1 /*
   2  * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/serial/defNewGeneration.inline.hpp"
  27 #include "gc/shared/ageTable.inline.hpp"
  28 #include "gc/shared/cardTableRS.hpp"
  29 #include "gc/shared/collectorCounters.hpp"
  30 #include "gc/shared/gcHeapSummary.hpp"
  31 #include "gc/shared/gcLocker.inline.hpp"
  32 #include "gc/shared/gcPolicyCounters.hpp"
  33 #include "gc/shared/gcTimer.hpp"
  34 #include "gc/shared/gcTrace.hpp"
  35 #include "gc/shared/gcTraceTime.inline.hpp"
  36 #include "gc/shared/genCollectedHeap.hpp"
  37 #include "gc/shared/genOopClosures.inline.hpp"
  38 #include "gc/shared/generationSpec.hpp"
  39 #include "gc/shared/preservedMarks.inline.hpp"
  40 #include "gc/shared/referencePolicy.hpp"
  41 #include "gc/shared/space.inline.hpp"
  42 #include "gc/shared/spaceDecorator.hpp"
  43 #include "gc/shared/strongRootsScope.hpp"
  44 #include "logging/log.hpp"
  45 #include "memory/iterator.hpp"
  46 #include "memory/resourceArea.hpp"
  47 #include "oops/instanceRefKlass.hpp"
  48 #include "oops/oop.inline.hpp"
  49 #include "runtime/atomic.hpp"
  50 #include "runtime/java.hpp"
  51 #include "runtime/prefetch.inline.hpp"
  52 #include "runtime/thread.inline.hpp"
  53 #include "utilities/align.hpp"
  54 #include "utilities/copy.hpp"
  55 #include "utilities/globalDefinitions.hpp"
  56 #include "utilities/stack.inline.hpp"
  57 #if INCLUDE_ALL_GCS
  58 #include "gc/cms/parOopClosures.hpp"
  59 #endif
  60 
  61 //
  62 // DefNewGeneration functions.
  63 
  64 // Methods of protected closure types.
  65 
  66 DefNewGeneration::IsAliveClosure::IsAliveClosure(Generation* young_gen) : _young_gen(young_gen) {
  67   assert(_young_gen->kind() == Generation::ParNew ||
  68          _young_gen->kind() == Generation::DefNew, "Expected the young generation here");
  69 }
  70 
  71 bool DefNewGeneration::IsAliveClosure::do_object_b(oop p) {
  72   return (HeapWord*)p >= _young_gen->reserved().end() || p->is_forwarded();
  73 }
  74 
  75 DefNewGeneration::KeepAliveClosure::
  76 KeepAliveClosure(ScanWeakRefClosure* cl) : _cl(cl) {
  77   _rs = GenCollectedHeap::heap()->rem_set();
  78 }
  79 
  80 void DefNewGeneration::KeepAliveClosure::do_oop(oop* p)       { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
  81 void DefNewGeneration::KeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
  82 
  83 
  84 DefNewGeneration::FastKeepAliveClosure::
  85 FastKeepAliveClosure(DefNewGeneration* g, ScanWeakRefClosure* cl) :
  86   DefNewGeneration::KeepAliveClosure(cl) {
  87   _boundary = g->reserved().end();
  88 }
  89 
  90 void DefNewGeneration::FastKeepAliveClosure::do_oop(oop* p)       { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
  91 void DefNewGeneration::FastKeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
  92 
  93 DefNewGeneration::EvacuateFollowersClosure::
  94 EvacuateFollowersClosure(GenCollectedHeap* gch,
  95                          ScanClosure* cur,
  96                          ScanClosure* older) :
  97   _gch(gch), _scan_cur_or_nonheap(cur), _scan_older(older)
  98 {}
  99 
 100 void DefNewGeneration::EvacuateFollowersClosure::do_void() {
 101   do {
 102     _gch->oop_since_save_marks_iterate(GenCollectedHeap::YoungGen, _scan_cur_or_nonheap, _scan_older);
 103   } while (!_gch->no_allocs_since_save_marks());
 104 }
 105 
 106 DefNewGeneration::FastEvacuateFollowersClosure::
 107 FastEvacuateFollowersClosure(GenCollectedHeap* gch,
 108                              FastScanClosure* cur,
 109                              FastScanClosure* older) :
 110   _gch(gch), _scan_cur_or_nonheap(cur), _scan_older(older)
 111 {
 112   assert(_gch->young_gen()->kind() == Generation::DefNew, "Generation should be DefNew");
 113   _young_gen = (DefNewGeneration*)_gch->young_gen();
 114 }
 115 
 116 void DefNewGeneration::FastEvacuateFollowersClosure::do_void() {
 117   do {
 118     _gch->oop_since_save_marks_iterate(GenCollectedHeap::YoungGen, _scan_cur_or_nonheap, _scan_older);
 119   } while (!_gch->no_allocs_since_save_marks());
 120   guarantee(_young_gen->promo_failure_scan_is_complete(), "Failed to finish scan");
 121 }
 122 
 123 ScanClosure::ScanClosure(DefNewGeneration* g, bool gc_barrier) :
 124     OopsInClassLoaderDataOrGenClosure(g), _g(g), _gc_barrier(gc_barrier)
 125 {
 126   _boundary = _g->reserved().end();
 127 }
 128 
 129 void ScanClosure::do_oop(oop* p)       { ScanClosure::do_oop_work(p); }
 130 void ScanClosure::do_oop(narrowOop* p) { ScanClosure::do_oop_work(p); }
 131 
 132 FastScanClosure::FastScanClosure(DefNewGeneration* g, bool gc_barrier) :
 133     OopsInClassLoaderDataOrGenClosure(g), _g(g), _gc_barrier(gc_barrier)
 134 {
 135   _boundary = _g->reserved().end();
 136 }
 137 
 138 void FastScanClosure::do_oop(oop* p)       { FastScanClosure::do_oop_work(p); }
 139 void FastScanClosure::do_oop(narrowOop* p) { FastScanClosure::do_oop_work(p); }
 140 
 141 void CLDScanClosure::do_cld(ClassLoaderData* cld) {
 142   NOT_PRODUCT(ResourceMark rm);
 143   log_develop_trace(gc, scavenge)("CLDScanClosure::do_cld " PTR_FORMAT ", %s, dirty: %s",
 144                                   p2i(cld),
 145                                   cld->loader_name(),
 146                                   cld->has_modified_oops() ? "true" : "false");
 147 
 148   // If the cld has not been dirtied we know that there's
 149   // no references into  the young gen and we can skip it.
 150   if (cld->has_modified_oops()) {
 151     if (_accumulate_modified_oops) {
 152       cld->accumulate_modified_oops();
 153     }
 154 
 155     // Tell the closure which CLD is being scanned so that it can be dirtied
 156     // if oops are left pointing into the young gen.
 157     _scavenge_closure->set_scanned_cld(cld);
 158 
 159     // Clean the cld since we're going to scavenge all the metadata.
 160     cld->oops_do(_scavenge_closure, false, /*clear_modified_oops*/true);
 161 
 162     _scavenge_closure->set_scanned_cld(NULL);
 163   }
 164 }
 165 
 166 ScanWeakRefClosure::ScanWeakRefClosure(DefNewGeneration* g) :
 167   _g(g)
 168 {
 169   _boundary = _g->reserved().end();
 170 }
 171 
 172 void ScanWeakRefClosure::do_oop(oop* p)       { ScanWeakRefClosure::do_oop_work(p); }
 173 void ScanWeakRefClosure::do_oop(narrowOop* p) { ScanWeakRefClosure::do_oop_work(p); }
 174 
 175 void FilteringClosure::do_oop(oop* p)       { FilteringClosure::do_oop_work(p); }
 176 void FilteringClosure::do_oop(narrowOop* p) { FilteringClosure::do_oop_work(p); }
 177 
 178 DefNewGeneration::DefNewGeneration(ReservedSpace rs,
 179                                    size_t initial_size,
 180                                    const char* policy)
 181   : Generation(rs, initial_size),
 182     _preserved_marks_set(false /* in_c_heap */),
 183     _promo_failure_drain_in_progress(false),
 184     _should_allocate_from_space(false)
 185 {
 186   MemRegion cmr((HeapWord*)_virtual_space.low(),
 187                 (HeapWord*)_virtual_space.high());
 188   GenCollectedHeap* gch = GenCollectedHeap::heap();
 189 
 190   gch->barrier_set()->resize_covered_region(cmr);
 191 
 192   _eden_space = new ContiguousSpace();
 193   _from_space = new ContiguousSpace();
 194   _to_space   = new ContiguousSpace();
 195 
 196   if (_eden_space == NULL || _from_space == NULL || _to_space == NULL) {
 197     vm_exit_during_initialization("Could not allocate a new gen space");
 198   }
 199 
 200   // Compute the maximum eden and survivor space sizes. These sizes
 201   // are computed assuming the entire reserved space is committed.
 202   // These values are exported as performance counters.
 203   uintx alignment = gch->collector_policy()->space_alignment();
 204   uintx size = _virtual_space.reserved_size();
 205   _max_survivor_size = compute_survivor_size(size, alignment);
 206   _max_eden_size = size - (2*_max_survivor_size);
 207 
 208   // allocate the performance counters
 209   GenCollectorPolicy* gcp = gch->gen_policy();
 210 
 211   // Generation counters -- generation 0, 3 subspaces
 212   _gen_counters = new GenerationCounters("new", 0, 3,
 213       gcp->min_young_size(), gcp->max_young_size(), &_virtual_space);
 214   _gc_counters = new CollectorCounters(policy, 0);
 215 
 216   _eden_counters = new CSpaceCounters("eden", 0, _max_eden_size, _eden_space,
 217                                       _gen_counters);
 218   _from_counters = new CSpaceCounters("s0", 1, _max_survivor_size, _from_space,
 219                                       _gen_counters);
 220   _to_counters = new CSpaceCounters("s1", 2, _max_survivor_size, _to_space,
 221                                     _gen_counters);
 222 
 223   compute_space_boundaries(0, SpaceDecorator::Clear, SpaceDecorator::Mangle);
 224   update_counters();
 225   _old_gen = NULL;
 226   _tenuring_threshold = MaxTenuringThreshold;
 227   _pretenure_size_threshold_words = PretenureSizeThreshold >> LogHeapWordSize;
 228 
 229   _gc_timer = new (ResourceObj::C_HEAP, mtGC) STWGCTimer();
 230 }
 231 
 232 void DefNewGeneration::compute_space_boundaries(uintx minimum_eden_size,
 233                                                 bool clear_space,
 234                                                 bool mangle_space) {
 235   uintx alignment =
 236     GenCollectedHeap::heap()->collector_policy()->space_alignment();
 237 
 238   // If the spaces are being cleared (only done at heap initialization
 239   // currently), the survivor spaces need not be empty.
 240   // Otherwise, no care is taken for used areas in the survivor spaces
 241   // so check.
 242   assert(clear_space || (to()->is_empty() && from()->is_empty()),
 243     "Initialization of the survivor spaces assumes these are empty");
 244 
 245   // Compute sizes
 246   uintx size = _virtual_space.committed_size();
 247   uintx survivor_size = compute_survivor_size(size, alignment);
 248   uintx eden_size = size - (2*survivor_size);
 249   assert(eden_size > 0 && survivor_size <= eden_size, "just checking");
 250 
 251   if (eden_size < minimum_eden_size) {
 252     // May happen due to 64Kb rounding, if so adjust eden size back up
 253     minimum_eden_size = align_up(minimum_eden_size, alignment);
 254     uintx maximum_survivor_size = (size - minimum_eden_size) / 2;
 255     uintx unaligned_survivor_size =
 256       align_down(maximum_survivor_size, alignment);
 257     survivor_size = MAX2(unaligned_survivor_size, alignment);
 258     eden_size = size - (2*survivor_size);
 259     assert(eden_size > 0 && survivor_size <= eden_size, "just checking");
 260     assert(eden_size >= minimum_eden_size, "just checking");
 261   }
 262 
 263   char *eden_start = _virtual_space.low();
 264   char *from_start = eden_start + eden_size;
 265   char *to_start   = from_start + survivor_size;
 266   char *to_end     = to_start   + survivor_size;
 267 
 268   assert(to_end == _virtual_space.high(), "just checking");
 269   assert(Space::is_aligned(eden_start), "checking alignment");
 270   assert(Space::is_aligned(from_start), "checking alignment");
 271   assert(Space::is_aligned(to_start),   "checking alignment");
 272 
 273   MemRegion edenMR((HeapWord*)eden_start, (HeapWord*)from_start);
 274   MemRegion fromMR((HeapWord*)from_start, (HeapWord*)to_start);
 275   MemRegion toMR  ((HeapWord*)to_start, (HeapWord*)to_end);
 276 
 277   // A minimum eden size implies that there is a part of eden that
 278   // is being used and that affects the initialization of any
 279   // newly formed eden.
 280   bool live_in_eden = minimum_eden_size > 0;
 281 
 282   // If not clearing the spaces, do some checking to verify that
 283   // the space are already mangled.
 284   if (!clear_space) {
 285     // Must check mangling before the spaces are reshaped.  Otherwise,
 286     // the bottom or end of one space may have moved into another
 287     // a failure of the check may not correctly indicate which space
 288     // is not properly mangled.
 289     if (ZapUnusedHeapArea) {
 290       HeapWord* limit = (HeapWord*) _virtual_space.high();
 291       eden()->check_mangled_unused_area(limit);
 292       from()->check_mangled_unused_area(limit);
 293         to()->check_mangled_unused_area(limit);
 294     }
 295   }
 296 
 297   // Reset the spaces for their new regions.
 298   eden()->initialize(edenMR,
 299                      clear_space && !live_in_eden,
 300                      SpaceDecorator::Mangle);
 301   // If clear_space and live_in_eden, we will not have cleared any
 302   // portion of eden above its top. This can cause newly
 303   // expanded space not to be mangled if using ZapUnusedHeapArea.
 304   // We explicitly do such mangling here.
 305   if (ZapUnusedHeapArea && clear_space && live_in_eden && mangle_space) {
 306     eden()->mangle_unused_area();
 307   }
 308   from()->initialize(fromMR, clear_space, mangle_space);
 309   to()->initialize(toMR, clear_space, mangle_space);
 310 
 311   // Set next compaction spaces.
 312   eden()->set_next_compaction_space(from());
 313   // The to-space is normally empty before a compaction so need
 314   // not be considered.  The exception is during promotion
 315   // failure handling when to-space can contain live objects.
 316   from()->set_next_compaction_space(NULL);
 317 }
 318 
 319 void DefNewGeneration::swap_spaces() {
 320   ContiguousSpace* s = from();
 321   _from_space        = to();
 322   _to_space          = s;
 323   eden()->set_next_compaction_space(from());
 324   // The to-space is normally empty before a compaction so need
 325   // not be considered.  The exception is during promotion
 326   // failure handling when to-space can contain live objects.
 327   from()->set_next_compaction_space(NULL);
 328 
 329   if (UsePerfData) {
 330     CSpaceCounters* c = _from_counters;
 331     _from_counters = _to_counters;
 332     _to_counters = c;
 333   }
 334 }
 335 
 336 bool DefNewGeneration::expand(size_t bytes) {
 337   MutexLocker x(ExpandHeap_lock);
 338   HeapWord* prev_high = (HeapWord*) _virtual_space.high();
 339   bool success = _virtual_space.expand_by(bytes);
 340   if (success && ZapUnusedHeapArea) {
 341     // Mangle newly committed space immediately because it
 342     // can be done here more simply that after the new
 343     // spaces have been computed.
 344     HeapWord* new_high = (HeapWord*) _virtual_space.high();
 345     MemRegion mangle_region(prev_high, new_high);
 346     SpaceMangler::mangle_region(mangle_region);
 347   }
 348 
 349   // Do not attempt an expand-to-the reserve size.  The
 350   // request should properly observe the maximum size of
 351   // the generation so an expand-to-reserve should be
 352   // unnecessary.  Also a second call to expand-to-reserve
 353   // value potentially can cause an undue expansion.
 354   // For example if the first expand fail for unknown reasons,
 355   // but the second succeeds and expands the heap to its maximum
 356   // value.
 357   if (GCLocker::is_active()) {
 358     log_debug(gc)("Garbage collection disabled, expanded heap instead");
 359   }
 360 
 361   return success;
 362 }
 363 
 364 size_t DefNewGeneration::adjust_for_thread_increase(size_t new_size_candidate,
 365                                                     size_t new_size_before,
 366                                                     size_t alignment) const {
 367   size_t desired_new_size = new_size_before;
 368 
 369   if (NewSizeThreadIncrease > 0) {
 370     int threads_count;
 371     size_t thread_increase_size = 0;
 372 
 373     // 1. Check an overflow at 'threads_count * NewSizeThreadIncrease'.
 374     threads_count = Threads::number_of_non_daemon_threads();
 375     if (threads_count > 0 && NewSizeThreadIncrease <= max_uintx / threads_count) {
 376       thread_increase_size = threads_count * NewSizeThreadIncrease;
 377 
 378       // 2. Check an overflow at 'new_size_candidate + thread_increase_size'.
 379       if (new_size_candidate <= max_uintx - thread_increase_size) {
 380         new_size_candidate += thread_increase_size;
 381 
 382         // 3. Check an overflow at 'align_up'.
 383         size_t aligned_max = ((max_uintx - alignment) & ~(alignment-1));
 384         if (new_size_candidate <= aligned_max) {
 385           desired_new_size = align_up(new_size_candidate, alignment);
 386         }
 387       }
 388     }
 389   }
 390 
 391   return desired_new_size;
 392 }
 393 
 394 void DefNewGeneration::compute_new_size() {
 395   // This is called after a GC that includes the old generation, so from-space
 396   // will normally be empty.
 397   // Note that we check both spaces, since if scavenge failed they revert roles.
 398   // If not we bail out (otherwise we would have to relocate the objects).
 399   if (!from()->is_empty() || !to()->is_empty()) {
 400     return;
 401   }
 402 
 403   GenCollectedHeap* gch = GenCollectedHeap::heap();
 404 
 405   size_t old_size = gch->old_gen()->capacity();
 406   size_t new_size_before = _virtual_space.committed_size();
 407   size_t min_new_size = initial_size();
 408   size_t max_new_size = reserved().byte_size();
 409   assert(min_new_size <= new_size_before &&
 410          new_size_before <= max_new_size,
 411          "just checking");
 412   // All space sizes must be multiples of Generation::GenGrain.
 413   size_t alignment = Generation::GenGrain;
 414 
 415   int threads_count = 0;
 416   size_t thread_increase_size = 0;
 417 
 418   size_t new_size_candidate = old_size / NewRatio;
 419   // Compute desired new generation size based on NewRatio and NewSizeThreadIncrease
 420   // and reverts to previous value if any overflow happens
 421   size_t desired_new_size = adjust_for_thread_increase(new_size_candidate, new_size_before, alignment);
 422 
 423   // Adjust new generation size
 424   desired_new_size = MAX2(MIN2(desired_new_size, max_new_size), min_new_size);
 425   assert(desired_new_size <= max_new_size, "just checking");
 426 
 427   bool changed = false;
 428   if (desired_new_size > new_size_before) {
 429     size_t change = desired_new_size - new_size_before;
 430     assert(change % alignment == 0, "just checking");
 431     if (expand(change)) {
 432        changed = true;
 433     }
 434     // If the heap failed to expand to the desired size,
 435     // "changed" will be false.  If the expansion failed
 436     // (and at this point it was expected to succeed),
 437     // ignore the failure (leaving "changed" as false).
 438   }
 439   if (desired_new_size < new_size_before && eden()->is_empty()) {
 440     // bail out of shrinking if objects in eden
 441     size_t change = new_size_before - desired_new_size;
 442     assert(change % alignment == 0, "just checking");
 443     _virtual_space.shrink_by(change);
 444     changed = true;
 445   }
 446   if (changed) {
 447     // The spaces have already been mangled at this point but
 448     // may not have been cleared (set top = bottom) and should be.
 449     // Mangling was done when the heap was being expanded.
 450     compute_space_boundaries(eden()->used(),
 451                              SpaceDecorator::Clear,
 452                              SpaceDecorator::DontMangle);
 453     MemRegion cmr((HeapWord*)_virtual_space.low(),
 454                   (HeapWord*)_virtual_space.high());
 455     gch->barrier_set()->resize_covered_region(cmr);
 456 
 457     log_debug(gc, ergo, heap)(
 458         "New generation size " SIZE_FORMAT "K->" SIZE_FORMAT "K [eden=" SIZE_FORMAT "K,survivor=" SIZE_FORMAT "K]",
 459         new_size_before/K, _virtual_space.committed_size()/K,
 460         eden()->capacity()/K, from()->capacity()/K);
 461     log_trace(gc, ergo, heap)(
 462         "  [allowed " SIZE_FORMAT "K extra for %d threads]",
 463           thread_increase_size/K, threads_count);
 464       }
 465 }
 466 
 467 void DefNewGeneration::younger_refs_iterate(OopsInGenClosure* cl, uint n_threads) {
 468   assert(false, "NYI -- are you sure you want to call this?");
 469 }
 470 
 471 
 472 size_t DefNewGeneration::capacity() const {
 473   return eden()->capacity()
 474        + from()->capacity();  // to() is only used during scavenge
 475 }
 476 
 477 
 478 size_t DefNewGeneration::used() const {
 479   return eden()->used()
 480        + from()->used();      // to() is only used during scavenge
 481 }
 482 
 483 
 484 size_t DefNewGeneration::free() const {
 485   return eden()->free()
 486        + from()->free();      // to() is only used during scavenge
 487 }
 488 
 489 size_t DefNewGeneration::max_capacity() const {
 490   const size_t alignment = GenCollectedHeap::heap()->collector_policy()->space_alignment();
 491   const size_t reserved_bytes = reserved().byte_size();
 492   return reserved_bytes - compute_survivor_size(reserved_bytes, alignment);
 493 }
 494 
 495 size_t DefNewGeneration::unsafe_max_alloc_nogc() const {
 496   return eden()->free();
 497 }
 498 
 499 size_t DefNewGeneration::capacity_before_gc() const {
 500   return eden()->capacity();
 501 }
 502 
 503 size_t DefNewGeneration::contiguous_available() const {
 504   return eden()->free();
 505 }
 506 
 507 
 508 HeapWord* volatile* DefNewGeneration::top_addr() const { return eden()->top_addr(); }
 509 HeapWord** DefNewGeneration::end_addr() const { return eden()->end_addr(); }
 510 
 511 void DefNewGeneration::object_iterate(ObjectClosure* blk) {
 512   eden()->object_iterate(blk);
 513   from()->object_iterate(blk);
 514 }
 515 
 516 
 517 void DefNewGeneration::space_iterate(SpaceClosure* blk,
 518                                      bool usedOnly) {
 519   blk->do_space(eden());
 520   blk->do_space(from());
 521   blk->do_space(to());
 522 }
 523 
 524 // The last collection bailed out, we are running out of heap space,
 525 // so we try to allocate the from-space, too.
 526 HeapWord* DefNewGeneration::allocate_from_space(size_t size) {
 527   bool should_try_alloc = should_allocate_from_space() || GCLocker::is_active_and_needs_gc();
 528 
 529   // If the Heap_lock is not locked by this thread, this will be called
 530   // again later with the Heap_lock held.
 531   bool do_alloc = should_try_alloc && (Heap_lock->owned_by_self() || (SafepointSynchronize::is_at_safepoint() && Thread::current()->is_VM_thread()));
 532 
 533   HeapWord* result = NULL;
 534   if (do_alloc) {
 535     result = from()->allocate(size);
 536   }
 537 
 538   log_trace(gc, alloc)("DefNewGeneration::allocate_from_space(" SIZE_FORMAT "):  will_fail: %s  heap_lock: %s  free: " SIZE_FORMAT "%s%s returns %s",
 539                         size,
 540                         GenCollectedHeap::heap()->incremental_collection_will_fail(false /* don't consult_young */) ?
 541                           "true" : "false",
 542                         Heap_lock->is_locked() ? "locked" : "unlocked",
 543                         from()->free(),
 544                         should_try_alloc ? "" : "  should_allocate_from_space: NOT",
 545                         do_alloc ? "  Heap_lock is not owned by self" : "",
 546                         result == NULL ? "NULL" : "object");
 547 
 548   return result;
 549 }
 550 
 551 HeapWord* DefNewGeneration::expand_and_allocate(size_t size,
 552                                                 bool   is_tlab,
 553                                                 bool   parallel) {
 554   // We don't attempt to expand the young generation (but perhaps we should.)
 555   return allocate(size, is_tlab);
 556 }
 557 
 558 void DefNewGeneration::adjust_desired_tenuring_threshold() {
 559   // Set the desired survivor size to half the real survivor space
 560   size_t const survivor_capacity = to()->capacity() / HeapWordSize;
 561   size_t const desired_survivor_size = (size_t)((((double)survivor_capacity) * TargetSurvivorRatio) / 100);
 562 
 563   _tenuring_threshold = age_table()->compute_tenuring_threshold(desired_survivor_size);
 564 
 565   if (UsePerfData) {
 566     GCPolicyCounters* gc_counters = GenCollectedHeap::heap()->gen_policy()->counters();
 567     gc_counters->tenuring_threshold()->set_value(_tenuring_threshold);
 568     gc_counters->desired_survivor_size()->set_value(desired_survivor_size * oopSize);
 569   }
 570 
 571   age_table()->print_age_table(_tenuring_threshold);
 572 }
 573 
 574 void DefNewGeneration::collect(bool   full,
 575                                bool   clear_all_soft_refs,
 576                                size_t size,
 577                                bool   is_tlab) {
 578   assert(full || size > 0, "otherwise we don't want to collect");
 579 
 580   GenCollectedHeap* gch = GenCollectedHeap::heap();
 581 
 582   _gc_timer->register_gc_start();
 583   DefNewTracer gc_tracer;
 584   gc_tracer.report_gc_start(gch->gc_cause(), _gc_timer->gc_start());
 585 
 586   _old_gen = gch->old_gen();
 587 
 588   // If the next generation is too full to accommodate promotion
 589   // from this generation, pass on collection; let the next generation
 590   // do it.
 591   if (!collection_attempt_is_safe()) {
 592     log_trace(gc)(":: Collection attempt not safe ::");
 593     gch->set_incremental_collection_failed(); // Slight lie: we did not even attempt one
 594     return;
 595   }
 596   assert(to()->is_empty(), "Else not collection_attempt_is_safe");
 597 
 598   init_assuming_no_promotion_failure();
 599 
 600   GCTraceTime(Trace, gc, phases) tm("DefNew", NULL, gch->gc_cause());
 601 
 602   gch->trace_heap_before_gc(&gc_tracer);
 603 
 604   // These can be shared for all code paths
 605   IsAliveClosure is_alive(this);
 606   ScanWeakRefClosure scan_weak_ref(this);
 607 
 608   age_table()->clear();
 609   to()->clear(SpaceDecorator::Mangle);
 610   // The preserved marks should be empty at the start of the GC.
 611   _preserved_marks_set.init(1);
 612 
 613   gch->rem_set()->prepare_for_younger_refs_iterate(false);
 614 
 615   assert(gch->no_allocs_since_save_marks(),
 616          "save marks have not been newly set.");
 617 
 618   // Not very pretty.
 619   CollectorPolicy* cp = gch->collector_policy();
 620 
 621   FastScanClosure fsc_with_no_gc_barrier(this, false);
 622   FastScanClosure fsc_with_gc_barrier(this, true);
 623 
 624   CLDScanClosure cld_scan_closure(&fsc_with_no_gc_barrier,
 625                                   gch->rem_set()->cld_rem_set()->accumulate_modified_oops());
 626 
 627   set_promo_failure_scan_stack_closure(&fsc_with_no_gc_barrier);
 628   FastEvacuateFollowersClosure evacuate_followers(gch,
 629                                                   &fsc_with_no_gc_barrier,
 630                                                   &fsc_with_gc_barrier);
 631 
 632   assert(gch->no_allocs_since_save_marks(),
 633          "save marks have not been newly set.");
 634 
 635   {
 636     // DefNew needs to run with n_threads == 0, to make sure the serial
 637     // version of the card table scanning code is used.
 638     // See: CardTableModRefBSForCTRS::non_clean_card_iterate_possibly_parallel.
 639     StrongRootsScope srs(0);
 640 
 641     gch->young_process_roots(&srs,
 642                              &fsc_with_no_gc_barrier,
 643                              &fsc_with_gc_barrier,
 644                              &cld_scan_closure);
 645   }
 646 
 647   // "evacuate followers".
 648   evacuate_followers.do_void();
 649 
 650   FastKeepAliveClosure keep_alive(this, &scan_weak_ref);
 651   ReferenceProcessor* rp = ref_processor();
 652   rp->setup_policy(clear_all_soft_refs);
 653   ReferenceProcessorPhaseTimes pt(_gc_timer, rp->num_q());
 654   const ReferenceProcessorStats& stats =
 655   rp->process_discovered_references(&is_alive, &keep_alive, &evacuate_followers,
 656                                     NULL, &pt);
 657   gc_tracer.report_gc_reference_stats(stats);
 658   gc_tracer.report_tenuring_threshold(tenuring_threshold());
 659   pt.print_all_references();
 660 
 661   if (!_promotion_failed) {
 662     // Swap the survivor spaces.
 663     eden()->clear(SpaceDecorator::Mangle);
 664     from()->clear(SpaceDecorator::Mangle);
 665     if (ZapUnusedHeapArea) {
 666       // This is now done here because of the piece-meal mangling which
 667       // can check for valid mangling at intermediate points in the
 668       // collection(s).  When a young collection fails to collect
 669       // sufficient space resizing of the young generation can occur
 670       // an redistribute the spaces in the young generation.  Mangle
 671       // here so that unzapped regions don't get distributed to
 672       // other spaces.
 673       to()->mangle_unused_area();
 674     }
 675     swap_spaces();
 676 
 677     assert(to()->is_empty(), "to space should be empty now");
 678 
 679     adjust_desired_tenuring_threshold();
 680 
 681     // A successful scavenge should restart the GC time limit count which is
 682     // for full GC's.
 683     AdaptiveSizePolicy* size_policy = gch->gen_policy()->size_policy();
 684     size_policy->reset_gc_overhead_limit_count();
 685     assert(!gch->incremental_collection_failed(), "Should be clear");
 686   } else {
 687     assert(_promo_failure_scan_stack.is_empty(), "post condition");
 688     _promo_failure_scan_stack.clear(true); // Clear cached segments.
 689 
 690     remove_forwarding_pointers();
 691     log_info(gc, promotion)("Promotion failed");
 692     // Add to-space to the list of space to compact
 693     // when a promotion failure has occurred.  In that
 694     // case there can be live objects in to-space
 695     // as a result of a partial evacuation of eden
 696     // and from-space.
 697     swap_spaces();   // For uniformity wrt ParNewGeneration.
 698     from()->set_next_compaction_space(to());
 699     gch->set_incremental_collection_failed();
 700 
 701     // Inform the next generation that a promotion failure occurred.
 702     _old_gen->promotion_failure_occurred();
 703     gc_tracer.report_promotion_failed(_promotion_failed_info);
 704 
 705     // Reset the PromotionFailureALot counters.
 706     NOT_PRODUCT(gch->reset_promotion_should_fail();)
 707   }
 708   // We should have processed and cleared all the preserved marks.
 709   _preserved_marks_set.reclaim();
 710   // set new iteration safe limit for the survivor spaces
 711   from()->set_concurrent_iteration_safe_limit(from()->top());
 712   to()->set_concurrent_iteration_safe_limit(to()->top());
 713 
 714   // We need to use a monotonically non-decreasing time in ms
 715   // or we will see time-warp warnings and os::javaTimeMillis()
 716   // does not guarantee monotonicity.
 717   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
 718   update_time_of_last_gc(now);
 719 
 720   gch->trace_heap_after_gc(&gc_tracer);
 721 
 722   _gc_timer->register_gc_end();
 723 
 724   gc_tracer.report_gc_end(_gc_timer->gc_end(), _gc_timer->time_partitions());
 725 }
 726 
 727 void DefNewGeneration::init_assuming_no_promotion_failure() {
 728   _promotion_failed = false;
 729   _promotion_failed_info.reset();
 730   from()->set_next_compaction_space(NULL);
 731 }
 732 
 733 void DefNewGeneration::remove_forwarding_pointers() {
 734   RemoveForwardedPointerClosure rspc;
 735   eden()->object_iterate(&rspc);
 736   from()->object_iterate(&rspc);
 737 
 738   SharedRestorePreservedMarksTaskExecutor task_executor(GenCollectedHeap::heap()->workers());
 739   _preserved_marks_set.restore(&task_executor);
 740 }
 741 
 742 void DefNewGeneration::handle_promotion_failure(oop old) {
 743   log_debug(gc, promotion)("Promotion failure size = %d) ", old->size());
 744 
 745   _promotion_failed = true;
 746   _promotion_failed_info.register_copy_failure(old->size());
 747   _preserved_marks_set.get()->push_if_necessary(old, old->mark());
 748   // forward to self
 749   old->forward_to(old);
 750 
 751   _promo_failure_scan_stack.push(old);
 752 
 753   if (!_promo_failure_drain_in_progress) {
 754     // prevent recursion in copy_to_survivor_space()
 755     _promo_failure_drain_in_progress = true;
 756     drain_promo_failure_scan_stack();
 757     _promo_failure_drain_in_progress = false;
 758   }
 759 }
 760 
 761 oop DefNewGeneration::copy_to_survivor_space(oop old) {
 762   assert(is_in_reserved(old) && !old->is_forwarded(),
 763          "shouldn't be scavenging this oop");
 764   size_t s = old->size();
 765   oop obj = NULL;
 766 
 767   // Try allocating obj in to-space (unless too old)
 768   if (old->age() < tenuring_threshold()) {
 769     obj = (oop) to()->allocate_aligned(s);
 770   }
 771 
 772   // Otherwise try allocating obj tenured
 773   if (obj == NULL) {
 774     obj = _old_gen->promote(old, s);
 775     if (obj == NULL) {
 776       handle_promotion_failure(old);
 777       return old;
 778     }
 779   } else {
 780     // Prefetch beyond obj
 781     const intx interval = PrefetchCopyIntervalInBytes;
 782     Prefetch::write(obj, interval);
 783 
 784     // Copy obj
 785     Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)obj, s);
 786 
 787     // Increment age if obj still in new generation
 788     obj->incr_age();
 789     age_table()->add(obj, s);
 790   }
 791 
 792   // Done, insert forward pointer to obj in this header
 793   old->forward_to(obj);
 794 
 795   return obj;
 796 }
 797 
 798 void DefNewGeneration::drain_promo_failure_scan_stack() {
 799   while (!_promo_failure_scan_stack.is_empty()) {
 800      oop obj = _promo_failure_scan_stack.pop();
 801      obj->oop_iterate(_promo_failure_scan_stack_closure);
 802   }
 803 }
 804 
 805 void DefNewGeneration::save_marks() {
 806   eden()->set_saved_mark();
 807   to()->set_saved_mark();
 808   from()->set_saved_mark();
 809 }
 810 
 811 
 812 void DefNewGeneration::reset_saved_marks() {
 813   eden()->reset_saved_mark();
 814   to()->reset_saved_mark();
 815   from()->reset_saved_mark();
 816 }
 817 
 818 
 819 bool DefNewGeneration::no_allocs_since_save_marks() {
 820   assert(eden()->saved_mark_at_top(), "Violated spec - alloc in eden");
 821   assert(from()->saved_mark_at_top(), "Violated spec - alloc in from");
 822   return to()->saved_mark_at_top();
 823 }
 824 
 825 #define DefNew_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix) \
 826                                                                 \
 827 void DefNewGeneration::                                         \
 828 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
 829   cl->set_generation(this);                                     \
 830   eden()->oop_since_save_marks_iterate##nv_suffix(cl);          \
 831   to()->oop_since_save_marks_iterate##nv_suffix(cl);            \
 832   from()->oop_since_save_marks_iterate##nv_suffix(cl);          \
 833   cl->reset_generation();                                       \
 834   save_marks();                                                 \
 835 }
 836 
 837 ALL_SINCE_SAVE_MARKS_CLOSURES(DefNew_SINCE_SAVE_MARKS_DEFN)
 838 
 839 #undef DefNew_SINCE_SAVE_MARKS_DEFN
 840 
 841 void DefNewGeneration::contribute_scratch(ScratchBlock*& list, Generation* requestor,
 842                                          size_t max_alloc_words) {
 843   if (requestor == this || _promotion_failed) {
 844     return;
 845   }
 846   assert(GenCollectedHeap::heap()->is_old_gen(requestor), "We should not call our own generation");
 847 
 848   /* $$$ Assert this?  "trace" is a "MarkSweep" function so that's not appropriate.
 849   if (to_space->top() > to_space->bottom()) {
 850     trace("to_space not empty when contribute_scratch called");
 851   }
 852   */
 853 
 854   ContiguousSpace* to_space = to();
 855   assert(to_space->end() >= to_space->top(), "pointers out of order");
 856   size_t free_words = pointer_delta(to_space->end(), to_space->top());
 857   if (free_words >= MinFreeScratchWords) {
 858     ScratchBlock* sb = (ScratchBlock*)to_space->top();
 859     sb->num_words = free_words;
 860     sb->next = list;
 861     list = sb;
 862   }
 863 }
 864 
 865 void DefNewGeneration::reset_scratch() {
 866   // If contributing scratch in to_space, mangle all of
 867   // to_space if ZapUnusedHeapArea.  This is needed because
 868   // top is not maintained while using to-space as scratch.
 869   if (ZapUnusedHeapArea) {
 870     to()->mangle_unused_area_complete();
 871   }
 872 }
 873 
 874 bool DefNewGeneration::collection_attempt_is_safe() {
 875   if (!to()->is_empty()) {
 876     log_trace(gc)(":: to is not empty ::");
 877     return false;
 878   }
 879   if (_old_gen == NULL) {
 880     GenCollectedHeap* gch = GenCollectedHeap::heap();
 881     _old_gen = gch->old_gen();
 882   }
 883   return _old_gen->promotion_attempt_is_safe(used());
 884 }
 885 
 886 void DefNewGeneration::gc_epilogue(bool full) {
 887   DEBUG_ONLY(static bool seen_incremental_collection_failed = false;)
 888 
 889   assert(!GCLocker::is_active(), "We should not be executing here");
 890   // Check if the heap is approaching full after a collection has
 891   // been done.  Generally the young generation is empty at
 892   // a minimum at the end of a collection.  If it is not, then
 893   // the heap is approaching full.
 894   GenCollectedHeap* gch = GenCollectedHeap::heap();
 895   if (full) {
 896     DEBUG_ONLY(seen_incremental_collection_failed = false;)
 897     if (!collection_attempt_is_safe() && !_eden_space->is_empty()) {
 898       log_trace(gc)("DefNewEpilogue: cause(%s), full, not safe, set_failed, set_alloc_from, clear_seen",
 899                             GCCause::to_string(gch->gc_cause()));
 900       gch->set_incremental_collection_failed(); // Slight lie: a full gc left us in that state
 901       set_should_allocate_from_space(); // we seem to be running out of space
 902     } else {
 903       log_trace(gc)("DefNewEpilogue: cause(%s), full, safe, clear_failed, clear_alloc_from, clear_seen",
 904                             GCCause::to_string(gch->gc_cause()));
 905       gch->clear_incremental_collection_failed(); // We just did a full collection
 906       clear_should_allocate_from_space(); // if set
 907     }
 908   } else {
 909 #ifdef ASSERT
 910     // It is possible that incremental_collection_failed() == true
 911     // here, because an attempted scavenge did not succeed. The policy
 912     // is normally expected to cause a full collection which should
 913     // clear that condition, so we should not be here twice in a row
 914     // with incremental_collection_failed() == true without having done
 915     // a full collection in between.
 916     if (!seen_incremental_collection_failed &&
 917         gch->incremental_collection_failed()) {
 918       log_trace(gc)("DefNewEpilogue: cause(%s), not full, not_seen_failed, failed, set_seen_failed",
 919                             GCCause::to_string(gch->gc_cause()));
 920       seen_incremental_collection_failed = true;
 921     } else if (seen_incremental_collection_failed) {
 922       log_trace(gc)("DefNewEpilogue: cause(%s), not full, seen_failed, will_clear_seen_failed",
 923                             GCCause::to_string(gch->gc_cause()));
 924       assert(gch->gc_cause() == GCCause::_scavenge_alot ||
 925              (GCCause::is_user_requested_gc(gch->gc_cause()) && UseConcMarkSweepGC && ExplicitGCInvokesConcurrent) ||
 926              !gch->incremental_collection_failed(),
 927              "Twice in a row");
 928       seen_incremental_collection_failed = false;
 929     }
 930 #endif // ASSERT
 931   }
 932 
 933   if (ZapUnusedHeapArea) {
 934     eden()->check_mangled_unused_area_complete();
 935     from()->check_mangled_unused_area_complete();
 936     to()->check_mangled_unused_area_complete();
 937   }
 938 
 939   if (!CleanChunkPoolAsync) {
 940     Chunk::clean_chunk_pool();
 941   }
 942 
 943   // update the generation and space performance counters
 944   update_counters();
 945   gch->gen_policy()->counters()->update_counters();
 946 }
 947 
 948 void DefNewGeneration::record_spaces_top() {
 949   assert(ZapUnusedHeapArea, "Not mangling unused space");
 950   eden()->set_top_for_allocations();
 951   to()->set_top_for_allocations();
 952   from()->set_top_for_allocations();
 953 }
 954 
 955 void DefNewGeneration::ref_processor_init() {
 956   Generation::ref_processor_init();
 957 }
 958 
 959 
 960 void DefNewGeneration::update_counters() {
 961   if (UsePerfData) {
 962     _eden_counters->update_all();
 963     _from_counters->update_all();
 964     _to_counters->update_all();
 965     _gen_counters->update_all();
 966   }
 967 }
 968 
 969 void DefNewGeneration::verify() {
 970   eden()->verify();
 971   from()->verify();
 972     to()->verify();
 973 }
 974 
 975 void DefNewGeneration::print_on(outputStream* st) const {
 976   Generation::print_on(st);
 977   st->print("  eden");
 978   eden()->print_on(st);
 979   st->print("  from");
 980   from()->print_on(st);
 981   st->print("  to  ");
 982   to()->print_on(st);
 983 }
 984 
 985 
 986 const char* DefNewGeneration::name() const {
 987   return "def new generation";
 988 }
 989 
 990 // Moved from inline file as they are not called inline
 991 CompactibleSpace* DefNewGeneration::first_compaction_space() const {
 992   return eden();
 993 }
 994 
 995 HeapWord* DefNewGeneration::allocate(size_t word_size, bool is_tlab) {
 996   // This is the slow-path allocation for the DefNewGeneration.
 997   // Most allocations are fast-path in compiled code.
 998   // We try to allocate from the eden.  If that works, we are happy.
 999   // Note that since DefNewGeneration supports lock-free allocation, we
1000   // have to use it here, as well.
1001   HeapWord* result = eden()->par_allocate(word_size);
1002   if (result != NULL) {
1003     if (CMSEdenChunksRecordAlways && _old_gen != NULL) {
1004       _old_gen->sample_eden_chunk();
1005     }
1006   } else {
1007     // If the eden is full and the last collection bailed out, we are running
1008     // out of heap space, and we try to allocate the from-space, too.
1009     // allocate_from_space can't be inlined because that would introduce a
1010     // circular dependency at compile time.
1011     result = allocate_from_space(word_size);
1012   }
1013   return result;
1014 }
1015 
1016 HeapWord* DefNewGeneration::par_allocate(size_t word_size,
1017                                          bool is_tlab) {
1018   HeapWord* res = eden()->par_allocate(word_size);
1019   if (CMSEdenChunksRecordAlways && _old_gen != NULL) {
1020     _old_gen->sample_eden_chunk();
1021   }
1022   return res;
1023 }
1024 
1025 size_t DefNewGeneration::tlab_capacity() const {
1026   return eden()->capacity();
1027 }
1028 
1029 size_t DefNewGeneration::tlab_used() const {
1030   return eden()->used();
1031 }
1032 
1033 size_t DefNewGeneration::unsafe_max_tlab_alloc() const {
1034   return unsafe_max_alloc_nogc();
1035 }