1 /*
   2  * Copyright (c) 2003, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_RUNTIME_ORDERACCESS_HPP
  26 #define SHARE_VM_RUNTIME_ORDERACCESS_HPP
  27 
  28 #include "memory/allocation.hpp"
  29 #include "runtime/atomic.hpp"
  30 
  31 //                Memory Access Ordering Model
  32 //
  33 // This interface is based on the JSR-133 Cookbook for Compiler Writers.
  34 //
  35 // In the following, the terms 'previous', 'subsequent', 'before',
  36 // 'after', 'preceding' and 'succeeding' refer to program order.  The
  37 // terms 'down' and 'below' refer to forward load or store motion
  38 // relative to program order, while 'up' and 'above' refer to backward
  39 // motion.
  40 //
  41 // We define four primitive memory barrier operations.
  42 //
  43 // LoadLoad:   Load1(s); LoadLoad; Load2
  44 //
  45 // Ensures that Load1 completes (obtains the value it loads from memory)
  46 // before Load2 and any subsequent load operations.  Loads before Load1
  47 // may *not* float below Load2 and any subsequent load operations.
  48 //
  49 // StoreStore: Store1(s); StoreStore; Store2
  50 //
  51 // Ensures that Store1 completes (the effect on memory of Store1 is made
  52 // visible to other processors) before Store2 and any subsequent store
  53 // operations.  Stores before Store1 may *not* float below Store2 and any
  54 // subsequent store operations.
  55 //
  56 // LoadStore:  Load1(s); LoadStore; Store2
  57 //
  58 // Ensures that Load1 completes before Store2 and any subsequent store
  59 // operations.  Loads before Load1 may *not* float below Store2 and any
  60 // subsequent store operations.
  61 //
  62 // StoreLoad:  Store1(s); StoreLoad; Load2
  63 //
  64 // Ensures that Store1 completes before Load2 and any subsequent load
  65 // operations.  Stores before Store1 may *not* float below Load2 and any
  66 // subsequent load operations.
  67 //
  68 // We define two further barriers: acquire and release.
  69 //
  70 // Conceptually, acquire/release semantics form unidirectional and
  71 // asynchronous barriers w.r.t. a synchronizing load(X) and store(X) pair.
  72 // They should always be used in pairs to publish (release store) and
  73 // access (load acquire) some implicitly understood shared data between
  74 // threads in a relatively cheap fashion not requiring storeload. If not
  75 // used in such a pair, it is advised to use a membar instead:
  76 // acquire/release only make sense as pairs.
  77 //
  78 // T1: access_shared_data
  79 // T1: ]release
  80 // T1: (...)
  81 // T1: store(X)
  82 //
  83 // T2: load(X)
  84 // T2: (...)
  85 // T2: acquire[
  86 // T2: access_shared_data
  87 //
  88 // It is guaranteed that if T2: load(X) synchronizes with (observes the
  89 // value written by) T1: store(X), then the memory accesses before the T1:
  90 // ]release happen before the memory accesses after the T2: acquire[.
  91 //
  92 // Total Store Order (TSO) machines can be seen as machines issuing a
  93 // release store for each store and a load acquire for each load. Therefore
  94 // there is an inherent resemblence between TSO and acquire/release
  95 // semantics. TSO can be seen as an abstract machine where loads are
  96 // executed immediately when encountered (hence loadload reordering not
  97 // happening) but enqueues stores in a FIFO queue
  98 // for asynchronous serialization (neither storestore or loadstore
  99 // reordering happening). The only reordering happening is storeload due to
 100 // the queue asynchronously serializing stores (yet in order).
 101 //
 102 // Acquire/release semantics essentially exploits this asynchronicity: when
 103 // the load(X) acquire[ observes the store of ]release store(X), the
 104 // accesses before the release must have happened before the accesses after
 105 // acquire.
 106 //
 107 // The API offers both stand-alone acquire() and release() as well as bound
 108 // load_acquire() and release_store(). It is guaranteed that these are
 109 // semantically equivalent w.r.t. the defined model. However, since
 110 // stand-alone acquire()/release() does not know which previous
 111 // load/subsequent store is considered the synchronizing load/store, they
 112 // may be more conservative in implementations. We advise using the bound
 113 // variants whenever possible.
 114 //
 115 // Finally, we define a "fence" operation, as a bidirectional barrier.
 116 // It guarantees that any memory access preceding the fence is not
 117 // reordered w.r.t. any memory accesses subsequent to the fence in program
 118 // order. This may be used to prevent sequences of loads from floating up
 119 // above sequences of stores.
 120 //
 121 // The following table shows the implementations on some architectures:
 122 //
 123 //                       Constraint     x86          sparc TSO          ppc
 124 // ---------------------------------------------------------------------------
 125 // fence                 LoadStore  |   lock         membar #StoreLoad  sync
 126 //                       StoreStore |   addl 0,(sp)
 127 //                       LoadLoad   |
 128 //                       StoreLoad
 129 //
 130 // release               LoadStore  |                                   lwsync
 131 //                       StoreStore
 132 //
 133 // acquire               LoadLoad   |                                   lwsync
 134 //                       LoadStore
 135 //
 136 // release_store                        <store>      <store>            lwsync
 137 //                                                                      <store>
 138 //
 139 // release_store_fence                  xchg         <store>            lwsync
 140 //                                                   membar #StoreLoad  <store>
 141 //                                                                      sync
 142 //
 143 //
 144 // load_acquire                         <load>       <load>             <load>
 145 //                                                                      lwsync
 146 //
 147 // Ordering a load relative to preceding stores requires a StoreLoad,
 148 // which implies a membar #StoreLoad between the store and load under
 149 // sparc-TSO. On x86, we use explicitly locked add.
 150 //
 151 // Conventional usage is to issue a load_acquire for ordered loads.  Use
 152 // release_store for ordered stores when you care only that prior stores
 153 // are visible before the release_store, but don't care exactly when the
 154 // store associated with the release_store becomes visible.  Use
 155 // release_store_fence to update values like the thread state, where we
 156 // don't want the current thread to continue until all our prior memory
 157 // accesses (including the new thread state) are visible to other threads.
 158 // This is equivalent to the volatile semantics of the Java Memory Model.
 159 //
 160 //                    C++ Volatile Semantics
 161 //
 162 // C++ volatile semantics prevent compiler re-ordering between
 163 // volatile memory accesses. However, reordering between non-volatile
 164 // and volatile memory accesses is in general undefined. For compiler
 165 // reordering constraints taking non-volatile memory accesses into
 166 // consideration, a compiler barrier has to be used instead.  Some
 167 // compiler implementations may choose to enforce additional
 168 // constraints beyond those required by the language. Note also that
 169 // both volatile semantics and compiler barrier do not prevent
 170 // hardware reordering.
 171 //
 172 //                os::is_MP Considered Redundant
 173 //
 174 // Callers of this interface do not need to test os::is_MP() before
 175 // issuing an operation. The test is taken care of by the implementation
 176 // of the interface (depending on the vm version and platform, the test
 177 // may or may not be actually done by the implementation).
 178 //
 179 //
 180 //                A Note on Memory Ordering and Cache Coherency
 181 //
 182 // Cache coherency and memory ordering are orthogonal concepts, though they
 183 // interact.  E.g., all existing itanium machines are cache-coherent, but
 184 // the hardware can freely reorder loads wrt other loads unless it sees a
 185 // load-acquire instruction.  All existing sparc machines are cache-coherent
 186 // and, unlike itanium, TSO guarantees that the hardware orders loads wrt
 187 // loads and stores, and stores wrt to each other.
 188 //
 189 // Consider the implementation of loadload.  *If* your platform *isn't*
 190 // cache-coherent, then loadload must not only prevent hardware load
 191 // instruction reordering, but it must *also* ensure that subsequent
 192 // loads from addresses that could be written by other processors (i.e.,
 193 // that are broadcast by other processors) go all the way to the first
 194 // level of memory shared by those processors and the one issuing
 195 // the loadload.
 196 //
 197 // So if we have a MP that has, say, a per-processor D$ that doesn't see
 198 // writes by other processors, and has a shared E$ that does, the loadload
 199 // barrier would have to make sure that either
 200 //
 201 // 1. cache lines in the issuing processor's D$ that contained data from
 202 // addresses that could be written by other processors are invalidated, so
 203 // subsequent loads from those addresses go to the E$, (it could do this
 204 // by tagging such cache lines as 'shared', though how to tell the hardware
 205 // to do the tagging is an interesting problem), or
 206 //
 207 // 2. there never are such cache lines in the issuing processor's D$, which
 208 // means all references to shared data (however identified: see above)
 209 // bypass the D$ (i.e., are satisfied from the E$).
 210 //
 211 // If your machine doesn't have an E$, substitute 'main memory' for 'E$'.
 212 //
 213 // Either of these alternatives is a pain, so no current machine we know of
 214 // has incoherent caches.
 215 //
 216 // If loadload didn't have these properties, the store-release sequence for
 217 // publishing a shared data structure wouldn't work, because a processor
 218 // trying to read data newly published by another processor might go to
 219 // its own incoherent caches to satisfy the read instead of to the newly
 220 // written shared memory.
 221 //
 222 //
 223 //                NOTE WELL!!
 224 //
 225 //                A Note on MutexLocker and Friends
 226 //
 227 // See mutexLocker.hpp.  We assume throughout the VM that MutexLocker's
 228 // and friends' constructors do a fence, a lock and an acquire *in that
 229 // order*.  And that their destructors do a release and unlock, in *that*
 230 // order.  If their implementations change such that these assumptions
 231 // are violated, a whole lot of code will break.
 232 
 233 enum ScopedFenceType {
 234     X_ACQUIRE
 235   , RELEASE_X
 236   , RELEASE_X_FENCE
 237 };
 238 
 239 template <ScopedFenceType T>
 240 class ScopedFenceGeneral: public StackObj {
 241  public:
 242   void prefix() {}
 243   void postfix() {}
 244 };
 245 
 246 template <ScopedFenceType T>
 247 class ScopedFence : public ScopedFenceGeneral<T> {
 248   void *const _field;
 249  public:
 250   ScopedFence(void *const field) : _field(field) { prefix(); }
 251   ~ScopedFence() { postfix(); }
 252   void prefix() { ScopedFenceGeneral<T>::prefix(); }
 253   void postfix() { ScopedFenceGeneral<T>::postfix(); }
 254 };
 255 
 256 class OrderAccess : private Atomic {
 257  public:
 258   // barriers
 259   static void     loadload();
 260   static void     storestore();
 261   static void     loadstore();
 262   static void     storeload();
 263 
 264   static void     acquire();
 265   static void     release();
 266   static void     fence();
 267 
 268   template <typename T>
 269   static T        load_acquire(const volatile T* p);
 270 
 271   static intptr_t load_ptr_acquire(const volatile intptr_t* p);
 272   static void*    load_ptr_acquire(const volatile void*     p);
 273 
 274   template <typename T, typename D>
 275   static void     release_store(volatile D* p, T v);
 276 
 277   static void     release_store_ptr(volatile intptr_t* p, intptr_t v);
 278   static void     release_store_ptr(volatile void*     p, void*    v);
 279 
 280   template <typename T, typename D>
 281   static void     release_store_fence(volatile D* p, T v);
 282 
 283   static void     release_store_ptr_fence(volatile intptr_t* p, intptr_t v);
 284   static void     release_store_ptr_fence(volatile void*     p, void*    v);
 285 
 286  private:
 287   // This is a helper that invokes the StubRoutines::fence_entry()
 288   // routine if it exists, It should only be used by platforms that
 289   // don't have another way to do the inline assembly.
 290   static void StubRoutines_fence();
 291 
 292   // Give platforms a variation point to specialize.
 293   template<size_t byte_size, ScopedFenceType type> struct PlatformOrderedStore;
 294   template<size_t byte_size, ScopedFenceType type> struct PlatformOrderedLoad;
 295 
 296   template<typename FieldType, ScopedFenceType FenceType>
 297   static void ordered_store(volatile FieldType* p, FieldType v);
 298 
 299   template<typename FieldType, ScopedFenceType FenceType>
 300   static FieldType ordered_load(const volatile FieldType* p);
 301 };
 302 
 303 // The following methods can be specialized using simple template specialization
 304 // in the platform specific files for optimization purposes. Otherwise the
 305 // generalized variant is used.
 306 
 307 template<size_t byte_size, ScopedFenceType type>
 308 struct OrderAccess::PlatformOrderedStore VALUE_OBJ_CLASS_SPEC {
 309   template <typename T>
 310   void operator()(T v, volatile T* p) const {
 311     ordered_store<T, type>(p, v);
 312   }
 313 };
 314 
 315 template<size_t byte_size, ScopedFenceType type>
 316 struct OrderAccess::PlatformOrderedLoad VALUE_OBJ_CLASS_SPEC {
 317   template <typename T>
 318   T operator()(const volatile T* p) const {
 319     return ordered_load<T, type>(p);
 320   }
 321 };
 322 
 323 #endif // SHARE_VM_RUNTIME_ORDERACCESS_HPP