1 /*
   2  * Copyright (c) 2015, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_SHARED_TASKQUEUE_INLINE_HPP
  26 #define SHARE_VM_GC_SHARED_TASKQUEUE_INLINE_HPP
  27 
  28 #include "gc/shared/taskqueue.hpp"
  29 #include "memory/allocation.inline.hpp"
  30 #include "oops/oop.inline.hpp"
  31 #include "runtime/atomic.hpp"
  32 #include "runtime/orderAccess.inline.hpp"
  33 #include "utilities/debug.hpp"
  34 #include "utilities/stack.inline.hpp"
  35 
  36 template <class T, MEMFLAGS F>
  37 inline GenericTaskQueueSet<T, F>::GenericTaskQueueSet(int n) : _n(n) {
  38   typedef T* GenericTaskQueuePtr;
  39   _queues = NEW_C_HEAP_ARRAY(GenericTaskQueuePtr, n, F);
  40   for (int i = 0; i < n; i++) {
  41     _queues[i] = NULL;
  42   }
  43 }
  44 
  45 template<class E, MEMFLAGS F, unsigned int N>
  46 inline void GenericTaskQueue<E, F, N>::initialize() {
  47   _elems = ArrayAllocator<E>::allocate(N, F);
  48 }
  49 
  50 template<class E, MEMFLAGS F, unsigned int N>
  51 inline GenericTaskQueue<E, F, N>::~GenericTaskQueue() {
  52   assert(false, "This code is currently never called");
  53   ArrayAllocator<E>::free(const_cast<E*>(_elems), N);
  54 }
  55 
  56 template<class E, MEMFLAGS F, unsigned int N>
  57 bool GenericTaskQueue<E, F, N>::push_slow(E t, uint dirty_n_elems) {
  58   if (dirty_n_elems == N - 1) {
  59     // Actually means 0, so do the push.
  60     uint localBot = _bottom;
  61     // g++ complains if the volatile result of the assignment is
  62     // unused, so we cast the volatile away.  We cannot cast directly
  63     // to void, because gcc treats that as not using the result of the
  64     // assignment.  However, casting to E& means that we trigger an
  65     // unused-value warning.  So, we cast the E& to void.
  66     (void)const_cast<E&>(_elems[localBot] = t);
  67     OrderAccess::release_store(&_bottom, increment_index(localBot));
  68     TASKQUEUE_STATS_ONLY(stats.record_push());
  69     return true;
  70   }
  71   return false;
  72 }
  73 
  74 template<class E, MEMFLAGS F, unsigned int N> inline bool
  75 GenericTaskQueue<E, F, N>::push(E t) {
  76   uint localBot = _bottom;
  77   assert(localBot < N, "_bottom out of range.");
  78   idx_t top = _age.top();
  79   uint dirty_n_elems = dirty_size(localBot, top);
  80   assert(dirty_n_elems < N, "n_elems out of range.");
  81   if (dirty_n_elems < max_elems()) {
  82     // g++ complains if the volatile result of the assignment is
  83     // unused, so we cast the volatile away.  We cannot cast directly
  84     // to void, because gcc treats that as not using the result of the
  85     // assignment.  However, casting to E& means that we trigger an
  86     // unused-value warning.  So, we cast the E& to void.
  87     (void) const_cast<E&>(_elems[localBot] = t);
  88     OrderAccess::release_store(&_bottom, increment_index(localBot));
  89     TASKQUEUE_STATS_ONLY(stats.record_push());
  90     return true;
  91   } else {
  92     return push_slow(t, dirty_n_elems);
  93   }
  94 }
  95 
  96 template <class E, MEMFLAGS F, unsigned int N>
  97 inline bool OverflowTaskQueue<E, F, N>::push(E t)
  98 {
  99   if (!taskqueue_t::push(t)) {
 100     overflow_stack()->push(t);
 101     TASKQUEUE_STATS_ONLY(stats.record_overflow(overflow_stack()->size()));
 102   }
 103   return true;
 104 }
 105 
 106 template <class E, MEMFLAGS F, unsigned int N>
 107 inline bool OverflowTaskQueue<E, F, N>::try_push_to_taskqueue(E t) {
 108   return taskqueue_t::push(t);
 109 }
 110 
 111 // pop_local_slow() is done by the owning thread and is trying to
 112 // get the last task in the queue.  It will compete with pop_global()
 113 // that will be used by other threads.  The tag age is incremented
 114 // whenever the queue goes empty which it will do here if this thread
 115 // gets the last task or in pop_global() if the queue wraps (top == 0
 116 // and pop_global() succeeds, see pop_global()).
 117 template<class E, MEMFLAGS F, unsigned int N>
 118 bool GenericTaskQueue<E, F, N>::pop_local_slow(uint localBot, Age oldAge) {
 119   // This queue was observed to contain exactly one element; either this
 120   // thread will claim it, or a competing "pop_global".  In either case,
 121   // the queue will be logically empty afterwards.  Create a new Age value
 122   // that represents the empty queue for the given value of "_bottom".  (We
 123   // must also increment "tag" because of the case where "bottom == 1",
 124   // "top == 0".  A pop_global could read the queue element in that case,
 125   // then have the owner thread do a pop followed by another push.  Without
 126   // the incrementing of "tag", the pop_global's CAS could succeed,
 127   // allowing it to believe it has claimed the stale element.)
 128   Age newAge((idx_t)localBot, oldAge.tag() + 1);
 129   // Perhaps a competing pop_global has already incremented "top", in which
 130   // case it wins the element.
 131   if (localBot == oldAge.top()) {
 132     // No competing pop_global has yet incremented "top"; we'll try to
 133     // install new_age, thus claiming the element.
 134     Age tempAge = _age.cmpxchg(newAge, oldAge);
 135     if (tempAge == oldAge) {
 136       // We win.
 137       assert(dirty_size(localBot, _age.top()) != N - 1, "sanity");
 138       TASKQUEUE_STATS_ONLY(stats.record_pop_slow());
 139       return true;
 140     }
 141   }
 142   // We lose; a completing pop_global gets the element.  But the queue is empty
 143   // and top is greater than bottom.  Fix this representation of the empty queue
 144   // to become the canonical one.
 145   _age.set(newAge);
 146   assert(dirty_size(localBot, _age.top()) != N - 1, "sanity");
 147   return false;
 148 }
 149 
 150 template<class E, MEMFLAGS F, unsigned int N> inline bool
 151 GenericTaskQueue<E, F, N>::pop_local(volatile E& t) {
 152   uint localBot = _bottom;
 153   // This value cannot be N-1.  That can only occur as a result of
 154   // the assignment to bottom in this method.  If it does, this method
 155   // resets the size to 0 before the next call (which is sequential,
 156   // since this is pop_local.)
 157   uint dirty_n_elems = dirty_size(localBot, _age.top());
 158   assert(dirty_n_elems != N - 1, "Shouldn't be possible...");
 159   if (dirty_n_elems == 0) return false;
 160   localBot = decrement_index(localBot);
 161   _bottom = localBot;
 162   // This is necessary to prevent any read below from being reordered
 163   // before the store just above.
 164   OrderAccess::fence();
 165   // g++ complains if the volatile result of the assignment is
 166   // unused, so we cast the volatile away.  We cannot cast directly
 167   // to void, because gcc treats that as not using the result of the
 168   // assignment.  However, casting to E& means that we trigger an
 169   // unused-value warning.  So, we cast the E& to void.
 170   (void) const_cast<E&>(t = _elems[localBot]);
 171   // This is a second read of "age"; the "size()" above is the first.
 172   // If there's still at least one element in the queue, based on the
 173   // "_bottom" and "age" we've read, then there can be no interference with
 174   // a "pop_global" operation, and we're done.
 175   idx_t tp = _age.top();    // XXX
 176   if (size(localBot, tp) > 0) {
 177     assert(dirty_size(localBot, tp) != N - 1, "sanity");
 178     TASKQUEUE_STATS_ONLY(stats.record_pop());
 179     return true;
 180   } else {
 181     // Otherwise, the queue contained exactly one element; we take the slow
 182     // path.
 183     return pop_local_slow(localBot, _age.get());
 184   }
 185 }
 186 
 187 template <class E, MEMFLAGS F, unsigned int N>
 188 bool OverflowTaskQueue<E, F, N>::pop_overflow(E& t)
 189 {
 190   if (overflow_empty()) return false;
 191   t = overflow_stack()->pop();
 192   return true;
 193 }
 194 
 195 template<class E, MEMFLAGS F, unsigned int N>
 196 bool GenericTaskQueue<E, F, N>::pop_global(volatile E& t) {
 197   Age oldAge = _age.get();
 198   // Architectures with weak memory model require a barrier here
 199   // to guarantee that bottom is not older than age,
 200   // which is crucial for the correctness of the algorithm.
 201 #if !(defined SPARC || defined IA32 || defined AMD64)
 202   OrderAccess::fence();
 203 #endif
 204   uint localBot = OrderAccess::load_acquire((volatile juint*)&_bottom);
 205   uint n_elems = size(localBot, oldAge.top());
 206   if (n_elems == 0) {
 207     return false;
 208   }
 209 
 210   // g++ complains if the volatile result of the assignment is
 211   // unused, so we cast the volatile away.  We cannot cast directly
 212   // to void, because gcc treats that as not using the result of the
 213   // assignment.  However, casting to E& means that we trigger an
 214   // unused-value warning.  So, we cast the E& to void.
 215   (void) const_cast<E&>(t = _elems[oldAge.top()]);
 216   Age newAge(oldAge);
 217   newAge.increment();
 218   Age resAge = _age.cmpxchg(newAge, oldAge);
 219 
 220   // Note that using "_bottom" here might fail, since a pop_local might
 221   // have decremented it.
 222   assert(dirty_size(localBot, newAge.top()) != N - 1, "sanity");
 223   return resAge == oldAge;
 224 }
 225 
 226 template<class T, MEMFLAGS F> bool
 227 GenericTaskQueueSet<T, F>::steal_best_of_2(uint queue_num, int* seed, E& t) {
 228   if (_n > 2) {
 229     uint k1 = queue_num;
 230     while (k1 == queue_num) k1 = TaskQueueSetSuper::randomParkAndMiller(seed) % _n;
 231     uint k2 = queue_num;
 232     while (k2 == queue_num || k2 == k1) k2 = TaskQueueSetSuper::randomParkAndMiller(seed) % _n;
 233     // Sample both and try the larger.
 234     uint sz1 = _queues[k1]->size();
 235     uint sz2 = _queues[k2]->size();
 236     if (sz2 > sz1) return _queues[k2]->pop_global(t);
 237     else return _queues[k1]->pop_global(t);
 238   } else if (_n == 2) {
 239     // Just try the other one.
 240     uint k = (queue_num + 1) % 2;
 241     return _queues[k]->pop_global(t);
 242   } else {
 243     assert(_n == 1, "can't be zero.");
 244     return false;
 245   }
 246 }
 247 
 248 template<class T, MEMFLAGS F> bool
 249 GenericTaskQueueSet<T, F>::steal(uint queue_num, int* seed, E& t) {
 250   for (uint i = 0; i < 2 * _n; i++) {
 251     if (steal_best_of_2(queue_num, seed, t)) {
 252       TASKQUEUE_STATS_ONLY(queue(queue_num)->stats.record_steal(true));
 253       return true;
 254     }
 255   }
 256   TASKQUEUE_STATS_ONLY(queue(queue_num)->stats.record_steal(false));
 257   return false;
 258 }
 259 
 260 template <unsigned int N, MEMFLAGS F>
 261 inline typename TaskQueueSuper<N, F>::Age TaskQueueSuper<N, F>::Age::cmpxchg(const Age new_age, const Age old_age) volatile {
 262   return (size_t) Atomic::cmpxchg_ptr((intptr_t)new_age._data,
 263                                       (volatile intptr_t *)&_data,
 264                                       (intptr_t)old_age._data);
 265 }
 266 
 267 template<class E, MEMFLAGS F, unsigned int N>
 268 template<class Fn>
 269 inline void GenericTaskQueue<E, F, N>::iterate(Fn fn) {
 270   uint iters = size();
 271   uint index = _bottom;
 272   for (uint i = 0; i < iters; ++i) {
 273     index = decrement_index(index);
 274     fn(const_cast<E&>(_elems[index])); // cast away volatility
 275   }
 276 }
 277 
 278 
 279 #endif // SHARE_VM_GC_SHARED_TASKQUEUE_INLINE_HPP