1 /*
   2  * Copyright (c) 2016, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2016, 2017 SAP SE. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "interpreter/interpreter.hpp"
  29 #include "interpreter/interpreterRuntime.hpp"
  30 #include "interpreter/interp_masm.hpp"
  31 #include "interpreter/templateTable.hpp"
  32 #include "memory/universe.inline.hpp"
  33 #include "oops/objArrayKlass.hpp"
  34 #include "oops/oop.inline.hpp"
  35 #include "prims/methodHandles.hpp"
  36 #include "runtime/sharedRuntime.hpp"
  37 #include "runtime/stubRoutines.hpp"
  38 #include "runtime/synchronizer.hpp"
  39 
  40 #ifdef PRODUCT
  41 #define __ _masm->
  42 #define BLOCK_COMMENT(str)
  43 #define BIND(label)        __ bind(label);
  44 #else
  45 #define __ (PRODUCT_ONLY(false&&)Verbose ? (_masm->block_comment(FILE_AND_LINE),_masm):_masm)->
  46 #define BLOCK_COMMENT(str) __ block_comment(str)
  47 #define BIND(label)        __ bind(label); BLOCK_COMMENT(#label ":")
  48 #endif
  49 
  50 // The assumed minimum size of a BranchTableBlock.
  51 // The actual size of each block heavily depends on the CPU capabilities and,
  52 // of course, on the logic implemented in each block.
  53 #ifdef ASSERT
  54   #define BTB_MINSIZE 256
  55 #else
  56   #define BTB_MINSIZE  64
  57 #endif
  58 
  59 #ifdef ASSERT
  60 // Macro to open a BranchTableBlock (a piece of code that is branched to by a calculated branch).
  61 #define BTB_BEGIN(lbl, alignment, name)                                        \
  62   __ align_address(alignment);                                                 \
  63   __ bind(lbl);                                                                \
  64   { unsigned int b_off = __ offset();                                          \
  65     uintptr_t   b_addr = (uintptr_t)__ pc();                                   \
  66     __ z_larl(Z_R0, (int64_t)0);     /* Check current address alignment. */    \
  67     __ z_slgr(Z_R0, br_tab);         /* Current Address must be equal    */    \
  68     __ z_slgr(Z_R0, flags);          /* to calculated branch target.     */    \
  69     __ z_brc(Assembler::bcondLogZero, 3); /* skip trap if ok. */               \
  70     __ z_illtrap(0x55);                                                        \
  71     guarantee(b_addr%alignment == 0, "bad alignment at begin of block" name);
  72 
  73 // Macro to close a BranchTableBlock (a piece of code that is branched to by a calculated branch).
  74 #define BTB_END(lbl, alignment, name)                                          \
  75     uintptr_t   e_addr = (uintptr_t)__ pc();                                   \
  76     unsigned int e_off = __ offset();                                          \
  77     unsigned int len   = e_off-b_off;                                          \
  78     if (len > alignment) {                                                     \
  79       tty->print_cr("%4d of %4d @ " INTPTR_FORMAT ": Block len for %s",        \
  80                     len, alignment, e_addr-len, name);                         \
  81       guarantee(len <= alignment, "block too large");                          \
  82     }                                                                          \
  83     guarantee(len == e_addr-b_addr, "block len mismatch");                     \
  84   }
  85 #else
  86 // Macro to open a BranchTableBlock (a piece of code that is branched to by a calculated branch).
  87 #define BTB_BEGIN(lbl, alignment, name)                                        \
  88   __ align_address(alignment);                                                 \
  89   __ bind(lbl);                                                                \
  90   { unsigned int b_off = __ offset();                                          \
  91     uintptr_t   b_addr = (uintptr_t)__ pc();                                   \
  92     guarantee(b_addr%alignment == 0, "bad alignment at begin of block" name);
  93 
  94 // Macro to close a BranchTableBlock (a piece of code that is branched to by a calculated branch).
  95 #define BTB_END(lbl, alignment, name)                                          \
  96     uintptr_t   e_addr = (uintptr_t)__ pc();                                   \
  97     unsigned int e_off = __ offset();                                          \
  98     unsigned int len   = e_off-b_off;                                          \
  99     if (len > alignment) {                                                     \
 100       tty->print_cr("%4d of %4d @ " INTPTR_FORMAT ": Block len for %s",        \
 101                     len, alignment, e_addr-len, name);                         \
 102       guarantee(len <= alignment, "block too large");                          \
 103     }                                                                          \
 104     guarantee(len == e_addr-b_addr, "block len mismatch");                     \
 105   }
 106 #endif // ASSERT
 107 
 108 // Platform-dependent initialization.
 109 
 110 void TemplateTable::pd_initialize() {
 111   // No specific initialization.
 112 }
 113 
 114 // Address computation: local variables
 115 
 116 static inline Address iaddress(int n) {
 117   return Address(Z_locals, Interpreter::local_offset_in_bytes(n));
 118 }
 119 
 120 static inline Address laddress(int n) {
 121   return iaddress(n + 1);
 122 }
 123 
 124 static inline Address faddress(int n) {
 125   return iaddress(n);
 126 }
 127 
 128 static inline Address daddress(int n) {
 129   return laddress(n);
 130 }
 131 
 132 static inline Address aaddress(int n) {
 133   return iaddress(n);
 134 }
 135 
 136 // Pass NULL, if no shift instruction should be emitted.
 137 static inline Address iaddress(InterpreterMacroAssembler *masm, Register r) {
 138   if (masm) {
 139     masm->z_sllg(r, r, LogBytesPerWord);  // index2bytes
 140   }
 141   return Address(Z_locals, r, Interpreter::local_offset_in_bytes(0));
 142 }
 143 
 144 // Pass NULL, if no shift instruction should be emitted.
 145 static inline Address laddress(InterpreterMacroAssembler *masm, Register r) {
 146   if (masm) {
 147     masm->z_sllg(r, r, LogBytesPerWord);  // index2bytes
 148   }
 149   return Address(Z_locals, r, Interpreter::local_offset_in_bytes(1) );
 150 }
 151 
 152 static inline Address faddress(InterpreterMacroAssembler *masm, Register r) {
 153   return iaddress(masm, r);
 154 }
 155 
 156 static inline Address daddress(InterpreterMacroAssembler *masm, Register r) {
 157   return laddress(masm, r);
 158 }
 159 
 160 static inline Address aaddress(InterpreterMacroAssembler *masm, Register r) {
 161   return iaddress(masm, r);
 162 }
 163 
 164 // At top of Java expression stack which may be different than esp(). It
 165 // isn't for category 1 objects.
 166 static inline Address at_tos(int slot = 0) {
 167   return Address(Z_esp, Interpreter::expr_offset_in_bytes(slot));
 168 }
 169 
 170 // Condition conversion
 171 static Assembler::branch_condition j_not(TemplateTable::Condition cc) {
 172   switch (cc) {
 173     case TemplateTable::equal :
 174       return Assembler::bcondNotEqual;
 175     case TemplateTable::not_equal :
 176       return Assembler::bcondEqual;
 177     case TemplateTable::less :
 178       return Assembler::bcondNotLow;
 179     case TemplateTable::less_equal :
 180       return Assembler::bcondHigh;
 181     case TemplateTable::greater :
 182       return Assembler::bcondNotHigh;
 183     case TemplateTable::greater_equal:
 184       return Assembler::bcondLow;
 185   }
 186   ShouldNotReachHere();
 187   return Assembler::bcondZero;
 188 }
 189 
 190 // Do an oop store like *(base + offset) = val
 191 // offset can be a register or a constant.
 192 static void do_oop_store(InterpreterMacroAssembler* _masm,
 193                          Register base,
 194                          RegisterOrConstant offset,
 195                          Register val,
 196                          bool val_is_null, // == false does not guarantee that val really is not equal NULL.
 197                          Register tmp1,    // If tmp3 is volatile, either tmp1 or tmp2 must be
 198                          Register tmp2,    // non-volatile to hold a copy of pre_val across runtime calls.
 199                          Register tmp3,    // Ideally, this tmp register is non-volatile, as it is used to
 200                                            // hold pre_val (must survive runtime calls).
 201                          BarrierSet::Name barrier,
 202                          bool precise) {
 203   BLOCK_COMMENT("do_oop_store {");
 204   assert(val != noreg, "val must always be valid, even if it is zero");
 205   assert_different_registers(tmp1, tmp2, tmp3, val, base, offset.register_or_noreg());
 206   __ verify_oop(val);
 207   switch (barrier) {
 208 #if INCLUDE_ALL_GCS
 209     case BarrierSet::G1SATBCTLogging:
 210       {
 211 #ifdef ASSERT
 212         if (val_is_null) { // Check if the flag setting reflects reality.
 213           Label OK;
 214           __ z_ltgr(val, val);
 215           __ z_bre(OK);
 216           __ z_illtrap(0x11);
 217           __ bind(OK);
 218         }
 219 #endif
 220         Register pre_val = tmp3;
 221         // Load and record the previous value.
 222         __ g1_write_barrier_pre(base, offset, pre_val, val,
 223                                 tmp1, tmp2,
 224                                 false);  // Needs to hold pre_val in non_volatile register?
 225 
 226         if (val_is_null) {
 227           __ store_heap_oop_null(val, offset, base);
 228         } else {
 229           Label Done;
 230           // val_is_null == false does not guarantee that val really is not equal NULL.
 231           // Checking for this case dynamically has some cost, but also some benefit (in GC).
 232           // It's hard to say if cost or benefit is greater.
 233           { Label OK;
 234             __ z_ltgr(val, val);
 235             __ z_brne(OK);
 236             __ store_heap_oop_null(val, offset, base);
 237             __ z_bru(Done);
 238             __ bind(OK);
 239           }
 240           // G1 barrier needs uncompressed oop for region cross check.
 241           // Store_heap_oop compresses the oop in the argument register.
 242           Register val_work = val;
 243           if (UseCompressedOops) {
 244             val_work = tmp3;
 245             __ z_lgr(val_work, val);
 246           }
 247           __ store_heap_oop_not_null(val_work, offset, base);
 248 
 249           // We need precise card marks for oop array stores.
 250           // Otherwise, cardmarking the object which contains the oop is sufficient.
 251           if (precise && !(offset.is_constant() && offset.as_constant() == 0)) {
 252             __ add2reg_with_index(base,
 253                                   offset.constant_or_zero(),
 254                                   offset.register_or_noreg(),
 255                                   base);
 256           }
 257           __ g1_write_barrier_post(base /* store_adr */, val, tmp1, tmp2, tmp3);
 258           __ bind(Done);
 259         }
 260       }
 261       break;
 262 #endif // INCLUDE_ALL_GCS
 263     case BarrierSet::CardTableForRS:
 264     case BarrierSet::CardTableExtension:
 265     {
 266       if (val_is_null) {
 267         __ store_heap_oop_null(val, offset, base);
 268       } else {
 269         __ store_heap_oop(val, offset, base);
 270         // Flatten object address if needed.
 271         if (precise && ((offset.register_or_noreg() != noreg) || (offset.constant_or_zero() != 0))) {
 272           __ load_address(base, Address(base, offset.register_or_noreg(), offset.constant_or_zero()));
 273         }
 274         __ card_write_barrier_post(base, tmp1);
 275       }
 276     }
 277     break;
 278   case BarrierSet::ModRef:
 279     // fall through
 280   default:
 281     ShouldNotReachHere();
 282 
 283   }
 284   BLOCK_COMMENT("} do_oop_store");
 285 }
 286 
 287 Address TemplateTable::at_bcp(int offset) {
 288   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
 289   return Address(Z_bcp, offset);
 290 }
 291 
 292 void TemplateTable::patch_bytecode(Bytecodes::Code bc,
 293                                    Register        bc_reg,
 294                                    Register        temp_reg,
 295                                    bool            load_bc_into_bc_reg, // = true
 296                                    int             byte_no) {
 297   if (!RewriteBytecodes) { return; }
 298 
 299   NearLabel L_patch_done;
 300   BLOCK_COMMENT("patch_bytecode {");
 301 
 302   switch (bc) {
 303     case Bytecodes::_fast_aputfield:
 304     case Bytecodes::_fast_bputfield:
 305     case Bytecodes::_fast_zputfield:
 306     case Bytecodes::_fast_cputfield:
 307     case Bytecodes::_fast_dputfield:
 308     case Bytecodes::_fast_fputfield:
 309     case Bytecodes::_fast_iputfield:
 310     case Bytecodes::_fast_lputfield:
 311     case Bytecodes::_fast_sputfield:
 312       {
 313         // We skip bytecode quickening for putfield instructions when
 314         // the put_code written to the constant pool cache is zero.
 315         // This is required so that every execution of this instruction
 316         // calls out to InterpreterRuntime::resolve_get_put to do
 317         // additional, required work.
 318         assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
 319         assert(load_bc_into_bc_reg, "we use bc_reg as temp");
 320         __ get_cache_and_index_and_bytecode_at_bcp(Z_R1_scratch, bc_reg,
 321                                                    temp_reg, byte_no, 1);
 322         __ load_const_optimized(bc_reg, bc);
 323         __ compareU32_and_branch(temp_reg, (intptr_t)0,
 324                                  Assembler::bcondZero, L_patch_done);
 325       }
 326       break;
 327     default:
 328       assert(byte_no == -1, "sanity");
 329       // The pair bytecodes have already done the load.
 330       if (load_bc_into_bc_reg) {
 331         __ load_const_optimized(bc_reg, bc);
 332       }
 333       break;
 334   }
 335 
 336   if (JvmtiExport::can_post_breakpoint()) {
 337 
 338     Label   L_fast_patch;
 339 
 340     // If a breakpoint is present we can't rewrite the stream directly.
 341     __ z_cli(at_bcp(0), Bytecodes::_breakpoint);
 342     __ z_brne(L_fast_patch);
 343     __ get_method(temp_reg);
 344     // Let breakpoint table handling rewrite to quicker bytecode.
 345     __ call_VM_static(noreg,
 346                       CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at),
 347                       temp_reg, Z_R13, bc_reg);
 348     __ z_bru(L_patch_done);
 349 
 350     __ bind(L_fast_patch);
 351   }
 352 
 353 #ifdef ASSERT
 354   NearLabel   L_okay;
 355 
 356   // We load into 64 bits, since this works on any CPU.
 357   __ z_llgc(temp_reg, at_bcp(0));
 358   __ compareU32_and_branch(temp_reg, Bytecodes::java_code(bc),
 359                             Assembler::bcondEqual, L_okay        );
 360   __ compareU32_and_branch(temp_reg, bc_reg, Assembler::bcondEqual, L_okay);
 361   __ stop_static("patching the wrong bytecode");
 362   __ bind(L_okay);
 363 #endif
 364 
 365   // Patch bytecode.
 366   __ z_stc(bc_reg, at_bcp(0));
 367 
 368   __ bind(L_patch_done);
 369   BLOCK_COMMENT("} patch_bytecode");
 370 }
 371 
 372 // Individual instructions
 373 
 374 void TemplateTable::nop() {
 375   transition(vtos, vtos);
 376 }
 377 
 378 void TemplateTable::shouldnotreachhere() {
 379   transition(vtos, vtos);
 380   __ stop("shouldnotreachhere bytecode");
 381 }
 382 
 383 void TemplateTable::aconst_null() {
 384   transition(vtos, atos);
 385   __ clear_reg(Z_tos, true, false);
 386 }
 387 
 388 void TemplateTable::iconst(int value) {
 389   transition(vtos, itos);
 390   // Zero extension of the iconst makes zero extension at runtime obsolete.
 391   __ load_const_optimized(Z_tos, ((unsigned long)(unsigned int)value));
 392 }
 393 
 394 void TemplateTable::lconst(int value) {
 395   transition(vtos, ltos);
 396   __ load_const_optimized(Z_tos, value);
 397 }
 398 
 399 // No pc-relative load/store for floats.
 400 void TemplateTable::fconst(int value) {
 401   transition(vtos, ftos);
 402   static float   one = 1.0f, two = 2.0f;
 403 
 404   switch (value) {
 405     case 0:
 406       __ z_lzer(Z_ftos);
 407       return;
 408     case 1:
 409       __ load_absolute_address(Z_R1_scratch, (address) &one);
 410       __ mem2freg_opt(Z_ftos, Address(Z_R1_scratch), false);
 411       return;
 412     case 2:
 413       __ load_absolute_address(Z_R1_scratch, (address) &two);
 414       __ mem2freg_opt(Z_ftos, Address(Z_R1_scratch), false);
 415       return;
 416     default:
 417       ShouldNotReachHere();
 418       return;
 419   }
 420 }
 421 
 422 void TemplateTable::dconst(int value) {
 423   transition(vtos, dtos);
 424   static double one = 1.0;
 425 
 426   switch (value) {
 427     case 0:
 428       __ z_lzdr(Z_ftos);
 429       return;
 430     case 1:
 431       __ load_absolute_address(Z_R1_scratch, (address) &one);
 432       __ mem2freg_opt(Z_ftos, Address(Z_R1_scratch));
 433       return;
 434     default:
 435       ShouldNotReachHere();
 436       return;
 437   }
 438 }
 439 
 440 void TemplateTable::bipush() {
 441   transition(vtos, itos);
 442   __ z_lb(Z_tos, at_bcp(1));
 443 }
 444 
 445 void TemplateTable::sipush() {
 446   transition(vtos, itos);
 447   __ get_2_byte_integer_at_bcp(Z_tos, 1, InterpreterMacroAssembler::Signed);
 448 }
 449 
 450 
 451 void TemplateTable::ldc(bool wide) {
 452   transition(vtos, vtos);
 453   Label call_ldc, notFloat, notClass, Done;
 454   const Register RcpIndex = Z_tmp_1;
 455   const Register Rtags = Z_ARG2;
 456 
 457   if (wide) {
 458     __ get_2_byte_integer_at_bcp(RcpIndex, 1, InterpreterMacroAssembler::Unsigned);
 459   } else {
 460     __ z_llgc(RcpIndex, at_bcp(1));
 461   }
 462 
 463   __ get_cpool_and_tags(Z_tmp_2, Rtags);
 464 
 465   const int      base_offset = ConstantPool::header_size() * wordSize;
 466   const int      tags_offset = Array<u1>::base_offset_in_bytes();
 467   const Register Raddr_type = Rtags;
 468 
 469   // Get address of type.
 470   __ add2reg_with_index(Raddr_type, tags_offset, RcpIndex, Rtags);
 471 
 472   __ z_cli(0, Raddr_type, JVM_CONSTANT_UnresolvedClass);
 473   __ z_bre(call_ldc);    // Unresolved class - get the resolved class.
 474 
 475   __ z_cli(0, Raddr_type, JVM_CONSTANT_UnresolvedClassInError);
 476   __ z_bre(call_ldc);    // Unresolved class in error state - call into runtime
 477                          // to throw the error from the first resolution attempt.
 478 
 479   __ z_cli(0, Raddr_type, JVM_CONSTANT_Class);
 480   __ z_brne(notClass);   // Resolved class - need to call vm to get java
 481                          // mirror of the class.
 482 
 483   // We deal with a class. Call vm to do the appropriate.
 484   __ bind(call_ldc);
 485   __ load_const_optimized(Z_ARG2, wide);
 486   call_VM(Z_RET, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), Z_ARG2);
 487   __ push_ptr(Z_RET);
 488   __ z_bru(Done);
 489 
 490   // Not a class.
 491   __ bind(notClass);
 492   Register RcpOffset = RcpIndex;
 493   __ z_sllg(RcpOffset, RcpIndex, LogBytesPerWord); // Convert index to offset.
 494   __ z_cli(0, Raddr_type, JVM_CONSTANT_Float);
 495   __ z_brne(notFloat);
 496 
 497   // ftos
 498   __ mem2freg_opt(Z_ftos, Address(Z_tmp_2, RcpOffset, base_offset), false);
 499   __ push_f();
 500   __ z_bru(Done);
 501 
 502   __ bind(notFloat);
 503 #ifdef ASSERT
 504   {
 505     Label   L;
 506 
 507     __ z_cli(0, Raddr_type, JVM_CONSTANT_Integer);
 508     __ z_bre(L);
 509     // String and Object are rewritten to fast_aldc.
 510     __ stop("unexpected tag type in ldc");
 511 
 512     __ bind(L);
 513   }
 514 #endif
 515 
 516   // itos
 517   __ mem2reg_opt(Z_tos, Address(Z_tmp_2, RcpOffset, base_offset), false);
 518   __ push_i(Z_tos);
 519 
 520   __ bind(Done);
 521 }
 522 
 523 // Fast path for caching oop constants.
 524 // %%% We should use this to handle Class and String constants also.
 525 // %%% It will simplify the ldc/primitive path considerably.
 526 void TemplateTable::fast_aldc(bool wide) {
 527   transition(vtos, atos);
 528 
 529   const Register index = Z_tmp_2;
 530   int            index_size = wide ? sizeof(u2) : sizeof(u1);
 531   Label          L_resolved;
 532 
 533   // We are resolved if the resolved reference cache entry contains a
 534   // non-null object (CallSite, etc.).
 535   __ get_cache_index_at_bcp(index, 1, index_size);  // Load index.
 536   __ load_resolved_reference_at_index(Z_tos, index);
 537   __ z_ltgr(Z_tos, Z_tos);
 538   __ z_brne(L_resolved);
 539 
 540   // First time invocation - must resolve first.
 541   address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
 542   __ load_const_optimized(Z_ARG1, (int)bytecode());
 543   __ call_VM(Z_tos, entry, Z_ARG1);
 544 
 545   __ bind(L_resolved);
 546   __ verify_oop(Z_tos);
 547 }
 548 
 549 void TemplateTable::ldc2_w() {
 550   transition(vtos, vtos);
 551   Label Long, Done;
 552 
 553   // Z_tmp_1 = index of cp entry
 554   __ get_2_byte_integer_at_bcp(Z_tmp_1, 1, InterpreterMacroAssembler::Unsigned);
 555 
 556   __ get_cpool_and_tags(Z_tmp_2, Z_tos);
 557 
 558   const int base_offset = ConstantPool::header_size() * wordSize;
 559   const int tags_offset = Array<u1>::base_offset_in_bytes();
 560 
 561   // Get address of type.
 562   __ add2reg_with_index(Z_tos, tags_offset, Z_tos, Z_tmp_1);
 563 
 564   // Index needed in both branches, so calculate here.
 565   __ z_sllg(Z_tmp_1, Z_tmp_1, LogBytesPerWord);  // index2bytes
 566 
 567   // Check type.
 568   __ z_cli(0, Z_tos, JVM_CONSTANT_Double);
 569   __ z_brne(Long);
 570 
 571   // dtos
 572   __ mem2freg_opt(Z_ftos, Address(Z_tmp_2, Z_tmp_1, base_offset));
 573   __ push_d();
 574   __ z_bru(Done);
 575 
 576   __ bind(Long);
 577   // ltos
 578   __ mem2reg_opt(Z_tos, Address(Z_tmp_2, Z_tmp_1, base_offset));
 579   __ push_l();
 580 
 581   __ bind(Done);
 582 }
 583 
 584 void TemplateTable::locals_index(Register reg, int offset) {
 585   __ z_llgc(reg, at_bcp(offset));
 586   __ z_lcgr(reg);
 587 }
 588 
 589 void TemplateTable::iload() {
 590   iload_internal();
 591 }
 592 
 593 void TemplateTable::nofast_iload() {
 594   iload_internal(may_not_rewrite);
 595 }
 596 
 597 void TemplateTable::iload_internal(RewriteControl rc) {
 598   transition(vtos, itos);
 599 
 600   if (RewriteFrequentPairs && rc == may_rewrite) {
 601     NearLabel rewrite, done;
 602     const Register bc = Z_ARG4;
 603 
 604     assert(Z_R1_scratch != bc, "register damaged");
 605 
 606     // Get next byte.
 607     __ z_llgc(Z_R1_scratch, at_bcp(Bytecodes::length_for (Bytecodes::_iload)));
 608 
 609     // If _iload, wait to rewrite to iload2. We only want to rewrite the
 610     // last two iloads in a pair. Comparing against fast_iload means that
 611     // the next bytecode is neither an iload or a caload, and therefore
 612     // an iload pair.
 613     __ compareU32_and_branch(Z_R1_scratch, Bytecodes::_iload,
 614                              Assembler::bcondEqual, done);
 615 
 616     __ load_const_optimized(bc, Bytecodes::_fast_iload2);
 617     __ compareU32_and_branch(Z_R1_scratch, Bytecodes::_fast_iload,
 618                              Assembler::bcondEqual, rewrite);
 619 
 620     // If _caload, rewrite to fast_icaload.
 621     __ load_const_optimized(bc, Bytecodes::_fast_icaload);
 622     __ compareU32_and_branch(Z_R1_scratch, Bytecodes::_caload,
 623                              Assembler::bcondEqual, rewrite);
 624 
 625     // Rewrite so iload doesn't check again.
 626     __ load_const_optimized(bc, Bytecodes::_fast_iload);
 627 
 628     // rewrite
 629     // bc: fast bytecode
 630     __ bind(rewrite);
 631     patch_bytecode(Bytecodes::_iload, bc, Z_R1_scratch, false);
 632 
 633     __ bind(done);
 634 
 635   }
 636 
 637   // Get the local value into tos.
 638   locals_index(Z_R1_scratch);
 639   __ mem2reg_opt(Z_tos, iaddress(_masm, Z_R1_scratch), false);
 640 }
 641 
 642 void TemplateTable::fast_iload2() {
 643   transition(vtos, itos);
 644 
 645   locals_index(Z_R1_scratch);
 646   __ mem2reg_opt(Z_tos, iaddress(_masm, Z_R1_scratch), false);
 647   __ push_i(Z_tos);
 648   locals_index(Z_R1_scratch, 3);
 649   __ mem2reg_opt(Z_tos, iaddress(_masm, Z_R1_scratch), false);
 650 }
 651 
 652 void TemplateTable::fast_iload() {
 653   transition(vtos, itos);
 654 
 655   locals_index(Z_R1_scratch);
 656   __ mem2reg_opt(Z_tos, iaddress(_masm, Z_R1_scratch), false);
 657 }
 658 
 659 void TemplateTable::lload() {
 660   transition(vtos, ltos);
 661 
 662   locals_index(Z_R1_scratch);
 663   __ mem2reg_opt(Z_tos, laddress(_masm, Z_R1_scratch));
 664 }
 665 
 666 void TemplateTable::fload() {
 667   transition(vtos, ftos);
 668 
 669   locals_index(Z_R1_scratch);
 670   __ mem2freg_opt(Z_ftos, faddress(_masm, Z_R1_scratch), false);
 671 }
 672 
 673 void TemplateTable::dload() {
 674   transition(vtos, dtos);
 675 
 676   locals_index(Z_R1_scratch);
 677   __ mem2freg_opt(Z_ftos, daddress(_masm, Z_R1_scratch));
 678 }
 679 
 680 void TemplateTable::aload() {
 681   transition(vtos, atos);
 682 
 683   locals_index(Z_R1_scratch);
 684   __ mem2reg_opt(Z_tos, aaddress(_masm, Z_R1_scratch));
 685 }
 686 
 687 void TemplateTable::locals_index_wide(Register reg) {
 688   __ get_2_byte_integer_at_bcp(reg, 2, InterpreterMacroAssembler::Unsigned);
 689   __ z_lcgr(reg);
 690 }
 691 
 692 void TemplateTable::wide_iload() {
 693   transition(vtos, itos);
 694 
 695   locals_index_wide(Z_tmp_1);
 696   __ mem2reg_opt(Z_tos, iaddress(_masm, Z_tmp_1), false);
 697 }
 698 
 699 void TemplateTable::wide_lload() {
 700   transition(vtos, ltos);
 701 
 702   locals_index_wide(Z_tmp_1);
 703   __ mem2reg_opt(Z_tos, laddress(_masm, Z_tmp_1));
 704 }
 705 
 706 void TemplateTable::wide_fload() {
 707   transition(vtos, ftos);
 708 
 709   locals_index_wide(Z_tmp_1);
 710   __ mem2freg_opt(Z_ftos, faddress(_masm, Z_tmp_1), false);
 711 }
 712 
 713 void TemplateTable::wide_dload() {
 714   transition(vtos, dtos);
 715 
 716   locals_index_wide(Z_tmp_1);
 717   __ mem2freg_opt(Z_ftos, daddress(_masm, Z_tmp_1));
 718 }
 719 
 720 void TemplateTable::wide_aload() {
 721   transition(vtos, atos);
 722 
 723   locals_index_wide(Z_tmp_1);
 724   __ mem2reg_opt(Z_tos, aaddress(_masm, Z_tmp_1));
 725 }
 726 
 727 void TemplateTable::index_check(Register array, Register index, unsigned int shift) {
 728   assert_different_registers(Z_R1_scratch, array, index);
 729 
 730   // Check array.
 731   __ null_check(array, Z_R0_scratch, arrayOopDesc::length_offset_in_bytes());
 732 
 733   // Sign extend index for use by indexed load.
 734   __ z_lgfr(index, index);
 735 
 736   // Check index.
 737   Label index_ok;
 738   __ z_cl(index, Address(array, arrayOopDesc::length_offset_in_bytes()));
 739   __ z_brl(index_ok);
 740   __ lgr_if_needed(Z_ARG3, index); // See generate_ArrayIndexOutOfBounds_handler().
 741   // Give back the array to create more detailed exceptions.
 742   __ lgr_if_needed(Z_ARG2, array); // See generate_ArrayIndexOutOfBounds_handler().
 743   __ load_absolute_address(Z_R1_scratch,
 744                            Interpreter::_throw_ArrayIndexOutOfBoundsException_entry);
 745   __ z_bcr(Assembler::bcondAlways, Z_R1_scratch);
 746   __ bind(index_ok);
 747 
 748   if (shift > 0)
 749     __ z_sllg(index, index, shift);
 750 }
 751 
 752 void TemplateTable::iaload() {
 753   transition(itos, itos);
 754 
 755   __ pop_ptr(Z_tmp_1);  // array
 756   // Index is in Z_tos.
 757   Register index = Z_tos;
 758   index_check(Z_tmp_1, index, LogBytesPerInt); // Kills Z_ARG3.
 759   // Load the value.
 760   __ mem2reg_opt(Z_tos,
 761                  Address(Z_tmp_1, index, arrayOopDesc::base_offset_in_bytes(T_INT)),
 762                  false);
 763 }
 764 
 765 void TemplateTable::laload() {
 766   transition(itos, ltos);
 767 
 768   __ pop_ptr(Z_tmp_2);
 769   // Z_tos   : index
 770   // Z_tmp_2 : array
 771   Register index = Z_tos;
 772   index_check(Z_tmp_2, index, LogBytesPerLong);
 773   __ mem2reg_opt(Z_tos,
 774                  Address(Z_tmp_2, index, arrayOopDesc::base_offset_in_bytes(T_LONG)));
 775 }
 776 
 777 void TemplateTable::faload() {
 778   transition(itos, ftos);
 779 
 780   __ pop_ptr(Z_tmp_2);
 781   // Z_tos   : index
 782   // Z_tmp_2 : array
 783   Register index = Z_tos;
 784   index_check(Z_tmp_2, index, LogBytesPerInt);
 785   __ mem2freg_opt(Z_ftos,
 786                   Address(Z_tmp_2, index, arrayOopDesc::base_offset_in_bytes(T_FLOAT)),
 787                   false);
 788 }
 789 
 790 void TemplateTable::daload() {
 791   transition(itos, dtos);
 792 
 793   __ pop_ptr(Z_tmp_2);
 794   // Z_tos   : index
 795   // Z_tmp_2 : array
 796   Register index = Z_tos;
 797   index_check(Z_tmp_2, index, LogBytesPerLong);
 798   __ mem2freg_opt(Z_ftos,
 799                   Address(Z_tmp_2, index, arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
 800 }
 801 
 802 void TemplateTable::aaload() {
 803   transition(itos, atos);
 804 
 805   unsigned const int shift = LogBytesPerHeapOop;
 806   __ pop_ptr(Z_tmp_1);  // array
 807   // Index is in Z_tos.
 808   Register index = Z_tos;
 809   index_check(Z_tmp_1, index, shift);
 810   // Now load array element.
 811   __ load_heap_oop(Z_tos,
 812                    Address(Z_tmp_1, index, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
 813   __ verify_oop(Z_tos);
 814 }
 815 
 816 void TemplateTable::baload() {
 817   transition(itos, itos);
 818 
 819   __ pop_ptr(Z_tmp_1);
 820   // Z_tos   : index
 821   // Z_tmp_1 : array
 822   Register index = Z_tos;
 823   index_check(Z_tmp_1, index, 0);
 824   __ z_lb(Z_tos,
 825           Address(Z_tmp_1, index, arrayOopDesc::base_offset_in_bytes(T_BYTE)));
 826 }
 827 
 828 void TemplateTable::caload() {
 829   transition(itos, itos);
 830 
 831   __ pop_ptr(Z_tmp_2);
 832   // Z_tos   : index
 833   // Z_tmp_2 : array
 834   Register index = Z_tos;
 835   index_check(Z_tmp_2, index, LogBytesPerShort);
 836   // Load into 64 bits, works on all CPUs.
 837   __ z_llgh(Z_tos,
 838             Address(Z_tmp_2, index, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
 839 }
 840 
 841 // Iload followed by caload frequent pair.
 842 void TemplateTable::fast_icaload() {
 843   transition(vtos, itos);
 844 
 845   // Load index out of locals.
 846   locals_index(Z_R1_scratch);
 847   __ mem2reg_opt(Z_ARG3, iaddress(_masm, Z_R1_scratch), false);
 848   // Z_ARG3  : index
 849   // Z_tmp_2 : array
 850   __ pop_ptr(Z_tmp_2);
 851   index_check(Z_tmp_2, Z_ARG3, LogBytesPerShort);
 852   // Load into 64 bits, works on all CPUs.
 853   __ z_llgh(Z_tos,
 854             Address(Z_tmp_2, Z_ARG3, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
 855 }
 856 
 857 void TemplateTable::saload() {
 858   transition(itos, itos);
 859 
 860   __ pop_ptr(Z_tmp_2);
 861   // Z_tos   : index
 862   // Z_tmp_2 : array
 863   Register index = Z_tos;
 864   index_check(Z_tmp_2, index, LogBytesPerShort);
 865   __ z_lh(Z_tos,
 866           Address(Z_tmp_2, index, arrayOopDesc::base_offset_in_bytes(T_SHORT)));
 867 }
 868 
 869 void TemplateTable::iload(int n) {
 870   transition(vtos, itos);
 871   __ z_ly(Z_tos, iaddress(n));
 872 }
 873 
 874 void TemplateTable::lload(int n) {
 875   transition(vtos, ltos);
 876   __ z_lg(Z_tos, laddress(n));
 877 }
 878 
 879 void TemplateTable::fload(int n) {
 880   transition(vtos, ftos);
 881   __ mem2freg_opt(Z_ftos, faddress(n), false);
 882 }
 883 
 884 void TemplateTable::dload(int n) {
 885   transition(vtos, dtos);
 886   __ mem2freg_opt(Z_ftos, daddress(n));
 887 }
 888 
 889 void TemplateTable::aload(int n) {
 890   transition(vtos, atos);
 891   __ mem2reg_opt(Z_tos, aaddress(n));
 892 }
 893 
 894 void TemplateTable::aload_0() {
 895   aload_0_internal();
 896 }
 897 
 898 void TemplateTable::nofast_aload_0() {
 899   aload_0_internal(may_not_rewrite);
 900 }
 901 
 902 void TemplateTable::aload_0_internal(RewriteControl rc) {
 903   transition(vtos, atos);
 904 
 905   // According to bytecode histograms, the pairs:
 906   //
 907   // _aload_0, _fast_igetfield
 908   // _aload_0, _fast_agetfield
 909   // _aload_0, _fast_fgetfield
 910   //
 911   // occur frequently. If RewriteFrequentPairs is set, the (slow)
 912   // _aload_0 bytecode checks if the next bytecode is either
 913   // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then
 914   // rewrites the current bytecode into a pair bytecode; otherwise it
 915   // rewrites the current bytecode into _fast_aload_0 that doesn't do
 916   // the pair check anymore.
 917   //
 918   // Note: If the next bytecode is _getfield, the rewrite must be
 919   //       delayed, otherwise we may miss an opportunity for a pair.
 920   //
 921   // Also rewrite frequent pairs
 922   //   aload_0, aload_1
 923   //   aload_0, iload_1
 924   // These bytecodes with a small amount of code are most profitable
 925   // to rewrite.
 926   if (!(RewriteFrequentPairs && (rc == may_rewrite))) {
 927     aload(0);
 928     return;
 929   }
 930 
 931   NearLabel rewrite, done;
 932   const Register bc = Z_ARG4;
 933 
 934   assert(Z_R1_scratch != bc, "register damaged");
 935   // Get next byte.
 936   __ z_llgc(Z_R1_scratch, at_bcp(Bytecodes::length_for (Bytecodes::_aload_0)));
 937 
 938   // Do actual aload_0.
 939   aload(0);
 940 
 941   // If _getfield then wait with rewrite.
 942   __ compareU32_and_branch(Z_R1_scratch, Bytecodes::_getfield,
 943                            Assembler::bcondEqual, done);
 944 
 945   // If _igetfield then rewrite to _fast_iaccess_0.
 946   assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0)
 947             == Bytecodes::_aload_0, "fix bytecode definition");
 948 
 949   __ load_const_optimized(bc, Bytecodes::_fast_iaccess_0);
 950   __ compareU32_and_branch(Z_R1_scratch, Bytecodes::_fast_igetfield,
 951                            Assembler::bcondEqual, rewrite);
 952 
 953   // If _agetfield then rewrite to _fast_aaccess_0.
 954   assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0)
 955             == Bytecodes::_aload_0, "fix bytecode definition");
 956 
 957   __ load_const_optimized(bc, Bytecodes::_fast_aaccess_0);
 958   __ compareU32_and_branch(Z_R1_scratch, Bytecodes::_fast_agetfield,
 959                            Assembler::bcondEqual, rewrite);
 960 
 961   // If _fgetfield then rewrite to _fast_faccess_0.
 962   assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0)
 963             == Bytecodes::_aload_0, "fix bytecode definition");
 964 
 965   __ load_const_optimized(bc, Bytecodes::_fast_faccess_0);
 966   __ compareU32_and_branch(Z_R1_scratch, Bytecodes::_fast_fgetfield,
 967                            Assembler::bcondEqual, rewrite);
 968 
 969   // Else rewrite to _fast_aload0.
 970   assert(Bytecodes::java_code(Bytecodes::_fast_aload_0)
 971             == Bytecodes::_aload_0, "fix bytecode definition");
 972   __ load_const_optimized(bc, Bytecodes::_fast_aload_0);
 973 
 974   // rewrite
 975   // bc: fast bytecode
 976   __ bind(rewrite);
 977 
 978   patch_bytecode(Bytecodes::_aload_0, bc, Z_R1_scratch, false);
 979   // Reload local 0 because of VM call inside patch_bytecode().
 980   // this may trigger GC and thus change the oop.
 981   aload(0);
 982 
 983   __ bind(done);
 984 }
 985 
 986 void TemplateTable::istore() {
 987   transition(itos, vtos);
 988   locals_index(Z_R1_scratch);
 989   __ reg2mem_opt(Z_tos, iaddress(_masm, Z_R1_scratch), false);
 990 }
 991 
 992 void TemplateTable::lstore() {
 993   transition(ltos, vtos);
 994   locals_index(Z_R1_scratch);
 995   __ reg2mem_opt(Z_tos, laddress(_masm, Z_R1_scratch));
 996 }
 997 
 998 void TemplateTable::fstore() {
 999   transition(ftos, vtos);
1000   locals_index(Z_R1_scratch);
1001   __ freg2mem_opt(Z_ftos, faddress(_masm, Z_R1_scratch));
1002 }
1003 
1004 void TemplateTable::dstore() {
1005   transition(dtos, vtos);
1006   locals_index(Z_R1_scratch);
1007   __ freg2mem_opt(Z_ftos, daddress(_masm, Z_R1_scratch));
1008 }
1009 
1010 void TemplateTable::astore() {
1011   transition(vtos, vtos);
1012   __ pop_ptr(Z_tos);
1013   locals_index(Z_R1_scratch);
1014   __ reg2mem_opt(Z_tos, aaddress(_masm, Z_R1_scratch));
1015 }
1016 
1017 void TemplateTable::wide_istore() {
1018   transition(vtos, vtos);
1019   __ pop_i(Z_tos);
1020   locals_index_wide(Z_tmp_1);
1021   __ reg2mem_opt(Z_tos, iaddress(_masm, Z_tmp_1), false);
1022 }
1023 
1024 void TemplateTable::wide_lstore() {
1025   transition(vtos, vtos);
1026   __ pop_l(Z_tos);
1027   locals_index_wide(Z_tmp_1);
1028   __ reg2mem_opt(Z_tos, laddress(_masm, Z_tmp_1));
1029 }
1030 
1031 void TemplateTable::wide_fstore() {
1032   transition(vtos, vtos);
1033   __ pop_f(Z_ftos);
1034   locals_index_wide(Z_tmp_1);
1035   __ freg2mem_opt(Z_ftos, faddress(_masm, Z_tmp_1), false);
1036 }
1037 
1038 void TemplateTable::wide_dstore() {
1039   transition(vtos, vtos);
1040   __ pop_d(Z_ftos);
1041   locals_index_wide(Z_tmp_1);
1042   __ freg2mem_opt(Z_ftos, daddress(_masm, Z_tmp_1));
1043 }
1044 
1045 void TemplateTable::wide_astore() {
1046   transition(vtos, vtos);
1047   __ pop_ptr(Z_tos);
1048   locals_index_wide(Z_tmp_1);
1049   __ reg2mem_opt(Z_tos, aaddress(_masm, Z_tmp_1));
1050 }
1051 
1052 void TemplateTable::iastore() {
1053   transition(itos, vtos);
1054 
1055   Register index = Z_ARG3; // Index_check expects index in Z_ARG3.
1056   // Value is in Z_tos ...
1057   __ pop_i(index);        // index
1058   __ pop_ptr(Z_tmp_1);    // array
1059   index_check(Z_tmp_1, index, LogBytesPerInt);
1060   // ... and then move the value.
1061   __ reg2mem_opt(Z_tos,
1062                  Address(Z_tmp_1, index, arrayOopDesc::base_offset_in_bytes(T_INT)),
1063                  false);
1064 }
1065 
1066 void TemplateTable::lastore() {
1067   transition(ltos, vtos);
1068 
1069   __ pop_i(Z_ARG3);
1070   __ pop_ptr(Z_tmp_2);
1071   // Z_tos   : value
1072   // Z_ARG3  : index
1073   // Z_tmp_2 : array
1074  index_check(Z_tmp_2, Z_ARG3, LogBytesPerLong); // Prefer index in Z_ARG3.
1075   __ reg2mem_opt(Z_tos,
1076                  Address(Z_tmp_2, Z_ARG3, arrayOopDesc::base_offset_in_bytes(T_LONG)));
1077 }
1078 
1079 void TemplateTable::fastore() {
1080   transition(ftos, vtos);
1081 
1082   __ pop_i(Z_ARG3);
1083   __ pop_ptr(Z_tmp_2);
1084   // Z_ftos  : value
1085   // Z_ARG3  : index
1086   // Z_tmp_2 : array
1087   index_check(Z_tmp_2, Z_ARG3, LogBytesPerInt); // Prefer index in Z_ARG3.
1088   __ freg2mem_opt(Z_ftos,
1089                   Address(Z_tmp_2, Z_ARG3, arrayOopDesc::base_offset_in_bytes(T_FLOAT)),
1090                   false);
1091 }
1092 
1093 void TemplateTable::dastore() {
1094   transition(dtos, vtos);
1095 
1096   __ pop_i(Z_ARG3);
1097   __ pop_ptr(Z_tmp_2);
1098   // Z_ftos  : value
1099   // Z_ARG3  : index
1100   // Z_tmp_2 : array
1101   index_check(Z_tmp_2, Z_ARG3, LogBytesPerLong); // Prefer index in Z_ARG3.
1102   __ freg2mem_opt(Z_ftos,
1103                   Address(Z_tmp_2, Z_ARG3, arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
1104 }
1105 
1106 void TemplateTable::aastore() {
1107   NearLabel is_null, ok_is_subtype, done;
1108   transition(vtos, vtos);
1109 
1110   // stack: ..., array, index, value
1111 
1112   Register Rvalue = Z_tos;
1113   Register Rarray = Z_ARG2;
1114   Register Rindex = Z_ARG3; // Convention for index_check().
1115 
1116   __ load_ptr(0, Rvalue);
1117   __ z_l(Rindex, Address(Z_esp, Interpreter::expr_offset_in_bytes(1)));
1118   __ load_ptr(2, Rarray);
1119 
1120   unsigned const int shift = LogBytesPerHeapOop;
1121   index_check(Rarray, Rindex, shift); // side effect: Rindex = Rindex << shift
1122   Register Rstore_addr  = Rindex;
1123   // Address where the store goes to, i.e. &(Rarry[index])
1124   __ load_address(Rstore_addr, Address(Rarray, Rindex, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
1125 
1126   // do array store check - check for NULL value first.
1127   __ compareU64_and_branch(Rvalue, (intptr_t)0, Assembler::bcondEqual, is_null);
1128 
1129   Register Rsub_klass   = Z_ARG4;
1130   Register Rsuper_klass = Z_ARG5;
1131   __ load_klass(Rsub_klass, Rvalue);
1132   // Load superklass.
1133   __ load_klass(Rsuper_klass, Rarray);
1134   __ z_lg(Rsuper_klass, Address(Rsuper_klass, ObjArrayKlass::element_klass_offset()));
1135 
1136   // Generate a fast subtype check.  Branch to ok_is_subtype if no failure.
1137   // Throw if failure.
1138   Register tmp1 = Z_tmp_1;
1139   Register tmp2 = Z_tmp_2;
1140   __ gen_subtype_check(Rsub_klass, Rsuper_klass, tmp1, tmp2, ok_is_subtype);
1141 
1142   // Fall through on failure.
1143   // Object is in Rvalue == Z_tos.
1144   assert(Rvalue == Z_tos, "that's the expected location");
1145   __ load_absolute_address(tmp1, Interpreter::_throw_ArrayStoreException_entry);
1146   __ z_br(tmp1);
1147 
1148   // Come here on success.
1149   __ bind(ok_is_subtype);
1150 
1151   // Now store using the appropriate barrier.
1152   Register tmp3 = Rsub_klass;
1153   do_oop_store(_masm, Rstore_addr, (intptr_t)0/*offset*/, Rvalue, false/*val==null*/,
1154                tmp3, tmp2, tmp1, _bs->kind(), true);
1155   __ z_bru(done);
1156 
1157   // Have a NULL in Rvalue.
1158   __ bind(is_null);
1159   __ profile_null_seen(tmp1);
1160 
1161   // Store a NULL.
1162   do_oop_store(_masm, Rstore_addr, (intptr_t)0/*offset*/, Rvalue, true/*val==null*/,
1163                tmp3, tmp2, tmp1, _bs->kind(), true);
1164 
1165   // Pop stack arguments.
1166   __ bind(done);
1167   __ add2reg(Z_esp, 3 * Interpreter::stackElementSize);
1168 }
1169 
1170 
1171 void TemplateTable::bastore() {
1172   transition(itos, vtos);
1173 
1174   __ pop_i(Z_ARG3);
1175   __ pop_ptr(Z_tmp_2);
1176   // Z_tos   : value
1177   // Z_ARG3 : index
1178   // Z_tmp_2 : array
1179   // No index shift necessary - pass 0.
1180   index_check(Z_tmp_2, Z_ARG3, 0); // Prefer index in Z_ARG3.
1181   __ z_stc(Z_tos,
1182            Address(Z_tmp_2, Z_ARG3, arrayOopDesc::base_offset_in_bytes(T_BYTE)));
1183 }
1184 
1185 void TemplateTable::castore() {
1186   transition(itos, vtos);
1187 
1188   __ pop_i(Z_ARG3);
1189   __ pop_ptr(Z_tmp_2);
1190   // Z_tos   : value
1191   // Z_ARG3  : index
1192   // Z_tmp_2 : array
1193   Register index = Z_ARG3; // prefer index in Z_ARG3
1194   index_check(Z_tmp_2, index, LogBytesPerShort);
1195   __ z_sth(Z_tos,
1196            Address(Z_tmp_2, index, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
1197 }
1198 
1199 void TemplateTable::sastore() {
1200   castore();
1201 }
1202 
1203 void TemplateTable::istore(int n) {
1204   transition(itos, vtos);
1205   __ reg2mem_opt(Z_tos, iaddress(n), false);
1206 }
1207 
1208 void TemplateTable::lstore(int n) {
1209   transition(ltos, vtos);
1210   __ reg2mem_opt(Z_tos, laddress(n));
1211 }
1212 
1213 void TemplateTable::fstore(int n) {
1214   transition(ftos, vtos);
1215   __ freg2mem_opt(Z_ftos, faddress(n), false);
1216 }
1217 
1218 void TemplateTable::dstore(int n) {
1219   transition(dtos, vtos);
1220   __ freg2mem_opt(Z_ftos, daddress(n));
1221 }
1222 
1223 void TemplateTable::astore(int n) {
1224   transition(vtos, vtos);
1225   __ pop_ptr(Z_tos);
1226   __ reg2mem_opt(Z_tos, aaddress(n));
1227 }
1228 
1229 void TemplateTable::pop() {
1230   transition(vtos, vtos);
1231   __ add2reg(Z_esp, Interpreter::stackElementSize);
1232 }
1233 
1234 void TemplateTable::pop2() {
1235   transition(vtos, vtos);
1236   __ add2reg(Z_esp, 2 * Interpreter::stackElementSize);
1237 }
1238 
1239 void TemplateTable::dup() {
1240   transition(vtos, vtos);
1241   __ load_ptr(0, Z_tos);
1242   __ push_ptr(Z_tos);
1243   // stack: ..., a, a
1244 }
1245 
1246 void TemplateTable::dup_x1() {
1247   transition(vtos, vtos);
1248 
1249   // stack: ..., a, b
1250   __ load_ptr(0, Z_tos);          // load b
1251   __ load_ptr(1, Z_R0_scratch);   // load a
1252   __ store_ptr(1, Z_tos);         // store b
1253   __ store_ptr(0, Z_R0_scratch);  // store a
1254   __ push_ptr(Z_tos);             // push b
1255   // stack: ..., b, a, b
1256 }
1257 
1258 void TemplateTable::dup_x2() {
1259   transition(vtos, vtos);
1260 
1261   // stack: ..., a, b, c
1262   __ load_ptr(0, Z_R0_scratch);   // load c
1263   __ load_ptr(2, Z_R1_scratch);   // load a
1264   __ store_ptr(2, Z_R0_scratch);  // store c in a
1265   __ push_ptr(Z_R0_scratch);      // push c
1266   // stack: ..., c, b, c, c
1267   __ load_ptr(2, Z_R0_scratch);   // load b
1268   __ store_ptr(2, Z_R1_scratch);  // store a in b
1269   // stack: ..., c, a, c, c
1270   __ store_ptr(1, Z_R0_scratch);  // store b in c
1271   // stack: ..., c, a, b, c
1272 }
1273 
1274 void TemplateTable::dup2() {
1275   transition(vtos, vtos);
1276 
1277   // stack: ..., a, b
1278   __ load_ptr(1, Z_R0_scratch);  // load a
1279   __ push_ptr(Z_R0_scratch);     // push a
1280   __ load_ptr(1, Z_R0_scratch);  // load b
1281   __ push_ptr(Z_R0_scratch);     // push b
1282   // stack: ..., a, b, a, b
1283 }
1284 
1285 void TemplateTable::dup2_x1() {
1286   transition(vtos, vtos);
1287 
1288   // stack: ..., a, b, c
1289   __ load_ptr(0, Z_R0_scratch);  // load c
1290   __ load_ptr(1, Z_R1_scratch);  // load b
1291   __ push_ptr(Z_R1_scratch);     // push b
1292   __ push_ptr(Z_R0_scratch);     // push c
1293   // stack: ..., a, b, c, b, c
1294   __ store_ptr(3, Z_R0_scratch); // store c in b
1295   // stack: ..., a, c, c, b, c
1296   __ load_ptr( 4, Z_R0_scratch); // load a
1297   __ store_ptr(2, Z_R0_scratch); // store a in 2nd c
1298   // stack: ..., a, c, a, b, c
1299   __ store_ptr(4, Z_R1_scratch); // store b in a
1300   // stack: ..., b, c, a, b, c
1301 }
1302 
1303 void TemplateTable::dup2_x2() {
1304   transition(vtos, vtos);
1305 
1306   // stack: ..., a, b, c, d
1307   __ load_ptr(0, Z_R0_scratch);   // load d
1308   __ load_ptr(1, Z_R1_scratch);   // load c
1309   __ push_ptr(Z_R1_scratch);      // push c
1310   __ push_ptr(Z_R0_scratch);      // push d
1311   // stack: ..., a, b, c, d, c, d
1312   __ load_ptr(4, Z_R1_scratch);   // load b
1313   __ store_ptr(2, Z_R1_scratch);  // store b in d
1314   __ store_ptr(4, Z_R0_scratch);  // store d in b
1315   // stack: ..., a, d, c, b, c, d
1316   __ load_ptr(5, Z_R0_scratch);   // load a
1317   __ load_ptr(3, Z_R1_scratch);   // load c
1318   __ store_ptr(3, Z_R0_scratch);  // store a in c
1319   __ store_ptr(5, Z_R1_scratch);  // store c in a
1320   // stack: ..., c, d, a, b, c, d
1321 }
1322 
1323 void TemplateTable::swap() {
1324   transition(vtos, vtos);
1325 
1326   // stack: ..., a, b
1327   __ load_ptr(1, Z_R0_scratch);  // load a
1328   __ load_ptr(0, Z_R1_scratch);  // load b
1329   __ store_ptr(0, Z_R0_scratch);  // store a in b
1330   __ store_ptr(1, Z_R1_scratch);  // store b in a
1331   // stack: ..., b, a
1332 }
1333 
1334 void TemplateTable::iop2(Operation op) {
1335   transition(itos, itos);
1336   switch (op) {
1337     case add  :                           __ z_ay(Z_tos,  __ stackTop()); __ pop_i(); break;
1338     case sub  :                           __ z_sy(Z_tos,  __ stackTop()); __ pop_i(); __ z_lcr(Z_tos, Z_tos); break;
1339     case mul  :                           __ z_msy(Z_tos, __ stackTop()); __ pop_i(); break;
1340     case _and :                           __ z_ny(Z_tos,  __ stackTop()); __ pop_i(); break;
1341     case _or  :                           __ z_oy(Z_tos,  __ stackTop()); __ pop_i(); break;
1342     case _xor :                           __ z_xy(Z_tos,  __ stackTop()); __ pop_i(); break;
1343     case shl  : __ z_lr(Z_tmp_1, Z_tos);
1344                 __ z_nill(Z_tmp_1, 31);  // Lowest 5 bits are shiftamount.
1345                                           __ pop_i(Z_tos);   __ z_sll(Z_tos, 0,  Z_tmp_1); break;
1346     case shr  : __ z_lr(Z_tmp_1, Z_tos);
1347                 __ z_nill(Z_tmp_1, 31);  // Lowest 5 bits are shiftamount.
1348                                           __ pop_i(Z_tos);   __ z_sra(Z_tos, 0,  Z_tmp_1); break;
1349     case ushr : __ z_lr(Z_tmp_1, Z_tos);
1350                 __ z_nill(Z_tmp_1, 31);  // Lowest 5 bits are shiftamount.
1351                                           __ pop_i(Z_tos);   __ z_srl(Z_tos, 0,  Z_tmp_1); break;
1352     default   : ShouldNotReachHere(); break;
1353   }
1354   return;
1355 }
1356 
1357 void TemplateTable::lop2(Operation op) {
1358   transition(ltos, ltos);
1359 
1360   switch (op) {
1361     case add  :  __ z_ag(Z_tos,  __ stackTop()); __ pop_l(); break;
1362     case sub  :  __ z_sg(Z_tos,  __ stackTop()); __ pop_l(); __ z_lcgr(Z_tos, Z_tos); break;
1363     case mul  :  __ z_msg(Z_tos, __ stackTop()); __ pop_l(); break;
1364     case _and :  __ z_ng(Z_tos,  __ stackTop()); __ pop_l(); break;
1365     case _or  :  __ z_og(Z_tos,  __ stackTop()); __ pop_l(); break;
1366     case _xor :  __ z_xg(Z_tos,  __ stackTop()); __ pop_l(); break;
1367     default   : ShouldNotReachHere(); break;
1368   }
1369   return;
1370 }
1371 
1372 // Common part of idiv/irem.
1373 static void idiv_helper(InterpreterMacroAssembler * _masm, address exception) {
1374   NearLabel not_null;
1375 
1376   // Use register pair Z_tmp_1, Z_tmp_2 for DIVIDE SINGLE.
1377   assert(Z_tmp_1->successor() == Z_tmp_2, " need even/odd register pair for idiv/irem");
1378 
1379   // Get dividend.
1380   __ pop_i(Z_tmp_2);
1381 
1382   // If divisor == 0 throw exception.
1383   __ compare32_and_branch(Z_tos, (intptr_t) 0,
1384                           Assembler::bcondNotEqual, not_null   );
1385   __ load_absolute_address(Z_R1_scratch, exception);
1386   __ z_br(Z_R1_scratch);
1387 
1388   __ bind(not_null);
1389 
1390   __ z_lgfr(Z_tmp_2, Z_tmp_2);   // Sign extend dividend.
1391   __ z_dsgfr(Z_tmp_1, Z_tos);    // Do it.
1392 }
1393 
1394 void TemplateTable::idiv() {
1395   transition(itos, itos);
1396 
1397   idiv_helper(_masm, Interpreter::_throw_ArithmeticException_entry);
1398   __ z_llgfr(Z_tos, Z_tmp_2);     // Result is in Z_tmp_2.
1399 }
1400 
1401 void TemplateTable::irem() {
1402   transition(itos, itos);
1403 
1404   idiv_helper(_masm, Interpreter::_throw_ArithmeticException_entry);
1405   __ z_llgfr(Z_tos, Z_tmp_1);     // Result is in Z_tmp_1.
1406 }
1407 
1408 void TemplateTable::lmul() {
1409   transition(ltos, ltos);
1410 
1411   // Multiply with memory operand.
1412   __ z_msg(Z_tos, __ stackTop());
1413   __ pop_l();  // Pop operand.
1414 }
1415 
1416 // Common part of ldiv/lrem.
1417 //
1418 // Input:
1419 //     Z_tos := the divisor (dividend still on stack)
1420 //
1421 // Updated registers:
1422 //     Z_tmp_1 := pop_l() % Z_tos     ; if is_ldiv == false
1423 //     Z_tmp_2 := pop_l() / Z_tos     ; if is_ldiv == true
1424 //
1425 static void ldiv_helper(InterpreterMacroAssembler * _masm, address exception, bool is_ldiv) {
1426   NearLabel not_null, done;
1427 
1428   // Use register pair Z_tmp_1, Z_tmp_2 for DIVIDE SINGLE.
1429   assert(Z_tmp_1->successor() == Z_tmp_2,
1430          " need even/odd register pair for idiv/irem");
1431 
1432   // Get dividend.
1433   __ pop_l(Z_tmp_2);
1434 
1435   // If divisor == 0 throw exception.
1436   __ compare64_and_branch(Z_tos, (intptr_t)0, Assembler::bcondNotEqual, not_null);
1437   __ load_absolute_address(Z_R1_scratch, exception);
1438   __ z_br(Z_R1_scratch);
1439 
1440   __ bind(not_null);
1441   // Special case for dividend == 0x8000 and divisor == -1.
1442   if (is_ldiv) {
1443     // result := Z_tmp_2 := - dividend
1444     __ z_lcgr(Z_tmp_2, Z_tmp_2);
1445   } else {
1446     // result remainder := Z_tmp_1 := 0
1447     __ clear_reg(Z_tmp_1, true, false);  // Don't set CC.
1448   }
1449 
1450   // if divisor == -1 goto done
1451   __ compare64_and_branch(Z_tos, -1, Assembler::bcondEqual, done);
1452   if (is_ldiv)
1453     // Restore sign, because divisor != -1.
1454     __ z_lcgr(Z_tmp_2, Z_tmp_2);
1455   __ z_dsgr(Z_tmp_1, Z_tos);    // Do it.
1456   __ bind(done);
1457 }
1458 
1459 void TemplateTable::ldiv() {
1460   transition(ltos, ltos);
1461 
1462   ldiv_helper(_masm, Interpreter::_throw_ArithmeticException_entry, true /*is_ldiv*/);
1463   __ z_lgr(Z_tos, Z_tmp_2);     // Result is in Z_tmp_2.
1464 }
1465 
1466 void TemplateTable::lrem() {
1467   transition(ltos, ltos);
1468 
1469   ldiv_helper(_masm, Interpreter::_throw_ArithmeticException_entry, false /*is_ldiv*/);
1470   __ z_lgr(Z_tos, Z_tmp_1);     // Result is in Z_tmp_1.
1471 }
1472 
1473 void TemplateTable::lshl() {
1474   transition(itos, ltos);
1475 
1476   // Z_tos: shift amount
1477   __ pop_l(Z_tmp_1);              // Get shift value.
1478   __ z_sllg(Z_tos, Z_tmp_1, 0, Z_tos);
1479 }
1480 
1481 void TemplateTable::lshr() {
1482   transition(itos, ltos);
1483 
1484   // Z_tos: shift amount
1485   __ pop_l(Z_tmp_1);              // Get shift value.
1486   __ z_srag(Z_tos, Z_tmp_1, 0, Z_tos);
1487 }
1488 
1489 void TemplateTable::lushr() {
1490   transition(itos, ltos);
1491 
1492   // Z_tos: shift amount
1493   __ pop_l(Z_tmp_1);              // Get shift value.
1494   __ z_srlg(Z_tos, Z_tmp_1, 0, Z_tos);
1495 }
1496 
1497 void TemplateTable::fop2(Operation op) {
1498   transition(ftos, ftos);
1499 
1500   switch (op) {
1501     case add:
1502       // Add memory operand.
1503       __ z_aeb(Z_ftos, __ stackTop()); __ pop_f(); return;
1504     case sub:
1505       // Sub memory operand.
1506       __ z_ler(Z_F1, Z_ftos);    // first operand
1507       __ pop_f(Z_ftos);          // second operand from stack
1508       __ z_sebr(Z_ftos, Z_F1);
1509       return;
1510     case mul:
1511       // Multiply with memory operand.
1512       __ z_meeb(Z_ftos, __ stackTop()); __ pop_f(); return;
1513     case div:
1514       __ z_ler(Z_F1, Z_ftos);    // first operand
1515       __ pop_f(Z_ftos);          // second operand from stack
1516       __ z_debr(Z_ftos, Z_F1);
1517       return;
1518     case rem:
1519       // Do runtime call.
1520       __ z_ler(Z_FARG2, Z_ftos);  // divisor
1521       __ pop_f(Z_FARG1);          // dividend
1522       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem));
1523       // Result should be in the right place (Z_ftos == Z_FRET).
1524       return;
1525     default:
1526       ShouldNotReachHere();
1527       return;
1528   }
1529 }
1530 
1531 void TemplateTable::dop2(Operation op) {
1532   transition(dtos, dtos);
1533 
1534   switch (op) {
1535     case add:
1536       // Add memory operand.
1537       __ z_adb(Z_ftos, __ stackTop()); __ pop_d(); return;
1538     case sub:
1539       // Sub memory operand.
1540       __ z_ldr(Z_F1, Z_ftos);    // first operand
1541       __ pop_d(Z_ftos);          // second operand from stack
1542       __ z_sdbr(Z_ftos, Z_F1);
1543       return;
1544     case mul:
1545       // Multiply with memory operand.
1546       __ z_mdb(Z_ftos, __ stackTop()); __ pop_d(); return;
1547     case div:
1548       __ z_ldr(Z_F1, Z_ftos);    // first operand
1549       __ pop_d(Z_ftos);          // second operand from stack
1550       __ z_ddbr(Z_ftos, Z_F1);
1551       return;
1552     case rem:
1553       // Do runtime call.
1554       __ z_ldr(Z_FARG2, Z_ftos);  // divisor
1555       __ pop_d(Z_FARG1);          // dividend
1556       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem));
1557       // Result should be in the right place (Z_ftos == Z_FRET).
1558       return;
1559     default:
1560       ShouldNotReachHere();
1561       return;
1562   }
1563 }
1564 
1565 void TemplateTable::ineg() {
1566   transition(itos, itos);
1567   __ z_lcr(Z_tos);
1568 }
1569 
1570 void TemplateTable::lneg() {
1571   transition(ltos, ltos);
1572   __ z_lcgr(Z_tos);
1573 }
1574 
1575 void TemplateTable::fneg() {
1576   transition(ftos, ftos);
1577   __ z_lcebr(Z_ftos, Z_ftos);
1578 }
1579 
1580 void TemplateTable::dneg() {
1581   transition(dtos, dtos);
1582   __ z_lcdbr(Z_ftos, Z_ftos);
1583 }
1584 
1585 void TemplateTable::iinc() {
1586   transition(vtos, vtos);
1587 
1588   Address local;
1589   __ z_lb(Z_R0_scratch, at_bcp(2)); // Get constant.
1590   locals_index(Z_R1_scratch);
1591   local = iaddress(_masm, Z_R1_scratch);
1592   __ z_a(Z_R0_scratch, local);
1593   __ reg2mem_opt(Z_R0_scratch, local, false);
1594 }
1595 
1596 void TemplateTable::wide_iinc() {
1597   transition(vtos, vtos);
1598 
1599   // Z_tmp_1 := increment
1600   __ get_2_byte_integer_at_bcp(Z_tmp_1, 4, InterpreterMacroAssembler::Signed);
1601   // Z_R1_scratch := index of local to increment
1602   locals_index_wide(Z_tmp_2);
1603   // Load, increment, and store.
1604   __ access_local_int(Z_tmp_2, Z_tos);
1605   __ z_agr(Z_tos,  Z_tmp_1);
1606   // Shifted index is still in Z_tmp_2.
1607   __ reg2mem_opt(Z_tos, Address(Z_locals, Z_tmp_2), false);
1608 }
1609 
1610 
1611 void TemplateTable::convert() {
1612   // Checking
1613 #ifdef ASSERT
1614   TosState   tos_in  = ilgl;
1615   TosState   tos_out = ilgl;
1616 
1617   switch (bytecode()) {
1618     case Bytecodes::_i2l:
1619     case Bytecodes::_i2f:
1620     case Bytecodes::_i2d:
1621     case Bytecodes::_i2b:
1622     case Bytecodes::_i2c:
1623     case Bytecodes::_i2s:
1624       tos_in = itos;
1625       break;
1626     case Bytecodes::_l2i:
1627     case Bytecodes::_l2f:
1628     case Bytecodes::_l2d:
1629       tos_in = ltos;
1630       break;
1631     case Bytecodes::_f2i:
1632     case Bytecodes::_f2l:
1633     case Bytecodes::_f2d:
1634       tos_in = ftos;
1635       break;
1636     case Bytecodes::_d2i:
1637     case Bytecodes::_d2l:
1638     case Bytecodes::_d2f:
1639       tos_in = dtos;
1640       break;
1641     default :
1642       ShouldNotReachHere();
1643   }
1644   switch (bytecode()) {
1645     case Bytecodes::_l2i:
1646     case Bytecodes::_f2i:
1647     case Bytecodes::_d2i:
1648     case Bytecodes::_i2b:
1649     case Bytecodes::_i2c:
1650     case Bytecodes::_i2s:
1651       tos_out = itos;
1652       break;
1653     case Bytecodes::_i2l:
1654     case Bytecodes::_f2l:
1655     case Bytecodes::_d2l:
1656       tos_out = ltos;
1657       break;
1658     case Bytecodes::_i2f:
1659     case Bytecodes::_l2f:
1660     case Bytecodes::_d2f:
1661       tos_out = ftos;
1662       break;
1663     case Bytecodes::_i2d:
1664     case Bytecodes::_l2d:
1665     case Bytecodes::_f2d:
1666       tos_out = dtos;
1667       break;
1668     default :
1669       ShouldNotReachHere();
1670   }
1671 
1672   transition(tos_in, tos_out);
1673 #endif // ASSERT
1674 
1675   // Conversion
1676   Label done;
1677   switch (bytecode()) {
1678     case Bytecodes::_i2l:
1679       __ z_lgfr(Z_tos, Z_tos);
1680       return;
1681     case Bytecodes::_i2f:
1682       __ z_cefbr(Z_ftos, Z_tos);
1683       return;
1684     case Bytecodes::_i2d:
1685       __ z_cdfbr(Z_ftos, Z_tos);
1686       return;
1687     case Bytecodes::_i2b:
1688       // Sign extend least significant byte.
1689       __ move_reg_if_needed(Z_tos, T_BYTE, Z_tos, T_INT);
1690       return;
1691     case Bytecodes::_i2c:
1692       // Zero extend 2 least significant bytes.
1693       __ move_reg_if_needed(Z_tos, T_CHAR, Z_tos, T_INT);
1694       return;
1695     case Bytecodes::_i2s:
1696       // Sign extend 2 least significant bytes.
1697       __ move_reg_if_needed(Z_tos, T_SHORT, Z_tos, T_INT);
1698       return;
1699     case Bytecodes::_l2i:
1700       // Sign-extend not needed here, upper 4 bytes of int value in register are ignored.
1701       return;
1702     case Bytecodes::_l2f:
1703       __ z_cegbr(Z_ftos, Z_tos);
1704       return;
1705     case Bytecodes::_l2d:
1706       __ z_cdgbr(Z_ftos, Z_tos);
1707       return;
1708     case Bytecodes::_f2i:
1709     case Bytecodes::_f2l:
1710       __ clear_reg(Z_tos, true, false);  // Don't set CC.
1711       __ z_cebr(Z_ftos, Z_ftos);
1712       __ z_brno(done); // NaN -> 0
1713       if (bytecode() == Bytecodes::_f2i)
1714         __ z_cfebr(Z_tos, Z_ftos, Assembler::to_zero);
1715       else // bytecode() == Bytecodes::_f2l
1716         __ z_cgebr(Z_tos, Z_ftos, Assembler::to_zero);
1717       break;
1718     case Bytecodes::_f2d:
1719       __ move_freg_if_needed(Z_ftos, T_DOUBLE, Z_ftos, T_FLOAT);
1720       return;
1721     case Bytecodes::_d2i:
1722     case Bytecodes::_d2l:
1723       __ clear_reg(Z_tos, true, false);  // Ddon't set CC.
1724       __ z_cdbr(Z_ftos, Z_ftos);
1725       __ z_brno(done); // NaN -> 0
1726       if (bytecode() == Bytecodes::_d2i)
1727         __ z_cfdbr(Z_tos, Z_ftos, Assembler::to_zero);
1728       else // Bytecodes::_d2l
1729         __ z_cgdbr(Z_tos, Z_ftos, Assembler::to_zero);
1730       break;
1731     case Bytecodes::_d2f:
1732       __ move_freg_if_needed(Z_ftos, T_FLOAT, Z_ftos, T_DOUBLE);
1733       return;
1734     default:
1735       ShouldNotReachHere();
1736   }
1737   __ bind(done);
1738 }
1739 
1740 void TemplateTable::lcmp() {
1741   transition(ltos, itos);
1742 
1743   Label   done;
1744   Register val1 = Z_R0_scratch;
1745   Register val2 = Z_R1_scratch;
1746 
1747   if (VM_Version::has_LoadStoreConditional()) {
1748     __ pop_l(val1);           // pop value 1.
1749     __ z_lghi(val2,  -1);     // lt value
1750     __ z_cgr(val1, Z_tos);    // Compare with Z_tos (value 2). Protect CC under all circumstances.
1751     __ z_lghi(val1,   1);     // gt value
1752     __ z_lghi(Z_tos,  0);     // eq value
1753 
1754     __ z_locgr(Z_tos, val1, Assembler::bcondHigh);
1755     __ z_locgr(Z_tos, val2, Assembler::bcondLow);
1756   } else {
1757     __ pop_l(val1);           // Pop value 1.
1758     __ z_cgr(val1, Z_tos);    // Compare with Z_tos (value 2). Protect CC under all circumstances.
1759 
1760     __ z_lghi(Z_tos,  0);     // eq value
1761     __ z_bre(done);
1762 
1763     __ z_lghi(Z_tos,  1);     // gt value
1764     __ z_brh(done);
1765 
1766     __ z_lghi(Z_tos, -1);     // lt value
1767   }
1768 
1769   __ bind(done);
1770 }
1771 
1772 
1773 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
1774   Label done;
1775 
1776   if (is_float) {
1777     __ pop_f(Z_FARG2);
1778     __ z_cebr(Z_FARG2, Z_ftos);
1779   } else {
1780     __ pop_d(Z_FARG2);
1781     __ z_cdbr(Z_FARG2, Z_ftos);
1782   }
1783 
1784   if (VM_Version::has_LoadStoreConditional()) {
1785     Register one       = Z_R0_scratch;
1786     Register minus_one = Z_R1_scratch;
1787     __ z_lghi(minus_one,  -1);
1788     __ z_lghi(one,  1);
1789     __ z_lghi(Z_tos, 0);
1790     __ z_locgr(Z_tos, one,       unordered_result == 1 ? Assembler::bcondHighOrNotOrdered : Assembler::bcondHigh);
1791     __ z_locgr(Z_tos, minus_one, unordered_result == 1 ? Assembler::bcondLow              : Assembler::bcondLowOrNotOrdered);
1792   } else {
1793     // Z_FARG2 == Z_ftos
1794     __ clear_reg(Z_tos, false, false);
1795     __ z_bre(done);
1796 
1797     // F_ARG2 > Z_Ftos, or unordered
1798     __ z_lhi(Z_tos, 1);
1799     __ z_brc(unordered_result == 1 ? Assembler::bcondHighOrNotOrdered : Assembler::bcondHigh, done);
1800 
1801     // F_ARG2 < Z_FTOS, or unordered
1802     __ z_lhi(Z_tos, -1);
1803 
1804     __ bind(done);
1805   }
1806 }
1807 
1808 void TemplateTable::branch(bool is_jsr, bool is_wide) {
1809   const Register   bumped_count = Z_tmp_1;
1810   const Register   method       = Z_tmp_2;
1811   const Register   m_counters   = Z_R1_scratch;
1812   const Register   mdo          = Z_tos;
1813 
1814   BLOCK_COMMENT("TemplateTable::branch {");
1815   __ get_method(method);
1816   __ profile_taken_branch(mdo, bumped_count);
1817 
1818   const ByteSize ctr_offset = InvocationCounter::counter_offset();
1819   const ByteSize be_offset  = MethodCounters::backedge_counter_offset()   + ctr_offset;
1820   const ByteSize inv_offset = MethodCounters::invocation_counter_offset() + ctr_offset;
1821 
1822   // Get (wide) offset to disp.
1823   const Register disp = Z_ARG5;
1824   if (is_wide) {
1825     __ get_4_byte_integer_at_bcp(disp, 1);
1826   } else {
1827     __ get_2_byte_integer_at_bcp(disp, 1, InterpreterMacroAssembler::Signed);
1828   }
1829 
1830   // Handle all the JSR stuff here, then exit.
1831   // It's much shorter and cleaner than intermingling with the
1832   // non-JSR normal-branch stuff occurring below.
1833   if (is_jsr) {
1834     // Compute return address as bci in Z_tos.
1835     __ z_lgr(Z_R1_scratch, Z_bcp);
1836     __ z_sg(Z_R1_scratch, Address(method, Method::const_offset()));
1837     __ add2reg(Z_tos, (is_wide ? 5 : 3) - in_bytes(ConstMethod::codes_offset()), Z_R1_scratch);
1838 
1839     // Bump bcp to target of JSR.
1840     __ z_agr(Z_bcp, disp);
1841     // Push return address for "ret" on stack.
1842     __ push_ptr(Z_tos);
1843     // And away we go!
1844     __ dispatch_next(vtos);
1845     return;
1846   }
1847 
1848   // Normal (non-jsr) branch handling.
1849 
1850   // Bump bytecode pointer by displacement (take the branch).
1851   __ z_agr(Z_bcp, disp);
1852 
1853   assert(UseLoopCounter || !UseOnStackReplacement,
1854          "on-stack-replacement requires loop counters");
1855 
1856   NearLabel backedge_counter_overflow;
1857   NearLabel profile_method;
1858   NearLabel dispatch;
1859   int       increment = InvocationCounter::count_increment;
1860 
1861   if (UseLoopCounter) {
1862     // Increment backedge counter for backward branches.
1863     // disp: target offset
1864     // Z_bcp: target bcp
1865     // Z_locals: locals pointer
1866     //
1867     // Count only if backward branch.
1868     __ compare32_and_branch(disp, (intptr_t)0, Assembler::bcondHigh, dispatch);
1869 
1870     if (TieredCompilation) {
1871       Label noCounters;
1872 
1873       if (ProfileInterpreter) {
1874         NearLabel   no_mdo;
1875 
1876         // Are we profiling?
1877         __ load_and_test_long(mdo, Address(method, Method::method_data_offset()));
1878         __ branch_optimized(Assembler::bcondZero, no_mdo);
1879 
1880         // Increment the MDO backedge counter.
1881         const Address mdo_backedge_counter(mdo, MethodData::backedge_counter_offset() + InvocationCounter::counter_offset());
1882 
1883         const Address mask(mdo, MethodData::backedge_mask_offset());
1884         __ increment_mask_and_jump(mdo_backedge_counter, increment, mask,
1885                                    Z_ARG2, false, Assembler::bcondZero,
1886                                    UseOnStackReplacement ? &backedge_counter_overflow : NULL);
1887         __ z_bru(dispatch);
1888         __ bind(no_mdo);
1889       }
1890 
1891       // Increment backedge counter in MethodCounters*.
1892       __ get_method_counters(method, m_counters, noCounters);
1893       const Address mask(m_counters, MethodCounters::backedge_mask_offset());
1894       __ increment_mask_and_jump(Address(m_counters, be_offset),
1895                                  increment, mask,
1896                                  Z_ARG2, false, Assembler::bcondZero,
1897                                  UseOnStackReplacement ? &backedge_counter_overflow : NULL);
1898       __ bind(noCounters);
1899     } else {
1900       Register counter = Z_tos;
1901       Label    noCounters;
1902       // Get address of MethodCounters object.
1903       __ get_method_counters(method, m_counters, noCounters);
1904       // Increment backedge counter.
1905       __ increment_backedge_counter(m_counters, counter);
1906 
1907       if (ProfileInterpreter) {
1908         // Test to see if we should create a method data obj.
1909         __ z_cl(counter, Address(m_counters, MethodCounters::interpreter_profile_limit_offset()));
1910         __ z_brl(dispatch);
1911 
1912         // If no method data exists, go to profile method.
1913         __ test_method_data_pointer(Z_ARG4/*result unused*/, profile_method);
1914 
1915         if (UseOnStackReplacement) {
1916           // Check for overflow against 'bumped_count' which is the MDO taken count.
1917           __ z_cl(bumped_count, Address(m_counters, MethodCounters::interpreter_backward_branch_limit_offset()));
1918           __ z_brl(dispatch);
1919 
1920           // When ProfileInterpreter is on, the backedge_count comes
1921           // from the methodDataOop, which value does not get reset on
1922           // the call to frequency_counter_overflow(). To avoid
1923           // excessive calls to the overflow routine while the method is
1924           // being compiled, add a second test to make sure the overflow
1925           // function is called only once every overflow_frequency.
1926           const int overflow_frequency = 1024;
1927           __ and_imm(bumped_count, overflow_frequency - 1);
1928           __ z_brz(backedge_counter_overflow);
1929 
1930         }
1931       } else {
1932         if (UseOnStackReplacement) {
1933           // Check for overflow against 'counter', which is the sum of the
1934           // counters.
1935           __ z_cl(counter, Address(m_counters, MethodCounters::interpreter_backward_branch_limit_offset()));
1936           __ z_brh(backedge_counter_overflow);
1937         }
1938       }
1939       __ bind(noCounters);
1940     }
1941 
1942     __ bind(dispatch);
1943   }
1944 
1945   // Pre-load the next target bytecode into rbx.
1946   __ z_llgc(Z_bytecode, Address(Z_bcp, (intptr_t) 0));
1947 
1948   // Continue with the bytecode @ target.
1949   // Z_tos: Return bci for jsr's, unused otherwise.
1950   // Z_bytecode: target bytecode
1951   // Z_bcp: target bcp
1952   __ dispatch_only(vtos);
1953 
1954   // Out-of-line code runtime calls.
1955   if (UseLoopCounter) {
1956     if (ProfileInterpreter) {
1957       // Out-of-line code to allocate method data oop.
1958       __ bind(profile_method);
1959 
1960       __ call_VM(noreg,
1961                  CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
1962       __ z_llgc(Z_bytecode, Address(Z_bcp, (intptr_t) 0));  // Restore target bytecode.
1963       __ set_method_data_pointer_for_bcp();
1964       __ z_bru(dispatch);
1965     }
1966 
1967     if (UseOnStackReplacement) {
1968 
1969       // invocation counter overflow
1970       __ bind(backedge_counter_overflow);
1971 
1972       __ z_lcgr(Z_ARG2, disp); // Z_ARG2 := -disp
1973       __ z_agr(Z_ARG2, Z_bcp); // Z_ARG2 := branch target bcp - disp == branch bcp
1974       __ call_VM(noreg,
1975                  CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow),
1976                  Z_ARG2);
1977 
1978       // Z_RET: osr nmethod (osr ok) or NULL (osr not possible).
1979       __ compare64_and_branch(Z_RET, (intptr_t) 0, Assembler::bcondEqual, dispatch);
1980 
1981       // Nmethod may have been invalidated (VM may block upon call_VM return).
1982       __ z_cliy(nmethod::state_offset(), Z_RET, nmethod::in_use);
1983       __ z_brne(dispatch);
1984 
1985       // Migrate the interpreter frame off of the stack.
1986 
1987       __ z_lgr(Z_tmp_1, Z_RET); // Save the nmethod.
1988 
1989       call_VM(noreg,
1990               CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin));
1991 
1992       // Z_RET is OSR buffer, move it to expected parameter location.
1993       __ lgr_if_needed(Z_ARG1, Z_RET);
1994 
1995       // Pop the interpreter frame ...
1996       __ pop_interpreter_frame(Z_R14, Z_ARG2/*tmp1*/, Z_ARG3/*tmp2*/);
1997 
1998       // ... and begin the OSR nmethod.
1999       __ z_lg(Z_R1_scratch, Address(Z_tmp_1, nmethod::osr_entry_point_offset()));
2000       __ z_br(Z_R1_scratch);
2001     }
2002   }
2003   BLOCK_COMMENT("} TemplateTable::branch");
2004 }
2005 
2006 void TemplateTable::if_0cmp(Condition cc) {
2007   transition(itos, vtos);
2008 
2009   // Assume branch is more often taken than not (loops use backward branches).
2010   NearLabel not_taken;
2011   __ compare32_and_branch(Z_tos, (intptr_t) 0, j_not(cc), not_taken);
2012   branch(false, false);
2013   __ bind(not_taken);
2014   __ profile_not_taken_branch(Z_tos);
2015 }
2016 
2017 void TemplateTable::if_icmp(Condition cc) {
2018   transition(itos, vtos);
2019 
2020   // Assume branch is more often taken than not (loops use backward branches).
2021   NearLabel not_taken;
2022   __ pop_i(Z_R0_scratch);
2023   __ compare32_and_branch(Z_R0_scratch, Z_tos, j_not(cc), not_taken);
2024   branch(false, false);
2025   __ bind(not_taken);
2026   __ profile_not_taken_branch(Z_tos);
2027 }
2028 
2029 void TemplateTable::if_nullcmp(Condition cc) {
2030   transition(atos, vtos);
2031 
2032   // Assume branch is more often taken than not (loops use backward branches) .
2033   NearLabel not_taken;
2034   __ compare64_and_branch(Z_tos, (intptr_t) 0, j_not(cc), not_taken);
2035   branch(false, false);
2036   __ bind(not_taken);
2037   __ profile_not_taken_branch(Z_tos);
2038 }
2039 
2040 void TemplateTable::if_acmp(Condition cc) {
2041   transition(atos, vtos);
2042   // Assume branch is more often taken than not (loops use backward branches).
2043   NearLabel not_taken;
2044   __ pop_ptr(Z_ARG2);
2045   __ verify_oop(Z_ARG2);
2046   __ verify_oop(Z_tos);
2047   __ compareU64_and_branch(Z_tos, Z_ARG2, j_not(cc), not_taken);
2048   branch(false, false);
2049   __ bind(not_taken);
2050   __ profile_not_taken_branch(Z_ARG3);
2051 }
2052 
2053 void TemplateTable::ret() {
2054   transition(vtos, vtos);
2055 
2056   locals_index(Z_tmp_1);
2057   // Get return bci, compute return bcp. Must load 64 bits.
2058   __ mem2reg_opt(Z_tmp_1, iaddress(_masm, Z_tmp_1));
2059   __ profile_ret(Z_tmp_1, Z_tmp_2);
2060   __ get_method(Z_tos);
2061   __ mem2reg_opt(Z_R1_scratch, Address(Z_tos, Method::const_offset()));
2062   __ load_address(Z_bcp, Address(Z_R1_scratch, Z_tmp_1, ConstMethod::codes_offset()));
2063   __ dispatch_next(vtos);
2064 }
2065 
2066 void TemplateTable::wide_ret() {
2067   transition(vtos, vtos);
2068 
2069   locals_index_wide(Z_tmp_1);
2070   // Get return bci, compute return bcp.
2071   __ mem2reg_opt(Z_tmp_1, aaddress(_masm, Z_tmp_1));
2072   __ profile_ret(Z_tmp_1, Z_tmp_2);
2073   __ get_method(Z_tos);
2074   __ mem2reg_opt(Z_R1_scratch, Address(Z_tos, Method::const_offset()));
2075   __ load_address(Z_bcp, Address(Z_R1_scratch, Z_tmp_1, ConstMethod::codes_offset()));
2076   __ dispatch_next(vtos);
2077 }
2078 
2079 void TemplateTable::tableswitch () {
2080   transition(itos, vtos);
2081 
2082   NearLabel default_case, continue_execution;
2083   Register  bcp = Z_ARG5;
2084   // Align bcp.
2085   __ load_address(bcp, at_bcp(BytesPerInt));
2086   __ z_nill(bcp, (-BytesPerInt) & 0xffff);
2087 
2088   // Load lo & hi.
2089   Register low  = Z_tmp_1;
2090   Register high = Z_tmp_2;
2091 
2092   // Load low into 64 bits, since used for address calculation.
2093   __ mem2reg_signed_opt(low, Address(bcp, BytesPerInt));
2094   __ mem2reg_opt(high, Address(bcp, 2 * BytesPerInt), false);
2095   // Sign extend "label" value for address calculation.
2096   __ z_lgfr(Z_tos, Z_tos);
2097 
2098   // Check against lo & hi.
2099   __ compare32_and_branch(Z_tos, low, Assembler::bcondLow, default_case);
2100   __ compare32_and_branch(Z_tos, high, Assembler::bcondHigh, default_case);
2101 
2102   // Lookup dispatch offset.
2103   __ z_sgr(Z_tos, low);
2104   Register jump_table_offset = Z_ARG3;
2105   // Index2offset; index in Z_tos is killed by profile_switch_case.
2106   __ z_sllg(jump_table_offset, Z_tos, LogBytesPerInt);
2107   __ profile_switch_case(Z_tos, Z_ARG4 /*tmp for mdp*/, low/*tmp*/, Z_bytecode/*tmp*/);
2108 
2109   Register index = Z_tmp_2;
2110 
2111   // Load index sign extended for addressing.
2112   __ mem2reg_signed_opt(index, Address(bcp, jump_table_offset, 3 * BytesPerInt));
2113 
2114   // Continue execution.
2115   __ bind(continue_execution);
2116 
2117   // Load next bytecode.
2118   __ z_llgc(Z_bytecode, Address(Z_bcp, index));
2119   __ z_agr(Z_bcp, index); // Advance bcp.
2120   __ dispatch_only(vtos);
2121 
2122   // Handle default.
2123   __ bind(default_case);
2124 
2125   __ profile_switch_default(Z_tos);
2126   __ mem2reg_signed_opt(index, Address(bcp));
2127   __ z_bru(continue_execution);
2128 }
2129 
2130 void TemplateTable::lookupswitch () {
2131   transition(itos, itos);
2132   __ stop("lookupswitch bytecode should have been rewritten");
2133 }
2134 
2135 void TemplateTable::fast_linearswitch () {
2136   transition(itos, vtos);
2137 
2138   Label    loop_entry, loop, found, continue_execution;
2139   Register bcp = Z_ARG5;
2140 
2141   // Align bcp.
2142   __ load_address(bcp, at_bcp(BytesPerInt));
2143   __ z_nill(bcp, (-BytesPerInt) & 0xffff);
2144 
2145   // Start search with last case.
2146   Register current_case_offset = Z_tmp_1;
2147 
2148   __ mem2reg_signed_opt(current_case_offset, Address(bcp, BytesPerInt));
2149   __ z_sllg(current_case_offset, current_case_offset, LogBytesPerWord);   // index2bytes
2150   __ z_bru(loop_entry);
2151 
2152   // table search
2153   __ bind(loop);
2154 
2155   __ z_c(Z_tos, Address(bcp, current_case_offset, 2 * BytesPerInt));
2156   __ z_bre(found);
2157 
2158   __ bind(loop_entry);
2159   __ z_aghi(current_case_offset, -2 * BytesPerInt);  // Decrement.
2160   __ z_brnl(loop);
2161 
2162   // default case
2163   Register   offset = Z_tmp_2;
2164 
2165   __ profile_switch_default(Z_tos);
2166   // Load offset sign extended for addressing.
2167   __ mem2reg_signed_opt(offset, Address(bcp));
2168   __ z_bru(continue_execution);
2169 
2170   // Entry found -> get offset.
2171   __ bind(found);
2172   __ mem2reg_signed_opt(offset, Address(bcp, current_case_offset, 3 * BytesPerInt));
2173   // Profile that this case was taken.
2174   Register current_case_idx = Z_ARG4;
2175   __ z_srlg(current_case_idx, current_case_offset, LogBytesPerWord); // bytes2index
2176   __ profile_switch_case(current_case_idx, Z_tos, bcp, Z_bytecode);
2177 
2178   // Continue execution.
2179   __ bind(continue_execution);
2180 
2181   // Load next bytecode.
2182   __ z_llgc(Z_bytecode, Address(Z_bcp, offset, 0));
2183   __ z_agr(Z_bcp, offset); // Advance bcp.
2184   __ dispatch_only(vtos);
2185 }
2186 
2187 
2188 void TemplateTable::fast_binaryswitch() {
2189 
2190   transition(itos, vtos);
2191 
2192   // Implementation using the following core algorithm:
2193   //
2194   // int binary_search(int key, LookupswitchPair* array, int n) {
2195   //   // Binary search according to "Methodik des Programmierens" by
2196   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
2197   //   int i = 0;
2198   //   int j = n;
2199   //   while (i+1 < j) {
2200   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
2201   //     // with      Q: for all i: 0 <= i < n: key < a[i]
2202   //     // where a stands for the array and assuming that the (inexisting)
2203   //     // element a[n] is infinitely big.
2204   //     int h = (i + j) >> 1;
2205   //     // i < h < j
2206   //     if (key < array[h].fast_match()) {
2207   //       j = h;
2208   //     } else {
2209   //       i = h;
2210   //     }
2211   //   }
2212   //   // R: a[i] <= key < a[i+1] or Q
2213   //   // (i.e., if key is within array, i is the correct index)
2214   //   return i;
2215   // }
2216 
2217   // Register allocation
2218   // Note: Since we use the indices in address operands, we do all the
2219   // computation in 64 bits.
2220   const Register key   = Z_tos; // Already set (tosca).
2221   const Register array = Z_tmp_1;
2222   const Register i     = Z_tmp_2;
2223   const Register j     = Z_ARG5;
2224   const Register h     = Z_ARG4;
2225   const Register temp  = Z_R1_scratch;
2226 
2227   // Find array start.
2228   __ load_address(array, at_bcp(3 * BytesPerInt));
2229   __ z_nill(array, (-BytesPerInt) & 0xffff);   // align
2230 
2231   // Initialize i & j.
2232   __ clear_reg(i, true, false);  // i = 0;  Don't set CC.
2233   __ mem2reg_signed_opt(j, Address(array, -BytesPerInt)); // j = length(array);
2234 
2235   // And start.
2236   Label entry;
2237   __ z_bru(entry);
2238 
2239   // binary search loop
2240   {
2241     NearLabel   loop;
2242 
2243     __ bind(loop);
2244 
2245     // int h = (i + j) >> 1;
2246     __ add2reg_with_index(h, 0, i, j); // h = i + j;
2247     __ z_srag(h, h, 1);                // h = (i + j) >> 1;
2248 
2249     // if (key < array[h].fast_match()) {
2250     //   j = h;
2251     // } else {
2252     //   i = h;
2253     // }
2254 
2255     // Convert array[h].match to native byte-ordering before compare.
2256     __ z_sllg(temp, h, LogBytesPerWord);   // index2bytes
2257     __ mem2reg_opt(temp, Address(array, temp), false);
2258 
2259     NearLabel  else_;
2260 
2261     __ compare32_and_branch(key, temp, Assembler::bcondNotLow, else_);
2262     // j = h if (key <  array[h].fast_match())
2263     __ z_lgr(j, h);
2264     __ z_bru(entry); // continue
2265 
2266     __ bind(else_);
2267 
2268     // i = h if (key >= array[h].fast_match())
2269     __ z_lgr(i, h);  // and fallthrough
2270 
2271     // while (i+1 < j)
2272     __ bind(entry);
2273 
2274     // if (i + 1 < j) continue search
2275     __ add2reg(h, 1, i);
2276     __ compare64_and_branch(h, j, Assembler::bcondLow, loop);
2277   }
2278 
2279   // End of binary search, result index is i (must check again!).
2280   NearLabel default_case;
2281 
2282   // h is no longer needed, so use it to hold the byte offset.
2283   __ z_sllg(h, i, LogBytesPerWord);   // index2bytes
2284   __ mem2reg_opt(temp, Address(array, h), false);
2285   __ compare32_and_branch(key, temp, Assembler::bcondNotEqual, default_case);
2286 
2287   // entry found -> j = offset
2288   __ mem2reg_signed_opt(j, Address(array, h, BytesPerInt));
2289   __ profile_switch_case(i, key, array, Z_bytecode);
2290   // Load next bytecode.
2291   __ z_llgc(Z_bytecode, Address(Z_bcp, j));
2292   __ z_agr(Z_bcp, j);       // Advance bcp.
2293   __ dispatch_only(vtos);
2294 
2295   // default case -> j = default offset
2296   __ bind(default_case);
2297 
2298   __ profile_switch_default(i);
2299   __ mem2reg_signed_opt(j, Address(array, -2 * BytesPerInt));
2300   // Load next bytecode.
2301   __ z_llgc(Z_bytecode, Address(Z_bcp, j));
2302   __ z_agr(Z_bcp, j);       // Advance bcp.
2303   __ dispatch_only(vtos);
2304 }
2305 
2306 void TemplateTable::_return(TosState state) {
2307   transition(state, state);
2308   assert(_desc->calls_vm(),
2309          "inconsistent calls_vm information"); // call in remove_activation
2310 
2311   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
2312     Register Rthis  = Z_ARG2;
2313     Register Rklass = Z_ARG5;
2314     Label skip_register_finalizer;
2315     assert(state == vtos, "only valid state");
2316     __ z_lg(Rthis, aaddress(0));
2317     __ load_klass(Rklass, Rthis);
2318     __ testbit(Address(Rklass, Klass::access_flags_offset()), exact_log2(JVM_ACC_HAS_FINALIZER));
2319     __ z_bfalse(skip_register_finalizer);
2320     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), Rthis);
2321     __ bind(skip_register_finalizer);
2322   }
2323 
2324   __ remove_activation(state, Z_R14);
2325   __ z_br(Z_R14);
2326 }
2327 
2328 // ----------------------------------------------------------------------------
2329 // NOTE: Cpe_offset is already computed as byte offset, so we must not
2330 // shift it afterwards!
2331 void TemplateTable::resolve_cache_and_index(int byte_no,
2332                                             Register Rcache,
2333                                             Register cpe_offset,
2334                                             size_t index_size) {
2335   BLOCK_COMMENT("resolve_cache_and_index {");
2336   NearLabel      resolved;
2337   const Register bytecode_in_cpcache = Z_R1_scratch;
2338   const int      total_f1_offset = in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::f1_offset());
2339   assert_different_registers(Rcache, cpe_offset, bytecode_in_cpcache);
2340 
2341   Bytecodes::Code code = bytecode();
2342   switch (code) {
2343     case Bytecodes::_nofast_getfield: code = Bytecodes::_getfield; break;
2344     case Bytecodes::_nofast_putfield: code = Bytecodes::_putfield; break;
2345   }
2346 
2347   {
2348     assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
2349     __ get_cache_and_index_and_bytecode_at_bcp(Rcache, cpe_offset, bytecode_in_cpcache, byte_no, 1, index_size);
2350     // Have we resolved this bytecode?
2351     __ compare32_and_branch(bytecode_in_cpcache, (int)code, Assembler::bcondEqual, resolved);
2352   }
2353 
2354   // Resolve first time through.
2355   address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache);
2356   __ load_const_optimized(Z_ARG2, (int) code);
2357   __ call_VM(noreg, entry, Z_ARG2);
2358 
2359   // Update registers with resolved info.
2360   __ get_cache_and_index_at_bcp(Rcache, cpe_offset, 1, index_size);
2361   __ bind(resolved);
2362   BLOCK_COMMENT("} resolve_cache_and_index");
2363 }
2364 
2365 // The Rcache and index registers must be set before call.
2366 // Index is already a byte offset, don't shift!
2367 void TemplateTable::load_field_cp_cache_entry(Register obj,
2368                                               Register cache,
2369                                               Register index,
2370                                               Register off,
2371                                               Register flags,
2372                                               bool is_static = false) {
2373   assert_different_registers(cache, index, flags, off);
2374   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2375 
2376   // Field offset
2377   __ mem2reg_opt(off, Address(cache, index, cp_base_offset + ConstantPoolCacheEntry::f2_offset()));
2378   // Flags. Must load 64 bits.
2379   __ mem2reg_opt(flags, Address(cache, index, cp_base_offset + ConstantPoolCacheEntry::flags_offset()));
2380 
2381   // klass overwrite register
2382   if (is_static) {
2383     __ mem2reg_opt(obj, Address(cache, index, cp_base_offset + ConstantPoolCacheEntry::f1_offset()));
2384     __ mem2reg_opt(obj, Address(obj, Klass::java_mirror_offset()));
2385   }
2386 }
2387 
2388 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
2389                                                Register method,
2390                                                Register itable_index,
2391                                                Register flags,
2392                                                bool is_invokevirtual,
2393                                                bool is_invokevfinal, // unused
2394                                                bool is_invokedynamic) {
2395   BLOCK_COMMENT("load_invoke_cp_cache_entry {");
2396   // Setup registers.
2397   const Register cache     = Z_ARG1;
2398   const Register cpe_offset= flags;
2399   const ByteSize base_off  = ConstantPoolCache::base_offset();
2400   const ByteSize f1_off    = ConstantPoolCacheEntry::f1_offset();
2401   const ByteSize f2_off    = ConstantPoolCacheEntry::f2_offset();
2402   const ByteSize flags_off = ConstantPoolCacheEntry::flags_offset();
2403   const int method_offset  = in_bytes(base_off + ((byte_no == f2_byte) ? f2_off : f1_off));
2404   const int flags_offset   = in_bytes(base_off + flags_off);
2405   // Access constant pool cache fields.
2406   const int index_offset   = in_bytes(base_off + f2_off);
2407 
2408   assert_different_registers(method, itable_index, flags, cache);
2409   assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant");
2410 
2411   if (is_invokevfinal) {
2412     // Already resolved.
2413      assert(itable_index == noreg, "register not used");
2414      __ get_cache_and_index_at_bcp(cache, cpe_offset, 1);
2415   } else {
2416     // Need to resolve.
2417     resolve_cache_and_index(byte_no, cache, cpe_offset, is_invokedynamic ? sizeof(u4) : sizeof(u2));
2418   }
2419   __ z_lg(method, Address(cache, cpe_offset, method_offset));
2420 
2421   if (itable_index != noreg) {
2422     __ z_lg(itable_index, Address(cache, cpe_offset, index_offset));
2423   }
2424 
2425   // Only load the lower 4 bytes and fill high bytes of flags with zeros.
2426   // Callers depend on this zero-extension!!!
2427   // Attention: overwrites cpe_offset == flags
2428   __ z_llgf(flags, Address(cache, cpe_offset, flags_offset + (BytesPerLong-BytesPerInt)));
2429 
2430   BLOCK_COMMENT("} load_invoke_cp_cache_entry");
2431 }
2432 
2433 // The registers cache and index expected to be set before call.
2434 // Correct values of the cache and index registers are preserved.
2435 void TemplateTable::jvmti_post_field_access(Register cache, Register index,
2436                                             bool is_static, bool has_tos) {
2437 
2438   // Do the JVMTI work here to avoid disturbing the register state below.
2439   // We use c_rarg registers here because we want to use the register used in
2440   // the call to the VM
2441   if (!JvmtiExport::can_post_field_access()) {
2442     return;
2443   }
2444 
2445   // Check to see if a field access watch has been set before we
2446   // take the time to call into the VM.
2447   Label exit;
2448   assert_different_registers(cache, index, Z_tos);
2449   __ load_absolute_address(Z_tos, (address)JvmtiExport::get_field_access_count_addr());
2450   __ load_and_test_int(Z_R0, Address(Z_tos));
2451   __ z_brz(exit);
2452 
2453   // Index is returned as byte offset, do not shift!
2454   __ get_cache_and_index_at_bcp(Z_ARG3, Z_R1_scratch, 1);
2455 
2456   // cache entry pointer
2457   __ add2reg_with_index(Z_ARG3,
2458                         in_bytes(ConstantPoolCache::base_offset()),
2459                         Z_ARG3, Z_R1_scratch);
2460 
2461   if (is_static) {
2462     __ clear_reg(Z_ARG2, true, false); // NULL object reference. Don't set CC.
2463   } else {
2464     __ mem2reg_opt(Z_ARG2, at_tos());  // Get object pointer without popping it.
2465     __ verify_oop(Z_ARG2);
2466   }
2467   // Z_ARG2: object pointer or NULL
2468   // Z_ARG3: cache entry pointer
2469   __ call_VM(noreg,
2470              CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access),
2471              Z_ARG2, Z_ARG3);
2472   __ get_cache_and_index_at_bcp(cache, index, 1);
2473 
2474   __ bind(exit);
2475 }
2476 
2477 void TemplateTable::pop_and_check_object(Register r) {
2478   __ pop_ptr(r);
2479   __ null_check(r);  // for field access must check obj.
2480   __ verify_oop(r);
2481 }
2482 
2483 void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteControl rc) {
2484   transition(vtos, vtos);
2485 
2486   const Register cache = Z_tmp_1;
2487   const Register index = Z_tmp_2;
2488   const Register obj   = Z_tmp_1;
2489   const Register off   = Z_ARG2;
2490   const Register flags = Z_ARG1;
2491   const Register bc    = Z_tmp_1;  // Uses same reg as obj, so don't mix them.
2492 
2493   resolve_cache_and_index(byte_no, cache, index, sizeof(u2));
2494   jvmti_post_field_access(cache, index, is_static, false);
2495   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
2496 
2497   if (!is_static) {
2498     // Obj is on the stack.
2499     pop_and_check_object(obj);
2500   }
2501 
2502   // Displacement is 0, so any store instruction will be fine on any CPU.
2503   const Address field(obj, off);
2504 
2505   Label    is_Byte, is_Bool, is_Int, is_Short, is_Char,
2506            is_Long, is_Float, is_Object, is_Double;
2507   Label    is_badState8, is_badState9, is_badStateA, is_badStateB,
2508            is_badStateC, is_badStateD, is_badStateE, is_badStateF,
2509            is_badState;
2510   Label    branchTable, atosHandler,  Done;
2511   Register br_tab       = Z_R1_scratch;
2512   bool     do_rewrite   = !is_static && (rc == may_rewrite);
2513   bool     dont_rewrite = (is_static || (rc == may_not_rewrite));
2514 
2515   assert(do_rewrite == !dont_rewrite, "Oops, code is not fit for that");
2516   assert(btos == 0, "change code, btos != 0");
2517 
2518   // Calculate branch table size. Generated code size depends on ASSERT and on bytecode rewriting.
2519 #ifdef ASSERT
2520   const unsigned int bsize = dont_rewrite ? BTB_MINSIZE*1 : BTB_MINSIZE*4;
2521 #else
2522   const unsigned int bsize = dont_rewrite ? BTB_MINSIZE*1 : BTB_MINSIZE*4;
2523 #endif
2524 
2525   // Calculate address of branch table entry and branch there.
2526   {
2527     const int bit_shift = exact_log2(bsize); // Size of each branch table entry.
2528     const int r_bitpos  = 63 - bit_shift;
2529     const int l_bitpos  = r_bitpos - ConstantPoolCacheEntry::tos_state_bits + 1;
2530     const int n_rotate  = (bit_shift-ConstantPoolCacheEntry::tos_state_shift);
2531     __ z_larl(br_tab, branchTable);
2532     __ rotate_then_insert(flags, flags, l_bitpos, r_bitpos, n_rotate, true);
2533   }
2534   __ z_bc(Assembler::bcondAlways, 0, flags, br_tab);
2535 
2536   __ align_address(bsize);
2537   BIND(branchTable);
2538 
2539   // btos
2540   BTB_BEGIN(is_Byte, bsize, "getfield_or_static:is_Byte");
2541   __ z_lb(Z_tos, field);
2542   __ push(btos);
2543   // Rewrite bytecode to be faster.
2544   if (do_rewrite) {
2545     patch_bytecode(Bytecodes::_fast_bgetfield, bc, Z_ARG5);
2546   }
2547   __ z_bru(Done);
2548   BTB_END(is_Byte, bsize, "getfield_or_static:is_Byte");
2549 
2550   // ztos
2551   BTB_BEGIN(is_Bool, bsize, "getfield_or_static:is_Bool");
2552   __ z_lb(Z_tos, field);
2553   __ push(ztos);
2554   // Rewrite bytecode to be faster.
2555   if (do_rewrite) {
2556     // Use btos rewriting, no truncating to t/f bit is needed for getfield.
2557     patch_bytecode(Bytecodes::_fast_bgetfield, bc, Z_ARG5);
2558   }
2559   __ z_bru(Done);
2560   BTB_END(is_Bool, bsize, "getfield_or_static:is_Bool");
2561 
2562   // ctos
2563   BTB_BEGIN(is_Char, bsize, "getfield_or_static:is_Char");
2564   // Load into 64 bits, works on all CPUs.
2565   __ z_llgh(Z_tos, field);
2566   __ push(ctos);
2567   // Rewrite bytecode to be faster.
2568   if (do_rewrite) {
2569     patch_bytecode(Bytecodes::_fast_cgetfield, bc, Z_ARG5);
2570   }
2571   __ z_bru(Done);
2572   BTB_END(is_Char, bsize, "getfield_or_static:is_Char");
2573 
2574   // stos
2575   BTB_BEGIN(is_Short, bsize, "getfield_or_static:is_Short");
2576   __ z_lh(Z_tos, field);
2577   __ push(stos);
2578   // Rewrite bytecode to be faster.
2579   if (do_rewrite) {
2580     patch_bytecode(Bytecodes::_fast_sgetfield, bc, Z_ARG5);
2581   }
2582   __ z_bru(Done);
2583   BTB_END(is_Short, bsize, "getfield_or_static:is_Short");
2584 
2585   // itos
2586   BTB_BEGIN(is_Int, bsize, "getfield_or_static:is_Int");
2587   __ mem2reg_opt(Z_tos, field, false);
2588   __ push(itos);
2589   // Rewrite bytecode to be faster.
2590   if (do_rewrite) {
2591     patch_bytecode(Bytecodes::_fast_igetfield, bc, Z_ARG5);
2592   }
2593   __ z_bru(Done);
2594   BTB_END(is_Int, bsize, "getfield_or_static:is_Int");
2595 
2596   // ltos
2597   BTB_BEGIN(is_Long, bsize, "getfield_or_static:is_Long");
2598   __ mem2reg_opt(Z_tos, field);
2599   __ push(ltos);
2600   // Rewrite bytecode to be faster.
2601   if (do_rewrite) {
2602     patch_bytecode(Bytecodes::_fast_lgetfield, bc, Z_ARG5);
2603   }
2604   __ z_bru(Done);
2605   BTB_END(is_Long, bsize, "getfield_or_static:is_Long");
2606 
2607   // ftos
2608   BTB_BEGIN(is_Float, bsize, "getfield_or_static:is_Float");
2609   __ mem2freg_opt(Z_ftos, field, false);
2610   __ push(ftos);
2611   // Rewrite bytecode to be faster.
2612   if (do_rewrite) {
2613     patch_bytecode(Bytecodes::_fast_fgetfield, bc, Z_ARG5);
2614   }
2615   __ z_bru(Done);
2616   BTB_END(is_Float, bsize, "getfield_or_static:is_Float");
2617 
2618   // dtos
2619   BTB_BEGIN(is_Double, bsize, "getfield_or_static:is_Double");
2620   __ mem2freg_opt(Z_ftos, field);
2621   __ push(dtos);
2622   // Rewrite bytecode to be faster.
2623   if (do_rewrite) {
2624     patch_bytecode(Bytecodes::_fast_dgetfield, bc, Z_ARG5);
2625   }
2626   __ z_bru(Done);
2627   BTB_END(is_Double, bsize, "getfield_or_static:is_Double");
2628 
2629   // atos
2630   BTB_BEGIN(is_Object, bsize, "getfield_or_static:is_Object");
2631   __ z_bru(atosHandler);
2632   BTB_END(is_Object, bsize, "getfield_or_static:is_Object");
2633 
2634   // Bad state detection comes at no extra runtime cost.
2635   BTB_BEGIN(is_badState8, bsize, "getfield_or_static:is_badState8");
2636   __ z_illtrap();
2637   __ z_bru(is_badState);
2638   BTB_END( is_badState8, bsize, "getfield_or_static:is_badState8");
2639   BTB_BEGIN(is_badState9, bsize, "getfield_or_static:is_badState9");
2640   __ z_illtrap();
2641   __ z_bru(is_badState);
2642   BTB_END( is_badState9, bsize, "getfield_or_static:is_badState9");
2643   BTB_BEGIN(is_badStateA, bsize, "getfield_or_static:is_badStateA");
2644   __ z_illtrap();
2645   __ z_bru(is_badState);
2646   BTB_END( is_badStateA, bsize, "getfield_or_static:is_badStateA");
2647   BTB_BEGIN(is_badStateB, bsize, "getfield_or_static:is_badStateB");
2648   __ z_illtrap();
2649   __ z_bru(is_badState);
2650   BTB_END( is_badStateB, bsize, "getfield_or_static:is_badStateB");
2651   BTB_BEGIN(is_badStateC, bsize, "getfield_or_static:is_badStateC");
2652   __ z_illtrap();
2653   __ z_bru(is_badState);
2654   BTB_END( is_badStateC, bsize, "getfield_or_static:is_badStateC");
2655   BTB_BEGIN(is_badStateD, bsize, "getfield_or_static:is_badStateD");
2656   __ z_illtrap();
2657   __ z_bru(is_badState);
2658   BTB_END( is_badStateD, bsize, "getfield_or_static:is_badStateD");
2659   BTB_BEGIN(is_badStateE, bsize, "getfield_or_static:is_badStateE");
2660   __ z_illtrap();
2661   __ z_bru(is_badState);
2662   BTB_END( is_badStateE, bsize, "getfield_or_static:is_badStateE");
2663   BTB_BEGIN(is_badStateF, bsize, "getfield_or_static:is_badStateF");
2664   __ z_illtrap();
2665   __ z_bru(is_badState);
2666   BTB_END( is_badStateF, bsize, "getfield_or_static:is_badStateF");
2667 
2668   __ align_address(64);
2669   BIND(is_badState);  // Do this outside branch table. Needs a lot of space.
2670   {
2671     unsigned int b_off = __ offset();
2672     if (is_static) {
2673       __ stop_static("Bad state in getstatic");
2674     } else {
2675       __ stop_static("Bad state in getfield");
2676     }
2677     unsigned int e_off = __ offset();
2678   }
2679 
2680   __ align_address(64);
2681   BIND(atosHandler);  // Oops are really complicated to handle.
2682                       // There is a lot of code generated.
2683                       // Therefore: generate the handler outside of branch table.
2684                       // There is no performance penalty. The additional branch
2685                       // to here is compensated for by the fallthru to "Done".
2686   {
2687     unsigned int b_off = __ offset();
2688     __ load_heap_oop(Z_tos, field);
2689     __ verify_oop(Z_tos);
2690     __ push(atos);
2691     if (do_rewrite) {
2692       patch_bytecode(Bytecodes::_fast_agetfield, bc, Z_ARG5);
2693     }
2694     unsigned int e_off = __ offset();
2695   }
2696 
2697   BIND(Done);
2698 }
2699 
2700 void TemplateTable::getfield(int byte_no) {
2701   BLOCK_COMMENT("getfield  {");
2702   getfield_or_static(byte_no, false);
2703   BLOCK_COMMENT("} getfield");
2704 }
2705 
2706 void TemplateTable::nofast_getfield(int byte_no) {
2707   getfield_or_static(byte_no, false, may_not_rewrite);
2708 }
2709 
2710 void TemplateTable::getstatic(int byte_no) {
2711   BLOCK_COMMENT("getstatic {");
2712   getfield_or_static(byte_no, true);
2713   BLOCK_COMMENT("} getstatic");
2714 }
2715 
2716 // The registers cache and index expected to be set before call.  The
2717 // function may destroy various registers, just not the cache and
2718 // index registers.
2719 void TemplateTable::jvmti_post_field_mod(Register cache,
2720                                          Register index, bool is_static) {
2721   transition(vtos, vtos);
2722 
2723   if (!JvmtiExport::can_post_field_modification()) {
2724     return;
2725   }
2726 
2727   BLOCK_COMMENT("jvmti_post_field_mod {");
2728 
2729   // Check to see if a field modification watch has been set before
2730   // we take the time to call into the VM.
2731   Label    L1;
2732   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2733   assert_different_registers(cache, index, Z_tos);
2734 
2735   __ load_absolute_address(Z_tos, (address)JvmtiExport::get_field_modification_count_addr());
2736   __ load_and_test_int(Z_R0, Address(Z_tos));
2737   __ z_brz(L1);
2738 
2739   // Index is returned as byte offset, do not shift!
2740   __ get_cache_and_index_at_bcp(Z_ARG3, Z_R1_scratch, 1);
2741 
2742   if (is_static) {
2743     // Life is simple. Null out the object pointer.
2744     __ clear_reg(Z_ARG2, true, false);   // Don't set CC.
2745   } else {
2746     // Life is harder. The stack holds the value on top, followed by
2747     // the object. We don't know the size of the value, though. It
2748     // could be one or two words depending on its type. As a result,
2749     // we must find the type to determine where the object is.
2750     __ mem2reg_opt(Z_ARG4,
2751                    Address(Z_ARG3, Z_R1_scratch,
2752                            in_bytes(cp_base_offset + ConstantPoolCacheEntry::flags_offset()) +
2753                            (BytesPerLong - BytesPerInt)),
2754                    false);
2755     __ z_srl(Z_ARG4, ConstantPoolCacheEntry::tos_state_shift);
2756     // Make sure we don't need to mask Z_ARG4 for tos_state after the above shift.
2757     ConstantPoolCacheEntry::verify_tos_state_shift();
2758     __ mem2reg_opt(Z_ARG2, at_tos(1));  // Initially assume a one word jvalue.
2759 
2760     NearLabel   load_dtos, cont;
2761 
2762     __ compareU32_and_branch(Z_ARG4, (intptr_t) ltos,
2763                               Assembler::bcondNotEqual, load_dtos);
2764     __ mem2reg_opt(Z_ARG2, at_tos(2)); // ltos (two word jvalue)
2765     __ z_bru(cont);
2766 
2767     __ bind(load_dtos);
2768     __ compareU32_and_branch(Z_ARG4, (intptr_t)dtos, Assembler::bcondNotEqual, cont);
2769     __ mem2reg_opt(Z_ARG2, at_tos(2)); // dtos (two word jvalue)
2770 
2771     __ bind(cont);
2772   }
2773   // cache entry pointer
2774 
2775   __ add2reg_with_index(Z_ARG3, in_bytes(cp_base_offset), Z_ARG3, Z_R1_scratch);
2776 
2777   // object(tos)
2778   __ load_address(Z_ARG4, Address(Z_esp, Interpreter::stackElementSize));
2779   // Z_ARG2: object pointer set up above (NULL if static)
2780   // Z_ARG3: cache entry pointer
2781   // Z_ARG4: jvalue object on the stack
2782   __ call_VM(noreg,
2783              CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification),
2784              Z_ARG2, Z_ARG3, Z_ARG4);
2785   __ get_cache_and_index_at_bcp(cache, index, 1);
2786 
2787   __ bind(L1);
2788   BLOCK_COMMENT("} jvmti_post_field_mod");
2789 }
2790 
2791 
2792 void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteControl rc) {
2793   transition(vtos, vtos);
2794 
2795   const Register cache         = Z_tmp_1;
2796   const Register index         = Z_ARG5;
2797   const Register obj           = Z_tmp_1;
2798   const Register off           = Z_tmp_2;
2799   const Register flags         = Z_R1_scratch;
2800   const Register br_tab        = Z_ARG5;
2801   const Register bc            = Z_tmp_1;
2802   const Register oopStore_tmp1 = Z_R1_scratch;
2803   const Register oopStore_tmp2 = Z_ARG5;
2804   const Register oopStore_tmp3 = Z_R0_scratch;
2805 
2806   resolve_cache_and_index(byte_no, cache, index, sizeof(u2));
2807   jvmti_post_field_mod(cache, index, is_static);
2808   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
2809   // begin of life for:
2810   //   obj, off   long life range
2811   //   flags      short life range, up to branch into branch table
2812   // end of life for:
2813   //   cache, index
2814 
2815   const Address field(obj, off);
2816   Label is_Byte, is_Bool, is_Int, is_Short, is_Char,
2817         is_Long, is_Float, is_Object, is_Double;
2818   Label is_badState8, is_badState9, is_badStateA, is_badStateB,
2819         is_badStateC, is_badStateD, is_badStateE, is_badStateF,
2820         is_badState;
2821   Label branchTable, atosHandler, Done;
2822   bool  do_rewrite   = !is_static && (rc == may_rewrite);
2823   bool  dont_rewrite = (is_static || (rc == may_not_rewrite));
2824 
2825   assert(do_rewrite == !dont_rewrite, "Oops, code is not fit for that");
2826 
2827   assert(btos == 0, "change code, btos != 0");
2828 
2829 #ifdef ASSERT
2830   const unsigned int bsize = is_static ? BTB_MINSIZE*1 : BTB_MINSIZE*4;
2831 #else
2832   const unsigned int bsize = is_static ? BTB_MINSIZE*1 : BTB_MINSIZE*8;
2833 #endif
2834 
2835   // Calculate address of branch table entry and branch there.
2836   {
2837     const int bit_shift = exact_log2(bsize); // Size of each branch table entry.
2838     const int r_bitpos  = 63 - bit_shift;
2839     const int l_bitpos  = r_bitpos - ConstantPoolCacheEntry::tos_state_bits + 1;
2840     const int n_rotate  = (bit_shift-ConstantPoolCacheEntry::tos_state_shift);
2841     __ z_larl(br_tab, branchTable);
2842     __ rotate_then_insert(flags, flags, l_bitpos, r_bitpos, n_rotate, true);
2843     __ z_bc(Assembler::bcondAlways, 0, flags, br_tab);
2844   }
2845   // end of life for:
2846   //   flags, br_tab
2847 
2848   __ align_address(bsize);
2849   BIND(branchTable);
2850 
2851   // btos
2852   BTB_BEGIN(is_Byte, bsize, "putfield_or_static:is_Byte");
2853   __ pop(btos);
2854   if (!is_static) {
2855     pop_and_check_object(obj);
2856   }
2857   __ z_stc(Z_tos, field);
2858   if (do_rewrite) {
2859     patch_bytecode(Bytecodes::_fast_bputfield, bc, Z_ARG5, true, byte_no);
2860   }
2861   __ z_bru(Done);
2862   BTB_END( is_Byte, bsize, "putfield_or_static:is_Byte");
2863 
2864   // ztos
2865   BTB_BEGIN(is_Bool, bsize, "putfield_or_static:is_Bool");
2866   __ pop(ztos);
2867   if (do_rewrite) {
2868     pop_and_check_object(obj);
2869   }
2870   __ z_nilf(Z_tos, 0x1);
2871   __ z_stc(Z_tos, field);
2872   if (!is_static) {
2873     patch_bytecode(Bytecodes::_fast_zputfield, bc, Z_ARG5, true, byte_no);
2874   }
2875   __ z_bru(Done);
2876   BTB_END(is_Bool, bsize, "putfield_or_static:is_Bool");
2877 
2878   // ctos
2879   BTB_BEGIN(is_Char, bsize, "putfield_or_static:is_Char");
2880   __ pop(ctos);
2881   if (!is_static) {
2882     pop_and_check_object(obj);
2883   }
2884   __ z_sth(Z_tos, field);
2885   if (do_rewrite) {
2886     patch_bytecode(Bytecodes::_fast_cputfield, bc, Z_ARG5, true, byte_no);
2887   }
2888   __ z_bru(Done);
2889   BTB_END( is_Char, bsize, "putfield_or_static:is_Char");
2890 
2891   // stos
2892   BTB_BEGIN(is_Short, bsize, "putfield_or_static:is_Short");
2893   __ pop(stos);
2894   if (!is_static) {
2895     pop_and_check_object(obj);
2896   }
2897   __ z_sth(Z_tos, field);
2898   if (do_rewrite) {
2899     patch_bytecode(Bytecodes::_fast_sputfield, bc, Z_ARG5, true, byte_no);
2900   }
2901   __ z_bru(Done);
2902   BTB_END( is_Short, bsize, "putfield_or_static:is_Short");
2903 
2904   // itos
2905   BTB_BEGIN(is_Int, bsize, "putfield_or_static:is_Int");
2906   __ pop(itos);
2907   if (!is_static) {
2908     pop_and_check_object(obj);
2909   }
2910   __ reg2mem_opt(Z_tos, field, false);
2911   if (do_rewrite) {
2912     patch_bytecode(Bytecodes::_fast_iputfield, bc, Z_ARG5, true, byte_no);
2913   }
2914   __ z_bru(Done);
2915   BTB_END( is_Int, bsize, "putfield_or_static:is_Int");
2916 
2917   // ltos
2918   BTB_BEGIN(is_Long, bsize, "putfield_or_static:is_Long");
2919   __ pop(ltos);
2920   if (!is_static) {
2921     pop_and_check_object(obj);
2922   }
2923   __ reg2mem_opt(Z_tos, field);
2924   if (do_rewrite) {
2925     patch_bytecode(Bytecodes::_fast_lputfield, bc, Z_ARG5, true, byte_no);
2926   }
2927   __ z_bru(Done);
2928   BTB_END( is_Long, bsize, "putfield_or_static:is_Long");
2929 
2930   // ftos
2931   BTB_BEGIN(is_Float, bsize, "putfield_or_static:is_Float");
2932   __ pop(ftos);
2933   if (!is_static) {
2934     pop_and_check_object(obj);
2935   }
2936   __ freg2mem_opt(Z_ftos, field, false);
2937   if (do_rewrite) {
2938     patch_bytecode(Bytecodes::_fast_fputfield, bc, Z_ARG5, true, byte_no);
2939   }
2940   __ z_bru(Done);
2941   BTB_END( is_Float, bsize, "putfield_or_static:is_Float");
2942 
2943   // dtos
2944   BTB_BEGIN(is_Double, bsize, "putfield_or_static:is_Double");
2945   __ pop(dtos);
2946   if (!is_static) {
2947     pop_and_check_object(obj);
2948   }
2949   __ freg2mem_opt(Z_ftos, field);
2950   if (do_rewrite) {
2951     patch_bytecode(Bytecodes::_fast_dputfield, bc, Z_ARG5, true, byte_no);
2952   }
2953   __ z_bru(Done);
2954   BTB_END( is_Double, bsize, "putfield_or_static:is_Double");
2955 
2956   // atos
2957   BTB_BEGIN(is_Object, bsize, "putfield_or_static:is_Object");
2958   __ z_bru(atosHandler);
2959   BTB_END( is_Object, bsize, "putfield_or_static:is_Object");
2960 
2961   // Bad state detection comes at no extra runtime cost.
2962   BTB_BEGIN(is_badState8, bsize, "putfield_or_static:is_badState8");
2963   __ z_illtrap();
2964   __ z_bru(is_badState);
2965   BTB_END( is_badState8, bsize, "putfield_or_static:is_badState8");
2966   BTB_BEGIN(is_badState9, bsize, "putfield_or_static:is_badState9");
2967   __ z_illtrap();
2968   __ z_bru(is_badState);
2969   BTB_END( is_badState9, bsize, "putfield_or_static:is_badState9");
2970   BTB_BEGIN(is_badStateA, bsize, "putfield_or_static:is_badStateA");
2971   __ z_illtrap();
2972   __ z_bru(is_badState);
2973   BTB_END( is_badStateA, bsize, "putfield_or_static:is_badStateA");
2974   BTB_BEGIN(is_badStateB, bsize, "putfield_or_static:is_badStateB");
2975   __ z_illtrap();
2976   __ z_bru(is_badState);
2977   BTB_END( is_badStateB, bsize, "putfield_or_static:is_badStateB");
2978   BTB_BEGIN(is_badStateC, bsize, "putfield_or_static:is_badStateC");
2979   __ z_illtrap();
2980   __ z_bru(is_badState);
2981   BTB_END( is_badStateC, bsize, "putfield_or_static:is_badStateC");
2982   BTB_BEGIN(is_badStateD, bsize, "putfield_or_static:is_badStateD");
2983   __ z_illtrap();
2984   __ z_bru(is_badState);
2985   BTB_END( is_badStateD, bsize, "putfield_or_static:is_badStateD");
2986   BTB_BEGIN(is_badStateE, bsize, "putfield_or_static:is_badStateE");
2987   __ z_illtrap();
2988   __ z_bru(is_badState);
2989   BTB_END( is_badStateE, bsize, "putfield_or_static:is_badStateE");
2990   BTB_BEGIN(is_badStateF, bsize, "putfield_or_static:is_badStateF");
2991   __ z_illtrap();
2992   __ z_bru(is_badState);
2993   BTB_END( is_badStateF, bsize, "putfield_or_static:is_badStateF");
2994 
2995   __ align_address(64);
2996   BIND(is_badState);  // Do this outside branch table. Needs a lot of space.
2997   {
2998     unsigned int b_off = __ offset();
2999     if (is_static) __ stop_static("Bad state in putstatic");
3000     else            __ stop_static("Bad state in putfield");
3001     unsigned int e_off = __ offset();
3002   }
3003 
3004   __ align_address(64);
3005   BIND(atosHandler);  // Oops are really complicated to handle.
3006                       // There is a lot of code generated.
3007                       // Therefore: generate the handler outside of branch table.
3008                       // There is no performance penalty. The additional branch
3009                       // to here is compensated for by the fallthru to "Done".
3010   {
3011     unsigned int b_off = __ offset();
3012     __ pop(atos);
3013     if (!is_static) {
3014       pop_and_check_object(obj);
3015     }
3016     // Store into the field
3017     do_oop_store(_masm, obj, off, Z_tos, false,
3018                  oopStore_tmp1, oopStore_tmp2, oopStore_tmp3, _bs->kind(), false);
3019     if (do_rewrite) {
3020       patch_bytecode(Bytecodes::_fast_aputfield, bc, Z_ARG5, true, byte_no);
3021     }
3022     // __ z_bru(Done); // fallthru
3023     unsigned int e_off = __ offset();
3024   }
3025 
3026   BIND(Done);
3027 
3028   // Check for volatile store.
3029   Label notVolatile;
3030 
3031   __ testbit(Z_ARG4, ConstantPoolCacheEntry::is_volatile_shift);
3032   __ z_brz(notVolatile);
3033   __ z_fence();
3034 
3035   BIND(notVolatile);
3036 }
3037 
3038 void TemplateTable::putfield(int byte_no) {
3039   BLOCK_COMMENT("putfield  {");
3040   putfield_or_static(byte_no, false);
3041   BLOCK_COMMENT("} putfield");
3042 }
3043 
3044 void TemplateTable::nofast_putfield(int byte_no) {
3045   putfield_or_static(byte_no, false, may_not_rewrite);
3046 }
3047 
3048 void TemplateTable::putstatic(int byte_no) {
3049   BLOCK_COMMENT("putstatic {");
3050   putfield_or_static(byte_no, true);
3051   BLOCK_COMMENT("} putstatic");
3052 }
3053 
3054 // Push the tos value back to the stack.
3055 // gc will find oops there and update.
3056 void TemplateTable::jvmti_post_fast_field_mod() {
3057 
3058   if (!JvmtiExport::can_post_field_modification()) {
3059     return;
3060   }
3061 
3062   // Check to see if a field modification watch has been set before
3063   // we take the time to call into the VM.
3064   Label   exit;
3065 
3066   BLOCK_COMMENT("jvmti_post_fast_field_mod {");
3067 
3068   __ load_absolute_address(Z_R1_scratch,
3069                            (address) JvmtiExport::get_field_modification_count_addr());
3070   __ load_and_test_int(Z_R0_scratch, Address(Z_R1_scratch));
3071   __ z_brz(exit);
3072 
3073   Register obj = Z_tmp_1;
3074 
3075   __ pop_ptr(obj);                  // Copy the object pointer from tos.
3076   __ verify_oop(obj);
3077   __ push_ptr(obj);                 // Put the object pointer back on tos.
3078 
3079   // Save tos values before call_VM() clobbers them. Since we have
3080   // to do it for every data type, we use the saved values as the
3081   // jvalue object.
3082   switch (bytecode()) {          // Load values into the jvalue object.
3083     case Bytecodes::_fast_aputfield:
3084       __ push_ptr(Z_tos);
3085       break;
3086     case Bytecodes::_fast_bputfield:
3087     case Bytecodes::_fast_zputfield:
3088     case Bytecodes::_fast_sputfield:
3089     case Bytecodes::_fast_cputfield:
3090     case Bytecodes::_fast_iputfield:
3091       __ push_i(Z_tos);
3092       break;
3093     case Bytecodes::_fast_dputfield:
3094       __ push_d();
3095       break;
3096     case Bytecodes::_fast_fputfield:
3097       __ push_f();
3098       break;
3099     case Bytecodes::_fast_lputfield:
3100       __ push_l(Z_tos);
3101       break;
3102 
3103     default:
3104       ShouldNotReachHere();
3105   }
3106 
3107   // jvalue on the stack
3108   __ load_address(Z_ARG4, Address(Z_esp, Interpreter::stackElementSize));
3109   // Access constant pool cache entry.
3110   __ get_cache_entry_pointer_at_bcp(Z_ARG3, Z_tos, 1);
3111   __ verify_oop(obj);
3112 
3113   // obj   : object pointer copied above
3114   // Z_ARG3: cache entry pointer
3115   // Z_ARG4: jvalue object on the stack
3116   __ call_VM(noreg,
3117              CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification),
3118              obj, Z_ARG3, Z_ARG4);
3119 
3120   switch (bytecode()) {             // Restore tos values.
3121     case Bytecodes::_fast_aputfield:
3122       __ pop_ptr(Z_tos);
3123       break;
3124     case Bytecodes::_fast_bputfield:
3125     case Bytecodes::_fast_zputfield:
3126     case Bytecodes::_fast_sputfield:
3127     case Bytecodes::_fast_cputfield:
3128     case Bytecodes::_fast_iputfield:
3129       __ pop_i(Z_tos);
3130       break;
3131     case Bytecodes::_fast_dputfield:
3132       __ pop_d(Z_ftos);
3133       break;
3134     case Bytecodes::_fast_fputfield:
3135       __ pop_f(Z_ftos);
3136       break;
3137     case Bytecodes::_fast_lputfield:
3138       __ pop_l(Z_tos);
3139       break;
3140   }
3141 
3142   __ bind(exit);
3143   BLOCK_COMMENT("} jvmti_post_fast_field_mod");
3144 }
3145 
3146 void TemplateTable::fast_storefield(TosState state) {
3147   transition(state, vtos);
3148 
3149   ByteSize base = ConstantPoolCache::base_offset();
3150   jvmti_post_fast_field_mod();
3151 
3152   // Access constant pool cache.
3153   Register cache = Z_tmp_1;
3154   Register index = Z_tmp_2;
3155   Register flags = Z_ARG5;
3156 
3157   // Index comes in bytes, don't shift afterwards!
3158   __ get_cache_and_index_at_bcp(cache, index, 1);
3159 
3160   // Test for volatile.
3161   assert(!flags->is_volatile(), "do_oop_store could perform leaf RT call");
3162   __ z_lg(flags, Address(cache, index, base + ConstantPoolCacheEntry::flags_offset()));
3163 
3164   // Replace index with field offset from cache entry.
3165   Register field_offset = index;
3166   __ z_lg(field_offset, Address(cache, index, base + ConstantPoolCacheEntry::f2_offset()));
3167 
3168   // Get object from stack.
3169   Register   obj = cache;
3170 
3171   pop_and_check_object(obj);
3172 
3173   // field address
3174   const Address   field(obj, field_offset);
3175 
3176   // access field
3177   switch (bytecode()) {
3178     case Bytecodes::_fast_aputfield:
3179       do_oop_store(_masm, obj, field_offset, Z_tos, false,
3180                    Z_ARG2, Z_ARG3, Z_ARG4, _bs->kind(), false);
3181       break;
3182     case Bytecodes::_fast_lputfield:
3183       __ reg2mem_opt(Z_tos, field);
3184       break;
3185     case Bytecodes::_fast_iputfield:
3186       __ reg2mem_opt(Z_tos, field, false);
3187       break;
3188     case Bytecodes::_fast_zputfield:
3189       __ z_nilf(Z_tos, 0x1);
3190       // fall through to bputfield
3191     case Bytecodes::_fast_bputfield:
3192       __ z_stc(Z_tos, field);
3193       break;
3194     case Bytecodes::_fast_sputfield:
3195       // fall through
3196     case Bytecodes::_fast_cputfield:
3197       __ z_sth(Z_tos, field);
3198       break;
3199     case Bytecodes::_fast_fputfield:
3200       __ freg2mem_opt(Z_ftos, field, false);
3201       break;
3202     case Bytecodes::_fast_dputfield:
3203       __ freg2mem_opt(Z_ftos, field);
3204       break;
3205     default:
3206       ShouldNotReachHere();
3207   }
3208 
3209   //  Check for volatile store.
3210   Label notVolatile;
3211 
3212   __ testbit(flags, ConstantPoolCacheEntry::is_volatile_shift);
3213   __ z_brz(notVolatile);
3214   __ z_fence();
3215 
3216   __ bind(notVolatile);
3217 }
3218 
3219 void TemplateTable::fast_accessfield(TosState state) {
3220   transition(atos, state);
3221 
3222   Register obj = Z_tos;
3223 
3224   // Do the JVMTI work here to avoid disturbing the register state below
3225   if (JvmtiExport::can_post_field_access()) {
3226     // Check to see if a field access watch has been set before we
3227     // take the time to call into the VM.
3228     Label cont;
3229 
3230     __ load_absolute_address(Z_R1_scratch,
3231                              (address)JvmtiExport::get_field_access_count_addr());
3232     __ load_and_test_int(Z_R0_scratch, Address(Z_R1_scratch));
3233     __ z_brz(cont);
3234 
3235     // Access constant pool cache entry.
3236 
3237     __ get_cache_entry_pointer_at_bcp(Z_ARG3, Z_tmp_1, 1);
3238     __ verify_oop(obj);
3239     __ push_ptr(obj);  // Save object pointer before call_VM() clobbers it.
3240     __ z_lgr(Z_ARG2, obj);
3241 
3242     // Z_ARG2: object pointer copied above
3243     // Z_ARG3: cache entry pointer
3244     __ call_VM(noreg,
3245                CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access),
3246                Z_ARG2, Z_ARG3);
3247     __ pop_ptr(obj); // Restore object pointer.
3248 
3249     __ bind(cont);
3250   }
3251 
3252   // Access constant pool cache.
3253   Register   cache = Z_tmp_1;
3254   Register   index = Z_tmp_2;
3255 
3256   // Index comes in bytes, don't shift afterwards!
3257   __ get_cache_and_index_at_bcp(cache, index, 1);
3258   // Replace index with field offset from cache entry.
3259   __ mem2reg_opt(index,
3260                  Address(cache, index,
3261                          ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::f2_offset()));
3262 
3263   __ verify_oop(obj);
3264   __ null_check(obj);
3265 
3266   Address field(obj, index);
3267 
3268   // access field
3269   switch (bytecode()) {
3270     case Bytecodes::_fast_agetfield:
3271       __ load_heap_oop(Z_tos, field);
3272       __ verify_oop(Z_tos);
3273       return;
3274     case Bytecodes::_fast_lgetfield:
3275       __ mem2reg_opt(Z_tos, field);
3276       return;
3277     case Bytecodes::_fast_igetfield:
3278       __ mem2reg_opt(Z_tos, field, false);
3279       return;
3280     case Bytecodes::_fast_bgetfield:
3281       __ z_lb(Z_tos, field);
3282       return;
3283     case Bytecodes::_fast_sgetfield:
3284       __ z_lh(Z_tos, field);
3285       return;
3286     case Bytecodes::_fast_cgetfield:
3287       __ z_llgh(Z_tos, field);   // Load into 64 bits, works on all CPUs.
3288       return;
3289     case Bytecodes::_fast_fgetfield:
3290       __ mem2freg_opt(Z_ftos, field, false);
3291       return;
3292     case Bytecodes::_fast_dgetfield:
3293       __ mem2freg_opt(Z_ftos, field);
3294       return;
3295     default:
3296       ShouldNotReachHere();
3297   }
3298 }
3299 
3300 void TemplateTable::fast_xaccess(TosState state) {
3301   transition(vtos, state);
3302 
3303   Register receiver = Z_tos;
3304   // Get receiver.
3305   __ mem2reg_opt(Z_tos, aaddress(0));
3306 
3307   // Access constant pool cache.
3308   Register cache = Z_tmp_1;
3309   Register index = Z_tmp_2;
3310 
3311   // Index comes in bytes, don't shift afterwards!
3312   __ get_cache_and_index_at_bcp(cache, index, 2);
3313   // Replace index with field offset from cache entry.
3314   __ mem2reg_opt(index,
3315                  Address(cache, index,
3316                          ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::f2_offset()));
3317 
3318   // Make sure exception is reported in correct bcp range (getfield is
3319   // next instruction).
3320   __ add2reg(Z_bcp, 1);
3321   __ null_check(receiver);
3322   switch (state) {
3323     case itos:
3324       __ mem2reg_opt(Z_tos, Address(receiver, index), false);
3325       break;
3326     case atos:
3327       __ load_heap_oop(Z_tos, Address(receiver, index));
3328       __ verify_oop(Z_tos);
3329       break;
3330     case ftos:
3331       __ mem2freg_opt(Z_ftos, Address(receiver, index));
3332       break;
3333     default:
3334       ShouldNotReachHere();
3335   }
3336 
3337   // Reset bcp to original position.
3338   __ add2reg(Z_bcp, -1);
3339 }
3340 
3341 //-----------------------------------------------------------------------------
3342 // Calls
3343 
3344 void TemplateTable::prepare_invoke(int byte_no,
3345                                    Register method,  // linked method (or i-klass)
3346                                    Register index,   // itable index, MethodType, etc.
3347                                    Register recv,    // If caller wants to see it.
3348                                    Register flags) { // If caller wants to test it.
3349   // Determine flags.
3350   const Bytecodes::Code code = bytecode();
3351   const bool is_invokeinterface  = code == Bytecodes::_invokeinterface;
3352   const bool is_invokedynamic    = code == Bytecodes::_invokedynamic;
3353   const bool is_invokehandle     = code == Bytecodes::_invokehandle;
3354   const bool is_invokevirtual    = code == Bytecodes::_invokevirtual;
3355   const bool is_invokespecial    = code == Bytecodes::_invokespecial;
3356   const bool load_receiver       = (recv != noreg);
3357   assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), "");
3358 
3359   // Setup registers & access constant pool cache.
3360   if (recv  == noreg) { recv  = Z_ARG1; }
3361   if (flags == noreg) { flags = Z_ARG2; }
3362   assert_different_registers(method, Z_R14, index, recv, flags);
3363 
3364   BLOCK_COMMENT("prepare_invoke {");
3365 
3366   load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic);
3367 
3368   // Maybe push appendix to arguments.
3369   if (is_invokedynamic || is_invokehandle) {
3370     Label L_no_push;
3371     Register resolved_reference = Z_R1_scratch;
3372     __ testbit(flags, ConstantPoolCacheEntry::has_appendix_shift);
3373     __ z_bfalse(L_no_push);
3374     // Push the appendix as a trailing parameter.
3375     // This must be done before we get the receiver,
3376     // since the parameter_size includes it.
3377     __ load_resolved_reference_at_index(resolved_reference, index);
3378     __ verify_oop(resolved_reference);
3379     __ push_ptr(resolved_reference);  // Push appendix (MethodType, CallSite, etc.).
3380     __ bind(L_no_push);
3381   }
3382 
3383   // Load receiver if needed (after appendix is pushed so parameter size is correct).
3384   if (load_receiver) {
3385     assert(!is_invokedynamic, "");
3386     // recv := int2long(flags & ConstantPoolCacheEntry::parameter_size_mask) << 3
3387     // Flags is zero-extended int2long when loaded during load_invoke_cp_cache_entry().
3388     // Only the least significant byte (psize) of flags is used.
3389     {
3390       const unsigned int logSES = Interpreter::logStackElementSize;
3391       const int bit_shift = logSES;
3392       const int r_bitpos  = 63 - bit_shift;
3393       const int l_bitpos  = r_bitpos - ConstantPoolCacheEntry::parameter_size_bits + 1;
3394       const int n_rotate  = bit_shift;
3395       assert(ConstantPoolCacheEntry::parameter_size_mask == 255, "adapt bitpositions");
3396       __ rotate_then_insert(recv, flags, l_bitpos, r_bitpos, n_rotate, true);
3397     }
3398     // Recv now contains #arguments * StackElementSize.
3399 
3400     Address recv_addr(Z_esp, recv);
3401     __ z_lg(recv, recv_addr);
3402     __ verify_oop(recv);
3403   }
3404 
3405   // Compute return type.
3406   // ret_type is used by callers (invokespecial, invokestatic) at least.
3407   Register ret_type = Z_R1_scratch;
3408   assert_different_registers(ret_type, method);
3409 
3410   const address table_addr = (address)Interpreter::invoke_return_entry_table_for(code);
3411   __ load_absolute_address(Z_R14, table_addr);
3412 
3413   {
3414     const int bit_shift = LogBytesPerWord;           // Size of each table entry.
3415     const int r_bitpos  = 63 - bit_shift;
3416     const int l_bitpos  = r_bitpos - ConstantPoolCacheEntry::tos_state_bits + 1;
3417     const int n_rotate  = bit_shift-ConstantPoolCacheEntry::tos_state_shift;
3418     __ rotate_then_insert(ret_type, flags, l_bitpos, r_bitpos, n_rotate, true);
3419     // Make sure we don't need to mask flags for tos_state after the above shift.
3420     ConstantPoolCacheEntry::verify_tos_state_shift();
3421   }
3422 
3423     __ z_lg(Z_R14, Address(Z_R14, ret_type)); // Load return address.
3424   BLOCK_COMMENT("} prepare_invoke");
3425 }
3426 
3427 
3428 void TemplateTable::invokevirtual_helper(Register index,
3429                                          Register recv,
3430                                          Register flags) {
3431   // Uses temporary registers Z_tmp_2, Z_ARG4.
3432   assert_different_registers(index, recv, Z_tmp_2, Z_ARG4);
3433 
3434   // Test for an invoke of a final method.
3435   Label notFinal;
3436 
3437   BLOCK_COMMENT("invokevirtual_helper {");
3438 
3439   __ testbit(flags, ConstantPoolCacheEntry::is_vfinal_shift);
3440   __ z_brz(notFinal);
3441 
3442   const Register method = index;  // Method must be Z_ARG3.
3443   assert(method == Z_ARG3, "method must be second argument for interpreter calling convention");
3444 
3445   // Do the call - the index is actually the method to call.
3446   // That is, f2 is a vtable index if !is_vfinal, else f2 is a method.
3447 
3448   // It's final, need a null check here!
3449   __ null_check(recv);
3450 
3451   // Profile this call.
3452   __ profile_final_call(Z_tmp_2);
3453   __ profile_arguments_type(Z_tmp_2, method, Z_ARG5, true); // Argument type profiling.
3454   __ jump_from_interpreted(method, Z_tmp_2);
3455 
3456   __ bind(notFinal);
3457 
3458   // Get receiver klass.
3459   __ null_check(recv, Z_R0_scratch, oopDesc::klass_offset_in_bytes());
3460   __ load_klass(Z_tmp_2, recv);
3461 
3462   // Profile this call.
3463   __ profile_virtual_call(Z_tmp_2, Z_ARG4, Z_ARG5);
3464 
3465   // Get target method & entry point.
3466   __ z_sllg(index, index, exact_log2(vtableEntry::size_in_bytes()));
3467   __ mem2reg_opt(method,
3468                  Address(Z_tmp_2, index,
3469                          Klass::vtable_start_offset() + in_ByteSize(vtableEntry::method_offset_in_bytes())));
3470   __ profile_arguments_type(Z_ARG4, method, Z_ARG5, true);
3471   __ jump_from_interpreted(method, Z_ARG4);
3472   BLOCK_COMMENT("} invokevirtual_helper");
3473 }
3474 
3475 void TemplateTable::invokevirtual(int byte_no) {
3476   transition(vtos, vtos);
3477 
3478   assert(byte_no == f2_byte, "use this argument");
3479   prepare_invoke(byte_no,
3480                  Z_ARG3,  // method or vtable index
3481                  noreg,   // unused itable index
3482                  Z_ARG1,  // recv
3483                  Z_ARG2); // flags
3484 
3485   // Z_ARG3 : index
3486   // Z_ARG1 : receiver
3487   // Z_ARG2 : flags
3488   invokevirtual_helper(Z_ARG3, Z_ARG1, Z_ARG2);
3489 }
3490 
3491 void TemplateTable::invokespecial(int byte_no) {
3492   transition(vtos, vtos);
3493 
3494   assert(byte_no == f1_byte, "use this argument");
3495   Register Rmethod = Z_tmp_2;
3496   prepare_invoke(byte_no, Rmethod, noreg, // Get f1 method.
3497                  Z_ARG3);   // Get receiver also for null check.
3498   __ verify_oop(Z_ARG3);
3499   __ null_check(Z_ARG3);
3500   // Do the call.
3501   __ profile_call(Z_ARG2);
3502   __ profile_arguments_type(Z_ARG2, Rmethod, Z_ARG5, false);
3503   __ jump_from_interpreted(Rmethod, Z_R1_scratch);
3504 }
3505 
3506 void TemplateTable::invokestatic(int byte_no) {
3507   transition(vtos, vtos);
3508 
3509   assert(byte_no == f1_byte, "use this argument");
3510   Register Rmethod = Z_tmp_2;
3511   prepare_invoke(byte_no, Rmethod);   // Get f1 method.
3512   // Do the call.
3513   __ profile_call(Z_ARG2);
3514   __ profile_arguments_type(Z_ARG2, Rmethod, Z_ARG5, false);
3515   __ jump_from_interpreted(Rmethod, Z_R1_scratch);
3516 }
3517 
3518 // Outdated feature, and we don't support it.
3519 void TemplateTable::fast_invokevfinal(int byte_no) {
3520   transition(vtos, vtos);
3521   assert(byte_no == f2_byte, "use this argument");
3522   __ stop("fast_invokevfinal not used on linuxs390x");
3523 }
3524 
3525 void TemplateTable::invokeinterface(int byte_no) {
3526   transition(vtos, vtos);
3527 
3528   assert(byte_no == f1_byte, "use this argument");
3529   Register interface = Z_tos;
3530   Register index = Z_ARG3;
3531   Register receiver = Z_tmp_1;
3532   Register flags = Z_ARG5;
3533 
3534   BLOCK_COMMENT("invokeinterface {");
3535 
3536   // Destroys Z_ARG1 and Z_ARG2, thus use Z_ARG4 and copy afterwards.
3537   prepare_invoke(byte_no, Z_ARG4, index,  // Get f1 klassOop, f2 itable index.
3538                  receiver, flags);
3539 
3540   // Z_R14 (== Z_bytecode) : return entry
3541 
3542   __ z_lgr(interface, Z_ARG4);
3543 
3544   // Special case of invokeinterface called for virtual method of
3545   // java.lang.Object. See cpCacheOop.cpp for details.
3546   // This code isn't produced by javac, but could be produced by
3547   // another compliant java compiler.
3548   Label notMethod;
3549   __ testbit(flags, ConstantPoolCacheEntry::is_forced_virtual_shift);
3550   __ z_brz(notMethod);
3551   invokevirtual_helper(index, receiver, flags);
3552   __ bind(notMethod);
3553 
3554   // Get receiver klass into klass - also a null check.
3555   Register klass = flags;
3556 
3557   __ restore_locals();
3558   __ load_klass(klass, receiver);
3559 
3560   // Profile this call.
3561   __ profile_virtual_call(klass, Z_ARG2/*mdp*/, Z_ARG4/*scratch*/);
3562 
3563   NearLabel  no_such_interface, no_such_method;
3564   Register   method = Z_tmp_2;
3565 
3566   // TK 2010-08-24: save the index to Z_ARG4. needed in case of an error
3567   //                in throw_AbstractMethodErrorByTemplateTable
3568   __ z_lgr(Z_ARG4, index);
3569   // TK 2011-03-24: copy also klass because it could be changed in
3570   //                lookup_interface_method
3571   __ z_lgr(Z_ARG2, klass);
3572   __ lookup_interface_method(// inputs: rec. class, interface, itable index
3573                               klass, interface, index,
3574                               // outputs: method, scan temp. reg
3575                               method, Z_tmp_2, Z_R1_scratch,
3576                               no_such_interface);
3577 
3578   // Check for abstract method error.
3579   // Note: This should be done more efficiently via a throw_abstract_method_error
3580   // interpreter entry point and a conditional jump to it in case of a null
3581   // method.
3582   __ compareU64_and_branch(method, (intptr_t) 0,
3583                             Assembler::bcondZero, no_such_method);
3584 
3585   __ profile_arguments_type(Z_ARG3, method, Z_ARG5, true);
3586 
3587   // Do the call.
3588   __ jump_from_interpreted(method, Z_ARG5);
3589   __ should_not_reach_here();
3590 
3591   // exception handling code follows...
3592   // Note: Must restore interpreter registers to canonical
3593   // state for exception handling to work correctly!
3594 
3595   __ bind(no_such_method);
3596 
3597   // Throw exception.
3598   __ restore_bcp();      // Bcp must be correct for exception handler   (was destroyed).
3599   __ restore_locals();   // Make sure locals pointer is correct as well (was destroyed).
3600   // TK 2010-08-24: Call throw_AbstractMethodErrorByTemplateTable now with the
3601   //                relevant information for generating a better error message
3602   __ call_VM(noreg,
3603               CAST_FROM_FN_PTR(address,
3604                                InterpreterRuntime::throw_AbstractMethodError),
3605               Z_ARG2, interface, Z_ARG4);
3606   // The call_VM checks for exception, so we should never return here.
3607   __ should_not_reach_here();
3608 
3609   __ bind(no_such_interface);
3610 
3611   // Throw exception.
3612   __ restore_bcp();      // Bcp must be correct for exception handler   (was destroyed).
3613   __ restore_locals();   // Make sure locals pointer is correct as well (was destroyed).
3614   // TK 2010-08-24: Call throw_IncompatibleClassChangeErrorByTemplateTable now with the
3615   //                relevant information for generating a better error message
3616   __ call_VM(noreg,
3617              CAST_FROM_FN_PTR(address,
3618                               InterpreterRuntime::throw_IncompatibleClassChangeError),
3619              Z_ARG2, interface);
3620   // The call_VM checks for exception, so we should never return here.
3621   __ should_not_reach_here();
3622 
3623   BLOCK_COMMENT("} invokeinterface");
3624   return;
3625 }
3626 
3627 void TemplateTable::invokehandle(int byte_no) {
3628   transition(vtos, vtos);
3629 
3630   const Register method = Z_tmp_2;
3631   const Register recv   = Z_ARG5;
3632   const Register mtype  = Z_tmp_1;
3633   prepare_invoke(byte_no,
3634                  method, mtype,   // Get f2 method, f1 MethodType.
3635                  recv);
3636   __ verify_method_ptr(method);
3637   __ verify_oop(recv);
3638   __ null_check(recv);
3639 
3640   // Note: Mtype is already pushed (if necessary) by prepare_invoke.
3641 
3642   // FIXME: profile the LambdaForm also.
3643   __ profile_final_call(Z_ARG2);
3644   __ profile_arguments_type(Z_ARG3, method, Z_ARG5, true);
3645 
3646   __ jump_from_interpreted(method, Z_ARG3);
3647 }
3648 
3649 void TemplateTable::invokedynamic(int byte_no) {
3650   transition(vtos, vtos);
3651 
3652   const Register Rmethod   = Z_tmp_2;
3653   const Register Rcallsite = Z_tmp_1;
3654 
3655   prepare_invoke(byte_no, Rmethod, Rcallsite);
3656 
3657   // Rmethod: CallSite object (from f1)
3658   // Rcallsite: MH.linkToCallSite method (from f2)
3659 
3660   // Note: Callsite is already pushed by prepare_invoke.
3661 
3662   // TODO: should make a type profile for any invokedynamic that takes a ref argument.
3663   // Profile this call.
3664   __ profile_call(Z_ARG2);
3665   __ profile_arguments_type(Z_ARG2, Rmethod, Z_ARG5, false);
3666   __ jump_from_interpreted(Rmethod, Z_ARG2);
3667 }
3668 
3669 //-----------------------------------------------------------------------------
3670 // Allocation
3671 
3672 // Original comment on "allow_shared_alloc":
3673 // Always go the slow path.
3674 //  + Eliminated optimization within the template-based interpreter:
3675 //    If an allocation is done within the interpreter without using
3676 //    tlabs, the interpreter tries to do the allocation directly
3677 //    on the heap.
3678 //  + That means the profiling hooks are not considered and allocations
3679 //    get lost for the profiling framework.
3680 //  + However, we do not think that this optimization is really needed,
3681 //    so we always go now the slow path through the VM in this case --
3682 //    spec jbb2005 shows no measurable performance degradation.
3683 void TemplateTable::_new() {
3684   transition(vtos, atos);
3685   address prev_instr_address = NULL;
3686   Register tags  = Z_tmp_1;
3687   Register RallocatedObject   = Z_tos;
3688   Register cpool = Z_ARG2;
3689   Register tmp = Z_ARG3; // RobjectFields==tmp and Rsize==offset must be a register pair.
3690   Register offset = Z_ARG4;
3691   Label slow_case;
3692   Label done;
3693   Label initialize_header;
3694   Label initialize_object; // Including clearing the fields.
3695   Label allocate_shared;
3696 
3697   BLOCK_COMMENT("TemplateTable::_new {");
3698   __ get_2_byte_integer_at_bcp(offset/*dest*/, 1, InterpreterMacroAssembler::Unsigned);
3699   __ get_cpool_and_tags(cpool, tags);
3700   // Make sure the class we're about to instantiate has been resolved.
3701   // This is done before loading InstanceKlass to be consistent with the order
3702   // how Constant Pool is updated (see ConstantPool::klass_at_put).
3703   const int tags_offset = Array<u1>::base_offset_in_bytes();
3704   __ load_address(tmp, Address(tags, offset, tags_offset));
3705   __ z_cli(0, tmp, JVM_CONSTANT_Class);
3706   __ z_brne(slow_case);
3707 
3708   __ z_sllg(offset, offset, LogBytesPerWord); // Convert to to offset.
3709   // Get InstanceKlass.
3710   Register iklass = cpool;
3711   __ load_resolved_klass_at_offset(cpool, offset, iklass);
3712 
3713   // Make sure klass is initialized & doesn't have finalizer.
3714   // Make sure klass is fully initialized.
3715   const int state_offset = in_bytes(InstanceKlass::init_state_offset());
3716   if (Immediate::is_uimm12(state_offset)) {
3717     __ z_cli(state_offset, iklass, InstanceKlass::fully_initialized);
3718   } else {
3719     __ z_cliy(state_offset, iklass, InstanceKlass::fully_initialized);
3720   }
3721   __ z_brne(slow_case);
3722 
3723   // Get instance_size in InstanceKlass (scaled to a count of bytes).
3724   Register Rsize = offset;
3725   const int mask = 1 << Klass::_lh_instance_slow_path_bit;
3726   __ z_llgf(Rsize, Address(iklass, Klass::layout_helper_offset()));
3727   __ z_tmll(Rsize, mask);
3728   __ z_btrue(slow_case);
3729 
3730   // Allocate the instance
3731   // 1) Try to allocate in the TLAB.
3732   // 2) If fail and the object is large allocate in the shared Eden.
3733   // 3) If the above fails (or is not applicable), go to a slow case
3734   // (creates a new TLAB, etc.).
3735 
3736   // Always go the slow path. See comment above this template.
3737   const bool allow_shared_alloc = false;
3738 
3739   if (UseTLAB) {
3740     Register RoldTopValue = RallocatedObject;
3741     Register RnewTopValue = tmp;
3742     __ z_lg(RoldTopValue, Address(Z_thread, JavaThread::tlab_top_offset()));
3743     __ load_address(RnewTopValue, Address(RoldTopValue, Rsize));
3744     __ z_cg(RnewTopValue, Address(Z_thread, JavaThread::tlab_end_offset()));
3745     __ z_brh(allow_shared_alloc ? allocate_shared : slow_case);
3746     __ z_stg(RnewTopValue, Address(Z_thread, JavaThread::tlab_top_offset()));
3747     if (ZeroTLAB) {
3748       // The fields have been already cleared.
3749       __ z_bru(initialize_header);
3750     } else {
3751       // Initialize both the header and fields.
3752       if (allow_shared_alloc) {
3753         __ z_bru(initialize_object);
3754       } else {
3755         // Fallthrough to initialize_object, but assert that it is on fall through path.
3756         prev_instr_address = __ pc();
3757       }
3758     }
3759   }
3760 
3761   if (allow_shared_alloc) {
3762     // Allocation in shared Eden not implemented, because sapjvm allocation trace does not allow it.
3763     Unimplemented();
3764   }
3765 
3766   if (UseTLAB) {
3767     Register RobjectFields = tmp;
3768     Register Rzero = Z_R1_scratch;
3769 
3770     assert(ZeroTLAB || prev_instr_address == __ pc(),
3771            "must not omit jump to initialize_object above, as it is not on the fall through path");
3772     __ clear_reg(Rzero, true /*whole reg*/, false); // Load 0L into Rzero. Don't set CC.
3773 
3774     // The object is initialized before the header. If the object size is
3775     // zero, go directly to the header initialization.
3776     __ bind(initialize_object);
3777     __ z_aghi(Rsize, (int)-sizeof(oopDesc)); // Subtract header size, set CC.
3778     __ z_bre(initialize_header);             // Jump if size of fields is zero.
3779 
3780     // Initialize object fields.
3781     // See documentation for MVCLE instruction!!!
3782     assert(RobjectFields->encoding() % 2 == 0, "RobjectFields must be an even register");
3783     assert(Rsize->encoding() == (RobjectFields->encoding()+1),
3784            "RobjectFields and Rsize must be a register pair");
3785     assert(Rzero->encoding() % 2 == 1, "Rzero must be an odd register");
3786 
3787     // Set Rzero to 0 and use it as src length, then mvcle will copy nothing
3788     // and fill the object with the padding value 0.
3789     __ add2reg(RobjectFields, sizeof(oopDesc), RallocatedObject);
3790     __ move_long_ext(RobjectFields, as_Register(Rzero->encoding() - 1), 0);
3791 
3792     // Initialize object header only.
3793     __ bind(initialize_header);
3794     if (UseBiasedLocking) {
3795       Register prototype = RobjectFields;
3796       __ z_lg(prototype, Address(iklass, Klass::prototype_header_offset()));
3797       __ z_stg(prototype, Address(RallocatedObject, oopDesc::mark_offset_in_bytes()));
3798     } else {
3799       __ store_const(Address(RallocatedObject, oopDesc::mark_offset_in_bytes()),
3800                      (long)markOopDesc::prototype());
3801     }
3802 
3803     __ store_klass_gap(Rzero, RallocatedObject);  // Zero klass gap for compressed oops.
3804     __ store_klass(iklass, RallocatedObject);     // Store klass last.
3805 
3806     {
3807       SkipIfEqual skip(_masm, &DTraceAllocProbes, false, Z_ARG5 /*scratch*/);
3808       // Trigger dtrace event for fastpath.
3809       __ push(atos); // Save the return value.
3810       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), RallocatedObject);
3811       __ pop(atos); // Restore the return value.
3812     }
3813     __ z_bru(done);
3814   }
3815 
3816   // slow case
3817   __ bind(slow_case);
3818   __ get_constant_pool(Z_ARG2);
3819   __ get_2_byte_integer_at_bcp(Z_ARG3/*dest*/, 1, InterpreterMacroAssembler::Unsigned);
3820   call_VM(Z_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), Z_ARG2, Z_ARG3);
3821   __ verify_oop(Z_tos);
3822 
3823   // continue
3824   __ bind(done);
3825 
3826   BLOCK_COMMENT("} TemplateTable::_new");
3827 }
3828 
3829 void TemplateTable::newarray() {
3830   transition(itos, atos);
3831 
3832   // Call runtime.
3833   __ z_llgc(Z_ARG2, at_bcp(1));   // type
3834   __ z_lgfr(Z_ARG3, Z_tos);       // size
3835   call_VM(Z_RET,
3836           CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray),
3837           Z_ARG2, Z_ARG3);
3838 }
3839 
3840 void TemplateTable::anewarray() {
3841   transition(itos, atos);
3842   __ get_2_byte_integer_at_bcp(Z_ARG3, 1, InterpreterMacroAssembler::Unsigned);
3843   __ get_constant_pool(Z_ARG2);
3844   __ z_lgfr(Z_ARG4, Z_tos);
3845   call_VM(Z_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray),
3846           Z_ARG2, Z_ARG3, Z_ARG4);
3847 }
3848 
3849 void TemplateTable::arraylength() {
3850   transition(atos, itos);
3851 
3852   int offset = arrayOopDesc::length_offset_in_bytes();
3853 
3854   __ null_check(Z_tos, Z_R0_scratch, offset);
3855   __ mem2reg_opt(Z_tos, Address(Z_tos, offset), false);
3856 }
3857 
3858 void TemplateTable::checkcast() {
3859   transition(atos, atos);
3860 
3861   NearLabel done, is_null, ok_is_subtype, quicked, resolved;
3862 
3863   BLOCK_COMMENT("checkcast {");
3864   // If object is NULL, we are almost done.
3865   __ compareU64_and_branch(Z_tos, (intptr_t) 0, Assembler::bcondZero, is_null);
3866 
3867   // Get cpool & tags index.
3868   Register cpool = Z_tmp_1;
3869   Register tags = Z_tmp_2;
3870   Register index = Z_ARG5;
3871 
3872   __ get_cpool_and_tags(cpool, tags);
3873   __ get_2_byte_integer_at_bcp(index, 1, InterpreterMacroAssembler::Unsigned);
3874   // See if bytecode has already been quicked.
3875   // Note: For CLI, we would have to add the index to the tags pointer first,
3876   // thus load and compare in a "classic" manner.
3877   __ z_llgc(Z_R0_scratch,
3878             Address(tags, index, Array<u1>::base_offset_in_bytes()));
3879   __ compareU64_and_branch(Z_R0_scratch, JVM_CONSTANT_Class,
3880                            Assembler::bcondEqual, quicked);
3881 
3882   __ push(atos); // Save receiver for result, and for GC.
3883   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
3884   __ get_vm_result_2(Z_tos);
3885 
3886   Register   receiver = Z_ARG4;
3887   Register   klass = Z_tos;
3888   Register   subklass = Z_ARG5;
3889 
3890   __ pop_ptr(receiver); // restore receiver
3891   __ z_bru(resolved);
3892 
3893   // Get superklass in klass and subklass in subklass.
3894   __ bind(quicked);
3895 
3896   __ z_lgr(Z_ARG4, Z_tos);  // Save receiver.
3897   __ z_sllg(index, index, LogBytesPerWord);  // index2bytes for addressing
3898   __ load_resolved_klass_at_offset(cpool, index, klass);
3899 
3900   __ bind(resolved);
3901 
3902   __ load_klass(subklass, receiver);
3903 
3904   // Generate subtype check. Object in receiver.
3905   // Superklass in klass. Subklass in subklass.
3906   __ gen_subtype_check(subklass, klass, Z_ARG3, Z_tmp_1, ok_is_subtype);
3907 
3908   // Come here on failure.
3909   __ push_ptr(receiver);
3910   // Object is at TOS, target klass oop expected in rax by convention.
3911   __ z_brul((address) Interpreter::_throw_ClassCastException_entry);
3912 
3913   // Come here on success.
3914   __ bind(ok_is_subtype);
3915 
3916   __ z_lgr(Z_tos, receiver); // Restore object.
3917 
3918   // Collect counts on whether this test sees NULLs a lot or not.
3919   if (ProfileInterpreter) {
3920     __ z_bru(done);
3921     __ bind(is_null);
3922     __ profile_null_seen(Z_tmp_1);
3923   } else {
3924     __ bind(is_null);   // Same as 'done'.
3925   }
3926 
3927   __ bind(done);
3928   BLOCK_COMMENT("} checkcast");
3929 }
3930 
3931 void TemplateTable::instanceof() {
3932   transition(atos, itos);
3933 
3934   NearLabel done, is_null, ok_is_subtype, quicked, resolved;
3935 
3936   BLOCK_COMMENT("instanceof {");
3937   // If object is NULL, we are almost done.
3938   __ compareU64_and_branch(Z_tos, (intptr_t) 0, Assembler::bcondZero, is_null);
3939 
3940   // Get cpool & tags index.
3941   Register cpool = Z_tmp_1;
3942   Register tags = Z_tmp_2;
3943   Register index = Z_ARG5;
3944 
3945   __ get_cpool_and_tags(cpool, tags);
3946   __ get_2_byte_integer_at_bcp(index, 1, InterpreterMacroAssembler::Unsigned);
3947   // See if bytecode has already been quicked.
3948   // Note: For CLI, we would have to add the index to the tags pointer first,
3949   // thus load and compare in a "classic" manner.
3950   __ z_llgc(Z_R0_scratch,
3951             Address(tags, index, Array<u1>::base_offset_in_bytes()));
3952   __ compareU64_and_branch(Z_R0_scratch, JVM_CONSTANT_Class, Assembler::bcondEqual, quicked);
3953 
3954   __ push(atos); // Save receiver for result, and for GC.
3955   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
3956   __ get_vm_result_2(Z_tos);
3957 
3958   Register receiver = Z_tmp_2;
3959   Register klass = Z_tos;
3960   Register subklass = Z_tmp_2;
3961 
3962   __ pop_ptr(receiver); // Restore receiver.
3963   __ verify_oop(receiver);
3964   __ load_klass(subklass, subklass);
3965   __ z_bru(resolved);
3966 
3967   // Get superklass in klass and subklass in subklass.
3968   __ bind(quicked);
3969 
3970   __ load_klass(subklass, Z_tos);
3971   __ z_sllg(index, index, LogBytesPerWord);  // index2bytes for addressing
3972   __ load_resolved_klass_at_offset(cpool, index, klass);
3973 
3974   __ bind(resolved);
3975 
3976   // Generate subtype check.
3977   // Superklass in klass. Subklass in subklass.
3978   __ gen_subtype_check(subklass, klass, Z_ARG4, Z_ARG5, ok_is_subtype);
3979 
3980   // Come here on failure.
3981   __ clear_reg(Z_tos, true, false);
3982   __ z_bru(done);
3983 
3984   // Come here on success.
3985   __ bind(ok_is_subtype);
3986   __ load_const_optimized(Z_tos, 1);
3987 
3988   // Collect counts on whether this test sees NULLs a lot or not.
3989   if (ProfileInterpreter) {
3990     __ z_bru(done);
3991     __ bind(is_null);
3992     __ profile_null_seen(Z_tmp_1);
3993   } else {
3994     __ bind(is_null);   // same as 'done'
3995   }
3996 
3997   __ bind(done);
3998   // tos = 0: obj == NULL or  obj is not an instanceof the specified klass
3999   // tos = 1: obj != NULL and obj is     an instanceof the specified klass
4000   BLOCK_COMMENT("} instanceof");
4001 }
4002 
4003 //-----------------------------------------------------------------------------
4004 // Breakpoints
4005 void TemplateTable::_breakpoint() {
4006 
4007   // Note: We get here even if we are single stepping.
4008   // Jbug insists on setting breakpoints at every bytecode
4009   // even if we are in single step mode.
4010 
4011   transition(vtos, vtos);
4012 
4013   // Get the unpatched byte code.
4014   __ get_method(Z_ARG2);
4015   __ call_VM(noreg,
4016              CAST_FROM_FN_PTR(address, InterpreterRuntime::get_original_bytecode_at),
4017              Z_ARG2, Z_bcp);
4018   // Save the result to a register that is preserved over C-function calls.
4019   __ z_lgr(Z_tmp_1, Z_RET);
4020 
4021   // Post the breakpoint event.
4022   __ get_method(Z_ARG2);
4023   __ call_VM(noreg,
4024              CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint),
4025              Z_ARG2, Z_bcp);
4026 
4027   // Must restore the bytecode, because call_VM destroys Z_bytecode.
4028   __ z_lgr(Z_bytecode, Z_tmp_1);
4029 
4030   // Complete the execution of original bytecode.
4031   __ dispatch_only_normal(vtos);
4032 }
4033 
4034 
4035 // Exceptions
4036 
4037 void TemplateTable::athrow() {
4038   transition(atos, vtos);
4039   __ null_check(Z_tos);
4040   __ load_absolute_address(Z_ARG2, Interpreter::throw_exception_entry());
4041   __ z_br(Z_ARG2);
4042 }
4043 
4044 // Synchronization
4045 //
4046 // Note: monitorenter & exit are symmetric routines; which is reflected
4047 //       in the assembly code structure as well
4048 //
4049 // Stack layout:
4050 //
4051 //               callers_sp        <- Z_SP (callers_sp == Z_fp (own fp))
4052 //               return_pc
4053 //               [rest of ABI_160]
4054 //              /slot o:   free
4055 //             / ...       free
4056 //       oper. | slot n+1: free    <- Z_esp points to first free slot
4057 //       stack | slot n:   val                      caches IJAVA_STATE.esp
4058 //             | ...
4059 //              \slot 0:   val
4060 //              /slot m            <- IJAVA_STATE.monitors = monitor block top
4061 //             | ...
4062 //     monitors| slot 2
4063 //             | slot 1
4064 //              \slot 0
4065 //              /slot l            <- monitor block bot
4066 // ijava_state | ...
4067 //             | slot 2
4068 //              \slot 0
4069 //                                 <- Z_fp
4070 void TemplateTable::monitorenter() {
4071   transition(atos, vtos);
4072 
4073   BLOCK_COMMENT("monitorenter {");
4074 
4075   // Check for NULL object.
4076   __ null_check(Z_tos);
4077   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
4078   NearLabel allocated;
4079   // Initialize entry pointer.
4080   const Register Rfree_slot = Z_tmp_1;
4081   __ clear_reg(Rfree_slot, true, false); // Points to free slot or NULL. Don't set CC.
4082 
4083   // Find a free slot in the monitor block from top to bot (result in Rfree_slot).
4084   {
4085     const Register Rcurr_monitor = Z_ARG2;
4086     const Register Rbot = Z_ARG3; // Points to word under bottom of monitor block.
4087     const Register Rlocked_obj = Z_ARG4;
4088     NearLabel loop, exit, not_free;
4089     // Starting with top-most entry.
4090     __ get_monitors(Rcurr_monitor); // Rcur_monitor = IJAVA_STATE.monitors
4091     __ add2reg(Rbot, -frame::z_ijava_state_size, Z_fp);
4092 
4093 #ifdef ASSERT
4094     address reentry = NULL;
4095     { NearLabel ok;
4096       __ compareU64_and_branch(Rcurr_monitor, Rbot, Assembler::bcondNotHigh, ok);
4097       reentry = __ stop_chain_static(reentry, "IJAVA_STATE.monitors points below monitor block bottom");
4098       __ bind(ok);
4099     }
4100     { NearLabel ok;
4101       __ compareU64_and_branch(Rcurr_monitor, Z_esp, Assembler::bcondHigh, ok);
4102       reentry = __ stop_chain_static(reentry, "IJAVA_STATE.monitors above Z_esp");
4103       __ bind(ok);
4104     }
4105 #endif
4106 
4107     // Check if bottom reached, i.e. if there is at least one monitor.
4108     __ compareU64_and_branch(Rcurr_monitor, Rbot, Assembler::bcondEqual, exit);
4109 
4110     __ bind(loop);
4111     // Check if current entry is used.
4112     __ load_and_test_long(Rlocked_obj, Address(Rcurr_monitor, BasicObjectLock::obj_offset_in_bytes()));
4113     __ z_brne(not_free);
4114     // If not used then remember entry in Rfree_slot.
4115     __ z_lgr(Rfree_slot, Rcurr_monitor);
4116     __ bind(not_free);
4117     // Exit if current entry is for same object; this guarantees, that new monitor
4118     // used for recursive lock is above the older one.
4119     __ compareU64_and_branch(Rlocked_obj, Z_tos, Assembler::bcondEqual, exit);
4120     // otherwise advance to next entry
4121     __ add2reg(Rcurr_monitor, entry_size);
4122     // Check if bottom reached, if not at bottom then check this entry.
4123     __ compareU64_and_branch(Rcurr_monitor, Rbot, Assembler::bcondNotEqual, loop);
4124     __ bind(exit);
4125   }
4126 
4127   // Rfree_slot != NULL -> found one
4128   __ compareU64_and_branch(Rfree_slot, (intptr_t)0L, Assembler::bcondNotEqual, allocated);
4129 
4130   // Allocate one if there's no free slot.
4131   __ add_monitor_to_stack(false, Z_ARG3, Z_ARG4, Z_ARG5);
4132   __ get_monitors(Rfree_slot);
4133 
4134   // Rfree_slot: points to monitor entry.
4135   __ bind(allocated);
4136 
4137   // Increment bcp to point to the next bytecode, so exception
4138   // handling for async. exceptions work correctly.
4139   // The object has already been poped from the stack, so the
4140   // expression stack looks correct.
4141   __ add2reg(Z_bcp, 1, Z_bcp);
4142 
4143   // Store object.
4144   __ z_stg(Z_tos, BasicObjectLock::obj_offset_in_bytes(), Rfree_slot);
4145   __ lock_object(Rfree_slot, Z_tos);
4146 
4147   // Check to make sure this monitor doesn't cause stack overflow after locking.
4148   __ save_bcp();  // in case of exception
4149   __ generate_stack_overflow_check(0);
4150 
4151   // The bcp has already been incremented. Just need to dispatch to
4152   // next instruction.
4153   __ dispatch_next(vtos);
4154 
4155   BLOCK_COMMENT("} monitorenter");
4156 }
4157 
4158 
4159 void TemplateTable::monitorexit() {
4160   transition(atos, vtos);
4161 
4162   BLOCK_COMMENT("monitorexit {");
4163 
4164   // Check for NULL object.
4165   __ null_check(Z_tos);
4166 
4167   NearLabel found, not_found;
4168   const Register Rcurr_monitor = Z_ARG2;
4169 
4170   // Find matching slot.
4171   {
4172     const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
4173     NearLabel entry, loop;
4174 
4175     const Register Rbot = Z_ARG3; // Points to word under bottom of monitor block.
4176     const Register Rlocked_obj = Z_ARG4;
4177     // Starting with top-most entry.
4178     __ get_monitors(Rcurr_monitor); // Rcur_monitor = IJAVA_STATE.monitors
4179     __ add2reg(Rbot, -frame::z_ijava_state_size, Z_fp);
4180 
4181 #ifdef ASSERT
4182     address reentry = NULL;
4183     { NearLabel ok;
4184       __ compareU64_and_branch(Rcurr_monitor, Rbot, Assembler::bcondNotHigh, ok);
4185       reentry = __ stop_chain_static(reentry, "IJAVA_STATE.monitors points below monitor block bottom");
4186       __ bind(ok);
4187     }
4188     { NearLabel ok;
4189       __ compareU64_and_branch(Rcurr_monitor, Z_esp, Assembler::bcondHigh, ok);
4190       reentry = __ stop_chain_static(reentry, "IJAVA_STATE.monitors above Z_esp");
4191       __ bind(ok);
4192     }
4193 #endif
4194 
4195     // Check if bottom reached, i.e. if there is at least one monitor.
4196     __ compareU64_and_branch(Rcurr_monitor, Rbot, Assembler::bcondEqual, not_found);
4197 
4198     __ bind(loop);
4199     // Check if current entry is for same object.
4200     __ z_lg(Rlocked_obj, Address(Rcurr_monitor, BasicObjectLock::obj_offset_in_bytes()));
4201     // If same object then stop searching.
4202     __ compareU64_and_branch(Rlocked_obj, Z_tos, Assembler::bcondEqual, found);
4203     // Otherwise advance to next entry.
4204     __ add2reg(Rcurr_monitor, entry_size);
4205     // Check if bottom reached, if not at bottom then check this entry.
4206     __ compareU64_and_branch(Rcurr_monitor, Rbot, Assembler::bcondNotEqual, loop);
4207   }
4208 
4209   __ bind(not_found);
4210   // Error handling. Unlocking was not block-structured.
4211   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
4212                    InterpreterRuntime::throw_illegal_monitor_state_exception));
4213   __ should_not_reach_here();
4214 
4215   __ bind(found);
4216   __ push_ptr(Z_tos); // Make sure object is on stack (contract with oopMaps).
4217   __ unlock_object(Rcurr_monitor, Z_tos);
4218   __ pop_ptr(Z_tos); // Discard object.
4219   BLOCK_COMMENT("} monitorexit");
4220 }
4221 
4222 // Wide instructions
4223 void TemplateTable::wide() {
4224   transition(vtos, vtos);
4225 
4226   __ z_llgc(Z_R1_scratch, at_bcp(1));
4227   __ z_sllg(Z_R1_scratch, Z_R1_scratch, LogBytesPerWord);
4228   __ load_absolute_address(Z_tmp_1, (address) Interpreter::_wentry_point);
4229   __ mem2reg_opt(Z_tmp_1, Address(Z_tmp_1, Z_R1_scratch));
4230   __ z_br(Z_tmp_1);
4231   // Note: the bcp increment step is part of the individual wide
4232   // bytecode implementations.
4233 }
4234 
4235 // Multi arrays
4236 void TemplateTable::multianewarray() {
4237   transition(vtos, atos);
4238 
4239   __ z_llgc(Z_tmp_1, at_bcp(3)); // Get number of dimensions.
4240   // Slot count to byte offset.
4241   __ z_sllg(Z_tmp_1, Z_tmp_1, Interpreter::logStackElementSize);
4242   // Z_esp points past last_dim, so set to Z_ARG2 to first_dim address.
4243   __ load_address(Z_ARG2, Address(Z_esp, Z_tmp_1));
4244   call_VM(Z_RET,
4245           CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray),
4246           Z_ARG2);
4247   // Pop dimensions from expression stack.
4248   __ z_agr(Z_esp, Z_tmp_1);
4249 }