1 /*
   2  * Copyright (c) 1998, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/compiledIC.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "code/pcDesc.hpp"
  33 #include "code/scopeDesc.hpp"
  34 #include "code/vtableStubs.hpp"
  35 #include "compiler/compileBroker.hpp"
  36 #include "compiler/oopMap.hpp"
  37 #include "gc/g1/g1SATBCardTableModRefBS.hpp"
  38 #include "gc/g1/heapRegion.hpp"
  39 #include "gc/shared/barrierSet.hpp"
  40 #include "gc/shared/collectedHeap.hpp"
  41 #include "gc/shared/gcLocker.inline.hpp"
  42 #include "interpreter/bytecode.hpp"
  43 #include "interpreter/interpreter.hpp"
  44 #include "interpreter/linkResolver.hpp"
  45 #include "logging/log.hpp"
  46 #include "logging/logStream.hpp"
  47 #include "memory/oopFactory.hpp"
  48 #include "memory/resourceArea.hpp"
  49 #include "oops/objArrayKlass.hpp"
  50 #include "oops/oop.inline.hpp"
  51 #include "oops/typeArrayOop.inline.hpp"
  52 #include "opto/ad.hpp"
  53 #include "opto/addnode.hpp"
  54 #include "opto/callnode.hpp"
  55 #include "opto/cfgnode.hpp"
  56 #include "opto/graphKit.hpp"
  57 #include "opto/machnode.hpp"
  58 #include "opto/matcher.hpp"
  59 #include "opto/memnode.hpp"
  60 #include "opto/mulnode.hpp"
  61 #include "opto/runtime.hpp"
  62 #include "opto/subnode.hpp"
  63 #include "runtime/atomic.hpp"
  64 #include "runtime/handles.inline.hpp"
  65 #include "runtime/interfaceSupport.hpp"
  66 #include "runtime/javaCalls.hpp"
  67 #include "runtime/sharedRuntime.hpp"
  68 #include "runtime/signature.hpp"
  69 #include "runtime/threadCritical.hpp"
  70 #include "runtime/vframe.hpp"
  71 #include "runtime/vframeArray.hpp"
  72 #include "runtime/vframe_hp.hpp"
  73 #include "utilities/copy.hpp"
  74 #include "utilities/preserveException.hpp"
  75 
  76 
  77 // For debugging purposes:
  78 //  To force FullGCALot inside a runtime function, add the following two lines
  79 //
  80 //  Universe::release_fullgc_alot_dummy();
  81 //  MarkSweep::invoke(0, "Debugging");
  82 //
  83 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
  84 
  85 
  86 
  87 
  88 // Compiled code entry points
  89 address OptoRuntime::_new_instance_Java                           = NULL;
  90 address OptoRuntime::_new_array_Java                              = NULL;
  91 address OptoRuntime::_new_array_nozero_Java                       = NULL;
  92 address OptoRuntime::_multianewarray2_Java                        = NULL;
  93 address OptoRuntime::_multianewarray3_Java                        = NULL;
  94 address OptoRuntime::_multianewarray4_Java                        = NULL;
  95 address OptoRuntime::_multianewarray5_Java                        = NULL;
  96 address OptoRuntime::_multianewarrayN_Java                        = NULL;
  97 address OptoRuntime::_g1_wb_pre_Java                              = NULL;
  98 address OptoRuntime::_g1_wb_post_Java                             = NULL;
  99 address OptoRuntime::_vtable_must_compile_Java                    = NULL;
 100 address OptoRuntime::_complete_monitor_locking_Java               = NULL;
 101 address OptoRuntime::_monitor_notify_Java                         = NULL;
 102 address OptoRuntime::_monitor_notifyAll_Java                      = NULL;
 103 address OptoRuntime::_rethrow_Java                                = NULL;
 104 
 105 address OptoRuntime::_slow_arraycopy_Java                         = NULL;
 106 address OptoRuntime::_register_finalizer_Java                     = NULL;
 107 
 108 ExceptionBlob* OptoRuntime::_exception_blob;
 109 
 110 // This should be called in an assertion at the start of OptoRuntime routines
 111 // which are entered from compiled code (all of them)
 112 #ifdef ASSERT
 113 static bool check_compiled_frame(JavaThread* thread) {
 114   assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
 115   RegisterMap map(thread, false);
 116   frame caller = thread->last_frame().sender(&map);
 117   assert(caller.is_compiled_frame(), "not being called from compiled like code");
 118   return true;
 119 }
 120 #endif // ASSERT
 121 
 122 
 123 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, save_arg_regs, return_pc) \
 124   var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, save_arg_regs, return_pc); \
 125   if (var == NULL) { return false; }
 126 
 127 bool OptoRuntime::generate(ciEnv* env) {
 128 
 129   generate_exception_blob();
 130 
 131   // Note: tls: Means fetching the return oop out of the thread-local storage
 132   //
 133   //   variable/name                       type-function-gen              , runtime method                  ,fncy_jp, tls,save_args,retpc
 134   // -------------------------------------------------------------------------------------------------------------------------------
 135   gen(env, _new_instance_Java              , new_instance_Type            , new_instance_C                  ,    0 , true , false, false);
 136   gen(env, _new_array_Java                 , new_array_Type               , new_array_C                     ,    0 , true , false, false);
 137   gen(env, _new_array_nozero_Java          , new_array_Type               , new_array_nozero_C              ,    0 , true , false, false);
 138   gen(env, _multianewarray2_Java           , multianewarray2_Type         , multianewarray2_C               ,    0 , true , false, false);
 139   gen(env, _multianewarray3_Java           , multianewarray3_Type         , multianewarray3_C               ,    0 , true , false, false);
 140   gen(env, _multianewarray4_Java           , multianewarray4_Type         , multianewarray4_C               ,    0 , true , false, false);
 141   gen(env, _multianewarray5_Java           , multianewarray5_Type         , multianewarray5_C               ,    0 , true , false, false);
 142   gen(env, _multianewarrayN_Java           , multianewarrayN_Type         , multianewarrayN_C               ,    0 , true , false, false);
 143   gen(env, _g1_wb_pre_Java                 , g1_wb_pre_Type               , SharedRuntime::g1_wb_pre        ,    0 , false, false, false);
 144   gen(env, _g1_wb_post_Java                , g1_wb_post_Type              , SharedRuntime::g1_wb_post       ,    0 , false, false, false);
 145   gen(env, _complete_monitor_locking_Java  , complete_monitor_enter_Type  , SharedRuntime::complete_monitor_locking_C, 0, false, false, false);
 146   gen(env, _monitor_notify_Java            , monitor_notify_Type          , monitor_notify_C                ,    0 , false, false, false);
 147   gen(env, _monitor_notifyAll_Java         , monitor_notify_Type          , monitor_notifyAll_C             ,    0 , false, false, false);
 148   gen(env, _rethrow_Java                   , rethrow_Type                 , rethrow_C                       ,    2 , true , false, true );
 149 
 150   gen(env, _slow_arraycopy_Java            , slow_arraycopy_Type          , SharedRuntime::slow_arraycopy_C ,    0 , false, false, false);
 151   gen(env, _register_finalizer_Java        , register_finalizer_Type      , register_finalizer              ,    0 , false, false, false);
 152 
 153   return true;
 154 }
 155 
 156 #undef gen
 157 
 158 
 159 // Helper method to do generation of RunTimeStub's
 160 address OptoRuntime::generate_stub( ciEnv* env,
 161                                     TypeFunc_generator gen, address C_function,
 162                                     const char *name, int is_fancy_jump,
 163                                     bool pass_tls,
 164                                     bool save_argument_registers,
 165                                     bool return_pc) {
 166 
 167   // Matching the default directive, we currently have no method to match.
 168   DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_full_optimization));
 169   ResourceMark rm;
 170   Compile C( env, gen, C_function, name, is_fancy_jump, pass_tls, save_argument_registers, return_pc, directive);
 171   DirectivesStack::release(directive);
 172   return  C.stub_entry_point();
 173 }
 174 
 175 const char* OptoRuntime::stub_name(address entry) {
 176 #ifndef PRODUCT
 177   CodeBlob* cb = CodeCache::find_blob(entry);
 178   RuntimeStub* rs =(RuntimeStub *)cb;
 179   assert(rs != NULL && rs->is_runtime_stub(), "not a runtime stub");
 180   return rs->name();
 181 #else
 182   // Fast implementation for product mode (maybe it should be inlined too)
 183   return "runtime stub";
 184 #endif
 185 }
 186 
 187 
 188 //=============================================================================
 189 // Opto compiler runtime routines
 190 //=============================================================================
 191 
 192 
 193 //=============================allocation======================================
 194 // We failed the fast-path allocation.  Now we need to do a scavenge or GC
 195 // and try allocation again.
 196 
 197 void OptoRuntime::new_store_pre_barrier(JavaThread* thread) {
 198   // After any safepoint, just before going back to compiled code,
 199   // we inform the GC that we will be doing initializing writes to
 200   // this object in the future without emitting card-marks, so
 201   // GC may take any compensating steps.
 202   // NOTE: Keep this code consistent with GraphKit::store_barrier.
 203 
 204   oop new_obj = thread->vm_result();
 205   if (new_obj == NULL)  return;
 206 
 207   assert(Universe::heap()->can_elide_tlab_store_barriers(),
 208          "compiler must check this first");
 209   // GC may decide to give back a safer copy of new_obj.
 210   new_obj = Universe::heap()->new_store_pre_barrier(thread, new_obj);
 211   thread->set_vm_result(new_obj);
 212 }
 213 
 214 // object allocation
 215 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, JavaThread* thread))
 216   JRT_BLOCK;
 217 #ifndef PRODUCT
 218   SharedRuntime::_new_instance_ctr++;         // new instance requires GC
 219 #endif
 220   assert(check_compiled_frame(thread), "incorrect caller");
 221 
 222   // These checks are cheap to make and support reflective allocation.
 223   int lh = klass->layout_helper();
 224   if (Klass::layout_helper_needs_slow_path(lh) || !InstanceKlass::cast(klass)->is_initialized()) {
 225     Handle holder(THREAD, klass->klass_holder()); // keep the klass alive
 226     klass->check_valid_for_instantiation(false, THREAD);
 227     if (!HAS_PENDING_EXCEPTION) {
 228       InstanceKlass::cast(klass)->initialize(THREAD);
 229     }
 230   }
 231 
 232   if (!HAS_PENDING_EXCEPTION) {
 233     // Scavenge and allocate an instance.
 234     Handle holder(THREAD, klass->klass_holder()); // keep the klass alive
 235     oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
 236     thread->set_vm_result(result);
 237 
 238     // Pass oops back through thread local storage.  Our apparent type to Java
 239     // is that we return an oop, but we can block on exit from this routine and
 240     // a GC can trash the oop in C's return register.  The generated stub will
 241     // fetch the oop from TLS after any possible GC.
 242   }
 243 
 244   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 245   JRT_BLOCK_END;
 246 
 247   if (GraphKit::use_ReduceInitialCardMarks()) {
 248     // inform GC that we won't do card marks for initializing writes.
 249     new_store_pre_barrier(thread);
 250   }
 251 JRT_END
 252 
 253 
 254 // array allocation
 255 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread *thread))
 256   JRT_BLOCK;
 257 #ifndef PRODUCT
 258   SharedRuntime::_new_array_ctr++;            // new array requires GC
 259 #endif
 260   assert(check_compiled_frame(thread), "incorrect caller");
 261 
 262   // Scavenge and allocate an instance.
 263   oop result;
 264 
 265   if (array_type->is_typeArray_klass()) {
 266     // The oopFactory likes to work with the element type.
 267     // (We could bypass the oopFactory, since it doesn't add much value.)
 268     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 269     result = oopFactory::new_typeArray(elem_type, len, THREAD);
 270   } else {
 271     // Although the oopFactory likes to work with the elem_type,
 272     // the compiler prefers the array_type, since it must already have
 273     // that latter value in hand for the fast path.
 274     Handle holder(THREAD, array_type->klass_holder()); // keep the array klass alive
 275     Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass();
 276     result = oopFactory::new_objArray(elem_type, len, THREAD);
 277   }
 278 
 279   // Pass oops back through thread local storage.  Our apparent type to Java
 280   // is that we return an oop, but we can block on exit from this routine and
 281   // a GC can trash the oop in C's return register.  The generated stub will
 282   // fetch the oop from TLS after any possible GC.
 283   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 284   thread->set_vm_result(result);
 285   JRT_BLOCK_END;
 286 
 287   if (GraphKit::use_ReduceInitialCardMarks()) {
 288     // inform GC that we won't do card marks for initializing writes.
 289     new_store_pre_barrier(thread);
 290   }
 291 JRT_END
 292 
 293 // array allocation without zeroing
 294 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread *thread))
 295   JRT_BLOCK;
 296 #ifndef PRODUCT
 297   SharedRuntime::_new_array_ctr++;            // new array requires GC
 298 #endif
 299   assert(check_compiled_frame(thread), "incorrect caller");
 300 
 301   // Scavenge and allocate an instance.
 302   oop result;
 303 
 304   assert(array_type->is_typeArray_klass(), "should be called only for type array");
 305   // The oopFactory likes to work with the element type.
 306   BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 307   result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD);
 308 
 309   // Pass oops back through thread local storage.  Our apparent type to Java
 310   // is that we return an oop, but we can block on exit from this routine and
 311   // a GC can trash the oop in C's return register.  The generated stub will
 312   // fetch the oop from TLS after any possible GC.
 313   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 314   thread->set_vm_result(result);
 315   JRT_BLOCK_END;
 316 
 317   if (GraphKit::use_ReduceInitialCardMarks()) {
 318     // inform GC that we won't do card marks for initializing writes.
 319     new_store_pre_barrier(thread);
 320   }
 321 
 322   oop result = thread->vm_result();
 323   if ((len > 0) && (result != NULL) &&
 324       is_deoptimized_caller_frame(thread)) {
 325     // Zero array here if the caller is deoptimized.
 326     int size = ((typeArrayOop)result)->object_size();
 327     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 328     const size_t hs = arrayOopDesc::header_size(elem_type);
 329     // Align to next 8 bytes to avoid trashing arrays's length.
 330     const size_t aligned_hs = align_object_offset(hs);
 331     HeapWord* obj = (HeapWord*)result;
 332     if (aligned_hs > hs) {
 333       Copy::zero_to_words(obj+hs, aligned_hs-hs);
 334     }
 335     // Optimized zeroing.
 336     Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs);
 337   }
 338 
 339 JRT_END
 340 
 341 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
 342 
 343 // multianewarray for 2 dimensions
 344 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread *thread))
 345 #ifndef PRODUCT
 346   SharedRuntime::_multi2_ctr++;                // multianewarray for 1 dimension
 347 #endif
 348   assert(check_compiled_frame(thread), "incorrect caller");
 349   assert(elem_type->is_klass(), "not a class");
 350   jint dims[2];
 351   dims[0] = len1;
 352   dims[1] = len2;
 353   Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
 354   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
 355   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 356   thread->set_vm_result(obj);
 357 JRT_END
 358 
 359 // multianewarray for 3 dimensions
 360 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread *thread))
 361 #ifndef PRODUCT
 362   SharedRuntime::_multi3_ctr++;                // multianewarray for 1 dimension
 363 #endif
 364   assert(check_compiled_frame(thread), "incorrect caller");
 365   assert(elem_type->is_klass(), "not a class");
 366   jint dims[3];
 367   dims[0] = len1;
 368   dims[1] = len2;
 369   dims[2] = len3;
 370   Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
 371   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
 372   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 373   thread->set_vm_result(obj);
 374 JRT_END
 375 
 376 // multianewarray for 4 dimensions
 377 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread *thread))
 378 #ifndef PRODUCT
 379   SharedRuntime::_multi4_ctr++;                // multianewarray for 1 dimension
 380 #endif
 381   assert(check_compiled_frame(thread), "incorrect caller");
 382   assert(elem_type->is_klass(), "not a class");
 383   jint dims[4];
 384   dims[0] = len1;
 385   dims[1] = len2;
 386   dims[2] = len3;
 387   dims[3] = len4;
 388   Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
 389   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
 390   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 391   thread->set_vm_result(obj);
 392 JRT_END
 393 
 394 // multianewarray for 5 dimensions
 395 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread *thread))
 396 #ifndef PRODUCT
 397   SharedRuntime::_multi5_ctr++;                // multianewarray for 1 dimension
 398 #endif
 399   assert(check_compiled_frame(thread), "incorrect caller");
 400   assert(elem_type->is_klass(), "not a class");
 401   jint dims[5];
 402   dims[0] = len1;
 403   dims[1] = len2;
 404   dims[2] = len3;
 405   dims[3] = len4;
 406   dims[4] = len5;
 407   Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
 408   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
 409   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 410   thread->set_vm_result(obj);
 411 JRT_END
 412 
 413 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread *thread))
 414   assert(check_compiled_frame(thread), "incorrect caller");
 415   assert(elem_type->is_klass(), "not a class");
 416   assert(oop(dims)->is_typeArray(), "not an array");
 417 
 418   ResourceMark rm;
 419   jint len = dims->length();
 420   assert(len > 0, "Dimensions array should contain data");
 421   jint *j_dims = typeArrayOop(dims)->int_at_addr(0);
 422   jint *c_dims = NEW_RESOURCE_ARRAY(jint, len);
 423   Copy::conjoint_jints_atomic(j_dims, c_dims, len);
 424 
 425   Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
 426   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD);
 427   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 428   thread->set_vm_result(obj);
 429 JRT_END
 430 
 431 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notify_C(oopDesc* obj, JavaThread *thread))
 432 
 433   // Very few notify/notifyAll operations find any threads on the waitset, so
 434   // the dominant fast-path is to simply return.
 435   // Relatedly, it's critical that notify/notifyAll be fast in order to
 436   // reduce lock hold times.
 437   if (!SafepointSynchronize::is_synchronizing()) {
 438     if (ObjectSynchronizer::quick_notify(obj, thread, false)) {
 439       return;
 440     }
 441   }
 442 
 443   // This is the case the fast-path above isn't provisioned to handle.
 444   // The fast-path is designed to handle frequently arising cases in an efficient manner.
 445   // (The fast-path is just a degenerate variant of the slow-path).
 446   // Perform the dreaded state transition and pass control into the slow-path.
 447   JRT_BLOCK;
 448   Handle h_obj(THREAD, obj);
 449   ObjectSynchronizer::notify(h_obj, CHECK);
 450   JRT_BLOCK_END;
 451 JRT_END
 452 
 453 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notifyAll_C(oopDesc* obj, JavaThread *thread))
 454 
 455   if (!SafepointSynchronize::is_synchronizing() ) {
 456     if (ObjectSynchronizer::quick_notify(obj, thread, true)) {
 457       return;
 458     }
 459   }
 460 
 461   // This is the case the fast-path above isn't provisioned to handle.
 462   // The fast-path is designed to handle frequently arising cases in an efficient manner.
 463   // (The fast-path is just a degenerate variant of the slow-path).
 464   // Perform the dreaded state transition and pass control into the slow-path.
 465   JRT_BLOCK;
 466   Handle h_obj(THREAD, obj);
 467   ObjectSynchronizer::notifyall(h_obj, CHECK);
 468   JRT_BLOCK_END;
 469 JRT_END
 470 
 471 const TypeFunc *OptoRuntime::new_instance_Type() {
 472   // create input type (domain)
 473   const Type **fields = TypeTuple::fields(1);
 474   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 475   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 476 
 477   // create result type (range)
 478   fields = TypeTuple::fields(1);
 479   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 480 
 481   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 482 
 483   return TypeFunc::make(domain, range);
 484 }
 485 
 486 
 487 const TypeFunc *OptoRuntime::athrow_Type() {
 488   // create input type (domain)
 489   const Type **fields = TypeTuple::fields(1);
 490   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 491   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 492 
 493   // create result type (range)
 494   fields = TypeTuple::fields(0);
 495 
 496   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 497 
 498   return TypeFunc::make(domain, range);
 499 }
 500 
 501 
 502 const TypeFunc *OptoRuntime::new_array_Type() {
 503   // create input type (domain)
 504   const Type **fields = TypeTuple::fields(2);
 505   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 506   fields[TypeFunc::Parms+1] = TypeInt::INT;       // array size
 507   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 508 
 509   // create result type (range)
 510   fields = TypeTuple::fields(1);
 511   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 512 
 513   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 514 
 515   return TypeFunc::make(domain, range);
 516 }
 517 
 518 const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) {
 519   // create input type (domain)
 520   const int nargs = ndim + 1;
 521   const Type **fields = TypeTuple::fields(nargs);
 522   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 523   for( int i = 1; i < nargs; i++ )
 524     fields[TypeFunc::Parms + i] = TypeInt::INT;       // array size
 525   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
 526 
 527   // create result type (range)
 528   fields = TypeTuple::fields(1);
 529   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 530   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 531 
 532   return TypeFunc::make(domain, range);
 533 }
 534 
 535 const TypeFunc *OptoRuntime::multianewarray2_Type() {
 536   return multianewarray_Type(2);
 537 }
 538 
 539 const TypeFunc *OptoRuntime::multianewarray3_Type() {
 540   return multianewarray_Type(3);
 541 }
 542 
 543 const TypeFunc *OptoRuntime::multianewarray4_Type() {
 544   return multianewarray_Type(4);
 545 }
 546 
 547 const TypeFunc *OptoRuntime::multianewarray5_Type() {
 548   return multianewarray_Type(5);
 549 }
 550 
 551 const TypeFunc *OptoRuntime::multianewarrayN_Type() {
 552   // create input type (domain)
 553   const Type **fields = TypeTuple::fields(2);
 554   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 555   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;   // array of dim sizes
 556   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 557 
 558   // create result type (range)
 559   fields = TypeTuple::fields(1);
 560   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 561   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 562 
 563   return TypeFunc::make(domain, range);
 564 }
 565 
 566 const TypeFunc *OptoRuntime::g1_wb_pre_Type() {
 567   const Type **fields = TypeTuple::fields(2);
 568   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value
 569   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread
 570   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 571 
 572   // create result type (range)
 573   fields = TypeTuple::fields(0);
 574   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 575 
 576   return TypeFunc::make(domain, range);
 577 }
 578 
 579 const TypeFunc *OptoRuntime::g1_wb_post_Type() {
 580 
 581   const Type **fields = TypeTuple::fields(2);
 582   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL;  // Card addr
 583   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // thread
 584   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 585 
 586   // create result type (range)
 587   fields = TypeTuple::fields(0);
 588   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 589 
 590   return TypeFunc::make(domain, range);
 591 }
 592 
 593 const TypeFunc *OptoRuntime::uncommon_trap_Type() {
 594   // create input type (domain)
 595   const Type **fields = TypeTuple::fields(1);
 596   fields[TypeFunc::Parms+0] = TypeInt::INT; // trap_reason (deopt reason and action)
 597   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 598 
 599   // create result type (range)
 600   fields = TypeTuple::fields(0);
 601   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 602 
 603   return TypeFunc::make(domain, range);
 604 }
 605 
 606 //-----------------------------------------------------------------------------
 607 // Monitor Handling
 608 const TypeFunc *OptoRuntime::complete_monitor_enter_Type() {
 609   // create input type (domain)
 610   const Type **fields = TypeTuple::fields(2);
 611   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 612   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
 613   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 614 
 615   // create result type (range)
 616   fields = TypeTuple::fields(0);
 617 
 618   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
 619 
 620   return TypeFunc::make(domain,range);
 621 }
 622 
 623 
 624 //-----------------------------------------------------------------------------
 625 const TypeFunc *OptoRuntime::complete_monitor_exit_Type() {
 626   // create input type (domain)
 627   const Type **fields = TypeTuple::fields(3);
 628   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 629   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock - BasicLock
 630   fields[TypeFunc::Parms+2] = TypeRawPtr::BOTTOM;    // Thread pointer (Self)
 631   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3, fields);
 632 
 633   // create result type (range)
 634   fields = TypeTuple::fields(0);
 635 
 636   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 637 
 638   return TypeFunc::make(domain, range);
 639 }
 640 
 641 const TypeFunc *OptoRuntime::monitor_notify_Type() {
 642   // create input type (domain)
 643   const Type **fields = TypeTuple::fields(1);
 644   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 645   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 646 
 647   // create result type (range)
 648   fields = TypeTuple::fields(0);
 649   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 650   return TypeFunc::make(domain, range);
 651 }
 652 
 653 const TypeFunc* OptoRuntime::flush_windows_Type() {
 654   // create input type (domain)
 655   const Type** fields = TypeTuple::fields(1);
 656   fields[TypeFunc::Parms+0] = NULL; // void
 657   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
 658 
 659   // create result type
 660   fields = TypeTuple::fields(1);
 661   fields[TypeFunc::Parms+0] = NULL; // void
 662   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 663 
 664   return TypeFunc::make(domain, range);
 665 }
 666 
 667 const TypeFunc* OptoRuntime::l2f_Type() {
 668   // create input type (domain)
 669   const Type **fields = TypeTuple::fields(2);
 670   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 671   fields[TypeFunc::Parms+1] = Type::HALF;
 672   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 673 
 674   // create result type (range)
 675   fields = TypeTuple::fields(1);
 676   fields[TypeFunc::Parms+0] = Type::FLOAT;
 677   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 678 
 679   return TypeFunc::make(domain, range);
 680 }
 681 
 682 const TypeFunc* OptoRuntime::modf_Type() {
 683   const Type **fields = TypeTuple::fields(2);
 684   fields[TypeFunc::Parms+0] = Type::FLOAT;
 685   fields[TypeFunc::Parms+1] = Type::FLOAT;
 686   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 687 
 688   // create result type (range)
 689   fields = TypeTuple::fields(1);
 690   fields[TypeFunc::Parms+0] = Type::FLOAT;
 691 
 692   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 693 
 694   return TypeFunc::make(domain, range);
 695 }
 696 
 697 const TypeFunc *OptoRuntime::Math_D_D_Type() {
 698   // create input type (domain)
 699   const Type **fields = TypeTuple::fields(2);
 700   // Symbol* name of class to be loaded
 701   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 702   fields[TypeFunc::Parms+1] = Type::HALF;
 703   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 704 
 705   // create result type (range)
 706   fields = TypeTuple::fields(2);
 707   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 708   fields[TypeFunc::Parms+1] = Type::HALF;
 709   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 710 
 711   return TypeFunc::make(domain, range);
 712 }
 713 
 714 const TypeFunc* OptoRuntime::Math_DD_D_Type() {
 715   const Type **fields = TypeTuple::fields(4);
 716   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 717   fields[TypeFunc::Parms+1] = Type::HALF;
 718   fields[TypeFunc::Parms+2] = Type::DOUBLE;
 719   fields[TypeFunc::Parms+3] = Type::HALF;
 720   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
 721 
 722   // create result type (range)
 723   fields = TypeTuple::fields(2);
 724   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 725   fields[TypeFunc::Parms+1] = Type::HALF;
 726   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 727 
 728   return TypeFunc::make(domain, range);
 729 }
 730 
 731 //-------------- currentTimeMillis, currentTimeNanos, etc
 732 
 733 const TypeFunc* OptoRuntime::void_long_Type() {
 734   // create input type (domain)
 735   const Type **fields = TypeTuple::fields(0);
 736   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
 737 
 738   // create result type (range)
 739   fields = TypeTuple::fields(2);
 740   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 741   fields[TypeFunc::Parms+1] = Type::HALF;
 742   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 743 
 744   return TypeFunc::make(domain, range);
 745 }
 746 
 747 // arraycopy stub variations:
 748 enum ArrayCopyType {
 749   ac_fast,                      // void(ptr, ptr, size_t)
 750   ac_checkcast,                 //  int(ptr, ptr, size_t, size_t, ptr)
 751   ac_slow,                      // void(ptr, int, ptr, int, int)
 752   ac_generic                    //  int(ptr, int, ptr, int, int)
 753 };
 754 
 755 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
 756   // create input type (domain)
 757   int num_args      = (act == ac_fast ? 3 : 5);
 758   int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
 759   int argcnt = num_args;
 760   LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
 761   const Type** fields = TypeTuple::fields(argcnt);
 762   int argp = TypeFunc::Parms;
 763   fields[argp++] = TypePtr::NOTNULL;    // src
 764   if (num_size_args == 0) {
 765     fields[argp++] = TypeInt::INT;      // src_pos
 766   }
 767   fields[argp++] = TypePtr::NOTNULL;    // dest
 768   if (num_size_args == 0) {
 769     fields[argp++] = TypeInt::INT;      // dest_pos
 770     fields[argp++] = TypeInt::INT;      // length
 771   }
 772   while (num_size_args-- > 0) {
 773     fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 774     LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 775   }
 776   if (act == ac_checkcast) {
 777     fields[argp++] = TypePtr::NOTNULL;  // super_klass
 778   }
 779   assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
 780   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 781 
 782   // create result type if needed
 783   int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
 784   fields = TypeTuple::fields(1);
 785   if (retcnt == 0)
 786     fields[TypeFunc::Parms+0] = NULL; // void
 787   else
 788     fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
 789   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
 790   return TypeFunc::make(domain, range);
 791 }
 792 
 793 const TypeFunc* OptoRuntime::fast_arraycopy_Type() {
 794   // This signature is simple:  Two base pointers and a size_t.
 795   return make_arraycopy_Type(ac_fast);
 796 }
 797 
 798 const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() {
 799   // An extension of fast_arraycopy_Type which adds type checking.
 800   return make_arraycopy_Type(ac_checkcast);
 801 }
 802 
 803 const TypeFunc* OptoRuntime::slow_arraycopy_Type() {
 804   // This signature is exactly the same as System.arraycopy.
 805   // There are no intptr_t (int/long) arguments.
 806   return make_arraycopy_Type(ac_slow);
 807 }
 808 
 809 const TypeFunc* OptoRuntime::generic_arraycopy_Type() {
 810   // This signature is like System.arraycopy, except that it returns status.
 811   return make_arraycopy_Type(ac_generic);
 812 }
 813 
 814 
 815 const TypeFunc* OptoRuntime::array_fill_Type() {
 816   const Type** fields;
 817   int argp = TypeFunc::Parms;
 818   // create input type (domain): pointer, int, size_t
 819   fields = TypeTuple::fields(3 LP64_ONLY( + 1));
 820   fields[argp++] = TypePtr::NOTNULL;
 821   fields[argp++] = TypeInt::INT;
 822   fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 823   LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 824   const TypeTuple *domain = TypeTuple::make(argp, fields);
 825 
 826   // create result type
 827   fields = TypeTuple::fields(1);
 828   fields[TypeFunc::Parms+0] = NULL; // void
 829   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 830 
 831   return TypeFunc::make(domain, range);
 832 }
 833 
 834 // for aescrypt encrypt/decrypt operations, just three pointers returning void (length is constant)
 835 const TypeFunc* OptoRuntime::aescrypt_block_Type() {
 836   // create input type (domain)
 837   int num_args      = 3;
 838   if (Matcher::pass_original_key_for_aes()) {
 839     num_args = 4;
 840   }
 841   int argcnt = num_args;
 842   const Type** fields = TypeTuple::fields(argcnt);
 843   int argp = TypeFunc::Parms;
 844   fields[argp++] = TypePtr::NOTNULL;    // src
 845   fields[argp++] = TypePtr::NOTNULL;    // dest
 846   fields[argp++] = TypePtr::NOTNULL;    // k array
 847   if (Matcher::pass_original_key_for_aes()) {
 848     fields[argp++] = TypePtr::NOTNULL;    // original k array
 849   }
 850   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 851   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 852 
 853   // no result type needed
 854   fields = TypeTuple::fields(1);
 855   fields[TypeFunc::Parms+0] = NULL; // void
 856   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 857   return TypeFunc::make(domain, range);
 858 }
 859 
 860 /**
 861  * int updateBytesCRC32(int crc, byte* b, int len)
 862  */
 863 const TypeFunc* OptoRuntime::updateBytesCRC32_Type() {
 864   // create input type (domain)
 865   int num_args      = 3;
 866   int argcnt = num_args;
 867   const Type** fields = TypeTuple::fields(argcnt);
 868   int argp = TypeFunc::Parms;
 869   fields[argp++] = TypeInt::INT;        // crc
 870   fields[argp++] = TypePtr::NOTNULL;    // src
 871   fields[argp++] = TypeInt::INT;        // len
 872   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 873   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 874 
 875   // result type needed
 876   fields = TypeTuple::fields(1);
 877   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 878   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 879   return TypeFunc::make(domain, range);
 880 }
 881 
 882 /**
 883  * int updateBytesCRC32C(int crc, byte* buf, int len, int* table)
 884  */
 885 const TypeFunc* OptoRuntime::updateBytesCRC32C_Type() {
 886   // create input type (domain)
 887   int num_args      = 4;
 888   int argcnt = num_args;
 889   const Type** fields = TypeTuple::fields(argcnt);
 890   int argp = TypeFunc::Parms;
 891   fields[argp++] = TypeInt::INT;        // crc
 892   fields[argp++] = TypePtr::NOTNULL;    // buf
 893   fields[argp++] = TypeInt::INT;        // len
 894   fields[argp++] = TypePtr::NOTNULL;    // table
 895   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 896   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 897 
 898   // result type needed
 899   fields = TypeTuple::fields(1);
 900   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 901   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 902   return TypeFunc::make(domain, range);
 903 }
 904 
 905 /**
 906 *  int updateBytesAdler32(int adler, bytes* b, int off, int len)
 907 */
 908 const TypeFunc* OptoRuntime::updateBytesAdler32_Type() {
 909   // create input type (domain)
 910   int num_args      = 3;
 911   int argcnt = num_args;
 912   const Type** fields = TypeTuple::fields(argcnt);
 913   int argp = TypeFunc::Parms;
 914   fields[argp++] = TypeInt::INT;        // crc
 915   fields[argp++] = TypePtr::NOTNULL;    // src + offset
 916   fields[argp++] = TypeInt::INT;        // len
 917   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 918   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 919 
 920   // result type needed
 921   fields = TypeTuple::fields(1);
 922   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 923   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 924   return TypeFunc::make(domain, range);
 925 }
 926 
 927 // for cipherBlockChaining calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
 928 const TypeFunc* OptoRuntime::cipherBlockChaining_aescrypt_Type() {
 929   // create input type (domain)
 930   int num_args      = 5;
 931   if (Matcher::pass_original_key_for_aes()) {
 932     num_args = 6;
 933   }
 934   int argcnt = num_args;
 935   const Type** fields = TypeTuple::fields(argcnt);
 936   int argp = TypeFunc::Parms;
 937   fields[argp++] = TypePtr::NOTNULL;    // src
 938   fields[argp++] = TypePtr::NOTNULL;    // dest
 939   fields[argp++] = TypePtr::NOTNULL;    // k array
 940   fields[argp++] = TypePtr::NOTNULL;    // r array
 941   fields[argp++] = TypeInt::INT;        // src len
 942   if (Matcher::pass_original_key_for_aes()) {
 943     fields[argp++] = TypePtr::NOTNULL;    // original k array
 944   }
 945   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 946   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 947 
 948   // returning cipher len (int)
 949   fields = TypeTuple::fields(1);
 950   fields[TypeFunc::Parms+0] = TypeInt::INT;
 951   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 952   return TypeFunc::make(domain, range);
 953 }
 954 
 955 //for counterMode calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
 956 const TypeFunc* OptoRuntime::counterMode_aescrypt_Type() {
 957   // create input type (domain)
 958   int num_args = 7;
 959   if (Matcher::pass_original_key_for_aes()) {
 960     num_args = 8;
 961   }
 962   int argcnt = num_args;
 963   const Type** fields = TypeTuple::fields(argcnt);
 964   int argp = TypeFunc::Parms;
 965   fields[argp++] = TypePtr::NOTNULL; // src
 966   fields[argp++] = TypePtr::NOTNULL; // dest
 967   fields[argp++] = TypePtr::NOTNULL; // k array
 968   fields[argp++] = TypePtr::NOTNULL; // counter array
 969   fields[argp++] = TypeInt::INT; // src len
 970   fields[argp++] = TypePtr::NOTNULL; // saved_encCounter
 971   fields[argp++] = TypePtr::NOTNULL; // saved used addr
 972   if (Matcher::pass_original_key_for_aes()) {
 973     fields[argp++] = TypePtr::NOTNULL; // original k array
 974   }
 975   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
 976   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
 977   // returning cipher len (int)
 978   fields = TypeTuple::fields(1);
 979   fields[TypeFunc::Parms + 0] = TypeInt::INT;
 980   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
 981   return TypeFunc::make(domain, range);
 982 }
 983 
 984 /*
 985  * void implCompress(byte[] buf, int ofs)
 986  */
 987 const TypeFunc* OptoRuntime::sha_implCompress_Type() {
 988   // create input type (domain)
 989   int num_args = 2;
 990   int argcnt = num_args;
 991   const Type** fields = TypeTuple::fields(argcnt);
 992   int argp = TypeFunc::Parms;
 993   fields[argp++] = TypePtr::NOTNULL; // buf
 994   fields[argp++] = TypePtr::NOTNULL; // state
 995   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 996   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 997 
 998   // no result type needed
 999   fields = TypeTuple::fields(1);
1000   fields[TypeFunc::Parms+0] = NULL; // void
1001   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1002   return TypeFunc::make(domain, range);
1003 }
1004 
1005 /*
1006  * int implCompressMultiBlock(byte[] b, int ofs, int limit)
1007  */
1008 const TypeFunc* OptoRuntime::digestBase_implCompressMB_Type() {
1009   // create input type (domain)
1010   int num_args = 4;
1011   int argcnt = num_args;
1012   const Type** fields = TypeTuple::fields(argcnt);
1013   int argp = TypeFunc::Parms;
1014   fields[argp++] = TypePtr::NOTNULL; // buf
1015   fields[argp++] = TypePtr::NOTNULL; // state
1016   fields[argp++] = TypeInt::INT;     // ofs
1017   fields[argp++] = TypeInt::INT;     // limit
1018   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1019   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1020 
1021   // returning ofs (int)
1022   fields = TypeTuple::fields(1);
1023   fields[TypeFunc::Parms+0] = TypeInt::INT; // ofs
1024   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1025   return TypeFunc::make(domain, range);
1026 }
1027 
1028 const TypeFunc* OptoRuntime::multiplyToLen_Type() {
1029   // create input type (domain)
1030   int num_args      = 6;
1031   int argcnt = num_args;
1032   const Type** fields = TypeTuple::fields(argcnt);
1033   int argp = TypeFunc::Parms;
1034   fields[argp++] = TypePtr::NOTNULL;    // x
1035   fields[argp++] = TypeInt::INT;        // xlen
1036   fields[argp++] = TypePtr::NOTNULL;    // y
1037   fields[argp++] = TypeInt::INT;        // ylen
1038   fields[argp++] = TypePtr::NOTNULL;    // z
1039   fields[argp++] = TypeInt::INT;        // zlen
1040   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1041   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1042 
1043   // no result type needed
1044   fields = TypeTuple::fields(1);
1045   fields[TypeFunc::Parms+0] = NULL;
1046   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1047   return TypeFunc::make(domain, range);
1048 }
1049 
1050 const TypeFunc* OptoRuntime::squareToLen_Type() {
1051   // create input type (domain)
1052   int num_args      = 4;
1053   int argcnt = num_args;
1054   const Type** fields = TypeTuple::fields(argcnt);
1055   int argp = TypeFunc::Parms;
1056   fields[argp++] = TypePtr::NOTNULL;    // x
1057   fields[argp++] = TypeInt::INT;        // len
1058   fields[argp++] = TypePtr::NOTNULL;    // z
1059   fields[argp++] = TypeInt::INT;        // zlen
1060   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1061   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1062 
1063   // no result type needed
1064   fields = TypeTuple::fields(1);
1065   fields[TypeFunc::Parms+0] = NULL;
1066   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1067   return TypeFunc::make(domain, range);
1068 }
1069 
1070 // for mulAdd calls, 2 pointers and 3 ints, returning int
1071 const TypeFunc* OptoRuntime::mulAdd_Type() {
1072   // create input type (domain)
1073   int num_args      = 5;
1074   int argcnt = num_args;
1075   const Type** fields = TypeTuple::fields(argcnt);
1076   int argp = TypeFunc::Parms;
1077   fields[argp++] = TypePtr::NOTNULL;    // out
1078   fields[argp++] = TypePtr::NOTNULL;    // in
1079   fields[argp++] = TypeInt::INT;        // offset
1080   fields[argp++] = TypeInt::INT;        // len
1081   fields[argp++] = TypeInt::INT;        // k
1082   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1083   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1084 
1085   // returning carry (int)
1086   fields = TypeTuple::fields(1);
1087   fields[TypeFunc::Parms+0] = TypeInt::INT;
1088   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1089   return TypeFunc::make(domain, range);
1090 }
1091 
1092 const TypeFunc* OptoRuntime::montgomeryMultiply_Type() {
1093   // create input type (domain)
1094   int num_args      = 7;
1095   int argcnt = num_args;
1096   const Type** fields = TypeTuple::fields(argcnt);
1097   int argp = TypeFunc::Parms;
1098   fields[argp++] = TypePtr::NOTNULL;    // a
1099   fields[argp++] = TypePtr::NOTNULL;    // b
1100   fields[argp++] = TypePtr::NOTNULL;    // n
1101   fields[argp++] = TypeInt::INT;        // len
1102   fields[argp++] = TypeLong::LONG;      // inv
1103   fields[argp++] = Type::HALF;
1104   fields[argp++] = TypePtr::NOTNULL;    // result
1105   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1106   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1107 
1108   // result type needed
1109   fields = TypeTuple::fields(1);
1110   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1111 
1112   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1113   return TypeFunc::make(domain, range);
1114 }
1115 
1116 const TypeFunc* OptoRuntime::montgomerySquare_Type() {
1117   // create input type (domain)
1118   int num_args      = 6;
1119   int argcnt = num_args;
1120   const Type** fields = TypeTuple::fields(argcnt);
1121   int argp = TypeFunc::Parms;
1122   fields[argp++] = TypePtr::NOTNULL;    // a
1123   fields[argp++] = TypePtr::NOTNULL;    // n
1124   fields[argp++] = TypeInt::INT;        // len
1125   fields[argp++] = TypeLong::LONG;      // inv
1126   fields[argp++] = Type::HALF;
1127   fields[argp++] = TypePtr::NOTNULL;    // result
1128   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1129   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1130 
1131   // result type needed
1132   fields = TypeTuple::fields(1);
1133   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1134 
1135   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1136   return TypeFunc::make(domain, range);
1137 }
1138 
1139 const TypeFunc* OptoRuntime::vectorizedMismatch_Type() {
1140   // create input type (domain)
1141   int num_args = 4;
1142   int argcnt = num_args;
1143   const Type** fields = TypeTuple::fields(argcnt);
1144   int argp = TypeFunc::Parms;
1145   fields[argp++] = TypePtr::NOTNULL;    // obja
1146   fields[argp++] = TypePtr::NOTNULL;    // objb
1147   fields[argp++] = TypeInt::INT;        // length, number of elements
1148   fields[argp++] = TypeInt::INT;        // log2scale, element size
1149   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1150   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1151 
1152   //return mismatch index (int)
1153   fields = TypeTuple::fields(1);
1154   fields[TypeFunc::Parms + 0] = TypeInt::INT;
1155   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1156   return TypeFunc::make(domain, range);
1157 }
1158 
1159 // GHASH block processing
1160 const TypeFunc* OptoRuntime::ghash_processBlocks_Type() {
1161     int argcnt = 4;
1162 
1163     const Type** fields = TypeTuple::fields(argcnt);
1164     int argp = TypeFunc::Parms;
1165     fields[argp++] = TypePtr::NOTNULL;    // state
1166     fields[argp++] = TypePtr::NOTNULL;    // subkeyH
1167     fields[argp++] = TypePtr::NOTNULL;    // data
1168     fields[argp++] = TypeInt::INT;        // blocks
1169     assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1170     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1171 
1172     // result type needed
1173     fields = TypeTuple::fields(1);
1174     fields[TypeFunc::Parms+0] = NULL; // void
1175     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1176     return TypeFunc::make(domain, range);
1177 }
1178 
1179 //------------- Interpreter state access for on stack replacement
1180 const TypeFunc* OptoRuntime::osr_end_Type() {
1181   // create input type (domain)
1182   const Type **fields = TypeTuple::fields(1);
1183   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
1184   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
1185 
1186   // create result type
1187   fields = TypeTuple::fields(1);
1188   // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
1189   fields[TypeFunc::Parms+0] = NULL; // void
1190   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
1191   return TypeFunc::make(domain, range);
1192 }
1193 
1194 //-------------- methodData update helpers
1195 
1196 const TypeFunc* OptoRuntime::profile_receiver_type_Type() {
1197   // create input type (domain)
1198   const Type **fields = TypeTuple::fields(2);
1199   fields[TypeFunc::Parms+0] = TypeAryPtr::NOTNULL;    // methodData pointer
1200   fields[TypeFunc::Parms+1] = TypeInstPtr::BOTTOM;    // receiver oop
1201   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
1202 
1203   // create result type
1204   fields = TypeTuple::fields(1);
1205   fields[TypeFunc::Parms+0] = NULL; // void
1206   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
1207   return TypeFunc::make(domain,range);
1208 }
1209 
1210 JRT_LEAF(void, OptoRuntime::profile_receiver_type_C(DataLayout* data, oopDesc* receiver))
1211   if (receiver == NULL) return;
1212   Klass* receiver_klass = receiver->klass();
1213 
1214   intptr_t* mdp = ((intptr_t*)(data)) + DataLayout::header_size_in_cells();
1215   int empty_row = -1;           // free row, if any is encountered
1216 
1217   // ReceiverTypeData* vc = new ReceiverTypeData(mdp);
1218   for (uint row = 0; row < ReceiverTypeData::row_limit(); row++) {
1219     // if (vc->receiver(row) == receiver_klass)
1220     int receiver_off = ReceiverTypeData::receiver_cell_index(row);
1221     intptr_t row_recv = *(mdp + receiver_off);
1222     if (row_recv == (intptr_t) receiver_klass) {
1223       // vc->set_receiver_count(row, vc->receiver_count(row) + DataLayout::counter_increment);
1224       int count_off = ReceiverTypeData::receiver_count_cell_index(row);
1225       *(mdp + count_off) += DataLayout::counter_increment;
1226       return;
1227     } else if (row_recv == 0) {
1228       // else if (vc->receiver(row) == NULL)
1229       empty_row = (int) row;
1230     }
1231   }
1232 
1233   if (empty_row != -1) {
1234     int receiver_off = ReceiverTypeData::receiver_cell_index(empty_row);
1235     // vc->set_receiver(empty_row, receiver_klass);
1236     *(mdp + receiver_off) = (intptr_t) receiver_klass;
1237     // vc->set_receiver_count(empty_row, DataLayout::counter_increment);
1238     int count_off = ReceiverTypeData::receiver_count_cell_index(empty_row);
1239     *(mdp + count_off) = DataLayout::counter_increment;
1240   } else {
1241     // Receiver did not match any saved receiver and there is no empty row for it.
1242     // Increment total counter to indicate polymorphic case.
1243     intptr_t* count_p = (intptr_t*)(((uint8_t*)(data)) + in_bytes(CounterData::count_offset()));
1244     *count_p += DataLayout::counter_increment;
1245   }
1246 JRT_END
1247 
1248 //-------------------------------------------------------------------------------------
1249 // register policy
1250 
1251 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
1252   assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
1253   switch (register_save_policy[reg]) {
1254     case 'C': return false; //SOC
1255     case 'E': return true ; //SOE
1256     case 'N': return false; //NS
1257     case 'A': return false; //AS
1258   }
1259   ShouldNotReachHere();
1260   return false;
1261 }
1262 
1263 //-----------------------------------------------------------------------
1264 // Exceptions
1265 //
1266 
1267 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg);
1268 
1269 // The method is an entry that is always called by a C++ method not
1270 // directly from compiled code. Compiled code will call the C++ method following.
1271 // We can't allow async exception to be installed during  exception processing.
1272 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* thread, nmethod* &nm))
1273 
1274   // Do not confuse exception_oop with pending_exception. The exception_oop
1275   // is only used to pass arguments into the method. Not for general
1276   // exception handling.  DO NOT CHANGE IT to use pending_exception, since
1277   // the runtime stubs checks this on exit.
1278   assert(thread->exception_oop() != NULL, "exception oop is found");
1279   address handler_address = NULL;
1280 
1281   Handle exception(thread, thread->exception_oop());
1282   address pc = thread->exception_pc();
1283 
1284   // Clear out the exception oop and pc since looking up an
1285   // exception handler can cause class loading, which might throw an
1286   // exception and those fields are expected to be clear during
1287   // normal bytecode execution.
1288   thread->clear_exception_oop_and_pc();
1289 
1290   LogTarget(Info, exceptions) lt;
1291   if (lt.is_enabled()) {
1292     ResourceMark rm;
1293     LogStream ls(lt);
1294     trace_exception(&ls, exception(), pc, "");
1295   }
1296 
1297   // for AbortVMOnException flag
1298   Exceptions::debug_check_abort(exception);
1299 
1300 #ifdef ASSERT
1301   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
1302     // should throw an exception here
1303     ShouldNotReachHere();
1304   }
1305 #endif
1306 
1307   // new exception handling: this method is entered only from adapters
1308   // exceptions from compiled java methods are handled in compiled code
1309   // using rethrow node
1310 
1311   nm = CodeCache::find_nmethod(pc);
1312   assert(nm != NULL, "No NMethod found");
1313   if (nm->is_native_method()) {
1314     fatal("Native method should not have path to exception handling");
1315   } else {
1316     // we are switching to old paradigm: search for exception handler in caller_frame
1317     // instead in exception handler of caller_frame.sender()
1318 
1319     if (JvmtiExport::can_post_on_exceptions()) {
1320       // "Full-speed catching" is not necessary here,
1321       // since we're notifying the VM on every catch.
1322       // Force deoptimization and the rest of the lookup
1323       // will be fine.
1324       deoptimize_caller_frame(thread);
1325     }
1326 
1327     // Check the stack guard pages.  If enabled, look for handler in this frame;
1328     // otherwise, forcibly unwind the frame.
1329     //
1330     // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
1331     bool force_unwind = !thread->reguard_stack();
1332     bool deopting = false;
1333     if (nm->is_deopt_pc(pc)) {
1334       deopting = true;
1335       RegisterMap map(thread, false);
1336       frame deoptee = thread->last_frame().sender(&map);
1337       assert(deoptee.is_deoptimized_frame(), "must be deopted");
1338       // Adjust the pc back to the original throwing pc
1339       pc = deoptee.pc();
1340     }
1341 
1342     // If we are forcing an unwind because of stack overflow then deopt is
1343     // irrelevant since we are throwing the frame away anyway.
1344 
1345     if (deopting && !force_unwind) {
1346       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1347     } else {
1348 
1349       handler_address =
1350         force_unwind ? NULL : nm->handler_for_exception_and_pc(exception, pc);
1351 
1352       if (handler_address == NULL) {
1353         bool recursive_exception = false;
1354         handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception);
1355         assert (handler_address != NULL, "must have compiled handler");
1356         // Update the exception cache only when the unwind was not forced
1357         // and there didn't happen another exception during the computation of the
1358         // compiled exception handler. Checking for exception oop equality is not
1359         // sufficient because some exceptions are pre-allocated and reused.
1360         if (!force_unwind && !recursive_exception) {
1361           nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
1362         }
1363       } else {
1364 #ifdef ASSERT
1365         bool recursive_exception = false;
1366         address computed_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception);
1367         vmassert(recursive_exception || (handler_address == computed_address), "Handler address inconsistency: " PTR_FORMAT " != " PTR_FORMAT,
1368                  p2i(handler_address), p2i(computed_address));
1369 #endif
1370       }
1371     }
1372 
1373     thread->set_exception_pc(pc);
1374     thread->set_exception_handler_pc(handler_address);
1375 
1376     // Check if the exception PC is a MethodHandle call site.
1377     thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
1378   }
1379 
1380   // Restore correct return pc.  Was saved above.
1381   thread->set_exception_oop(exception());
1382   return handler_address;
1383 
1384 JRT_END
1385 
1386 // We are entering here from exception_blob
1387 // If there is a compiled exception handler in this method, we will continue there;
1388 // otherwise we will unwind the stack and continue at the caller of top frame method
1389 // Note we enter without the usual JRT wrapper. We will call a helper routine that
1390 // will do the normal VM entry. We do it this way so that we can see if the nmethod
1391 // we looked up the handler for has been deoptimized in the meantime. If it has been
1392 // we must not use the handler and instead return the deopt blob.
1393 address OptoRuntime::handle_exception_C(JavaThread* thread) {
1394 //
1395 // We are in Java not VM and in debug mode we have a NoHandleMark
1396 //
1397 #ifndef PRODUCT
1398   SharedRuntime::_find_handler_ctr++;          // find exception handler
1399 #endif
1400   debug_only(NoHandleMark __hm;)
1401   nmethod* nm = NULL;
1402   address handler_address = NULL;
1403   {
1404     // Enter the VM
1405 
1406     ResetNoHandleMark rnhm;
1407     handler_address = handle_exception_C_helper(thread, nm);
1408   }
1409 
1410   // Back in java: Use no oops, DON'T safepoint
1411 
1412   // Now check to see if the handler we are returning is in a now
1413   // deoptimized frame
1414 
1415   if (nm != NULL) {
1416     RegisterMap map(thread, false);
1417     frame caller = thread->last_frame().sender(&map);
1418 #ifdef ASSERT
1419     assert(caller.is_compiled_frame(), "must be");
1420 #endif // ASSERT
1421     if (caller.is_deoptimized_frame()) {
1422       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1423     }
1424   }
1425   return handler_address;
1426 }
1427 
1428 //------------------------------rethrow----------------------------------------
1429 // We get here after compiled code has executed a 'RethrowNode'.  The callee
1430 // is either throwing or rethrowing an exception.  The callee-save registers
1431 // have been restored, synchronized objects have been unlocked and the callee
1432 // stack frame has been removed.  The return address was passed in.
1433 // Exception oop is passed as the 1st argument.  This routine is then called
1434 // from the stub.  On exit, we know where to jump in the caller's code.
1435 // After this C code exits, the stub will pop his frame and end in a jump
1436 // (instead of a return).  We enter the caller's default handler.
1437 //
1438 // This must be JRT_LEAF:
1439 //     - caller will not change its state as we cannot block on exit,
1440 //       therefore raw_exception_handler_for_return_address is all it takes
1441 //       to handle deoptimized blobs
1442 //
1443 // However, there needs to be a safepoint check in the middle!  So compiled
1444 // safepoints are completely watertight.
1445 //
1446 // Thus, it cannot be a leaf since it contains the NoGCVerifier.
1447 //
1448 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
1449 //
1450 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
1451 #ifndef PRODUCT
1452   SharedRuntime::_rethrow_ctr++;               // count rethrows
1453 #endif
1454   assert (exception != NULL, "should have thrown a NULLPointerException");
1455 #ifdef ASSERT
1456   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
1457     // should throw an exception here
1458     ShouldNotReachHere();
1459   }
1460 #endif
1461 
1462   thread->set_vm_result(exception);
1463   // Frame not compiled (handles deoptimization blob)
1464   return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
1465 }
1466 
1467 
1468 const TypeFunc *OptoRuntime::rethrow_Type() {
1469   // create input type (domain)
1470   const Type **fields = TypeTuple::fields(1);
1471   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1472   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1473 
1474   // create result type (range)
1475   fields = TypeTuple::fields(1);
1476   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1477   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
1478 
1479   return TypeFunc::make(domain, range);
1480 }
1481 
1482 
1483 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
1484   // Deoptimize the caller before continuing, as the compiled
1485   // exception handler table may not be valid.
1486   if (!StressCompiledExceptionHandlers && doit) {
1487     deoptimize_caller_frame(thread);
1488   }
1489 }
1490 
1491 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) {
1492   // Called from within the owner thread, so no need for safepoint
1493   RegisterMap reg_map(thread);
1494   frame stub_frame = thread->last_frame();
1495   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1496   frame caller_frame = stub_frame.sender(&reg_map);
1497 
1498   // Deoptimize the caller frame.
1499   Deoptimization::deoptimize_frame(thread, caller_frame.id());
1500 }
1501 
1502 
1503 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) {
1504   // Called from within the owner thread, so no need for safepoint
1505   RegisterMap reg_map(thread);
1506   frame stub_frame = thread->last_frame();
1507   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1508   frame caller_frame = stub_frame.sender(&reg_map);
1509   return caller_frame.is_deoptimized_frame();
1510 }
1511 
1512 
1513 const TypeFunc *OptoRuntime::register_finalizer_Type() {
1514   // create input type (domain)
1515   const Type **fields = TypeTuple::fields(1);
1516   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // oop;          Receiver
1517   // // The JavaThread* is passed to each routine as the last argument
1518   // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
1519   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1520 
1521   // create result type (range)
1522   fields = TypeTuple::fields(0);
1523 
1524   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1525 
1526   return TypeFunc::make(domain,range);
1527 }
1528 
1529 
1530 //-----------------------------------------------------------------------------
1531 // Dtrace support.  entry and exit probes have the same signature
1532 const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() {
1533   // create input type (domain)
1534   const Type **fields = TypeTuple::fields(2);
1535   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1536   fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM;  // Method*;    Method we are entering
1537   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1538 
1539   // create result type (range)
1540   fields = TypeTuple::fields(0);
1541 
1542   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1543 
1544   return TypeFunc::make(domain,range);
1545 }
1546 
1547 const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() {
1548   // create input type (domain)
1549   const Type **fields = TypeTuple::fields(2);
1550   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1551   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // oop;    newly allocated object
1552 
1553   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1554 
1555   // create result type (range)
1556   fields = TypeTuple::fields(0);
1557 
1558   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1559 
1560   return TypeFunc::make(domain,range);
1561 }
1562 
1563 
1564 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* thread))
1565   assert(oopDesc::is_oop(obj), "must be a valid oop");
1566   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1567   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1568 JRT_END
1569 
1570 //-----------------------------------------------------------------------------
1571 
1572 NamedCounter * volatile OptoRuntime::_named_counters = NULL;
1573 
1574 //
1575 // dump the collected NamedCounters.
1576 //
1577 void OptoRuntime::print_named_counters() {
1578   int total_lock_count = 0;
1579   int eliminated_lock_count = 0;
1580 
1581   NamedCounter* c = _named_counters;
1582   while (c) {
1583     if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
1584       int count = c->count();
1585       if (count > 0) {
1586         bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
1587         if (Verbose) {
1588           tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
1589         }
1590         total_lock_count += count;
1591         if (eliminated) {
1592           eliminated_lock_count += count;
1593         }
1594       }
1595     } else if (c->tag() == NamedCounter::BiasedLockingCounter) {
1596       BiasedLockingCounters* blc = ((BiasedLockingNamedCounter*)c)->counters();
1597       if (blc->nonzero()) {
1598         tty->print_cr("%s", c->name());
1599         blc->print_on(tty);
1600       }
1601 #if INCLUDE_RTM_OPT
1602     } else if (c->tag() == NamedCounter::RTMLockingCounter) {
1603       RTMLockingCounters* rlc = ((RTMLockingNamedCounter*)c)->counters();
1604       if (rlc->nonzero()) {
1605         tty->print_cr("%s", c->name());
1606         rlc->print_on(tty);
1607       }
1608 #endif
1609     }
1610     c = c->next();
1611   }
1612   if (total_lock_count > 0) {
1613     tty->print_cr("dynamic locks: %d", total_lock_count);
1614     if (eliminated_lock_count) {
1615       tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
1616                     (int)(eliminated_lock_count * 100.0 / total_lock_count));
1617     }
1618   }
1619 }
1620 
1621 //
1622 //  Allocate a new NamedCounter.  The JVMState is used to generate the
1623 //  name which consists of method@line for the inlining tree.
1624 //
1625 
1626 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
1627   int max_depth = youngest_jvms->depth();
1628 
1629   // Visit scopes from youngest to oldest.
1630   bool first = true;
1631   stringStream st;
1632   for (int depth = max_depth; depth >= 1; depth--) {
1633     JVMState* jvms = youngest_jvms->of_depth(depth);
1634     ciMethod* m = jvms->has_method() ? jvms->method() : NULL;
1635     if (!first) {
1636       st.print(" ");
1637     } else {
1638       first = false;
1639     }
1640     int bci = jvms->bci();
1641     if (bci < 0) bci = 0;
1642     st.print("%s.%s@%d", m->holder()->name()->as_utf8(), m->name()->as_utf8(), bci);
1643     // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
1644   }
1645   NamedCounter* c;
1646   if (tag == NamedCounter::BiasedLockingCounter) {
1647     c = new BiasedLockingNamedCounter(st.as_string());
1648   } else if (tag == NamedCounter::RTMLockingCounter) {
1649     c = new RTMLockingNamedCounter(st.as_string());
1650   } else {
1651     c = new NamedCounter(st.as_string(), tag);
1652   }
1653 
1654   // atomically add the new counter to the head of the list.  We only
1655   // add counters so this is safe.
1656   NamedCounter* head;
1657   do {
1658     c->set_next(NULL);
1659     head = _named_counters;
1660     c->set_next(head);
1661   } while (Atomic::cmpxchg(c, &_named_counters, head) != head);
1662   return c;
1663 }
1664 
1665 int trace_exception_counter = 0;
1666 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg) {
1667   trace_exception_counter++;
1668   stringStream tempst;
1669 
1670   tempst.print("%d [Exception (%s): ", trace_exception_counter, msg);
1671   exception_oop->print_value_on(&tempst);
1672   tempst.print(" in ");
1673   CodeBlob* blob = CodeCache::find_blob(exception_pc);
1674   if (blob->is_compiled()) {
1675     CompiledMethod* cm = blob->as_compiled_method_or_null();
1676     cm->method()->print_value_on(&tempst);
1677   } else if (blob->is_runtime_stub()) {
1678     tempst.print("<runtime-stub>");
1679   } else {
1680     tempst.print("<unknown>");
1681   }
1682   tempst.print(" at " INTPTR_FORMAT,  p2i(exception_pc));
1683   tempst.print("]");
1684 
1685   st->print_raw_cr(tempst.as_string());
1686 }