1 /*
   2  * Copyright (c) 2000, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OOPS_METHODDATAOOP_HPP
  26 #define SHARE_VM_OOPS_METHODDATAOOP_HPP
  27 
  28 #include "interpreter/bytecodes.hpp"
  29 #include "memory/universe.hpp"
  30 #include "oops/method.hpp"
  31 #include "oops/oop.hpp"
  32 #include "runtime/orderAccess.hpp"
  33 #include "utilities/align.hpp"
  34 #if INCLUDE_JVMCI
  35 #include "jvmci/jvmci_globals.hpp"
  36 #endif
  37 
  38 class BytecodeStream;
  39 class KlassSizeStats;
  40 
  41 // The MethodData object collects counts and other profile information
  42 // during zeroth-tier (interpretive) and first-tier execution.
  43 // The profile is used later by compilation heuristics.  Some heuristics
  44 // enable use of aggressive (or "heroic") optimizations.  An aggressive
  45 // optimization often has a down-side, a corner case that it handles
  46 // poorly, but which is thought to be rare.  The profile provides
  47 // evidence of this rarity for a given method or even BCI.  It allows
  48 // the compiler to back out of the optimization at places where it
  49 // has historically been a poor choice.  Other heuristics try to use
  50 // specific information gathered about types observed at a given site.
  51 //
  52 // All data in the profile is approximate.  It is expected to be accurate
  53 // on the whole, but the system expects occasional inaccuraces, due to
  54 // counter overflow, multiprocessor races during data collection, space
  55 // limitations, missing MDO blocks, etc.  Bad or missing data will degrade
  56 // optimization quality but will not affect correctness.  Also, each MDO
  57 // is marked with its birth-date ("creation_mileage") which can be used
  58 // to assess the quality ("maturity") of its data.
  59 //
  60 // Short (<32-bit) counters are designed to overflow to a known "saturated"
  61 // state.  Also, certain recorded per-BCI events are given one-bit counters
  62 // which overflow to a saturated state which applied to all counters at
  63 // that BCI.  In other words, there is a small lattice which approximates
  64 // the ideal of an infinite-precision counter for each event at each BCI,
  65 // and the lattice quickly "bottoms out" in a state where all counters
  66 // are taken to be indefinitely large.
  67 //
  68 // The reader will find many data races in profile gathering code, starting
  69 // with invocation counter incrementation.  None of these races harm correct
  70 // execution of the compiled code.
  71 
  72 // forward decl
  73 class ProfileData;
  74 
  75 // DataLayout
  76 //
  77 // Overlay for generic profiling data.
  78 class DataLayout VALUE_OBJ_CLASS_SPEC {
  79   friend class VMStructs;
  80   friend class JVMCIVMStructs;
  81 
  82 private:
  83   // Every data layout begins with a header.  This header
  84   // contains a tag, which is used to indicate the size/layout
  85   // of the data, 4 bits of flags, which can be used in any way,
  86   // 4 bits of trap history (none/one reason/many reasons),
  87   // and a bci, which is used to tie this piece of data to a
  88   // specific bci in the bytecodes.
  89   union {
  90     intptr_t _bits;
  91     struct {
  92       u1 _tag;
  93       u1 _flags;
  94       u2 _bci;
  95     } _struct;
  96   } _header;
  97 
  98   // The data layout has an arbitrary number of cells, each sized
  99   // to accomodate a pointer or an integer.
 100   intptr_t _cells[1];
 101 
 102   // Some types of data layouts need a length field.
 103   static bool needs_array_len(u1 tag);
 104 
 105 public:
 106   enum {
 107     counter_increment = 1
 108   };
 109 
 110   enum {
 111     cell_size = sizeof(intptr_t)
 112   };
 113 
 114   // Tag values
 115   enum {
 116     no_tag,
 117     bit_data_tag,
 118     counter_data_tag,
 119     jump_data_tag,
 120     receiver_type_data_tag,
 121     virtual_call_data_tag,
 122     ret_data_tag,
 123     branch_data_tag,
 124     multi_branch_data_tag,
 125     arg_info_data_tag,
 126     call_type_data_tag,
 127     virtual_call_type_data_tag,
 128     parameters_type_data_tag,
 129     speculative_trap_data_tag
 130   };
 131 
 132   enum {
 133     // The _struct._flags word is formatted as [trap_state:4 | flags:4].
 134     // The trap state breaks down further as [recompile:1 | reason:3].
 135     // This further breakdown is defined in deoptimization.cpp.
 136     // See Deoptimization::trap_state_reason for an assert that
 137     // trap_bits is big enough to hold reasons < Reason_RECORDED_LIMIT.
 138     //
 139     // The trap_state is collected only if ProfileTraps is true.
 140     trap_bits = 1+3,  // 3: enough to distinguish [0..Reason_RECORDED_LIMIT].
 141     trap_shift = BitsPerByte - trap_bits,
 142     trap_mask = right_n_bits(trap_bits),
 143     trap_mask_in_place = (trap_mask << trap_shift),
 144     flag_limit = trap_shift,
 145     flag_mask = right_n_bits(flag_limit),
 146     first_flag = 0
 147   };
 148 
 149   // Size computation
 150   static int header_size_in_bytes() {
 151     return cell_size;
 152   }
 153   static int header_size_in_cells() {
 154     return 1;
 155   }
 156 
 157   static int compute_size_in_bytes(int cell_count) {
 158     return header_size_in_bytes() + cell_count * cell_size;
 159   }
 160 
 161   // Initialization
 162   void initialize(u1 tag, u2 bci, int cell_count);
 163 
 164   // Accessors
 165   u1 tag() {
 166     return _header._struct._tag;
 167   }
 168 
 169   // Return a few bits of trap state.  Range is [0..trap_mask].
 170   // The state tells if traps with zero, one, or many reasons have occurred.
 171   // It also tells whether zero or many recompilations have occurred.
 172   // The associated trap histogram in the MDO itself tells whether
 173   // traps are common or not.  If a BCI shows that a trap X has
 174   // occurred, and the MDO shows N occurrences of X, we make the
 175   // simplifying assumption that all N occurrences can be blamed
 176   // on that BCI.
 177   int trap_state() const {
 178     return ((_header._struct._flags >> trap_shift) & trap_mask);
 179   }
 180 
 181   void set_trap_state(int new_state) {
 182     assert(ProfileTraps, "used only under +ProfileTraps");
 183     uint old_flags = (_header._struct._flags & flag_mask);
 184     _header._struct._flags = (new_state << trap_shift) | old_flags;
 185   }
 186 
 187   u1 flags() const {
 188     return _header._struct._flags;
 189   }
 190 
 191   u2 bci() const {
 192     return _header._struct._bci;
 193   }
 194 
 195   void set_header(intptr_t value) {
 196     _header._bits = value;
 197   }
 198   intptr_t header() {
 199     return _header._bits;
 200   }
 201   void set_cell_at(int index, intptr_t value) {
 202     _cells[index] = value;
 203   }
 204   void release_set_cell_at(int index, intptr_t value) {
 205     OrderAccess::release_store_ptr(&_cells[index], value);
 206   }
 207   intptr_t cell_at(int index) const {
 208     return _cells[index];
 209   }
 210 
 211   void set_flag_at(int flag_number) {
 212     assert(flag_number < flag_limit, "oob");
 213     _header._struct._flags |= (0x1 << flag_number);
 214   }
 215   bool flag_at(int flag_number) const {
 216     assert(flag_number < flag_limit, "oob");
 217     return (_header._struct._flags & (0x1 << flag_number)) != 0;
 218   }
 219 
 220   // Low-level support for code generation.
 221   static ByteSize header_offset() {
 222     return byte_offset_of(DataLayout, _header);
 223   }
 224   static ByteSize tag_offset() {
 225     return byte_offset_of(DataLayout, _header._struct._tag);
 226   }
 227   static ByteSize flags_offset() {
 228     return byte_offset_of(DataLayout, _header._struct._flags);
 229   }
 230   static ByteSize bci_offset() {
 231     return byte_offset_of(DataLayout, _header._struct._bci);
 232   }
 233   static ByteSize cell_offset(int index) {
 234     return byte_offset_of(DataLayout, _cells) + in_ByteSize(index * cell_size);
 235   }
 236 #ifdef CC_INTERP
 237   static int cell_offset_in_bytes(int index) {
 238     return (int)offset_of(DataLayout, _cells[index]);
 239   }
 240 #endif // CC_INTERP
 241   // Return a value which, when or-ed as a byte into _flags, sets the flag.
 242   static int flag_number_to_byte_constant(int flag_number) {
 243     assert(0 <= flag_number && flag_number < flag_limit, "oob");
 244     DataLayout temp; temp.set_header(0);
 245     temp.set_flag_at(flag_number);
 246     return temp._header._struct._flags;
 247   }
 248   // Return a value which, when or-ed as a word into _header, sets the flag.
 249   static intptr_t flag_mask_to_header_mask(int byte_constant) {
 250     DataLayout temp; temp.set_header(0);
 251     temp._header._struct._flags = byte_constant;
 252     return temp._header._bits;
 253   }
 254 
 255   ProfileData* data_in();
 256 
 257   // GC support
 258   void clean_weak_klass_links(BoolObjectClosure* cl);
 259 
 260   // Redefinition support
 261   void clean_weak_method_links();
 262   DEBUG_ONLY(void verify_clean_weak_method_links();)
 263 };
 264 
 265 
 266 // ProfileData class hierarchy
 267 class ProfileData;
 268 class   BitData;
 269 class     CounterData;
 270 class       ReceiverTypeData;
 271 class         VirtualCallData;
 272 class           VirtualCallTypeData;
 273 class       RetData;
 274 class       CallTypeData;
 275 class   JumpData;
 276 class     BranchData;
 277 class   ArrayData;
 278 class     MultiBranchData;
 279 class     ArgInfoData;
 280 class     ParametersTypeData;
 281 class   SpeculativeTrapData;
 282 
 283 // ProfileData
 284 //
 285 // A ProfileData object is created to refer to a section of profiling
 286 // data in a structured way.
 287 class ProfileData : public ResourceObj {
 288   friend class TypeEntries;
 289   friend class ReturnTypeEntry;
 290   friend class TypeStackSlotEntries;
 291 private:
 292   enum {
 293     tab_width_one = 16,
 294     tab_width_two = 36
 295   };
 296 
 297   // This is a pointer to a section of profiling data.
 298   DataLayout* _data;
 299 
 300   char* print_data_on_helper(const MethodData* md) const;
 301 
 302 protected:
 303   DataLayout* data() { return _data; }
 304   const DataLayout* data() const { return _data; }
 305 
 306   enum {
 307     cell_size = DataLayout::cell_size
 308   };
 309 
 310 public:
 311   // How many cells are in this?
 312   virtual int cell_count() const {
 313     ShouldNotReachHere();
 314     return -1;
 315   }
 316 
 317   // Return the size of this data.
 318   int size_in_bytes() {
 319     return DataLayout::compute_size_in_bytes(cell_count());
 320   }
 321 
 322 protected:
 323   // Low-level accessors for underlying data
 324   void set_intptr_at(int index, intptr_t value) {
 325     assert(0 <= index && index < cell_count(), "oob");
 326     data()->set_cell_at(index, value);
 327   }
 328   void release_set_intptr_at(int index, intptr_t value) {
 329     assert(0 <= index && index < cell_count(), "oob");
 330     data()->release_set_cell_at(index, value);
 331   }
 332   intptr_t intptr_at(int index) const {
 333     assert(0 <= index && index < cell_count(), "oob");
 334     return data()->cell_at(index);
 335   }
 336   void set_uint_at(int index, uint value) {
 337     set_intptr_at(index, (intptr_t) value);
 338   }
 339   void release_set_uint_at(int index, uint value) {
 340     release_set_intptr_at(index, (intptr_t) value);
 341   }
 342   uint uint_at(int index) const {
 343     return (uint)intptr_at(index);
 344   }
 345   void set_int_at(int index, int value) {
 346     set_intptr_at(index, (intptr_t) value);
 347   }
 348   void release_set_int_at(int index, int value) {
 349     release_set_intptr_at(index, (intptr_t) value);
 350   }
 351   int int_at(int index) const {
 352     return (int)intptr_at(index);
 353   }
 354   int int_at_unchecked(int index) const {
 355     return (int)data()->cell_at(index);
 356   }
 357   void set_oop_at(int index, oop value) {
 358     set_intptr_at(index, cast_from_oop<intptr_t>(value));
 359   }
 360   oop oop_at(int index) const {
 361     return cast_to_oop(intptr_at(index));
 362   }
 363 
 364   void set_flag_at(int flag_number) {
 365     data()->set_flag_at(flag_number);
 366   }
 367   bool flag_at(int flag_number) const {
 368     return data()->flag_at(flag_number);
 369   }
 370 
 371   // two convenient imports for use by subclasses:
 372   static ByteSize cell_offset(int index) {
 373     return DataLayout::cell_offset(index);
 374   }
 375   static int flag_number_to_byte_constant(int flag_number) {
 376     return DataLayout::flag_number_to_byte_constant(flag_number);
 377   }
 378 
 379   ProfileData(DataLayout* data) {
 380     _data = data;
 381   }
 382 
 383 #ifdef CC_INTERP
 384   // Static low level accessors for DataLayout with ProfileData's semantics.
 385 
 386   static int cell_offset_in_bytes(int index) {
 387     return DataLayout::cell_offset_in_bytes(index);
 388   }
 389 
 390   static void increment_uint_at_no_overflow(DataLayout* layout, int index,
 391                                             int inc = DataLayout::counter_increment) {
 392     uint count = ((uint)layout->cell_at(index)) + inc;
 393     if (count == 0) return;
 394     layout->set_cell_at(index, (intptr_t) count);
 395   }
 396 
 397   static int int_at(DataLayout* layout, int index) {
 398     return (int)layout->cell_at(index);
 399   }
 400 
 401   static int uint_at(DataLayout* layout, int index) {
 402     return (uint)layout->cell_at(index);
 403   }
 404 
 405   static oop oop_at(DataLayout* layout, int index) {
 406     return cast_to_oop(layout->cell_at(index));
 407   }
 408 
 409   static void set_intptr_at(DataLayout* layout, int index, intptr_t value) {
 410     layout->set_cell_at(index, (intptr_t) value);
 411   }
 412 
 413   static void set_flag_at(DataLayout* layout, int flag_number) {
 414     layout->set_flag_at(flag_number);
 415   }
 416 #endif // CC_INTERP
 417 
 418 public:
 419   // Constructor for invalid ProfileData.
 420   ProfileData();
 421 
 422   u2 bci() const {
 423     return data()->bci();
 424   }
 425 
 426   address dp() {
 427     return (address)_data;
 428   }
 429 
 430   int trap_state() const {
 431     return data()->trap_state();
 432   }
 433   void set_trap_state(int new_state) {
 434     data()->set_trap_state(new_state);
 435   }
 436 
 437   // Type checking
 438   virtual bool is_BitData()         const { return false; }
 439   virtual bool is_CounterData()     const { return false; }
 440   virtual bool is_JumpData()        const { return false; }
 441   virtual bool is_ReceiverTypeData()const { return false; }
 442   virtual bool is_VirtualCallData() const { return false; }
 443   virtual bool is_RetData()         const { return false; }
 444   virtual bool is_BranchData()      const { return false; }
 445   virtual bool is_ArrayData()       const { return false; }
 446   virtual bool is_MultiBranchData() const { return false; }
 447   virtual bool is_ArgInfoData()     const { return false; }
 448   virtual bool is_CallTypeData()    const { return false; }
 449   virtual bool is_VirtualCallTypeData()const { return false; }
 450   virtual bool is_ParametersTypeData() const { return false; }
 451   virtual bool is_SpeculativeTrapData()const { return false; }
 452 
 453 
 454   BitData* as_BitData() const {
 455     assert(is_BitData(), "wrong type");
 456     return is_BitData()         ? (BitData*)        this : NULL;
 457   }
 458   CounterData* as_CounterData() const {
 459     assert(is_CounterData(), "wrong type");
 460     return is_CounterData()     ? (CounterData*)    this : NULL;
 461   }
 462   JumpData* as_JumpData() const {
 463     assert(is_JumpData(), "wrong type");
 464     return is_JumpData()        ? (JumpData*)       this : NULL;
 465   }
 466   ReceiverTypeData* as_ReceiverTypeData() const {
 467     assert(is_ReceiverTypeData(), "wrong type");
 468     return is_ReceiverTypeData() ? (ReceiverTypeData*)this : NULL;
 469   }
 470   VirtualCallData* as_VirtualCallData() const {
 471     assert(is_VirtualCallData(), "wrong type");
 472     return is_VirtualCallData() ? (VirtualCallData*)this : NULL;
 473   }
 474   RetData* as_RetData() const {
 475     assert(is_RetData(), "wrong type");
 476     return is_RetData()         ? (RetData*)        this : NULL;
 477   }
 478   BranchData* as_BranchData() const {
 479     assert(is_BranchData(), "wrong type");
 480     return is_BranchData()      ? (BranchData*)     this : NULL;
 481   }
 482   ArrayData* as_ArrayData() const {
 483     assert(is_ArrayData(), "wrong type");
 484     return is_ArrayData()       ? (ArrayData*)      this : NULL;
 485   }
 486   MultiBranchData* as_MultiBranchData() const {
 487     assert(is_MultiBranchData(), "wrong type");
 488     return is_MultiBranchData() ? (MultiBranchData*)this : NULL;
 489   }
 490   ArgInfoData* as_ArgInfoData() const {
 491     assert(is_ArgInfoData(), "wrong type");
 492     return is_ArgInfoData() ? (ArgInfoData*)this : NULL;
 493   }
 494   CallTypeData* as_CallTypeData() const {
 495     assert(is_CallTypeData(), "wrong type");
 496     return is_CallTypeData() ? (CallTypeData*)this : NULL;
 497   }
 498   VirtualCallTypeData* as_VirtualCallTypeData() const {
 499     assert(is_VirtualCallTypeData(), "wrong type");
 500     return is_VirtualCallTypeData() ? (VirtualCallTypeData*)this : NULL;
 501   }
 502   ParametersTypeData* as_ParametersTypeData() const {
 503     assert(is_ParametersTypeData(), "wrong type");
 504     return is_ParametersTypeData() ? (ParametersTypeData*)this : NULL;
 505   }
 506   SpeculativeTrapData* as_SpeculativeTrapData() const {
 507     assert(is_SpeculativeTrapData(), "wrong type");
 508     return is_SpeculativeTrapData() ? (SpeculativeTrapData*)this : NULL;
 509   }
 510 
 511 
 512   // Subclass specific initialization
 513   virtual void post_initialize(BytecodeStream* stream, MethodData* mdo) {}
 514 
 515   // GC support
 516   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {}
 517 
 518   // Redefinition support
 519   virtual void clean_weak_method_links() {}
 520   DEBUG_ONLY(virtual void verify_clean_weak_method_links() {})
 521 
 522   // CI translation: ProfileData can represent both MethodDataOop data
 523   // as well as CIMethodData data. This function is provided for translating
 524   // an oop in a ProfileData to the ci equivalent. Generally speaking,
 525   // most ProfileData don't require any translation, so we provide the null
 526   // translation here, and the required translators are in the ci subclasses.
 527   virtual void translate_from(const ProfileData* data) {}
 528 
 529   virtual void print_data_on(outputStream* st, const char* extra = NULL) const {
 530     ShouldNotReachHere();
 531   }
 532 
 533   void print_data_on(outputStream* st, const MethodData* md) const;
 534 
 535   void print_shared(outputStream* st, const char* name, const char* extra) const;
 536   void tab(outputStream* st, bool first = false) const;
 537 };
 538 
 539 // BitData
 540 //
 541 // A BitData holds a flag or two in its header.
 542 class BitData : public ProfileData {
 543   friend class VMStructs;
 544   friend class JVMCIVMStructs;
 545 protected:
 546   enum {
 547     // null_seen:
 548     //  saw a null operand (cast/aastore/instanceof)
 549       null_seen_flag              = DataLayout::first_flag + 0
 550 #if INCLUDE_JVMCI
 551     // bytecode threw any exception
 552     , exception_seen_flag         = null_seen_flag + 1
 553 #endif
 554   };
 555   enum { bit_cell_count = 0 };  // no additional data fields needed.
 556 public:
 557   BitData(DataLayout* layout) : ProfileData(layout) {
 558   }
 559 
 560   virtual bool is_BitData() const { return true; }
 561 
 562   static int static_cell_count() {
 563     return bit_cell_count;
 564   }
 565 
 566   virtual int cell_count() const {
 567     return static_cell_count();
 568   }
 569 
 570   // Accessor
 571 
 572   // The null_seen flag bit is specially known to the interpreter.
 573   // Consulting it allows the compiler to avoid setting up null_check traps.
 574   bool null_seen()     { return flag_at(null_seen_flag); }
 575   void set_null_seen()    { set_flag_at(null_seen_flag); }
 576 
 577 #if INCLUDE_JVMCI
 578   // true if an exception was thrown at the specific BCI
 579   bool exception_seen() { return flag_at(exception_seen_flag); }
 580   void set_exception_seen() { set_flag_at(exception_seen_flag); }
 581 #endif
 582 
 583   // Code generation support
 584   static int null_seen_byte_constant() {
 585     return flag_number_to_byte_constant(null_seen_flag);
 586   }
 587 
 588   static ByteSize bit_data_size() {
 589     return cell_offset(bit_cell_count);
 590   }
 591 
 592 #ifdef CC_INTERP
 593   static int bit_data_size_in_bytes() {
 594     return cell_offset_in_bytes(bit_cell_count);
 595   }
 596 
 597   static void set_null_seen(DataLayout* layout) {
 598     set_flag_at(layout, null_seen_flag);
 599   }
 600 
 601   static DataLayout* advance(DataLayout* layout) {
 602     return (DataLayout*) (((address)layout) + (ssize_t)BitData::bit_data_size_in_bytes());
 603   }
 604 #endif // CC_INTERP
 605 
 606   void print_data_on(outputStream* st, const char* extra = NULL) const;
 607 };
 608 
 609 // CounterData
 610 //
 611 // A CounterData corresponds to a simple counter.
 612 class CounterData : public BitData {
 613   friend class VMStructs;
 614   friend class JVMCIVMStructs;
 615 protected:
 616   enum {
 617     count_off,
 618     counter_cell_count
 619   };
 620 public:
 621   CounterData(DataLayout* layout) : BitData(layout) {}
 622 
 623   virtual bool is_CounterData() const { return true; }
 624 
 625   static int static_cell_count() {
 626     return counter_cell_count;
 627   }
 628 
 629   virtual int cell_count() const {
 630     return static_cell_count();
 631   }
 632 
 633   // Direct accessor
 634   uint count() const {
 635     return uint_at(count_off);
 636   }
 637 
 638   // Code generation support
 639   static ByteSize count_offset() {
 640     return cell_offset(count_off);
 641   }
 642   static ByteSize counter_data_size() {
 643     return cell_offset(counter_cell_count);
 644   }
 645 
 646   void set_count(uint count) {
 647     set_uint_at(count_off, count);
 648   }
 649 
 650 #ifdef CC_INTERP
 651   static int counter_data_size_in_bytes() {
 652     return cell_offset_in_bytes(counter_cell_count);
 653   }
 654 
 655   static void increment_count_no_overflow(DataLayout* layout) {
 656     increment_uint_at_no_overflow(layout, count_off);
 657   }
 658 
 659   // Support counter decrementation at checkcast / subtype check failed.
 660   static void decrement_count(DataLayout* layout) {
 661     increment_uint_at_no_overflow(layout, count_off, -1);
 662   }
 663 
 664   static DataLayout* advance(DataLayout* layout) {
 665     return (DataLayout*) (((address)layout) + (ssize_t)CounterData::counter_data_size_in_bytes());
 666   }
 667 #endif // CC_INTERP
 668 
 669   void print_data_on(outputStream* st, const char* extra = NULL) const;
 670 };
 671 
 672 // JumpData
 673 //
 674 // A JumpData is used to access profiling information for a direct
 675 // branch.  It is a counter, used for counting the number of branches,
 676 // plus a data displacement, used for realigning the data pointer to
 677 // the corresponding target bci.
 678 class JumpData : public ProfileData {
 679   friend class VMStructs;
 680   friend class JVMCIVMStructs;
 681 protected:
 682   enum {
 683     taken_off_set,
 684     displacement_off_set,
 685     jump_cell_count
 686   };
 687 
 688   void set_displacement(int displacement) {
 689     set_int_at(displacement_off_set, displacement);
 690   }
 691 
 692 public:
 693   JumpData(DataLayout* layout) : ProfileData(layout) {
 694     assert(layout->tag() == DataLayout::jump_data_tag ||
 695       layout->tag() == DataLayout::branch_data_tag, "wrong type");
 696   }
 697 
 698   virtual bool is_JumpData() const { return true; }
 699 
 700   static int static_cell_count() {
 701     return jump_cell_count;
 702   }
 703 
 704   virtual int cell_count() const {
 705     return static_cell_count();
 706   }
 707 
 708   // Direct accessor
 709   uint taken() const {
 710     return uint_at(taken_off_set);
 711   }
 712 
 713   void set_taken(uint cnt) {
 714     set_uint_at(taken_off_set, cnt);
 715   }
 716 
 717   // Saturating counter
 718   uint inc_taken() {
 719     uint cnt = taken() + 1;
 720     // Did we wrap? Will compiler screw us??
 721     if (cnt == 0) cnt--;
 722     set_uint_at(taken_off_set, cnt);
 723     return cnt;
 724   }
 725 
 726   int displacement() const {
 727     return int_at(displacement_off_set);
 728   }
 729 
 730   // Code generation support
 731   static ByteSize taken_offset() {
 732     return cell_offset(taken_off_set);
 733   }
 734 
 735   static ByteSize displacement_offset() {
 736     return cell_offset(displacement_off_set);
 737   }
 738 
 739 #ifdef CC_INTERP
 740   static void increment_taken_count_no_overflow(DataLayout* layout) {
 741     increment_uint_at_no_overflow(layout, taken_off_set);
 742   }
 743 
 744   static DataLayout* advance_taken(DataLayout* layout) {
 745     return (DataLayout*) (((address)layout) + (ssize_t)int_at(layout, displacement_off_set));
 746   }
 747 
 748   static uint taken_count(DataLayout* layout) {
 749     return (uint) uint_at(layout, taken_off_set);
 750   }
 751 #endif // CC_INTERP
 752 
 753   // Specific initialization.
 754   void post_initialize(BytecodeStream* stream, MethodData* mdo);
 755 
 756   void print_data_on(outputStream* st, const char* extra = NULL) const;
 757 };
 758 
 759 // Entries in a ProfileData object to record types: it can either be
 760 // none (no profile), unknown (conflicting profile data) or a klass if
 761 // a single one is seen. Whether a null reference was seen is also
 762 // recorded. No counter is associated with the type and a single type
 763 // is tracked (unlike VirtualCallData).
 764 class TypeEntries {
 765 
 766 public:
 767 
 768   // A single cell is used to record information for a type:
 769   // - the cell is initialized to 0
 770   // - when a type is discovered it is stored in the cell
 771   // - bit zero of the cell is used to record whether a null reference
 772   // was encountered or not
 773   // - bit 1 is set to record a conflict in the type information
 774 
 775   enum {
 776     null_seen = 1,
 777     type_mask = ~null_seen,
 778     type_unknown = 2,
 779     status_bits = null_seen | type_unknown,
 780     type_klass_mask = ~status_bits
 781   };
 782 
 783   // what to initialize a cell to
 784   static intptr_t type_none() {
 785     return 0;
 786   }
 787 
 788   // null seen = bit 0 set?
 789   static bool was_null_seen(intptr_t v) {
 790     return (v & null_seen) != 0;
 791   }
 792 
 793   // conflicting type information = bit 1 set?
 794   static bool is_type_unknown(intptr_t v) {
 795     return (v & type_unknown) != 0;
 796   }
 797 
 798   // not type information yet = all bits cleared, ignoring bit 0?
 799   static bool is_type_none(intptr_t v) {
 800     return (v & type_mask) == 0;
 801   }
 802 
 803   // recorded type: cell without bit 0 and 1
 804   static intptr_t klass_part(intptr_t v) {
 805     intptr_t r = v & type_klass_mask;
 806     return r;
 807   }
 808 
 809   // type recorded
 810   static Klass* valid_klass(intptr_t k) {
 811     if (!is_type_none(k) &&
 812         !is_type_unknown(k)) {
 813       Klass* res = (Klass*)klass_part(k);
 814       assert(res != NULL, "invalid");
 815       return res;
 816     } else {
 817       return NULL;
 818     }
 819   }
 820 
 821   static intptr_t with_status(intptr_t k, intptr_t in) {
 822     return k | (in & status_bits);
 823   }
 824 
 825   static intptr_t with_status(Klass* k, intptr_t in) {
 826     return with_status((intptr_t)k, in);
 827   }
 828 
 829   static void print_klass(outputStream* st, intptr_t k);
 830 
 831   // GC support
 832   static bool is_loader_alive(BoolObjectClosure* is_alive_cl, intptr_t p);
 833 
 834 protected:
 835   // ProfileData object these entries are part of
 836   ProfileData* _pd;
 837   // offset within the ProfileData object where the entries start
 838   const int _base_off;
 839 
 840   TypeEntries(int base_off)
 841     : _base_off(base_off), _pd(NULL) {}
 842 
 843   void set_intptr_at(int index, intptr_t value) {
 844     _pd->set_intptr_at(index, value);
 845   }
 846 
 847   intptr_t intptr_at(int index) const {
 848     return _pd->intptr_at(index);
 849   }
 850 
 851 public:
 852   void set_profile_data(ProfileData* pd) {
 853     _pd = pd;
 854   }
 855 };
 856 
 857 // Type entries used for arguments passed at a call and parameters on
 858 // method entry. 2 cells per entry: one for the type encoded as in
 859 // TypeEntries and one initialized with the stack slot where the
 860 // profiled object is to be found so that the interpreter can locate
 861 // it quickly.
 862 class TypeStackSlotEntries : public TypeEntries {
 863 
 864 private:
 865   enum {
 866     stack_slot_entry,
 867     type_entry,
 868     per_arg_cell_count
 869   };
 870 
 871   // offset of cell for stack slot for entry i within ProfileData object
 872   int stack_slot_offset(int i) const {
 873     return _base_off + stack_slot_local_offset(i);
 874   }
 875 
 876   const int _number_of_entries;
 877 
 878   // offset of cell for type for entry i within ProfileData object
 879   int type_offset_in_cells(int i) const {
 880     return _base_off + type_local_offset(i);
 881   }
 882 
 883 public:
 884 
 885   TypeStackSlotEntries(int base_off, int nb_entries)
 886     : TypeEntries(base_off), _number_of_entries(nb_entries) {}
 887 
 888   static int compute_cell_count(Symbol* signature, bool include_receiver, int max);
 889 
 890   void post_initialize(Symbol* signature, bool has_receiver, bool include_receiver);
 891 
 892   int number_of_entries() const { return _number_of_entries; }
 893 
 894   // offset of cell for stack slot for entry i within this block of cells for a TypeStackSlotEntries
 895   static int stack_slot_local_offset(int i) {
 896     return i * per_arg_cell_count + stack_slot_entry;
 897   }
 898 
 899   // offset of cell for type for entry i within this block of cells for a TypeStackSlotEntries
 900   static int type_local_offset(int i) {
 901     return i * per_arg_cell_count + type_entry;
 902   }
 903 
 904   // stack slot for entry i
 905   uint stack_slot(int i) const {
 906     assert(i >= 0 && i < _number_of_entries, "oob");
 907     return _pd->uint_at(stack_slot_offset(i));
 908   }
 909 
 910   // set stack slot for entry i
 911   void set_stack_slot(int i, uint num) {
 912     assert(i >= 0 && i < _number_of_entries, "oob");
 913     _pd->set_uint_at(stack_slot_offset(i), num);
 914   }
 915 
 916   // type for entry i
 917   intptr_t type(int i) const {
 918     assert(i >= 0 && i < _number_of_entries, "oob");
 919     return _pd->intptr_at(type_offset_in_cells(i));
 920   }
 921 
 922   // set type for entry i
 923   void set_type(int i, intptr_t k) {
 924     assert(i >= 0 && i < _number_of_entries, "oob");
 925     _pd->set_intptr_at(type_offset_in_cells(i), k);
 926   }
 927 
 928   static ByteSize per_arg_size() {
 929     return in_ByteSize(per_arg_cell_count * DataLayout::cell_size);
 930   }
 931 
 932   static int per_arg_count() {
 933     return per_arg_cell_count;
 934   }
 935 
 936   ByteSize type_offset(int i) const {
 937     return DataLayout::cell_offset(type_offset_in_cells(i));
 938   }
 939 
 940   // GC support
 941   void clean_weak_klass_links(BoolObjectClosure* is_alive_closure);
 942 
 943   void print_data_on(outputStream* st) const;
 944 };
 945 
 946 // Type entry used for return from a call. A single cell to record the
 947 // type.
 948 class ReturnTypeEntry : public TypeEntries {
 949 
 950 private:
 951   enum {
 952     cell_count = 1
 953   };
 954 
 955 public:
 956   ReturnTypeEntry(int base_off)
 957     : TypeEntries(base_off) {}
 958 
 959   void post_initialize() {
 960     set_type(type_none());
 961   }
 962 
 963   intptr_t type() const {
 964     return _pd->intptr_at(_base_off);
 965   }
 966 
 967   void set_type(intptr_t k) {
 968     _pd->set_intptr_at(_base_off, k);
 969   }
 970 
 971   static int static_cell_count() {
 972     return cell_count;
 973   }
 974 
 975   static ByteSize size() {
 976     return in_ByteSize(cell_count * DataLayout::cell_size);
 977   }
 978 
 979   ByteSize type_offset() {
 980     return DataLayout::cell_offset(_base_off);
 981   }
 982 
 983   // GC support
 984   void clean_weak_klass_links(BoolObjectClosure* is_alive_closure);
 985 
 986   void print_data_on(outputStream* st) const;
 987 };
 988 
 989 // Entries to collect type information at a call: contains arguments
 990 // (TypeStackSlotEntries), a return type (ReturnTypeEntry) and a
 991 // number of cells. Because the number of cells for the return type is
 992 // smaller than the number of cells for the type of an arguments, the
 993 // number of cells is used to tell how many arguments are profiled and
 994 // whether a return value is profiled. See has_arguments() and
 995 // has_return().
 996 class TypeEntriesAtCall {
 997 private:
 998   static int stack_slot_local_offset(int i) {
 999     return header_cell_count() + TypeStackSlotEntries::stack_slot_local_offset(i);
1000   }
1001 
1002   static int argument_type_local_offset(int i) {
1003     return header_cell_count() + TypeStackSlotEntries::type_local_offset(i);
1004   }
1005 
1006 public:
1007 
1008   static int header_cell_count() {
1009     return 1;
1010   }
1011 
1012   static int cell_count_local_offset() {
1013     return 0;
1014   }
1015 
1016   static int compute_cell_count(BytecodeStream* stream);
1017 
1018   static void initialize(DataLayout* dl, int base, int cell_count) {
1019     int off = base + cell_count_local_offset();
1020     dl->set_cell_at(off, cell_count - base - header_cell_count());
1021   }
1022 
1023   static bool arguments_profiling_enabled();
1024   static bool return_profiling_enabled();
1025 
1026   // Code generation support
1027   static ByteSize cell_count_offset() {
1028     return in_ByteSize(cell_count_local_offset() * DataLayout::cell_size);
1029   }
1030 
1031   static ByteSize args_data_offset() {
1032     return in_ByteSize(header_cell_count() * DataLayout::cell_size);
1033   }
1034 
1035   static ByteSize stack_slot_offset(int i) {
1036     return in_ByteSize(stack_slot_local_offset(i) * DataLayout::cell_size);
1037   }
1038 
1039   static ByteSize argument_type_offset(int i) {
1040     return in_ByteSize(argument_type_local_offset(i) * DataLayout::cell_size);
1041   }
1042 
1043   static ByteSize return_only_size() {
1044     return ReturnTypeEntry::size() + in_ByteSize(header_cell_count() * DataLayout::cell_size);
1045   }
1046 
1047 };
1048 
1049 // CallTypeData
1050 //
1051 // A CallTypeData is used to access profiling information about a non
1052 // virtual call for which we collect type information about arguments
1053 // and return value.
1054 class CallTypeData : public CounterData {
1055 private:
1056   // entries for arguments if any
1057   TypeStackSlotEntries _args;
1058   // entry for return type if any
1059   ReturnTypeEntry _ret;
1060 
1061   int cell_count_global_offset() const {
1062     return CounterData::static_cell_count() + TypeEntriesAtCall::cell_count_local_offset();
1063   }
1064 
1065   // number of cells not counting the header
1066   int cell_count_no_header() const {
1067     return uint_at(cell_count_global_offset());
1068   }
1069 
1070   void check_number_of_arguments(int total) {
1071     assert(number_of_arguments() == total, "should be set in DataLayout::initialize");
1072   }
1073 
1074 public:
1075   CallTypeData(DataLayout* layout) :
1076     CounterData(layout),
1077     _args(CounterData::static_cell_count()+TypeEntriesAtCall::header_cell_count(), number_of_arguments()),
1078     _ret(cell_count() - ReturnTypeEntry::static_cell_count())
1079   {
1080     assert(layout->tag() == DataLayout::call_type_data_tag, "wrong type");
1081     // Some compilers (VC++) don't want this passed in member initialization list
1082     _args.set_profile_data(this);
1083     _ret.set_profile_data(this);
1084   }
1085 
1086   const TypeStackSlotEntries* args() const {
1087     assert(has_arguments(), "no profiling of arguments");
1088     return &_args;
1089   }
1090 
1091   const ReturnTypeEntry* ret() const {
1092     assert(has_return(), "no profiling of return value");
1093     return &_ret;
1094   }
1095 
1096   virtual bool is_CallTypeData() const { return true; }
1097 
1098   static int static_cell_count() {
1099     return -1;
1100   }
1101 
1102   static int compute_cell_count(BytecodeStream* stream) {
1103     return CounterData::static_cell_count() + TypeEntriesAtCall::compute_cell_count(stream);
1104   }
1105 
1106   static void initialize(DataLayout* dl, int cell_count) {
1107     TypeEntriesAtCall::initialize(dl, CounterData::static_cell_count(), cell_count);
1108   }
1109 
1110   virtual void post_initialize(BytecodeStream* stream, MethodData* mdo);
1111 
1112   virtual int cell_count() const {
1113     return CounterData::static_cell_count() +
1114       TypeEntriesAtCall::header_cell_count() +
1115       int_at_unchecked(cell_count_global_offset());
1116   }
1117 
1118   int number_of_arguments() const {
1119     return cell_count_no_header() / TypeStackSlotEntries::per_arg_count();
1120   }
1121 
1122   void set_argument_type(int i, Klass* k) {
1123     assert(has_arguments(), "no arguments!");
1124     intptr_t current = _args.type(i);
1125     _args.set_type(i, TypeEntries::with_status(k, current));
1126   }
1127 
1128   void set_return_type(Klass* k) {
1129     assert(has_return(), "no return!");
1130     intptr_t current = _ret.type();
1131     _ret.set_type(TypeEntries::with_status(k, current));
1132   }
1133 
1134   // An entry for a return value takes less space than an entry for an
1135   // argument so if the number of cells exceeds the number of cells
1136   // needed for an argument, this object contains type information for
1137   // at least one argument.
1138   bool has_arguments() const {
1139     bool res = cell_count_no_header() >= TypeStackSlotEntries::per_arg_count();
1140     assert (!res || TypeEntriesAtCall::arguments_profiling_enabled(), "no profiling of arguments");
1141     return res;
1142   }
1143 
1144   // An entry for a return value takes less space than an entry for an
1145   // argument, so if the remainder of the number of cells divided by
1146   // the number of cells for an argument is not null, a return value
1147   // is profiled in this object.
1148   bool has_return() const {
1149     bool res = (cell_count_no_header() % TypeStackSlotEntries::per_arg_count()) != 0;
1150     assert (!res || TypeEntriesAtCall::return_profiling_enabled(), "no profiling of return values");
1151     return res;
1152   }
1153 
1154   // Code generation support
1155   static ByteSize args_data_offset() {
1156     return cell_offset(CounterData::static_cell_count()) + TypeEntriesAtCall::args_data_offset();
1157   }
1158 
1159   ByteSize argument_type_offset(int i) {
1160     return _args.type_offset(i);
1161   }
1162 
1163   ByteSize return_type_offset() {
1164     return _ret.type_offset();
1165   }
1166 
1167   // GC support
1168   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {
1169     if (has_arguments()) {
1170       _args.clean_weak_klass_links(is_alive_closure);
1171     }
1172     if (has_return()) {
1173       _ret.clean_weak_klass_links(is_alive_closure);
1174     }
1175   }
1176 
1177   virtual void print_data_on(outputStream* st, const char* extra = NULL) const;
1178 };
1179 
1180 // ReceiverTypeData
1181 //
1182 // A ReceiverTypeData is used to access profiling information about a
1183 // dynamic type check.  It consists of a counter which counts the total times
1184 // that the check is reached, and a series of (Klass*, count) pairs
1185 // which are used to store a type profile for the receiver of the check.
1186 class ReceiverTypeData : public CounterData {
1187   friend class VMStructs;
1188   friend class JVMCIVMStructs;
1189 protected:
1190   enum {
1191 #if INCLUDE_JVMCI
1192     // Description of the different counters
1193     // ReceiverTypeData for instanceof/checkcast/aastore:
1194     //   count is decremented for failed type checks
1195     //   JVMCI only: nonprofiled_count is incremented on type overflow
1196     // VirtualCallData for invokevirtual/invokeinterface:
1197     //   count is incremented on type overflow
1198     //   JVMCI only: nonprofiled_count is incremented on method overflow
1199 
1200     // JVMCI is interested in knowing the percentage of type checks involving a type not explicitly in the profile
1201     nonprofiled_count_off_set = counter_cell_count,
1202     receiver0_offset,
1203 #else
1204     receiver0_offset = counter_cell_count,
1205 #endif
1206     count0_offset,
1207     receiver_type_row_cell_count = (count0_offset + 1) - receiver0_offset
1208   };
1209 
1210 public:
1211   ReceiverTypeData(DataLayout* layout) : CounterData(layout) {
1212     assert(layout->tag() == DataLayout::receiver_type_data_tag ||
1213            layout->tag() == DataLayout::virtual_call_data_tag ||
1214            layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type");
1215   }
1216 
1217   virtual bool is_ReceiverTypeData() const { return true; }
1218 
1219   static int static_cell_count() {
1220     return counter_cell_count + (uint) TypeProfileWidth * receiver_type_row_cell_count JVMCI_ONLY(+ 1);
1221   }
1222 
1223   virtual int cell_count() const {
1224     return static_cell_count();
1225   }
1226 
1227   // Direct accessors
1228   static uint row_limit() {
1229     return TypeProfileWidth;
1230   }
1231   static int receiver_cell_index(uint row) {
1232     return receiver0_offset + row * receiver_type_row_cell_count;
1233   }
1234   static int receiver_count_cell_index(uint row) {
1235     return count0_offset + row * receiver_type_row_cell_count;
1236   }
1237 
1238   Klass* receiver(uint row) const {
1239     assert(row < row_limit(), "oob");
1240 
1241     Klass* recv = (Klass*)intptr_at(receiver_cell_index(row));
1242     assert(recv == NULL || recv->is_klass(), "wrong type");
1243     return recv;
1244   }
1245 
1246   void set_receiver(uint row, Klass* k) {
1247     assert((uint)row < row_limit(), "oob");
1248     set_intptr_at(receiver_cell_index(row), (uintptr_t)k);
1249   }
1250 
1251   uint receiver_count(uint row) const {
1252     assert(row < row_limit(), "oob");
1253     return uint_at(receiver_count_cell_index(row));
1254   }
1255 
1256   void set_receiver_count(uint row, uint count) {
1257     assert(row < row_limit(), "oob");
1258     set_uint_at(receiver_count_cell_index(row), count);
1259   }
1260 
1261   void clear_row(uint row) {
1262     assert(row < row_limit(), "oob");
1263     // Clear total count - indicator of polymorphic call site.
1264     // The site may look like as monomorphic after that but
1265     // it allow to have more accurate profiling information because
1266     // there was execution phase change since klasses were unloaded.
1267     // If the site is still polymorphic then MDO will be updated
1268     // to reflect it. But it could be the case that the site becomes
1269     // only bimorphic. Then keeping total count not 0 will be wrong.
1270     // Even if we use monomorphic (when it is not) for compilation
1271     // we will only have trap, deoptimization and recompile again
1272     // with updated MDO after executing method in Interpreter.
1273     // An additional receiver will be recorded in the cleaned row
1274     // during next call execution.
1275     //
1276     // Note: our profiling logic works with empty rows in any slot.
1277     // We do sorting a profiling info (ciCallProfile) for compilation.
1278     //
1279     set_count(0);
1280     set_receiver(row, NULL);
1281     set_receiver_count(row, 0);
1282 #if INCLUDE_JVMCI
1283     if (!this->is_VirtualCallData()) {
1284       // if this is a ReceiverTypeData for JVMCI, the nonprofiled_count
1285       // must also be reset (see "Description of the different counters" above)
1286       set_nonprofiled_count(0);
1287     }
1288 #endif
1289   }
1290 
1291   // Code generation support
1292   static ByteSize receiver_offset(uint row) {
1293     return cell_offset(receiver_cell_index(row));
1294   }
1295   static ByteSize receiver_count_offset(uint row) {
1296     return cell_offset(receiver_count_cell_index(row));
1297   }
1298 #if INCLUDE_JVMCI
1299   static ByteSize nonprofiled_receiver_count_offset() {
1300     return cell_offset(nonprofiled_count_off_set);
1301   }
1302   uint nonprofiled_count() const {
1303     return uint_at(nonprofiled_count_off_set);
1304   }
1305   void set_nonprofiled_count(uint count) {
1306     set_uint_at(nonprofiled_count_off_set, count);
1307   }
1308 #endif // INCLUDE_JVMCI
1309   static ByteSize receiver_type_data_size() {
1310     return cell_offset(static_cell_count());
1311   }
1312 
1313   // GC support
1314   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure);
1315 
1316 #ifdef CC_INTERP
1317   static int receiver_type_data_size_in_bytes() {
1318     return cell_offset_in_bytes(static_cell_count());
1319   }
1320 
1321   static Klass *receiver_unchecked(DataLayout* layout, uint row) {
1322     Klass* recv = (Klass*)layout->cell_at(receiver_cell_index(row));
1323     return recv;
1324   }
1325 
1326   static void increment_receiver_count_no_overflow(DataLayout* layout, Klass *rcvr) {
1327     const int num_rows = row_limit();
1328     // Receiver already exists?
1329     for (int row = 0; row < num_rows; row++) {
1330       if (receiver_unchecked(layout, row) == rcvr) {
1331         increment_uint_at_no_overflow(layout, receiver_count_cell_index(row));
1332         return;
1333       }
1334     }
1335     // New receiver, find a free slot.
1336     for (int row = 0; row < num_rows; row++) {
1337       if (receiver_unchecked(layout, row) == NULL) {
1338         set_intptr_at(layout, receiver_cell_index(row), (intptr_t)rcvr);
1339         increment_uint_at_no_overflow(layout, receiver_count_cell_index(row));
1340         return;
1341       }
1342     }
1343     // Receiver did not match any saved receiver and there is no empty row for it.
1344     // Increment total counter to indicate polymorphic case.
1345     increment_count_no_overflow(layout);
1346   }
1347 
1348   static DataLayout* advance(DataLayout* layout) {
1349     return (DataLayout*) (((address)layout) + (ssize_t)ReceiverTypeData::receiver_type_data_size_in_bytes());
1350   }
1351 #endif // CC_INTERP
1352 
1353   void print_receiver_data_on(outputStream* st) const;
1354   void print_data_on(outputStream* st, const char* extra = NULL) const;
1355 };
1356 
1357 // VirtualCallData
1358 //
1359 // A VirtualCallData is used to access profiling information about a
1360 // virtual call.  For now, it has nothing more than a ReceiverTypeData.
1361 class VirtualCallData : public ReceiverTypeData {
1362 public:
1363   VirtualCallData(DataLayout* layout) : ReceiverTypeData(layout) {
1364     assert(layout->tag() == DataLayout::virtual_call_data_tag ||
1365            layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type");
1366   }
1367 
1368   virtual bool is_VirtualCallData() const { return true; }
1369 
1370   static int static_cell_count() {
1371     // At this point we could add more profile state, e.g., for arguments.
1372     // But for now it's the same size as the base record type.
1373     return ReceiverTypeData::static_cell_count() JVMCI_ONLY(+ (uint) MethodProfileWidth * receiver_type_row_cell_count);
1374   }
1375 
1376   virtual int cell_count() const {
1377     return static_cell_count();
1378   }
1379 
1380   // Direct accessors
1381   static ByteSize virtual_call_data_size() {
1382     return cell_offset(static_cell_count());
1383   }
1384 
1385 #ifdef CC_INTERP
1386   static int virtual_call_data_size_in_bytes() {
1387     return cell_offset_in_bytes(static_cell_count());
1388   }
1389 
1390   static DataLayout* advance(DataLayout* layout) {
1391     return (DataLayout*) (((address)layout) + (ssize_t)VirtualCallData::virtual_call_data_size_in_bytes());
1392   }
1393 #endif // CC_INTERP
1394 
1395 #if INCLUDE_JVMCI
1396   static ByteSize method_offset(uint row) {
1397     return cell_offset(method_cell_index(row));
1398   }
1399   static ByteSize method_count_offset(uint row) {
1400     return cell_offset(method_count_cell_index(row));
1401   }
1402   static int method_cell_index(uint row) {
1403     return receiver0_offset + (row + TypeProfileWidth) * receiver_type_row_cell_count;
1404   }
1405   static int method_count_cell_index(uint row) {
1406     return count0_offset + (row + TypeProfileWidth) * receiver_type_row_cell_count;
1407   }
1408   static uint method_row_limit() {
1409     return MethodProfileWidth;
1410   }
1411 
1412   Method* method(uint row) const {
1413     assert(row < method_row_limit(), "oob");
1414 
1415     Method* method = (Method*)intptr_at(method_cell_index(row));
1416     assert(method == NULL || method->is_method(), "must be");
1417     return method;
1418   }
1419 
1420   uint method_count(uint row) const {
1421     assert(row < method_row_limit(), "oob");
1422     return uint_at(method_count_cell_index(row));
1423   }
1424 
1425   void set_method(uint row, Method* m) {
1426     assert((uint)row < method_row_limit(), "oob");
1427     set_intptr_at(method_cell_index(row), (uintptr_t)m);
1428   }
1429 
1430   void set_method_count(uint row, uint count) {
1431     assert(row < method_row_limit(), "oob");
1432     set_uint_at(method_count_cell_index(row), count);
1433   }
1434 
1435   void clear_method_row(uint row) {
1436     assert(row < method_row_limit(), "oob");
1437     // Clear total count - indicator of polymorphic call site (see comment for clear_row() in ReceiverTypeData).
1438     set_nonprofiled_count(0);
1439     set_method(row, NULL);
1440     set_method_count(row, 0);
1441   }
1442 
1443   // GC support
1444   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure);
1445 
1446   // Redefinition support
1447   virtual void clean_weak_method_links();
1448 #endif // INCLUDE_JVMCI
1449 
1450   void print_method_data_on(outputStream* st) const NOT_JVMCI_RETURN;
1451   void print_data_on(outputStream* st, const char* extra = NULL) const;
1452 };
1453 
1454 // VirtualCallTypeData
1455 //
1456 // A VirtualCallTypeData is used to access profiling information about
1457 // a virtual call for which we collect type information about
1458 // arguments and return value.
1459 class VirtualCallTypeData : public VirtualCallData {
1460 private:
1461   // entries for arguments if any
1462   TypeStackSlotEntries _args;
1463   // entry for return type if any
1464   ReturnTypeEntry _ret;
1465 
1466   int cell_count_global_offset() const {
1467     return VirtualCallData::static_cell_count() + TypeEntriesAtCall::cell_count_local_offset();
1468   }
1469 
1470   // number of cells not counting the header
1471   int cell_count_no_header() const {
1472     return uint_at(cell_count_global_offset());
1473   }
1474 
1475   void check_number_of_arguments(int total) {
1476     assert(number_of_arguments() == total, "should be set in DataLayout::initialize");
1477   }
1478 
1479 public:
1480   VirtualCallTypeData(DataLayout* layout) :
1481     VirtualCallData(layout),
1482     _args(VirtualCallData::static_cell_count()+TypeEntriesAtCall::header_cell_count(), number_of_arguments()),
1483     _ret(cell_count() - ReturnTypeEntry::static_cell_count())
1484   {
1485     assert(layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type");
1486     // Some compilers (VC++) don't want this passed in member initialization list
1487     _args.set_profile_data(this);
1488     _ret.set_profile_data(this);
1489   }
1490 
1491   const TypeStackSlotEntries* args() const {
1492     assert(has_arguments(), "no profiling of arguments");
1493     return &_args;
1494   }
1495 
1496   const ReturnTypeEntry* ret() const {
1497     assert(has_return(), "no profiling of return value");
1498     return &_ret;
1499   }
1500 
1501   virtual bool is_VirtualCallTypeData() const { return true; }
1502 
1503   static int static_cell_count() {
1504     return -1;
1505   }
1506 
1507   static int compute_cell_count(BytecodeStream* stream) {
1508     return VirtualCallData::static_cell_count() + TypeEntriesAtCall::compute_cell_count(stream);
1509   }
1510 
1511   static void initialize(DataLayout* dl, int cell_count) {
1512     TypeEntriesAtCall::initialize(dl, VirtualCallData::static_cell_count(), cell_count);
1513   }
1514 
1515   virtual void post_initialize(BytecodeStream* stream, MethodData* mdo);
1516 
1517   virtual int cell_count() const {
1518     return VirtualCallData::static_cell_count() +
1519       TypeEntriesAtCall::header_cell_count() +
1520       int_at_unchecked(cell_count_global_offset());
1521   }
1522 
1523   int number_of_arguments() const {
1524     return cell_count_no_header() / TypeStackSlotEntries::per_arg_count();
1525   }
1526 
1527   void set_argument_type(int i, Klass* k) {
1528     assert(has_arguments(), "no arguments!");
1529     intptr_t current = _args.type(i);
1530     _args.set_type(i, TypeEntries::with_status(k, current));
1531   }
1532 
1533   void set_return_type(Klass* k) {
1534     assert(has_return(), "no return!");
1535     intptr_t current = _ret.type();
1536     _ret.set_type(TypeEntries::with_status(k, current));
1537   }
1538 
1539   // An entry for a return value takes less space than an entry for an
1540   // argument, so if the remainder of the number of cells divided by
1541   // the number of cells for an argument is not null, a return value
1542   // is profiled in this object.
1543   bool has_return() const {
1544     bool res = (cell_count_no_header() % TypeStackSlotEntries::per_arg_count()) != 0;
1545     assert (!res || TypeEntriesAtCall::return_profiling_enabled(), "no profiling of return values");
1546     return res;
1547   }
1548 
1549   // An entry for a return value takes less space than an entry for an
1550   // argument so if the number of cells exceeds the number of cells
1551   // needed for an argument, this object contains type information for
1552   // at least one argument.
1553   bool has_arguments() const {
1554     bool res = cell_count_no_header() >= TypeStackSlotEntries::per_arg_count();
1555     assert (!res || TypeEntriesAtCall::arguments_profiling_enabled(), "no profiling of arguments");
1556     return res;
1557   }
1558 
1559   // Code generation support
1560   static ByteSize args_data_offset() {
1561     return cell_offset(VirtualCallData::static_cell_count()) + TypeEntriesAtCall::args_data_offset();
1562   }
1563 
1564   ByteSize argument_type_offset(int i) {
1565     return _args.type_offset(i);
1566   }
1567 
1568   ByteSize return_type_offset() {
1569     return _ret.type_offset();
1570   }
1571 
1572   // GC support
1573   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {
1574     ReceiverTypeData::clean_weak_klass_links(is_alive_closure);
1575     if (has_arguments()) {
1576       _args.clean_weak_klass_links(is_alive_closure);
1577     }
1578     if (has_return()) {
1579       _ret.clean_weak_klass_links(is_alive_closure);
1580     }
1581   }
1582 
1583   virtual void print_data_on(outputStream* st, const char* extra = NULL) const;
1584 };
1585 
1586 // RetData
1587 //
1588 // A RetData is used to access profiling information for a ret bytecode.
1589 // It is composed of a count of the number of times that the ret has
1590 // been executed, followed by a series of triples of the form
1591 // (bci, count, di) which count the number of times that some bci was the
1592 // target of the ret and cache a corresponding data displacement.
1593 class RetData : public CounterData {
1594 protected:
1595   enum {
1596     bci0_offset = counter_cell_count,
1597     count0_offset,
1598     displacement0_offset,
1599     ret_row_cell_count = (displacement0_offset + 1) - bci0_offset
1600   };
1601 
1602   void set_bci(uint row, int bci) {
1603     assert((uint)row < row_limit(), "oob");
1604     set_int_at(bci0_offset + row * ret_row_cell_count, bci);
1605   }
1606   void release_set_bci(uint row, int bci) {
1607     assert((uint)row < row_limit(), "oob");
1608     // 'release' when setting the bci acts as a valid flag for other
1609     // threads wrt bci_count and bci_displacement.
1610     release_set_int_at(bci0_offset + row * ret_row_cell_count, bci);
1611   }
1612   void set_bci_count(uint row, uint count) {
1613     assert((uint)row < row_limit(), "oob");
1614     set_uint_at(count0_offset + row * ret_row_cell_count, count);
1615   }
1616   void set_bci_displacement(uint row, int disp) {
1617     set_int_at(displacement0_offset + row * ret_row_cell_count, disp);
1618   }
1619 
1620 public:
1621   RetData(DataLayout* layout) : CounterData(layout) {
1622     assert(layout->tag() == DataLayout::ret_data_tag, "wrong type");
1623   }
1624 
1625   virtual bool is_RetData() const { return true; }
1626 
1627   enum {
1628     no_bci = -1 // value of bci when bci1/2 are not in use.
1629   };
1630 
1631   static int static_cell_count() {
1632     return counter_cell_count + (uint) BciProfileWidth * ret_row_cell_count;
1633   }
1634 
1635   virtual int cell_count() const {
1636     return static_cell_count();
1637   }
1638 
1639   static uint row_limit() {
1640     return BciProfileWidth;
1641   }
1642   static int bci_cell_index(uint row) {
1643     return bci0_offset + row * ret_row_cell_count;
1644   }
1645   static int bci_count_cell_index(uint row) {
1646     return count0_offset + row * ret_row_cell_count;
1647   }
1648   static int bci_displacement_cell_index(uint row) {
1649     return displacement0_offset + row * ret_row_cell_count;
1650   }
1651 
1652   // Direct accessors
1653   int bci(uint row) const {
1654     return int_at(bci_cell_index(row));
1655   }
1656   uint bci_count(uint row) const {
1657     return uint_at(bci_count_cell_index(row));
1658   }
1659   int bci_displacement(uint row) const {
1660     return int_at(bci_displacement_cell_index(row));
1661   }
1662 
1663   // Interpreter Runtime support
1664   address fixup_ret(int return_bci, MethodData* mdo);
1665 
1666   // Code generation support
1667   static ByteSize bci_offset(uint row) {
1668     return cell_offset(bci_cell_index(row));
1669   }
1670   static ByteSize bci_count_offset(uint row) {
1671     return cell_offset(bci_count_cell_index(row));
1672   }
1673   static ByteSize bci_displacement_offset(uint row) {
1674     return cell_offset(bci_displacement_cell_index(row));
1675   }
1676 
1677 #ifdef CC_INTERP
1678   static DataLayout* advance(MethodData *md, int bci);
1679 #endif // CC_INTERP
1680 
1681   // Specific initialization.
1682   void post_initialize(BytecodeStream* stream, MethodData* mdo);
1683 
1684   void print_data_on(outputStream* st, const char* extra = NULL) const;
1685 };
1686 
1687 // BranchData
1688 //
1689 // A BranchData is used to access profiling data for a two-way branch.
1690 // It consists of taken and not_taken counts as well as a data displacement
1691 // for the taken case.
1692 class BranchData : public JumpData {
1693   friend class VMStructs;
1694   friend class JVMCIVMStructs;
1695 protected:
1696   enum {
1697     not_taken_off_set = jump_cell_count,
1698     branch_cell_count
1699   };
1700 
1701   void set_displacement(int displacement) {
1702     set_int_at(displacement_off_set, displacement);
1703   }
1704 
1705 public:
1706   BranchData(DataLayout* layout) : JumpData(layout) {
1707     assert(layout->tag() == DataLayout::branch_data_tag, "wrong type");
1708   }
1709 
1710   virtual bool is_BranchData() const { return true; }
1711 
1712   static int static_cell_count() {
1713     return branch_cell_count;
1714   }
1715 
1716   virtual int cell_count() const {
1717     return static_cell_count();
1718   }
1719 
1720   // Direct accessor
1721   uint not_taken() const {
1722     return uint_at(not_taken_off_set);
1723   }
1724 
1725   void set_not_taken(uint cnt) {
1726     set_uint_at(not_taken_off_set, cnt);
1727   }
1728 
1729   uint inc_not_taken() {
1730     uint cnt = not_taken() + 1;
1731     // Did we wrap? Will compiler screw us??
1732     if (cnt == 0) cnt--;
1733     set_uint_at(not_taken_off_set, cnt);
1734     return cnt;
1735   }
1736 
1737   // Code generation support
1738   static ByteSize not_taken_offset() {
1739     return cell_offset(not_taken_off_set);
1740   }
1741   static ByteSize branch_data_size() {
1742     return cell_offset(branch_cell_count);
1743   }
1744 
1745 #ifdef CC_INTERP
1746   static int branch_data_size_in_bytes() {
1747     return cell_offset_in_bytes(branch_cell_count);
1748   }
1749 
1750   static void increment_not_taken_count_no_overflow(DataLayout* layout) {
1751     increment_uint_at_no_overflow(layout, not_taken_off_set);
1752   }
1753 
1754   static DataLayout* advance_not_taken(DataLayout* layout) {
1755     return (DataLayout*) (((address)layout) + (ssize_t)BranchData::branch_data_size_in_bytes());
1756   }
1757 #endif // CC_INTERP
1758 
1759   // Specific initialization.
1760   void post_initialize(BytecodeStream* stream, MethodData* mdo);
1761 
1762   void print_data_on(outputStream* st, const char* extra = NULL) const;
1763 };
1764 
1765 // ArrayData
1766 //
1767 // A ArrayData is a base class for accessing profiling data which does
1768 // not have a statically known size.  It consists of an array length
1769 // and an array start.
1770 class ArrayData : public ProfileData {
1771   friend class VMStructs;
1772   friend class JVMCIVMStructs;
1773 protected:
1774   friend class DataLayout;
1775 
1776   enum {
1777     array_len_off_set,
1778     array_start_off_set
1779   };
1780 
1781   uint array_uint_at(int index) const {
1782     int aindex = index + array_start_off_set;
1783     return uint_at(aindex);
1784   }
1785   int array_int_at(int index) const {
1786     int aindex = index + array_start_off_set;
1787     return int_at(aindex);
1788   }
1789   oop array_oop_at(int index) const {
1790     int aindex = index + array_start_off_set;
1791     return oop_at(aindex);
1792   }
1793   void array_set_int_at(int index, int value) {
1794     int aindex = index + array_start_off_set;
1795     set_int_at(aindex, value);
1796   }
1797 
1798 #ifdef CC_INTERP
1799   // Static low level accessors for DataLayout with ArrayData's semantics.
1800 
1801   static void increment_array_uint_at_no_overflow(DataLayout* layout, int index) {
1802     int aindex = index + array_start_off_set;
1803     increment_uint_at_no_overflow(layout, aindex);
1804   }
1805 
1806   static int array_int_at(DataLayout* layout, int index) {
1807     int aindex = index + array_start_off_set;
1808     return int_at(layout, aindex);
1809   }
1810 #endif // CC_INTERP
1811 
1812   // Code generation support for subclasses.
1813   static ByteSize array_element_offset(int index) {
1814     return cell_offset(array_start_off_set + index);
1815   }
1816 
1817 public:
1818   ArrayData(DataLayout* layout) : ProfileData(layout) {}
1819 
1820   virtual bool is_ArrayData() const { return true; }
1821 
1822   static int static_cell_count() {
1823     return -1;
1824   }
1825 
1826   int array_len() const {
1827     return int_at_unchecked(array_len_off_set);
1828   }
1829 
1830   virtual int cell_count() const {
1831     return array_len() + 1;
1832   }
1833 
1834   // Code generation support
1835   static ByteSize array_len_offset() {
1836     return cell_offset(array_len_off_set);
1837   }
1838   static ByteSize array_start_offset() {
1839     return cell_offset(array_start_off_set);
1840   }
1841 };
1842 
1843 // MultiBranchData
1844 //
1845 // A MultiBranchData is used to access profiling information for
1846 // a multi-way branch (*switch bytecodes).  It consists of a series
1847 // of (count, displacement) pairs, which count the number of times each
1848 // case was taken and specify the data displacment for each branch target.
1849 class MultiBranchData : public ArrayData {
1850   friend class VMStructs;
1851   friend class JVMCIVMStructs;
1852 protected:
1853   enum {
1854     default_count_off_set,
1855     default_disaplacement_off_set,
1856     case_array_start
1857   };
1858   enum {
1859     relative_count_off_set,
1860     relative_displacement_off_set,
1861     per_case_cell_count
1862   };
1863 
1864   void set_default_displacement(int displacement) {
1865     array_set_int_at(default_disaplacement_off_set, displacement);
1866   }
1867   void set_displacement_at(int index, int displacement) {
1868     array_set_int_at(case_array_start +
1869                      index * per_case_cell_count +
1870                      relative_displacement_off_set,
1871                      displacement);
1872   }
1873 
1874 public:
1875   MultiBranchData(DataLayout* layout) : ArrayData(layout) {
1876     assert(layout->tag() == DataLayout::multi_branch_data_tag, "wrong type");
1877   }
1878 
1879   virtual bool is_MultiBranchData() const { return true; }
1880 
1881   static int compute_cell_count(BytecodeStream* stream);
1882 
1883   int number_of_cases() const {
1884     int alen = array_len() - 2; // get rid of default case here.
1885     assert(alen % per_case_cell_count == 0, "must be even");
1886     return (alen / per_case_cell_count);
1887   }
1888 
1889   uint default_count() const {
1890     return array_uint_at(default_count_off_set);
1891   }
1892   int default_displacement() const {
1893     return array_int_at(default_disaplacement_off_set);
1894   }
1895 
1896   uint count_at(int index) const {
1897     return array_uint_at(case_array_start +
1898                          index * per_case_cell_count +
1899                          relative_count_off_set);
1900   }
1901   int displacement_at(int index) const {
1902     return array_int_at(case_array_start +
1903                         index * per_case_cell_count +
1904                         relative_displacement_off_set);
1905   }
1906 
1907   // Code generation support
1908   static ByteSize default_count_offset() {
1909     return array_element_offset(default_count_off_set);
1910   }
1911   static ByteSize default_displacement_offset() {
1912     return array_element_offset(default_disaplacement_off_set);
1913   }
1914   static ByteSize case_count_offset(int index) {
1915     return case_array_offset() +
1916            (per_case_size() * index) +
1917            relative_count_offset();
1918   }
1919   static ByteSize case_array_offset() {
1920     return array_element_offset(case_array_start);
1921   }
1922   static ByteSize per_case_size() {
1923     return in_ByteSize(per_case_cell_count) * cell_size;
1924   }
1925   static ByteSize relative_count_offset() {
1926     return in_ByteSize(relative_count_off_set) * cell_size;
1927   }
1928   static ByteSize relative_displacement_offset() {
1929     return in_ByteSize(relative_displacement_off_set) * cell_size;
1930   }
1931 
1932 #ifdef CC_INTERP
1933   static void increment_count_no_overflow(DataLayout* layout, int index) {
1934     if (index == -1) {
1935       increment_array_uint_at_no_overflow(layout, default_count_off_set);
1936     } else {
1937       increment_array_uint_at_no_overflow(layout, case_array_start +
1938                                                   index * per_case_cell_count +
1939                                                   relative_count_off_set);
1940     }
1941   }
1942 
1943   static DataLayout* advance(DataLayout* layout, int index) {
1944     if (index == -1) {
1945       return (DataLayout*) (((address)layout) + (ssize_t)array_int_at(layout, default_disaplacement_off_set));
1946     } else {
1947       return (DataLayout*) (((address)layout) + (ssize_t)array_int_at(layout, case_array_start +
1948                                                                               index * per_case_cell_count +
1949                                                                               relative_displacement_off_set));
1950     }
1951   }
1952 #endif // CC_INTERP
1953 
1954   // Specific initialization.
1955   void post_initialize(BytecodeStream* stream, MethodData* mdo);
1956 
1957   void print_data_on(outputStream* st, const char* extra = NULL) const;
1958 };
1959 
1960 class ArgInfoData : public ArrayData {
1961 
1962 public:
1963   ArgInfoData(DataLayout* layout) : ArrayData(layout) {
1964     assert(layout->tag() == DataLayout::arg_info_data_tag, "wrong type");
1965   }
1966 
1967   virtual bool is_ArgInfoData() const { return true; }
1968 
1969 
1970   int number_of_args() const {
1971     return array_len();
1972   }
1973 
1974   uint arg_modified(int arg) const {
1975     return array_uint_at(arg);
1976   }
1977 
1978   void set_arg_modified(int arg, uint val) {
1979     array_set_int_at(arg, val);
1980   }
1981 
1982   void print_data_on(outputStream* st, const char* extra = NULL) const;
1983 };
1984 
1985 // ParametersTypeData
1986 //
1987 // A ParametersTypeData is used to access profiling information about
1988 // types of parameters to a method
1989 class ParametersTypeData : public ArrayData {
1990 
1991 private:
1992   TypeStackSlotEntries _parameters;
1993 
1994   static int stack_slot_local_offset(int i) {
1995     assert_profiling_enabled();
1996     return array_start_off_set + TypeStackSlotEntries::stack_slot_local_offset(i);
1997   }
1998 
1999   static int type_local_offset(int i) {
2000     assert_profiling_enabled();
2001     return array_start_off_set + TypeStackSlotEntries::type_local_offset(i);
2002   }
2003 
2004   static bool profiling_enabled();
2005   static void assert_profiling_enabled() {
2006     assert(profiling_enabled(), "method parameters profiling should be on");
2007   }
2008 
2009 public:
2010   ParametersTypeData(DataLayout* layout) : ArrayData(layout), _parameters(1, number_of_parameters()) {
2011     assert(layout->tag() == DataLayout::parameters_type_data_tag, "wrong type");
2012     // Some compilers (VC++) don't want this passed in member initialization list
2013     _parameters.set_profile_data(this);
2014   }
2015 
2016   static int compute_cell_count(Method* m);
2017 
2018   virtual bool is_ParametersTypeData() const { return true; }
2019 
2020   virtual void post_initialize(BytecodeStream* stream, MethodData* mdo);
2021 
2022   int number_of_parameters() const {
2023     return array_len() / TypeStackSlotEntries::per_arg_count();
2024   }
2025 
2026   const TypeStackSlotEntries* parameters() const { return &_parameters; }
2027 
2028   uint stack_slot(int i) const {
2029     return _parameters.stack_slot(i);
2030   }
2031 
2032   void set_type(int i, Klass* k) {
2033     intptr_t current = _parameters.type(i);
2034     _parameters.set_type(i, TypeEntries::with_status((intptr_t)k, current));
2035   }
2036 
2037   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {
2038     _parameters.clean_weak_klass_links(is_alive_closure);
2039   }
2040 
2041   virtual void print_data_on(outputStream* st, const char* extra = NULL) const;
2042 
2043   static ByteSize stack_slot_offset(int i) {
2044     return cell_offset(stack_slot_local_offset(i));
2045   }
2046 
2047   static ByteSize type_offset(int i) {
2048     return cell_offset(type_local_offset(i));
2049   }
2050 };
2051 
2052 // SpeculativeTrapData
2053 //
2054 // A SpeculativeTrapData is used to record traps due to type
2055 // speculation. It records the root of the compilation: that type
2056 // speculation is wrong in the context of one compilation (for
2057 // method1) doesn't mean it's wrong in the context of another one (for
2058 // method2). Type speculation could have more/different data in the
2059 // context of the compilation of method2 and it's worthwhile to try an
2060 // optimization that failed for compilation of method1 in the context
2061 // of compilation of method2.
2062 // Space for SpeculativeTrapData entries is allocated from the extra
2063 // data space in the MDO. If we run out of space, the trap data for
2064 // the ProfileData at that bci is updated.
2065 class SpeculativeTrapData : public ProfileData {
2066 protected:
2067   enum {
2068     speculative_trap_method,
2069     speculative_trap_cell_count
2070   };
2071 public:
2072   SpeculativeTrapData(DataLayout* layout) : ProfileData(layout) {
2073     assert(layout->tag() == DataLayout::speculative_trap_data_tag, "wrong type");
2074   }
2075 
2076   virtual bool is_SpeculativeTrapData() const { return true; }
2077 
2078   static int static_cell_count() {
2079     return speculative_trap_cell_count;
2080   }
2081 
2082   virtual int cell_count() const {
2083     return static_cell_count();
2084   }
2085 
2086   // Direct accessor
2087   Method* method() const {
2088     return (Method*)intptr_at(speculative_trap_method);
2089   }
2090 
2091   void set_method(Method* m) {
2092     assert(!m->is_old(), "cannot add old methods");
2093     set_intptr_at(speculative_trap_method, (intptr_t)m);
2094   }
2095 
2096   static ByteSize method_offset() {
2097     return cell_offset(speculative_trap_method);
2098   }
2099 
2100   virtual void print_data_on(outputStream* st, const char* extra = NULL) const;
2101 };
2102 
2103 // MethodData*
2104 //
2105 // A MethodData* holds information which has been collected about
2106 // a method.  Its layout looks like this:
2107 //
2108 // -----------------------------
2109 // | header                    |
2110 // | klass                     |
2111 // -----------------------------
2112 // | method                    |
2113 // | size of the MethodData* |
2114 // -----------------------------
2115 // | Data entries...           |
2116 // |   (variable size)         |
2117 // |                           |
2118 // .                           .
2119 // .                           .
2120 // .                           .
2121 // |                           |
2122 // -----------------------------
2123 //
2124 // The data entry area is a heterogeneous array of DataLayouts. Each
2125 // DataLayout in the array corresponds to a specific bytecode in the
2126 // method.  The entries in the array are sorted by the corresponding
2127 // bytecode.  Access to the data is via resource-allocated ProfileData,
2128 // which point to the underlying blocks of DataLayout structures.
2129 //
2130 // During interpretation, if profiling in enabled, the interpreter
2131 // maintains a method data pointer (mdp), which points at the entry
2132 // in the array corresponding to the current bci.  In the course of
2133 // intepretation, when a bytecode is encountered that has profile data
2134 // associated with it, the entry pointed to by mdp is updated, then the
2135 // mdp is adjusted to point to the next appropriate DataLayout.  If mdp
2136 // is NULL to begin with, the interpreter assumes that the current method
2137 // is not (yet) being profiled.
2138 //
2139 // In MethodData* parlance, "dp" is a "data pointer", the actual address
2140 // of a DataLayout element.  A "di" is a "data index", the offset in bytes
2141 // from the base of the data entry array.  A "displacement" is the byte offset
2142 // in certain ProfileData objects that indicate the amount the mdp must be
2143 // adjusted in the event of a change in control flow.
2144 //
2145 
2146 CC_INTERP_ONLY(class BytecodeInterpreter;)
2147 class CleanExtraDataClosure;
2148 
2149 class MethodData : public Metadata {
2150   friend class VMStructs;
2151   friend class JVMCIVMStructs;
2152   CC_INTERP_ONLY(friend class BytecodeInterpreter;)
2153 private:
2154   friend class ProfileData;
2155   friend class TypeEntriesAtCall;
2156 
2157   // If you add a new field that points to any metaspace object, you
2158   // must add this field to MethodData::metaspace_pointers_do().
2159 
2160   // Back pointer to the Method*
2161   Method* _method;
2162 
2163   // Size of this oop in bytes
2164   int _size;
2165 
2166   // Cached hint for bci_to_dp and bci_to_data
2167   int _hint_di;
2168 
2169   Mutex _extra_data_lock;
2170 
2171   MethodData(const methodHandle& method, int size, TRAPS);
2172 public:
2173   static MethodData* allocate(ClassLoaderData* loader_data, const methodHandle& method, TRAPS);
2174   MethodData() : _extra_data_lock(Monitor::leaf, "MDO extra data lock") {}; // For ciMethodData
2175 
2176   bool is_methodData() const volatile { return true; }
2177   void initialize();
2178 
2179   // Whole-method sticky bits and flags
2180   enum {
2181     _trap_hist_limit    = 23 JVMCI_ONLY(+5),   // decoupled from Deoptimization::Reason_LIMIT
2182     _trap_hist_mask     = max_jubyte,
2183     _extra_data_count   = 4     // extra DataLayout headers, for trap history
2184   }; // Public flag values
2185 private:
2186   uint _nof_decompiles;             // count of all nmethod removals
2187   uint _nof_overflow_recompiles;    // recompile count, excluding recomp. bits
2188   uint _nof_overflow_traps;         // trap count, excluding _trap_hist
2189   union {
2190     intptr_t _align;
2191     u1 _array[JVMCI_ONLY(2 *) _trap_hist_limit];
2192   } _trap_hist;
2193 
2194   // Support for interprocedural escape analysis, from Thomas Kotzmann.
2195   intx              _eflags;          // flags on escape information
2196   intx              _arg_local;       // bit set of non-escaping arguments
2197   intx              _arg_stack;       // bit set of stack-allocatable arguments
2198   intx              _arg_returned;    // bit set of returned arguments
2199 
2200   int _creation_mileage;              // method mileage at MDO creation
2201 
2202   // How many invocations has this MDO seen?
2203   // These counters are used to determine the exact age of MDO.
2204   // We need those because in tiered a method can be concurrently
2205   // executed at different levels.
2206   InvocationCounter _invocation_counter;
2207   // Same for backedges.
2208   InvocationCounter _backedge_counter;
2209   // Counter values at the time profiling started.
2210   int               _invocation_counter_start;
2211   int               _backedge_counter_start;
2212   uint              _tenure_traps;
2213   int               _invoke_mask;      // per-method Tier0InvokeNotifyFreqLog
2214   int               _backedge_mask;    // per-method Tier0BackedgeNotifyFreqLog
2215 
2216 #if INCLUDE_RTM_OPT
2217   // State of RTM code generation during compilation of the method
2218   int               _rtm_state;
2219 #endif
2220 
2221   // Number of loops and blocks is computed when compiling the first
2222   // time with C1. It is used to determine if method is trivial.
2223   short             _num_loops;
2224   short             _num_blocks;
2225   // Does this method contain anything worth profiling?
2226   enum WouldProfile {unknown, no_profile, profile};
2227   WouldProfile      _would_profile;
2228 
2229 #if INCLUDE_JVMCI
2230   // Support for HotSpotMethodData.setCompiledIRSize(int)
2231   int               _jvmci_ir_size;
2232 #endif
2233 
2234   // Size of _data array in bytes.  (Excludes header and extra_data fields.)
2235   int _data_size;
2236 
2237   // data index for the area dedicated to parameters. -1 if no
2238   // parameter profiling.
2239   enum { no_parameters = -2, parameters_uninitialized = -1 };
2240   int _parameters_type_data_di;
2241   int parameters_size_in_bytes() const {
2242     ParametersTypeData* param = parameters_type_data();
2243     return param == NULL ? 0 : param->size_in_bytes();
2244   }
2245 
2246   // Beginning of the data entries
2247   intptr_t _data[1];
2248 
2249   // Helper for size computation
2250   static int compute_data_size(BytecodeStream* stream);
2251   static int bytecode_cell_count(Bytecodes::Code code);
2252   static bool is_speculative_trap_bytecode(Bytecodes::Code code);
2253   enum { no_profile_data = -1, variable_cell_count = -2 };
2254 
2255   // Helper for initialization
2256   DataLayout* data_layout_at(int data_index) const {
2257     assert(data_index % sizeof(intptr_t) == 0, "unaligned");
2258     return (DataLayout*) (((address)_data) + data_index);
2259   }
2260 
2261   // Initialize an individual data segment.  Returns the size of
2262   // the segment in bytes.
2263   int initialize_data(BytecodeStream* stream, int data_index);
2264 
2265   // Helper for data_at
2266   DataLayout* limit_data_position() const {
2267     return data_layout_at(_data_size);
2268   }
2269   bool out_of_bounds(int data_index) const {
2270     return data_index >= data_size();
2271   }
2272 
2273   // Give each of the data entries a chance to perform specific
2274   // data initialization.
2275   void post_initialize(BytecodeStream* stream);
2276 
2277   // hint accessors
2278   int      hint_di() const  { return _hint_di; }
2279   void set_hint_di(int di)  {
2280     assert(!out_of_bounds(di), "hint_di out of bounds");
2281     _hint_di = di;
2282   }
2283   ProfileData* data_before(int bci) {
2284     // avoid SEGV on this edge case
2285     if (data_size() == 0)
2286       return NULL;
2287     int hint = hint_di();
2288     if (data_layout_at(hint)->bci() <= bci)
2289       return data_at(hint);
2290     return first_data();
2291   }
2292 
2293   // What is the index of the first data entry?
2294   int first_di() const { return 0; }
2295 
2296   ProfileData* bci_to_extra_data_helper(int bci, Method* m, DataLayout*& dp, bool concurrent);
2297   // Find or create an extra ProfileData:
2298   ProfileData* bci_to_extra_data(int bci, Method* m, bool create_if_missing);
2299 
2300   // return the argument info cell
2301   ArgInfoData *arg_info();
2302 
2303   enum {
2304     no_type_profile = 0,
2305     type_profile_jsr292 = 1,
2306     type_profile_all = 2
2307   };
2308 
2309   static bool profile_jsr292(const methodHandle& m, int bci);
2310   static bool profile_unsafe(const methodHandle& m, int bci);
2311   static int profile_arguments_flag();
2312   static bool profile_all_arguments();
2313   static bool profile_arguments_for_invoke(const methodHandle& m, int bci);
2314   static int profile_return_flag();
2315   static bool profile_all_return();
2316   static bool profile_return_for_invoke(const methodHandle& m, int bci);
2317   static int profile_parameters_flag();
2318   static bool profile_parameters_jsr292_only();
2319   static bool profile_all_parameters();
2320 
2321   void clean_extra_data(CleanExtraDataClosure* cl);
2322   void clean_extra_data_helper(DataLayout* dp, int shift, bool reset = false);
2323   void verify_extra_data_clean(CleanExtraDataClosure* cl);
2324 
2325 public:
2326   static int header_size() {
2327     return sizeof(MethodData)/wordSize;
2328   }
2329 
2330   // Compute the size of a MethodData* before it is created.
2331   static int compute_allocation_size_in_bytes(const methodHandle& method);
2332   static int compute_allocation_size_in_words(const methodHandle& method);
2333   static int compute_extra_data_count(int data_size, int empty_bc_count, bool needs_speculative_traps);
2334 
2335   // Determine if a given bytecode can have profile information.
2336   static bool bytecode_has_profile(Bytecodes::Code code) {
2337     return bytecode_cell_count(code) != no_profile_data;
2338   }
2339 
2340   // reset into original state
2341   void init();
2342 
2343   // My size
2344   int size_in_bytes() const { return _size; }
2345   int size() const    { return align_metadata_size(align_up(_size, BytesPerWord)/BytesPerWord); }
2346 #if INCLUDE_SERVICES
2347   void collect_statistics(KlassSizeStats *sz) const;
2348 #endif
2349 
2350   int      creation_mileage() const  { return _creation_mileage; }
2351   void set_creation_mileage(int x)   { _creation_mileage = x; }
2352 
2353   int invocation_count() {
2354     if (invocation_counter()->carry()) {
2355       return InvocationCounter::count_limit;
2356     }
2357     return invocation_counter()->count();
2358   }
2359   int backedge_count() {
2360     if (backedge_counter()->carry()) {
2361       return InvocationCounter::count_limit;
2362     }
2363     return backedge_counter()->count();
2364   }
2365 
2366   int invocation_count_start() {
2367     if (invocation_counter()->carry()) {
2368       return 0;
2369     }
2370     return _invocation_counter_start;
2371   }
2372 
2373   int backedge_count_start() {
2374     if (backedge_counter()->carry()) {
2375       return 0;
2376     }
2377     return _backedge_counter_start;
2378   }
2379 
2380   int invocation_count_delta() { return invocation_count() - invocation_count_start(); }
2381   int backedge_count_delta()   { return backedge_count()   - backedge_count_start();   }
2382 
2383   void reset_start_counters() {
2384     _invocation_counter_start = invocation_count();
2385     _backedge_counter_start = backedge_count();
2386   }
2387 
2388   InvocationCounter* invocation_counter()     { return &_invocation_counter; }
2389   InvocationCounter* backedge_counter()       { return &_backedge_counter;   }
2390 
2391 #if INCLUDE_RTM_OPT
2392   int rtm_state() const {
2393     return _rtm_state;
2394   }
2395   void set_rtm_state(RTMState rstate) {
2396     _rtm_state = (int)rstate;
2397   }
2398   void atomic_set_rtm_state(RTMState rstate) {
2399     Atomic::store((int)rstate, &_rtm_state);
2400   }
2401 
2402   static int rtm_state_offset_in_bytes() {
2403     return offset_of(MethodData, _rtm_state);
2404   }
2405 #endif
2406 
2407   void set_would_profile(bool p)              { _would_profile = p ? profile : no_profile; }
2408   bool would_profile() const                  { return _would_profile != no_profile; }
2409 
2410   int num_loops() const                       { return _num_loops;  }
2411   void set_num_loops(int n)                   { _num_loops = n;     }
2412   int num_blocks() const                      { return _num_blocks; }
2413   void set_num_blocks(int n)                  { _num_blocks = n;    }
2414 
2415   bool is_mature() const;  // consult mileage and ProfileMaturityPercentage
2416   static int mileage_of(Method* m);
2417 
2418   // Support for interprocedural escape analysis, from Thomas Kotzmann.
2419   enum EscapeFlag {
2420     estimated    = 1 << 0,
2421     return_local = 1 << 1,
2422     return_allocated = 1 << 2,
2423     allocated_escapes = 1 << 3,
2424     unknown_modified = 1 << 4
2425   };
2426 
2427   intx eflags()                                  { return _eflags; }
2428   intx arg_local()                               { return _arg_local; }
2429   intx arg_stack()                               { return _arg_stack; }
2430   intx arg_returned()                            { return _arg_returned; }
2431   uint arg_modified(int a)                       { ArgInfoData *aid = arg_info();
2432                                                    assert(aid != NULL, "arg_info must be not null");
2433                                                    assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
2434                                                    return aid->arg_modified(a); }
2435 
2436   void set_eflags(intx v)                        { _eflags = v; }
2437   void set_arg_local(intx v)                     { _arg_local = v; }
2438   void set_arg_stack(intx v)                     { _arg_stack = v; }
2439   void set_arg_returned(intx v)                  { _arg_returned = v; }
2440   void set_arg_modified(int a, uint v)           { ArgInfoData *aid = arg_info();
2441                                                    assert(aid != NULL, "arg_info must be not null");
2442                                                    assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
2443                                                    aid->set_arg_modified(a, v); }
2444 
2445   void clear_escape_info()                       { _eflags = _arg_local = _arg_stack = _arg_returned = 0; }
2446 
2447   // Location and size of data area
2448   address data_base() const {
2449     return (address) _data;
2450   }
2451   int data_size() const {
2452     return _data_size;
2453   }
2454 
2455   // Accessors
2456   Method* method() const { return _method; }
2457 
2458   // Get the data at an arbitrary (sort of) data index.
2459   ProfileData* data_at(int data_index) const;
2460 
2461   // Walk through the data in order.
2462   ProfileData* first_data() const { return data_at(first_di()); }
2463   ProfileData* next_data(ProfileData* current) const;
2464   bool is_valid(ProfileData* current) const { return current != NULL; }
2465 
2466   // Convert a dp (data pointer) to a di (data index).
2467   int dp_to_di(address dp) const {
2468     return dp - ((address)_data);
2469   }
2470 
2471   // bci to di/dp conversion.
2472   address bci_to_dp(int bci);
2473   int bci_to_di(int bci) {
2474     return dp_to_di(bci_to_dp(bci));
2475   }
2476 
2477   // Get the data at an arbitrary bci, or NULL if there is none.
2478   ProfileData* bci_to_data(int bci);
2479 
2480   // Same, but try to create an extra_data record if one is needed:
2481   ProfileData* allocate_bci_to_data(int bci, Method* m) {
2482     ProfileData* data = NULL;
2483     // If m not NULL, try to allocate a SpeculativeTrapData entry
2484     if (m == NULL) {
2485       data = bci_to_data(bci);
2486     }
2487     if (data != NULL) {
2488       return data;
2489     }
2490     data = bci_to_extra_data(bci, m, true);
2491     if (data != NULL) {
2492       return data;
2493     }
2494     // If SpeculativeTrapData allocation fails try to allocate a
2495     // regular entry
2496     data = bci_to_data(bci);
2497     if (data != NULL) {
2498       return data;
2499     }
2500     return bci_to_extra_data(bci, NULL, true);
2501   }
2502 
2503   // Add a handful of extra data records, for trap tracking.
2504   DataLayout* extra_data_base() const  { return limit_data_position(); }
2505   DataLayout* extra_data_limit() const { return (DataLayout*)((address)this + size_in_bytes()); }
2506   DataLayout* args_data_limit() const  { return (DataLayout*)((address)this + size_in_bytes() -
2507                                                               parameters_size_in_bytes()); }
2508   int extra_data_size() const          { return (address)extra_data_limit() - (address)extra_data_base(); }
2509   static DataLayout* next_extra(DataLayout* dp);
2510 
2511   // Return (uint)-1 for overflow.
2512   uint trap_count(int reason) const {
2513     assert((uint)reason < JVMCI_ONLY(2*) _trap_hist_limit, "oob");
2514     return (int)((_trap_hist._array[reason]+1) & _trap_hist_mask) - 1;
2515   }
2516   // For loops:
2517   static uint trap_reason_limit() { return _trap_hist_limit; }
2518   static uint trap_count_limit()  { return _trap_hist_mask; }
2519   uint inc_trap_count(int reason) {
2520     // Count another trap, anywhere in this method.
2521     assert(reason >= 0, "must be single trap");
2522     assert((uint)reason < JVMCI_ONLY(2*) _trap_hist_limit, "oob");
2523     uint cnt1 = 1 + _trap_hist._array[reason];
2524     if ((cnt1 & _trap_hist_mask) != 0) {  // if no counter overflow...
2525       _trap_hist._array[reason] = cnt1;
2526       return cnt1;
2527     } else {
2528       return _trap_hist_mask + (++_nof_overflow_traps);
2529     }
2530   }
2531 
2532   uint overflow_trap_count() const {
2533     return _nof_overflow_traps;
2534   }
2535   uint overflow_recompile_count() const {
2536     return _nof_overflow_recompiles;
2537   }
2538   void inc_overflow_recompile_count() {
2539     _nof_overflow_recompiles += 1;
2540   }
2541   uint decompile_count() const {
2542     return _nof_decompiles;
2543   }
2544   void inc_decompile_count() {
2545     _nof_decompiles += 1;
2546     if (decompile_count() > (uint)PerMethodRecompilationCutoff) {
2547       method()->set_not_compilable(CompLevel_full_optimization, true, "decompile_count > PerMethodRecompilationCutoff");
2548     }
2549   }
2550   uint tenure_traps() const {
2551     return _tenure_traps;
2552   }
2553   void inc_tenure_traps() {
2554     _tenure_traps += 1;
2555   }
2556 
2557   // Return pointer to area dedicated to parameters in MDO
2558   ParametersTypeData* parameters_type_data() const {
2559     assert(_parameters_type_data_di != parameters_uninitialized, "called too early");
2560     return _parameters_type_data_di != no_parameters ? data_layout_at(_parameters_type_data_di)->data_in()->as_ParametersTypeData() : NULL;
2561   }
2562 
2563   int parameters_type_data_di() const {
2564     assert(_parameters_type_data_di != parameters_uninitialized && _parameters_type_data_di != no_parameters, "no args type data");
2565     return _parameters_type_data_di;
2566   }
2567 
2568   // Support for code generation
2569   static ByteSize data_offset() {
2570     return byte_offset_of(MethodData, _data[0]);
2571   }
2572 
2573   static ByteSize trap_history_offset() {
2574     return byte_offset_of(MethodData, _trap_hist._array);
2575   }
2576 
2577   static ByteSize invocation_counter_offset() {
2578     return byte_offset_of(MethodData, _invocation_counter);
2579   }
2580 
2581   static ByteSize backedge_counter_offset() {
2582     return byte_offset_of(MethodData, _backedge_counter);
2583   }
2584 
2585   static ByteSize invoke_mask_offset() {
2586     return byte_offset_of(MethodData, _invoke_mask);
2587   }
2588 
2589   static ByteSize backedge_mask_offset() {
2590     return byte_offset_of(MethodData, _backedge_mask);
2591   }
2592 
2593   static ByteSize parameters_type_data_di_offset() {
2594     return byte_offset_of(MethodData, _parameters_type_data_di);
2595   }
2596 
2597   virtual void metaspace_pointers_do(MetaspaceClosure* iter);
2598   virtual MetaspaceObj::Type type() const { return MethodDataType; }
2599 
2600   // Deallocation support - no pointer fields to deallocate
2601   void deallocate_contents(ClassLoaderData* loader_data) {}
2602 
2603   // GC support
2604   void set_size(int object_size_in_bytes) { _size = object_size_in_bytes; }
2605 
2606   // Printing
2607   void print_on      (outputStream* st) const;
2608   void print_value_on(outputStream* st) const;
2609 
2610   // printing support for method data
2611   void print_data_on(outputStream* st) const;
2612 
2613   const char* internal_name() const { return "{method data}"; }
2614 
2615   // verification
2616   void verify_on(outputStream* st);
2617   void verify_data_on(outputStream* st);
2618 
2619   static bool profile_parameters_for_method(const methodHandle& m);
2620   static bool profile_arguments();
2621   static bool profile_arguments_jsr292_only();
2622   static bool profile_return();
2623   static bool profile_parameters();
2624   static bool profile_return_jsr292_only();
2625 
2626   void clean_method_data(BoolObjectClosure* is_alive);
2627   void clean_weak_method_links();
2628   DEBUG_ONLY(void verify_clean_weak_method_links();)
2629   Mutex* extra_data_lock() { return &_extra_data_lock; }
2630 };
2631 
2632 #endif // SHARE_VM_OOPS_METHODDATAOOP_HPP