to
 382   // slow case directly. If slow_case is NULL, then leaves condition
 383   // codes set (for C2's Fast_Lock node) and jumps to done label.
 384   // Falls through for the fast locking attempt.
 385   // Returns offset of first potentially-faulting instruction for null
 386   // check info (currently consumed only by C1). If
 387   // swap_reg_contains_mark is true then returns -1 as it is assumed
 388   // the calling code has already passed any potential faults.
 389   // Notes:
 390   // - swap_reg and tmp_reg are scratched
 391   // - Rtemp was (implicitly) scratched and can now be specified as the tmp2
 392   int biased_locking_enter(Register obj_reg, Register swap_reg, Register tmp_reg,
 393                            bool swap_reg_contains_mark,
 394                            Register tmp2,
 395                            Label& done, Label& slow_case,
 396                            BiasedLockingCounters* counters = NULL);
 397   void biased_locking_exit(Register obj_reg, Register temp_reg, Label& done);
 398 
 399   // Building block for CAS cases of biased locking: makes CAS and records statistics.
 400   // Optional slow_case label is used to transfer control if CAS fails. Otherwise leaves condition codes set.
 401   void biased_locking_enter_with_cas(Register obj_reg, Register old_mark_reg, Register new_mark_reg,
 402                                      Register tmp, Label& slow_case, int* counter_addr);
 403 
 404   void resolve_jobject(Register value, Register tmp1, Register tmp2);
 405 
 406 #if INCLUDE_ALL_GCS
 407   // G1 pre-barrier.
 408   // Blows all volatile registers (R0-R3 on 32-bit ARM, R0-R18 on AArch64, Rtemp, LR).
 409   // If store_addr != noreg, then previous value is loaded from [store_addr];
 410   // in such case store_addr and new_val registers are preserved;
 411   // otherwise pre_val register is preserved.
 412   void g1_write_barrier_pre(Register store_addr,
 413                             Register new_val,
 414                             Register pre_val,
 415                             Register tmp1,
 416                             Register tmp2);
 417 
 418   // G1 post-barrier.
 419   // Blows all volatile registers (R0-R3 on 32-bit ARM, R0-R18 on AArch64, Rtemp, LR).
 420   void g1_write_barrier_post(Register store_addr,
 421                              Register new_val,
 422                              Register tmp1,
 423                              Register tmp2,
 424                              Register tmp3);
 425 #endif // INCLUDE_ALL_GCS
 426 
 427 #ifndef AARCH64
 428   void nop() {
 429     mov(R0, R0);
 430   }
 431 
 432   void push(Register rd, AsmCondition cond = al) {
 433     assert(rd != SP, "unpredictable instruction");
 434     str(rd, Address(SP, -wordSize, pre_indexed), cond);
 435   }
 436 
 437   void push(RegisterSet reg_set, AsmCondition cond = al) {
 438     assert(!reg_set.contains(SP), "unpredictable instruction");
 439     stmdb(SP, reg_set, writeback, cond);
 440   }
 441 
 442   void pop(Register rd, AsmCondition cond = al) {
 443     assert(rd != SP, "unpredictable instruction");
 444     ldr(rd, Address(SP, wordSize, post_indexed), cond);
 445   }
 446 
 447   void pop(RegisterSet reg_set, AsmCondition cond = al) {
 448     assert(!reg_set.contains(SP), "unpredictable instruction");
 449     ldmia(SP, reg_set, writeback, cond);
 450   }
 451 
 452   void fpushd(FloatRegister fd, AsmCondition cond = al) {
 453     fstmdbd(SP, FloatRegisterSet(fd), writeback, cond);
 454   }
 455 
 456   void fpushs(FloatRegister fd, AsmCondition cond = al) {
 457     fstmdbs(SP, FloatRegisterSet(fd), writeback, cond);
 458   }
 459 
 460   void fpopd(FloatRegister fd, AsmCondition cond = al) {
 461     fldmiad(SP, FloatRegisterSet(fd), writeback, cond);
 462   }
 463 
 464   void fpops(FloatRegister fd, AsmCondition cond = al) {
 465     fldmias(SP, FloatRegisterSet(fd), writeback, cond);
 466   }
 467 #endif // !AARCH64
 468 
 469   // Order access primitives
 470   enum Membar_mask_bits {
 471     StoreStore = 1 << 3,
 472     LoadStore  = 1 << 2,
 473     StoreLoad  = 1 << 1,
 474     LoadLoad   = 1 << 0
 475   };
 476 
 477 #ifdef AARCH64
 478   // tmp register is not used on AArch64, this parameter is provided solely for better compatibility with 32-bit ARM
 479   void membar(Membar_mask_bits order_constraint, Register tmp = noreg);
 480 #else
 481   void membar(Membar_mask_bits mask,
 482               Register tmp,
 483               bool preserve_flags = true,
 484               Register load_tgt = noreg);
 485 #endif
 486 
 487   void breakpoint(AsmCondition cond = al);
 488   void stop(const char* msg);
 489   // prints msg and continues
 490   void warn(const char* msg);
 491   void unimplemented(const char* what = "");
 492   void should_not_reach_here()                   { stop("should not reach here"); }
 493   static void debug(const char* msg, const intx* registers);
 494 
 495   // Create a walkable frame to help tracking down who called this code.
 496   // Returns the frame size in words.
 497   int should_not_call_this() {
 498     raw_push(FP, LR);
 499     should_not_reach_here();
 500     flush();
 501     return 2; // frame_size_in_words (FP+LR)
 502   }
 503 
 504   int save_all_registers();
 505   void restore_all_registers();
 506   int save_caller_save_registers();
 507   void restore_caller_save_registers();
 508 
 509   void add_rc(Register dst, Register arg1, RegisterOrConstant arg2);
 510 
 511   // add_slow and mov_slow are used to manipulate offsets larger than 1024,
 512   // these functions are not expected to handle all possible constants,
 513   // only those that can really occur during compilation
 514   void add_slow(Register rd, Register rn, int c);
 515   void sub_slow(Register rd, Register rn, int c);
 516 
 517 #ifdef AARCH64
 518   static int mov_slow_helper(Register rd, intptr_t c, MacroAssembler* masm /* optional */);
 519 #endif
 520 
 521   void mov_slow(Register rd, intptr_t c NOT_AARCH64_ARG(AsmCondition cond = al));
 522   void mov_slow(Register rd, const char *string);
 523   void mov_slow(Register rd, address addr);
 524 
 525   void patchable_mov_oop(Register rd, jobject o, int oop_index) {
 526     mov_oop(rd, o, oop_index AARCH64_ONLY_ARG(true));
 527   }
 528   void mov_oop(Register rd, jobject o, int index = 0
 529                AARCH64_ONLY_ARG(bool patchable = false)
 530                NOT_AARCH64_ARG(AsmCondition cond = al));
 531 
 532 
 533   void patchable_mov_metadata(Register rd, Metadata* o, int index) {
 534     mov_metadata(rd, o, index AARCH64_ONLY_ARG(true));
 535   }
 536   void mov_metadata(Register rd, Metadata* o, int index = 0 AARCH64_ONLY_ARG(bool patchable = false));
 537 
 538   void mov_float(FloatRegister fd, jfloat c NOT_AARCH64_ARG(AsmCondition cond = al));
 539   void mov_double(FloatRegister fd, jdouble c NOT_AARCH64_ARG(AsmCondition cond = al));
 540 
 541 #ifdef AARCH64
 542   int mov_pc_to(Register rd) {
 543     Label L;
 544     adr(rd, L);
 545     bind(L);
 546     return offset();
 547   }
 548 #endif
 549 
 550   // Note: this variant of mov_address assumes the address moves with
 551   // the code. Do *not* implement it with non-relocated instructions,
 552   // unless PC-relative.
 553 #ifdef AARCH64
 554   void mov_relative_address(Register rd, address addr) {
 555     adr(rd, addr);
 556   }
 557 #else
 558   void mov_relative_address(Register rd, address addr, AsmCondition cond = al) {
 559     int offset = addr - pc() - 8;
 560     assert((offset & 3) == 0, "bad alignment");
 561     if (offset >= 0) {
 562       assert(AsmOperand::is_rotated_imm(offset), "addr too far");
 563       add(rd, PC, offset, cond);
 564     } else {
 565       assert(AsmOperand::is_rotated_imm(-offset), "addr too far");
 566       sub(rd, PC, -offset, cond);
 567     }
 568   }
 569 #endif // AARCH64
 570 
 571   // Runtime address that may vary from one execution to another. The
 572   // symbolic_reference describes what the address is, allowing
 573   // the address to be resolved in a different execution context.
 574   // Warning: do not implement as a PC relative address.
 575   void mov_address(Register rd, address addr, symbolic_Relocation::symbolic_reference t) {
 576     mov_address(rd, addr, RelocationHolder::none);
 577   }
 578 
 579   // rspec can be RelocationHolder::none (for ignored symbolic_Relocation).
 580   // In that case, the address is absolute and the generated code need
 581   // not be relocable.
 582   void mov_address(Register rd, address addr, RelocationHolder const& rspec) {
 583     assert(rspec.type() != relocInfo::runtime_call_type, "do not use mov_address for runtime calls");
 584     assert(rspec.type() != relocInfo::static_call_type, "do not use mov_address for relocable calls");
 585     if (rspec.type() == relocInfo::none) {
 586       // absolute address, relocation not needed
 587       mov_slow(rd, (intptr_t)addr);
 588       return;
 589     }
 590 #ifndef AARCH64
 591     if (VM_Version::supports_movw()) {
 592       relocate(rspec);
 593       int c = (int)addr;
 594       movw(rd, c & 0xffff);
 595       if ((unsigned int)c >> 16) {
 596         movt(rd, (unsigned int)c >> 16);
 597       }
 598       return;
 599     }
 600 #endif
 601     Label skip_literal;
 602     InlinedAddress addr_literal(addr, rspec);
 603     ldr_literal(rd, addr_literal);
 604     b(skip_literal);
 605     bind_literal(addr_literal);
 606     // AARCH64 WARNING: because of alignment padding, extra padding
 607     // may be required to get a consistent size for C2, or rules must
 608     // overestimate size see MachEpilogNode::size
 609     bind(skip_literal);
 610   }
 611 
 612   // Note: Do not define mov_address for a Label
 613   //
 614   // Load from addresses potentially within the code are now handled
 615   // InlinedLiteral subclasses (to allow more flexibility on how the
 616   // ldr_literal is performed).
 617 
 618   void ldr_literal(Register rd, InlinedAddress& L) {
 619     assert(L.rspec().type() != relocInfo::runtime_call_type, "avoid ldr_literal for calls");
 620     assert(L.rspec().type() != relocInfo::static_call_type, "avoid ldr_literal for calls");
 621     relocate(L.rspec());
 622 #ifdef AARCH64
 623     ldr(rd, target(L.label));
 624 #else
 625     ldr(rd, Address(PC, target(L.label) - pc() - 8));
 626 #endif
 627   }
 628 
 629   void ldr_literal(Register rd, InlinedString& L) {
 630     const char* msg = L.msg();
 631     if (code()->consts()->contains((address)msg)) {
 632       // string address moves with the code
 633 #ifdef AARCH64
 634       ldr(rd, (address)msg);
 635 #else
 636       ldr(rd, Address(PC, ((address)msg) - pc() - 8));
 637 #endif
 638       return;
 639     }
 640     // Warning: use external strings with care. They are not relocated
 641     // if the code moves. If needed, use code_string to move them
 642     // to the consts section.
 643 #ifdef AARCH64
 644     ldr(rd, target(L.label));
 645 #else
 646     ldr(rd, Address(PC, target(L.label) - pc() - 8));
 647 #endif
 648   }
 649 
 650   void ldr_literal(Register rd, InlinedMetadata& L) {
 651     // relocation done in the bind_literal for metadatas
 652 #ifdef AARCH64
 653     ldr(rd, target(L.label));
 654 #else
 655     ldr(rd, Address(PC, target(L.label) - pc() - 8));
 656 #endif
 657   }
 658 
 659   void bind_literal(InlinedAddress& L) {
 660     AARCH64_ONLY(align(wordSize));
 661     bind(L.label);
 662     assert(L.rspec().type() != relocInfo::metadata_type, "Must use InlinedMetadata");
 663     // We currently do not use oop 'bound' literals.
 664     // If the code evolves and the following assert is triggered,
 665     // we need to implement InlinedOop (see InlinedMetadata).
 666     assert(L.rspec().type() != relocInfo::oop_type, "Inlined oops not supported");
 667     // Note: relocation is handled by relocate calls in ldr_literal
 668     AbstractAssembler::emit_address((address)L.target());
 669   }
 670 
 671   void bind_literal(InlinedString& L) {
 672     const char* msg = L.msg();
 673     if (code()->consts()->contains((address)msg)) {
 674       // The Label should not be used; avoid binding it
 675       // to detect errors.
 676       return;
 677     }
 678     AARCH64_ONLY(align(wordSize));
 679     bind(L.label);
 680     AbstractAssembler::emit_address((address)L.msg());
 681   }
 682 
 683   void bind_literal(InlinedMetadata& L) {
 684     AARCH64_ONLY(align(wordSize));
 685     bind(L.label);
 686     relocate(metadata_Relocation::spec_for_immediate());
 687     AbstractAssembler::emit_address((address)L.data());
 688   }
 689 
 690   void resolve_oop_handle(Register result);
 691   void load_mirror(Register mirror, Register method, Register tmp);
 692 
 693   // Porting layer between 32-bit ARM and AArch64
 694 
 695 #define COMMON_INSTR_1(common_mnemonic, aarch64_mnemonic, arm32_mnemonic, arg_type) \
 696   void common_mnemonic(arg_type arg) { \
 697       AARCH64_ONLY(aarch64_mnemonic) NOT_AARCH64(arm32_mnemonic) (arg); \
 698   }
 699 
 700 #define COMMON_INSTR_2(common_mnemonic, aarch64_mnemonic, arm32_mnemonic, arg1_type, arg2_type) \
 701   void common_mnemonic(arg1_type arg1, arg2_type arg2) { \
 702       AARCH64_ONLY(aarch64_mnemonic) NOT_AARCH64(arm32_mnemonic) (arg1, arg2); \
 703   }
 704 
 705 #define COMMON_INSTR_3(common_mnemonic, aarch64_mnemonic, arm32_mnemonic, arg1_type, arg2_type, arg3_type) \
 706   void common_mnemonic(arg1_type arg1, arg2_type arg2, arg3_type arg3) { \
 707       AARCH64_ONLY(aarch64_mnemonic) NOT_AARCH64(arm32_mnemonic) (arg1, arg2, arg3); \
 708   }
 709 
 710   COMMON_INSTR_1(jump, br,  bx,  Register)
 711   COMMON_INSTR_1(call, blr, blx, Register)
 712 
 713   COMMON_INSTR_2(cbz_32,  cbz_w,  cbz,  Register, Label&)
 714   COMMON_INSTR_2(cbnz_32, cbnz_w, cbnz, Register, Label&)
 715 
 716   COMMON_INSTR_2(ldr_u32, ldr_w,  ldr,  Register, Address)
 717   COMMON_INSTR_2(ldr_s32, ldrsw,  ldr,  Register, Address)
 718   COMMON_INSTR_2(str_32,  str_w,  str,  Register, Address)
 719 
 720   COMMON_INSTR_2(mvn_32,  mvn_w,  mvn,  Register, Register)
 721   COMMON_INSTR_2(cmp_32,  cmp_w,  cmp,  Register, Register)
 722   COMMON_INSTR_2(neg_32,  neg_w,  neg,  Register, Register)
 723   COMMON_INSTR_2(clz_32,  clz_w,  clz,  Register, Register)
 724   COMMON_INSTR_2(rbit_32, rbit_w, rbit, Register, Register)
 725 
 726   COMMON_INSTR_2(cmp_32,  cmp_w,  cmp,  Register, int)
 727   COMMON_INSTR_2(cmn_32,  cmn_w,  cmn,  Register, int)
 728 
 729   COMMON_INSTR_3(add_32,  add_w,  add,  Register, Register, Register)
 730   COMMON_INSTR_3(sub_32,  sub_w,  sub,  Register, Register, Register)
 731   COMMON_INSTR_3(subs_32, subs_w, subs, Register, Register, Register)
 732   COMMON_INSTR_3(mul_32,  mul_w,  mul,  Register, Register, Register)
 733   COMMON_INSTR_3(and_32,  andr_w, andr, Register, Register, Register)
 734   COMMON_INSTR_3(orr_32,  orr_w,  orr,  Register, Register, Register)
 735   COMMON_INSTR_3(eor_32,  eor_w,  eor,  Register, Register, Register)
 736 
 737   COMMON_INSTR_3(add_32,  add_w,  add,  Register, Register, AsmOperand)
 738   COMMON_INSTR_3(sub_32,  sub_w,  sub,  Register, Register, AsmOperand)
 739   COMMON_INSTR_3(orr_32,  orr_w,  orr,  Register, Register, AsmOperand)
 740   COMMON_INSTR_3(eor_32,  eor_w,  eor,  Register, Register, AsmOperand)
 741   COMMON_INSTR_3(and_32,  andr_w, andr, Register, Register, AsmOperand)
 742 
 743 
 744   COMMON_INSTR_3(add_32,  add_w,  add,  Register, Register, int)
 745   COMMON_INSTR_3(adds_32, adds_w, adds, Register, Register, int)
 746   COMMON_INSTR_3(sub_32,  sub_w,  sub,  Register, Register, int)
 747   COMMON_INSTR_3(subs_32, subs_w, subs, Register, Register, int)
 748 
 749   COMMON_INSTR_2(tst_32,  tst_w,  tst,  Register, unsigned int)
 750   COMMON_INSTR_2(tst_32,  tst_w,  tst,  Register, AsmOperand)
 751 
 752   COMMON_INSTR_3(and_32,  andr_w, andr, Register, Register, uint)
 753   COMMON_INSTR_3(orr_32,  orr_w,  orr,  Register, Register, uint)
 754   COMMON_INSTR_3(eor_32,  eor_w,  eor,  Register, Register, uint)
 755 
 756   COMMON_INSTR_1(cmp_zero_float,  fcmp0_s, fcmpzs, FloatRegister)
 757   COMMON_INSTR_1(cmp_zero_double, fcmp0_d, fcmpzd, FloatRegister)
 758 
 759   COMMON_INSTR_2(ldr_float,   ldr_s,   flds,   FloatRegister, Address)
 760   COMMON_INSTR_2(str_float,   str_s,   fsts,   FloatRegister, Address)
 761   COMMON_INSTR_2(mov_float,   fmov_s,  fcpys,  FloatRegister, FloatRegister)
 762   COMMON_INSTR_2(neg_float,   fneg_s,  fnegs,  FloatRegister, FloatRegister)
 763   COMMON_INSTR_2(abs_float,   fabs_s,  fabss,  FloatRegister, FloatRegister)
 764   COMMON_INSTR_2(sqrt_float,  fsqrt_s, fsqrts, FloatRegister, FloatRegister)
 765   COMMON_INSTR_2(cmp_float,   fcmp_s,  fcmps,  FloatRegister, FloatRegister)
 766 
 767   COMMON_INSTR_3(add_float,   fadd_s,  fadds,  FloatRegister, FloatRegister, FloatRegister)
 768   COMMON_INSTR_3(sub_float,   fsub_s,  fsubs,  FloatRegister, FloatRegister, FloatRegister)
 769   COMMON_INSTR_3(mul_float,   fmul_s,  fmuls,  FloatRegister, FloatRegister, FloatRegister)
 770   COMMON_INSTR_3(div_float,   fdiv_s,  fdivs,  FloatRegister, FloatRegister, FloatRegister)
 771 
 772   COMMON_INSTR_2(ldr_double,  ldr_d,   fldd,   FloatRegister, Address)
 773   COMMON_INSTR_2(str_double,  str_d,   fstd,   FloatRegister, Address)
 774   COMMON_INSTR_2(mov_double,  fmov_d,  fcpyd,  FloatRegister, FloatRegister)
 775   COMMON_INSTR_2(neg_double,  fneg_d,  fnegd,  FloatRegister, FloatRegister)
 776   COMMON_INSTR_2(cmp_double,  fcmp_d,  fcmpd,  FloatRegister, FloatRegister)
 777   COMMON_INSTR_2(abs_double,  fabs_d,  fabsd,  FloatRegister, FloatRegister)
 778   COMMON_INSTR_2(sqrt_double, fsqrt_d, fsqrtd, FloatRegister, FloatRegister)
 779 
 780   COMMON_INSTR_3(add_double,  fadd_d,  faddd,  FloatRegister, FloatRegister, FloatRegister)
 781   COMMON_INSTR_3(sub_double,  fsub_d,  fsubd,  FloatRegister, FloatRegister, FloatRegister)
 782   COMMON_INSTR_3(mul_double,  fmul_d,  fmuld,  FloatRegister, FloatRegister, FloatRegister)
 783   COMMON_INSTR_3(div_double,  fdiv_d,  fdivd,  FloatRegister, FloatRegister, FloatRegister)
 784 
 785   COMMON_INSTR_2(convert_f2d, fcvt_ds, fcvtds, FloatRegister, FloatRegister)
 786   COMMON_INSTR_2(convert_d2f, fcvt_sd, fcvtsd, FloatRegister, FloatRegister)
 787 
 788   COMMON_INSTR_2(mov_fpr2gpr_float, fmov_ws, fmrs, Register, FloatRegister)
 789 
 790 #undef COMMON_INSTR_1
 791 #undef COMMON_INSTR_2
 792 #undef COMMON_INSTR_3
 793 
 794 
 795 #ifdef AARCH64
 796 
 797   void mov(Register dst, Register src, AsmCondition cond) {
 798     if (cond == al) {
 799       mov(dst, src);
 800     } else {
 801       csel(dst, src, dst, cond);
 802     }
 803   }
 804 
 805   // Propagate other overloaded "mov" methods from Assembler.
 806   void mov(Register dst, Register src)    { Assembler::mov(dst, src); }
 807   void mov(Register rd, int imm)          { Assembler::mov(rd, imm);  }
 808 
 809   void mov(Register dst, int imm, AsmCondition cond) {
 810     assert(imm == 0 || imm == 1, "");
 811     if (imm == 0) {
 812       mov(dst, ZR, cond);
 813     } else if (imm == 1) {
 814       csinc(dst, dst, ZR, inverse(cond));
 815     } else if (imm == -1) {
 816       csinv(dst, dst, ZR, inverse(cond));
 817     } else {
 818       fatal("illegal mov(R%d,%d,cond)", dst->encoding(), imm);
 819     }
 820   }
 821 
 822   void movs(Register dst, Register src)    { adds(dst, src, 0); }
 823 
 824 #else // AARCH64
 825 
 826   void tbz(Register rt, int bit, Label& L) {
 827     assert(0 <= bit && bit < BitsPerWord, "bit number is out of range");
 828     tst(rt, 1 << bit);
 829     b(L, eq);
 830   }
 831 
 832   void tbnz(Register rt, int bit, Label& L) {
 833     assert(0 <= bit && bit < BitsPerWord, "bit number is out of range");
 834     tst(rt, 1 << bit);
 835     b(L, ne);
 836   }
 837 
 838   void cbz(Register rt, Label& L) {
 839     cmp(rt, 0);
 840     b(L, eq);
 841   }
 842 
 843   void cbz(Register rt, address target) {
 844     cmp(rt, 0);
 845     b(target, eq);
 846   }
 847 
 848   void cbnz(Register rt, Label& L) {
 849     cmp(rt, 0);
 850     b(L, ne);
 851   }
 852 
 853   void ret(Register dst = LR) {
 854     bx(dst);
 855   }
 856 
 857 #endif // AARCH64
 858 
 859   Register zero_register(Register tmp) {
 860 #ifdef AARCH64
 861     return ZR;
 862 #else
 863     mov(tmp, 0);
 864     return tmp;
 865 #endif
 866   }
 867 
 868   void logical_shift_left(Register dst, Register src, int shift) {
 869 #ifdef AARCH64
 870     _lsl(dst, src, shift);
 871 #else
 872     mov(dst, AsmOperand(src, lsl, shift));
 873 #endif
 874   }
 875 
 876   void logical_shift_left_32(Register dst, Register src, int shift) {
 877 #ifdef AARCH64
 878     _lsl_w(dst, src, shift);
 879 #else
 880     mov(dst, AsmOperand(src, lsl, shift));
 881 #endif
 882   }
 883 
 884   void logical_shift_right(Register dst, Register src, int shift) {
 885 #ifdef AARCH64
 886     _lsr(dst, src, shift);
 887 #else
 888     mov(dst, AsmOperand(src, lsr, shift));
 889 #endif
 890   }
 891 
 892   void arith_shift_right(Register dst, Register src, int shift) {
 893 #ifdef AARCH64
 894     _asr(dst, src, shift);
 895 #else
 896     mov(dst, AsmOperand(src, asr, shift));
 897 #endif
 898   }
 899 
 900   void asr_32(Register dst, Register src, int shift) {
 901 #ifdef AARCH64
 902     _asr_w(dst, src, shift);
 903 #else
 904     mov(dst, AsmOperand(src, asr, shift));
 905 #endif
 906   }
 907 
 908   // If <cond> holds, compares r1 and r2. Otherwise, flags are set so that <cond> does not hold.
 909   void cond_cmp(Register r1, Register r2, AsmCondition cond) {
 910 #ifdef AARCH64
 911     ccmp(r1, r2, flags_for_condition(inverse(cond)), cond);
 912 #else
 913     cmp(r1, r2, cond);
 914 #endif
 915   }
 916 
 917   // If <cond> holds, compares r and imm. Otherwise, flags are set so that <cond> does not hold.
 918   void cond_cmp(Register r, int imm, AsmCondition cond) {
 919 #ifdef AARCH64
 920     ccmp(r, imm, flags_for_condition(inverse(cond)), cond);
 921 #else
 922     cmp(r, imm, cond);
 923 #endif
 924   }
 925 
 926   void align_reg(Register dst, Register src, int align) {
 927     assert (is_power_of_2(align), "should be");
 928 #ifdef AARCH64
 929     andr(dst, src, ~(uintx)(align-1));
 930 #else
 931     bic(dst, src, align-1);
 932 #endif
 933   }
 934 
 935   void prefetch_read(Address addr) {
 936 #ifdef AARCH64
 937     prfm(pldl1keep, addr);
 938 #else
 939     pld(addr);
 940 #endif
 941   }
 942 
 943   void raw_push(Register r1, Register r2) {
 944 #ifdef AARCH64
 945     stp(r1, r2, Address(SP, -2*wordSize, pre_indexed));
 946 #else
 947     assert(r1->encoding() < r2->encoding(), "should be ordered");
 948     push(RegisterSet(r1) | RegisterSet(r2));
 949 #endif
 950   }
 951 
 952   void raw_pop(Register r1, Register r2) {
 953 #ifdef AARCH64
 954     ldp(r1, r2, Address(SP, 2*wordSize, post_indexed));
 955 #else
 956     assert(r1->encoding() < r2->encoding(), "should be ordered");
 957     pop(RegisterSet(r1) | RegisterSet(r2));
 958 #endif
 959   }
 960 
 961   void raw_push(Register r1, Register r2, Register r3) {
 962 #ifdef AARCH64
 963     raw_push(r1, r2);
 964     raw_push(r3, ZR);
 965 #else
 966     assert(r1->encoding() < r2->encoding() && r2->encoding() < r3->encoding(), "should be ordered");
 967     push(RegisterSet(r1) | RegisterSet(r2) | RegisterSet(r3));
 968 #endif
 969   }
 970 
 971   void raw_pop(Register r1, Register r2, Register r3) {
 972 #ifdef AARCH64
 973     raw_pop(r3, ZR);
 974     raw_pop(r1, r2);
 975 #else
 976     assert(r1->encoding() < r2->encoding() && r2->encoding() < r3->encoding(), "should be ordered");
 977     pop(RegisterSet(r1) | RegisterSet(r2) | RegisterSet(r3));
 978 #endif
 979   }
 980 
 981   // Restores registers r1 and r2 previously saved by raw_push(r1, r2, ret_addr) and returns by ret_addr. Clobbers LR.
 982   void raw_pop_and_ret(Register r1, Register r2) {
 983 #ifdef AARCH64
 984     raw_pop(r1, r2, LR);
 985     ret();
 986 #else
 987     raw_pop(r1, r2, PC);
 988 #endif
 989   }
 990 
 991   void indirect_jump(Address addr, Register scratch) {
 992 #ifdef AARCH64
 993     ldr(scratch, addr);
 994     br(scratch);
 995 #else
 996     ldr(PC, addr);
 997 #endif
 998   }
 999 
1000   void indirect_jump(InlinedAddress& literal, Register scratch) {
1001 #ifdef AARCH64
1002     ldr_literal(scratch, literal);
1003     br(scratch);
1004 #else
1005     ldr_literal(PC, literal);
1006 #endif
1007   }
1008 
1009 #ifndef AARCH64
1010   void neg(Register dst, Register src) {
1011     rsb(dst, src, 0);
1012   }
1013 #endif
1014 
1015   void branch_if_negative_32(Register r, Label& L) {
1016     // Note about branch_if_negative_32() / branch_if_any_negative_32() implementation for AArch64:
1017     // tbnz is not used instead of tst & b.mi because destination may be out of tbnz range (+-32KB)
1018     // since these methods are used in LIR_Assembler::emit_arraycopy() to jump to stub entry.
1019     tst_32(r, r);
1020     b(L, mi);
1021   }
1022 
1023   void branch_if_any_negative_32(Register r1, Register r2, Register tmp, Label& L) {
1024 #ifdef AARCH64
1025     orr_32(tmp, r1, r2);
1026     tst_32(tmp, tmp);
1027 #else
1028     orrs(tmp, r1, r2);
1029 #endif
1030     b(L, mi);
1031   }
1032 
1033   void branch_if_any_negative_32(Register r1, Register r2, Register r3, Register tmp, Label& L) {
1034     orr_32(tmp, r1, r2);
1035 #ifdef AARCH64
1036     orr_32(tmp, tmp, r3);
1037     tst_32(tmp, tmp);
1038 #else
1039     orrs(tmp, tmp, r3);
1040 #endif
1041     b(L, mi);
1042   }
1043 
1044   void add_ptr_scaled_int32(Register dst, Register r1, Register r2, int shift) {
1045 #ifdef AARCH64
1046       add(dst, r1, r2, ex_sxtw, shift);
1047 #else
1048       add(dst, r1, AsmOperand(r2, lsl, shift));
1049 #endif
1050   }
1051 
1052   void sub_ptr_scaled_int32(Register dst, Register r1, Register r2, int shift) {
1053 #ifdef AARCH64
1054     sub(dst, r1, r2, ex_sxtw, shift);
1055 #else
1056     sub(dst, r1, AsmOperand(r2, lsl, shift));
1057 #endif
1058   }
1059 
1060 
1061     // klass oop manipulations if compressed
1062 
1063 #ifdef AARCH64
1064   void load_klass(Register dst_klass, Register src_oop);
1065 #else
1066   void load_klass(Register dst_klass, Register src_oop, AsmCondition cond = al);
1067 #endif // AARCH64
1068 
1069   void store_klass(Register src_klass, Register dst_oop);
1070 
1071 #ifdef AARCH64
1072   void store_klass_gap(Register dst);
1073 #endif // AARCH64
1074 
1075     // oop manipulations
1076 
1077   void load_heap_oop(Register dst, Address src);
1078   void store_heap_oop(Register src, Address dst);
1079   void store_heap_oop(Address dst, Register src) {
1080     store_heap_oop(src, dst);
1081   }
1082   void store_heap_oop_null(Register src, Address dst);
1083 
1084 #ifdef AARCH64
1085   void encode_heap_oop(Register dst, Register src);
1086   void encode_heap_oop(Register r) {
1087     encode_heap_oop(r, r);
1088   }
1089   void decode_heap_oop(Register dst, Register src);
1090   void decode_heap_oop(Register r) {
1091       decode_heap_oop(r, r);
1092   }
1093 
1094 #ifdef COMPILER2
1095   void encode_heap_oop_not_null(Register dst, Register src);
1096   void decode_heap_oop_not_null(Register dst, Register src);
1097 
1098   void set_narrow_klass(Register dst, Klass* k);
1099   void set_narrow_oop(Register dst, jobject obj);
1100 #endif
1101 
1102   void encode_klass_not_null(Register r);
1103   void encode_klass_not_null(Register dst, Register src);
1104   void decode_klass_not_null(Register r);
1105   void decode_klass_not_null(Register dst, Register src);
1106 
1107   void reinit_heapbase();
1108 
1109 #ifdef ASSERT
1110   void verify_heapbase(const char* msg);
1111 #endif // ASSERT
1112 
1113   static int instr_count_for_mov_slow(intptr_t c);
1114   static int instr_count_for_mov_slow(address addr);
1115   static int instr_count_for_decode_klass_not_null();
1116 #endif // AARCH64
1117 
1118   void ldr_global_ptr(Register reg, address address_of_global);
1119   void ldr_global_s32(Register reg, address address_of_global);
1120   void ldrb_global(Register reg, address address_of_global);
1121 
1122   // address_placeholder_instruction is invalid instruction and is used
1123   // as placeholder in code for address of label
1124   enum { address_placeholder_instruction = 0xFFFFFFFF };
1125 
1126   void emit_address(Label& L) {
1127     assert(!L.is_bound(), "otherwise address will not be patched");
1128     target(L);       // creates relocation which will be patched later
1129 
1130     assert ((offset() & (wordSize-1)) == 0, "should be aligned by word size");
1131 
1132 #ifdef AARCH64
1133     emit_int32(address_placeholder_instruction);
1134     emit_int32(address_placeholder_instruction);
1135 #else
1136     AbstractAssembler::emit_address((address)address_placeholder_instruction);
1137 #endif
1138   }
1139 
1140   void b(address target, AsmCondition cond = al) {
1141     Assembler::b(target, cond);                 \
1142   }
1143   void b(Label& L, AsmCondition cond = al) {
1144     // internal jumps
1145     Assembler::b(target(L), cond);
1146   }
1147 
1148   void bl(address target NOT_AARCH64_ARG(AsmCondition cond = al)) {
1149     Assembler::bl(target NOT_AARCH64_ARG(cond));
1150   }
1151   void bl(Label& L NOT_AARCH64_ARG(AsmCondition cond = al)) {
1152     // internal calls
1153     Assembler::bl(target(L)  NOT_AARCH64_ARG(cond));
1154   }
1155 
1156 #ifndef AARCH64
1157   void adr(Register dest, Label& L, AsmCondition cond = al) {
1158     int delta = target(L) - pc() - 8;
1159     if (delta >= 0) {
1160       add(dest, PC, delta, cond);
1161     } else {
1162       sub(dest, PC, -delta, cond);
1163     }
1164   }
1165 #endif // !AARCH64
1166 
1167   // Variable-length jump and calls. We now distinguish only the
1168   // patchable case from the other cases. Patchable must be
1169   // distinguised from relocable. Relocable means the generated code
1170   // containing the jump/call may move. Patchable means that the
1171   // targeted address may be changed later.
1172 
1173   // Non patchable versions.
1174   // - used only for relocInfo::runtime_call_type and relocInfo::none
1175   // - may use relative or absolute format (do not use relocInfo::none
1176   //   if the generated code may move)
1177   // - the implementation takes into account switch to THUMB mode if the
1178   //   destination is a THUMB address
1179   // - the implementation supports far targets
1180   //
1181   // To reduce regression risk, scratch still defaults to noreg on
1182   // arm32. This results in patchable instructions. However, if
1183   // patching really matters, the call sites should be modified and
1184   // use patchable_call or patchable_jump. If patching is not required
1185   // and if a register can be cloberred, it should be explicitly
1186   // specified to allow future optimizations.
1187   void jump(address target,
1188             relocInfo::relocType rtype = relocInfo::runtime_call_type,
1189             Register scratch = AARCH64_ONLY(Rtemp) NOT_AARCH64(noreg)
1190 #ifndef AARCH64
1191             , AsmCondition cond = al
1192 #endif
1193             );
1194 
1195   void call(address target,
1196             RelocationHolder rspec
1197             NOT_AARCH64_ARG(AsmCondition cond = al));
1198 
1199   void call(address target,
1200             relocInfo::relocType rtype = relocInfo::runtime_call_type
1201             NOT_AARCH64_ARG(AsmCondition cond = al)) {
1202     call(target, Relocation::spec_simple(rtype) NOT_AARCH64_ARG(cond));
1203   }
1204 
1205   void jump(AddressLiteral dest) {
1206     jump(dest.target(), dest.reloc());
1207   }
1208 #ifndef AARCH64
1209   void jump(address dest, relocInfo::relocType rtype, AsmCondition cond) {
1210     jump(dest, rtype, Rtemp, cond);
1211   }
1212 #endif
1213 
1214   void call(AddressLiteral dest) {
1215     call(dest.target(), dest.reloc());
1216   }
1217 
1218   // Patchable version:
1219   // - set_destination can be used to atomically change the target
1220   //
1221   // The targets for patchable_jump and patchable_call must be in the
1222   // code cache.
1223   // [ including possible extensions of the code cache, like AOT code ]
1224   //
1225   // To reduce regression risk, scratch still defaults to noreg on
1226   // arm32. If a register can be cloberred, it should be explicitly
1227   // specified to allow future optimizations.
1228   void patchable_jump(address target,
1229                       relocInfo::relocType rtype = relocInfo::runtime_call_type,
1230                       Register scratch = AARCH64_ONLY(Rtemp) NOT_AARCH64(noreg)
1231 #ifndef AARCH64
1232                       , AsmCondition cond = al
1233 #endif
1234                       );
1235 
1236   // patchable_call may scratch Rtemp
1237   int patchable_call(address target,
1238                      RelocationHolder const& rspec,
1239                      bool c2 = false);
1240 
1241   int patchable_call(address target,
1242                      relocInfo::relocType rtype,
1243                      bool c2 = false) {
1244     return patchable_call(target, Relocation::spec_simple(rtype), c2);
1245   }
1246 
1247 #if defined(AARCH64) && defined(COMPILER2)
1248   static int call_size(address target, bool far, bool patchable);
1249 #endif
1250 
1251 #ifdef AARCH64
1252   static bool page_reachable_from_cache(address target);
1253 #endif
1254   static bool _reachable_from_cache(address target);
1255   static bool _cache_fully_reachable();
1256   bool cache_fully_reachable();
1257   bool reachable_from_cache(address target);
1258 
1259   void zero_extend(Register rd, Register rn, int bits);
1260   void sign_extend(Register rd, Register rn, int bits);
1261 
1262   inline void zap_high_non_significant_bits(Register r) {
1263 #ifdef AARCH64
1264     if(ZapHighNonSignificantBits) {
1265       movk(r, 0xBAAD, 48);
1266       movk(r, 0xF00D, 32);
1267     }
1268 #endif
1269   }
1270 
1271 #ifndef AARCH64
1272   void long_move(Register rd_lo, Register rd_hi,
1273                  Register rn_lo, Register rn_hi,
1274                  AsmCondition cond = al);
1275   void long_shift(Register rd_lo, Register rd_hi,
1276                   Register rn_lo, Register rn_hi,
1277                   AsmShift shift, Register count);
1278   void long_shift(Register rd_lo, Register rd_hi,
1279                   Register rn_lo, Register rn_hi,
1280                   AsmShift shift, int count);
1281 
1282   void atomic_cas(Register tmpreg1, Register tmpreg2, Register oldval, Register newval, Register base, int offset);
1283   void atomic_cas_bool(Register oldval, Register newval, Register base, int offset, Register tmpreg);
1284   void atomic_cas64(Register temp_lo, Register temp_hi, Register temp_result, Register oldval_lo, Register oldval_hi, Register newval_lo, Register newval_hi, Register base, int offset);
1285 #endif // !AARCH64
1286 
1287   void cas_for_lock_acquire(Register oldval, Register newval, Register base, Register tmp, Label &slow_case, bool allow_fallthrough_on_failure = false, bool one_shot = false);
1288   void cas_for_lock_release(Register oldval, Register newval, Register base, Register tmp, Label &slow_case, bool allow_fallthrough_on_failure = false, bool one_shot = false);
1289 
1290 #ifndef PRODUCT
1291   // Preserves flags and all registers.
1292   // On SMP the updated value might not be visible to external observers without a sychronization barrier
1293   void cond_atomic_inc32(AsmCondition cond, int* counter_addr);
1294 #endif // !PRODUCT
1295 
1296   // unconditional non-atomic increment
1297   void inc_counter(address counter_addr, Register tmpreg1, Register tmpreg2);
1298   void inc_counter(int* counter_addr, Register tmpreg1, Register tmpreg2) {
1299     inc_counter((address) counter_addr, tmpreg1, tmpreg2);
1300   }
1301 
1302   void pd_patch_instruction(address branch, address target);
1303 
1304   // Loading and storing values by size and signed-ness;
1305   // size must not exceed wordSize (i.e. 8-byte values are not supported on 32-bit ARM);
1306   // each of these calls generates exactly one load or store instruction,
1307   // so src can be pre- or post-indexed address.
1308 #ifdef AARCH64
1309   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed);
1310   void store_sized_value(Register src, Address dst, size_t size_in_bytes);
1311 #else
1312   // 32-bit ARM variants also support conditional execution
1313   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, AsmCondition cond = al);
1314   void store_sized_value(Register src, Address dst, size_t size_in_bytes, AsmCondition cond = al);
1315 #endif
1316 
1317   void lookup_interface_method(Register recv_klass,
1318                                Register intf_klass,
1319                                Register itable_index,
1320                                Register method_result,
1321                                Register temp_reg1,
1322                                Register temp_reg2,
1323                                Label& L_no_such_interface);
1324 
1325   // Compare char[] arrays aligned to 4 bytes.
1326   void char_arrays_equals(Register ary1, Register ary2,
1327                           Register limit, Register result,
1328                           Register chr1, Register chr2, Label& Ldone);
1329 
1330 
1331   void floating_cmp(Register dst);
1332 
1333   // improved x86 portability (minimizing source code changes)
1334 
1335   void ldr_literal(Register rd, AddressLiteral addr) {
1336     relocate(addr.rspec());
1337 #ifdef AARCH64
1338     ldr(rd, addr.target());
1339 #else
1340     ldr(rd, Address(PC, addr.target() - pc() - 8));
1341 #endif
1342   }
1343 
1344   void lea(Register Rd, AddressLiteral addr) {
1345     // Never dereferenced, as on x86 (lval status ignored)
1346     mov_address(Rd, addr.target(), addr.rspec());
1347   }
1348 
1349   void restore_default_fp_mode();
1350 
1351 #ifdef COMPILER2
1352 #ifdef AARCH64
1353   // Code used by cmpFastLock and cmpFastUnlock mach instructions in .ad file.
1354   void fast_lock(Register obj, Register box, Register scratch, Register scratch2, Register scratch3);
1355   void fast_unlock(Register obj, Register box, Register scratch, Register scratch2, Register scratch3);
1356 #else
1357   void fast_lock(Register obj, Register box, Register scratch, Register scratch2);
1358   void fast_unlock(Register obj, Register box, Register scratch, Register scratch2);
1359 #endif
1360 #endif
1361 
1362 #ifdef AARCH64
1363 
1364 #define F(mnemonic)                                             \
1365   void mnemonic(Register rt, address target) {                  \
1366     Assembler::mnemonic(rt, target);                            \
1367   }                                                             \
1368   void mnemonic(Register rt, Label& L) {                        \
1369     Assembler::mnemonic(rt, target(L));                         \
1370   }
1371 
1372   F(cbz_w);
1373   F(cbnz_w);
1374   F(cbz);
1375   F(cbnz);
1376 
1377 #undef F
1378 
1379 #define F(mnemonic)                                             \
1380   void mnemonic(Register rt, int bit, address target) {         \
1381     Assembler::mnemonic(rt, bit, target);                       \
1382   }                                                             \
1383   void mnemonic(Register rt, int bit, Label& L) {               \
1384     Assembler::mnemonic(rt, bit, target(L));                    \
1385   }
1386 
1387   F(tbz);
1388   F(tbnz);
1389 #undef F
1390 
1391 #endif // AARCH64
1392 
1393 };
1394 
1395 
1396 // The purpose of this class is to build several code fragments of the same size
1397 // in order to allow fast table branch.
1398 
1399 class FixedSizeCodeBlock VALUE_OBJ_CLASS_SPEC {
1400 public:
1401   FixedSizeCodeBlock(MacroAssembler* masm, int size_in_instrs, bool enabled);
1402   ~FixedSizeCodeBlock();
1403 
1404 private:
1405   MacroAssembler* _masm;
1406   address _start;
1407   int _size_in_instrs;
1408   bool _enabled;
1409 };
1410 
1411 
1412 #endif // CPU_ARM_VM_MACROASSEMBLER_ARM_HPP
1413