1 /*
   2  * Copyright (c) 2003, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2012, 2017 SAP SE. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 
  27 #include "precompiled.hpp"
  28 #include "asm/macroAssembler.inline.hpp"
  29 #include "interp_masm_ppc.hpp"
  30 #include "interpreter/interpreterRuntime.hpp"
  31 #include "prims/jvmtiThreadState.hpp"
  32 #include "runtime/sharedRuntime.hpp"
  33 
  34 #ifdef PRODUCT
  35 #define BLOCK_COMMENT(str) // nothing
  36 #else
  37 #define BLOCK_COMMENT(str) block_comment(str)
  38 #endif
  39 
  40 void InterpreterMacroAssembler::null_check_throw(Register a, int offset, Register temp_reg) {
  41   address exception_entry = Interpreter::throw_NullPointerException_entry();
  42   MacroAssembler::null_check_throw(a, offset, temp_reg, exception_entry);
  43 }
  44 
  45 void InterpreterMacroAssembler::jump_to_entry(address entry, Register Rscratch) {
  46   assert(entry, "Entry must have been generated by now");
  47   if (is_within_range_of_b(entry, pc())) {
  48     b(entry);
  49   } else {
  50     load_const_optimized(Rscratch, entry, R0);
  51     mtctr(Rscratch);
  52     bctr();
  53   }
  54 }
  55 
  56 void InterpreterMacroAssembler::dispatch_next(TosState state, int bcp_incr) {
  57   Register bytecode = R12_scratch2;
  58   if (bcp_incr != 0) {
  59     lbzu(bytecode, bcp_incr, R14_bcp);
  60   } else {
  61     lbz(bytecode, 0, R14_bcp);
  62   }
  63 
  64   dispatch_Lbyte_code(state, bytecode, Interpreter::dispatch_table(state));
  65 }
  66 
  67 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
  68   // Load current bytecode.
  69   Register bytecode = R12_scratch2;
  70   lbz(bytecode, 0, R14_bcp);
  71   dispatch_Lbyte_code(state, bytecode, table);
  72 }
  73 
  74 // Dispatch code executed in the prolog of a bytecode which does not do it's
  75 // own dispatch. The dispatch address is computed and placed in R24_dispatch_addr.
  76 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int bcp_incr) {
  77   Register bytecode = R12_scratch2;
  78   lbz(bytecode, bcp_incr, R14_bcp);
  79 
  80   load_dispatch_table(R24_dispatch_addr, Interpreter::dispatch_table(state));
  81 
  82   sldi(bytecode, bytecode, LogBytesPerWord);
  83   ldx(R24_dispatch_addr, R24_dispatch_addr, bytecode);
  84 }
  85 
  86 // Dispatch code executed in the epilog of a bytecode which does not do it's
  87 // own dispatch. The dispatch address in R24_dispatch_addr is used for the
  88 // dispatch.
  89 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int bcp_incr) {
  90   if (bcp_incr) { addi(R14_bcp, R14_bcp, bcp_incr); }
  91   mtctr(R24_dispatch_addr);
  92   bcctr(bcondAlways, 0, bhintbhBCCTRisNotPredictable);
  93 }
  94 
  95 void InterpreterMacroAssembler::check_and_handle_popframe(Register scratch_reg) {
  96   assert(scratch_reg != R0, "can't use R0 as scratch_reg here");
  97   if (JvmtiExport::can_pop_frame()) {
  98     Label L;
  99 
 100     // Check the "pending popframe condition" flag in the current thread.
 101     lwz(scratch_reg, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
 102 
 103     // Initiate popframe handling only if it is not already being
 104     // processed. If the flag has the popframe_processing bit set, it
 105     // means that this code is called *during* popframe handling - we
 106     // don't want to reenter.
 107     andi_(R0, scratch_reg, JavaThread::popframe_pending_bit);
 108     beq(CCR0, L);
 109 
 110     andi_(R0, scratch_reg, JavaThread::popframe_processing_bit);
 111     bne(CCR0, L);
 112 
 113     // Call the Interpreter::remove_activation_preserving_args_entry()
 114     // func to get the address of the same-named entrypoint in the
 115     // generated interpreter code.
 116 #if defined(ABI_ELFv2)
 117     call_c(CAST_FROM_FN_PTR(address,
 118                             Interpreter::remove_activation_preserving_args_entry),
 119            relocInfo::none);
 120 #else
 121     call_c(CAST_FROM_FN_PTR(FunctionDescriptor*,
 122                             Interpreter::remove_activation_preserving_args_entry),
 123            relocInfo::none);
 124 #endif
 125 
 126     // Jump to Interpreter::_remove_activation_preserving_args_entry.
 127     mtctr(R3_RET);
 128     bctr();
 129 
 130     align(32, 12);
 131     bind(L);
 132   }
 133 }
 134 
 135 void InterpreterMacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
 136   const Register Rthr_state_addr = scratch_reg;
 137   if (JvmtiExport::can_force_early_return()) {
 138     Label Lno_early_ret;
 139     ld(Rthr_state_addr, in_bytes(JavaThread::jvmti_thread_state_offset()), R16_thread);
 140     cmpdi(CCR0, Rthr_state_addr, 0);
 141     beq(CCR0, Lno_early_ret);
 142 
 143     lwz(R0, in_bytes(JvmtiThreadState::earlyret_state_offset()), Rthr_state_addr);
 144     cmpwi(CCR0, R0, JvmtiThreadState::earlyret_pending);
 145     bne(CCR0, Lno_early_ret);
 146 
 147     // Jump to Interpreter::_earlyret_entry.
 148     lwz(R3_ARG1, in_bytes(JvmtiThreadState::earlyret_tos_offset()), Rthr_state_addr);
 149     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry));
 150     mtlr(R3_RET);
 151     blr();
 152 
 153     align(32, 12);
 154     bind(Lno_early_ret);
 155   }
 156 }
 157 
 158 void InterpreterMacroAssembler::load_earlyret_value(TosState state, Register Rscratch1) {
 159   const Register RjvmtiState = Rscratch1;
 160   const Register Rscratch2   = R0;
 161 
 162   ld(RjvmtiState, in_bytes(JavaThread::jvmti_thread_state_offset()), R16_thread);
 163   li(Rscratch2, 0);
 164 
 165   switch (state) {
 166     case atos: ld(R17_tos, in_bytes(JvmtiThreadState::earlyret_oop_offset()), RjvmtiState);
 167                std(Rscratch2, in_bytes(JvmtiThreadState::earlyret_oop_offset()), RjvmtiState);
 168                break;
 169     case ltos: ld(R17_tos, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState);
 170                break;
 171     case btos: // fall through
 172     case ztos: // fall through
 173     case ctos: // fall through
 174     case stos: // fall through
 175     case itos: lwz(R17_tos, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState);
 176                break;
 177     case ftos: lfs(F15_ftos, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState);
 178                break;
 179     case dtos: lfd(F15_ftos, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState);
 180                break;
 181     case vtos: break;
 182     default  : ShouldNotReachHere();
 183   }
 184 
 185   // Clean up tos value in the jvmti thread state.
 186   std(Rscratch2, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState);
 187   // Set tos state field to illegal value.
 188   li(Rscratch2, ilgl);
 189   stw(Rscratch2, in_bytes(JvmtiThreadState::earlyret_tos_offset()), RjvmtiState);
 190 }
 191 
 192 // Common code to dispatch and dispatch_only.
 193 // Dispatch value in Lbyte_code and increment Lbcp.
 194 
 195 void InterpreterMacroAssembler::load_dispatch_table(Register dst, address* table) {
 196   address table_base = (address)Interpreter::dispatch_table((TosState)0);
 197   intptr_t table_offs = (intptr_t)table - (intptr_t)table_base;
 198   if (is_simm16(table_offs)) {
 199     addi(dst, R25_templateTableBase, (int)table_offs);
 200   } else {
 201     load_const_optimized(dst, table, R0);
 202   }
 203 }
 204 
 205 void InterpreterMacroAssembler::dispatch_Lbyte_code(TosState state, Register bytecode,
 206                                                     address* table, bool verify) {
 207   if (verify) {
 208     unimplemented("dispatch_Lbyte_code: verify"); // See Sparc Implementation to implement this
 209   }
 210 
 211   assert_different_registers(bytecode, R11_scratch1);
 212 
 213   // Calc dispatch table address.
 214   load_dispatch_table(R11_scratch1, table);
 215 
 216   sldi(R12_scratch2, bytecode, LogBytesPerWord);
 217   ldx(R11_scratch1, R11_scratch1, R12_scratch2);
 218 
 219   // Jump off!
 220   mtctr(R11_scratch1);
 221   bcctr(bcondAlways, 0, bhintbhBCCTRisNotPredictable);
 222 }
 223 
 224 void InterpreterMacroAssembler::load_receiver(Register Rparam_count, Register Rrecv_dst) {
 225   sldi(Rrecv_dst, Rparam_count, Interpreter::logStackElementSize);
 226   ldx(Rrecv_dst, Rrecv_dst, R15_esp);
 227 }
 228 
 229 // helpers for expression stack
 230 
 231 void InterpreterMacroAssembler::pop_i(Register r) {
 232   lwzu(r, Interpreter::stackElementSize, R15_esp);
 233 }
 234 
 235 void InterpreterMacroAssembler::pop_ptr(Register r) {
 236   ldu(r, Interpreter::stackElementSize, R15_esp);
 237 }
 238 
 239 void InterpreterMacroAssembler::pop_l(Register r) {
 240   ld(r, Interpreter::stackElementSize, R15_esp);
 241   addi(R15_esp, R15_esp, 2 * Interpreter::stackElementSize);
 242 }
 243 
 244 void InterpreterMacroAssembler::pop_f(FloatRegister f) {
 245   lfsu(f, Interpreter::stackElementSize, R15_esp);
 246 }
 247 
 248 void InterpreterMacroAssembler::pop_d(FloatRegister f) {
 249   lfd(f, Interpreter::stackElementSize, R15_esp);
 250   addi(R15_esp, R15_esp, 2 * Interpreter::stackElementSize);
 251 }
 252 
 253 void InterpreterMacroAssembler::push_i(Register r) {
 254   stw(r, 0, R15_esp);
 255   addi(R15_esp, R15_esp, - Interpreter::stackElementSize );
 256 }
 257 
 258 void InterpreterMacroAssembler::push_ptr(Register r) {
 259   std(r, 0, R15_esp);
 260   addi(R15_esp, R15_esp, - Interpreter::stackElementSize );
 261 }
 262 
 263 void InterpreterMacroAssembler::push_l(Register r) {
 264   // Clear unused slot.
 265   load_const_optimized(R0, 0L);
 266   std(R0, 0, R15_esp);
 267   std(r, - Interpreter::stackElementSize, R15_esp);
 268   addi(R15_esp, R15_esp, - 2 * Interpreter::stackElementSize );
 269 }
 270 
 271 void InterpreterMacroAssembler::push_f(FloatRegister f) {
 272   stfs(f, 0, R15_esp);
 273   addi(R15_esp, R15_esp, - Interpreter::stackElementSize );
 274 }
 275 
 276 void InterpreterMacroAssembler::push_d(FloatRegister f)   {
 277   stfd(f, - Interpreter::stackElementSize, R15_esp);
 278   addi(R15_esp, R15_esp, - 2 * Interpreter::stackElementSize );
 279 }
 280 
 281 void InterpreterMacroAssembler::push_2ptrs(Register first, Register second) {
 282   std(first, 0, R15_esp);
 283   std(second, -Interpreter::stackElementSize, R15_esp);
 284   addi(R15_esp, R15_esp, - 2 * Interpreter::stackElementSize );
 285 }
 286 
 287 void InterpreterMacroAssembler::move_l_to_d(Register l, FloatRegister d) {
 288   if (VM_Version::has_mtfprd()) {
 289     mtfprd(d, l);
 290   } else {
 291     std(l, 0, R15_esp);
 292     lfd(d, 0, R15_esp);
 293   }
 294 }
 295 
 296 void InterpreterMacroAssembler::move_d_to_l(FloatRegister d, Register l) {
 297   if (VM_Version::has_mtfprd()) {
 298     mffprd(l, d);
 299   } else {
 300     stfd(d, 0, R15_esp);
 301     ld(l, 0, R15_esp);
 302   }
 303 }
 304 
 305 void InterpreterMacroAssembler::push(TosState state) {
 306   switch (state) {
 307     case atos: push_ptr();                break;
 308     case btos:
 309     case ztos:
 310     case ctos:
 311     case stos:
 312     case itos: push_i();                  break;
 313     case ltos: push_l();                  break;
 314     case ftos: push_f();                  break;
 315     case dtos: push_d();                  break;
 316     case vtos: /* nothing to do */        break;
 317     default  : ShouldNotReachHere();
 318   }
 319 }
 320 
 321 void InterpreterMacroAssembler::pop(TosState state) {
 322   switch (state) {
 323     case atos: pop_ptr();            break;
 324     case btos:
 325     case ztos:
 326     case ctos:
 327     case stos:
 328     case itos: pop_i();              break;
 329     case ltos: pop_l();              break;
 330     case ftos: pop_f();              break;
 331     case dtos: pop_d();              break;
 332     case vtos: /* nothing to do */   break;
 333     default  : ShouldNotReachHere();
 334   }
 335   verify_oop(R17_tos, state);
 336 }
 337 
 338 void InterpreterMacroAssembler::empty_expression_stack() {
 339   addi(R15_esp, R26_monitor, - Interpreter::stackElementSize);
 340 }
 341 
 342 void InterpreterMacroAssembler::get_2_byte_integer_at_bcp(int         bcp_offset,
 343                                                           Register    Rdst,
 344                                                           signedOrNot is_signed) {
 345 #if defined(VM_LITTLE_ENDIAN)
 346   if (bcp_offset) {
 347     load_const_optimized(Rdst, bcp_offset);
 348     lhbrx(Rdst, R14_bcp, Rdst);
 349   } else {
 350     lhbrx(Rdst, R14_bcp);
 351   }
 352   if (is_signed == Signed) {
 353     extsh(Rdst, Rdst);
 354   }
 355 #else
 356   // Read Java big endian format.
 357   if (is_signed == Signed) {
 358     lha(Rdst, bcp_offset, R14_bcp);
 359   } else {
 360     lhz(Rdst, bcp_offset, R14_bcp);
 361   }
 362 #endif
 363 }
 364 
 365 void InterpreterMacroAssembler::get_4_byte_integer_at_bcp(int         bcp_offset,
 366                                                           Register    Rdst,
 367                                                           signedOrNot is_signed) {
 368 #if defined(VM_LITTLE_ENDIAN)
 369   if (bcp_offset) {
 370     load_const_optimized(Rdst, bcp_offset);
 371     lwbrx(Rdst, R14_bcp, Rdst);
 372   } else {
 373     lwbrx(Rdst, R14_bcp);
 374   }
 375   if (is_signed == Signed) {
 376     extsw(Rdst, Rdst);
 377   }
 378 #else
 379   // Read Java big endian format.
 380   if (bcp_offset & 3) { // Offset unaligned?
 381     load_const_optimized(Rdst, bcp_offset);
 382     if (is_signed == Signed) {
 383       lwax(Rdst, R14_bcp, Rdst);
 384     } else {
 385       lwzx(Rdst, R14_bcp, Rdst);
 386     }
 387   } else {
 388     if (is_signed == Signed) {
 389       lwa(Rdst, bcp_offset, R14_bcp);
 390     } else {
 391       lwz(Rdst, bcp_offset, R14_bcp);
 392     }
 393   }
 394 #endif
 395 }
 396 
 397 
 398 // Load the constant pool cache index from the bytecode stream.
 399 //
 400 // Kills / writes:
 401 //   - Rdst, Rscratch
 402 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register Rdst, int bcp_offset,
 403                                                        size_t index_size) {
 404   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
 405   // Cache index is always in the native format, courtesy of Rewriter.
 406   if (index_size == sizeof(u2)) {
 407     lhz(Rdst, bcp_offset, R14_bcp);
 408   } else if (index_size == sizeof(u4)) {
 409     if (bcp_offset & 3) {
 410       load_const_optimized(Rdst, bcp_offset);
 411       lwax(Rdst, R14_bcp, Rdst);
 412     } else {
 413       lwa(Rdst, bcp_offset, R14_bcp);
 414     }
 415     assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line");
 416     nand(Rdst, Rdst, Rdst); // convert to plain index
 417   } else if (index_size == sizeof(u1)) {
 418     lbz(Rdst, bcp_offset, R14_bcp);
 419   } else {
 420     ShouldNotReachHere();
 421   }
 422   // Rdst now contains cp cache index.
 423 }
 424 
 425 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, int bcp_offset,
 426                                                            size_t index_size) {
 427   get_cache_index_at_bcp(cache, bcp_offset, index_size);
 428   sldi(cache, cache, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord));
 429   add(cache, R27_constPoolCache, cache);
 430 }
 431 
 432 // Load 4-byte signed or unsigned integer in Java format (that is, big-endian format)
 433 // from (Rsrc)+offset.
 434 void InterpreterMacroAssembler::get_u4(Register Rdst, Register Rsrc, int offset,
 435                                        signedOrNot is_signed) {
 436 #if defined(VM_LITTLE_ENDIAN)
 437   if (offset) {
 438     load_const_optimized(Rdst, offset);
 439     lwbrx(Rdst, Rdst, Rsrc);
 440   } else {
 441     lwbrx(Rdst, Rsrc);
 442   }
 443   if (is_signed == Signed) {
 444     extsw(Rdst, Rdst);
 445   }
 446 #else
 447   if (is_signed == Signed) {
 448     lwa(Rdst, offset, Rsrc);
 449   } else {
 450     lwz(Rdst, offset, Rsrc);
 451   }
 452 #endif
 453 }
 454 
 455 // Load object from cpool->resolved_references(index).
 456 void InterpreterMacroAssembler::load_resolved_reference_at_index(Register result, Register index, Label *is_null) {
 457   assert_different_registers(result, index);
 458   get_constant_pool(result);
 459 
 460   // Convert from field index to resolved_references() index and from
 461   // word index to byte offset. Since this is a java object, it can be compressed.
 462   Register tmp = index;  // reuse
 463   sldi(tmp, index, LogBytesPerHeapOop);
 464   // Load pointer for resolved_references[] objArray.
 465   ld(result, ConstantPool::cache_offset_in_bytes(), result);
 466   ld(result, ConstantPoolCache::resolved_references_offset_in_bytes(), result);
 467   resolve_oop_handle(result);
 468 #ifdef ASSERT
 469   Label index_ok;
 470   lwa(R0, arrayOopDesc::length_offset_in_bytes(), result);
 471   sldi(R0, R0, LogBytesPerHeapOop);
 472   cmpd(CCR0, tmp, R0);
 473   blt(CCR0, index_ok);
 474   stop("resolved reference index out of bounds", 0x09256);
 475   bind(index_ok);
 476 #endif
 477   // Add in the index.
 478   add(result, tmp, result);
 479   load_heap_oop(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT), result, is_null);
 480 }
 481 
 482 // load cpool->resolved_klass_at(index)
 483 void InterpreterMacroAssembler::load_resolved_klass_at_offset(Register Rcpool, Register Roffset, Register Rklass) {
 484   // int value = *(Rcpool->int_at_addr(which));
 485   // int resolved_klass_index = extract_low_short_from_int(value);
 486   add(Roffset, Rcpool, Roffset);
 487 #if defined(VM_LITTLE_ENDIAN)
 488   lhz(Roffset, sizeof(ConstantPool), Roffset);     // Roffset = resolved_klass_index
 489 #else
 490   lhz(Roffset, sizeof(ConstantPool) + 2, Roffset); // Roffset = resolved_klass_index
 491 #endif
 492 
 493   ld(Rklass, ConstantPool::resolved_klasses_offset_in_bytes(), Rcpool); // Rklass = Rcpool->_resolved_klasses
 494 
 495   sldi(Roffset, Roffset, LogBytesPerWord);
 496   addi(Roffset, Roffset, Array<Klass*>::base_offset_in_bytes());
 497   isync(); // Order load of instance Klass wrt. tags.
 498   ldx(Rklass, Rklass, Roffset);
 499 }
 500 
 501 // Generate a subtype check: branch to ok_is_subtype if sub_klass is
 502 // a subtype of super_klass. Blows registers Rsub_klass, tmp1, tmp2.
 503 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass, Register Rsuper_klass, Register Rtmp1,
 504                                                   Register Rtmp2, Register Rtmp3, Label &ok_is_subtype) {
 505   // Profile the not-null value's klass.
 506   profile_typecheck(Rsub_klass, Rtmp1, Rtmp2);
 507   check_klass_subtype(Rsub_klass, Rsuper_klass, Rtmp1, Rtmp2, ok_is_subtype);
 508   profile_typecheck_failed(Rtmp1, Rtmp2);
 509 }
 510 
 511 // Separate these two to allow for delay slot in middle.
 512 // These are used to do a test and full jump to exception-throwing code.
 513 
 514 // Check that index is in range for array, then shift index by index_shift,
 515 // and put arrayOop + shifted_index into res.
 516 // Note: res is still shy of address by array offset into object.
 517 
 518 void InterpreterMacroAssembler::index_check_without_pop(Register Rarray, Register Rindex,
 519                                                         int index_shift, Register Rtmp, Register Rres) {
 520   // Check that index is in range for array, then shift index by index_shift,
 521   // and put arrayOop + shifted_index into res.
 522   // Note: res is still shy of address by array offset into object.
 523   // Kills:
 524   //   - Rindex
 525   // Writes:
 526   //   - Rres: Address that corresponds to the array index if check was successful.
 527   verify_oop(Rarray);
 528   const Register Rlength   = R0;
 529   const Register RsxtIndex = Rtmp;
 530   Label LisNull, LnotOOR;
 531 
 532   // Array nullcheck
 533   if (!ImplicitNullChecks) {
 534     cmpdi(CCR0, Rarray, 0);
 535     beq(CCR0, LisNull);
 536   } else {
 537     null_check_throw(Rarray, arrayOopDesc::length_offset_in_bytes(), /*temp*/RsxtIndex);
 538   }
 539 
 540   // Rindex might contain garbage in upper bits (remember that we don't sign extend
 541   // during integer arithmetic operations). So kill them and put value into same register
 542   // where ArrayIndexOutOfBounds would expect the index in.
 543   rldicl(RsxtIndex, Rindex, 0, 32); // zero extend 32 bit -> 64 bit
 544 
 545   // Index check
 546   lwz(Rlength, arrayOopDesc::length_offset_in_bytes(), Rarray);
 547   cmplw(CCR0, Rindex, Rlength);
 548   sldi(RsxtIndex, RsxtIndex, index_shift);
 549   blt(CCR0, LnotOOR);
 550   // Index should be in R17_tos, array should be in R4_ARG2.
 551   mr_if_needed(R17_tos, Rindex);
 552   mr_if_needed(R4_ARG2, Rarray);
 553   load_dispatch_table(Rtmp, (address*)Interpreter::_throw_ArrayIndexOutOfBoundsException_entry);
 554   mtctr(Rtmp);
 555   bctr();
 556 
 557   if (!ImplicitNullChecks) {
 558     bind(LisNull);
 559     load_dispatch_table(Rtmp, (address*)Interpreter::_throw_NullPointerException_entry);
 560     mtctr(Rtmp);
 561     bctr();
 562   }
 563 
 564   align(32, 16);
 565   bind(LnotOOR);
 566 
 567   // Calc address
 568   add(Rres, RsxtIndex, Rarray);
 569 }
 570 
 571 void InterpreterMacroAssembler::index_check(Register array, Register index,
 572                                             int index_shift, Register tmp, Register res) {
 573   // pop array
 574   pop_ptr(array);
 575 
 576   // check array
 577   index_check_without_pop(array, index, index_shift, tmp, res);
 578 }
 579 
 580 void InterpreterMacroAssembler::get_const(Register Rdst) {
 581   ld(Rdst, in_bytes(Method::const_offset()), R19_method);
 582 }
 583 
 584 void InterpreterMacroAssembler::get_constant_pool(Register Rdst) {
 585   get_const(Rdst);
 586   ld(Rdst, in_bytes(ConstMethod::constants_offset()), Rdst);
 587 }
 588 
 589 void InterpreterMacroAssembler::get_constant_pool_cache(Register Rdst) {
 590   get_constant_pool(Rdst);
 591   ld(Rdst, ConstantPool::cache_offset_in_bytes(), Rdst);
 592 }
 593 
 594 void InterpreterMacroAssembler::get_cpool_and_tags(Register Rcpool, Register Rtags) {
 595   get_constant_pool(Rcpool);
 596   ld(Rtags, ConstantPool::tags_offset_in_bytes(), Rcpool);
 597 }
 598 
 599 // Unlock if synchronized method.
 600 //
 601 // Unlock the receiver if this is a synchronized method.
 602 // Unlock any Java monitors from synchronized blocks.
 603 //
 604 // If there are locked Java monitors
 605 //   If throw_monitor_exception
 606 //     throws IllegalMonitorStateException
 607 //   Else if install_monitor_exception
 608 //     installs IllegalMonitorStateException
 609 //   Else
 610 //     no error processing
 611 void InterpreterMacroAssembler::unlock_if_synchronized_method(TosState state,
 612                                                               bool throw_monitor_exception,
 613                                                               bool install_monitor_exception) {
 614   Label Lunlocked, Lno_unlock;
 615   {
 616     Register Rdo_not_unlock_flag = R11_scratch1;
 617     Register Raccess_flags       = R12_scratch2;
 618 
 619     // Check if synchronized method or unlocking prevented by
 620     // JavaThread::do_not_unlock_if_synchronized flag.
 621     lbz(Rdo_not_unlock_flag, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
 622     lwz(Raccess_flags, in_bytes(Method::access_flags_offset()), R19_method);
 623     li(R0, 0);
 624     stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread); // reset flag
 625 
 626     push(state);
 627 
 628     // Skip if we don't have to unlock.
 629     rldicl_(R0, Raccess_flags, 64-JVM_ACC_SYNCHRONIZED_BIT, 63); // Extract bit and compare to 0.
 630     beq(CCR0, Lunlocked);
 631 
 632     cmpwi(CCR0, Rdo_not_unlock_flag, 0);
 633     bne(CCR0, Lno_unlock);
 634   }
 635 
 636   // Unlock
 637   {
 638     Register Rmonitor_base = R11_scratch1;
 639 
 640     Label Lunlock;
 641     // If it's still locked, everything is ok, unlock it.
 642     ld(Rmonitor_base, 0, R1_SP);
 643     addi(Rmonitor_base, Rmonitor_base,
 644          -(frame::ijava_state_size + frame::interpreter_frame_monitor_size_in_bytes())); // Monitor base
 645 
 646     ld(R0, BasicObjectLock::obj_offset_in_bytes(), Rmonitor_base);
 647     cmpdi(CCR0, R0, 0);
 648     bne(CCR0, Lunlock);
 649 
 650     // If it's already unlocked, throw exception.
 651     if (throw_monitor_exception) {
 652       call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
 653       should_not_reach_here();
 654     } else {
 655       if (install_monitor_exception) {
 656         call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
 657         b(Lunlocked);
 658       }
 659     }
 660 
 661     bind(Lunlock);
 662     unlock_object(Rmonitor_base);
 663   }
 664 
 665   // Check that all other monitors are unlocked. Throw IllegelMonitorState exception if not.
 666   bind(Lunlocked);
 667   {
 668     Label Lexception, Lrestart;
 669     Register Rcurrent_obj_addr = R11_scratch1;
 670     const int delta = frame::interpreter_frame_monitor_size_in_bytes();
 671     assert((delta & LongAlignmentMask) == 0, "sizeof BasicObjectLock must be even number of doublewords");
 672 
 673     bind(Lrestart);
 674     // Set up search loop: Calc num of iterations.
 675     {
 676       Register Riterations = R12_scratch2;
 677       Register Rmonitor_base = Rcurrent_obj_addr;
 678       ld(Rmonitor_base, 0, R1_SP);
 679       addi(Rmonitor_base, Rmonitor_base, - frame::ijava_state_size);  // Monitor base
 680 
 681       subf_(Riterations, R26_monitor, Rmonitor_base);
 682       ble(CCR0, Lno_unlock);
 683 
 684       addi(Rcurrent_obj_addr, Rmonitor_base,
 685            BasicObjectLock::obj_offset_in_bytes() - frame::interpreter_frame_monitor_size_in_bytes());
 686       // Check if any monitor is on stack, bail out if not
 687       srdi(Riterations, Riterations, exact_log2(delta));
 688       mtctr(Riterations);
 689     }
 690 
 691     // The search loop: Look for locked monitors.
 692     {
 693       const Register Rcurrent_obj = R0;
 694       Label Lloop;
 695 
 696       ld(Rcurrent_obj, 0, Rcurrent_obj_addr);
 697       addi(Rcurrent_obj_addr, Rcurrent_obj_addr, -delta);
 698       bind(Lloop);
 699 
 700       // Check if current entry is used.
 701       cmpdi(CCR0, Rcurrent_obj, 0);
 702       bne(CCR0, Lexception);
 703       // Preload next iteration's compare value.
 704       ld(Rcurrent_obj, 0, Rcurrent_obj_addr);
 705       addi(Rcurrent_obj_addr, Rcurrent_obj_addr, -delta);
 706       bdnz(Lloop);
 707     }
 708     // Fell through: Everything's unlocked => finish.
 709     b(Lno_unlock);
 710 
 711     // An object is still locked => need to throw exception.
 712     bind(Lexception);
 713     if (throw_monitor_exception) {
 714       call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
 715       should_not_reach_here();
 716     } else {
 717       // Stack unrolling. Unlock object and if requested, install illegal_monitor_exception.
 718       // Unlock does not block, so don't have to worry about the frame.
 719       Register Rmonitor_addr = R11_scratch1;
 720       addi(Rmonitor_addr, Rcurrent_obj_addr, -BasicObjectLock::obj_offset_in_bytes() + delta);
 721       unlock_object(Rmonitor_addr);
 722       if (install_monitor_exception) {
 723         call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
 724       }
 725       b(Lrestart);
 726     }
 727   }
 728 
 729   align(32, 12);
 730   bind(Lno_unlock);
 731   pop(state);
 732 }
 733 
 734 // Support function for remove_activation & Co.
 735 void InterpreterMacroAssembler::merge_frames(Register Rsender_sp, Register return_pc,
 736                                              Register Rscratch1, Register Rscratch2) {
 737   // Pop interpreter frame.
 738   ld(Rscratch1, 0, R1_SP); // *SP
 739   ld(Rsender_sp, _ijava_state_neg(sender_sp), Rscratch1); // top_frame_sp
 740   ld(Rscratch2, 0, Rscratch1); // **SP
 741 #ifdef ASSERT
 742   {
 743     Label Lok;
 744     ld(R0, _ijava_state_neg(ijava_reserved), Rscratch1);
 745     cmpdi(CCR0, R0, 0x5afe);
 746     beq(CCR0, Lok);
 747     stop("frame corrupted (remove activation)", 0x5afe);
 748     bind(Lok);
 749   }
 750 #endif
 751   if (return_pc!=noreg) {
 752     ld(return_pc, _abi(lr), Rscratch1); // LR
 753   }
 754 
 755   // Merge top frames.
 756   subf(Rscratch1, R1_SP, Rsender_sp); // top_frame_sp - SP
 757   stdux(Rscratch2, R1_SP, Rscratch1); // atomically set *(SP = top_frame_sp) = **SP
 758 }
 759 
 760 void InterpreterMacroAssembler::narrow(Register result) {
 761   Register ret_type = R11_scratch1;
 762   ld(R11_scratch1, in_bytes(Method::const_offset()), R19_method);
 763   lbz(ret_type, in_bytes(ConstMethod::result_type_offset()), R11_scratch1);
 764 
 765   Label notBool, notByte, notChar, done;
 766 
 767   // common case first
 768   cmpwi(CCR0, ret_type, T_INT);
 769   beq(CCR0, done);
 770 
 771   cmpwi(CCR0, ret_type, T_BOOLEAN);
 772   bne(CCR0, notBool);
 773   andi(result, result, 0x1);
 774   b(done);
 775 
 776   bind(notBool);
 777   cmpwi(CCR0, ret_type, T_BYTE);
 778   bne(CCR0, notByte);
 779   extsb(result, result);
 780   b(done);
 781 
 782   bind(notByte);
 783   cmpwi(CCR0, ret_type, T_CHAR);
 784   bne(CCR0, notChar);
 785   andi(result, result, 0xffff);
 786   b(done);
 787 
 788   bind(notChar);
 789   // cmpwi(CCR0, ret_type, T_SHORT);  // all that's left
 790   // bne(CCR0, done);
 791   extsh(result, result);
 792 
 793   // Nothing to do for T_INT
 794   bind(done);
 795 }
 796 
 797 // Remove activation.
 798 //
 799 // Unlock the receiver if this is a synchronized method.
 800 // Unlock any Java monitors from synchronized blocks.
 801 // Remove the activation from the stack.
 802 //
 803 // If there are locked Java monitors
 804 //    If throw_monitor_exception
 805 //       throws IllegalMonitorStateException
 806 //    Else if install_monitor_exception
 807 //       installs IllegalMonitorStateException
 808 //    Else
 809 //       no error processing
 810 void InterpreterMacroAssembler::remove_activation(TosState state,
 811                                                   bool throw_monitor_exception,
 812                                                   bool install_monitor_exception) {
 813   BLOCK_COMMENT("remove_activation {");
 814   unlock_if_synchronized_method(state, throw_monitor_exception, install_monitor_exception);
 815 
 816   // Save result (push state before jvmti call and pop it afterwards) and notify jvmti.
 817   notify_method_exit(false, state, NotifyJVMTI, true);
 818 
 819   BLOCK_COMMENT("reserved_stack_check:");
 820   if (StackReservedPages > 0) {
 821     // Test if reserved zone needs to be enabled.
 822     Label no_reserved_zone_enabling;
 823 
 824     // Compare frame pointers. There is no good stack pointer, as with stack
 825     // frame compression we can get different SPs when we do calls. A subsequent
 826     // call could have a smaller SP, so that this compare succeeds for an
 827     // inner call of the method annotated with ReservedStack.
 828     ld_ptr(R0, JavaThread::reserved_stack_activation_offset(), R16_thread);
 829     ld_ptr(R11_scratch1, _abi(callers_sp), R1_SP); // Load frame pointer.
 830     cmpld(CCR0, R11_scratch1, R0);
 831     blt_predict_taken(CCR0, no_reserved_zone_enabling);
 832 
 833     // Enable reserved zone again, throw stack overflow exception.
 834     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), R16_thread);
 835     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_delayed_StackOverflowError));
 836 
 837     should_not_reach_here();
 838 
 839     bind(no_reserved_zone_enabling);
 840   }
 841 
 842   verify_oop(R17_tos, state);
 843   verify_thread();
 844 
 845   merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ R0, R11_scratch1, R12_scratch2);
 846   mtlr(R0);
 847   BLOCK_COMMENT("} remove_activation");
 848 }
 849 
 850 // Lock object
 851 //
 852 // Registers alive
 853 //   monitor - Address of the BasicObjectLock to be used for locking,
 854 //             which must be initialized with the object to lock.
 855 //   object  - Address of the object to be locked.
 856 //
 857 void InterpreterMacroAssembler::lock_object(Register monitor, Register object) {
 858   if (UseHeavyMonitors) {
 859     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
 860             monitor, /*check_for_exceptions=*/true);
 861   } else {
 862     // template code:
 863     //
 864     // markOop displaced_header = obj->mark().set_unlocked();
 865     // monitor->lock()->set_displaced_header(displaced_header);
 866     // if (Atomic::cmpxchg_ptr(/*ex=*/monitor, /*addr*/obj->mark_addr(), /*cmp*/displaced_header) == displaced_header) {
 867     //   // We stored the monitor address into the object's mark word.
 868     // } else if (THREAD->is_lock_owned((address)displaced_header))
 869     //   // Simple recursive case.
 870     //   monitor->lock()->set_displaced_header(NULL);
 871     // } else {
 872     //   // Slow path.
 873     //   InterpreterRuntime::monitorenter(THREAD, monitor);
 874     // }
 875 
 876     const Register displaced_header = R7_ARG5;
 877     const Register object_mark_addr = R8_ARG6;
 878     const Register current_header   = R9_ARG7;
 879     const Register tmp              = R10_ARG8;
 880 
 881     Label done;
 882     Label cas_failed, slow_case;
 883 
 884     assert_different_registers(displaced_header, object_mark_addr, current_header, tmp);
 885 
 886     // markOop displaced_header = obj->mark().set_unlocked();
 887 
 888     // Load markOop from object into displaced_header.
 889     ld(displaced_header, oopDesc::mark_offset_in_bytes(), object);
 890 
 891     if (UseBiasedLocking) {
 892       biased_locking_enter(CCR0, object, displaced_header, tmp, current_header, done, &slow_case);
 893     }
 894 
 895     // Set displaced_header to be (markOop of object | UNLOCK_VALUE).
 896     ori(displaced_header, displaced_header, markOopDesc::unlocked_value);
 897 
 898     // monitor->lock()->set_displaced_header(displaced_header);
 899 
 900     // Initialize the box (Must happen before we update the object mark!).
 901     std(displaced_header, BasicObjectLock::lock_offset_in_bytes() +
 902         BasicLock::displaced_header_offset_in_bytes(), monitor);
 903 
 904     // if (Atomic::cmpxchg_ptr(/*ex=*/monitor, /*addr*/obj->mark_addr(), /*cmp*/displaced_header) == displaced_header) {
 905 
 906     // Store stack address of the BasicObjectLock (this is monitor) into object.
 907     addi(object_mark_addr, object, oopDesc::mark_offset_in_bytes());
 908 
 909     // Must fence, otherwise, preceding store(s) may float below cmpxchg.
 910     // CmpxchgX sets CCR0 to cmpX(current, displaced).
 911     cmpxchgd(/*flag=*/CCR0,
 912              /*current_value=*/current_header,
 913              /*compare_value=*/displaced_header, /*exchange_value=*/monitor,
 914              /*where=*/object_mark_addr,
 915              MacroAssembler::MemBarRel | MacroAssembler::MemBarAcq,
 916              MacroAssembler::cmpxchgx_hint_acquire_lock(),
 917              noreg,
 918              &cas_failed,
 919              /*check without membar and ldarx first*/true);
 920 
 921     // If the compare-and-exchange succeeded, then we found an unlocked
 922     // object and we have now locked it.
 923     b(done);
 924     bind(cas_failed);
 925 
 926     // } else if (THREAD->is_lock_owned((address)displaced_header))
 927     //   // Simple recursive case.
 928     //   monitor->lock()->set_displaced_header(NULL);
 929 
 930     // We did not see an unlocked object so try the fast recursive case.
 931 
 932     // Check if owner is self by comparing the value in the markOop of object
 933     // (current_header) with the stack pointer.
 934     sub(current_header, current_header, R1_SP);
 935 
 936     assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
 937     load_const_optimized(tmp, ~(os::vm_page_size()-1) | markOopDesc::lock_mask_in_place);
 938 
 939     and_(R0/*==0?*/, current_header, tmp);
 940     // If condition is true we are done and hence we can store 0 in the displaced
 941     // header indicating it is a recursive lock.
 942     bne(CCR0, slow_case);
 943     std(R0/*==0!*/, BasicObjectLock::lock_offset_in_bytes() +
 944         BasicLock::displaced_header_offset_in_bytes(), monitor);
 945     b(done);
 946 
 947     // } else {
 948     //   // Slow path.
 949     //   InterpreterRuntime::monitorenter(THREAD, monitor);
 950 
 951     // None of the above fast optimizations worked so we have to get into the
 952     // slow case of monitor enter.
 953     bind(slow_case);
 954     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
 955             monitor, /*check_for_exceptions=*/true);
 956     // }
 957     align(32, 12);
 958     bind(done);
 959   }
 960 }
 961 
 962 // Unlocks an object. Used in monitorexit bytecode and remove_activation.
 963 //
 964 // Registers alive
 965 //   monitor - Address of the BasicObjectLock to be used for locking,
 966 //             which must be initialized with the object to lock.
 967 //
 968 // Throw IllegalMonitorException if object is not locked by current thread.
 969 void InterpreterMacroAssembler::unlock_object(Register monitor, bool check_for_exceptions) {
 970   if (UseHeavyMonitors) {
 971     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
 972             monitor, check_for_exceptions);
 973   } else {
 974 
 975     // template code:
 976     //
 977     // if ((displaced_header = monitor->displaced_header()) == NULL) {
 978     //   // Recursive unlock. Mark the monitor unlocked by setting the object field to NULL.
 979     //   monitor->set_obj(NULL);
 980     // } else if (Atomic::cmpxchg_ptr(displaced_header, obj->mark_addr(), monitor) == monitor) {
 981     //   // We swapped the unlocked mark in displaced_header into the object's mark word.
 982     //   monitor->set_obj(NULL);
 983     // } else {
 984     //   // Slow path.
 985     //   InterpreterRuntime::monitorexit(THREAD, monitor);
 986     // }
 987 
 988     const Register object           = R7_ARG5;
 989     const Register displaced_header = R8_ARG6;
 990     const Register object_mark_addr = R9_ARG7;
 991     const Register current_header   = R10_ARG8;
 992 
 993     Label free_slot;
 994     Label slow_case;
 995 
 996     assert_different_registers(object, displaced_header, object_mark_addr, current_header);
 997 
 998     if (UseBiasedLocking) {
 999       // The object address from the monitor is in object.
1000       ld(object, BasicObjectLock::obj_offset_in_bytes(), monitor);
1001       assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
1002       biased_locking_exit(CCR0, object, displaced_header, free_slot);
1003     }
1004 
1005     // Test first if we are in the fast recursive case.
1006     ld(displaced_header, BasicObjectLock::lock_offset_in_bytes() +
1007            BasicLock::displaced_header_offset_in_bytes(), monitor);
1008 
1009     // If the displaced header is zero, we have a recursive unlock.
1010     cmpdi(CCR0, displaced_header, 0);
1011     beq(CCR0, free_slot); // recursive unlock
1012 
1013     // } else if (Atomic::cmpxchg_ptr(displaced_header, obj->mark_addr(), monitor) == monitor) {
1014     //   // We swapped the unlocked mark in displaced_header into the object's mark word.
1015     //   monitor->set_obj(NULL);
1016 
1017     // If we still have a lightweight lock, unlock the object and be done.
1018 
1019     // The object address from the monitor is in object.
1020     if (!UseBiasedLocking) { ld(object, BasicObjectLock::obj_offset_in_bytes(), monitor); }
1021     addi(object_mark_addr, object, oopDesc::mark_offset_in_bytes());
1022 
1023     // We have the displaced header in displaced_header. If the lock is still
1024     // lightweight, it will contain the monitor address and we'll store the
1025     // displaced header back into the object's mark word.
1026     // CmpxchgX sets CCR0 to cmpX(current, monitor).
1027     cmpxchgd(/*flag=*/CCR0,
1028              /*current_value=*/current_header,
1029              /*compare_value=*/monitor, /*exchange_value=*/displaced_header,
1030              /*where=*/object_mark_addr,
1031              MacroAssembler::MemBarRel,
1032              MacroAssembler::cmpxchgx_hint_release_lock(),
1033              noreg,
1034              &slow_case);
1035     b(free_slot);
1036 
1037     // } else {
1038     //   // Slow path.
1039     //   InterpreterRuntime::monitorexit(THREAD, monitor);
1040 
1041     // The lock has been converted into a heavy lock and hence
1042     // we need to get into the slow case.
1043     bind(slow_case);
1044     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
1045             monitor, check_for_exceptions);
1046     // }
1047 
1048     Label done;
1049     b(done); // Monitor register may be overwritten! Runtime has already freed the slot.
1050 
1051     // Exchange worked, do monitor->set_obj(NULL);
1052     align(32, 12);
1053     bind(free_slot);
1054     li(R0, 0);
1055     std(R0, BasicObjectLock::obj_offset_in_bytes(), monitor);
1056     bind(done);
1057   }
1058 }
1059 
1060 // Load compiled (i2c) or interpreter entry when calling from interpreted and
1061 // do the call. Centralized so that all interpreter calls will do the same actions.
1062 // If jvmti single stepping is on for a thread we must not call compiled code.
1063 //
1064 // Input:
1065 //   - Rtarget_method: method to call
1066 //   - Rret_addr:      return address
1067 //   - 2 scratch regs
1068 //
1069 void InterpreterMacroAssembler::call_from_interpreter(Register Rtarget_method, Register Rret_addr,
1070                                                       Register Rscratch1, Register Rscratch2) {
1071   assert_different_registers(Rscratch1, Rscratch2, Rtarget_method, Rret_addr);
1072   // Assume we want to go compiled if available.
1073   const Register Rtarget_addr = Rscratch1;
1074   const Register Rinterp_only = Rscratch2;
1075 
1076   ld(Rtarget_addr, in_bytes(Method::from_interpreted_offset()), Rtarget_method);
1077 
1078   if (JvmtiExport::can_post_interpreter_events()) {
1079     lwz(Rinterp_only, in_bytes(JavaThread::interp_only_mode_offset()), R16_thread);
1080 
1081     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
1082     // compiled code in threads for which the event is enabled. Check here for
1083     // interp_only_mode if these events CAN be enabled.
1084     Label done;
1085     verify_thread();
1086     cmpwi(CCR0, Rinterp_only, 0);
1087     beq(CCR0, done);
1088     ld(Rtarget_addr, in_bytes(Method::interpreter_entry_offset()), Rtarget_method);
1089     align(32, 12);
1090     bind(done);
1091   }
1092 
1093 #ifdef ASSERT
1094   {
1095     Label Lok;
1096     cmpdi(CCR0, Rtarget_addr, 0);
1097     bne(CCR0, Lok);
1098     stop("null entry point");
1099     bind(Lok);
1100   }
1101 #endif // ASSERT
1102 
1103   mr(R21_sender_SP, R1_SP);
1104 
1105   // Calc a precise SP for the call. The SP value we calculated in
1106   // generate_fixed_frame() is based on the max_stack() value, so we would waste stack space
1107   // if esp is not max. Also, the i2c adapter extends the stack space without restoring
1108   // our pre-calced value, so repeating calls via i2c would result in stack overflow.
1109   // Since esp already points to an empty slot, we just have to sub 1 additional slot
1110   // to meet the abi scratch requirements.
1111   // The max_stack pointer will get restored by means of the GR_Lmax_stack local in
1112   // the return entry of the interpreter.
1113   addi(Rscratch2, R15_esp, Interpreter::stackElementSize - frame::abi_reg_args_size);
1114   clrrdi(Rscratch2, Rscratch2, exact_log2(frame::alignment_in_bytes)); // round towards smaller address
1115   resize_frame_absolute(Rscratch2, Rscratch2, R0);
1116 
1117   mr_if_needed(R19_method, Rtarget_method);
1118   mtctr(Rtarget_addr);
1119   mtlr(Rret_addr);
1120 
1121   save_interpreter_state(Rscratch2);
1122 #ifdef ASSERT
1123   ld(Rscratch1, _ijava_state_neg(top_frame_sp), Rscratch2); // Rscratch2 contains fp
1124   cmpd(CCR0, R21_sender_SP, Rscratch1);
1125   asm_assert_eq("top_frame_sp incorrect", 0x951);
1126 #endif
1127 
1128   bctr();
1129 }
1130 
1131 // Set the method data pointer for the current bcp.
1132 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
1133   assert(ProfileInterpreter, "must be profiling interpreter");
1134   Label get_continue;
1135   ld(R28_mdx, in_bytes(Method::method_data_offset()), R19_method);
1136   test_method_data_pointer(get_continue);
1137   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), R19_method, R14_bcp);
1138 
1139   addi(R28_mdx, R28_mdx, in_bytes(MethodData::data_offset()));
1140   add(R28_mdx, R28_mdx, R3_RET);
1141   bind(get_continue);
1142 }
1143 
1144 // Test ImethodDataPtr. If it is null, continue at the specified label.
1145 void InterpreterMacroAssembler::test_method_data_pointer(Label& zero_continue) {
1146   assert(ProfileInterpreter, "must be profiling interpreter");
1147   cmpdi(CCR0, R28_mdx, 0);
1148   beq(CCR0, zero_continue);
1149 }
1150 
1151 void InterpreterMacroAssembler::verify_method_data_pointer() {
1152   assert(ProfileInterpreter, "must be profiling interpreter");
1153 #ifdef ASSERT
1154   Label verify_continue;
1155   test_method_data_pointer(verify_continue);
1156 
1157   // If the mdp is valid, it will point to a DataLayout header which is
1158   // consistent with the bcp. The converse is highly probable also.
1159   lhz(R11_scratch1, in_bytes(DataLayout::bci_offset()), R28_mdx);
1160   ld(R12_scratch2, in_bytes(Method::const_offset()), R19_method);
1161   addi(R11_scratch1, R11_scratch1, in_bytes(ConstMethod::codes_offset()));
1162   add(R11_scratch1, R12_scratch2, R12_scratch2);
1163   cmpd(CCR0, R11_scratch1, R14_bcp);
1164   beq(CCR0, verify_continue);
1165 
1166   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp ), R19_method, R14_bcp, R28_mdx);
1167 
1168   bind(verify_continue);
1169 #endif
1170 }
1171 
1172 void InterpreterMacroAssembler::test_invocation_counter_for_mdp(Register invocation_count,
1173                                                                 Register method_counters,
1174                                                                 Register Rscratch,
1175                                                                 Label &profile_continue) {
1176   assert(ProfileInterpreter, "must be profiling interpreter");
1177   // Control will flow to "profile_continue" if the counter is less than the
1178   // limit or if we call profile_method().
1179   Label done;
1180 
1181   // If no method data exists, and the counter is high enough, make one.
1182   lwz(Rscratch, in_bytes(MethodCounters::interpreter_profile_limit_offset()), method_counters);
1183 
1184   cmpdi(CCR0, R28_mdx, 0);
1185   // Test to see if we should create a method data oop.
1186   cmpd(CCR1, Rscratch, invocation_count);
1187   bne(CCR0, done);
1188   bge(CCR1, profile_continue);
1189 
1190   // Build it now.
1191   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
1192   set_method_data_pointer_for_bcp();
1193   b(profile_continue);
1194 
1195   align(32, 12);
1196   bind(done);
1197 }
1198 
1199 void InterpreterMacroAssembler::test_backedge_count_for_osr(Register backedge_count, Register method_counters,
1200                                                             Register target_bcp, Register disp, Register Rtmp) {
1201   assert_different_registers(backedge_count, target_bcp, disp, Rtmp, R4_ARG2);
1202   assert(UseOnStackReplacement,"Must UseOnStackReplacement to test_backedge_count_for_osr");
1203 
1204   Label did_not_overflow;
1205   Label overflow_with_error;
1206 
1207   lwz(Rtmp, in_bytes(MethodCounters::interpreter_backward_branch_limit_offset()), method_counters);
1208   cmpw(CCR0, backedge_count, Rtmp);
1209 
1210   blt(CCR0, did_not_overflow);
1211 
1212   // When ProfileInterpreter is on, the backedge_count comes from the
1213   // methodDataOop, which value does not get reset on the call to
1214   // frequency_counter_overflow(). To avoid excessive calls to the overflow
1215   // routine while the method is being compiled, add a second test to make sure
1216   // the overflow function is called only once every overflow_frequency.
1217   if (ProfileInterpreter) {
1218     const int overflow_frequency = 1024;
1219     andi_(Rtmp, backedge_count, overflow_frequency-1);
1220     bne(CCR0, did_not_overflow);
1221   }
1222 
1223   // Overflow in loop, pass branch bytecode.
1224   subf(R4_ARG2, disp, target_bcp); // Compute branch bytecode (previous bcp).
1225   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), R4_ARG2, true);
1226 
1227   // Was an OSR adapter generated?
1228   cmpdi(CCR0, R3_RET, 0);
1229   beq(CCR0, overflow_with_error);
1230 
1231   // Has the nmethod been invalidated already?
1232   lbz(Rtmp, nmethod::state_offset(), R3_RET);
1233   cmpwi(CCR0, Rtmp, nmethod::in_use);
1234   bne(CCR0, overflow_with_error);
1235 
1236   // Migrate the interpreter frame off of the stack.
1237   // We can use all registers because we will not return to interpreter from this point.
1238 
1239   // Save nmethod.
1240   const Register osr_nmethod = R31;
1241   mr(osr_nmethod, R3_RET);
1242   set_top_ijava_frame_at_SP_as_last_Java_frame(R1_SP, R11_scratch1);
1243   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), R16_thread);
1244   reset_last_Java_frame();
1245   // OSR buffer is in ARG1
1246 
1247   // Remove the interpreter frame.
1248   merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ R0, R11_scratch1, R12_scratch2);
1249 
1250   // Jump to the osr code.
1251   ld(R11_scratch1, nmethod::osr_entry_point_offset(), osr_nmethod);
1252   mtlr(R0);
1253   mtctr(R11_scratch1);
1254   bctr();
1255 
1256   align(32, 12);
1257   bind(overflow_with_error);
1258   bind(did_not_overflow);
1259 }
1260 
1261 // Store a value at some constant offset from the method data pointer.
1262 void InterpreterMacroAssembler::set_mdp_data_at(int constant, Register value) {
1263   assert(ProfileInterpreter, "must be profiling interpreter");
1264 
1265   std(value, constant, R28_mdx);
1266 }
1267 
1268 // Increment the value at some constant offset from the method data pointer.
1269 void InterpreterMacroAssembler::increment_mdp_data_at(int constant,
1270                                                       Register counter_addr,
1271                                                       Register Rbumped_count,
1272                                                       bool decrement) {
1273   // Locate the counter at a fixed offset from the mdp:
1274   addi(counter_addr, R28_mdx, constant);
1275   increment_mdp_data_at(counter_addr, Rbumped_count, decrement);
1276 }
1277 
1278 // Increment the value at some non-fixed (reg + constant) offset from
1279 // the method data pointer.
1280 void InterpreterMacroAssembler::increment_mdp_data_at(Register reg,
1281                                                       int constant,
1282                                                       Register scratch,
1283                                                       Register Rbumped_count,
1284                                                       bool decrement) {
1285   // Add the constant to reg to get the offset.
1286   add(scratch, R28_mdx, reg);
1287   // Then calculate the counter address.
1288   addi(scratch, scratch, constant);
1289   increment_mdp_data_at(scratch, Rbumped_count, decrement);
1290 }
1291 
1292 void InterpreterMacroAssembler::increment_mdp_data_at(Register counter_addr,
1293                                                       Register Rbumped_count,
1294                                                       bool decrement) {
1295   assert(ProfileInterpreter, "must be profiling interpreter");
1296 
1297   // Load the counter.
1298   ld(Rbumped_count, 0, counter_addr);
1299 
1300   if (decrement) {
1301     // Decrement the register. Set condition codes.
1302     addi(Rbumped_count, Rbumped_count, - DataLayout::counter_increment);
1303     // Store the decremented counter, if it is still negative.
1304     std(Rbumped_count, 0, counter_addr);
1305     // Note: add/sub overflow check are not ported, since 64 bit
1306     // calculation should never overflow.
1307   } else {
1308     // Increment the register. Set carry flag.
1309     addi(Rbumped_count, Rbumped_count, DataLayout::counter_increment);
1310     // Store the incremented counter.
1311     std(Rbumped_count, 0, counter_addr);
1312   }
1313 }
1314 
1315 // Set a flag value at the current method data pointer position.
1316 void InterpreterMacroAssembler::set_mdp_flag_at(int flag_constant,
1317                                                 Register scratch) {
1318   assert(ProfileInterpreter, "must be profiling interpreter");
1319   // Load the data header.
1320   lbz(scratch, in_bytes(DataLayout::flags_offset()), R28_mdx);
1321   // Set the flag.
1322   ori(scratch, scratch, flag_constant);
1323   // Store the modified header.
1324   stb(scratch, in_bytes(DataLayout::flags_offset()), R28_mdx);
1325 }
1326 
1327 // Test the location at some offset from the method data pointer.
1328 // If it is not equal to value, branch to the not_equal_continue Label.
1329 void InterpreterMacroAssembler::test_mdp_data_at(int offset,
1330                                                  Register value,
1331                                                  Label& not_equal_continue,
1332                                                  Register test_out) {
1333   assert(ProfileInterpreter, "must be profiling interpreter");
1334 
1335   ld(test_out, offset, R28_mdx);
1336   cmpd(CCR0,  value, test_out);
1337   bne(CCR0, not_equal_continue);
1338 }
1339 
1340 // Update the method data pointer by the displacement located at some fixed
1341 // offset from the method data pointer.
1342 void InterpreterMacroAssembler::update_mdp_by_offset(int offset_of_disp,
1343                                                      Register scratch) {
1344   assert(ProfileInterpreter, "must be profiling interpreter");
1345 
1346   ld(scratch, offset_of_disp, R28_mdx);
1347   add(R28_mdx, scratch, R28_mdx);
1348 }
1349 
1350 // Update the method data pointer by the displacement located at the
1351 // offset (reg + offset_of_disp).
1352 void InterpreterMacroAssembler::update_mdp_by_offset(Register reg,
1353                                                      int offset_of_disp,
1354                                                      Register scratch) {
1355   assert(ProfileInterpreter, "must be profiling interpreter");
1356 
1357   add(scratch, reg, R28_mdx);
1358   ld(scratch, offset_of_disp, scratch);
1359   add(R28_mdx, scratch, R28_mdx);
1360 }
1361 
1362 // Update the method data pointer by a simple constant displacement.
1363 void InterpreterMacroAssembler::update_mdp_by_constant(int constant) {
1364   assert(ProfileInterpreter, "must be profiling interpreter");
1365   addi(R28_mdx, R28_mdx, constant);
1366 }
1367 
1368 // Update the method data pointer for a _ret bytecode whose target
1369 // was not among our cached targets.
1370 void InterpreterMacroAssembler::update_mdp_for_ret(TosState state,
1371                                                    Register return_bci) {
1372   assert(ProfileInterpreter, "must be profiling interpreter");
1373 
1374   push(state);
1375   assert(return_bci->is_nonvolatile(), "need to protect return_bci");
1376   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), return_bci);
1377   pop(state);
1378 }
1379 
1380 // Increments the backedge counter.
1381 // Returns backedge counter + invocation counter in Rdst.
1382 void InterpreterMacroAssembler::increment_backedge_counter(const Register Rcounters, const Register Rdst,
1383                                                            const Register Rtmp1, Register Rscratch) {
1384   assert(UseCompiler, "incrementing must be useful");
1385   assert_different_registers(Rdst, Rtmp1);
1386   const Register invocation_counter = Rtmp1;
1387   const Register counter = Rdst;
1388   // TODO: PPC port: assert(4 == InvocationCounter::sz_counter(), "unexpected field size.");
1389 
1390   // Load backedge counter.
1391   lwz(counter, in_bytes(MethodCounters::backedge_counter_offset()) +
1392                in_bytes(InvocationCounter::counter_offset()), Rcounters);
1393   // Load invocation counter.
1394   lwz(invocation_counter, in_bytes(MethodCounters::invocation_counter_offset()) +
1395                           in_bytes(InvocationCounter::counter_offset()), Rcounters);
1396 
1397   // Add the delta to the backedge counter.
1398   addi(counter, counter, InvocationCounter::count_increment);
1399 
1400   // Mask the invocation counter.
1401   andi(invocation_counter, invocation_counter, InvocationCounter::count_mask_value);
1402 
1403   // Store new counter value.
1404   stw(counter, in_bytes(MethodCounters::backedge_counter_offset()) +
1405                in_bytes(InvocationCounter::counter_offset()), Rcounters);
1406   // Return invocation counter + backedge counter.
1407   add(counter, counter, invocation_counter);
1408 }
1409 
1410 // Count a taken branch in the bytecodes.
1411 void InterpreterMacroAssembler::profile_taken_branch(Register scratch, Register bumped_count) {
1412   if (ProfileInterpreter) {
1413     Label profile_continue;
1414 
1415     // If no method data exists, go to profile_continue.
1416     test_method_data_pointer(profile_continue);
1417 
1418     // We are taking a branch. Increment the taken count.
1419     increment_mdp_data_at(in_bytes(JumpData::taken_offset()), scratch, bumped_count);
1420 
1421     // The method data pointer needs to be updated to reflect the new target.
1422     update_mdp_by_offset(in_bytes(JumpData::displacement_offset()), scratch);
1423     bind (profile_continue);
1424   }
1425 }
1426 
1427 // Count a not-taken branch in the bytecodes.
1428 void InterpreterMacroAssembler::profile_not_taken_branch(Register scratch1, Register scratch2) {
1429   if (ProfileInterpreter) {
1430     Label profile_continue;
1431 
1432     // If no method data exists, go to profile_continue.
1433     test_method_data_pointer(profile_continue);
1434 
1435     // We are taking a branch. Increment the not taken count.
1436     increment_mdp_data_at(in_bytes(BranchData::not_taken_offset()), scratch1, scratch2);
1437 
1438     // The method data pointer needs to be updated to correspond to the
1439     // next bytecode.
1440     update_mdp_by_constant(in_bytes(BranchData::branch_data_size()));
1441     bind (profile_continue);
1442   }
1443 }
1444 
1445 // Count a non-virtual call in the bytecodes.
1446 void InterpreterMacroAssembler::profile_call(Register scratch1, Register scratch2) {
1447   if (ProfileInterpreter) {
1448     Label profile_continue;
1449 
1450     // If no method data exists, go to profile_continue.
1451     test_method_data_pointer(profile_continue);
1452 
1453     // We are making a call. Increment the count.
1454     increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2);
1455 
1456     // The method data pointer needs to be updated to reflect the new target.
1457     update_mdp_by_constant(in_bytes(CounterData::counter_data_size()));
1458     bind (profile_continue);
1459   }
1460 }
1461 
1462 // Count a final call in the bytecodes.
1463 void InterpreterMacroAssembler::profile_final_call(Register scratch1, Register scratch2) {
1464   if (ProfileInterpreter) {
1465     Label profile_continue;
1466 
1467     // If no method data exists, go to profile_continue.
1468     test_method_data_pointer(profile_continue);
1469 
1470     // We are making a call. Increment the count.
1471     increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2);
1472 
1473     // The method data pointer needs to be updated to reflect the new target.
1474     update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
1475     bind (profile_continue);
1476   }
1477 }
1478 
1479 // Count a virtual call in the bytecodes.
1480 void InterpreterMacroAssembler::profile_virtual_call(Register Rreceiver,
1481                                                      Register Rscratch1,
1482                                                      Register Rscratch2,
1483                                                      bool receiver_can_be_null) {
1484   if (!ProfileInterpreter) { return; }
1485   Label profile_continue;
1486 
1487   // If no method data exists, go to profile_continue.
1488   test_method_data_pointer(profile_continue);
1489 
1490   Label skip_receiver_profile;
1491   if (receiver_can_be_null) {
1492     Label not_null;
1493     cmpdi(CCR0, Rreceiver, 0);
1494     bne(CCR0, not_null);
1495     // We are making a call. Increment the count for null receiver.
1496     increment_mdp_data_at(in_bytes(CounterData::count_offset()), Rscratch1, Rscratch2);
1497     b(skip_receiver_profile);
1498     bind(not_null);
1499   }
1500 
1501   // Record the receiver type.
1502   record_klass_in_profile(Rreceiver, Rscratch1, Rscratch2, true);
1503   bind(skip_receiver_profile);
1504 
1505   // The method data pointer needs to be updated to reflect the new target.
1506   update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
1507   bind (profile_continue);
1508 }
1509 
1510 void InterpreterMacroAssembler::profile_typecheck(Register Rklass, Register Rscratch1, Register Rscratch2) {
1511   if (ProfileInterpreter) {
1512     Label profile_continue;
1513 
1514     // If no method data exists, go to profile_continue.
1515     test_method_data_pointer(profile_continue);
1516 
1517     int mdp_delta = in_bytes(BitData::bit_data_size());
1518     if (TypeProfileCasts) {
1519       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1520 
1521       // Record the object type.
1522       record_klass_in_profile(Rklass, Rscratch1, Rscratch2, false);
1523     }
1524 
1525     // The method data pointer needs to be updated.
1526     update_mdp_by_constant(mdp_delta);
1527 
1528     bind (profile_continue);
1529   }
1530 }
1531 
1532 void InterpreterMacroAssembler::profile_typecheck_failed(Register Rscratch1, Register Rscratch2) {
1533   if (ProfileInterpreter && TypeProfileCasts) {
1534     Label profile_continue;
1535 
1536     // If no method data exists, go to profile_continue.
1537     test_method_data_pointer(profile_continue);
1538 
1539     int count_offset = in_bytes(CounterData::count_offset());
1540     // Back up the address, since we have already bumped the mdp.
1541     count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
1542 
1543     // *Decrement* the counter. We expect to see zero or small negatives.
1544     increment_mdp_data_at(count_offset, Rscratch1, Rscratch2, true);
1545 
1546     bind (profile_continue);
1547   }
1548 }
1549 
1550 // Count a ret in the bytecodes.
1551 void InterpreterMacroAssembler::profile_ret(TosState state, Register return_bci,
1552                                             Register scratch1, Register scratch2) {
1553   if (ProfileInterpreter) {
1554     Label profile_continue;
1555     uint row;
1556 
1557     // If no method data exists, go to profile_continue.
1558     test_method_data_pointer(profile_continue);
1559 
1560     // Update the total ret count.
1561     increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2 );
1562 
1563     for (row = 0; row < RetData::row_limit(); row++) {
1564       Label next_test;
1565 
1566       // See if return_bci is equal to bci[n]:
1567       test_mdp_data_at(in_bytes(RetData::bci_offset(row)), return_bci, next_test, scratch1);
1568 
1569       // return_bci is equal to bci[n]. Increment the count.
1570       increment_mdp_data_at(in_bytes(RetData::bci_count_offset(row)), scratch1, scratch2);
1571 
1572       // The method data pointer needs to be updated to reflect the new target.
1573       update_mdp_by_offset(in_bytes(RetData::bci_displacement_offset(row)), scratch1);
1574       b(profile_continue);
1575       bind(next_test);
1576     }
1577 
1578     update_mdp_for_ret(state, return_bci);
1579 
1580     bind (profile_continue);
1581   }
1582 }
1583 
1584 // Count the default case of a switch construct.
1585 void InterpreterMacroAssembler::profile_switch_default(Register scratch1,  Register scratch2) {
1586   if (ProfileInterpreter) {
1587     Label profile_continue;
1588 
1589     // If no method data exists, go to profile_continue.
1590     test_method_data_pointer(profile_continue);
1591 
1592     // Update the default case count
1593     increment_mdp_data_at(in_bytes(MultiBranchData::default_count_offset()),
1594                           scratch1, scratch2);
1595 
1596     // The method data pointer needs to be updated.
1597     update_mdp_by_offset(in_bytes(MultiBranchData::default_displacement_offset()),
1598                          scratch1);
1599 
1600     bind (profile_continue);
1601   }
1602 }
1603 
1604 // Count the index'th case of a switch construct.
1605 void InterpreterMacroAssembler::profile_switch_case(Register index,
1606                                                     Register scratch1,
1607                                                     Register scratch2,
1608                                                     Register scratch3) {
1609   if (ProfileInterpreter) {
1610     assert_different_registers(index, scratch1, scratch2, scratch3);
1611     Label profile_continue;
1612 
1613     // If no method data exists, go to profile_continue.
1614     test_method_data_pointer(profile_continue);
1615 
1616     // Build the base (index * per_case_size_in_bytes()) + case_array_offset_in_bytes().
1617     li(scratch3, in_bytes(MultiBranchData::case_array_offset()));
1618 
1619     assert (in_bytes(MultiBranchData::per_case_size()) == 16, "so that shladd works");
1620     sldi(scratch1, index, exact_log2(in_bytes(MultiBranchData::per_case_size())));
1621     add(scratch1, scratch1, scratch3);
1622 
1623     // Update the case count.
1624     increment_mdp_data_at(scratch1, in_bytes(MultiBranchData::relative_count_offset()), scratch2, scratch3);
1625 
1626     // The method data pointer needs to be updated.
1627     update_mdp_by_offset(scratch1, in_bytes(MultiBranchData::relative_displacement_offset()), scratch2);
1628 
1629     bind (profile_continue);
1630   }
1631 }
1632 
1633 void InterpreterMacroAssembler::profile_null_seen(Register Rscratch1, Register Rscratch2) {
1634   if (ProfileInterpreter) {
1635     assert_different_registers(Rscratch1, Rscratch2);
1636     Label profile_continue;
1637 
1638     // If no method data exists, go to profile_continue.
1639     test_method_data_pointer(profile_continue);
1640 
1641     set_mdp_flag_at(BitData::null_seen_byte_constant(), Rscratch1);
1642 
1643     // The method data pointer needs to be updated.
1644     int mdp_delta = in_bytes(BitData::bit_data_size());
1645     if (TypeProfileCasts) {
1646       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1647     }
1648     update_mdp_by_constant(mdp_delta);
1649 
1650     bind (profile_continue);
1651   }
1652 }
1653 
1654 void InterpreterMacroAssembler::record_klass_in_profile(Register Rreceiver,
1655                                                         Register Rscratch1, Register Rscratch2,
1656                                                         bool is_virtual_call) {
1657   assert(ProfileInterpreter, "must be profiling");
1658   assert_different_registers(Rreceiver, Rscratch1, Rscratch2);
1659 
1660   Label done;
1661   record_klass_in_profile_helper(Rreceiver, Rscratch1, Rscratch2, 0, done, is_virtual_call);
1662   bind (done);
1663 }
1664 
1665 void InterpreterMacroAssembler::record_klass_in_profile_helper(
1666                                         Register receiver, Register scratch1, Register scratch2,
1667                                         int start_row, Label& done, bool is_virtual_call) {
1668   if (TypeProfileWidth == 0) {
1669     if (is_virtual_call) {
1670       increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2);
1671     }
1672     return;
1673   }
1674 
1675   int last_row = VirtualCallData::row_limit() - 1;
1676   assert(start_row <= last_row, "must be work left to do");
1677   // Test this row for both the receiver and for null.
1678   // Take any of three different outcomes:
1679   //   1. found receiver => increment count and goto done
1680   //   2. found null => keep looking for case 1, maybe allocate this cell
1681   //   3. found something else => keep looking for cases 1 and 2
1682   // Case 3 is handled by a recursive call.
1683   for (int row = start_row; row <= last_row; row++) {
1684     Label next_test;
1685     bool test_for_null_also = (row == start_row);
1686 
1687     // See if the receiver is receiver[n].
1688     int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
1689     test_mdp_data_at(recvr_offset, receiver, next_test, scratch1);
1690     // delayed()->tst(scratch);
1691 
1692     // The receiver is receiver[n]. Increment count[n].
1693     int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
1694     increment_mdp_data_at(count_offset, scratch1, scratch2);
1695     b(done);
1696     bind(next_test);
1697 
1698     if (test_for_null_also) {
1699       Label found_null;
1700       // Failed the equality check on receiver[n]... Test for null.
1701       if (start_row == last_row) {
1702         // The only thing left to do is handle the null case.
1703         if (is_virtual_call) {
1704           // Scratch1 contains test_out from test_mdp_data_at.
1705           cmpdi(CCR0, scratch1, 0);
1706           beq(CCR0, found_null);
1707           // Receiver did not match any saved receiver and there is no empty row for it.
1708           // Increment total counter to indicate polymorphic case.
1709           increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2);
1710           b(done);
1711           bind(found_null);
1712         } else {
1713           cmpdi(CCR0, scratch1, 0);
1714           bne(CCR0, done);
1715         }
1716         break;
1717       }
1718       // Since null is rare, make it be the branch-taken case.
1719       cmpdi(CCR0, scratch1, 0);
1720       beq(CCR0, found_null);
1721 
1722       // Put all the "Case 3" tests here.
1723       record_klass_in_profile_helper(receiver, scratch1, scratch2, start_row + 1, done, is_virtual_call);
1724 
1725       // Found a null. Keep searching for a matching receiver,
1726       // but remember that this is an empty (unused) slot.
1727       bind(found_null);
1728     }
1729   }
1730 
1731   // In the fall-through case, we found no matching receiver, but we
1732   // observed the receiver[start_row] is NULL.
1733 
1734   // Fill in the receiver field and increment the count.
1735   int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
1736   set_mdp_data_at(recvr_offset, receiver);
1737   int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
1738   li(scratch1, DataLayout::counter_increment);
1739   set_mdp_data_at(count_offset, scratch1);
1740   if (start_row > 0) {
1741     b(done);
1742   }
1743 }
1744 
1745 // Argument and return type profilig.
1746 // kills: tmp, tmp2, R0, CR0, CR1
1747 void InterpreterMacroAssembler::profile_obj_type(Register obj, Register mdo_addr_base,
1748                                                  RegisterOrConstant mdo_addr_offs,
1749                                                  Register tmp, Register tmp2) {
1750   Label do_nothing, do_update;
1751 
1752   // tmp2 = obj is allowed
1753   assert_different_registers(obj, mdo_addr_base, tmp, R0);
1754   assert_different_registers(tmp2, mdo_addr_base, tmp, R0);
1755   const Register klass = tmp2;
1756 
1757   verify_oop(obj);
1758 
1759   ld(tmp, mdo_addr_offs, mdo_addr_base);
1760 
1761   // Set null_seen if obj is 0.
1762   cmpdi(CCR0, obj, 0);
1763   ori(R0, tmp, TypeEntries::null_seen);
1764   beq(CCR0, do_update);
1765 
1766   load_klass(klass, obj);
1767 
1768   clrrdi(R0, tmp, exact_log2(-TypeEntries::type_klass_mask));
1769   // Basically same as andi(R0, tmp, TypeEntries::type_klass_mask);
1770   cmpd(CCR1, R0, klass);
1771   // Klass seen before, nothing to do (regardless of unknown bit).
1772   //beq(CCR1, do_nothing);
1773 
1774   andi_(R0, klass, TypeEntries::type_unknown);
1775   // Already unknown. Nothing to do anymore.
1776   //bne(CCR0, do_nothing);
1777   crorc(CCR0, Assembler::equal, CCR1, Assembler::equal); // cr0 eq = cr1 eq or cr0 ne
1778   beq(CCR0, do_nothing);
1779 
1780   clrrdi_(R0, tmp, exact_log2(-TypeEntries::type_mask));
1781   orr(R0, klass, tmp); // Combine klass and null_seen bit (only used if (tmp & type_mask)==0).
1782   beq(CCR0, do_update); // First time here. Set profile type.
1783 
1784   // Different than before. Cannot keep accurate profile.
1785   ori(R0, tmp, TypeEntries::type_unknown);
1786 
1787   bind(do_update);
1788   // update profile
1789   std(R0, mdo_addr_offs, mdo_addr_base);
1790 
1791   align(32, 12);
1792   bind(do_nothing);
1793 }
1794 
1795 void InterpreterMacroAssembler::profile_arguments_type(Register callee,
1796                                                        Register tmp1, Register tmp2,
1797                                                        bool is_virtual) {
1798   if (!ProfileInterpreter) {
1799     return;
1800   }
1801 
1802   assert_different_registers(callee, tmp1, tmp2, R28_mdx);
1803 
1804   if (MethodData::profile_arguments() || MethodData::profile_return()) {
1805     Label profile_continue;
1806 
1807     test_method_data_pointer(profile_continue);
1808 
1809     int off_to_start = is_virtual ?
1810       in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size());
1811 
1812     lbz(tmp1, in_bytes(DataLayout::tag_offset()) - off_to_start, R28_mdx);
1813     cmpwi(CCR0, tmp1, is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag);
1814     bne(CCR0, profile_continue);
1815 
1816     if (MethodData::profile_arguments()) {
1817       Label done;
1818       int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset());
1819       add(R28_mdx, off_to_args, R28_mdx);
1820 
1821       for (int i = 0; i < TypeProfileArgsLimit; i++) {
1822         if (i > 0 || MethodData::profile_return()) {
1823           // If return value type is profiled we may have no argument to profile.
1824           ld(tmp1, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args, R28_mdx);
1825           cmpdi(CCR0, tmp1, (i+1)*TypeStackSlotEntries::per_arg_count());
1826           addi(tmp1, tmp1, -i*TypeStackSlotEntries::per_arg_count());
1827           blt(CCR0, done);
1828         }
1829         ld(tmp1, in_bytes(Method::const_offset()), callee);
1830         lhz(tmp1, in_bytes(ConstMethod::size_of_parameters_offset()), tmp1);
1831         // Stack offset o (zero based) from the start of the argument
1832         // list, for n arguments translates into offset n - o - 1 from
1833         // the end of the argument list. But there's an extra slot at
1834         // the top of the stack. So the offset is n - o from Lesp.
1835         ld(tmp2, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))-off_to_args, R28_mdx);
1836         subf(tmp1, tmp2, tmp1);
1837 
1838         sldi(tmp1, tmp1, Interpreter::logStackElementSize);
1839         ldx(tmp1, tmp1, R15_esp);
1840 
1841         profile_obj_type(tmp1, R28_mdx, in_bytes(TypeEntriesAtCall::argument_type_offset(i))-off_to_args, tmp2, tmp1);
1842 
1843         int to_add = in_bytes(TypeStackSlotEntries::per_arg_size());
1844         addi(R28_mdx, R28_mdx, to_add);
1845         off_to_args += to_add;
1846       }
1847 
1848       if (MethodData::profile_return()) {
1849         ld(tmp1, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args, R28_mdx);
1850         addi(tmp1, tmp1, -TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count());
1851       }
1852 
1853       bind(done);
1854 
1855       if (MethodData::profile_return()) {
1856         // We're right after the type profile for the last
1857         // argument. tmp1 is the number of cells left in the
1858         // CallTypeData/VirtualCallTypeData to reach its end. Non null
1859         // if there's a return to profile.
1860         assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(),
1861                "can't move past ret type");
1862         sldi(tmp1, tmp1, exact_log2(DataLayout::cell_size));
1863         add(R28_mdx, tmp1, R28_mdx);
1864       }
1865     } else {
1866       assert(MethodData::profile_return(), "either profile call args or call ret");
1867       update_mdp_by_constant(in_bytes(TypeEntriesAtCall::return_only_size()));
1868     }
1869 
1870     // Mdp points right after the end of the
1871     // CallTypeData/VirtualCallTypeData, right after the cells for the
1872     // return value type if there's one.
1873     align(32, 12);
1874     bind(profile_continue);
1875   }
1876 }
1877 
1878 void InterpreterMacroAssembler::profile_return_type(Register ret, Register tmp1, Register tmp2) {
1879   assert_different_registers(ret, tmp1, tmp2);
1880   if (ProfileInterpreter && MethodData::profile_return()) {
1881     Label profile_continue;
1882 
1883     test_method_data_pointer(profile_continue);
1884 
1885     if (MethodData::profile_return_jsr292_only()) {
1886       // If we don't profile all invoke bytecodes we must make sure
1887       // it's a bytecode we indeed profile. We can't go back to the
1888       // begining of the ProfileData we intend to update to check its
1889       // type because we're right after it and we don't known its
1890       // length.
1891       lbz(tmp1, 0, R14_bcp);
1892       lbz(tmp2, Method::intrinsic_id_offset_in_bytes(), R19_method);
1893       cmpwi(CCR0, tmp1, Bytecodes::_invokedynamic);
1894       cmpwi(CCR1, tmp1, Bytecodes::_invokehandle);
1895       cror(CCR0, Assembler::equal, CCR1, Assembler::equal);
1896       cmpwi(CCR1, tmp2, vmIntrinsics::_compiledLambdaForm);
1897       cror(CCR0, Assembler::equal, CCR1, Assembler::equal);
1898       bne(CCR0, profile_continue);
1899     }
1900 
1901     profile_obj_type(ret, R28_mdx, -in_bytes(ReturnTypeEntry::size()), tmp1, tmp2);
1902 
1903     align(32, 12);
1904     bind(profile_continue);
1905   }
1906 }
1907 
1908 void InterpreterMacroAssembler::profile_parameters_type(Register tmp1, Register tmp2,
1909                                                         Register tmp3, Register tmp4) {
1910   if (ProfileInterpreter && MethodData::profile_parameters()) {
1911     Label profile_continue, done;
1912 
1913     test_method_data_pointer(profile_continue);
1914 
1915     // Load the offset of the area within the MDO used for
1916     // parameters. If it's negative we're not profiling any parameters.
1917     lwz(tmp1, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset()), R28_mdx);
1918     cmpwi(CCR0, tmp1, 0);
1919     blt(CCR0, profile_continue);
1920 
1921     // Compute a pointer to the area for parameters from the offset
1922     // and move the pointer to the slot for the last
1923     // parameters. Collect profiling from last parameter down.
1924     // mdo start + parameters offset + array length - 1
1925 
1926     // Pointer to the parameter area in the MDO.
1927     const Register mdp = tmp1;
1928     add(mdp, tmp1, R28_mdx);
1929 
1930     // Offset of the current profile entry to update.
1931     const Register entry_offset = tmp2;
1932     // entry_offset = array len in number of cells
1933     ld(entry_offset, in_bytes(ArrayData::array_len_offset()), mdp);
1934 
1935     int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0));
1936     assert(off_base % DataLayout::cell_size == 0, "should be a number of cells");
1937 
1938     // entry_offset (number of cells)  = array len - size of 1 entry + offset of the stack slot field
1939     addi(entry_offset, entry_offset, -TypeStackSlotEntries::per_arg_count() + (off_base / DataLayout::cell_size));
1940     // entry_offset in bytes
1941     sldi(entry_offset, entry_offset, exact_log2(DataLayout::cell_size));
1942 
1943     Label loop;
1944     align(32, 12);
1945     bind(loop);
1946 
1947     // Load offset on the stack from the slot for this parameter.
1948     ld(tmp3, entry_offset, mdp);
1949     sldi(tmp3, tmp3, Interpreter::logStackElementSize);
1950     neg(tmp3, tmp3);
1951     // Read the parameter from the local area.
1952     ldx(tmp3, tmp3, R18_locals);
1953 
1954     // Make entry_offset now point to the type field for this parameter.
1955     int type_base = in_bytes(ParametersTypeData::type_offset(0));
1956     assert(type_base > off_base, "unexpected");
1957     addi(entry_offset, entry_offset, type_base - off_base);
1958 
1959     // Profile the parameter.
1960     profile_obj_type(tmp3, mdp, entry_offset, tmp4, tmp3);
1961 
1962     // Go to next parameter.
1963     int delta = TypeStackSlotEntries::per_arg_count() * DataLayout::cell_size + (type_base - off_base);
1964     cmpdi(CCR0, entry_offset, off_base + delta);
1965     addi(entry_offset, entry_offset, -delta);
1966     bge(CCR0, loop);
1967 
1968     align(32, 12);
1969     bind(profile_continue);
1970   }
1971 }
1972 
1973 // Add a InterpMonitorElem to stack (see frame_sparc.hpp).
1974 void InterpreterMacroAssembler::add_monitor_to_stack(bool stack_is_empty, Register Rtemp1, Register Rtemp2) {
1975 
1976   // Very-local scratch registers.
1977   const Register esp  = Rtemp1;
1978   const Register slot = Rtemp2;
1979 
1980   // Extracted monitor_size.
1981   int monitor_size = frame::interpreter_frame_monitor_size_in_bytes();
1982   assert(Assembler::is_aligned((unsigned int)monitor_size,
1983                                (unsigned int)frame::alignment_in_bytes),
1984          "size of a monitor must respect alignment of SP");
1985 
1986   resize_frame(-monitor_size, /*temp*/esp); // Allocate space for new monitor
1987   std(R1_SP, _ijava_state_neg(top_frame_sp), esp); // esp contains fp
1988 
1989   // Shuffle expression stack down. Recall that stack_base points
1990   // just above the new expression stack bottom. Old_tos and new_tos
1991   // are used to scan thru the old and new expression stacks.
1992   if (!stack_is_empty) {
1993     Label copy_slot, copy_slot_finished;
1994     const Register n_slots = slot;
1995 
1996     addi(esp, R15_esp, Interpreter::stackElementSize); // Point to first element (pre-pushed stack).
1997     subf(n_slots, esp, R26_monitor);
1998     srdi_(n_slots, n_slots, LogBytesPerWord);          // Compute number of slots to copy.
1999     assert(LogBytesPerWord == 3, "conflicts assembler instructions");
2000     beq(CCR0, copy_slot_finished);                     // Nothing to copy.
2001 
2002     mtctr(n_slots);
2003 
2004     // loop
2005     bind(copy_slot);
2006     ld(slot, 0, esp);              // Move expression stack down.
2007     std(slot, -monitor_size, esp); // distance = monitor_size
2008     addi(esp, esp, BytesPerWord);
2009     bdnz(copy_slot);
2010 
2011     bind(copy_slot_finished);
2012   }
2013 
2014   addi(R15_esp, R15_esp, -monitor_size);
2015   addi(R26_monitor, R26_monitor, -monitor_size);
2016 
2017   // Restart interpreter
2018 }
2019 
2020 // ============================================================================
2021 // Java locals access
2022 
2023 // Load a local variable at index in Rindex into register Rdst_value.
2024 // Also puts address of local into Rdst_address as a service.
2025 // Kills:
2026 //   - Rdst_value
2027 //   - Rdst_address
2028 void InterpreterMacroAssembler::load_local_int(Register Rdst_value, Register Rdst_address, Register Rindex) {
2029   sldi(Rdst_address, Rindex, Interpreter::logStackElementSize);
2030   subf(Rdst_address, Rdst_address, R18_locals);
2031   lwz(Rdst_value, 0, Rdst_address);
2032 }
2033 
2034 // Load a local variable at index in Rindex into register Rdst_value.
2035 // Also puts address of local into Rdst_address as a service.
2036 // Kills:
2037 //   - Rdst_value
2038 //   - Rdst_address
2039 void InterpreterMacroAssembler::load_local_long(Register Rdst_value, Register Rdst_address, Register Rindex) {
2040   sldi(Rdst_address, Rindex, Interpreter::logStackElementSize);
2041   subf(Rdst_address, Rdst_address, R18_locals);
2042   ld(Rdst_value, -8, Rdst_address);
2043 }
2044 
2045 // Load a local variable at index in Rindex into register Rdst_value.
2046 // Also puts address of local into Rdst_address as a service.
2047 // Input:
2048 //   - Rindex:      slot nr of local variable
2049 // Kills:
2050 //   - Rdst_value
2051 //   - Rdst_address
2052 void InterpreterMacroAssembler::load_local_ptr(Register Rdst_value,
2053                                                Register Rdst_address,
2054                                                Register Rindex) {
2055   sldi(Rdst_address, Rindex, Interpreter::logStackElementSize);
2056   subf(Rdst_address, Rdst_address, R18_locals);
2057   ld(Rdst_value, 0, Rdst_address);
2058 }
2059 
2060 // Load a local variable at index in Rindex into register Rdst_value.
2061 // Also puts address of local into Rdst_address as a service.
2062 // Kills:
2063 //   - Rdst_value
2064 //   - Rdst_address
2065 void InterpreterMacroAssembler::load_local_float(FloatRegister Rdst_value,
2066                                                  Register Rdst_address,
2067                                                  Register Rindex) {
2068   sldi(Rdst_address, Rindex, Interpreter::logStackElementSize);
2069   subf(Rdst_address, Rdst_address, R18_locals);
2070   lfs(Rdst_value, 0, Rdst_address);
2071 }
2072 
2073 // Load a local variable at index in Rindex into register Rdst_value.
2074 // Also puts address of local into Rdst_address as a service.
2075 // Kills:
2076 //   - Rdst_value
2077 //   - Rdst_address
2078 void InterpreterMacroAssembler::load_local_double(FloatRegister Rdst_value,
2079                                                   Register Rdst_address,
2080                                                   Register Rindex) {
2081   sldi(Rdst_address, Rindex, Interpreter::logStackElementSize);
2082   subf(Rdst_address, Rdst_address, R18_locals);
2083   lfd(Rdst_value, -8, Rdst_address);
2084 }
2085 
2086 // Store an int value at local variable slot Rindex.
2087 // Kills:
2088 //   - Rindex
2089 void InterpreterMacroAssembler::store_local_int(Register Rvalue, Register Rindex) {
2090   sldi(Rindex, Rindex, Interpreter::logStackElementSize);
2091   subf(Rindex, Rindex, R18_locals);
2092   stw(Rvalue, 0, Rindex);
2093 }
2094 
2095 // Store a long value at local variable slot Rindex.
2096 // Kills:
2097 //   - Rindex
2098 void InterpreterMacroAssembler::store_local_long(Register Rvalue, Register Rindex) {
2099   sldi(Rindex, Rindex, Interpreter::logStackElementSize);
2100   subf(Rindex, Rindex, R18_locals);
2101   std(Rvalue, -8, Rindex);
2102 }
2103 
2104 // Store an oop value at local variable slot Rindex.
2105 // Kills:
2106 //   - Rindex
2107 void InterpreterMacroAssembler::store_local_ptr(Register Rvalue, Register Rindex) {
2108   sldi(Rindex, Rindex, Interpreter::logStackElementSize);
2109   subf(Rindex, Rindex, R18_locals);
2110   std(Rvalue, 0, Rindex);
2111 }
2112 
2113 // Store an int value at local variable slot Rindex.
2114 // Kills:
2115 //   - Rindex
2116 void InterpreterMacroAssembler::store_local_float(FloatRegister Rvalue, Register Rindex) {
2117   sldi(Rindex, Rindex, Interpreter::logStackElementSize);
2118   subf(Rindex, Rindex, R18_locals);
2119   stfs(Rvalue, 0, Rindex);
2120 }
2121 
2122 // Store an int value at local variable slot Rindex.
2123 // Kills:
2124 //   - Rindex
2125 void InterpreterMacroAssembler::store_local_double(FloatRegister Rvalue, Register Rindex) {
2126   sldi(Rindex, Rindex, Interpreter::logStackElementSize);
2127   subf(Rindex, Rindex, R18_locals);
2128   stfd(Rvalue, -8, Rindex);
2129 }
2130 
2131 // Read pending exception from thread and jump to interpreter.
2132 // Throw exception entry if one if pending. Fall through otherwise.
2133 void InterpreterMacroAssembler::check_and_forward_exception(Register Rscratch1, Register Rscratch2) {
2134   assert_different_registers(Rscratch1, Rscratch2, R3);
2135   Register Rexception = Rscratch1;
2136   Register Rtmp       = Rscratch2;
2137   Label Ldone;
2138   // Get pending exception oop.
2139   ld(Rexception, thread_(pending_exception));
2140   cmpdi(CCR0, Rexception, 0);
2141   beq(CCR0, Ldone);
2142   li(Rtmp, 0);
2143   mr_if_needed(R3, Rexception);
2144   std(Rtmp, thread_(pending_exception)); // Clear exception in thread
2145   if (Interpreter::rethrow_exception_entry() != NULL) {
2146     // Already got entry address.
2147     load_dispatch_table(Rtmp, (address*)Interpreter::rethrow_exception_entry());
2148   } else {
2149     // Dynamically load entry address.
2150     int simm16_rest = load_const_optimized(Rtmp, &Interpreter::_rethrow_exception_entry, R0, true);
2151     ld(Rtmp, simm16_rest, Rtmp);
2152   }
2153   mtctr(Rtmp);
2154   save_interpreter_state(Rtmp);
2155   bctr();
2156 
2157   align(32, 12);
2158   bind(Ldone);
2159 }
2160 
2161 void InterpreterMacroAssembler::call_VM(Register oop_result, address entry_point, bool check_exceptions) {
2162   save_interpreter_state(R11_scratch1);
2163 
2164   MacroAssembler::call_VM(oop_result, entry_point, false);
2165 
2166   restore_interpreter_state(R11_scratch1, /*bcp_and_mdx_only*/ true);
2167 
2168   check_and_handle_popframe(R11_scratch1);
2169   check_and_handle_earlyret(R11_scratch1);
2170   // Now check exceptions manually.
2171   if (check_exceptions) {
2172     check_and_forward_exception(R11_scratch1, R12_scratch2);
2173   }
2174 }
2175 
2176 void InterpreterMacroAssembler::call_VM(Register oop_result, address entry_point,
2177                                         Register arg_1, bool check_exceptions) {
2178   // ARG1 is reserved for the thread.
2179   mr_if_needed(R4_ARG2, arg_1);
2180   call_VM(oop_result, entry_point, check_exceptions);
2181 }
2182 
2183 void InterpreterMacroAssembler::call_VM(Register oop_result, address entry_point,
2184                                         Register arg_1, Register arg_2,
2185                                         bool check_exceptions) {
2186   // ARG1 is reserved for the thread.
2187   mr_if_needed(R4_ARG2, arg_1);
2188   assert(arg_2 != R4_ARG2, "smashed argument");
2189   mr_if_needed(R5_ARG3, arg_2);
2190   call_VM(oop_result, entry_point, check_exceptions);
2191 }
2192 
2193 void InterpreterMacroAssembler::call_VM(Register oop_result, address entry_point,
2194                                         Register arg_1, Register arg_2, Register arg_3,
2195                                         bool check_exceptions) {
2196   // ARG1 is reserved for the thread.
2197   mr_if_needed(R4_ARG2, arg_1);
2198   assert(arg_2 != R4_ARG2, "smashed argument");
2199   mr_if_needed(R5_ARG3, arg_2);
2200   assert(arg_3 != R4_ARG2 && arg_3 != R5_ARG3, "smashed argument");
2201   mr_if_needed(R6_ARG4, arg_3);
2202   call_VM(oop_result, entry_point, check_exceptions);
2203 }
2204 
2205 void InterpreterMacroAssembler::save_interpreter_state(Register scratch) {
2206   ld(scratch, 0, R1_SP);
2207   std(R15_esp, _ijava_state_neg(esp), scratch);
2208   std(R14_bcp, _ijava_state_neg(bcp), scratch);
2209   std(R26_monitor, _ijava_state_neg(monitors), scratch);
2210   if (ProfileInterpreter) { std(R28_mdx, _ijava_state_neg(mdx), scratch); }
2211   // Other entries should be unchanged.
2212 }
2213 
2214 void InterpreterMacroAssembler::restore_interpreter_state(Register scratch, bool bcp_and_mdx_only) {
2215   ld(scratch, 0, R1_SP);
2216   ld(R14_bcp, _ijava_state_neg(bcp), scratch); // Changed by VM code (exception).
2217   if (ProfileInterpreter) { ld(R28_mdx, _ijava_state_neg(mdx), scratch); } // Changed by VM code.
2218   if (!bcp_and_mdx_only) {
2219     // Following ones are Metadata.
2220     ld(R19_method, _ijava_state_neg(method), scratch);
2221     ld(R27_constPoolCache, _ijava_state_neg(cpoolCache), scratch);
2222     // Following ones are stack addresses and don't require reload.
2223     ld(R15_esp, _ijava_state_neg(esp), scratch);
2224     ld(R18_locals, _ijava_state_neg(locals), scratch);
2225     ld(R26_monitor, _ijava_state_neg(monitors), scratch);
2226   }
2227 #ifdef ASSERT
2228   {
2229     Label Lok;
2230     subf(R0, R1_SP, scratch);
2231     cmpdi(CCR0, R0, frame::abi_reg_args_size + frame::ijava_state_size);
2232     bge(CCR0, Lok);
2233     stop("frame too small (restore istate)", 0x5432);
2234     bind(Lok);
2235   }
2236   {
2237     Label Lok;
2238     ld(R0, _ijava_state_neg(ijava_reserved), scratch);
2239     cmpdi(CCR0, R0, 0x5afe);
2240     beq(CCR0, Lok);
2241     stop("frame corrupted (restore istate)", 0x5afe);
2242     bind(Lok);
2243   }
2244 #endif
2245 }
2246 
2247 void InterpreterMacroAssembler::get_method_counters(Register method,
2248                                                     Register Rcounters,
2249                                                     Label& skip) {
2250   BLOCK_COMMENT("Load and ev. allocate counter object {");
2251   Label has_counters;
2252   ld(Rcounters, in_bytes(Method::method_counters_offset()), method);
2253   cmpdi(CCR0, Rcounters, 0);
2254   bne(CCR0, has_counters);
2255   call_VM(noreg, CAST_FROM_FN_PTR(address,
2256                                   InterpreterRuntime::build_method_counters), method, false);
2257   ld(Rcounters, in_bytes(Method::method_counters_offset()), method);
2258   cmpdi(CCR0, Rcounters, 0);
2259   beq(CCR0, skip); // No MethodCounters, OutOfMemory.
2260   BLOCK_COMMENT("} Load and ev. allocate counter object");
2261 
2262   bind(has_counters);
2263 }
2264 
2265 void InterpreterMacroAssembler::increment_invocation_counter(Register Rcounters,
2266                                                              Register iv_be_count,
2267                                                              Register Rtmp_r0) {
2268   assert(UseCompiler || LogTouchedMethods, "incrementing must be useful");
2269   Register invocation_count = iv_be_count;
2270   Register backedge_count   = Rtmp_r0;
2271   int delta = InvocationCounter::count_increment;
2272 
2273   // Load each counter in a register.
2274   //  ld(inv_counter, Rtmp);
2275   //  ld(be_counter, Rtmp2);
2276   int inv_counter_offset = in_bytes(MethodCounters::invocation_counter_offset() +
2277                                     InvocationCounter::counter_offset());
2278   int be_counter_offset  = in_bytes(MethodCounters::backedge_counter_offset() +
2279                                     InvocationCounter::counter_offset());
2280 
2281   BLOCK_COMMENT("Increment profiling counters {");
2282 
2283   // Load the backedge counter.
2284   lwz(backedge_count, be_counter_offset, Rcounters); // is unsigned int
2285   // Mask the backedge counter.
2286   andi(backedge_count, backedge_count, InvocationCounter::count_mask_value);
2287 
2288   // Load the invocation counter.
2289   lwz(invocation_count, inv_counter_offset, Rcounters); // is unsigned int
2290   // Add the delta to the invocation counter and store the result.
2291   addi(invocation_count, invocation_count, delta);
2292   // Store value.
2293   stw(invocation_count, inv_counter_offset, Rcounters);
2294 
2295   // Add invocation counter + backedge counter.
2296   add(iv_be_count, backedge_count, invocation_count);
2297 
2298   // Note that this macro must leave the backedge_count + invocation_count in
2299   // register iv_be_count!
2300   BLOCK_COMMENT("} Increment profiling counters");
2301 }
2302 
2303 void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) {
2304   if (state == atos) { MacroAssembler::verify_oop(reg); }
2305 }
2306 
2307 // Local helper function for the verify_oop_or_return_address macro.
2308 static bool verify_return_address(Method* m, int bci) {
2309 #ifndef PRODUCT
2310   address pc = (address)(m->constMethod()) + in_bytes(ConstMethod::codes_offset()) + bci;
2311   // Assume it is a valid return address if it is inside m and is preceded by a jsr.
2312   if (!m->contains(pc))                                            return false;
2313   address jsr_pc;
2314   jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr);
2315   if (*jsr_pc == Bytecodes::_jsr   && jsr_pc >= m->code_base())    return true;
2316   jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr_w);
2317   if (*jsr_pc == Bytecodes::_jsr_w && jsr_pc >= m->code_base())    return true;
2318 #endif // PRODUCT
2319   return false;
2320 }
2321 
2322 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
2323   if (VerifyFPU) {
2324     unimplemented("verfiyFPU");
2325   }
2326 }
2327 
2328 void InterpreterMacroAssembler::verify_oop_or_return_address(Register reg, Register Rtmp) {
2329   if (!VerifyOops) return;
2330 
2331   // The VM documentation for the astore[_wide] bytecode allows
2332   // the TOS to be not only an oop but also a return address.
2333   Label test;
2334   Label skip;
2335   // See if it is an address (in the current method):
2336 
2337   const int log2_bytecode_size_limit = 16;
2338   srdi_(Rtmp, reg, log2_bytecode_size_limit);
2339   bne(CCR0, test);
2340 
2341   address fd = CAST_FROM_FN_PTR(address, verify_return_address);
2342   const int nbytes_save = MacroAssembler::num_volatile_regs * 8;
2343   save_volatile_gprs(R1_SP, -nbytes_save); // except R0
2344   save_LR_CR(Rtmp); // Save in old frame.
2345   push_frame_reg_args(nbytes_save, Rtmp);
2346 
2347   load_const_optimized(Rtmp, fd, R0);
2348   mr_if_needed(R4_ARG2, reg);
2349   mr(R3_ARG1, R19_method);
2350   call_c(Rtmp); // call C
2351 
2352   pop_frame();
2353   restore_LR_CR(Rtmp);
2354   restore_volatile_gprs(R1_SP, -nbytes_save); // except R0
2355   b(skip);
2356 
2357   // Perform a more elaborate out-of-line call.
2358   // Not an address; verify it:
2359   bind(test);
2360   verify_oop(reg);
2361   bind(skip);
2362 }
2363 
2364 // Inline assembly for:
2365 //
2366 // if (thread is in interp_only_mode) {
2367 //   InterpreterRuntime::post_method_entry();
2368 // }
2369 // if (*jvmpi::event_flags_array_at_addr(JVMPI_EVENT_METHOD_ENTRY ) ||
2370 //     *jvmpi::event_flags_array_at_addr(JVMPI_EVENT_METHOD_ENTRY2)   ) {
2371 //   SharedRuntime::jvmpi_method_entry(method, receiver);
2372 // }
2373 void InterpreterMacroAssembler::notify_method_entry() {
2374   // JVMTI
2375   // Whenever JVMTI puts a thread in interp_only_mode, method
2376   // entry/exit events are sent for that thread to track stack
2377   // depth. If it is possible to enter interp_only_mode we add
2378   // the code to check if the event should be sent.
2379   if (JvmtiExport::can_post_interpreter_events()) {
2380     Label jvmti_post_done;
2381 
2382     lwz(R0, in_bytes(JavaThread::interp_only_mode_offset()), R16_thread);
2383     cmpwi(CCR0, R0, 0);
2384     beq(CCR0, jvmti_post_done);
2385     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry),
2386             /*check_exceptions=*/true);
2387 
2388     bind(jvmti_post_done);
2389   }
2390 }
2391 
2392 // Inline assembly for:
2393 //
2394 // if (thread is in interp_only_mode) {
2395 //   // save result
2396 //   InterpreterRuntime::post_method_exit();
2397 //   // restore result
2398 // }
2399 // if (*jvmpi::event_flags_array_at_addr(JVMPI_EVENT_METHOD_EXIT)) {
2400 //   // save result
2401 //   SharedRuntime::jvmpi_method_exit();
2402 //   // restore result
2403 // }
2404 //
2405 // Native methods have their result stored in d_tmp and l_tmp.
2406 // Java methods have their result stored in the expression stack.
2407 void InterpreterMacroAssembler::notify_method_exit(bool is_native_method, TosState state,
2408                                                    NotifyMethodExitMode mode, bool check_exceptions) {
2409   // JVMTI
2410   // Whenever JVMTI puts a thread in interp_only_mode, method
2411   // entry/exit events are sent for that thread to track stack
2412   // depth. If it is possible to enter interp_only_mode we add
2413   // the code to check if the event should be sent.
2414   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
2415     Label jvmti_post_done;
2416 
2417     lwz(R0, in_bytes(JavaThread::interp_only_mode_offset()), R16_thread);
2418     cmpwi(CCR0, R0, 0);
2419     beq(CCR0, jvmti_post_done);
2420     if (!is_native_method) { push(state); } // Expose tos to GC.
2421     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit),
2422             /*check_exceptions=*/check_exceptions);
2423     if (!is_native_method) { pop(state); }
2424 
2425     align(32, 12);
2426     bind(jvmti_post_done);
2427   }
2428 
2429   // Dtrace support not implemented.
2430 }
2431