1 /*
   2  * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/serial/defNewGeneration.inline.hpp"
  27 #include "gc/shared/ageTable.inline.hpp"
  28 #include "gc/shared/cardTableRS.hpp"
  29 #include "gc/shared/collectorCounters.hpp"
  30 #include "gc/shared/gcHeapSummary.hpp"
  31 #include "gc/shared/gcLocker.inline.hpp"
  32 #include "gc/shared/gcPolicyCounters.hpp"
  33 #include "gc/shared/gcTimer.hpp"
  34 #include "gc/shared/gcTrace.hpp"
  35 #include "gc/shared/gcTraceTime.inline.hpp"
  36 #include "gc/shared/genCollectedHeap.hpp"
  37 #include "gc/shared/genOopClosures.inline.hpp"
  38 #include "gc/shared/generationSpec.hpp"
  39 #include "gc/shared/preservedMarks.inline.hpp"
  40 #include "gc/shared/referencePolicy.hpp"
  41 #include "gc/shared/space.inline.hpp"
  42 #include "gc/shared/spaceDecorator.hpp"
  43 #include "gc/shared/strongRootsScope.hpp"
  44 #include "logging/log.hpp"
  45 #include "memory/iterator.hpp"
  46 #include "memory/resourceArea.hpp"
  47 #include "oops/instanceRefKlass.hpp"
  48 #include "oops/oop.inline.hpp"
  49 #include "runtime/atomic.hpp"
  50 #include "runtime/java.hpp"
  51 #include "runtime/prefetch.inline.hpp"
  52 #include "runtime/thread.inline.hpp"
  53 #include "utilities/align.hpp"
  54 #include "utilities/copy.hpp"
  55 #include "utilities/globalDefinitions.hpp"
  56 #include "utilities/stack.inline.hpp"
  57 #if INCLUDE_ALL_GCS
  58 #include "gc/cms/parOopClosures.hpp"
  59 #endif
  60 
  61 //
  62 // DefNewGeneration functions.
  63 
  64 // Methods of protected closure types.
  65 
  66 DefNewGeneration::IsAliveClosure::IsAliveClosure(Generation* young_gen) : _young_gen(young_gen) {
  67   assert(_young_gen->kind() == Generation::ParNew ||
  68          _young_gen->kind() == Generation::DefNew, "Expected the young generation here");
  69 }
  70 
  71 bool DefNewGeneration::IsAliveClosure::do_object_b(oop p) {
  72   return (HeapWord*)p >= _young_gen->reserved().end() || p->is_forwarded();
  73 }
  74 
  75 DefNewGeneration::KeepAliveClosure::
  76 KeepAliveClosure(ScanWeakRefClosure* cl) : _cl(cl) {
  77   _rs = GenCollectedHeap::heap()->rem_set();
  78 }
  79 
  80 void DefNewGeneration::KeepAliveClosure::do_oop(oop* p)       { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
  81 void DefNewGeneration::KeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
  82 
  83 
  84 DefNewGeneration::FastKeepAliveClosure::
  85 FastKeepAliveClosure(DefNewGeneration* g, ScanWeakRefClosure* cl) :
  86   DefNewGeneration::KeepAliveClosure(cl) {
  87   _boundary = g->reserved().end();
  88 }
  89 
  90 void DefNewGeneration::FastKeepAliveClosure::do_oop(oop* p)       { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
  91 void DefNewGeneration::FastKeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
  92 
  93 DefNewGeneration::EvacuateFollowersClosure::
  94 EvacuateFollowersClosure(GenCollectedHeap* gch,
  95                          ScanClosure* cur,
  96                          ScanClosure* older) :
  97   _gch(gch), _scan_cur_or_nonheap(cur), _scan_older(older)
  98 {}
  99 
 100 void DefNewGeneration::EvacuateFollowersClosure::do_void() {
 101   do {
 102     _gch->oop_since_save_marks_iterate(GenCollectedHeap::YoungGen, _scan_cur_or_nonheap, _scan_older);
 103   } while (!_gch->no_allocs_since_save_marks());
 104 }
 105 
 106 DefNewGeneration::FastEvacuateFollowersClosure::
 107 FastEvacuateFollowersClosure(GenCollectedHeap* gch,
 108                              FastScanClosure* cur,
 109                              FastScanClosure* older) :
 110   _gch(gch), _scan_cur_or_nonheap(cur), _scan_older(older)
 111 {
 112   assert(_gch->young_gen()->kind() == Generation::DefNew, "Generation should be DefNew");
 113   _young_gen = (DefNewGeneration*)_gch->young_gen();
 114 }
 115 
 116 void DefNewGeneration::FastEvacuateFollowersClosure::do_void() {
 117   do {
 118     _gch->oop_since_save_marks_iterate(GenCollectedHeap::YoungGen, _scan_cur_or_nonheap, _scan_older);
 119   } while (!_gch->no_allocs_since_save_marks());
 120   guarantee(_young_gen->promo_failure_scan_is_complete(), "Failed to finish scan");
 121 }
 122 
 123 ScanClosure::ScanClosure(DefNewGeneration* g, bool gc_barrier) :
 124     OopsInKlassOrGenClosure(g), _g(g), _gc_barrier(gc_barrier)
 125 {
 126   _boundary = _g->reserved().end();
 127 }
 128 
 129 void ScanClosure::do_oop(oop* p)       { ScanClosure::do_oop_work(p); }
 130 void ScanClosure::do_oop(narrowOop* p) { ScanClosure::do_oop_work(p); }
 131 
 132 FastScanClosure::FastScanClosure(DefNewGeneration* g, bool gc_barrier) :
 133     OopsInKlassOrGenClosure(g), _g(g), _gc_barrier(gc_barrier)
 134 {
 135   _boundary = _g->reserved().end();
 136 }
 137 
 138 void FastScanClosure::do_oop(oop* p)       { FastScanClosure::do_oop_work(p); }
 139 void FastScanClosure::do_oop(narrowOop* p) { FastScanClosure::do_oop_work(p); }
 140 
 141 void KlassScanClosure::do_klass(Klass* klass) {
 142   NOT_PRODUCT(ResourceMark rm);
 143   log_develop_trace(gc, scavenge)("KlassScanClosure::do_klass " PTR_FORMAT ", %s, dirty: %s",
 144                                   p2i(klass),
 145                                   klass->external_name(),
 146                                   klass->has_modified_oops() ? "true" : "false");
 147 
 148   // If the klass has not been dirtied we know that there's
 149   // no references into  the young gen and we can skip it.
 150   if (klass->has_modified_oops()) {
 151     if (_accumulate_modified_oops) {
 152       klass->accumulate_modified_oops();
 153     }
 154 
 155     // Clear this state since we're going to scavenge all the metadata.
 156     klass->clear_modified_oops();
 157 
 158     // Tell the closure which Klass is being scanned so that it can be dirtied
 159     // if oops are left pointing into the young gen.
 160     _scavenge_closure->set_scanned_klass(klass);
 161 
 162     klass->oops_do(_scavenge_closure);
 163 
 164     _scavenge_closure->set_scanned_klass(NULL);
 165   }
 166 }
 167 
 168 ScanWeakRefClosure::ScanWeakRefClosure(DefNewGeneration* g) :
 169   _g(g)
 170 {
 171   _boundary = _g->reserved().end();
 172 }
 173 
 174 void ScanWeakRefClosure::do_oop(oop* p)       { ScanWeakRefClosure::do_oop_work(p); }
 175 void ScanWeakRefClosure::do_oop(narrowOop* p) { ScanWeakRefClosure::do_oop_work(p); }
 176 
 177 void FilteringClosure::do_oop(oop* p)       { FilteringClosure::do_oop_work(p); }
 178 void FilteringClosure::do_oop(narrowOop* p) { FilteringClosure::do_oop_work(p); }
 179 
 180 KlassScanClosure::KlassScanClosure(OopsInKlassOrGenClosure* scavenge_closure,
 181                                    KlassRemSet* klass_rem_set)
 182     : _scavenge_closure(scavenge_closure),
 183       _accumulate_modified_oops(klass_rem_set->accumulate_modified_oops()) {}
 184 
 185 
 186 DefNewGeneration::DefNewGeneration(ReservedSpace rs,
 187                                    size_t initial_size,
 188                                    const char* policy)
 189   : Generation(rs, initial_size),
 190     _preserved_marks_set(false /* in_c_heap */),
 191     _promo_failure_drain_in_progress(false),
 192     _should_allocate_from_space(false)
 193 {
 194   MemRegion cmr((HeapWord*)_virtual_space.low(),
 195                 (HeapWord*)_virtual_space.high());
 196   GenCollectedHeap* gch = GenCollectedHeap::heap();
 197 
 198   gch->barrier_set()->resize_covered_region(cmr);
 199 
 200   _eden_space = new ContiguousSpace();
 201   _from_space = new ContiguousSpace();
 202   _to_space   = new ContiguousSpace();
 203 
 204   if (_eden_space == NULL || _from_space == NULL || _to_space == NULL) {
 205     vm_exit_during_initialization("Could not allocate a new gen space");
 206   }
 207 
 208   // Compute the maximum eden and survivor space sizes. These sizes
 209   // are computed assuming the entire reserved space is committed.
 210   // These values are exported as performance counters.
 211   uintx alignment = gch->collector_policy()->space_alignment();
 212   uintx size = _virtual_space.reserved_size();
 213   _max_survivor_size = compute_survivor_size(size, alignment);
 214   _max_eden_size = size - (2*_max_survivor_size);
 215 
 216   // allocate the performance counters
 217   GenCollectorPolicy* gcp = gch->gen_policy();
 218 
 219   // Generation counters -- generation 0, 3 subspaces
 220   _gen_counters = new GenerationCounters("new", 0, 3,
 221       gcp->min_young_size(), gcp->max_young_size(), &_virtual_space);
 222   _gc_counters = new CollectorCounters(policy, 0);
 223 
 224   _eden_counters = new CSpaceCounters("eden", 0, _max_eden_size, _eden_space,
 225                                       _gen_counters);
 226   _from_counters = new CSpaceCounters("s0", 1, _max_survivor_size, _from_space,
 227                                       _gen_counters);
 228   _to_counters = new CSpaceCounters("s1", 2, _max_survivor_size, _to_space,
 229                                     _gen_counters);
 230 
 231   compute_space_boundaries(0, SpaceDecorator::Clear, SpaceDecorator::Mangle);
 232   update_counters();
 233   _old_gen = NULL;
 234   _tenuring_threshold = MaxTenuringThreshold;
 235   _pretenure_size_threshold_words = PretenureSizeThreshold >> LogHeapWordSize;
 236 
 237   _gc_timer = new (ResourceObj::C_HEAP, mtGC) STWGCTimer();
 238 }
 239 
 240 void DefNewGeneration::compute_space_boundaries(uintx minimum_eden_size,
 241                                                 bool clear_space,
 242                                                 bool mangle_space) {
 243   uintx alignment =
 244     GenCollectedHeap::heap()->collector_policy()->space_alignment();
 245 
 246   // If the spaces are being cleared (only done at heap initialization
 247   // currently), the survivor spaces need not be empty.
 248   // Otherwise, no care is taken for used areas in the survivor spaces
 249   // so check.
 250   assert(clear_space || (to()->is_empty() && from()->is_empty()),
 251     "Initialization of the survivor spaces assumes these are empty");
 252 
 253   // Compute sizes
 254   uintx size = _virtual_space.committed_size();
 255   uintx survivor_size = compute_survivor_size(size, alignment);
 256   uintx eden_size = size - (2*survivor_size);
 257   assert(eden_size > 0 && survivor_size <= eden_size, "just checking");
 258 
 259   if (eden_size < minimum_eden_size) {
 260     // May happen due to 64Kb rounding, if so adjust eden size back up
 261     minimum_eden_size = align_up(minimum_eden_size, alignment);
 262     uintx maximum_survivor_size = (size - minimum_eden_size) / 2;
 263     uintx unaligned_survivor_size =
 264       align_down(maximum_survivor_size, alignment);
 265     survivor_size = MAX2(unaligned_survivor_size, alignment);
 266     eden_size = size - (2*survivor_size);
 267     assert(eden_size > 0 && survivor_size <= eden_size, "just checking");
 268     assert(eden_size >= minimum_eden_size, "just checking");
 269   }
 270 
 271   char *eden_start = _virtual_space.low();
 272   char *from_start = eden_start + eden_size;
 273   char *to_start   = from_start + survivor_size;
 274   char *to_end     = to_start   + survivor_size;
 275 
 276   assert(to_end == _virtual_space.high(), "just checking");
 277   assert(Space::is_aligned(eden_start), "checking alignment");
 278   assert(Space::is_aligned(from_start), "checking alignment");
 279   assert(Space::is_aligned(to_start),   "checking alignment");
 280 
 281   MemRegion edenMR((HeapWord*)eden_start, (HeapWord*)from_start);
 282   MemRegion fromMR((HeapWord*)from_start, (HeapWord*)to_start);
 283   MemRegion toMR  ((HeapWord*)to_start, (HeapWord*)to_end);
 284 
 285   // A minimum eden size implies that there is a part of eden that
 286   // is being used and that affects the initialization of any
 287   // newly formed eden.
 288   bool live_in_eden = minimum_eden_size > 0;
 289 
 290   // If not clearing the spaces, do some checking to verify that
 291   // the space are already mangled.
 292   if (!clear_space) {
 293     // Must check mangling before the spaces are reshaped.  Otherwise,
 294     // the bottom or end of one space may have moved into another
 295     // a failure of the check may not correctly indicate which space
 296     // is not properly mangled.
 297     if (ZapUnusedHeapArea) {
 298       HeapWord* limit = (HeapWord*) _virtual_space.high();
 299       eden()->check_mangled_unused_area(limit);
 300       from()->check_mangled_unused_area(limit);
 301         to()->check_mangled_unused_area(limit);
 302     }
 303   }
 304 
 305   // Reset the spaces for their new regions.
 306   eden()->initialize(edenMR,
 307                      clear_space && !live_in_eden,
 308                      SpaceDecorator::Mangle);
 309   // If clear_space and live_in_eden, we will not have cleared any
 310   // portion of eden above its top. This can cause newly
 311   // expanded space not to be mangled if using ZapUnusedHeapArea.
 312   // We explicitly do such mangling here.
 313   if (ZapUnusedHeapArea && clear_space && live_in_eden && mangle_space) {
 314     eden()->mangle_unused_area();
 315   }
 316   from()->initialize(fromMR, clear_space, mangle_space);
 317   to()->initialize(toMR, clear_space, mangle_space);
 318 
 319   // Set next compaction spaces.
 320   eden()->set_next_compaction_space(from());
 321   // The to-space is normally empty before a compaction so need
 322   // not be considered.  The exception is during promotion
 323   // failure handling when to-space can contain live objects.
 324   from()->set_next_compaction_space(NULL);
 325 }
 326 
 327 void DefNewGeneration::swap_spaces() {
 328   ContiguousSpace* s = from();
 329   _from_space        = to();
 330   _to_space          = s;
 331   eden()->set_next_compaction_space(from());
 332   // The to-space is normally empty before a compaction so need
 333   // not be considered.  The exception is during promotion
 334   // failure handling when to-space can contain live objects.
 335   from()->set_next_compaction_space(NULL);
 336 
 337   if (UsePerfData) {
 338     CSpaceCounters* c = _from_counters;
 339     _from_counters = _to_counters;
 340     _to_counters = c;
 341   }
 342 }
 343 
 344 bool DefNewGeneration::expand(size_t bytes) {
 345   MutexLocker x(ExpandHeap_lock);
 346   HeapWord* prev_high = (HeapWord*) _virtual_space.high();
 347   bool success = _virtual_space.expand_by(bytes);
 348   if (success && ZapUnusedHeapArea) {
 349     // Mangle newly committed space immediately because it
 350     // can be done here more simply that after the new
 351     // spaces have been computed.
 352     HeapWord* new_high = (HeapWord*) _virtual_space.high();
 353     MemRegion mangle_region(prev_high, new_high);
 354     SpaceMangler::mangle_region(mangle_region);
 355   }
 356 
 357   // Do not attempt an expand-to-the reserve size.  The
 358   // request should properly observe the maximum size of
 359   // the generation so an expand-to-reserve should be
 360   // unnecessary.  Also a second call to expand-to-reserve
 361   // value potentially can cause an undue expansion.
 362   // For example if the first expand fail for unknown reasons,
 363   // but the second succeeds and expands the heap to its maximum
 364   // value.
 365   if (GCLocker::is_active()) {
 366     log_debug(gc)("Garbage collection disabled, expanded heap instead");
 367   }
 368 
 369   return success;
 370 }
 371 
 372 size_t DefNewGeneration::adjust_for_thread_increase(size_t new_size_candidate,
 373                                                     size_t new_size_before,
 374                                                     size_t alignment) const {
 375   size_t desired_new_size = new_size_before;
 376 
 377   if (NewSizeThreadIncrease > 0) {
 378     int threads_count;
 379     size_t thread_increase_size = 0;
 380 
 381     // 1. Check an overflow at 'threads_count * NewSizeThreadIncrease'.
 382     threads_count = Threads::number_of_non_daemon_threads();
 383     if (threads_count > 0 && NewSizeThreadIncrease <= max_uintx / threads_count) {
 384       thread_increase_size = threads_count * NewSizeThreadIncrease;
 385 
 386       // 2. Check an overflow at 'new_size_candidate + thread_increase_size'.
 387       if (new_size_candidate <= max_uintx - thread_increase_size) {
 388         new_size_candidate += thread_increase_size;
 389 
 390         // 3. Check an overflow at 'align_up'.
 391         size_t aligned_max = ((max_uintx - alignment) & ~(alignment-1));
 392         if (new_size_candidate <= aligned_max) {
 393           desired_new_size = align_up(new_size_candidate, alignment);
 394         }
 395       }
 396     }
 397   }
 398 
 399   return desired_new_size;
 400 }
 401 
 402 void DefNewGeneration::compute_new_size() {
 403   // This is called after a GC that includes the old generation, so from-space
 404   // will normally be empty.
 405   // Note that we check both spaces, since if scavenge failed they revert roles.
 406   // If not we bail out (otherwise we would have to relocate the objects).
 407   if (!from()->is_empty() || !to()->is_empty()) {
 408     return;
 409   }
 410 
 411   GenCollectedHeap* gch = GenCollectedHeap::heap();
 412 
 413   size_t old_size = gch->old_gen()->capacity();
 414   size_t new_size_before = _virtual_space.committed_size();
 415   size_t min_new_size = initial_size();
 416   size_t max_new_size = reserved().byte_size();
 417   assert(min_new_size <= new_size_before &&
 418          new_size_before <= max_new_size,
 419          "just checking");
 420   // All space sizes must be multiples of Generation::GenGrain.
 421   size_t alignment = Generation::GenGrain;
 422 
 423   int threads_count = 0;
 424   size_t thread_increase_size = 0;
 425 
 426   size_t new_size_candidate = old_size / NewRatio;
 427   // Compute desired new generation size based on NewRatio and NewSizeThreadIncrease
 428   // and reverts to previous value if any overflow happens
 429   size_t desired_new_size = adjust_for_thread_increase(new_size_candidate, new_size_before, alignment);
 430 
 431   // Adjust new generation size
 432   desired_new_size = MAX2(MIN2(desired_new_size, max_new_size), min_new_size);
 433   assert(desired_new_size <= max_new_size, "just checking");
 434 
 435   bool changed = false;
 436   if (desired_new_size > new_size_before) {
 437     size_t change = desired_new_size - new_size_before;
 438     assert(change % alignment == 0, "just checking");
 439     if (expand(change)) {
 440        changed = true;
 441     }
 442     // If the heap failed to expand to the desired size,
 443     // "changed" will be false.  If the expansion failed
 444     // (and at this point it was expected to succeed),
 445     // ignore the failure (leaving "changed" as false).
 446   }
 447   if (desired_new_size < new_size_before && eden()->is_empty()) {
 448     // bail out of shrinking if objects in eden
 449     size_t change = new_size_before - desired_new_size;
 450     assert(change % alignment == 0, "just checking");
 451     _virtual_space.shrink_by(change);
 452     changed = true;
 453   }
 454   if (changed) {
 455     // The spaces have already been mangled at this point but
 456     // may not have been cleared (set top = bottom) and should be.
 457     // Mangling was done when the heap was being expanded.
 458     compute_space_boundaries(eden()->used(),
 459                              SpaceDecorator::Clear,
 460                              SpaceDecorator::DontMangle);
 461     MemRegion cmr((HeapWord*)_virtual_space.low(),
 462                   (HeapWord*)_virtual_space.high());
 463     gch->barrier_set()->resize_covered_region(cmr);
 464 
 465     log_debug(gc, ergo, heap)(
 466         "New generation size " SIZE_FORMAT "K->" SIZE_FORMAT "K [eden=" SIZE_FORMAT "K,survivor=" SIZE_FORMAT "K]",
 467         new_size_before/K, _virtual_space.committed_size()/K,
 468         eden()->capacity()/K, from()->capacity()/K);
 469     log_trace(gc, ergo, heap)(
 470         "  [allowed " SIZE_FORMAT "K extra for %d threads]",
 471           thread_increase_size/K, threads_count);
 472       }
 473 }
 474 
 475 void DefNewGeneration::younger_refs_iterate(OopsInGenClosure* cl, uint n_threads) {
 476   assert(false, "NYI -- are you sure you want to call this?");
 477 }
 478 
 479 
 480 size_t DefNewGeneration::capacity() const {
 481   return eden()->capacity()
 482        + from()->capacity();  // to() is only used during scavenge
 483 }
 484 
 485 
 486 size_t DefNewGeneration::used() const {
 487   return eden()->used()
 488        + from()->used();      // to() is only used during scavenge
 489 }
 490 
 491 
 492 size_t DefNewGeneration::free() const {
 493   return eden()->free()
 494        + from()->free();      // to() is only used during scavenge
 495 }
 496 
 497 size_t DefNewGeneration::max_capacity() const {
 498   const size_t alignment = GenCollectedHeap::heap()->collector_policy()->space_alignment();
 499   const size_t reserved_bytes = reserved().byte_size();
 500   return reserved_bytes - compute_survivor_size(reserved_bytes, alignment);
 501 }
 502 
 503 size_t DefNewGeneration::unsafe_max_alloc_nogc() const {
 504   return eden()->free();
 505 }
 506 
 507 size_t DefNewGeneration::capacity_before_gc() const {
 508   return eden()->capacity();
 509 }
 510 
 511 size_t DefNewGeneration::contiguous_available() const {
 512   return eden()->free();
 513 }
 514 
 515 
 516 HeapWord* volatile* DefNewGeneration::top_addr() const { return eden()->top_addr(); }
 517 HeapWord** DefNewGeneration::end_addr() const { return eden()->end_addr(); }
 518 
 519 void DefNewGeneration::object_iterate(ObjectClosure* blk) {
 520   eden()->object_iterate(blk);
 521   from()->object_iterate(blk);
 522 }
 523 
 524 
 525 void DefNewGeneration::space_iterate(SpaceClosure* blk,
 526                                      bool usedOnly) {
 527   blk->do_space(eden());
 528   blk->do_space(from());
 529   blk->do_space(to());
 530 }
 531 
 532 // The last collection bailed out, we are running out of heap space,
 533 // so we try to allocate the from-space, too.
 534 HeapWord* DefNewGeneration::allocate_from_space(size_t size) {
 535   bool should_try_alloc = should_allocate_from_space() || GCLocker::is_active_and_needs_gc();
 536 
 537   // If the Heap_lock is not locked by this thread, this will be called
 538   // again later with the Heap_lock held.
 539   bool do_alloc = should_try_alloc && (Heap_lock->owned_by_self() || (SafepointSynchronize::is_at_safepoint() && Thread::current()->is_VM_thread()));
 540 
 541   HeapWord* result = NULL;
 542   if (do_alloc) {
 543     result = from()->allocate(size);
 544   }
 545 
 546   log_trace(gc, alloc)("DefNewGeneration::allocate_from_space(" SIZE_FORMAT "):  will_fail: %s  heap_lock: %s  free: " SIZE_FORMAT "%s%s returns %s",
 547                         size,
 548                         GenCollectedHeap::heap()->incremental_collection_will_fail(false /* don't consult_young */) ?
 549                           "true" : "false",
 550                         Heap_lock->is_locked() ? "locked" : "unlocked",
 551                         from()->free(),
 552                         should_try_alloc ? "" : "  should_allocate_from_space: NOT",
 553                         do_alloc ? "  Heap_lock is not owned by self" : "",
 554                         result == NULL ? "NULL" : "object");
 555 
 556   return result;
 557 }
 558 
 559 HeapWord* DefNewGeneration::expand_and_allocate(size_t size,
 560                                                 bool   is_tlab,
 561                                                 bool   parallel) {
 562   // We don't attempt to expand the young generation (but perhaps we should.)
 563   return allocate(size, is_tlab);
 564 }
 565 
 566 void DefNewGeneration::adjust_desired_tenuring_threshold() {
 567   // Set the desired survivor size to half the real survivor space
 568   size_t const survivor_capacity = to()->capacity() / HeapWordSize;
 569   size_t const desired_survivor_size = (size_t)((((double)survivor_capacity) * TargetSurvivorRatio) / 100);
 570 
 571   _tenuring_threshold = age_table()->compute_tenuring_threshold(desired_survivor_size);
 572 
 573   if (UsePerfData) {
 574     GCPolicyCounters* gc_counters = GenCollectedHeap::heap()->gen_policy()->counters();
 575     gc_counters->tenuring_threshold()->set_value(_tenuring_threshold);
 576     gc_counters->desired_survivor_size()->set_value(desired_survivor_size * oopSize);
 577   }
 578 
 579   age_table()->print_age_table(_tenuring_threshold);
 580 }
 581 
 582 void DefNewGeneration::collect(bool   full,
 583                                bool   clear_all_soft_refs,
 584                                size_t size,
 585                                bool   is_tlab) {
 586   assert(full || size > 0, "otherwise we don't want to collect");
 587 
 588   GenCollectedHeap* gch = GenCollectedHeap::heap();
 589 
 590   _gc_timer->register_gc_start();
 591   DefNewTracer gc_tracer;
 592   gc_tracer.report_gc_start(gch->gc_cause(), _gc_timer->gc_start());
 593 
 594   _old_gen = gch->old_gen();
 595 
 596   // If the next generation is too full to accommodate promotion
 597   // from this generation, pass on collection; let the next generation
 598   // do it.
 599   if (!collection_attempt_is_safe()) {
 600     log_trace(gc)(":: Collection attempt not safe ::");
 601     gch->set_incremental_collection_failed(); // Slight lie: we did not even attempt one
 602     return;
 603   }
 604   assert(to()->is_empty(), "Else not collection_attempt_is_safe");
 605 
 606   init_assuming_no_promotion_failure();
 607 
 608   GCTraceTime(Trace, gc, phases) tm("DefNew", NULL, gch->gc_cause());
 609 
 610   gch->trace_heap_before_gc(&gc_tracer);
 611 
 612   // These can be shared for all code paths
 613   IsAliveClosure is_alive(this);
 614   ScanWeakRefClosure scan_weak_ref(this);
 615 
 616   age_table()->clear();
 617   to()->clear(SpaceDecorator::Mangle);
 618   // The preserved marks should be empty at the start of the GC.
 619   _preserved_marks_set.init(1);
 620 
 621   gch->rem_set()->prepare_for_younger_refs_iterate(false);
 622 
 623   assert(gch->no_allocs_since_save_marks(),
 624          "save marks have not been newly set.");
 625 
 626   // Not very pretty.
 627   CollectorPolicy* cp = gch->collector_policy();
 628 
 629   FastScanClosure fsc_with_no_gc_barrier(this, false);
 630   FastScanClosure fsc_with_gc_barrier(this, true);
 631 
 632   KlassScanClosure klass_scan_closure(&fsc_with_no_gc_barrier,
 633                                       gch->rem_set()->klass_rem_set());
 634   CLDToKlassAndOopClosure cld_scan_closure(&klass_scan_closure,
 635                                            &fsc_with_no_gc_barrier,
 636                                            false);
 637 
 638   set_promo_failure_scan_stack_closure(&fsc_with_no_gc_barrier);
 639   FastEvacuateFollowersClosure evacuate_followers(gch,
 640                                                   &fsc_with_no_gc_barrier,
 641                                                   &fsc_with_gc_barrier);
 642 
 643   assert(gch->no_allocs_since_save_marks(),
 644          "save marks have not been newly set.");
 645 
 646   {
 647     // DefNew needs to run with n_threads == 0, to make sure the serial
 648     // version of the card table scanning code is used.
 649     // See: CardTableModRefBSForCTRS::non_clean_card_iterate_possibly_parallel.
 650     StrongRootsScope srs(0);
 651 
 652     gch->young_process_roots(&srs,
 653                              &fsc_with_no_gc_barrier,
 654                              &fsc_with_gc_barrier,
 655                              &cld_scan_closure);
 656   }
 657 
 658   // "evacuate followers".
 659   evacuate_followers.do_void();
 660 
 661   FastKeepAliveClosure keep_alive(this, &scan_weak_ref);
 662   ReferenceProcessor* rp = ref_processor();
 663   rp->setup_policy(clear_all_soft_refs);
 664   ReferenceProcessorPhaseTimes pt(_gc_timer, rp->num_q());
 665   const ReferenceProcessorStats& stats =
 666   rp->process_discovered_references(&is_alive, &keep_alive, &evacuate_followers,
 667                                     NULL, &pt);
 668   gc_tracer.report_gc_reference_stats(stats);
 669   gc_tracer.report_tenuring_threshold(tenuring_threshold());
 670   pt.print_all_references();
 671 
 672   if (!_promotion_failed) {
 673     // Swap the survivor spaces.
 674     eden()->clear(SpaceDecorator::Mangle);
 675     from()->clear(SpaceDecorator::Mangle);
 676     if (ZapUnusedHeapArea) {
 677       // This is now done here because of the piece-meal mangling which
 678       // can check for valid mangling at intermediate points in the
 679       // collection(s).  When a young collection fails to collect
 680       // sufficient space resizing of the young generation can occur
 681       // an redistribute the spaces in the young generation.  Mangle
 682       // here so that unzapped regions don't get distributed to
 683       // other spaces.
 684       to()->mangle_unused_area();
 685     }
 686     swap_spaces();
 687 
 688     assert(to()->is_empty(), "to space should be empty now");
 689 
 690     adjust_desired_tenuring_threshold();
 691 
 692     // A successful scavenge should restart the GC time limit count which is
 693     // for full GC's.
 694     AdaptiveSizePolicy* size_policy = gch->gen_policy()->size_policy();
 695     size_policy->reset_gc_overhead_limit_count();
 696     assert(!gch->incremental_collection_failed(), "Should be clear");
 697   } else {
 698     assert(_promo_failure_scan_stack.is_empty(), "post condition");
 699     _promo_failure_scan_stack.clear(true); // Clear cached segments.
 700 
 701     remove_forwarding_pointers();
 702     log_info(gc, promotion)("Promotion failed");
 703     // Add to-space to the list of space to compact
 704     // when a promotion failure has occurred.  In that
 705     // case there can be live objects in to-space
 706     // as a result of a partial evacuation of eden
 707     // and from-space.
 708     swap_spaces();   // For uniformity wrt ParNewGeneration.
 709     from()->set_next_compaction_space(to());
 710     gch->set_incremental_collection_failed();
 711 
 712     // Inform the next generation that a promotion failure occurred.
 713     _old_gen->promotion_failure_occurred();
 714     gc_tracer.report_promotion_failed(_promotion_failed_info);
 715 
 716     // Reset the PromotionFailureALot counters.
 717     NOT_PRODUCT(gch->reset_promotion_should_fail();)
 718   }
 719   // We should have processed and cleared all the preserved marks.
 720   _preserved_marks_set.reclaim();
 721   // set new iteration safe limit for the survivor spaces
 722   from()->set_concurrent_iteration_safe_limit(from()->top());
 723   to()->set_concurrent_iteration_safe_limit(to()->top());
 724 
 725   // We need to use a monotonically non-decreasing time in ms
 726   // or we will see time-warp warnings and os::javaTimeMillis()
 727   // does not guarantee monotonicity.
 728   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
 729   update_time_of_last_gc(now);
 730 
 731   gch->trace_heap_after_gc(&gc_tracer);
 732 
 733   _gc_timer->register_gc_end();
 734 
 735   gc_tracer.report_gc_end(_gc_timer->gc_end(), _gc_timer->time_partitions());
 736 }
 737 
 738 void DefNewGeneration::init_assuming_no_promotion_failure() {
 739   _promotion_failed = false;
 740   _promotion_failed_info.reset();
 741   from()->set_next_compaction_space(NULL);
 742 }
 743 
 744 void DefNewGeneration::remove_forwarding_pointers() {
 745   RemoveForwardedPointerClosure rspc;
 746   eden()->object_iterate(&rspc);
 747   from()->object_iterate(&rspc);
 748 
 749   SharedRestorePreservedMarksTaskExecutor task_executor(GenCollectedHeap::heap()->workers());
 750   _preserved_marks_set.restore(&task_executor);
 751 }
 752 
 753 void DefNewGeneration::handle_promotion_failure(oop old) {
 754   log_debug(gc, promotion)("Promotion failure size = %d) ", old->size());
 755 
 756   _promotion_failed = true;
 757   _promotion_failed_info.register_copy_failure(old->size());
 758   _preserved_marks_set.get()->push_if_necessary(old, old->mark());
 759   // forward to self
 760   old->forward_to(old);
 761 
 762   _promo_failure_scan_stack.push(old);
 763 
 764   if (!_promo_failure_drain_in_progress) {
 765     // prevent recursion in copy_to_survivor_space()
 766     _promo_failure_drain_in_progress = true;
 767     drain_promo_failure_scan_stack();
 768     _promo_failure_drain_in_progress = false;
 769   }
 770 }
 771 
 772 oop DefNewGeneration::copy_to_survivor_space(oop old) {
 773   assert(is_in_reserved(old) && !old->is_forwarded(),
 774          "shouldn't be scavenging this oop");
 775   size_t s = old->size();
 776   oop obj = NULL;
 777 
 778   // Try allocating obj in to-space (unless too old)
 779   if (old->age() < tenuring_threshold()) {
 780     obj = (oop) to()->allocate_aligned(s);
 781   }
 782 
 783   // Otherwise try allocating obj tenured
 784   if (obj == NULL) {
 785     obj = _old_gen->promote(old, s);
 786     if (obj == NULL) {
 787       handle_promotion_failure(old);
 788       return old;
 789     }
 790   } else {
 791     // Prefetch beyond obj
 792     const intx interval = PrefetchCopyIntervalInBytes;
 793     Prefetch::write(obj, interval);
 794 
 795     // Copy obj
 796     Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)obj, s);
 797 
 798     // Increment age if obj still in new generation
 799     obj->incr_age();
 800     age_table()->add(obj, s);
 801   }
 802 
 803   // Done, insert forward pointer to obj in this header
 804   old->forward_to(obj);
 805 
 806   return obj;
 807 }
 808 
 809 void DefNewGeneration::drain_promo_failure_scan_stack() {
 810   while (!_promo_failure_scan_stack.is_empty()) {
 811      oop obj = _promo_failure_scan_stack.pop();
 812      obj->oop_iterate(_promo_failure_scan_stack_closure);
 813   }
 814 }
 815 
 816 void DefNewGeneration::save_marks() {
 817   eden()->set_saved_mark();
 818   to()->set_saved_mark();
 819   from()->set_saved_mark();
 820 }
 821 
 822 
 823 void DefNewGeneration::reset_saved_marks() {
 824   eden()->reset_saved_mark();
 825   to()->reset_saved_mark();
 826   from()->reset_saved_mark();
 827 }
 828 
 829 
 830 bool DefNewGeneration::no_allocs_since_save_marks() {
 831   assert(eden()->saved_mark_at_top(), "Violated spec - alloc in eden");
 832   assert(from()->saved_mark_at_top(), "Violated spec - alloc in from");
 833   return to()->saved_mark_at_top();
 834 }
 835 
 836 #define DefNew_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix) \
 837                                                                 \
 838 void DefNewGeneration::                                         \
 839 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
 840   cl->set_generation(this);                                     \
 841   eden()->oop_since_save_marks_iterate##nv_suffix(cl);          \
 842   to()->oop_since_save_marks_iterate##nv_suffix(cl);            \
 843   from()->oop_since_save_marks_iterate##nv_suffix(cl);          \
 844   cl->reset_generation();                                       \
 845   save_marks();                                                 \
 846 }
 847 
 848 ALL_SINCE_SAVE_MARKS_CLOSURES(DefNew_SINCE_SAVE_MARKS_DEFN)
 849 
 850 #undef DefNew_SINCE_SAVE_MARKS_DEFN
 851 
 852 void DefNewGeneration::contribute_scratch(ScratchBlock*& list, Generation* requestor,
 853                                          size_t max_alloc_words) {
 854   if (requestor == this || _promotion_failed) {
 855     return;
 856   }
 857   assert(GenCollectedHeap::heap()->is_old_gen(requestor), "We should not call our own generation");
 858 
 859   /* $$$ Assert this?  "trace" is a "MarkSweep" function so that's not appropriate.
 860   if (to_space->top() > to_space->bottom()) {
 861     trace("to_space not empty when contribute_scratch called");
 862   }
 863   */
 864 
 865   ContiguousSpace* to_space = to();
 866   assert(to_space->end() >= to_space->top(), "pointers out of order");
 867   size_t free_words = pointer_delta(to_space->end(), to_space->top());
 868   if (free_words >= MinFreeScratchWords) {
 869     ScratchBlock* sb = (ScratchBlock*)to_space->top();
 870     sb->num_words = free_words;
 871     sb->next = list;
 872     list = sb;
 873   }
 874 }
 875 
 876 void DefNewGeneration::reset_scratch() {
 877   // If contributing scratch in to_space, mangle all of
 878   // to_space if ZapUnusedHeapArea.  This is needed because
 879   // top is not maintained while using to-space as scratch.
 880   if (ZapUnusedHeapArea) {
 881     to()->mangle_unused_area_complete();
 882   }
 883 }
 884 
 885 bool DefNewGeneration::collection_attempt_is_safe() {
 886   if (!to()->is_empty()) {
 887     log_trace(gc)(":: to is not empty ::");
 888     return false;
 889   }
 890   if (_old_gen == NULL) {
 891     GenCollectedHeap* gch = GenCollectedHeap::heap();
 892     _old_gen = gch->old_gen();
 893   }
 894   return _old_gen->promotion_attempt_is_safe(used());
 895 }
 896 
 897 void DefNewGeneration::gc_epilogue(bool full) {
 898   DEBUG_ONLY(static bool seen_incremental_collection_failed = false;)
 899 
 900   assert(!GCLocker::is_active(), "We should not be executing here");
 901   // Check if the heap is approaching full after a collection has
 902   // been done.  Generally the young generation is empty at
 903   // a minimum at the end of a collection.  If it is not, then
 904   // the heap is approaching full.
 905   GenCollectedHeap* gch = GenCollectedHeap::heap();
 906   if (full) {
 907     DEBUG_ONLY(seen_incremental_collection_failed = false;)
 908     if (!collection_attempt_is_safe() && !_eden_space->is_empty()) {
 909       log_trace(gc)("DefNewEpilogue: cause(%s), full, not safe, set_failed, set_alloc_from, clear_seen",
 910                             GCCause::to_string(gch->gc_cause()));
 911       gch->set_incremental_collection_failed(); // Slight lie: a full gc left us in that state
 912       set_should_allocate_from_space(); // we seem to be running out of space
 913     } else {
 914       log_trace(gc)("DefNewEpilogue: cause(%s), full, safe, clear_failed, clear_alloc_from, clear_seen",
 915                             GCCause::to_string(gch->gc_cause()));
 916       gch->clear_incremental_collection_failed(); // We just did a full collection
 917       clear_should_allocate_from_space(); // if set
 918     }
 919   } else {
 920 #ifdef ASSERT
 921     // It is possible that incremental_collection_failed() == true
 922     // here, because an attempted scavenge did not succeed. The policy
 923     // is normally expected to cause a full collection which should
 924     // clear that condition, so we should not be here twice in a row
 925     // with incremental_collection_failed() == true without having done
 926     // a full collection in between.
 927     if (!seen_incremental_collection_failed &&
 928         gch->incremental_collection_failed()) {
 929       log_trace(gc)("DefNewEpilogue: cause(%s), not full, not_seen_failed, failed, set_seen_failed",
 930                             GCCause::to_string(gch->gc_cause()));
 931       seen_incremental_collection_failed = true;
 932     } else if (seen_incremental_collection_failed) {
 933       log_trace(gc)("DefNewEpilogue: cause(%s), not full, seen_failed, will_clear_seen_failed",
 934                             GCCause::to_string(gch->gc_cause()));
 935       assert(gch->gc_cause() == GCCause::_scavenge_alot ||
 936              (GCCause::is_user_requested_gc(gch->gc_cause()) && UseConcMarkSweepGC && ExplicitGCInvokesConcurrent) ||
 937              !gch->incremental_collection_failed(),
 938              "Twice in a row");
 939       seen_incremental_collection_failed = false;
 940     }
 941 #endif // ASSERT
 942   }
 943 
 944   if (ZapUnusedHeapArea) {
 945     eden()->check_mangled_unused_area_complete();
 946     from()->check_mangled_unused_area_complete();
 947     to()->check_mangled_unused_area_complete();
 948   }
 949 
 950   if (!CleanChunkPoolAsync) {
 951     Chunk::clean_chunk_pool();
 952   }
 953 
 954   // update the generation and space performance counters
 955   update_counters();
 956   gch->gen_policy()->counters()->update_counters();
 957 }
 958 
 959 void DefNewGeneration::record_spaces_top() {
 960   assert(ZapUnusedHeapArea, "Not mangling unused space");
 961   eden()->set_top_for_allocations();
 962   to()->set_top_for_allocations();
 963   from()->set_top_for_allocations();
 964 }
 965 
 966 void DefNewGeneration::ref_processor_init() {
 967   Generation::ref_processor_init();
 968 }
 969 
 970 
 971 void DefNewGeneration::update_counters() {
 972   if (UsePerfData) {
 973     _eden_counters->update_all();
 974     _from_counters->update_all();
 975     _to_counters->update_all();
 976     _gen_counters->update_all();
 977   }
 978 }
 979 
 980 void DefNewGeneration::verify() {
 981   eden()->verify();
 982   from()->verify();
 983     to()->verify();
 984 }
 985 
 986 void DefNewGeneration::print_on(outputStream* st) const {
 987   Generation::print_on(st);
 988   st->print("  eden");
 989   eden()->print_on(st);
 990   st->print("  from");
 991   from()->print_on(st);
 992   st->print("  to  ");
 993   to()->print_on(st);
 994 }
 995 
 996 
 997 const char* DefNewGeneration::name() const {
 998   return "def new generation";
 999 }
1000 
1001 // Moved from inline file as they are not called inline
1002 CompactibleSpace* DefNewGeneration::first_compaction_space() const {
1003   return eden();
1004 }
1005 
1006 HeapWord* DefNewGeneration::allocate(size_t word_size, bool is_tlab) {
1007   // This is the slow-path allocation for the DefNewGeneration.
1008   // Most allocations are fast-path in compiled code.
1009   // We try to allocate from the eden.  If that works, we are happy.
1010   // Note that since DefNewGeneration supports lock-free allocation, we
1011   // have to use it here, as well.
1012   HeapWord* result = eden()->par_allocate(word_size);
1013   if (result != NULL) {
1014     if (CMSEdenChunksRecordAlways && _old_gen != NULL) {
1015       _old_gen->sample_eden_chunk();
1016     }
1017   } else {
1018     // If the eden is full and the last collection bailed out, we are running
1019     // out of heap space, and we try to allocate the from-space, too.
1020     // allocate_from_space can't be inlined because that would introduce a
1021     // circular dependency at compile time.
1022     result = allocate_from_space(word_size);
1023   }
1024   return result;
1025 }
1026 
1027 HeapWord* DefNewGeneration::par_allocate(size_t word_size,
1028                                          bool is_tlab) {
1029   HeapWord* res = eden()->par_allocate(word_size);
1030   if (CMSEdenChunksRecordAlways && _old_gen != NULL) {
1031     _old_gen->sample_eden_chunk();
1032   }
1033   return res;
1034 }
1035 
1036 size_t DefNewGeneration::tlab_capacity() const {
1037   return eden()->capacity();
1038 }
1039 
1040 size_t DefNewGeneration::tlab_used() const {
1041   return eden()->used();
1042 }
1043 
1044 size_t DefNewGeneration::unsafe_max_tlab_alloc() const {
1045   return unsafe_max_alloc_nogc();
1046 }