< prev index next >

src/hotspot/os_cpu/linux_arm/atomic_linux_arm.hpp

Print this page




  33 /*
  34  * Atomic long operations on 32-bit ARM
  35  * ARM v7 supports LDREXD/STREXD synchronization instructions so no problem.
  36  * ARM < v7 does not have explicit 64 atomic load/store capability.
  37  * However, gcc emits LDRD/STRD instructions on v5te and LDM/STM on v5t
  38  * when loading/storing 64 bits.
  39  * For non-MP machines (which is all we support for ARM < v7)
  40  * under current Linux distros these instructions appear atomic.
  41  * See section A3.5.3 of ARM Architecture Reference Manual for ARM v7.
  42  * Also, for cmpxchg64, if ARM < v7 we check for cmpxchg64 support in the
  43  * Linux kernel using _kuser_helper_version. See entry-armv.S in the Linux
  44  * kernel source or kernel_user_helpers.txt in Linux Doc.
  45  */
  46 
  47 #ifndef AARCH64
  48 template<>
  49 template<typename T>
  50 inline T Atomic::PlatformLoad<8>::operator()(T const volatile* src) const {
  51   STATIC_ASSERT(8 == sizeof(T));
  52   return PrimitiveConversions::cast<T>(
  53     (*os::atomic_load_long_func)(reinterpret_cast<const volatile jlong*>(src)));
  54 }
  55 
  56 template<>
  57 template<typename T>
  58 inline void Atomic::PlatformStore<8>::operator()(T store_value,
  59                                                  T volatile* dest) const {
  60   STATIC_ASSERT(8 == sizeof(T));
  61   (*os::atomic_store_long_func)(
  62     PrimitiveConversions::cast<jlong>(store_value), reinterpret_cast<volatile jlong*>(dest));
  63 }
  64 #endif
  65 
  66 // As per atomic.hpp all read-modify-write operations have to provide two-way
  67 // barriers semantics. For AARCH64 we are using load-acquire-with-reservation and
  68 // store-release-with-reservation. While load-acquire combined with store-release
  69 // do not generally form two-way barriers, their use with reservations does - the
  70 // ARMv8 architecture manual Section F "Barrier Litmus Tests" indicates they
  71 // provide sequentially consistent semantics. All we need to add is an explicit
  72 // barrier in the failure path of the cmpxchg operations (as these don't execute
  73 // the store) - arguably this may be overly cautious as there is a very low
  74 // likelihood that the hardware would pull loads/stores into the region guarded
  75 // by the reservation.
  76 //
  77 // For ARMv7 we add explicit barriers in the stubs.
  78 
  79 template<size_t byte_size>
  80 struct Atomic::PlatformAdd
  81   : Atomic::AddAndFetch<Atomic::PlatformAdd<byte_size> >
  82 {


  86 
  87 template<>
  88 template<typename I, typename D>
  89 inline D Atomic::PlatformAdd<4>::add_and_fetch(I add_value, D volatile* dest) const {
  90   STATIC_ASSERT(4 == sizeof(I));
  91   STATIC_ASSERT(4 == sizeof(D));
  92 #ifdef AARCH64
  93   D val;
  94   int tmp;
  95   __asm__ volatile(
  96     "1:\n\t"
  97     " ldaxr %w[val], [%[dest]]\n\t"
  98     " add %w[val], %w[val], %w[add_val]\n\t"
  99     " stlxr %w[tmp], %w[val], [%[dest]]\n\t"
 100     " cbnz %w[tmp], 1b\n\t"
 101     : [val] "=&r" (val), [tmp] "=&r" (tmp)
 102     : [add_val] "r" (add_value), [dest] "r" (dest)
 103     : "memory");
 104   return val;
 105 #else
 106   return add_using_helper<jint>(os::atomic_add_func, add_value, dest);
 107 #endif
 108 }
 109 
 110 #ifdef AARCH64
 111 template<>
 112 template<typename I, typename D>
 113 inline D Atomic::PlatformAdd<8>::add_and_fetch(I add_value, D volatile* dest) const {
 114   STATIC_ASSERT(8 == sizeof(I));
 115   STATIC_ASSERT(8 == sizeof(D));
 116   D val;
 117   int tmp;
 118   __asm__ volatile(
 119     "1:\n\t"
 120     " ldaxr %[val], [%[dest]]\n\t"
 121     " add %[val], %[val], %[add_val]\n\t"
 122     " stlxr %w[tmp], %[val], [%[dest]]\n\t"
 123     " cbnz %w[tmp], 1b\n\t"
 124     : [val] "=&r" (val), [tmp] "=&r" (tmp)
 125     : [add_val] "r" (add_value), [dest] "r" (dest)
 126     : "memory");


 129 #endif
 130 
 131 template<>
 132 template<typename T>
 133 inline T Atomic::PlatformXchg<4>::operator()(T exchange_value,
 134                                              T volatile* dest) const {
 135   STATIC_ASSERT(4 == sizeof(T));
 136 #ifdef AARCH64
 137   T old_val;
 138   int tmp;
 139   __asm__ volatile(
 140     "1:\n\t"
 141     " ldaxr %w[old_val], [%[dest]]\n\t"
 142     " stlxr %w[tmp], %w[new_val], [%[dest]]\n\t"
 143     " cbnz %w[tmp], 1b\n\t"
 144     : [old_val] "=&r" (old_val), [tmp] "=&r" (tmp)
 145     : [new_val] "r" (exchange_value), [dest] "r" (dest)
 146     : "memory");
 147   return old_val;
 148 #else
 149   return xchg_using_helper<jint>(os::atomic_xchg_func, exchange_value, dest);
 150 #endif
 151 }
 152 
 153 #ifdef AARCH64
 154 template<>
 155 template<typename T>
 156 inline T Atomic::PlatformXchg<8>::operator()(T exchange_value,
 157                                              T volatile* dest) const {
 158   STATIC_ASSERT(8 == sizeof(T));
 159   T old_val;
 160   int tmp;
 161   __asm__ volatile(
 162     "1:\n\t"
 163     " ldaxr %[old_val], [%[dest]]\n\t"
 164     " stlxr %w[tmp], %[new_val], [%[dest]]\n\t"
 165     " cbnz %w[tmp], 1b\n\t"
 166     : [old_val] "=&r" (old_val), [tmp] "=&r" (tmp)
 167     : [new_val] "r" (exchange_value), [dest] "r" (dest)
 168     : "memory");
 169   return old_val;
 170 }
 171 #endif // AARCH64
 172 
 173 // The memory_order parameter is ignored - we always provide the strongest/most-conservative ordering
 174 
 175 // No direct support for cmpxchg of bytes; emulate using int.
 176 template<>
 177 struct Atomic::PlatformCmpxchg<1> : Atomic::CmpxchgByteUsingInt {};
 178 
 179 #ifndef AARCH64
 180 
 181 inline jint reorder_cmpxchg_func(jint exchange_value,
 182                                  jint volatile* dest,
 183                                  jint compare_value) {
 184   // Warning:  Arguments are swapped to avoid moving them for kernel call
 185   return (*os::atomic_cmpxchg_func)(compare_value, exchange_value, dest);
 186 }
 187 
 188 inline jlong reorder_cmpxchg_long_func(jlong exchange_value,
 189                                        jlong volatile* dest,
 190                                        jlong compare_value) {
 191   assert(VM_Version::supports_cx8(), "Atomic compare and exchange jlong not supported on this architecture!");
 192   // Warning:  Arguments are swapped to avoid moving them for kernel call
 193   return (*os::atomic_cmpxchg_long_func)(compare_value, exchange_value, dest);
 194 }
 195 
 196 #endif // !AARCH64
 197 
 198 template<>
 199 template<typename T>
 200 inline T Atomic::PlatformCmpxchg<4>::operator()(T exchange_value,
 201                                                 T volatile* dest,
 202                                                 T compare_value,
 203                                                 cmpxchg_memory_order order) const {
 204   STATIC_ASSERT(4 == sizeof(T));
 205 #ifdef AARCH64
 206   T rv;
 207   int tmp;
 208   __asm__ volatile(
 209     "1:\n\t"
 210     " ldaxr %w[rv], [%[dest]]\n\t"
 211     " cmp %w[rv], %w[cv]\n\t"
 212     " b.ne 2f\n\t"
 213     " stlxr %w[tmp], %w[ev], [%[dest]]\n\t"
 214     " cbnz %w[tmp], 1b\n\t"
 215     " b 3f\n\t"
 216     "2:\n\t"
 217     " dmb sy\n\t"
 218     "3:\n\t"
 219     : [rv] "=&r" (rv), [tmp] "=&r" (tmp)
 220     : [ev] "r" (exchange_value), [dest] "r" (dest), [cv] "r" (compare_value)
 221     : "memory");
 222   return rv;
 223 #else
 224   return cmpxchg_using_helper<jint>(reorder_cmpxchg_func, exchange_value, dest, compare_value);
 225 #endif
 226 }
 227 
 228 template<>
 229 template<typename T>
 230 inline T Atomic::PlatformCmpxchg<8>::operator()(T exchange_value,
 231                                                 T volatile* dest,
 232                                                 T compare_value,
 233                                                 cmpxchg_memory_order order) const {
 234   STATIC_ASSERT(8 == sizeof(T));
 235 #ifdef AARCH64
 236   T rv;
 237   int tmp;
 238   __asm__ volatile(
 239     "1:\n\t"
 240     " ldaxr %[rv], [%[dest]]\n\t"
 241     " cmp %[rv], %[cv]\n\t"
 242     " b.ne 2f\n\t"
 243     " stlxr %w[tmp], %[ev], [%[dest]]\n\t"
 244     " cbnz %w[tmp], 1b\n\t"
 245     " b 3f\n\t"
 246     "2:\n\t"
 247     " dmb sy\n\t"
 248     "3:\n\t"
 249     : [rv] "=&r" (rv), [tmp] "=&r" (tmp)
 250     : [ev] "r" (exchange_value), [dest] "r" (dest), [cv] "r" (compare_value)
 251     : "memory");
 252   return rv;
 253 #else
 254   return cmpxchg_using_helper<jlong>(reorder_cmpxchg_long_func, exchange_value, dest, compare_value);
 255 #endif
 256 }
 257 
 258 #endif // OS_CPU_LINUX_ARM_VM_ATOMIC_LINUX_ARM_HPP


  33 /*
  34  * Atomic long operations on 32-bit ARM
  35  * ARM v7 supports LDREXD/STREXD synchronization instructions so no problem.
  36  * ARM < v7 does not have explicit 64 atomic load/store capability.
  37  * However, gcc emits LDRD/STRD instructions on v5te and LDM/STM on v5t
  38  * when loading/storing 64 bits.
  39  * For non-MP machines (which is all we support for ARM < v7)
  40  * under current Linux distros these instructions appear atomic.
  41  * See section A3.5.3 of ARM Architecture Reference Manual for ARM v7.
  42  * Also, for cmpxchg64, if ARM < v7 we check for cmpxchg64 support in the
  43  * Linux kernel using _kuser_helper_version. See entry-armv.S in the Linux
  44  * kernel source or kernel_user_helpers.txt in Linux Doc.
  45  */
  46 
  47 #ifndef AARCH64
  48 template<>
  49 template<typename T>
  50 inline T Atomic::PlatformLoad<8>::operator()(T const volatile* src) const {
  51   STATIC_ASSERT(8 == sizeof(T));
  52   return PrimitiveConversions::cast<T>(
  53     (*os::atomic_load_long_func)(reinterpret_cast<const volatile int64_t*>(src)));
  54 }
  55 
  56 template<>
  57 template<typename T>
  58 inline void Atomic::PlatformStore<8>::operator()(T store_value,
  59                                                  T volatile* dest) const {
  60   STATIC_ASSERT(8 == sizeof(T));
  61   (*os::atomic_store_long_func)(
  62     PrimitiveConversions::cast<int64_t>(store_value), reinterpret_cast<volatile int64_t*>(dest));
  63 }
  64 #endif
  65 
  66 // As per atomic.hpp all read-modify-write operations have to provide two-way
  67 // barriers semantics. For AARCH64 we are using load-acquire-with-reservation and
  68 // store-release-with-reservation. While load-acquire combined with store-release
  69 // do not generally form two-way barriers, their use with reservations does - the
  70 // ARMv8 architecture manual Section F "Barrier Litmus Tests" indicates they
  71 // provide sequentially consistent semantics. All we need to add is an explicit
  72 // barrier in the failure path of the cmpxchg operations (as these don't execute
  73 // the store) - arguably this may be overly cautious as there is a very low
  74 // likelihood that the hardware would pull loads/stores into the region guarded
  75 // by the reservation.
  76 //
  77 // For ARMv7 we add explicit barriers in the stubs.
  78 
  79 template<size_t byte_size>
  80 struct Atomic::PlatformAdd
  81   : Atomic::AddAndFetch<Atomic::PlatformAdd<byte_size> >
  82 {


  86 
  87 template<>
  88 template<typename I, typename D>
  89 inline D Atomic::PlatformAdd<4>::add_and_fetch(I add_value, D volatile* dest) const {
  90   STATIC_ASSERT(4 == sizeof(I));
  91   STATIC_ASSERT(4 == sizeof(D));
  92 #ifdef AARCH64
  93   D val;
  94   int tmp;
  95   __asm__ volatile(
  96     "1:\n\t"
  97     " ldaxr %w[val], [%[dest]]\n\t"
  98     " add %w[val], %w[val], %w[add_val]\n\t"
  99     " stlxr %w[tmp], %w[val], [%[dest]]\n\t"
 100     " cbnz %w[tmp], 1b\n\t"
 101     : [val] "=&r" (val), [tmp] "=&r" (tmp)
 102     : [add_val] "r" (add_value), [dest] "r" (dest)
 103     : "memory");
 104   return val;
 105 #else
 106   return add_using_helper<int32_t>(os::atomic_add_func, add_value, dest);
 107 #endif
 108 }
 109 
 110 #ifdef AARCH64
 111 template<>
 112 template<typename I, typename D>
 113 inline D Atomic::PlatformAdd<8>::add_and_fetch(I add_value, D volatile* dest) const {
 114   STATIC_ASSERT(8 == sizeof(I));
 115   STATIC_ASSERT(8 == sizeof(D));
 116   D val;
 117   int tmp;
 118   __asm__ volatile(
 119     "1:\n\t"
 120     " ldaxr %[val], [%[dest]]\n\t"
 121     " add %[val], %[val], %[add_val]\n\t"
 122     " stlxr %w[tmp], %[val], [%[dest]]\n\t"
 123     " cbnz %w[tmp], 1b\n\t"
 124     : [val] "=&r" (val), [tmp] "=&r" (tmp)
 125     : [add_val] "r" (add_value), [dest] "r" (dest)
 126     : "memory");


 129 #endif
 130 
 131 template<>
 132 template<typename T>
 133 inline T Atomic::PlatformXchg<4>::operator()(T exchange_value,
 134                                              T volatile* dest) const {
 135   STATIC_ASSERT(4 == sizeof(T));
 136 #ifdef AARCH64
 137   T old_val;
 138   int tmp;
 139   __asm__ volatile(
 140     "1:\n\t"
 141     " ldaxr %w[old_val], [%[dest]]\n\t"
 142     " stlxr %w[tmp], %w[new_val], [%[dest]]\n\t"
 143     " cbnz %w[tmp], 1b\n\t"
 144     : [old_val] "=&r" (old_val), [tmp] "=&r" (tmp)
 145     : [new_val] "r" (exchange_value), [dest] "r" (dest)
 146     : "memory");
 147   return old_val;
 148 #else
 149   return xchg_using_helper<int32_t>(os::atomic_xchg_func, exchange_value, dest);
 150 #endif
 151 }
 152 
 153 #ifdef AARCH64
 154 template<>
 155 template<typename T>
 156 inline T Atomic::PlatformXchg<8>::operator()(T exchange_value,
 157                                              T volatile* dest) const {
 158   STATIC_ASSERT(8 == sizeof(T));
 159   T old_val;
 160   int tmp;
 161   __asm__ volatile(
 162     "1:\n\t"
 163     " ldaxr %[old_val], [%[dest]]\n\t"
 164     " stlxr %w[tmp], %[new_val], [%[dest]]\n\t"
 165     " cbnz %w[tmp], 1b\n\t"
 166     : [old_val] "=&r" (old_val), [tmp] "=&r" (tmp)
 167     : [new_val] "r" (exchange_value), [dest] "r" (dest)
 168     : "memory");
 169   return old_val;
 170 }
 171 #endif // AARCH64
 172 
 173 // The memory_order parameter is ignored - we always provide the strongest/most-conservative ordering
 174 
 175 // No direct support for cmpxchg of bytes; emulate using int.
 176 template<>
 177 struct Atomic::PlatformCmpxchg<1> : Atomic::CmpxchgByteUsingInt {};
 178 
 179 #ifndef AARCH64
 180 
 181 inline int32_t reorder_cmpxchg_func(int32_t exchange_value,
 182                                     int32_t volatile* dest,
 183                                     int32_t compare_value) {
 184   // Warning:  Arguments are swapped to avoid moving them for kernel call
 185   return (*os::atomic_cmpxchg_func)(compare_value, exchange_value, dest);
 186 }
 187 
 188 inline int64_t reorder_cmpxchg_long_func(int64_t exchange_value,
 189                                          int64_t volatile* dest,
 190                                          int64_t compare_value) {
 191   assert(VM_Version::supports_cx8(), "Atomic compare and exchange int64_t not supported on this architecture!");
 192   // Warning:  Arguments are swapped to avoid moving them for kernel call
 193   return (*os::atomic_cmpxchg_long_func)(compare_value, exchange_value, dest);
 194 }
 195 
 196 #endif // !AARCH64
 197 
 198 template<>
 199 template<typename T>
 200 inline T Atomic::PlatformCmpxchg<4>::operator()(T exchange_value,
 201                                                 T volatile* dest,
 202                                                 T compare_value,
 203                                                 cmpxchg_memory_order order) const {
 204   STATIC_ASSERT(4 == sizeof(T));
 205 #ifdef AARCH64
 206   T rv;
 207   int tmp;
 208   __asm__ volatile(
 209     "1:\n\t"
 210     " ldaxr %w[rv], [%[dest]]\n\t"
 211     " cmp %w[rv], %w[cv]\n\t"
 212     " b.ne 2f\n\t"
 213     " stlxr %w[tmp], %w[ev], [%[dest]]\n\t"
 214     " cbnz %w[tmp], 1b\n\t"
 215     " b 3f\n\t"
 216     "2:\n\t"
 217     " dmb sy\n\t"
 218     "3:\n\t"
 219     : [rv] "=&r" (rv), [tmp] "=&r" (tmp)
 220     : [ev] "r" (exchange_value), [dest] "r" (dest), [cv] "r" (compare_value)
 221     : "memory");
 222   return rv;
 223 #else
 224   return cmpxchg_using_helper<int32_t>(reorder_cmpxchg_func, exchange_value, dest, compare_value);
 225 #endif
 226 }
 227 
 228 template<>
 229 template<typename T>
 230 inline T Atomic::PlatformCmpxchg<8>::operator()(T exchange_value,
 231                                                 T volatile* dest,
 232                                                 T compare_value,
 233                                                 cmpxchg_memory_order order) const {
 234   STATIC_ASSERT(8 == sizeof(T));
 235 #ifdef AARCH64
 236   T rv;
 237   int tmp;
 238   __asm__ volatile(
 239     "1:\n\t"
 240     " ldaxr %[rv], [%[dest]]\n\t"
 241     " cmp %[rv], %[cv]\n\t"
 242     " b.ne 2f\n\t"
 243     " stlxr %w[tmp], %[ev], [%[dest]]\n\t"
 244     " cbnz %w[tmp], 1b\n\t"
 245     " b 3f\n\t"
 246     "2:\n\t"
 247     " dmb sy\n\t"
 248     "3:\n\t"
 249     : [rv] "=&r" (rv), [tmp] "=&r" (tmp)
 250     : [ev] "r" (exchange_value), [dest] "r" (dest), [cv] "r" (compare_value)
 251     : "memory");
 252   return rv;
 253 #else
 254   return cmpxchg_using_helper<int64_t>(reorder_cmpxchg_long_func, exchange_value, dest, compare_value);
 255 #endif
 256 }
 257 
 258 #endif // OS_CPU_LINUX_ARM_VM_ATOMIC_LINUX_ARM_HPP
< prev index next >