/* * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "gc/g1/heapRegion.hpp" #include "gc/g1/heapRegionBounds.inline.hpp" #include "gc/g1/heapRegionRemSet.hpp" #include "gc/g1/sparsePRT.hpp" #include "gc/shared/cardTableModRefBS.hpp" #include "gc/shared/space.inline.hpp" #include "memory/allocation.inline.hpp" #include "runtime/atomic.hpp" #include "runtime/mutexLocker.hpp" // Check that the size of the SparsePRTEntry is evenly divisible by the maximum // member type to avoid SIGBUS when accessing them. STATIC_ASSERT(sizeof(SparsePRTEntry) % sizeof(int) == 0); void SparsePRTEntry::init(RegionIdx_t region_ind) { // Check that the card array element type can represent all cards in the region. // Choose a large SparsePRTEntry::card_elem_t (e.g. CardIdx_t) if required. assert(((size_t)1 << (sizeof(SparsePRTEntry::card_elem_t) * BitsPerByte)) * G1SATBCardTableModRefBS::card_size >= HeapRegionBounds::max_size(), "precondition"); assert(G1RSetSparseRegionEntries > 0, "precondition"); _region_ind = region_ind; _next_index = RSHashTable::NullEntry; _next_null = 0; } bool SparsePRTEntry::contains_card(CardIdx_t card_index) const { for (int i = 0; i < num_valid_cards(); i++) { if (card(i) == card_index) { return true; } } return false; } SparsePRTEntry::AddCardResult SparsePRTEntry::add_card(CardIdx_t card_index) { for (int i = 0; i < num_valid_cards(); i++) { if (card(i) == card_index) { return found; } } if (num_valid_cards() < cards_num() - 1) { _cards[_next_null] = (card_elem_t)card_index; _next_null++; return added; } // Otherwise, we're full. return overflow; } void SparsePRTEntry::copy_cards(card_elem_t* cards) const { memcpy(cards, _cards, cards_num() * sizeof(card_elem_t)); } void SparsePRTEntry::copy_cards(SparsePRTEntry* e) const { copy_cards(e->_cards); assert(_next_null >= 0, "invariant"); assert(_next_null <= cards_num(), "invariant"); e->_next_null = _next_null; } // ---------------------------------------------------------------------- float RSHashTable::TableOccupancyFactor = 0.5f; RSHashTable::RSHashTable(size_t capacity) : _capacity(capacity), _capacity_mask(capacity-1), _occupied_entries(0), _occupied_cards(0), _entries(NULL), _buckets(NEW_C_HEAP_ARRAY(int, capacity, mtGC)), _free_list(NullEntry), _free_region(0) { _num_entries = (capacity * TableOccupancyFactor) + 1; _entries = (SparsePRTEntry*)NEW_C_HEAP_ARRAY(char, _num_entries * SparsePRTEntry::size(), mtGC); clear(); } RSHashTable::~RSHashTable() { if (_entries != NULL) { FREE_C_HEAP_ARRAY(SparsePRTEntry, _entries); _entries = NULL; } if (_buckets != NULL) { FREE_C_HEAP_ARRAY(int, _buckets); _buckets = NULL; } } void RSHashTable::clear() { _occupied_entries = 0; _occupied_cards = 0; guarantee(_entries != NULL, "INV"); guarantee(_buckets != NULL, "INV"); guarantee(_capacity <= ((size_t)1 << (sizeof(int)*BitsPerByte-1)) - 1, "_capacity too large"); // This will put -1 == NullEntry in the key field of all entries. memset((void*)_entries, NullEntry, _num_entries * SparsePRTEntry::size()); memset((void*)_buckets, NullEntry, _capacity * sizeof(int)); _free_list = NullEntry; _free_region = 0; } bool RSHashTable::add_card(RegionIdx_t region_ind, CardIdx_t card_index) { SparsePRTEntry* e = entry_for_region_ind_create(region_ind); assert(e != NULL && e->r_ind() == region_ind, "Postcondition of call above."); SparsePRTEntry::AddCardResult res = e->add_card(card_index); if (res == SparsePRTEntry::added) _occupied_cards++; assert(e->num_valid_cards() > 0, "Postcondition"); return res != SparsePRTEntry::overflow; } SparsePRTEntry* RSHashTable::get_entry(RegionIdx_t region_ind) const { int ind = (int) (region_ind & capacity_mask()); int cur_ind = _buckets[ind]; SparsePRTEntry* cur; while (cur_ind != NullEntry && (cur = entry(cur_ind))->r_ind() != region_ind) { cur_ind = cur->next_index(); } if (cur_ind == NullEntry) return NULL; // Otherwise... assert(cur->r_ind() == region_ind, "Postcondition of loop + test above."); assert(cur->num_valid_cards() > 0, "Inv"); return cur; } bool RSHashTable::delete_entry(RegionIdx_t region_ind) { int ind = (int) (region_ind & capacity_mask()); int* prev_loc = &_buckets[ind]; int cur_ind = *prev_loc; SparsePRTEntry* cur; while (cur_ind != NullEntry && (cur = entry(cur_ind))->r_ind() != region_ind) { prev_loc = cur->next_index_addr(); cur_ind = *prev_loc; } if (cur_ind == NullEntry) return false; // Otherwise, splice out "cur". *prev_loc = cur->next_index(); _occupied_cards -= cur->num_valid_cards(); free_entry(cur_ind); _occupied_entries--; return true; } SparsePRTEntry* RSHashTable::entry_for_region_ind_create(RegionIdx_t region_ind) { SparsePRTEntry* res = get_entry(region_ind); if (res == NULL) { int new_ind = alloc_entry(); res = entry(new_ind); res->init(region_ind); // Insert at front. int ind = (int) (region_ind & capacity_mask()); res->set_next_index(_buckets[ind]); _buckets[ind] = new_ind; _occupied_entries++; } return res; } int RSHashTable::alloc_entry() { int res; if (_free_list != NullEntry) { res = _free_list; _free_list = entry(res)->next_index(); return res; } else if ((size_t)_free_region < _num_entries) { res = _free_region; _free_region++; return res; } else { return NullEntry; } } void RSHashTable::free_entry(int fi) { entry(fi)->set_next_index(_free_list); _free_list = fi; } void RSHashTable::add_entry(SparsePRTEntry* e) { assert(e->num_valid_cards() > 0, "Precondition."); SparsePRTEntry* e2 = entry_for_region_ind_create(e->r_ind()); e->copy_cards(e2); _occupied_cards += e2->num_valid_cards(); assert(e2->num_valid_cards() > 0, "Postcondition."); } CardIdx_t RSHashTableIter::find_first_card_in_list() { while (_bl_ind != RSHashTable::NullEntry) { SparsePRTEntry* sparse_entry = _rsht->entry(_bl_ind); if (sparse_entry->num_valid_cards() > 0) { return sparse_entry->card(0); } else { _bl_ind = sparse_entry->next_index(); } } // Otherwise, none found: return NoCardFound; } size_t RSHashTableIter::compute_card_ind(CardIdx_t ci) { return (_rsht->entry(_bl_ind)->r_ind() * HeapRegion::CardsPerRegion) + ci; } bool RSHashTableIter::has_next(size_t& card_index) { _card_ind++; if (_bl_ind >= 0) { SparsePRTEntry* e = _rsht->entry(_bl_ind); if (_card_ind < e->num_valid_cards()) { CardIdx_t ci = e->card(_card_ind); card_index = compute_card_ind(ci); return true; } } // Otherwise, must find the next valid entry. _card_ind = 0; if (_bl_ind != RSHashTable::NullEntry) { _bl_ind = _rsht->entry(_bl_ind)->next_index(); CardIdx_t ci = find_first_card_in_list(); if (ci != NoCardFound) { card_index = compute_card_ind(ci); return true; } } // If we didn't return above, must go to the next non-null table index. _tbl_ind++; while ((size_t)_tbl_ind < _rsht->capacity()) { _bl_ind = _rsht->_buckets[_tbl_ind]; CardIdx_t ci = find_first_card_in_list(); if (ci != NoCardFound) { card_index = compute_card_ind(ci); return true; } // Otherwise, try next entry. _tbl_ind++; } // Otherwise, there were no entry. return false; } bool RSHashTable::contains_card(RegionIdx_t region_index, CardIdx_t card_index) const { SparsePRTEntry* e = get_entry(region_index); return (e != NULL && e->contains_card(card_index)); } size_t RSHashTable::mem_size() const { return sizeof(RSHashTable) + _num_entries * (SparsePRTEntry::size() + sizeof(int)); } // ---------------------------------------------------------------------- SparsePRT* volatile SparsePRT::_head_expanded_list = NULL; void SparsePRT::add_to_expanded_list(SparsePRT* sprt) { // We could expand multiple times in a pause -- only put on list once. if (sprt->expanded()) return; sprt->set_expanded(true); SparsePRT* hd = _head_expanded_list; while (true) { sprt->_next_expanded = hd; SparsePRT* res = Atomic::cmpxchg(sprt, &_head_expanded_list, hd); if (res == hd) return; else hd = res; } } SparsePRT* SparsePRT::get_from_expanded_list() { SparsePRT* hd = _head_expanded_list; while (hd != NULL) { SparsePRT* next = hd->next_expanded(); SparsePRT* res = Atomic::cmpxchg(next, &_head_expanded_list, hd); if (res == hd) { hd->set_next_expanded(NULL); return hd; } else { hd = res; } } return NULL; } void SparsePRT::reset_for_cleanup_tasks() { _head_expanded_list = NULL; } void SparsePRT::do_cleanup_work(SparsePRTCleanupTask* sprt_cleanup_task) { if (should_be_on_expanded_list()) { sprt_cleanup_task->add(this); } } void SparsePRT::finish_cleanup_task(SparsePRTCleanupTask* sprt_cleanup_task) { assert(ParGCRareEvent_lock->owned_by_self(), "pre-condition"); SparsePRT* head = sprt_cleanup_task->head(); SparsePRT* tail = sprt_cleanup_task->tail(); if (head != NULL) { assert(tail != NULL, "if head is not NULL, so should tail"); tail->set_next_expanded(_head_expanded_list); _head_expanded_list = head; } else { assert(tail == NULL, "if head is NULL, so should tail"); } } bool SparsePRT::should_be_on_expanded_list() { if (_expanded) { assert(_cur != _next, "if _expanded is true, cur should be != _next"); } else { assert(_cur == _next, "if _expanded is false, cur should be == _next"); } return expanded(); } void SparsePRT::cleanup_all() { // First clean up all expanded tables so they agree on next and cur. SparsePRT* sprt = get_from_expanded_list(); while (sprt != NULL) { sprt->cleanup(); sprt = get_from_expanded_list(); } } SparsePRT::SparsePRT(HeapRegion* hr) : _hr(hr), _expanded(false), _next_expanded(NULL) { _cur = new RSHashTable(InitialCapacity); _next = _cur; } SparsePRT::~SparsePRT() { assert(_next != NULL && _cur != NULL, "Inv"); if (_cur != _next) { delete _cur; } delete _next; } size_t SparsePRT::mem_size() const { // We ignore "_cur" here, because it either = _next, or else it is // on the deleted list. return sizeof(SparsePRT) + _next->mem_size(); } bool SparsePRT::add_card(RegionIdx_t region_id, CardIdx_t card_index) { if (_next->should_expand()) { expand(); } return _next->add_card(region_id, card_index); } SparsePRTEntry* SparsePRT::get_entry(RegionIdx_t region_id) { return _next->get_entry(region_id); } bool SparsePRT::delete_entry(RegionIdx_t region_id) { return _next->delete_entry(region_id); } void SparsePRT::clear() { // If they differ, _next is bigger then cur, so next has no chance of // being the initial size. if (_next != _cur) { delete _next; } if (_cur->capacity() != InitialCapacity) { delete _cur; _cur = new RSHashTable(InitialCapacity); } else { _cur->clear(); } _next = _cur; _expanded = false; } void SparsePRT::cleanup() { // Make sure that the current and next tables agree. if (_cur != _next) { delete _cur; } _cur = _next; set_expanded(false); } void SparsePRT::expand() { RSHashTable* last = _next; _next = new RSHashTable(last->capacity() * 2); for (size_t i = 0; i < last->num_entries(); i++) { SparsePRTEntry* e = last->entry((int)i); if (e->valid_entry()) { _next->add_entry(e); } } if (last != _cur) { delete last; } add_to_expanded_list(this); } void SparsePRTCleanupTask::add(SparsePRT* sprt) { assert(sprt->should_be_on_expanded_list(), "pre-condition"); sprt->set_next_expanded(NULL); if (_tail != NULL) { _tail->set_next_expanded(sprt); } else { _head = sprt; } _tail = sprt; }