1 /*
   2  * Copyright (c) 2005, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Compilation.hpp"
  27 #include "c1/c1_Defs.hpp"
  28 #include "c1/c1_FrameMap.hpp"
  29 #include "c1/c1_Instruction.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_LIRGenerator.hpp"
  32 #include "c1/c1_ValueStack.hpp"
  33 #include "ci/ciArrayKlass.hpp"
  34 #include "ci/ciInstance.hpp"
  35 #include "ci/ciObjArray.hpp"
  36 #include "gc/shared/cardTableModRefBS.hpp"
  37 #include "runtime/arguments.hpp"
  38 #include "runtime/sharedRuntime.hpp"
  39 #include "runtime/stubRoutines.hpp"
  40 #include "runtime/vm_version.hpp"
  41 #include "utilities/bitMap.inline.hpp"
  42 #include "utilities/macros.hpp"
  43 #if INCLUDE_ALL_GCS
  44 #include "gc/g1/heapRegion.hpp"
  45 #endif // INCLUDE_ALL_GCS
  46 #ifdef TRACE_HAVE_INTRINSICS
  47 #include "trace/traceMacros.hpp"
  48 #endif
  49 
  50 #ifdef ASSERT
  51 #define __ gen()->lir(__FILE__, __LINE__)->
  52 #else
  53 #define __ gen()->lir()->
  54 #endif
  55 
  56 #ifndef PATCHED_ADDR
  57 #define PATCHED_ADDR  (max_jint)
  58 #endif
  59 
  60 void PhiResolverState::reset(int max_vregs) {
  61   // Initialize array sizes
  62   _virtual_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  63   _virtual_operands.trunc_to(0);
  64   _other_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  65   _other_operands.trunc_to(0);
  66   _vreg_table.at_put_grow(max_vregs - 1, NULL, NULL);
  67   _vreg_table.trunc_to(0);
  68 }
  69 
  70 
  71 
  72 //--------------------------------------------------------------
  73 // PhiResolver
  74 
  75 // Resolves cycles:
  76 //
  77 //  r1 := r2  becomes  temp := r1
  78 //  r2 := r1           r1 := r2
  79 //                     r2 := temp
  80 // and orders moves:
  81 //
  82 //  r2 := r3  becomes  r1 := r2
  83 //  r1 := r2           r2 := r3
  84 
  85 PhiResolver::PhiResolver(LIRGenerator* gen, int max_vregs)
  86  : _gen(gen)
  87  , _state(gen->resolver_state())
  88  , _temp(LIR_OprFact::illegalOpr)
  89 {
  90   // reinitialize the shared state arrays
  91   _state.reset(max_vregs);
  92 }
  93 
  94 
  95 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
  96   assert(src->is_valid(), "");
  97   assert(dest->is_valid(), "");
  98   __ move(src, dest);
  99 }
 100 
 101 
 102 void PhiResolver::move_temp_to(LIR_Opr dest) {
 103   assert(_temp->is_valid(), "");
 104   emit_move(_temp, dest);
 105   NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
 106 }
 107 
 108 
 109 void PhiResolver::move_to_temp(LIR_Opr src) {
 110   assert(_temp->is_illegal(), "");
 111   _temp = _gen->new_register(src->type());
 112   emit_move(src, _temp);
 113 }
 114 
 115 
 116 // Traverse assignment graph in depth first order and generate moves in post order
 117 // ie. two assignments: b := c, a := b start with node c:
 118 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
 119 // Generates moves in this order: move b to a and move c to b
 120 // ie. cycle a := b, b := a start with node a
 121 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
 122 // Generates moves in this order: move b to temp, move a to b, move temp to a
 123 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
 124   if (!dest->visited()) {
 125     dest->set_visited();
 126     for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
 127       move(dest, dest->destination_at(i));
 128     }
 129   } else if (!dest->start_node()) {
 130     // cylce in graph detected
 131     assert(_loop == NULL, "only one loop valid!");
 132     _loop = dest;
 133     move_to_temp(src->operand());
 134     return;
 135   } // else dest is a start node
 136 
 137   if (!dest->assigned()) {
 138     if (_loop == dest) {
 139       move_temp_to(dest->operand());
 140       dest->set_assigned();
 141     } else if (src != NULL) {
 142       emit_move(src->operand(), dest->operand());
 143       dest->set_assigned();
 144     }
 145   }
 146 }
 147 
 148 
 149 PhiResolver::~PhiResolver() {
 150   int i;
 151   // resolve any cycles in moves from and to virtual registers
 152   for (i = virtual_operands().length() - 1; i >= 0; i --) {
 153     ResolveNode* node = virtual_operands().at(i);
 154     if (!node->visited()) {
 155       _loop = NULL;
 156       move(NULL, node);
 157       node->set_start_node();
 158       assert(_temp->is_illegal(), "move_temp_to() call missing");
 159     }
 160   }
 161 
 162   // generate move for move from non virtual register to abitrary destination
 163   for (i = other_operands().length() - 1; i >= 0; i --) {
 164     ResolveNode* node = other_operands().at(i);
 165     for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
 166       emit_move(node->operand(), node->destination_at(j)->operand());
 167     }
 168   }
 169 }
 170 
 171 
 172 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
 173   ResolveNode* node;
 174   if (opr->is_virtual()) {
 175     int vreg_num = opr->vreg_number();
 176     node = vreg_table().at_grow(vreg_num, NULL);
 177     assert(node == NULL || node->operand() == opr, "");
 178     if (node == NULL) {
 179       node = new ResolveNode(opr);
 180       vreg_table().at_put(vreg_num, node);
 181     }
 182     // Make sure that all virtual operands show up in the list when
 183     // they are used as the source of a move.
 184     if (source && !virtual_operands().contains(node)) {
 185       virtual_operands().append(node);
 186     }
 187   } else {
 188     assert(source, "");
 189     node = new ResolveNode(opr);
 190     other_operands().append(node);
 191   }
 192   return node;
 193 }
 194 
 195 
 196 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
 197   assert(dest->is_virtual(), "");
 198   // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
 199   assert(src->is_valid(), "");
 200   assert(dest->is_valid(), "");
 201   ResolveNode* source = source_node(src);
 202   source->append(destination_node(dest));
 203 }
 204 
 205 
 206 //--------------------------------------------------------------
 207 // LIRItem
 208 
 209 void LIRItem::set_result(LIR_Opr opr) {
 210   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
 211   value()->set_operand(opr);
 212 
 213   if (opr->is_virtual()) {
 214     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
 215   }
 216 
 217   _result = opr;
 218 }
 219 
 220 void LIRItem::load_item() {
 221   if (result()->is_illegal()) {
 222     // update the items result
 223     _result = value()->operand();
 224   }
 225   if (!result()->is_register()) {
 226     LIR_Opr reg = _gen->new_register(value()->type());
 227     __ move(result(), reg);
 228     if (result()->is_constant()) {
 229       _result = reg;
 230     } else {
 231       set_result(reg);
 232     }
 233   }
 234 }
 235 
 236 
 237 void LIRItem::load_for_store(BasicType type) {
 238   if (_gen->can_store_as_constant(value(), type)) {
 239     _result = value()->operand();
 240     if (!_result->is_constant()) {
 241       _result = LIR_OprFact::value_type(value()->type());
 242     }
 243   } else if (type == T_BYTE || type == T_BOOLEAN) {
 244     load_byte_item();
 245   } else {
 246     load_item();
 247   }
 248 }
 249 
 250 void LIRItem::load_item_force(LIR_Opr reg) {
 251   LIR_Opr r = result();
 252   if (r != reg) {
 253 #if !defined(ARM) && !defined(E500V2)
 254     if (r->type() != reg->type()) {
 255       // moves between different types need an intervening spill slot
 256       r = _gen->force_to_spill(r, reg->type());
 257     }
 258 #endif
 259     __ move(r, reg);
 260     _result = reg;
 261   }
 262 }
 263 
 264 ciObject* LIRItem::get_jobject_constant() const {
 265   ObjectType* oc = type()->as_ObjectType();
 266   if (oc) {
 267     return oc->constant_value();
 268   }
 269   return NULL;
 270 }
 271 
 272 
 273 jint LIRItem::get_jint_constant() const {
 274   assert(is_constant() && value() != NULL, "");
 275   assert(type()->as_IntConstant() != NULL, "type check");
 276   return type()->as_IntConstant()->value();
 277 }
 278 
 279 
 280 jint LIRItem::get_address_constant() const {
 281   assert(is_constant() && value() != NULL, "");
 282   assert(type()->as_AddressConstant() != NULL, "type check");
 283   return type()->as_AddressConstant()->value();
 284 }
 285 
 286 
 287 jfloat LIRItem::get_jfloat_constant() const {
 288   assert(is_constant() && value() != NULL, "");
 289   assert(type()->as_FloatConstant() != NULL, "type check");
 290   return type()->as_FloatConstant()->value();
 291 }
 292 
 293 
 294 jdouble LIRItem::get_jdouble_constant() const {
 295   assert(is_constant() && value() != NULL, "");
 296   assert(type()->as_DoubleConstant() != NULL, "type check");
 297   return type()->as_DoubleConstant()->value();
 298 }
 299 
 300 
 301 jlong LIRItem::get_jlong_constant() const {
 302   assert(is_constant() && value() != NULL, "");
 303   assert(type()->as_LongConstant() != NULL, "type check");
 304   return type()->as_LongConstant()->value();
 305 }
 306 
 307 
 308 
 309 //--------------------------------------------------------------
 310 
 311 
 312 void LIRGenerator::init() {
 313   _bs = Universe::heap()->barrier_set();
 314 }
 315 
 316 
 317 void LIRGenerator::block_do_prolog(BlockBegin* block) {
 318 #ifndef PRODUCT
 319   if (PrintIRWithLIR) {
 320     block->print();
 321   }
 322 #endif
 323 
 324   // set up the list of LIR instructions
 325   assert(block->lir() == NULL, "LIR list already computed for this block");
 326   _lir = new LIR_List(compilation(), block);
 327   block->set_lir(_lir);
 328 
 329   __ branch_destination(block->label());
 330 
 331   if (LIRTraceExecution &&
 332       Compilation::current()->hir()->start()->block_id() != block->block_id() &&
 333       !block->is_set(BlockBegin::exception_entry_flag)) {
 334     assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
 335     trace_block_entry(block);
 336   }
 337 }
 338 
 339 
 340 void LIRGenerator::block_do_epilog(BlockBegin* block) {
 341 #ifndef PRODUCT
 342   if (PrintIRWithLIR) {
 343     tty->cr();
 344   }
 345 #endif
 346 
 347   // LIR_Opr for unpinned constants shouldn't be referenced by other
 348   // blocks so clear them out after processing the block.
 349   for (int i = 0; i < _unpinned_constants.length(); i++) {
 350     _unpinned_constants.at(i)->clear_operand();
 351   }
 352   _unpinned_constants.trunc_to(0);
 353 
 354   // clear our any registers for other local constants
 355   _constants.trunc_to(0);
 356   _reg_for_constants.trunc_to(0);
 357 }
 358 
 359 
 360 void LIRGenerator::block_do(BlockBegin* block) {
 361   CHECK_BAILOUT();
 362 
 363   block_do_prolog(block);
 364   set_block(block);
 365 
 366   for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
 367     if (instr->is_pinned()) do_root(instr);
 368   }
 369 
 370   set_block(NULL);
 371   block_do_epilog(block);
 372 }
 373 
 374 
 375 //-------------------------LIRGenerator-----------------------------
 376 
 377 // This is where the tree-walk starts; instr must be root;
 378 void LIRGenerator::do_root(Value instr) {
 379   CHECK_BAILOUT();
 380 
 381   InstructionMark im(compilation(), instr);
 382 
 383   assert(instr->is_pinned(), "use only with roots");
 384   assert(instr->subst() == instr, "shouldn't have missed substitution");
 385 
 386   instr->visit(this);
 387 
 388   assert(!instr->has_uses() || instr->operand()->is_valid() ||
 389          instr->as_Constant() != NULL || bailed_out(), "invalid item set");
 390 }
 391 
 392 
 393 // This is called for each node in tree; the walk stops if a root is reached
 394 void LIRGenerator::walk(Value instr) {
 395   InstructionMark im(compilation(), instr);
 396   //stop walk when encounter a root
 397   if ((instr->is_pinned() && instr->as_Phi() == NULL) || instr->operand()->is_valid()) {
 398     assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
 399   } else {
 400     assert(instr->subst() == instr, "shouldn't have missed substitution");
 401     instr->visit(this);
 402     // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
 403   }
 404 }
 405 
 406 
 407 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
 408   assert(state != NULL, "state must be defined");
 409 
 410 #ifndef PRODUCT
 411   state->verify();
 412 #endif
 413 
 414   ValueStack* s = state;
 415   for_each_state(s) {
 416     if (s->kind() == ValueStack::EmptyExceptionState) {
 417       assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
 418       continue;
 419     }
 420 
 421     int index;
 422     Value value;
 423     for_each_stack_value(s, index, value) {
 424       assert(value->subst() == value, "missed substitution");
 425       if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 426         walk(value);
 427         assert(value->operand()->is_valid(), "must be evaluated now");
 428       }
 429     }
 430 
 431     int bci = s->bci();
 432     IRScope* scope = s->scope();
 433     ciMethod* method = scope->method();
 434 
 435     MethodLivenessResult liveness = method->liveness_at_bci(bci);
 436     if (bci == SynchronizationEntryBCI) {
 437       if (x->as_ExceptionObject() || x->as_Throw()) {
 438         // all locals are dead on exit from the synthetic unlocker
 439         liveness.clear();
 440       } else {
 441         assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
 442       }
 443     }
 444     if (!liveness.is_valid()) {
 445       // Degenerate or breakpointed method.
 446       bailout("Degenerate or breakpointed method");
 447     } else {
 448       assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
 449       for_each_local_value(s, index, value) {
 450         assert(value->subst() == value, "missed substition");
 451         if (liveness.at(index) && !value->type()->is_illegal()) {
 452           if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 453             walk(value);
 454             assert(value->operand()->is_valid(), "must be evaluated now");
 455           }
 456         } else {
 457           // NULL out this local so that linear scan can assume that all non-NULL values are live.
 458           s->invalidate_local(index);
 459         }
 460       }
 461     }
 462   }
 463 
 464   return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException));
 465 }
 466 
 467 
 468 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
 469   return state_for(x, x->exception_state());
 470 }
 471 
 472 
 473 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) {
 474   /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if TieredCompilation
 475    * is active and the class hasn't yet been resolved we need to emit a patch that resolves
 476    * the class. */
 477   if ((TieredCompilation && need_resolve) || !obj->is_loaded() || PatchALot) {
 478     assert(info != NULL, "info must be set if class is not loaded");
 479     __ klass2reg_patch(NULL, r, info);
 480   } else {
 481     // no patching needed
 482     __ metadata2reg(obj->constant_encoding(), r);
 483   }
 484 }
 485 
 486 
 487 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
 488                                     CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
 489   CodeStub* stub = new RangeCheckStub(range_check_info, index);
 490   if (index->is_constant()) {
 491     cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
 492                 index->as_jint(), null_check_info);
 493     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 494   } else {
 495     cmp_reg_mem(lir_cond_aboveEqual, index, array,
 496                 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
 497     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 498   }
 499 }
 500 
 501 
 502 void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
 503   CodeStub* stub = new RangeCheckStub(info, index, true);
 504   if (index->is_constant()) {
 505     cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
 506     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 507   } else {
 508     cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
 509                 java_nio_Buffer::limit_offset(), T_INT, info);
 510     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 511   }
 512   __ move(index, result);
 513 }
 514 
 515 
 516 
 517 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) {
 518   LIR_Opr result_op = result;
 519   LIR_Opr left_op   = left;
 520   LIR_Opr right_op  = right;
 521 
 522   if (TwoOperandLIRForm && left_op != result_op) {
 523     assert(right_op != result_op, "malformed");
 524     __ move(left_op, result_op);
 525     left_op = result_op;
 526   }
 527 
 528   switch(code) {
 529     case Bytecodes::_dadd:
 530     case Bytecodes::_fadd:
 531     case Bytecodes::_ladd:
 532     case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
 533     case Bytecodes::_fmul:
 534     case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
 535 
 536     case Bytecodes::_dmul:
 537       {
 538         if (is_strictfp) {
 539           __ mul_strictfp(left_op, right_op, result_op, tmp_op); break;
 540         } else {
 541           __ mul(left_op, right_op, result_op); break;
 542         }
 543       }
 544       break;
 545 
 546     case Bytecodes::_imul:
 547       {
 548         bool did_strength_reduce = false;
 549 
 550         if (right->is_constant()) {
 551           jint c = right->as_jint();
 552           if (c > 0 && is_power_of_2(c)) {
 553             // do not need tmp here
 554             __ shift_left(left_op, exact_log2(c), result_op);
 555             did_strength_reduce = true;
 556           } else {
 557             did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
 558           }
 559         }
 560         // we couldn't strength reduce so just emit the multiply
 561         if (!did_strength_reduce) {
 562           __ mul(left_op, right_op, result_op);
 563         }
 564       }
 565       break;
 566 
 567     case Bytecodes::_dsub:
 568     case Bytecodes::_fsub:
 569     case Bytecodes::_lsub:
 570     case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
 571 
 572     case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
 573     // ldiv and lrem are implemented with a direct runtime call
 574 
 575     case Bytecodes::_ddiv:
 576       {
 577         if (is_strictfp) {
 578           __ div_strictfp (left_op, right_op, result_op, tmp_op); break;
 579         } else {
 580           __ div (left_op, right_op, result_op); break;
 581         }
 582       }
 583       break;
 584 
 585     case Bytecodes::_drem:
 586     case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
 587 
 588     default: ShouldNotReachHere();
 589   }
 590 }
 591 
 592 
 593 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
 594   arithmetic_op(code, result, left, right, false, tmp);
 595 }
 596 
 597 
 598 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
 599   arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info);
 600 }
 601 
 602 
 603 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) {
 604   arithmetic_op(code, result, left, right, is_strictfp, tmp);
 605 }
 606 
 607 
 608 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
 609 
 610   if (TwoOperandLIRForm && value != result_op
 611       // Only 32bit right shifts require two operand form on S390.
 612       S390_ONLY(&& (code == Bytecodes::_ishr || code == Bytecodes::_iushr))) {
 613     assert(count != result_op, "malformed");
 614     __ move(value, result_op);
 615     value = result_op;
 616   }
 617 
 618   assert(count->is_constant() || count->is_register(), "must be");
 619   switch(code) {
 620   case Bytecodes::_ishl:
 621   case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
 622   case Bytecodes::_ishr:
 623   case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
 624   case Bytecodes::_iushr:
 625   case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
 626   default: ShouldNotReachHere();
 627   }
 628 }
 629 
 630 
 631 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
 632   if (TwoOperandLIRForm && left_op != result_op) {
 633     assert(right_op != result_op, "malformed");
 634     __ move(left_op, result_op);
 635     left_op = result_op;
 636   }
 637 
 638   switch(code) {
 639     case Bytecodes::_iand:
 640     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
 641 
 642     case Bytecodes::_ior:
 643     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
 644 
 645     case Bytecodes::_ixor:
 646     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
 647 
 648     default: ShouldNotReachHere();
 649   }
 650 }
 651 
 652 
 653 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
 654   if (!GenerateSynchronizationCode) return;
 655   // for slow path, use debug info for state after successful locking
 656   CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
 657   __ load_stack_address_monitor(monitor_no, lock);
 658   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
 659   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
 660 }
 661 
 662 
 663 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
 664   if (!GenerateSynchronizationCode) return;
 665   // setup registers
 666   LIR_Opr hdr = lock;
 667   lock = new_hdr;
 668   CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
 669   __ load_stack_address_monitor(monitor_no, lock);
 670   __ unlock_object(hdr, object, lock, scratch, slow_path);
 671 }
 672 
 673 #ifndef PRODUCT
 674 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
 675   if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
 676     tty->print_cr("   ###class not loaded at new bci %d", new_instance->printable_bci());
 677   } else if (PrintNotLoaded && (TieredCompilation && new_instance->is_unresolved())) {
 678     tty->print_cr("   ###class not resolved at new bci %d", new_instance->printable_bci());
 679   }
 680 }
 681 #endif
 682 
 683 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
 684   klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
 685   // If klass is not loaded we do not know if the klass has finalizers:
 686   if (UseFastNewInstance && klass->is_loaded()
 687       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
 688 
 689     Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
 690 
 691     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
 692 
 693     assert(klass->is_loaded(), "must be loaded");
 694     // allocate space for instance
 695     assert(klass->size_helper() >= 0, "illegal instance size");
 696     const int instance_size = align_object_size(klass->size_helper());
 697     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
 698                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
 699   } else {
 700     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
 701     __ branch(lir_cond_always, T_ILLEGAL, slow_path);
 702     __ branch_destination(slow_path->continuation());
 703   }
 704 }
 705 
 706 
 707 static bool is_constant_zero(Instruction* inst) {
 708   IntConstant* c = inst->type()->as_IntConstant();
 709   if (c) {
 710     return (c->value() == 0);
 711   }
 712   return false;
 713 }
 714 
 715 
 716 static bool positive_constant(Instruction* inst) {
 717   IntConstant* c = inst->type()->as_IntConstant();
 718   if (c) {
 719     return (c->value() >= 0);
 720   }
 721   return false;
 722 }
 723 
 724 
 725 static ciArrayKlass* as_array_klass(ciType* type) {
 726   if (type != NULL && type->is_array_klass() && type->is_loaded()) {
 727     return (ciArrayKlass*)type;
 728   } else {
 729     return NULL;
 730   }
 731 }
 732 
 733 static ciType* phi_declared_type(Phi* phi) {
 734   ciType* t = phi->operand_at(0)->declared_type();
 735   if (t == NULL) {
 736     return NULL;
 737   }
 738   for(int i = 1; i < phi->operand_count(); i++) {
 739     if (t != phi->operand_at(i)->declared_type()) {
 740       return NULL;
 741     }
 742   }
 743   return t;
 744 }
 745 
 746 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
 747   Instruction* src     = x->argument_at(0);
 748   Instruction* src_pos = x->argument_at(1);
 749   Instruction* dst     = x->argument_at(2);
 750   Instruction* dst_pos = x->argument_at(3);
 751   Instruction* length  = x->argument_at(4);
 752 
 753   // first try to identify the likely type of the arrays involved
 754   ciArrayKlass* expected_type = NULL;
 755   bool is_exact = false, src_objarray = false, dst_objarray = false;
 756   {
 757     ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
 758     ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
 759     Phi* phi;
 760     if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) {
 761       src_declared_type = as_array_klass(phi_declared_type(phi));
 762     }
 763     ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
 764     ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
 765     if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) {
 766       dst_declared_type = as_array_klass(phi_declared_type(phi));
 767     }
 768 
 769     if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
 770       // the types exactly match so the type is fully known
 771       is_exact = true;
 772       expected_type = src_exact_type;
 773     } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
 774       ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
 775       ciArrayKlass* src_type = NULL;
 776       if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
 777         src_type = (ciArrayKlass*) src_exact_type;
 778       } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
 779         src_type = (ciArrayKlass*) src_declared_type;
 780       }
 781       if (src_type != NULL) {
 782         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
 783           is_exact = true;
 784           expected_type = dst_type;
 785         }
 786       }
 787     }
 788     // at least pass along a good guess
 789     if (expected_type == NULL) expected_type = dst_exact_type;
 790     if (expected_type == NULL) expected_type = src_declared_type;
 791     if (expected_type == NULL) expected_type = dst_declared_type;
 792 
 793     src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
 794     dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
 795   }
 796 
 797   // if a probable array type has been identified, figure out if any
 798   // of the required checks for a fast case can be elided.
 799   int flags = LIR_OpArrayCopy::all_flags;
 800 
 801   if (!src_objarray)
 802     flags &= ~LIR_OpArrayCopy::src_objarray;
 803   if (!dst_objarray)
 804     flags &= ~LIR_OpArrayCopy::dst_objarray;
 805 
 806   if (!x->arg_needs_null_check(0))
 807     flags &= ~LIR_OpArrayCopy::src_null_check;
 808   if (!x->arg_needs_null_check(2))
 809     flags &= ~LIR_OpArrayCopy::dst_null_check;
 810 
 811 
 812   if (expected_type != NULL) {
 813     Value length_limit = NULL;
 814 
 815     IfOp* ifop = length->as_IfOp();
 816     if (ifop != NULL) {
 817       // look for expressions like min(v, a.length) which ends up as
 818       //   x > y ? y : x  or  x >= y ? y : x
 819       if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
 820           ifop->x() == ifop->fval() &&
 821           ifop->y() == ifop->tval()) {
 822         length_limit = ifop->y();
 823       }
 824     }
 825 
 826     // try to skip null checks and range checks
 827     NewArray* src_array = src->as_NewArray();
 828     if (src_array != NULL) {
 829       flags &= ~LIR_OpArrayCopy::src_null_check;
 830       if (length_limit != NULL &&
 831           src_array->length() == length_limit &&
 832           is_constant_zero(src_pos)) {
 833         flags &= ~LIR_OpArrayCopy::src_range_check;
 834       }
 835     }
 836 
 837     NewArray* dst_array = dst->as_NewArray();
 838     if (dst_array != NULL) {
 839       flags &= ~LIR_OpArrayCopy::dst_null_check;
 840       if (length_limit != NULL &&
 841           dst_array->length() == length_limit &&
 842           is_constant_zero(dst_pos)) {
 843         flags &= ~LIR_OpArrayCopy::dst_range_check;
 844       }
 845     }
 846 
 847     // check from incoming constant values
 848     if (positive_constant(src_pos))
 849       flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
 850     if (positive_constant(dst_pos))
 851       flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
 852     if (positive_constant(length))
 853       flags &= ~LIR_OpArrayCopy::length_positive_check;
 854 
 855     // see if the range check can be elided, which might also imply
 856     // that src or dst is non-null.
 857     ArrayLength* al = length->as_ArrayLength();
 858     if (al != NULL) {
 859       if (al->array() == src) {
 860         // it's the length of the source array
 861         flags &= ~LIR_OpArrayCopy::length_positive_check;
 862         flags &= ~LIR_OpArrayCopy::src_null_check;
 863         if (is_constant_zero(src_pos))
 864           flags &= ~LIR_OpArrayCopy::src_range_check;
 865       }
 866       if (al->array() == dst) {
 867         // it's the length of the destination array
 868         flags &= ~LIR_OpArrayCopy::length_positive_check;
 869         flags &= ~LIR_OpArrayCopy::dst_null_check;
 870         if (is_constant_zero(dst_pos))
 871           flags &= ~LIR_OpArrayCopy::dst_range_check;
 872       }
 873     }
 874     if (is_exact) {
 875       flags &= ~LIR_OpArrayCopy::type_check;
 876     }
 877   }
 878 
 879   IntConstant* src_int = src_pos->type()->as_IntConstant();
 880   IntConstant* dst_int = dst_pos->type()->as_IntConstant();
 881   if (src_int && dst_int) {
 882     int s_offs = src_int->value();
 883     int d_offs = dst_int->value();
 884     if (src_int->value() >= dst_int->value()) {
 885       flags &= ~LIR_OpArrayCopy::overlapping;
 886     }
 887     if (expected_type != NULL) {
 888       BasicType t = expected_type->element_type()->basic_type();
 889       int element_size = type2aelembytes(t);
 890       if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
 891           ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) {
 892         flags &= ~LIR_OpArrayCopy::unaligned;
 893       }
 894     }
 895   } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
 896     // src and dest positions are the same, or dst is zero so assume
 897     // nonoverlapping copy.
 898     flags &= ~LIR_OpArrayCopy::overlapping;
 899   }
 900 
 901   if (src == dst) {
 902     // moving within a single array so no type checks are needed
 903     if (flags & LIR_OpArrayCopy::type_check) {
 904       flags &= ~LIR_OpArrayCopy::type_check;
 905     }
 906   }
 907   *flagsp = flags;
 908   *expected_typep = (ciArrayKlass*)expected_type;
 909 }
 910 
 911 
 912 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
 913   assert(opr->is_register(), "why spill if item is not register?");
 914 
 915   if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) {
 916     LIR_Opr result = new_register(T_FLOAT);
 917     set_vreg_flag(result, must_start_in_memory);
 918     assert(opr->is_register(), "only a register can be spilled");
 919     assert(opr->value_type()->is_float(), "rounding only for floats available");
 920     __ roundfp(opr, LIR_OprFact::illegalOpr, result);
 921     return result;
 922   }
 923   return opr;
 924 }
 925 
 926 
 927 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
 928   assert(type2size[t] == type2size[value->type()],
 929          "size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type()));
 930   if (!value->is_register()) {
 931     // force into a register
 932     LIR_Opr r = new_register(value->type());
 933     __ move(value, r);
 934     value = r;
 935   }
 936 
 937   // create a spill location
 938   LIR_Opr tmp = new_register(t);
 939   set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
 940 
 941   // move from register to spill
 942   __ move(value, tmp);
 943   return tmp;
 944 }
 945 
 946 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
 947   if (if_instr->should_profile()) {
 948     ciMethod* method = if_instr->profiled_method();
 949     assert(method != NULL, "method should be set if branch is profiled");
 950     ciMethodData* md = method->method_data_or_null();
 951     assert(md != NULL, "Sanity");
 952     ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
 953     assert(data != NULL, "must have profiling data");
 954     assert(data->is_BranchData(), "need BranchData for two-way branches");
 955     int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
 956     int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
 957     if (if_instr->is_swapped()) {
 958       int t = taken_count_offset;
 959       taken_count_offset = not_taken_count_offset;
 960       not_taken_count_offset = t;
 961     }
 962 
 963     LIR_Opr md_reg = new_register(T_METADATA);
 964     __ metadata2reg(md->constant_encoding(), md_reg);
 965 
 966     LIR_Opr data_offset_reg = new_pointer_register();
 967     __ cmove(lir_cond(cond),
 968              LIR_OprFact::intptrConst(taken_count_offset),
 969              LIR_OprFact::intptrConst(not_taken_count_offset),
 970              data_offset_reg, as_BasicType(if_instr->x()->type()));
 971 
 972     // MDO cells are intptr_t, so the data_reg width is arch-dependent.
 973     LIR_Opr data_reg = new_pointer_register();
 974     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
 975     __ move(data_addr, data_reg);
 976     // Use leal instead of add to avoid destroying condition codes on x86
 977     LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
 978     __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
 979     __ move(data_reg, data_addr);
 980   }
 981 }
 982 
 983 // Phi technique:
 984 // This is about passing live values from one basic block to the other.
 985 // In code generated with Java it is rather rare that more than one
 986 // value is on the stack from one basic block to the other.
 987 // We optimize our technique for efficient passing of one value
 988 // (of type long, int, double..) but it can be extended.
 989 // When entering or leaving a basic block, all registers and all spill
 990 // slots are release and empty. We use the released registers
 991 // and spill slots to pass the live values from one block
 992 // to the other. The topmost value, i.e., the value on TOS of expression
 993 // stack is passed in registers. All other values are stored in spilling
 994 // area. Every Phi has an index which designates its spill slot
 995 // At exit of a basic block, we fill the register(s) and spill slots.
 996 // At entry of a basic block, the block_prolog sets up the content of phi nodes
 997 // and locks necessary registers and spilling slots.
 998 
 999 
1000 // move current value to referenced phi function
1001 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
1002   Phi* phi = sux_val->as_Phi();
1003   // cur_val can be null without phi being null in conjunction with inlining
1004   if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
1005     Phi* cur_phi = cur_val->as_Phi();
1006     if (cur_phi != NULL && cur_phi->is_illegal()) {
1007       // Phi and local would need to get invalidated
1008       // (which is unexpected for Linear Scan).
1009       // But this case is very rare so we simply bail out.
1010       bailout("propagation of illegal phi");
1011       return;
1012     }
1013     LIR_Opr operand = cur_val->operand();
1014     if (operand->is_illegal()) {
1015       assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
1016              "these can be produced lazily");
1017       operand = operand_for_instruction(cur_val);
1018     }
1019     resolver->move(operand, operand_for_instruction(phi));
1020   }
1021 }
1022 
1023 
1024 // Moves all stack values into their PHI position
1025 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
1026   BlockBegin* bb = block();
1027   if (bb->number_of_sux() == 1) {
1028     BlockBegin* sux = bb->sux_at(0);
1029     assert(sux->number_of_preds() > 0, "invalid CFG");
1030 
1031     // a block with only one predecessor never has phi functions
1032     if (sux->number_of_preds() > 1) {
1033       int max_phis = cur_state->stack_size() + cur_state->locals_size();
1034       PhiResolver resolver(this, _virtual_register_number + max_phis * 2);
1035 
1036       ValueStack* sux_state = sux->state();
1037       Value sux_value;
1038       int index;
1039 
1040       assert(cur_state->scope() == sux_state->scope(), "not matching");
1041       assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
1042       assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
1043 
1044       for_each_stack_value(sux_state, index, sux_value) {
1045         move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
1046       }
1047 
1048       for_each_local_value(sux_state, index, sux_value) {
1049         move_to_phi(&resolver, cur_state->local_at(index), sux_value);
1050       }
1051 
1052       assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
1053     }
1054   }
1055 }
1056 
1057 
1058 LIR_Opr LIRGenerator::new_register(BasicType type) {
1059   int vreg = _virtual_register_number;
1060   // add a little fudge factor for the bailout, since the bailout is
1061   // only checked periodically.  This gives a few extra registers to
1062   // hand out before we really run out, which helps us keep from
1063   // tripping over assertions.
1064   if (vreg + 20 >= LIR_OprDesc::vreg_max) {
1065     bailout("out of virtual registers");
1066     if (vreg + 2 >= LIR_OprDesc::vreg_max) {
1067       // wrap it around
1068       _virtual_register_number = LIR_OprDesc::vreg_base;
1069     }
1070   }
1071   _virtual_register_number += 1;
1072   return LIR_OprFact::virtual_register(vreg, type);
1073 }
1074 
1075 
1076 // Try to lock using register in hint
1077 LIR_Opr LIRGenerator::rlock(Value instr) {
1078   return new_register(instr->type());
1079 }
1080 
1081 
1082 // does an rlock and sets result
1083 LIR_Opr LIRGenerator::rlock_result(Value x) {
1084   LIR_Opr reg = rlock(x);
1085   set_result(x, reg);
1086   return reg;
1087 }
1088 
1089 
1090 // does an rlock and sets result
1091 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
1092   LIR_Opr reg;
1093   switch (type) {
1094   case T_BYTE:
1095   case T_BOOLEAN:
1096     reg = rlock_byte(type);
1097     break;
1098   default:
1099     reg = rlock(x);
1100     break;
1101   }
1102 
1103   set_result(x, reg);
1104   return reg;
1105 }
1106 
1107 
1108 //---------------------------------------------------------------------
1109 ciObject* LIRGenerator::get_jobject_constant(Value value) {
1110   ObjectType* oc = value->type()->as_ObjectType();
1111   if (oc) {
1112     return oc->constant_value();
1113   }
1114   return NULL;
1115 }
1116 
1117 
1118 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
1119   assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
1120   assert(block()->next() == x, "ExceptionObject must be first instruction of block");
1121 
1122   // no moves are created for phi functions at the begin of exception
1123   // handlers, so assign operands manually here
1124   for_each_phi_fun(block(), phi,
1125                    operand_for_instruction(phi));
1126 
1127   LIR_Opr thread_reg = getThreadPointer();
1128   __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
1129                exceptionOopOpr());
1130   __ move_wide(LIR_OprFact::oopConst(NULL),
1131                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
1132   __ move_wide(LIR_OprFact::oopConst(NULL),
1133                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
1134 
1135   LIR_Opr result = new_register(T_OBJECT);
1136   __ move(exceptionOopOpr(), result);
1137   set_result(x, result);
1138 }
1139 
1140 
1141 //----------------------------------------------------------------------
1142 //----------------------------------------------------------------------
1143 //----------------------------------------------------------------------
1144 //----------------------------------------------------------------------
1145 //                        visitor functions
1146 //----------------------------------------------------------------------
1147 //----------------------------------------------------------------------
1148 //----------------------------------------------------------------------
1149 //----------------------------------------------------------------------
1150 
1151 void LIRGenerator::do_Phi(Phi* x) {
1152   // phi functions are never visited directly
1153   ShouldNotReachHere();
1154 }
1155 
1156 
1157 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
1158 void LIRGenerator::do_Constant(Constant* x) {
1159   if (x->state_before() != NULL) {
1160     // Any constant with a ValueStack requires patching so emit the patch here
1161     LIR_Opr reg = rlock_result(x);
1162     CodeEmitInfo* info = state_for(x, x->state_before());
1163     __ oop2reg_patch(NULL, reg, info);
1164   } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
1165     if (!x->is_pinned()) {
1166       // unpinned constants are handled specially so that they can be
1167       // put into registers when they are used multiple times within a
1168       // block.  After the block completes their operand will be
1169       // cleared so that other blocks can't refer to that register.
1170       set_result(x, load_constant(x));
1171     } else {
1172       LIR_Opr res = x->operand();
1173       if (!res->is_valid()) {
1174         res = LIR_OprFact::value_type(x->type());
1175       }
1176       if (res->is_constant()) {
1177         LIR_Opr reg = rlock_result(x);
1178         __ move(res, reg);
1179       } else {
1180         set_result(x, res);
1181       }
1182     }
1183   } else {
1184     set_result(x, LIR_OprFact::value_type(x->type()));
1185   }
1186 }
1187 
1188 
1189 void LIRGenerator::do_Local(Local* x) {
1190   // operand_for_instruction has the side effect of setting the result
1191   // so there's no need to do it here.
1192   operand_for_instruction(x);
1193 }
1194 
1195 
1196 void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) {
1197   Unimplemented();
1198 }
1199 
1200 
1201 void LIRGenerator::do_Return(Return* x) {
1202   if (compilation()->env()->dtrace_method_probes()) {
1203     BasicTypeList signature;
1204     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
1205     signature.append(T_METADATA); // Method*
1206     LIR_OprList* args = new LIR_OprList();
1207     args->append(getThreadPointer());
1208     LIR_Opr meth = new_register(T_METADATA);
1209     __ metadata2reg(method()->constant_encoding(), meth);
1210     args->append(meth);
1211     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
1212   }
1213 
1214   if (x->type()->is_void()) {
1215     __ return_op(LIR_OprFact::illegalOpr);
1216   } else {
1217     LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
1218     LIRItem result(x->result(), this);
1219 
1220     result.load_item_force(reg);
1221     __ return_op(result.result());
1222   }
1223   set_no_result(x);
1224 }
1225 
1226 // Examble: ref.get()
1227 // Combination of LoadField and g1 pre-write barrier
1228 void LIRGenerator::do_Reference_get(Intrinsic* x) {
1229 
1230   const int referent_offset = java_lang_ref_Reference::referent_offset;
1231   guarantee(referent_offset > 0, "referent offset not initialized");
1232 
1233   assert(x->number_of_arguments() == 1, "wrong type");
1234 
1235   LIRItem reference(x->argument_at(0), this);
1236   reference.load_item();
1237 
1238   // need to perform the null check on the reference objecy
1239   CodeEmitInfo* info = NULL;
1240   if (x->needs_null_check()) {
1241     info = state_for(x);
1242   }
1243 
1244   LIR_Address* referent_field_adr =
1245     new LIR_Address(reference.result(), referent_offset, T_OBJECT);
1246 
1247   LIR_Opr result = rlock_result(x);
1248 
1249   __ load(referent_field_adr, result, info);
1250 
1251   // Register the value in the referent field with the pre-barrier
1252   pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
1253               result /* pre_val */,
1254               false  /* do_load */,
1255               false  /* patch */,
1256               NULL   /* info */);
1257 }
1258 
1259 // Example: clazz.isInstance(object)
1260 void LIRGenerator::do_isInstance(Intrinsic* x) {
1261   assert(x->number_of_arguments() == 2, "wrong type");
1262 
1263   // TODO could try to substitute this node with an equivalent InstanceOf
1264   // if clazz is known to be a constant Class. This will pick up newly found
1265   // constants after HIR construction. I'll leave this to a future change.
1266 
1267   // as a first cut, make a simple leaf call to runtime to stay platform independent.
1268   // could follow the aastore example in a future change.
1269 
1270   LIRItem clazz(x->argument_at(0), this);
1271   LIRItem object(x->argument_at(1), this);
1272   clazz.load_item();
1273   object.load_item();
1274   LIR_Opr result = rlock_result(x);
1275 
1276   // need to perform null check on clazz
1277   if (x->needs_null_check()) {
1278     CodeEmitInfo* info = state_for(x);
1279     __ null_check(clazz.result(), info);
1280   }
1281 
1282   LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
1283                                      CAST_FROM_FN_PTR(address, Runtime1::is_instance_of),
1284                                      x->type(),
1285                                      NULL); // NULL CodeEmitInfo results in a leaf call
1286   __ move(call_result, result);
1287 }
1288 
1289 // Example: object.getClass ()
1290 void LIRGenerator::do_getClass(Intrinsic* x) {
1291   assert(x->number_of_arguments() == 1, "wrong type");
1292 
1293   LIRItem rcvr(x->argument_at(0), this);
1294   rcvr.load_item();
1295   LIR_Opr temp = new_register(T_METADATA);
1296   LIR_Opr result = rlock_result(x);
1297 
1298   // need to perform the null check on the rcvr
1299   CodeEmitInfo* info = NULL;
1300   if (x->needs_null_check()) {
1301     info = state_for(x);
1302   }
1303 
1304   // FIXME T_ADDRESS should actually be T_METADATA but it can't because the
1305   // meaning of these two is mixed up (see JDK-8026837).
1306   __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), temp, info);
1307   __ move_wide(new LIR_Address(temp, in_bytes(Klass::java_mirror_offset()), T_ADDRESS), result);
1308   // mirror = ((OopHandle)mirror)->resolve();
1309   __ move_wide(new LIR_Address(result, T_OBJECT), result);
1310 }
1311 
1312 // java.lang.Class::isPrimitive()
1313 void LIRGenerator::do_isPrimitive(Intrinsic* x) {
1314   assert(x->number_of_arguments() == 1, "wrong type");
1315 
1316   LIRItem rcvr(x->argument_at(0), this);
1317   rcvr.load_item();
1318   LIR_Opr temp = new_register(T_METADATA);
1319   LIR_Opr result = rlock_result(x);
1320 
1321   CodeEmitInfo* info = NULL;
1322   if (x->needs_null_check()) {
1323     info = state_for(x);
1324   }
1325 
1326   __ move(new LIR_Address(rcvr.result(), java_lang_Class::klass_offset_in_bytes(), T_ADDRESS), temp, info);
1327   __ cmp(lir_cond_notEqual, temp, LIR_OprFact::intConst(0));
1328   __ cmove(lir_cond_notEqual, LIR_OprFact::intConst(0), LIR_OprFact::intConst(1), result, T_BOOLEAN);
1329 }
1330 
1331 
1332 // Example: Thread.currentThread()
1333 void LIRGenerator::do_currentThread(Intrinsic* x) {
1334   assert(x->number_of_arguments() == 0, "wrong type");
1335   LIR_Opr reg = rlock_result(x);
1336   __ move_wide(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg);
1337 }
1338 
1339 
1340 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
1341   assert(x->number_of_arguments() == 1, "wrong type");
1342   LIRItem receiver(x->argument_at(0), this);
1343 
1344   receiver.load_item();
1345   BasicTypeList signature;
1346   signature.append(T_OBJECT); // receiver
1347   LIR_OprList* args = new LIR_OprList();
1348   args->append(receiver.result());
1349   CodeEmitInfo* info = state_for(x, x->state());
1350   call_runtime(&signature, args,
1351                CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
1352                voidType, info);
1353 
1354   set_no_result(x);
1355 }
1356 
1357 
1358 //------------------------local access--------------------------------------
1359 
1360 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
1361   if (x->operand()->is_illegal()) {
1362     Constant* c = x->as_Constant();
1363     if (c != NULL) {
1364       x->set_operand(LIR_OprFact::value_type(c->type()));
1365     } else {
1366       assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
1367       // allocate a virtual register for this local or phi
1368       x->set_operand(rlock(x));
1369       _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
1370     }
1371   }
1372   return x->operand();
1373 }
1374 
1375 
1376 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
1377   if (opr->is_virtual()) {
1378     return instruction_for_vreg(opr->vreg_number());
1379   }
1380   return NULL;
1381 }
1382 
1383 
1384 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
1385   if (reg_num < _instruction_for_operand.length()) {
1386     return _instruction_for_operand.at(reg_num);
1387   }
1388   return NULL;
1389 }
1390 
1391 
1392 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
1393   if (_vreg_flags.size_in_bits() == 0) {
1394     BitMap2D temp(100, num_vreg_flags);
1395     _vreg_flags = temp;
1396   }
1397   _vreg_flags.at_put_grow(vreg_num, f, true);
1398 }
1399 
1400 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
1401   if (!_vreg_flags.is_valid_index(vreg_num, f)) {
1402     return false;
1403   }
1404   return _vreg_flags.at(vreg_num, f);
1405 }
1406 
1407 
1408 // Block local constant handling.  This code is useful for keeping
1409 // unpinned constants and constants which aren't exposed in the IR in
1410 // registers.  Unpinned Constant instructions have their operands
1411 // cleared when the block is finished so that other blocks can't end
1412 // up referring to their registers.
1413 
1414 LIR_Opr LIRGenerator::load_constant(Constant* x) {
1415   assert(!x->is_pinned(), "only for unpinned constants");
1416   _unpinned_constants.append(x);
1417   return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1418 }
1419 
1420 
1421 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1422   BasicType t = c->type();
1423   for (int i = 0; i < _constants.length(); i++) {
1424     LIR_Const* other = _constants.at(i);
1425     if (t == other->type()) {
1426       switch (t) {
1427       case T_INT:
1428       case T_FLOAT:
1429         if (c->as_jint_bits() != other->as_jint_bits()) continue;
1430         break;
1431       case T_LONG:
1432       case T_DOUBLE:
1433         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1434         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1435         break;
1436       case T_OBJECT:
1437         if (c->as_jobject() != other->as_jobject()) continue;
1438         break;
1439       default:
1440         break;
1441       }
1442       return _reg_for_constants.at(i);
1443     }
1444   }
1445 
1446   LIR_Opr result = new_register(t);
1447   __ move((LIR_Opr)c, result);
1448   _constants.append(c);
1449   _reg_for_constants.append(result);
1450   return result;
1451 }
1452 
1453 // Various barriers
1454 
1455 void LIRGenerator::pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
1456                                bool do_load, bool patch, CodeEmitInfo* info) {
1457   // Do the pre-write barrier, if any.
1458   switch (_bs->kind()) {
1459 #if INCLUDE_ALL_GCS
1460     case BarrierSet::G1SATBCTLogging:
1461       G1SATBCardTableModRef_pre_barrier(addr_opr, pre_val, do_load, patch, info);
1462       break;
1463 #endif // INCLUDE_ALL_GCS
1464     case BarrierSet::CardTableForRS:
1465     case BarrierSet::CardTableExtension:
1466       // No pre barriers
1467       break;
1468     case BarrierSet::ModRef:
1469       // No pre barriers
1470       break;
1471     default      :
1472       ShouldNotReachHere();
1473 
1474   }
1475 }
1476 
1477 void LIRGenerator::post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1478   switch (_bs->kind()) {
1479 #if INCLUDE_ALL_GCS
1480     case BarrierSet::G1SATBCTLogging:
1481       G1SATBCardTableModRef_post_barrier(addr,  new_val);
1482       break;
1483 #endif // INCLUDE_ALL_GCS
1484     case BarrierSet::CardTableForRS:
1485     case BarrierSet::CardTableExtension:
1486       CardTableModRef_post_barrier(addr,  new_val);
1487       break;
1488     case BarrierSet::ModRef:
1489       // No post barriers
1490       break;
1491     default      :
1492       ShouldNotReachHere();
1493     }
1494 }
1495 
1496 ////////////////////////////////////////////////////////////////////////
1497 #if INCLUDE_ALL_GCS
1498 
1499 void LIRGenerator::G1SATBCardTableModRef_pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
1500                                                      bool do_load, bool patch, CodeEmitInfo* info) {
1501   // First we test whether marking is in progress.
1502   BasicType flag_type;
1503   if (in_bytes(SATBMarkQueue::byte_width_of_active()) == 4) {
1504     flag_type = T_INT;
1505   } else {
1506     guarantee(in_bytes(SATBMarkQueue::byte_width_of_active()) == 1,
1507               "Assumption");
1508     // Use unsigned type T_BOOLEAN here rather than signed T_BYTE since some platforms, eg. ARM,
1509     // need to use unsigned instructions to use the large offset to load the satb_mark_queue.
1510     flag_type = T_BOOLEAN;
1511   }
1512   LIR_Opr thrd = getThreadPointer();
1513   LIR_Address* mark_active_flag_addr =
1514     new LIR_Address(thrd,
1515                     in_bytes(JavaThread::satb_mark_queue_offset() +
1516                              SATBMarkQueue::byte_offset_of_active()),
1517                     flag_type);
1518   // Read the marking-in-progress flag.
1519   LIR_Opr flag_val = new_register(T_INT);
1520   __ load(mark_active_flag_addr, flag_val);
1521   __ cmp(lir_cond_notEqual, flag_val, LIR_OprFact::intConst(0));
1522 
1523   LIR_PatchCode pre_val_patch_code = lir_patch_none;
1524 
1525   CodeStub* slow;
1526 
1527   if (do_load) {
1528     assert(pre_val == LIR_OprFact::illegalOpr, "sanity");
1529     assert(addr_opr != LIR_OprFact::illegalOpr, "sanity");
1530 
1531     if (patch)
1532       pre_val_patch_code = lir_patch_normal;
1533 
1534     pre_val = new_register(T_OBJECT);
1535 
1536     if (!addr_opr->is_address()) {
1537       assert(addr_opr->is_register(), "must be");
1538       addr_opr = LIR_OprFact::address(new LIR_Address(addr_opr, T_OBJECT));
1539     }
1540     slow = new G1PreBarrierStub(addr_opr, pre_val, pre_val_patch_code, info);
1541   } else {
1542     assert(addr_opr == LIR_OprFact::illegalOpr, "sanity");
1543     assert(pre_val->is_register(), "must be");
1544     assert(pre_val->type() == T_OBJECT, "must be an object");
1545     assert(info == NULL, "sanity");
1546 
1547     slow = new G1PreBarrierStub(pre_val);
1548   }
1549 
1550   __ branch(lir_cond_notEqual, T_INT, slow);
1551   __ branch_destination(slow->continuation());
1552 }
1553 
1554 void LIRGenerator::G1SATBCardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1555   // If the "new_val" is a constant NULL, no barrier is necessary.
1556   if (new_val->is_constant() &&
1557       new_val->as_constant_ptr()->as_jobject() == NULL) return;
1558 
1559   if (!new_val->is_register()) {
1560     LIR_Opr new_val_reg = new_register(T_OBJECT);
1561     if (new_val->is_constant()) {
1562       __ move(new_val, new_val_reg);
1563     } else {
1564       __ leal(new_val, new_val_reg);
1565     }
1566     new_val = new_val_reg;
1567   }
1568   assert(new_val->is_register(), "must be a register at this point");
1569 
1570   if (addr->is_address()) {
1571     LIR_Address* address = addr->as_address_ptr();
1572     LIR_Opr ptr = new_pointer_register();
1573     if (!address->index()->is_valid() && address->disp() == 0) {
1574       __ move(address->base(), ptr);
1575     } else {
1576       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1577       __ leal(addr, ptr);
1578     }
1579     addr = ptr;
1580   }
1581   assert(addr->is_register(), "must be a register at this point");
1582 
1583   LIR_Opr xor_res = new_pointer_register();
1584   LIR_Opr xor_shift_res = new_pointer_register();
1585   if (TwoOperandLIRForm ) {
1586     __ move(addr, xor_res);
1587     __ logical_xor(xor_res, new_val, xor_res);
1588     __ move(xor_res, xor_shift_res);
1589     __ unsigned_shift_right(xor_shift_res,
1590                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1591                             xor_shift_res,
1592                             LIR_OprDesc::illegalOpr());
1593   } else {
1594     __ logical_xor(addr, new_val, xor_res);
1595     __ unsigned_shift_right(xor_res,
1596                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1597                             xor_shift_res,
1598                             LIR_OprDesc::illegalOpr());
1599   }
1600 
1601   if (!new_val->is_register()) {
1602     LIR_Opr new_val_reg = new_register(T_OBJECT);
1603     __ leal(new_val, new_val_reg);
1604     new_val = new_val_reg;
1605   }
1606   assert(new_val->is_register(), "must be a register at this point");
1607 
1608   __ cmp(lir_cond_notEqual, xor_shift_res, LIR_OprFact::intptrConst(NULL_WORD));
1609 
1610   CodeStub* slow = new G1PostBarrierStub(addr, new_val);
1611   __ branch(lir_cond_notEqual, LP64_ONLY(T_LONG) NOT_LP64(T_INT), slow);
1612   __ branch_destination(slow->continuation());
1613 }
1614 
1615 #endif // INCLUDE_ALL_GCS
1616 ////////////////////////////////////////////////////////////////////////
1617 
1618 void LIRGenerator::CardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1619   CardTableModRefBS* ct = barrier_set_cast<CardTableModRefBS>(_bs);
1620   assert(sizeof(*(ct->byte_map_base)) == sizeof(jbyte), "adjust this code");
1621   LIR_Const* card_table_base = new LIR_Const(ct->byte_map_base);
1622   if (addr->is_address()) {
1623     LIR_Address* address = addr->as_address_ptr();
1624     // ptr cannot be an object because we use this barrier for array card marks
1625     // and addr can point in the middle of an array.
1626     LIR_Opr ptr = new_pointer_register();
1627     if (!address->index()->is_valid() && address->disp() == 0) {
1628       __ move(address->base(), ptr);
1629     } else {
1630       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1631       __ leal(addr, ptr);
1632     }
1633     addr = ptr;
1634   }
1635   assert(addr->is_register(), "must be a register at this point");
1636 
1637 #ifdef CARDTABLEMODREF_POST_BARRIER_HELPER
1638   CardTableModRef_post_barrier_helper(addr, card_table_base);
1639 #else
1640   LIR_Opr tmp = new_pointer_register();
1641   if (TwoOperandLIRForm) {
1642     __ move(addr, tmp);
1643     __ unsigned_shift_right(tmp, CardTableModRefBS::card_shift, tmp);
1644   } else {
1645     __ unsigned_shift_right(addr, CardTableModRefBS::card_shift, tmp);
1646   }
1647 
1648   LIR_Address* card_addr;
1649   if (can_inline_as_constant(card_table_base)) {
1650     card_addr = new LIR_Address(tmp, card_table_base->as_jint(), T_BYTE);
1651   } else {
1652     card_addr = new LIR_Address(tmp, load_constant(card_table_base), T_BYTE);
1653   }
1654 
1655   LIR_Opr dirty = LIR_OprFact::intConst(CardTableModRefBS::dirty_card_val());
1656   if (UseCondCardMark) {
1657     LIR_Opr cur_value = new_register(T_INT);
1658     if (UseConcMarkSweepGC) {
1659       __ membar_storeload();
1660     }
1661     __ move(card_addr, cur_value);
1662 
1663     LabelObj* L_already_dirty = new LabelObj();
1664     __ cmp(lir_cond_equal, cur_value, dirty);
1665     __ branch(lir_cond_equal, T_BYTE, L_already_dirty->label());
1666     __ move(dirty, card_addr);
1667     __ branch_destination(L_already_dirty->label());
1668   } else {
1669     if (UseConcMarkSweepGC && CMSPrecleaningEnabled) {
1670       __ membar_storestore();
1671     }
1672     __ move(dirty, card_addr);
1673   }
1674 #endif
1675 }
1676 
1677 
1678 //------------------------field access--------------------------------------
1679 
1680 // Comment copied form templateTable_i486.cpp
1681 // ----------------------------------------------------------------------------
1682 // Volatile variables demand their effects be made known to all CPU's in
1683 // order.  Store buffers on most chips allow reads & writes to reorder; the
1684 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1685 // memory barrier (i.e., it's not sufficient that the interpreter does not
1686 // reorder volatile references, the hardware also must not reorder them).
1687 //
1688 // According to the new Java Memory Model (JMM):
1689 // (1) All volatiles are serialized wrt to each other.
1690 // ALSO reads & writes act as aquire & release, so:
1691 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1692 // the read float up to before the read.  It's OK for non-volatile memory refs
1693 // that happen before the volatile read to float down below it.
1694 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1695 // that happen BEFORE the write float down to after the write.  It's OK for
1696 // non-volatile memory refs that happen after the volatile write to float up
1697 // before it.
1698 //
1699 // We only put in barriers around volatile refs (they are expensive), not
1700 // _between_ memory refs (that would require us to track the flavor of the
1701 // previous memory refs).  Requirements (2) and (3) require some barriers
1702 // before volatile stores and after volatile loads.  These nearly cover
1703 // requirement (1) but miss the volatile-store-volatile-load case.  This final
1704 // case is placed after volatile-stores although it could just as well go
1705 // before volatile-loads.
1706 
1707 
1708 void LIRGenerator::do_StoreField(StoreField* x) {
1709   bool needs_patching = x->needs_patching();
1710   bool is_volatile = x->field()->is_volatile();
1711   BasicType field_type = x->field_type();
1712   bool is_oop = (field_type == T_ARRAY || field_type == T_OBJECT);
1713 
1714   CodeEmitInfo* info = NULL;
1715   if (needs_patching) {
1716     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1717     info = state_for(x, x->state_before());
1718   } else if (x->needs_null_check()) {
1719     NullCheck* nc = x->explicit_null_check();
1720     if (nc == NULL) {
1721       info = state_for(x);
1722     } else {
1723       info = state_for(nc);
1724     }
1725   }
1726 
1727 
1728   LIRItem object(x->obj(), this);
1729   LIRItem value(x->value(),  this);
1730 
1731   object.load_item();
1732 
1733   if (is_volatile || needs_patching) {
1734     // load item if field is volatile (fewer special cases for volatiles)
1735     // load item if field not initialized
1736     // load item if field not constant
1737     // because of code patching we cannot inline constants
1738     if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1739       value.load_byte_item();
1740     } else  {
1741       value.load_item();
1742     }
1743   } else {
1744     value.load_for_store(field_type);
1745   }
1746 
1747   set_no_result(x);
1748 
1749 #ifndef PRODUCT
1750   if (PrintNotLoaded && needs_patching) {
1751     tty->print_cr("   ###class not loaded at store_%s bci %d",
1752                   x->is_static() ?  "static" : "field", x->printable_bci());
1753   }
1754 #endif
1755 
1756   if (x->needs_null_check() &&
1757       (needs_patching ||
1758        MacroAssembler::needs_explicit_null_check(x->offset()))) {
1759     // Emit an explicit null check because the offset is too large.
1760     // If the class is not loaded and the object is NULL, we need to deoptimize to throw a
1761     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1762     __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1763   }
1764 
1765   LIR_Address* address;
1766   if (needs_patching) {
1767     // we need to patch the offset in the instruction so don't allow
1768     // generate_address to try to be smart about emitting the -1.
1769     // Otherwise the patching code won't know how to find the
1770     // instruction to patch.
1771     address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
1772   } else {
1773     address = generate_address(object.result(), x->offset(), field_type);
1774   }
1775 
1776   if (is_volatile && os::is_MP()) {
1777     __ membar_release();
1778   }
1779 
1780   if (is_oop) {
1781     // Do the pre-write barrier, if any.
1782     pre_barrier(LIR_OprFact::address(address),
1783                 LIR_OprFact::illegalOpr /* pre_val */,
1784                 true /* do_load*/,
1785                 needs_patching,
1786                 (info ? new CodeEmitInfo(info) : NULL));
1787   }
1788 
1789   bool needs_atomic_access = is_volatile || AlwaysAtomicAccesses;
1790   if (needs_atomic_access && !needs_patching) {
1791     volatile_field_store(value.result(), address, info);
1792   } else {
1793     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1794     __ store(value.result(), address, info, patch_code);
1795   }
1796 
1797   if (is_oop) {
1798     // Store to object so mark the card of the header
1799     post_barrier(object.result(), value.result());
1800   }
1801 
1802   if (!support_IRIW_for_not_multiple_copy_atomic_cpu && is_volatile && os::is_MP()) {
1803     __ membar();
1804   }
1805 }
1806 
1807 
1808 void LIRGenerator::do_LoadField(LoadField* x) {
1809   bool needs_patching = x->needs_patching();
1810   bool is_volatile = x->field()->is_volatile();
1811   BasicType field_type = x->field_type();
1812 
1813   CodeEmitInfo* info = NULL;
1814   if (needs_patching) {
1815     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1816     info = state_for(x, x->state_before());
1817   } else if (x->needs_null_check()) {
1818     NullCheck* nc = x->explicit_null_check();
1819     if (nc == NULL) {
1820       info = state_for(x);
1821     } else {
1822       info = state_for(nc);
1823     }
1824   }
1825 
1826   LIRItem object(x->obj(), this);
1827 
1828   object.load_item();
1829 
1830 #ifndef PRODUCT
1831   if (PrintNotLoaded && needs_patching) {
1832     tty->print_cr("   ###class not loaded at load_%s bci %d",
1833                   x->is_static() ?  "static" : "field", x->printable_bci());
1834   }
1835 #endif
1836 
1837   bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception();
1838   if (x->needs_null_check() &&
1839       (needs_patching ||
1840        MacroAssembler::needs_explicit_null_check(x->offset()) ||
1841        stress_deopt)) {
1842     LIR_Opr obj = object.result();
1843     if (stress_deopt) {
1844       obj = new_register(T_OBJECT);
1845       __ move(LIR_OprFact::oopConst(NULL), obj);
1846     }
1847     // Emit an explicit null check because the offset is too large.
1848     // If the class is not loaded and the object is NULL, we need to deoptimize to throw a
1849     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1850     __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1851   }
1852 
1853   LIR_Opr reg = rlock_result(x, field_type);
1854   LIR_Address* address;
1855   if (needs_patching) {
1856     // we need to patch the offset in the instruction so don't allow
1857     // generate_address to try to be smart about emitting the -1.
1858     // Otherwise the patching code won't know how to find the
1859     // instruction to patch.
1860     address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
1861   } else {
1862     address = generate_address(object.result(), x->offset(), field_type);
1863   }
1864 
1865   if (support_IRIW_for_not_multiple_copy_atomic_cpu && is_volatile && os::is_MP()) {
1866     __ membar();
1867   }
1868 
1869   bool needs_atomic_access = is_volatile || AlwaysAtomicAccesses;
1870   if (needs_atomic_access && !needs_patching) {
1871     volatile_field_load(address, reg, info);
1872   } else {
1873     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1874     __ load(address, reg, info, patch_code);
1875   }
1876 
1877   if (is_volatile && os::is_MP()) {
1878     __ membar_acquire();
1879   }
1880 }
1881 
1882 
1883 //------------------------java.nio.Buffer.checkIndex------------------------
1884 
1885 // int java.nio.Buffer.checkIndex(int)
1886 void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
1887   // NOTE: by the time we are in checkIndex() we are guaranteed that
1888   // the buffer is non-null (because checkIndex is package-private and
1889   // only called from within other methods in the buffer).
1890   assert(x->number_of_arguments() == 2, "wrong type");
1891   LIRItem buf  (x->argument_at(0), this);
1892   LIRItem index(x->argument_at(1), this);
1893   buf.load_item();
1894   index.load_item();
1895 
1896   LIR_Opr result = rlock_result(x);
1897   if (GenerateRangeChecks) {
1898     CodeEmitInfo* info = state_for(x);
1899     CodeStub* stub = new RangeCheckStub(info, index.result(), true);
1900     if (index.result()->is_constant()) {
1901       cmp_mem_int(lir_cond_belowEqual, buf.result(), java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
1902       __ branch(lir_cond_belowEqual, T_INT, stub);
1903     } else {
1904       cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf.result(),
1905                   java_nio_Buffer::limit_offset(), T_INT, info);
1906       __ branch(lir_cond_aboveEqual, T_INT, stub);
1907     }
1908     __ move(index.result(), result);
1909   } else {
1910     // Just load the index into the result register
1911     __ move(index.result(), result);
1912   }
1913 }
1914 
1915 
1916 //------------------------array access--------------------------------------
1917 
1918 
1919 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
1920   LIRItem array(x->array(), this);
1921   array.load_item();
1922   LIR_Opr reg = rlock_result(x);
1923 
1924   CodeEmitInfo* info = NULL;
1925   if (x->needs_null_check()) {
1926     NullCheck* nc = x->explicit_null_check();
1927     if (nc == NULL) {
1928       info = state_for(x);
1929     } else {
1930       info = state_for(nc);
1931     }
1932     if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) {
1933       LIR_Opr obj = new_register(T_OBJECT);
1934       __ move(LIR_OprFact::oopConst(NULL), obj);
1935       __ null_check(obj, new CodeEmitInfo(info));
1936     }
1937   }
1938   __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
1939 }
1940 
1941 
1942 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
1943   bool use_length = x->length() != NULL;
1944   LIRItem array(x->array(), this);
1945   LIRItem index(x->index(), this);
1946   LIRItem length(this);
1947   bool needs_range_check = x->compute_needs_range_check();
1948 
1949   if (use_length && needs_range_check) {
1950     length.set_instruction(x->length());
1951     length.load_item();
1952   }
1953 
1954   array.load_item();
1955   if (index.is_constant() && can_inline_as_constant(x->index())) {
1956     // let it be a constant
1957     index.dont_load_item();
1958   } else {
1959     index.load_item();
1960   }
1961 
1962   CodeEmitInfo* range_check_info = state_for(x);
1963   CodeEmitInfo* null_check_info = NULL;
1964   if (x->needs_null_check()) {
1965     NullCheck* nc = x->explicit_null_check();
1966     if (nc != NULL) {
1967       null_check_info = state_for(nc);
1968     } else {
1969       null_check_info = range_check_info;
1970     }
1971     if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) {
1972       LIR_Opr obj = new_register(T_OBJECT);
1973       __ move(LIR_OprFact::oopConst(NULL), obj);
1974       __ null_check(obj, new CodeEmitInfo(null_check_info));
1975     }
1976   }
1977 
1978   // emit array address setup early so it schedules better
1979   LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), false);
1980 
1981   if (GenerateRangeChecks && needs_range_check) {
1982     if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
1983       __ branch(lir_cond_always, T_ILLEGAL, new RangeCheckStub(range_check_info, index.result()));
1984     } else if (use_length) {
1985       // TODO: use a (modified) version of array_range_check that does not require a
1986       //       constant length to be loaded to a register
1987       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1988       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
1989     } else {
1990       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1991       // The range check performs the null check, so clear it out for the load
1992       null_check_info = NULL;
1993     }
1994   }
1995 
1996   __ move(array_addr, rlock_result(x, x->elt_type()), null_check_info);
1997 }
1998 
1999 
2000 void LIRGenerator::do_NullCheck(NullCheck* x) {
2001   if (x->can_trap()) {
2002     LIRItem value(x->obj(), this);
2003     value.load_item();
2004     CodeEmitInfo* info = state_for(x);
2005     __ null_check(value.result(), info);
2006   }
2007 }
2008 
2009 
2010 void LIRGenerator::do_TypeCast(TypeCast* x) {
2011   LIRItem value(x->obj(), this);
2012   value.load_item();
2013   // the result is the same as from the node we are casting
2014   set_result(x, value.result());
2015 }
2016 
2017 
2018 void LIRGenerator::do_Throw(Throw* x) {
2019   LIRItem exception(x->exception(), this);
2020   exception.load_item();
2021   set_no_result(x);
2022   LIR_Opr exception_opr = exception.result();
2023   CodeEmitInfo* info = state_for(x, x->state());
2024 
2025 #ifndef PRODUCT
2026   if (PrintC1Statistics) {
2027     increment_counter(Runtime1::throw_count_address(), T_INT);
2028   }
2029 #endif
2030 
2031   // check if the instruction has an xhandler in any of the nested scopes
2032   bool unwind = false;
2033   if (info->exception_handlers()->length() == 0) {
2034     // this throw is not inside an xhandler
2035     unwind = true;
2036   } else {
2037     // get some idea of the throw type
2038     bool type_is_exact = true;
2039     ciType* throw_type = x->exception()->exact_type();
2040     if (throw_type == NULL) {
2041       type_is_exact = false;
2042       throw_type = x->exception()->declared_type();
2043     }
2044     if (throw_type != NULL && throw_type->is_instance_klass()) {
2045       ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
2046       unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
2047     }
2048   }
2049 
2050   // do null check before moving exception oop into fixed register
2051   // to avoid a fixed interval with an oop during the null check.
2052   // Use a copy of the CodeEmitInfo because debug information is
2053   // different for null_check and throw.
2054   if (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL) {
2055     // if the exception object wasn't created using new then it might be null.
2056     __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
2057   }
2058 
2059   if (compilation()->env()->jvmti_can_post_on_exceptions()) {
2060     // we need to go through the exception lookup path to get JVMTI
2061     // notification done
2062     unwind = false;
2063   }
2064 
2065   // move exception oop into fixed register
2066   __ move(exception_opr, exceptionOopOpr());
2067 
2068   if (unwind) {
2069     __ unwind_exception(exceptionOopOpr());
2070   } else {
2071     __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
2072   }
2073 }
2074 
2075 
2076 void LIRGenerator::do_RoundFP(RoundFP* x) {
2077   LIRItem input(x->input(), this);
2078   input.load_item();
2079   LIR_Opr input_opr = input.result();
2080   assert(input_opr->is_register(), "why round if value is not in a register?");
2081   assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
2082   if (input_opr->is_single_fpu()) {
2083     set_result(x, round_item(input_opr)); // This code path not currently taken
2084   } else {
2085     LIR_Opr result = new_register(T_DOUBLE);
2086     set_vreg_flag(result, must_start_in_memory);
2087     __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
2088     set_result(x, result);
2089   }
2090 }
2091 
2092 // Here UnsafeGetRaw may have x->base() and x->index() be int or long
2093 // on both 64 and 32 bits. Expecting x->base() to be always long on 64bit.
2094 void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
2095   LIRItem base(x->base(), this);
2096   LIRItem idx(this);
2097 
2098   base.load_item();
2099   if (x->has_index()) {
2100     idx.set_instruction(x->index());
2101     idx.load_nonconstant();
2102   }
2103 
2104   LIR_Opr reg = rlock_result(x, x->basic_type());
2105 
2106   int   log2_scale = 0;
2107   if (x->has_index()) {
2108     log2_scale = x->log2_scale();
2109   }
2110 
2111   assert(!x->has_index() || idx.value() == x->index(), "should match");
2112 
2113   LIR_Opr base_op = base.result();
2114   LIR_Opr index_op = idx.result();
2115 #ifndef _LP64
2116   if (base_op->type() == T_LONG) {
2117     base_op = new_register(T_INT);
2118     __ convert(Bytecodes::_l2i, base.result(), base_op);
2119   }
2120   if (x->has_index()) {
2121     if (index_op->type() == T_LONG) {
2122       LIR_Opr long_index_op = index_op;
2123       if (index_op->is_constant()) {
2124         long_index_op = new_register(T_LONG);
2125         __ move(index_op, long_index_op);
2126       }
2127       index_op = new_register(T_INT);
2128       __ convert(Bytecodes::_l2i, long_index_op, index_op);
2129     } else {
2130       assert(x->index()->type()->tag() == intTag, "must be");
2131     }
2132   }
2133   // At this point base and index should be all ints.
2134   assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2135   assert(!x->has_index() || index_op->type() == T_INT, "index should be an int");
2136 #else
2137   if (x->has_index()) {
2138     if (index_op->type() == T_INT) {
2139       if (!index_op->is_constant()) {
2140         index_op = new_register(T_LONG);
2141         __ convert(Bytecodes::_i2l, idx.result(), index_op);
2142       }
2143     } else {
2144       assert(index_op->type() == T_LONG, "must be");
2145       if (index_op->is_constant()) {
2146         index_op = new_register(T_LONG);
2147         __ move(idx.result(), index_op);
2148       }
2149     }
2150   }
2151   // At this point base is a long non-constant
2152   // Index is a long register or a int constant.
2153   // We allow the constant to stay an int because that would allow us a more compact encoding by
2154   // embedding an immediate offset in the address expression. If we have a long constant, we have to
2155   // move it into a register first.
2156   assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a long non-constant");
2157   assert(!x->has_index() || (index_op->type() == T_INT && index_op->is_constant()) ||
2158                             (index_op->type() == T_LONG && !index_op->is_constant()), "unexpected index type");
2159 #endif
2160 
2161   BasicType dst_type = x->basic_type();
2162 
2163   LIR_Address* addr;
2164   if (index_op->is_constant()) {
2165     assert(log2_scale == 0, "must not have a scale");
2166     assert(index_op->type() == T_INT, "only int constants supported");
2167     addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
2168   } else {
2169 #ifdef X86
2170     addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
2171 #elif defined(GENERATE_ADDRESS_IS_PREFERRED)
2172     addr = generate_address(base_op, index_op, log2_scale, 0, dst_type);
2173 #else
2174     if (index_op->is_illegal() || log2_scale == 0) {
2175       addr = new LIR_Address(base_op, index_op, dst_type);
2176     } else {
2177       LIR_Opr tmp = new_pointer_register();
2178       __ shift_left(index_op, log2_scale, tmp);
2179       addr = new LIR_Address(base_op, tmp, dst_type);
2180     }
2181 #endif
2182   }
2183 
2184   if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
2185     __ unaligned_move(addr, reg);
2186   } else {
2187     if (dst_type == T_OBJECT && x->is_wide()) {
2188       __ move_wide(addr, reg);
2189     } else {
2190       __ move(addr, reg);
2191     }
2192   }
2193 }
2194 
2195 
2196 void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
2197   int  log2_scale = 0;
2198   BasicType type = x->basic_type();
2199 
2200   if (x->has_index()) {
2201     log2_scale = x->log2_scale();
2202   }
2203 
2204   LIRItem base(x->base(), this);
2205   LIRItem value(x->value(), this);
2206   LIRItem idx(this);
2207 
2208   base.load_item();
2209   if (x->has_index()) {
2210     idx.set_instruction(x->index());
2211     idx.load_item();
2212   }
2213 
2214   if (type == T_BYTE || type == T_BOOLEAN) {
2215     value.load_byte_item();
2216   } else {
2217     value.load_item();
2218   }
2219 
2220   set_no_result(x);
2221 
2222   LIR_Opr base_op = base.result();
2223   LIR_Opr index_op = idx.result();
2224 
2225 #ifdef GENERATE_ADDRESS_IS_PREFERRED
2226   LIR_Address* addr = generate_address(base_op, index_op, log2_scale, 0, x->basic_type());
2227 #else
2228 #ifndef _LP64
2229   if (base_op->type() == T_LONG) {
2230     base_op = new_register(T_INT);
2231     __ convert(Bytecodes::_l2i, base.result(), base_op);
2232   }
2233   if (x->has_index()) {
2234     if (index_op->type() == T_LONG) {
2235       index_op = new_register(T_INT);
2236       __ convert(Bytecodes::_l2i, idx.result(), index_op);
2237     }
2238   }
2239   // At this point base and index should be all ints and not constants
2240   assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2241   assert(!x->has_index() || (index_op->type() == T_INT && !index_op->is_constant()), "index should be an non-constant int");
2242 #else
2243   if (x->has_index()) {
2244     if (index_op->type() == T_INT) {
2245       index_op = new_register(T_LONG);
2246       __ convert(Bytecodes::_i2l, idx.result(), index_op);
2247     }
2248   }
2249   // At this point base and index are long and non-constant
2250   assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a non-constant long");
2251   assert(!x->has_index() || (index_op->type() == T_LONG && !index_op->is_constant()), "index must be a non-constant long");
2252 #endif
2253 
2254   if (log2_scale != 0) {
2255     // temporary fix (platform dependent code without shift on Intel would be better)
2256     // TODO: ARM also allows embedded shift in the address
2257     LIR_Opr tmp = new_pointer_register();
2258     if (TwoOperandLIRForm) {
2259       __ move(index_op, tmp);
2260       index_op = tmp;
2261     }
2262     __ shift_left(index_op, log2_scale, tmp);
2263     if (!TwoOperandLIRForm) {
2264       index_op = tmp;
2265     }
2266   }
2267 
2268   LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
2269 #endif // !GENERATE_ADDRESS_IS_PREFERRED
2270   __ move(value.result(), addr);
2271 }
2272 
2273 
2274 void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
2275   BasicType type = x->basic_type();
2276   LIRItem src(x->object(), this);
2277   LIRItem off(x->offset(), this);
2278 
2279   off.load_item();
2280   src.load_item();
2281 
2282   LIR_Opr value = rlock_result(x, x->basic_type());
2283 
2284   if (support_IRIW_for_not_multiple_copy_atomic_cpu && x->is_volatile() && os::is_MP()) {
2285     __ membar();
2286   }
2287 
2288   get_Object_unsafe(value, src.result(), off.result(), type, x->is_volatile());
2289 
2290 #if INCLUDE_ALL_GCS
2291   // We might be reading the value of the referent field of a
2292   // Reference object in order to attach it back to the live
2293   // object graph. If G1 is enabled then we need to record
2294   // the value that is being returned in an SATB log buffer.
2295   //
2296   // We need to generate code similar to the following...
2297   //
2298   // if (offset == java_lang_ref_Reference::referent_offset) {
2299   //   if (src != NULL) {
2300   //     if (klass(src)->reference_type() != REF_NONE) {
2301   //       pre_barrier(..., value, ...);
2302   //     }
2303   //   }
2304   // }
2305 
2306   if (UseG1GC && type == T_OBJECT) {
2307     bool gen_pre_barrier = true;     // Assume we need to generate pre_barrier.
2308     bool gen_offset_check = true;    // Assume we need to generate the offset guard.
2309     bool gen_source_check = true;    // Assume we need to check the src object for null.
2310     bool gen_type_check = true;      // Assume we need to check the reference_type.
2311 
2312     if (off.is_constant()) {
2313       jlong off_con = (off.type()->is_int() ?
2314                         (jlong) off.get_jint_constant() :
2315                         off.get_jlong_constant());
2316 
2317 
2318       if (off_con != (jlong) java_lang_ref_Reference::referent_offset) {
2319         // The constant offset is something other than referent_offset.
2320         // We can skip generating/checking the remaining guards and
2321         // skip generation of the code stub.
2322         gen_pre_barrier = false;
2323       } else {
2324         // The constant offset is the same as referent_offset -
2325         // we do not need to generate a runtime offset check.
2326         gen_offset_check = false;
2327       }
2328     }
2329 
2330     // We don't need to generate stub if the source object is an array
2331     if (gen_pre_barrier && src.type()->is_array()) {
2332       gen_pre_barrier = false;
2333     }
2334 
2335     if (gen_pre_barrier) {
2336       // We still need to continue with the checks.
2337       if (src.is_constant()) {
2338         ciObject* src_con = src.get_jobject_constant();
2339         guarantee(src_con != NULL, "no source constant");
2340 
2341         if (src_con->is_null_object()) {
2342           // The constant src object is null - We can skip
2343           // generating the code stub.
2344           gen_pre_barrier = false;
2345         } else {
2346           // Non-null constant source object. We still have to generate
2347           // the slow stub - but we don't need to generate the runtime
2348           // null object check.
2349           gen_source_check = false;
2350         }
2351       }
2352     }
2353     if (gen_pre_barrier && !PatchALot) {
2354       // Can the klass of object be statically determined to be
2355       // a sub-class of Reference?
2356       ciType* type = src.value()->declared_type();
2357       if ((type != NULL) && type->is_loaded()) {
2358         if (type->is_subtype_of(compilation()->env()->Reference_klass())) {
2359           gen_type_check = false;
2360         } else if (type->is_klass() &&
2361                    !compilation()->env()->Object_klass()->is_subtype_of(type->as_klass())) {
2362           // Not Reference and not Object klass.
2363           gen_pre_barrier = false;
2364         }
2365       }
2366     }
2367 
2368     if (gen_pre_barrier) {
2369       LabelObj* Lcont = new LabelObj();
2370 
2371       // We can have generate one runtime check here. Let's start with
2372       // the offset check.
2373       if (gen_offset_check) {
2374         // if (offset != referent_offset) -> continue
2375         // If offset is an int then we can do the comparison with the
2376         // referent_offset constant; otherwise we need to move
2377         // referent_offset into a temporary register and generate
2378         // a reg-reg compare.
2379 
2380         LIR_Opr referent_off;
2381 
2382         if (off.type()->is_int()) {
2383           referent_off = LIR_OprFact::intConst(java_lang_ref_Reference::referent_offset);
2384         } else {
2385           assert(off.type()->is_long(), "what else?");
2386           referent_off = new_register(T_LONG);
2387           __ move(LIR_OprFact::longConst(java_lang_ref_Reference::referent_offset), referent_off);
2388         }
2389         __ cmp(lir_cond_notEqual, off.result(), referent_off);
2390         __ branch(lir_cond_notEqual, as_BasicType(off.type()), Lcont->label());
2391       }
2392       if (gen_source_check) {
2393         // offset is a const and equals referent offset
2394         // if (source == null) -> continue
2395         __ cmp(lir_cond_equal, src.result(), LIR_OprFact::oopConst(NULL));
2396         __ branch(lir_cond_equal, T_OBJECT, Lcont->label());
2397       }
2398       LIR_Opr src_klass = new_register(T_OBJECT);
2399       if (gen_type_check) {
2400         // We have determined that offset == referent_offset && src != null.
2401         // if (src->_klass->_reference_type == REF_NONE) -> continue
2402         __ move(new LIR_Address(src.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), src_klass);
2403         LIR_Address* reference_type_addr = new LIR_Address(src_klass, in_bytes(InstanceKlass::reference_type_offset()), T_BYTE);
2404         LIR_Opr reference_type = new_register(T_INT);
2405         __ move(reference_type_addr, reference_type);
2406         __ cmp(lir_cond_equal, reference_type, LIR_OprFact::intConst(REF_NONE));
2407         __ branch(lir_cond_equal, T_INT, Lcont->label());
2408       }
2409       {
2410         // We have determined that src->_klass->_reference_type != REF_NONE
2411         // so register the value in the referent field with the pre-barrier.
2412         pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
2413                     value  /* pre_val */,
2414                     false  /* do_load */,
2415                     false  /* patch */,
2416                     NULL   /* info */);
2417       }
2418       __ branch_destination(Lcont->label());
2419     }
2420   }
2421 #endif // INCLUDE_ALL_GCS
2422 
2423   if (x->is_volatile() && os::is_MP()) __ membar_acquire();
2424 
2425   /* Normalize boolean value returned by unsafe operation, i.e., value  != 0 ? value = true : value false. */
2426   if (type == T_BOOLEAN) {
2427     LabelObj* equalZeroLabel = new LabelObj();
2428     __ cmp(lir_cond_equal, value, 0);
2429     __ branch(lir_cond_equal, T_BOOLEAN, equalZeroLabel->label());
2430     __ move(LIR_OprFact::intConst(1), value);
2431     __ branch_destination(equalZeroLabel->label());
2432   }
2433 }
2434 
2435 
2436 void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
2437   BasicType type = x->basic_type();
2438   LIRItem src(x->object(), this);
2439   LIRItem off(x->offset(), this);
2440   LIRItem data(x->value(), this);
2441 
2442   src.load_item();
2443   if (type == T_BOOLEAN || type == T_BYTE) {
2444     data.load_byte_item();
2445   } else {
2446     data.load_item();
2447   }
2448   off.load_item();
2449 
2450   set_no_result(x);
2451 
2452   if (x->is_volatile() && os::is_MP()) __ membar_release();
2453   put_Object_unsafe(src.result(), off.result(), data.result(), type, x->is_volatile());
2454   if (!support_IRIW_for_not_multiple_copy_atomic_cpu && x->is_volatile() && os::is_MP()) __ membar();
2455 }
2456 
2457 
2458 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
2459   int lng = x->length();
2460 
2461   for (int i = 0; i < lng; i++) {
2462     SwitchRange* one_range = x->at(i);
2463     int low_key = one_range->low_key();
2464     int high_key = one_range->high_key();
2465     BlockBegin* dest = one_range->sux();
2466     if (low_key == high_key) {
2467       __ cmp(lir_cond_equal, value, low_key);
2468       __ branch(lir_cond_equal, T_INT, dest);
2469     } else if (high_key - low_key == 1) {
2470       __ cmp(lir_cond_equal, value, low_key);
2471       __ branch(lir_cond_equal, T_INT, dest);
2472       __ cmp(lir_cond_equal, value, high_key);
2473       __ branch(lir_cond_equal, T_INT, dest);
2474     } else {
2475       LabelObj* L = new LabelObj();
2476       __ cmp(lir_cond_less, value, low_key);
2477       __ branch(lir_cond_less, T_INT, L->label());
2478       __ cmp(lir_cond_lessEqual, value, high_key);
2479       __ branch(lir_cond_lessEqual, T_INT, dest);
2480       __ branch_destination(L->label());
2481     }
2482   }
2483   __ jump(default_sux);
2484 }
2485 
2486 
2487 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
2488   SwitchRangeList* res = new SwitchRangeList();
2489   int len = x->length();
2490   if (len > 0) {
2491     BlockBegin* sux = x->sux_at(0);
2492     int key = x->lo_key();
2493     BlockBegin* default_sux = x->default_sux();
2494     SwitchRange* range = new SwitchRange(key, sux);
2495     for (int i = 0; i < len; i++, key++) {
2496       BlockBegin* new_sux = x->sux_at(i);
2497       if (sux == new_sux) {
2498         // still in same range
2499         range->set_high_key(key);
2500       } else {
2501         // skip tests which explicitly dispatch to the default
2502         if (sux != default_sux) {
2503           res->append(range);
2504         }
2505         range = new SwitchRange(key, new_sux);
2506       }
2507       sux = new_sux;
2508     }
2509     if (res->length() == 0 || res->last() != range)  res->append(range);
2510   }
2511   return res;
2512 }
2513 
2514 
2515 // we expect the keys to be sorted by increasing value
2516 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
2517   SwitchRangeList* res = new SwitchRangeList();
2518   int len = x->length();
2519   if (len > 0) {
2520     BlockBegin* default_sux = x->default_sux();
2521     int key = x->key_at(0);
2522     BlockBegin* sux = x->sux_at(0);
2523     SwitchRange* range = new SwitchRange(key, sux);
2524     for (int i = 1; i < len; i++) {
2525       int new_key = x->key_at(i);
2526       BlockBegin* new_sux = x->sux_at(i);
2527       if (key+1 == new_key && sux == new_sux) {
2528         // still in same range
2529         range->set_high_key(new_key);
2530       } else {
2531         // skip tests which explicitly dispatch to the default
2532         if (range->sux() != default_sux) {
2533           res->append(range);
2534         }
2535         range = new SwitchRange(new_key, new_sux);
2536       }
2537       key = new_key;
2538       sux = new_sux;
2539     }
2540     if (res->length() == 0 || res->last() != range)  res->append(range);
2541   }
2542   return res;
2543 }
2544 
2545 
2546 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
2547   LIRItem tag(x->tag(), this);
2548   tag.load_item();
2549   set_no_result(x);
2550 
2551   if (x->is_safepoint()) {
2552     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2553   }
2554 
2555   // move values into phi locations
2556   move_to_phi(x->state());
2557 
2558   int lo_key = x->lo_key();
2559   int hi_key = x->hi_key();
2560   int len = x->length();
2561   LIR_Opr value = tag.result();
2562   if (UseTableRanges) {
2563     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2564   } else {
2565     for (int i = 0; i < len; i++) {
2566       __ cmp(lir_cond_equal, value, i + lo_key);
2567       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2568     }
2569     __ jump(x->default_sux());
2570   }
2571 }
2572 
2573 
2574 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
2575   LIRItem tag(x->tag(), this);
2576   tag.load_item();
2577   set_no_result(x);
2578 
2579   if (x->is_safepoint()) {
2580     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2581   }
2582 
2583   // move values into phi locations
2584   move_to_phi(x->state());
2585 
2586   LIR_Opr value = tag.result();
2587   if (UseTableRanges) {
2588     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2589   } else {
2590     int len = x->length();
2591     for (int i = 0; i < len; i++) {
2592       __ cmp(lir_cond_equal, value, x->key_at(i));
2593       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2594     }
2595     __ jump(x->default_sux());
2596   }
2597 }
2598 
2599 
2600 void LIRGenerator::do_Goto(Goto* x) {
2601   set_no_result(x);
2602 
2603   if (block()->next()->as_OsrEntry()) {
2604     // need to free up storage used for OSR entry point
2605     LIR_Opr osrBuffer = block()->next()->operand();
2606     BasicTypeList signature;
2607     signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer
2608     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2609     __ move(osrBuffer, cc->args()->at(0));
2610     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
2611                          getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
2612   }
2613 
2614   if (x->is_safepoint()) {
2615     ValueStack* state = x->state_before() ? x->state_before() : x->state();
2616 
2617     // increment backedge counter if needed
2618     CodeEmitInfo* info = state_for(x, state);
2619     increment_backedge_counter(info, x->profiled_bci());
2620     CodeEmitInfo* safepoint_info = state_for(x, state);
2621     __ safepoint(safepoint_poll_register(), safepoint_info);
2622   }
2623 
2624   // Gotos can be folded Ifs, handle this case.
2625   if (x->should_profile()) {
2626     ciMethod* method = x->profiled_method();
2627     assert(method != NULL, "method should be set if branch is profiled");
2628     ciMethodData* md = method->method_data_or_null();
2629     assert(md != NULL, "Sanity");
2630     ciProfileData* data = md->bci_to_data(x->profiled_bci());
2631     assert(data != NULL, "must have profiling data");
2632     int offset;
2633     if (x->direction() == Goto::taken) {
2634       assert(data->is_BranchData(), "need BranchData for two-way branches");
2635       offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
2636     } else if (x->direction() == Goto::not_taken) {
2637       assert(data->is_BranchData(), "need BranchData for two-way branches");
2638       offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
2639     } else {
2640       assert(data->is_JumpData(), "need JumpData for branches");
2641       offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
2642     }
2643     LIR_Opr md_reg = new_register(T_METADATA);
2644     __ metadata2reg(md->constant_encoding(), md_reg);
2645 
2646     increment_counter(new LIR_Address(md_reg, offset,
2647                                       NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
2648   }
2649 
2650   // emit phi-instruction move after safepoint since this simplifies
2651   // describing the state as the safepoint.
2652   move_to_phi(x->state());
2653 
2654   __ jump(x->default_sux());
2655 }
2656 
2657 /**
2658  * Emit profiling code if needed for arguments, parameters, return value types
2659  *
2660  * @param md                    MDO the code will update at runtime
2661  * @param md_base_offset        common offset in the MDO for this profile and subsequent ones
2662  * @param md_offset             offset in the MDO (on top of md_base_offset) for this profile
2663  * @param profiled_k            current profile
2664  * @param obj                   IR node for the object to be profiled
2665  * @param mdp                   register to hold the pointer inside the MDO (md + md_base_offset).
2666  *                              Set once we find an update to make and use for next ones.
2667  * @param not_null              true if we know obj cannot be null
2668  * @param signature_at_call_k   signature at call for obj
2669  * @param callee_signature_k    signature of callee for obj
2670  *                              at call and callee signatures differ at method handle call
2671  * @return                      the only klass we know will ever be seen at this profile point
2672  */
2673 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k,
2674                                     Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k,
2675                                     ciKlass* callee_signature_k) {
2676   ciKlass* result = NULL;
2677   bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k);
2678   bool do_update = !TypeEntries::is_type_unknown(profiled_k);
2679   // known not to be null or null bit already set and already set to
2680   // unknown: nothing we can do to improve profiling
2681   if (!do_null && !do_update) {
2682     return result;
2683   }
2684 
2685   ciKlass* exact_klass = NULL;
2686   Compilation* comp = Compilation::current();
2687   if (do_update) {
2688     // try to find exact type, using CHA if possible, so that loading
2689     // the klass from the object can be avoided
2690     ciType* type = obj->exact_type();
2691     if (type == NULL) {
2692       type = obj->declared_type();
2693       type = comp->cha_exact_type(type);
2694     }
2695     assert(type == NULL || type->is_klass(), "type should be class");
2696     exact_klass = (type != NULL && type->is_loaded()) ? (ciKlass*)type : NULL;
2697 
2698     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2699   }
2700 
2701   if (!do_null && !do_update) {
2702     return result;
2703   }
2704 
2705   ciKlass* exact_signature_k = NULL;
2706   if (do_update) {
2707     // Is the type from the signature exact (the only one possible)?
2708     exact_signature_k = signature_at_call_k->exact_klass();
2709     if (exact_signature_k == NULL) {
2710       exact_signature_k = comp->cha_exact_type(signature_at_call_k);
2711     } else {
2712       result = exact_signature_k;
2713       // Known statically. No need to emit any code: prevent
2714       // LIR_Assembler::emit_profile_type() from emitting useless code
2715       profiled_k = ciTypeEntries::with_status(result, profiled_k);
2716     }
2717     // exact_klass and exact_signature_k can be both non NULL but
2718     // different if exact_klass is loaded after the ciObject for
2719     // exact_signature_k is created.
2720     if (exact_klass == NULL && exact_signature_k != NULL && exact_klass != exact_signature_k) {
2721       // sometimes the type of the signature is better than the best type
2722       // the compiler has
2723       exact_klass = exact_signature_k;
2724     }
2725     if (callee_signature_k != NULL &&
2726         callee_signature_k != signature_at_call_k) {
2727       ciKlass* improved_klass = callee_signature_k->exact_klass();
2728       if (improved_klass == NULL) {
2729         improved_klass = comp->cha_exact_type(callee_signature_k);
2730       }
2731       if (exact_klass == NULL && improved_klass != NULL && exact_klass != improved_klass) {
2732         exact_klass = exact_signature_k;
2733       }
2734     }
2735     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2736   }
2737 
2738   if (!do_null && !do_update) {
2739     return result;
2740   }
2741 
2742   if (mdp == LIR_OprFact::illegalOpr) {
2743     mdp = new_register(T_METADATA);
2744     __ metadata2reg(md->constant_encoding(), mdp);
2745     if (md_base_offset != 0) {
2746       LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS);
2747       mdp = new_pointer_register();
2748       __ leal(LIR_OprFact::address(base_type_address), mdp);
2749     }
2750   }
2751   LIRItem value(obj, this);
2752   value.load_item();
2753   __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA),
2754                   value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != NULL);
2755   return result;
2756 }
2757 
2758 // profile parameters on entry to the root of the compilation
2759 void LIRGenerator::profile_parameters(Base* x) {
2760   if (compilation()->profile_parameters()) {
2761     CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2762     ciMethodData* md = scope()->method()->method_data_or_null();
2763     assert(md != NULL, "Sanity");
2764 
2765     if (md->parameters_type_data() != NULL) {
2766       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
2767       ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
2768       LIR_Opr mdp = LIR_OprFact::illegalOpr;
2769       for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) {
2770         LIR_Opr src = args->at(i);
2771         assert(!src->is_illegal(), "check");
2772         BasicType t = src->type();
2773         if (t == T_OBJECT || t == T_ARRAY) {
2774           intptr_t profiled_k = parameters->type(j);
2775           Local* local = x->state()->local_at(java_index)->as_Local();
2776           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
2777                                         in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
2778                                         profiled_k, local, mdp, false, local->declared_type()->as_klass(), NULL);
2779           // If the profile is known statically set it once for all and do not emit any code
2780           if (exact != NULL) {
2781             md->set_parameter_type(j, exact);
2782           }
2783           j++;
2784         }
2785         java_index += type2size[t];
2786       }
2787     }
2788   }
2789 }
2790 
2791 void LIRGenerator::do_Base(Base* x) {
2792   __ std_entry(LIR_OprFact::illegalOpr);
2793   // Emit moves from physical registers / stack slots to virtual registers
2794   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2795   IRScope* irScope = compilation()->hir()->top_scope();
2796   int java_index = 0;
2797   for (int i = 0; i < args->length(); i++) {
2798     LIR_Opr src = args->at(i);
2799     assert(!src->is_illegal(), "check");
2800     BasicType t = src->type();
2801 
2802     // Types which are smaller than int are passed as int, so
2803     // correct the type which passed.
2804     switch (t) {
2805     case T_BYTE:
2806     case T_BOOLEAN:
2807     case T_SHORT:
2808     case T_CHAR:
2809       t = T_INT;
2810       break;
2811     default:
2812       break;
2813     }
2814 
2815     LIR_Opr dest = new_register(t);
2816     __ move(src, dest);
2817 
2818     // Assign new location to Local instruction for this local
2819     Local* local = x->state()->local_at(java_index)->as_Local();
2820     assert(local != NULL, "Locals for incoming arguments must have been created");
2821 #ifndef __SOFTFP__
2822     // The java calling convention passes double as long and float as int.
2823     assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
2824 #endif // __SOFTFP__
2825     local->set_operand(dest);
2826     _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
2827     java_index += type2size[t];
2828   }
2829 
2830   if (compilation()->env()->dtrace_method_probes()) {
2831     BasicTypeList signature;
2832     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
2833     signature.append(T_METADATA); // Method*
2834     LIR_OprList* args = new LIR_OprList();
2835     args->append(getThreadPointer());
2836     LIR_Opr meth = new_register(T_METADATA);
2837     __ metadata2reg(method()->constant_encoding(), meth);
2838     args->append(meth);
2839     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
2840   }
2841 
2842   if (method()->is_synchronized()) {
2843     LIR_Opr obj;
2844     if (method()->is_static()) {
2845       obj = new_register(T_OBJECT);
2846       __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
2847     } else {
2848       Local* receiver = x->state()->local_at(0)->as_Local();
2849       assert(receiver != NULL, "must already exist");
2850       obj = receiver->operand();
2851     }
2852     assert(obj->is_valid(), "must be valid");
2853 
2854     if (method()->is_synchronized() && GenerateSynchronizationCode) {
2855       LIR_Opr lock = syncLockOpr();
2856       __ load_stack_address_monitor(0, lock);
2857 
2858       CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, x->check_flag(Instruction::DeoptimizeOnException));
2859       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
2860 
2861       // receiver is guaranteed non-NULL so don't need CodeEmitInfo
2862       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
2863     }
2864   }
2865   if (compilation()->age_code()) {
2866     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, 0), NULL, false);
2867     decrement_age(info);
2868   }
2869   // increment invocation counters if needed
2870   if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
2871     profile_parameters(x);
2872     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, false);
2873     increment_invocation_counter(info);
2874   }
2875 
2876   // all blocks with a successor must end with an unconditional jump
2877   // to the successor even if they are consecutive
2878   __ jump(x->default_sux());
2879 }
2880 
2881 
2882 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
2883   // construct our frame and model the production of incoming pointer
2884   // to the OSR buffer.
2885   __ osr_entry(LIR_Assembler::osrBufferPointer());
2886   LIR_Opr result = rlock_result(x);
2887   __ move(LIR_Assembler::osrBufferPointer(), result);
2888 }
2889 
2890 
2891 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
2892   assert(args->length() == arg_list->length(),
2893          "args=%d, arg_list=%d", args->length(), arg_list->length());
2894   for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
2895     LIRItem* param = args->at(i);
2896     LIR_Opr loc = arg_list->at(i);
2897     if (loc->is_register()) {
2898       param->load_item_force(loc);
2899     } else {
2900       LIR_Address* addr = loc->as_address_ptr();
2901       param->load_for_store(addr->type());
2902       if (addr->type() == T_OBJECT) {
2903         __ move_wide(param->result(), addr);
2904       } else
2905         if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
2906           __ unaligned_move(param->result(), addr);
2907         } else {
2908           __ move(param->result(), addr);
2909         }
2910     }
2911   }
2912 
2913   if (x->has_receiver()) {
2914     LIRItem* receiver = args->at(0);
2915     LIR_Opr loc = arg_list->at(0);
2916     if (loc->is_register()) {
2917       receiver->load_item_force(loc);
2918     } else {
2919       assert(loc->is_address(), "just checking");
2920       receiver->load_for_store(T_OBJECT);
2921       __ move_wide(receiver->result(), loc->as_address_ptr());
2922     }
2923   }
2924 }
2925 
2926 
2927 // Visits all arguments, returns appropriate items without loading them
2928 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
2929   LIRItemList* argument_items = new LIRItemList();
2930   if (x->has_receiver()) {
2931     LIRItem* receiver = new LIRItem(x->receiver(), this);
2932     argument_items->append(receiver);
2933   }
2934   for (int i = 0; i < x->number_of_arguments(); i++) {
2935     LIRItem* param = new LIRItem(x->argument_at(i), this);
2936     argument_items->append(param);
2937   }
2938   return argument_items;
2939 }
2940 
2941 
2942 // The invoke with receiver has following phases:
2943 //   a) traverse and load/lock receiver;
2944 //   b) traverse all arguments -> item-array (invoke_visit_argument)
2945 //   c) push receiver on stack
2946 //   d) load each of the items and push on stack
2947 //   e) unlock receiver
2948 //   f) move receiver into receiver-register %o0
2949 //   g) lock result registers and emit call operation
2950 //
2951 // Before issuing a call, we must spill-save all values on stack
2952 // that are in caller-save register. "spill-save" moves those registers
2953 // either in a free callee-save register or spills them if no free
2954 // callee save register is available.
2955 //
2956 // The problem is where to invoke spill-save.
2957 // - if invoked between e) and f), we may lock callee save
2958 //   register in "spill-save" that destroys the receiver register
2959 //   before f) is executed
2960 // - if we rearrange f) to be earlier (by loading %o0) it
2961 //   may destroy a value on the stack that is currently in %o0
2962 //   and is waiting to be spilled
2963 // - if we keep the receiver locked while doing spill-save,
2964 //   we cannot spill it as it is spill-locked
2965 //
2966 void LIRGenerator::do_Invoke(Invoke* x) {
2967   CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
2968 
2969   LIR_OprList* arg_list = cc->args();
2970   LIRItemList* args = invoke_visit_arguments(x);
2971   LIR_Opr receiver = LIR_OprFact::illegalOpr;
2972 
2973   // setup result register
2974   LIR_Opr result_register = LIR_OprFact::illegalOpr;
2975   if (x->type() != voidType) {
2976     result_register = result_register_for(x->type());
2977   }
2978 
2979   CodeEmitInfo* info = state_for(x, x->state());
2980 
2981   invoke_load_arguments(x, args, arg_list);
2982 
2983   if (x->has_receiver()) {
2984     args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
2985     receiver = args->at(0)->result();
2986   }
2987 
2988   // emit invoke code
2989   assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
2990 
2991   // JSR 292
2992   // Preserve the SP over MethodHandle call sites, if needed.
2993   ciMethod* target = x->target();
2994   bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant?
2995                                   target->is_method_handle_intrinsic() ||
2996                                   target->is_compiled_lambda_form());
2997   if (is_method_handle_invoke) {
2998     info->set_is_method_handle_invoke(true);
2999     if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
3000         __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
3001     }
3002   }
3003 
3004   switch (x->code()) {
3005     case Bytecodes::_invokestatic:
3006       __ call_static(target, result_register,
3007                      SharedRuntime::get_resolve_static_call_stub(),
3008                      arg_list, info);
3009       break;
3010     case Bytecodes::_invokespecial:
3011     case Bytecodes::_invokevirtual:
3012     case Bytecodes::_invokeinterface:
3013       // for loaded and final (method or class) target we still produce an inline cache,
3014       // in order to be able to call mixed mode
3015       if (x->code() == Bytecodes::_invokespecial || x->target_is_final()) {
3016         __ call_opt_virtual(target, receiver, result_register,
3017                             SharedRuntime::get_resolve_opt_virtual_call_stub(),
3018                             arg_list, info);
3019       } else if (x->vtable_index() < 0) {
3020         __ call_icvirtual(target, receiver, result_register,
3021                           SharedRuntime::get_resolve_virtual_call_stub(),
3022                           arg_list, info);
3023       } else {
3024         int entry_offset = in_bytes(Klass::vtable_start_offset()) + x->vtable_index() * vtableEntry::size_in_bytes();
3025         int vtable_offset = entry_offset + vtableEntry::method_offset_in_bytes();
3026         __ call_virtual(target, receiver, result_register, vtable_offset, arg_list, info);
3027       }
3028       break;
3029     case Bytecodes::_invokedynamic: {
3030       __ call_dynamic(target, receiver, result_register,
3031                       SharedRuntime::get_resolve_static_call_stub(),
3032                       arg_list, info);
3033       break;
3034     }
3035     default:
3036       fatal("unexpected bytecode: %s", Bytecodes::name(x->code()));
3037       break;
3038   }
3039 
3040   // JSR 292
3041   // Restore the SP after MethodHandle call sites, if needed.
3042   if (is_method_handle_invoke
3043       && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
3044     __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
3045   }
3046 
3047   if (x->type()->is_float() || x->type()->is_double()) {
3048     // Force rounding of results from non-strictfp when in strictfp
3049     // scope (or when we don't know the strictness of the callee, to
3050     // be safe.)
3051     if (method()->is_strict()) {
3052       if (!x->target_is_loaded() || !x->target_is_strictfp()) {
3053         result_register = round_item(result_register);
3054       }
3055     }
3056   }
3057 
3058   if (result_register->is_valid()) {
3059     LIR_Opr result = rlock_result(x);
3060     __ move(result_register, result);
3061   }
3062 }
3063 
3064 
3065 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
3066   assert(x->number_of_arguments() == 1, "wrong type");
3067   LIRItem value       (x->argument_at(0), this);
3068   LIR_Opr reg = rlock_result(x);
3069   value.load_item();
3070   LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
3071   __ move(tmp, reg);
3072 }
3073 
3074 
3075 
3076 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
3077 void LIRGenerator::do_IfOp(IfOp* x) {
3078 #ifdef ASSERT
3079   {
3080     ValueTag xtag = x->x()->type()->tag();
3081     ValueTag ttag = x->tval()->type()->tag();
3082     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
3083     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
3084     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
3085   }
3086 #endif
3087 
3088   LIRItem left(x->x(), this);
3089   LIRItem right(x->y(), this);
3090   left.load_item();
3091   if (can_inline_as_constant(right.value())) {
3092     right.dont_load_item();
3093   } else {
3094     right.load_item();
3095   }
3096 
3097   LIRItem t_val(x->tval(), this);
3098   LIRItem f_val(x->fval(), this);
3099   t_val.dont_load_item();
3100   f_val.dont_load_item();
3101   LIR_Opr reg = rlock_result(x);
3102 
3103   __ cmp(lir_cond(x->cond()), left.result(), right.result());
3104   __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
3105 }
3106 
3107 #ifdef TRACE_HAVE_INTRINSICS
3108 void LIRGenerator::do_ClassIDIntrinsic(Intrinsic* x) {
3109   CodeEmitInfo* info = state_for(x);
3110   CodeEmitInfo* info2 = new CodeEmitInfo(info); // Clone for the second null check
3111 
3112   assert(info != NULL, "must have info");
3113   LIRItem arg(x->argument_at(0), this);
3114 
3115   arg.load_item();
3116   LIR_Opr klass = new_register(T_METADATA);
3117   __ move(new LIR_Address(arg.result(), java_lang_Class::klass_offset_in_bytes(), T_ADDRESS), klass, info);
3118   LIR_Opr id = new_register(T_LONG);
3119   ByteSize offset = TRACE_KLASS_TRACE_ID_OFFSET;
3120   LIR_Address* trace_id_addr = new LIR_Address(klass, in_bytes(offset), T_LONG);
3121 
3122   __ move(trace_id_addr, id);
3123   __ logical_or(id, LIR_OprFact::longConst(0x01l), id);
3124   __ store(id, trace_id_addr);
3125 
3126 #ifdef TRACE_ID_META_BITS
3127   __ logical_and(id, LIR_OprFact::longConst(~TRACE_ID_META_BITS), id);
3128 #endif
3129 #ifdef TRACE_ID_CLASS_SHIFT
3130   __ unsigned_shift_right(id, TRACE_ID_CLASS_SHIFT, id);
3131 #endif
3132 
3133   __ move(id, rlock_result(x));
3134 }
3135 
3136 void LIRGenerator::do_getBufferWriter(Intrinsic* x) {
3137   LabelObj* L_end = new LabelObj();
3138 
3139   LIR_Address* jobj_addr = new LIR_Address(getThreadPointer(),
3140                                            in_bytes(TRACE_THREAD_DATA_WRITER_OFFSET),
3141                                            T_OBJECT);
3142   LIR_Opr result = rlock_result(x);
3143   __ move_wide(jobj_addr, result);
3144   __ cmp(lir_cond_equal, result, LIR_OprFact::oopConst(NULL));
3145   __ branch(lir_cond_equal, T_OBJECT, L_end->label());
3146   __ move_wide(new LIR_Address(result, T_OBJECT), result);
3147 
3148   __ branch_destination(L_end->label());
3149 }
3150 
3151 #endif
3152 
3153 
3154 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) {
3155   assert(x->number_of_arguments() == 0, "wrong type");
3156   // Enforce computation of _reserved_argument_area_size which is required on some platforms.
3157   BasicTypeList signature;
3158   CallingConvention* cc = frame_map()->c_calling_convention(&signature);
3159   LIR_Opr reg = result_register_for(x->type());
3160   __ call_runtime_leaf(routine, getThreadTemp(),
3161                        reg, new LIR_OprList());
3162   LIR_Opr result = rlock_result(x);
3163   __ move(reg, result);
3164 }
3165 
3166 
3167 
3168 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
3169   switch (x->id()) {
3170   case vmIntrinsics::_intBitsToFloat      :
3171   case vmIntrinsics::_doubleToRawLongBits :
3172   case vmIntrinsics::_longBitsToDouble    :
3173   case vmIntrinsics::_floatToRawIntBits   : {
3174     do_FPIntrinsics(x);
3175     break;
3176   }
3177 
3178 #ifdef TRACE_HAVE_INTRINSICS
3179   case vmIntrinsics::_getClassId:
3180     do_ClassIDIntrinsic(x);
3181     break;
3182   case vmIntrinsics::_getBufferWriter:
3183     do_getBufferWriter(x);
3184     break;
3185   case vmIntrinsics::_counterTime:
3186     do_RuntimeCall(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), x);
3187     break;
3188 #endif
3189 
3190   case vmIntrinsics::_currentTimeMillis:
3191     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), x);
3192     break;
3193 
3194   case vmIntrinsics::_nanoTime:
3195     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), x);
3196     break;
3197 
3198   case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
3199   case vmIntrinsics::_isInstance:     do_isInstance(x);    break;
3200   case vmIntrinsics::_isPrimitive:    do_isPrimitive(x);   break;
3201   case vmIntrinsics::_getClass:       do_getClass(x);      break;
3202   case vmIntrinsics::_currentThread:  do_currentThread(x); break;
3203 
3204   case vmIntrinsics::_dlog:           // fall through
3205   case vmIntrinsics::_dlog10:         // fall through
3206   case vmIntrinsics::_dabs:           // fall through
3207   case vmIntrinsics::_dsqrt:          // fall through
3208   case vmIntrinsics::_dtan:           // fall through
3209   case vmIntrinsics::_dsin :          // fall through
3210   case vmIntrinsics::_dcos :          // fall through
3211   case vmIntrinsics::_dexp :          // fall through
3212   case vmIntrinsics::_dpow :          do_MathIntrinsic(x); break;
3213   case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
3214 
3215   case vmIntrinsics::_fmaD:           do_FmaIntrinsic(x); break;
3216   case vmIntrinsics::_fmaF:           do_FmaIntrinsic(x); break;
3217 
3218   // java.nio.Buffer.checkIndex
3219   case vmIntrinsics::_checkIndex:     do_NIOCheckIndex(x); break;
3220 
3221   case vmIntrinsics::_compareAndSetObject:
3222     do_CompareAndSwap(x, objectType);
3223     break;
3224   case vmIntrinsics::_compareAndSetInt:
3225     do_CompareAndSwap(x, intType);
3226     break;
3227   case vmIntrinsics::_compareAndSetLong:
3228     do_CompareAndSwap(x, longType);
3229     break;
3230 
3231   case vmIntrinsics::_loadFence :
3232     if (os::is_MP()) __ membar_acquire();
3233     break;
3234   case vmIntrinsics::_storeFence:
3235     if (os::is_MP()) __ membar_release();
3236     break;
3237   case vmIntrinsics::_fullFence :
3238     if (os::is_MP()) __ membar();
3239     break;
3240   case vmIntrinsics::_onSpinWait:
3241     __ on_spin_wait();
3242     break;
3243   case vmIntrinsics::_Reference_get:
3244     do_Reference_get(x);
3245     break;
3246 
3247   case vmIntrinsics::_updateCRC32:
3248   case vmIntrinsics::_updateBytesCRC32:
3249   case vmIntrinsics::_updateByteBufferCRC32:
3250     do_update_CRC32(x);
3251     break;
3252 
3253   case vmIntrinsics::_updateBytesCRC32C:
3254   case vmIntrinsics::_updateDirectByteBufferCRC32C:
3255     do_update_CRC32C(x);
3256     break;
3257 
3258   case vmIntrinsics::_vectorizedMismatch:
3259     do_vectorizedMismatch(x);
3260     break;
3261 
3262   default: ShouldNotReachHere(); break;
3263   }
3264 }
3265 
3266 void LIRGenerator::profile_arguments(ProfileCall* x) {
3267   if (compilation()->profile_arguments()) {
3268     int bci = x->bci_of_invoke();
3269     ciMethodData* md = x->method()->method_data_or_null();
3270     ciProfileData* data = md->bci_to_data(bci);
3271     if (data != NULL) {
3272       if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) ||
3273           (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) {
3274         ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset();
3275         int base_offset = md->byte_offset_of_slot(data, extra);
3276         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3277         ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args();
3278 
3279         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3280         int start = 0;
3281         int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments();
3282         if (x->callee()->is_loaded() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) {
3283           // first argument is not profiled at call (method handle invoke)
3284           assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected");
3285           start = 1;
3286         }
3287         ciSignature* callee_signature = x->callee()->signature();
3288         // method handle call to virtual method
3289         bool has_receiver = x->callee()->is_loaded() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc);
3290         ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : NULL);
3291 
3292         bool ignored_will_link;
3293         ciSignature* signature_at_call = NULL;
3294         x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3295         ciSignatureStream signature_at_call_stream(signature_at_call);
3296 
3297         // if called through method handle invoke, some arguments may have been popped
3298         for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) {
3299           int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset());
3300           ciKlass* exact = profile_type(md, base_offset, off,
3301               args->type(i), x->profiled_arg_at(i+start), mdp,
3302               !x->arg_needs_null_check(i+start),
3303               signature_at_call_stream.next_klass(), callee_signature_stream.next_klass());
3304           if (exact != NULL) {
3305             md->set_argument_type(bci, i, exact);
3306           }
3307         }
3308       } else {
3309 #ifdef ASSERT
3310         Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke());
3311         int n = x->nb_profiled_args();
3312         assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() ||
3313             (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))),
3314             "only at JSR292 bytecodes");
3315 #endif
3316       }
3317     }
3318   }
3319 }
3320 
3321 // profile parameters on entry to an inlined method
3322 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) {
3323   if (compilation()->profile_parameters() && x->inlined()) {
3324     ciMethodData* md = x->callee()->method_data_or_null();
3325     if (md != NULL) {
3326       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
3327       if (parameters_type_data != NULL) {
3328         ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
3329         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3330         bool has_receiver = !x->callee()->is_static();
3331         ciSignature* sig = x->callee()->signature();
3332         ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : NULL);
3333         int i = 0; // to iterate on the Instructions
3334         Value arg = x->recv();
3335         bool not_null = false;
3336         int bci = x->bci_of_invoke();
3337         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3338         // The first parameter is the receiver so that's what we start
3339         // with if it exists. One exception is method handle call to
3340         // virtual method: the receiver is in the args list
3341         if (arg == NULL || !Bytecodes::has_receiver(bc)) {
3342           i = 1;
3343           arg = x->profiled_arg_at(0);
3344           not_null = !x->arg_needs_null_check(0);
3345         }
3346         int k = 0; // to iterate on the profile data
3347         for (;;) {
3348           intptr_t profiled_k = parameters->type(k);
3349           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
3350                                         in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)),
3351                                         profiled_k, arg, mdp, not_null, sig_stream.next_klass(), NULL);
3352           // If the profile is known statically set it once for all and do not emit any code
3353           if (exact != NULL) {
3354             md->set_parameter_type(k, exact);
3355           }
3356           k++;
3357           if (k >= parameters_type_data->number_of_parameters()) {
3358 #ifdef ASSERT
3359             int extra = 0;
3360             if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 &&
3361                 x->nb_profiled_args() >= TypeProfileParmsLimit &&
3362                 x->recv() != NULL && Bytecodes::has_receiver(bc)) {
3363               extra += 1;
3364             }
3365             assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?");
3366 #endif
3367             break;
3368           }
3369           arg = x->profiled_arg_at(i);
3370           not_null = !x->arg_needs_null_check(i);
3371           i++;
3372         }
3373       }
3374     }
3375   }
3376 }
3377 
3378 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
3379   // Need recv in a temporary register so it interferes with the other temporaries
3380   LIR_Opr recv = LIR_OprFact::illegalOpr;
3381   LIR_Opr mdo = new_register(T_OBJECT);
3382   // tmp is used to hold the counters on SPARC
3383   LIR_Opr tmp = new_pointer_register();
3384 
3385   if (x->nb_profiled_args() > 0) {
3386     profile_arguments(x);
3387   }
3388 
3389   // profile parameters on inlined method entry including receiver
3390   if (x->recv() != NULL || x->nb_profiled_args() > 0) {
3391     profile_parameters_at_call(x);
3392   }
3393 
3394   if (x->recv() != NULL) {
3395     LIRItem value(x->recv(), this);
3396     value.load_item();
3397     recv = new_register(T_OBJECT);
3398     __ move(value.result(), recv);
3399   }
3400   __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3401 }
3402 
3403 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3404   int bci = x->bci_of_invoke();
3405   ciMethodData* md = x->method()->method_data_or_null();
3406   ciProfileData* data = md->bci_to_data(bci);
3407   if (data != NULL) {
3408     assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3409     ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3410     LIR_Opr mdp = LIR_OprFact::illegalOpr;
3411 
3412     bool ignored_will_link;
3413     ciSignature* signature_at_call = NULL;
3414     x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3415 
3416     // The offset within the MDO of the entry to update may be too large
3417     // to be used in load/store instructions on some platforms. So have
3418     // profile_type() compute the address of the profile in a register.
3419     ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
3420         ret->type(), x->ret(), mdp,
3421         !x->needs_null_check(),
3422         signature_at_call->return_type()->as_klass(),
3423         x->callee()->signature()->return_type()->as_klass());
3424     if (exact != NULL) {
3425       md->set_return_type(bci, exact);
3426     }
3427   }
3428 }
3429 
3430 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3431   // We can safely ignore accessors here, since c2 will inline them anyway,
3432   // accessors are also always mature.
3433   if (!x->inlinee()->is_accessor()) {
3434     CodeEmitInfo* info = state_for(x, x->state(), true);
3435     // Notify the runtime very infrequently only to take care of counter overflows
3436     int freq_log = Tier23InlineeNotifyFreqLog;
3437     double scale;
3438     if (_method->has_option_value("CompileThresholdScaling", scale)) {
3439       freq_log = Arguments::scaled_freq_log(freq_log, scale);
3440     }
3441     increment_event_counter_impl(info, x->inlinee(), right_n_bits(freq_log), InvocationEntryBci, false, true);
3442   }
3443 }
3444 
3445 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, int bci, bool backedge) {
3446   int freq_log = 0;
3447   int level = compilation()->env()->comp_level();
3448   if (level == CompLevel_limited_profile) {
3449     freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
3450   } else if (level == CompLevel_full_profile) {
3451     freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
3452   } else {
3453     ShouldNotReachHere();
3454   }
3455   // Increment the appropriate invocation/backedge counter and notify the runtime.
3456   double scale;
3457   if (_method->has_option_value("CompileThresholdScaling", scale)) {
3458     freq_log = Arguments::scaled_freq_log(freq_log, scale);
3459   }
3460   increment_event_counter_impl(info, info->scope()->method(), right_n_bits(freq_log), bci, backedge, true);
3461 }
3462 
3463 void LIRGenerator::decrement_age(CodeEmitInfo* info) {
3464   ciMethod* method = info->scope()->method();
3465   MethodCounters* mc_adr = method->ensure_method_counters();
3466   if (mc_adr != NULL) {
3467     LIR_Opr mc = new_pointer_register();
3468     __ move(LIR_OprFact::intptrConst(mc_adr), mc);
3469     int offset = in_bytes(MethodCounters::nmethod_age_offset());
3470     LIR_Address* counter = new LIR_Address(mc, offset, T_INT);
3471     LIR_Opr result = new_register(T_INT);
3472     __ load(counter, result);
3473     __ sub(result, LIR_OprFact::intConst(1), result);
3474     __ store(result, counter);
3475     // DeoptimizeStub will reexecute from the current state in code info.
3476     CodeStub* deopt = new DeoptimizeStub(info, Deoptimization::Reason_tenured,
3477                                          Deoptimization::Action_make_not_entrant);
3478     __ cmp(lir_cond_lessEqual, result, LIR_OprFact::intConst(0));
3479     __ branch(lir_cond_lessEqual, T_INT, deopt);
3480   }
3481 }
3482 
3483 
3484 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
3485                                                 ciMethod *method, int frequency,
3486                                                 int bci, bool backedge, bool notify) {
3487   assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
3488   int level = _compilation->env()->comp_level();
3489   assert(level > CompLevel_simple, "Shouldn't be here");
3490 
3491   int offset = -1;
3492   LIR_Opr counter_holder = NULL;
3493   if (level == CompLevel_limited_profile) {
3494     MethodCounters* counters_adr = method->ensure_method_counters();
3495     if (counters_adr == NULL) {
3496       bailout("method counters allocation failed");
3497       return;
3498     }
3499     counter_holder = new_pointer_register();
3500     __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder);
3501     offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() :
3502                                  MethodCounters::invocation_counter_offset());
3503   } else if (level == CompLevel_full_profile) {
3504     counter_holder = new_register(T_METADATA);
3505     offset = in_bytes(backedge ? MethodData::backedge_counter_offset() :
3506                                  MethodData::invocation_counter_offset());
3507     ciMethodData* md = method->method_data_or_null();
3508     assert(md != NULL, "Sanity");
3509     __ metadata2reg(md->constant_encoding(), counter_holder);
3510   } else {
3511     ShouldNotReachHere();
3512   }
3513   LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
3514   LIR_Opr result = new_register(T_INT);
3515   __ load(counter, result);
3516   __ add(result, LIR_OprFact::intConst(InvocationCounter::count_increment), result);
3517   __ store(result, counter);
3518   if (notify && (!backedge || UseOnStackReplacement)) {
3519     LIR_Opr meth = LIR_OprFact::metadataConst(method->constant_encoding());
3520     // The bci for info can point to cmp for if's we want the if bci
3521     CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
3522     int freq = frequency << InvocationCounter::count_shift;
3523     if (freq == 0) {
3524       __ branch(lir_cond_always, T_ILLEGAL, overflow);
3525     } else {
3526       LIR_Opr mask = load_immediate(freq, T_INT);
3527       __ logical_and(result, mask, result);
3528       __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
3529       __ branch(lir_cond_equal, T_INT, overflow);
3530     }
3531     __ branch_destination(overflow->continuation());
3532   }
3533 }
3534 
3535 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
3536   LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
3537   BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
3538 
3539   if (x->pass_thread()) {
3540     signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
3541     args->append(getThreadPointer());
3542   }
3543 
3544   for (int i = 0; i < x->number_of_arguments(); i++) {
3545     Value a = x->argument_at(i);
3546     LIRItem* item = new LIRItem(a, this);
3547     item->load_item();
3548     args->append(item->result());
3549     signature->append(as_BasicType(a->type()));
3550   }
3551 
3552   LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL);
3553   if (x->type() == voidType) {
3554     set_no_result(x);
3555   } else {
3556     __ move(result, rlock_result(x));
3557   }
3558 }
3559 
3560 #ifdef ASSERT
3561 void LIRGenerator::do_Assert(Assert *x) {
3562   ValueTag tag = x->x()->type()->tag();
3563   If::Condition cond = x->cond();
3564 
3565   LIRItem xitem(x->x(), this);
3566   LIRItem yitem(x->y(), this);
3567   LIRItem* xin = &xitem;
3568   LIRItem* yin = &yitem;
3569 
3570   assert(tag == intTag, "Only integer assertions are valid!");
3571 
3572   xin->load_item();
3573   yin->dont_load_item();
3574 
3575   set_no_result(x);
3576 
3577   LIR_Opr left = xin->result();
3578   LIR_Opr right = yin->result();
3579 
3580   __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true);
3581 }
3582 #endif
3583 
3584 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) {
3585 
3586 
3587   Instruction *a = x->x();
3588   Instruction *b = x->y();
3589   if (!a || StressRangeCheckElimination) {
3590     assert(!b || StressRangeCheckElimination, "B must also be null");
3591 
3592     CodeEmitInfo *info = state_for(x, x->state());
3593     CodeStub* stub = new PredicateFailedStub(info);
3594 
3595     __ jump(stub);
3596   } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) {
3597     int a_int = a->type()->as_IntConstant()->value();
3598     int b_int = b->type()->as_IntConstant()->value();
3599 
3600     bool ok = false;
3601 
3602     switch(x->cond()) {
3603       case Instruction::eql: ok = (a_int == b_int); break;
3604       case Instruction::neq: ok = (a_int != b_int); break;
3605       case Instruction::lss: ok = (a_int < b_int); break;
3606       case Instruction::leq: ok = (a_int <= b_int); break;
3607       case Instruction::gtr: ok = (a_int > b_int); break;
3608       case Instruction::geq: ok = (a_int >= b_int); break;
3609       case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break;
3610       case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break;
3611       default: ShouldNotReachHere();
3612     }
3613 
3614     if (ok) {
3615 
3616       CodeEmitInfo *info = state_for(x, x->state());
3617       CodeStub* stub = new PredicateFailedStub(info);
3618 
3619       __ jump(stub);
3620     }
3621   } else {
3622 
3623     ValueTag tag = x->x()->type()->tag();
3624     If::Condition cond = x->cond();
3625     LIRItem xitem(x->x(), this);
3626     LIRItem yitem(x->y(), this);
3627     LIRItem* xin = &xitem;
3628     LIRItem* yin = &yitem;
3629 
3630     assert(tag == intTag, "Only integer deoptimizations are valid!");
3631 
3632     xin->load_item();
3633     yin->dont_load_item();
3634     set_no_result(x);
3635 
3636     LIR_Opr left = xin->result();
3637     LIR_Opr right = yin->result();
3638 
3639     CodeEmitInfo *info = state_for(x, x->state());
3640     CodeStub* stub = new PredicateFailedStub(info);
3641 
3642     __ cmp(lir_cond(cond), left, right);
3643     __ branch(lir_cond(cond), right->type(), stub);
3644   }
3645 }
3646 
3647 
3648 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
3649   LIRItemList args(1);
3650   LIRItem value(arg1, this);
3651   args.append(&value);
3652   BasicTypeList signature;
3653   signature.append(as_BasicType(arg1->type()));
3654 
3655   return call_runtime(&signature, &args, entry, result_type, info);
3656 }
3657 
3658 
3659 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
3660   LIRItemList args(2);
3661   LIRItem value1(arg1, this);
3662   LIRItem value2(arg2, this);
3663   args.append(&value1);
3664   args.append(&value2);
3665   BasicTypeList signature;
3666   signature.append(as_BasicType(arg1->type()));
3667   signature.append(as_BasicType(arg2->type()));
3668 
3669   return call_runtime(&signature, &args, entry, result_type, info);
3670 }
3671 
3672 
3673 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
3674                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3675   // get a result register
3676   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3677   LIR_Opr result = LIR_OprFact::illegalOpr;
3678   if (result_type->tag() != voidTag) {
3679     result = new_register(result_type);
3680     phys_reg = result_register_for(result_type);
3681   }
3682 
3683   // move the arguments into the correct location
3684   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3685   assert(cc->length() == args->length(), "argument mismatch");
3686   for (int i = 0; i < args->length(); i++) {
3687     LIR_Opr arg = args->at(i);
3688     LIR_Opr loc = cc->at(i);
3689     if (loc->is_register()) {
3690       __ move(arg, loc);
3691     } else {
3692       LIR_Address* addr = loc->as_address_ptr();
3693 //           if (!can_store_as_constant(arg)) {
3694 //             LIR_Opr tmp = new_register(arg->type());
3695 //             __ move(arg, tmp);
3696 //             arg = tmp;
3697 //           }
3698       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3699         __ unaligned_move(arg, addr);
3700       } else {
3701         __ move(arg, addr);
3702       }
3703     }
3704   }
3705 
3706   if (info) {
3707     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3708   } else {
3709     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3710   }
3711   if (result->is_valid()) {
3712     __ move(phys_reg, result);
3713   }
3714   return result;
3715 }
3716 
3717 
3718 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
3719                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3720   // get a result register
3721   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3722   LIR_Opr result = LIR_OprFact::illegalOpr;
3723   if (result_type->tag() != voidTag) {
3724     result = new_register(result_type);
3725     phys_reg = result_register_for(result_type);
3726   }
3727 
3728   // move the arguments into the correct location
3729   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3730 
3731   assert(cc->length() == args->length(), "argument mismatch");
3732   for (int i = 0; i < args->length(); i++) {
3733     LIRItem* arg = args->at(i);
3734     LIR_Opr loc = cc->at(i);
3735     if (loc->is_register()) {
3736       arg->load_item_force(loc);
3737     } else {
3738       LIR_Address* addr = loc->as_address_ptr();
3739       arg->load_for_store(addr->type());
3740       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3741         __ unaligned_move(arg->result(), addr);
3742       } else {
3743         __ move(arg->result(), addr);
3744       }
3745     }
3746   }
3747 
3748   if (info) {
3749     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3750   } else {
3751     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3752   }
3753   if (result->is_valid()) {
3754     __ move(phys_reg, result);
3755   }
3756   return result;
3757 }
3758 
3759 void LIRGenerator::do_MemBar(MemBar* x) {
3760   if (os::is_MP()) {
3761     LIR_Code code = x->code();
3762     switch(code) {
3763       case lir_membar_acquire   : __ membar_acquire(); break;
3764       case lir_membar_release   : __ membar_release(); break;
3765       case lir_membar           : __ membar(); break;
3766       case lir_membar_loadload  : __ membar_loadload(); break;
3767       case lir_membar_storestore: __ membar_storestore(); break;
3768       case lir_membar_loadstore : __ membar_loadstore(); break;
3769       case lir_membar_storeload : __ membar_storeload(); break;
3770       default                   : ShouldNotReachHere(); break;
3771     }
3772   }
3773 }
3774 
3775 LIR_Opr LIRGenerator::maybe_mask_boolean(StoreIndexed* x, LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) {
3776   if (x->check_boolean()) {
3777     LIR_Opr value_fixed = rlock_byte(T_BYTE);
3778     if (TwoOperandLIRForm) {
3779       __ move(value, value_fixed);
3780       __ logical_and(value_fixed, LIR_OprFact::intConst(1), value_fixed);
3781     } else {
3782       __ logical_and(value, LIR_OprFact::intConst(1), value_fixed);
3783     }
3784     LIR_Opr klass = new_register(T_METADATA);
3785     __ move(new LIR_Address(array, oopDesc::klass_offset_in_bytes(), T_ADDRESS), klass, null_check_info);
3786     null_check_info = NULL;
3787     LIR_Opr layout = new_register(T_INT);
3788     __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
3789     int diffbit = Klass::layout_helper_boolean_diffbit();
3790     __ logical_and(layout, LIR_OprFact::intConst(diffbit), layout);
3791     __ cmp(lir_cond_notEqual, layout, LIR_OprFact::intConst(0));
3792     __ cmove(lir_cond_notEqual, value_fixed, value, value_fixed, T_BYTE);
3793     value = value_fixed;
3794   }
3795   return value;
3796 }